core/
cmp.rs

1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//!   `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//!   partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//!   equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//!   partial orderings between values, respectively. Implementing them overloads
13//!   the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//!   [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//!   greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//!   to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::{Destruct, PointeeSized};
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67///   implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70///   PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71///   This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72///   `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116///     Paperback,
117///     Hardback,
118///     Ebook,
119/// }
120///
121/// struct Book {
122///     isbn: i32,
123///     format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127///     fn eq(&self, other: &Self) -> bool {
128///         self.isbn == other.isbn
129///     }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149///     Paperback,
150///     Hardback,
151///     Ebook,
152/// }
153///
154/// struct Book {
155///     isbn: i32,
156///     format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161///     fn eq(&self, other: &BookFormat) -> bool {
162///         self.format == *other
163///     }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168///     fn eq(&self, other: &Book) -> bool {
169///         *self == other.format
170///     }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193///     Paperback,
194///     Hardback,
195///     Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200///     isbn: i32,
201///     format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205///     fn eq(&self, other: &BookFormat) -> bool {
206///         self.format == *other
207///     }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211///     fn eq(&self, other: &Book) -> bool {
212///         *self == other.format
213///     }
214/// }
215///
216/// fn main() {
217///     let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218///     let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220///     assert!(b1 == BookFormat::Paperback);
221///     assert!(BookFormat::Paperback == b2);
222///
223///     // The following should hold by transitivity but doesn't.
224///     assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245    message = "can't compare `{Self}` with `{Rhs}`",
246    label = "no implementation for `{Self} == {Rhs}`",
247    append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
251pub const trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
252    /// Tests for `self` and `other` values to be equal, and is used by `==`.
253    #[must_use]
254    #[stable(feature = "rust1", since = "1.0.0")]
255    #[rustc_diagnostic_item = "cmp_partialeq_eq"]
256    fn eq(&self, other: &Rhs) -> bool;
257
258    /// Tests for `!=`. The default implementation is almost always sufficient,
259    /// and should not be overridden without very good reason.
260    #[inline]
261    #[must_use]
262    #[stable(feature = "rust1", since = "1.0.0")]
263    #[rustc_diagnostic_item = "cmp_partialeq_ne"]
264    fn ne(&self, other: &Rhs) -> bool {
265        !self.eq(other)
266    }
267}
268
269/// Derive macro generating an impl of the trait [`PartialEq`].
270/// The behavior of this macro is described in detail [here](PartialEq#derivable).
271#[rustc_builtin_macro]
272#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
273#[allow_internal_unstable(core_intrinsics, structural_match)]
274pub macro PartialEq($item:item) {
275    /* compiler built-in */
276}
277
278/// Trait for comparisons corresponding to [equivalence relations](
279/// https://en.wikipedia.org/wiki/Equivalence_relation).
280///
281/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
282/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
283///
284/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
285/// - transitive: `a == b` and `b == c` implies `a == c`
286///
287/// `Eq`, which builds on top of [`PartialEq`] also implies:
288///
289/// - reflexive: `a == a`
290///
291/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
292///
293/// Violating this property is a logic error. The behavior resulting from a logic error is not
294/// specified, but users of the trait must ensure that such logic errors do *not* result in
295/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
296/// methods.
297///
298/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
299/// because `NaN` != `NaN`.
300///
301/// ## Derivable
302///
303/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
304/// is only informing the compiler that this is an equivalence relation rather than a partial
305/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
306/// always desired.
307///
308/// ## How can I implement `Eq`?
309///
310/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
311/// extra methods:
312///
313/// ```
314/// enum BookFormat {
315///     Paperback,
316///     Hardback,
317///     Ebook,
318/// }
319///
320/// struct Book {
321///     isbn: i32,
322///     format: BookFormat,
323/// }
324///
325/// impl PartialEq for Book {
326///     fn eq(&self, other: &Self) -> bool {
327///         self.isbn == other.isbn
328///     }
329/// }
330///
331/// impl Eq for Book {}
332/// ```
333#[doc(alias = "==")]
334#[doc(alias = "!=")]
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_diagnostic_item = "Eq"]
337#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
338pub const trait Eq: [const] PartialEq<Self> + PointeeSized {
339    // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
340    // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
341    // without using a method on this trait is nearly impossible.
342    //
343    // This should never be implemented by hand.
344    #[doc(hidden)]
345    #[coverage(off)]
346    #[inline]
347    #[stable(feature = "rust1", since = "1.0.0")]
348    fn assert_receiver_is_total_eq(&self) {}
349}
350
351/// Derive macro generating an impl of the trait [`Eq`].
352#[rustc_builtin_macro]
353#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
354#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
355#[allow_internal_unstable(coverage_attribute)]
356pub macro Eq($item:item) {
357    /* compiler built-in */
358}
359
360// FIXME: this struct is used solely by #[derive] to
361// assert that every component of a type implements Eq.
362//
363// This struct should never appear in user code.
364#[doc(hidden)]
365#[allow(missing_debug_implementations)]
366#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
367pub struct AssertParamIsEq<T: Eq + PointeeSized> {
368    _field: crate::marker::PhantomData<T>,
369}
370
371/// An `Ordering` is the result of a comparison between two values.
372///
373/// # Examples
374///
375/// ```
376/// use std::cmp::Ordering;
377///
378/// assert_eq!(1.cmp(&2), Ordering::Less);
379///
380/// assert_eq!(1.cmp(&1), Ordering::Equal);
381///
382/// assert_eq!(2.cmp(&1), Ordering::Greater);
383/// ```
384#[derive(Copy, Debug, Hash)]
385#[derive_const(Clone, Eq, PartialOrd, Ord, PartialEq)]
386#[stable(feature = "rust1", since = "1.0.0")]
387// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
388// It has no special behavior, but does require that the three variants
389// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
390#[lang = "Ordering"]
391#[repr(i8)]
392pub enum Ordering {
393    /// An ordering where a compared value is less than another.
394    #[stable(feature = "rust1", since = "1.0.0")]
395    Less = -1,
396    /// An ordering where a compared value is equal to another.
397    #[stable(feature = "rust1", since = "1.0.0")]
398    Equal = 0,
399    /// An ordering where a compared value is greater than another.
400    #[stable(feature = "rust1", since = "1.0.0")]
401    Greater = 1,
402}
403
404impl Ordering {
405    #[inline]
406    const fn as_raw(self) -> i8 {
407        // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
408        crate::intrinsics::discriminant_value(&self)
409    }
410
411    /// Returns `true` if the ordering is the `Equal` variant.
412    ///
413    /// # Examples
414    ///
415    /// ```
416    /// use std::cmp::Ordering;
417    ///
418    /// assert_eq!(Ordering::Less.is_eq(), false);
419    /// assert_eq!(Ordering::Equal.is_eq(), true);
420    /// assert_eq!(Ordering::Greater.is_eq(), false);
421    /// ```
422    #[inline]
423    #[must_use]
424    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
425    #[stable(feature = "ordering_helpers", since = "1.53.0")]
426    pub const fn is_eq(self) -> bool {
427        // All the `is_*` methods are implemented as comparisons against zero
428        // to follow how clang's libcxx implements their equivalents in
429        // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
430
431        self.as_raw() == 0
432    }
433
434    /// Returns `true` if the ordering is not the `Equal` variant.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::cmp::Ordering;
440    ///
441    /// assert_eq!(Ordering::Less.is_ne(), true);
442    /// assert_eq!(Ordering::Equal.is_ne(), false);
443    /// assert_eq!(Ordering::Greater.is_ne(), true);
444    /// ```
445    #[inline]
446    #[must_use]
447    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
448    #[stable(feature = "ordering_helpers", since = "1.53.0")]
449    pub const fn is_ne(self) -> bool {
450        self.as_raw() != 0
451    }
452
453    /// Returns `true` if the ordering is the `Less` variant.
454    ///
455    /// # Examples
456    ///
457    /// ```
458    /// use std::cmp::Ordering;
459    ///
460    /// assert_eq!(Ordering::Less.is_lt(), true);
461    /// assert_eq!(Ordering::Equal.is_lt(), false);
462    /// assert_eq!(Ordering::Greater.is_lt(), false);
463    /// ```
464    #[inline]
465    #[must_use]
466    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
467    #[stable(feature = "ordering_helpers", since = "1.53.0")]
468    pub const fn is_lt(self) -> bool {
469        self.as_raw() < 0
470    }
471
472    /// Returns `true` if the ordering is the `Greater` variant.
473    ///
474    /// # Examples
475    ///
476    /// ```
477    /// use std::cmp::Ordering;
478    ///
479    /// assert_eq!(Ordering::Less.is_gt(), false);
480    /// assert_eq!(Ordering::Equal.is_gt(), false);
481    /// assert_eq!(Ordering::Greater.is_gt(), true);
482    /// ```
483    #[inline]
484    #[must_use]
485    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
486    #[stable(feature = "ordering_helpers", since = "1.53.0")]
487    pub const fn is_gt(self) -> bool {
488        self.as_raw() > 0
489    }
490
491    /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// use std::cmp::Ordering;
497    ///
498    /// assert_eq!(Ordering::Less.is_le(), true);
499    /// assert_eq!(Ordering::Equal.is_le(), true);
500    /// assert_eq!(Ordering::Greater.is_le(), false);
501    /// ```
502    #[inline]
503    #[must_use]
504    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
505    #[stable(feature = "ordering_helpers", since = "1.53.0")]
506    pub const fn is_le(self) -> bool {
507        self.as_raw() <= 0
508    }
509
510    /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
511    ///
512    /// # Examples
513    ///
514    /// ```
515    /// use std::cmp::Ordering;
516    ///
517    /// assert_eq!(Ordering::Less.is_ge(), false);
518    /// assert_eq!(Ordering::Equal.is_ge(), true);
519    /// assert_eq!(Ordering::Greater.is_ge(), true);
520    /// ```
521    #[inline]
522    #[must_use]
523    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
524    #[stable(feature = "ordering_helpers", since = "1.53.0")]
525    pub const fn is_ge(self) -> bool {
526        self.as_raw() >= 0
527    }
528
529    /// Reverses the `Ordering`.
530    ///
531    /// * `Less` becomes `Greater`.
532    /// * `Greater` becomes `Less`.
533    /// * `Equal` becomes `Equal`.
534    ///
535    /// # Examples
536    ///
537    /// Basic behavior:
538    ///
539    /// ```
540    /// use std::cmp::Ordering;
541    ///
542    /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
543    /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
544    /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
545    /// ```
546    ///
547    /// This method can be used to reverse a comparison:
548    ///
549    /// ```
550    /// let data: &mut [_] = &mut [2, 10, 5, 8];
551    ///
552    /// // sort the array from largest to smallest.
553    /// data.sort_by(|a, b| a.cmp(b).reverse());
554    ///
555    /// let b: &mut [_] = &mut [10, 8, 5, 2];
556    /// assert!(data == b);
557    /// ```
558    #[inline]
559    #[must_use]
560    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    pub const fn reverse(self) -> Ordering {
563        match self {
564            Less => Greater,
565            Equal => Equal,
566            Greater => Less,
567        }
568    }
569
570    /// Chains two orderings.
571    ///
572    /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
573    ///
574    /// # Examples
575    ///
576    /// ```
577    /// use std::cmp::Ordering;
578    ///
579    /// let result = Ordering::Equal.then(Ordering::Less);
580    /// assert_eq!(result, Ordering::Less);
581    ///
582    /// let result = Ordering::Less.then(Ordering::Equal);
583    /// assert_eq!(result, Ordering::Less);
584    ///
585    /// let result = Ordering::Less.then(Ordering::Greater);
586    /// assert_eq!(result, Ordering::Less);
587    ///
588    /// let result = Ordering::Equal.then(Ordering::Equal);
589    /// assert_eq!(result, Ordering::Equal);
590    ///
591    /// let x: (i64, i64, i64) = (1, 2, 7);
592    /// let y: (i64, i64, i64) = (1, 5, 3);
593    /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
594    ///
595    /// assert_eq!(result, Ordering::Less);
596    /// ```
597    #[inline]
598    #[must_use]
599    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
600    #[stable(feature = "ordering_chaining", since = "1.17.0")]
601    pub const fn then(self, other: Ordering) -> Ordering {
602        match self {
603            Equal => other,
604            _ => self,
605        }
606    }
607
608    /// Chains the ordering with the given function.
609    ///
610    /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
611    /// the result.
612    ///
613    /// # Examples
614    ///
615    /// ```
616    /// use std::cmp::Ordering;
617    ///
618    /// let result = Ordering::Equal.then_with(|| Ordering::Less);
619    /// assert_eq!(result, Ordering::Less);
620    ///
621    /// let result = Ordering::Less.then_with(|| Ordering::Equal);
622    /// assert_eq!(result, Ordering::Less);
623    ///
624    /// let result = Ordering::Less.then_with(|| Ordering::Greater);
625    /// assert_eq!(result, Ordering::Less);
626    ///
627    /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
628    /// assert_eq!(result, Ordering::Equal);
629    ///
630    /// let x: (i64, i64, i64) = (1, 2, 7);
631    /// let y: (i64, i64, i64) = (1, 5, 3);
632    /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
633    ///
634    /// assert_eq!(result, Ordering::Less);
635    /// ```
636    #[inline]
637    #[must_use]
638    #[stable(feature = "ordering_chaining", since = "1.17.0")]
639    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
640    pub const fn then_with<F>(self, f: F) -> Ordering
641    where
642        F: [const] FnOnce() -> Ordering + [const] Destruct,
643    {
644        match self {
645            Equal => f(),
646            _ => self,
647        }
648    }
649}
650
651/// A helper struct for reverse ordering.
652///
653/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
654/// can be used to reverse order a part of a key.
655///
656/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
657///
658/// # Examples
659///
660/// ```
661/// use std::cmp::Reverse;
662///
663/// let mut v = vec![1, 2, 3, 4, 5, 6];
664/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
665/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
666/// ```
667#[derive(Copy, Debug, Hash)]
668#[derive_const(PartialEq, Eq, Default)]
669#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
670#[repr(transparent)]
671pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
672
673#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
674#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
675impl<T: [const] PartialOrd> const PartialOrd for Reverse<T> {
676    #[inline]
677    fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
678        other.0.partial_cmp(&self.0)
679    }
680
681    #[inline]
682    fn lt(&self, other: &Self) -> bool {
683        other.0 < self.0
684    }
685    #[inline]
686    fn le(&self, other: &Self) -> bool {
687        other.0 <= self.0
688    }
689    #[inline]
690    fn gt(&self, other: &Self) -> bool {
691        other.0 > self.0
692    }
693    #[inline]
694    fn ge(&self, other: &Self) -> bool {
695        other.0 >= self.0
696    }
697}
698
699#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
700#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
701impl<T: [const] Ord> const Ord for Reverse<T> {
702    #[inline]
703    fn cmp(&self, other: &Reverse<T>) -> Ordering {
704        other.0.cmp(&self.0)
705    }
706}
707
708#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
709impl<T: Clone> Clone for Reverse<T> {
710    #[inline]
711    fn clone(&self) -> Reverse<T> {
712        Reverse(self.0.clone())
713    }
714
715    #[inline]
716    fn clone_from(&mut self, source: &Self) {
717        self.0.clone_from(&source.0)
718    }
719}
720
721/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
722///
723/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
724/// `min`, and `clamp` are consistent with `cmp`:
725///
726/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
727/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
728/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
729/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
730///   implementation).
731///
732/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
733/// specified, but users of the trait must ensure that such logic errors do *not* result in
734/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
735/// methods.
736///
737/// ## Corollaries
738///
739/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
740///
741/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
742/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
743///   `>`.
744///
745/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
746/// conforms to mathematical equality, it also defines a strict [total order].
747///
748/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
749/// [total order]: https://en.wikipedia.org/wiki/Total_order
750///
751/// ## Derivable
752///
753/// This trait can be used with `#[derive]`.
754///
755/// When `derive`d on structs, it will produce a
756/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
757/// top-to-bottom declaration order of the struct's members.
758///
759/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
760/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
761/// top, and largest for variants at the bottom. Here's an example:
762///
763/// ```
764/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
765/// enum E {
766///     Top,
767///     Bottom,
768/// }
769///
770/// assert!(E::Top < E::Bottom);
771/// ```
772///
773/// However, manually setting the discriminants can override this default behavior:
774///
775/// ```
776/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
777/// enum E {
778///     Top = 2,
779///     Bottom = 1,
780/// }
781///
782/// assert!(E::Bottom < E::Top);
783/// ```
784///
785/// ## Lexicographical comparison
786///
787/// Lexicographical comparison is an operation with the following properties:
788///  - Two sequences are compared element by element.
789///  - The first mismatching element defines which sequence is lexicographically less or greater
790///    than the other.
791///  - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
792///    the other.
793///  - If two sequences have equivalent elements and are of the same length, then the sequences are
794///    lexicographically equal.
795///  - An empty sequence is lexicographically less than any non-empty sequence.
796///  - Two empty sequences are lexicographically equal.
797///
798/// ## How can I implement `Ord`?
799///
800/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
801///
802/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
803/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
804/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
805/// implement it manually, you should manually implement all four traits, based on the
806/// implementation of `Ord`.
807///
808/// Here's an example where you want to define the `Character` comparison by `health` and
809/// `experience` only, disregarding the field `mana`:
810///
811/// ```
812/// use std::cmp::Ordering;
813///
814/// struct Character {
815///     health: u32,
816///     experience: u32,
817///     mana: f32,
818/// }
819///
820/// impl Ord for Character {
821///     fn cmp(&self, other: &Self) -> Ordering {
822///         self.experience
823///             .cmp(&other.experience)
824///             .then(self.health.cmp(&other.health))
825///     }
826/// }
827///
828/// impl PartialOrd for Character {
829///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
830///         Some(self.cmp(other))
831///     }
832/// }
833///
834/// impl PartialEq for Character {
835///     fn eq(&self, other: &Self) -> bool {
836///         self.health == other.health && self.experience == other.experience
837///     }
838/// }
839///
840/// impl Eq for Character {}
841/// ```
842///
843/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
844/// `slice::sort_by_key`.
845///
846/// ## Examples of incorrect `Ord` implementations
847///
848/// ```
849/// use std::cmp::Ordering;
850///
851/// #[derive(Debug)]
852/// struct Character {
853///     health: f32,
854/// }
855///
856/// impl Ord for Character {
857///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
858///         if self.health < other.health {
859///             Ordering::Less
860///         } else if self.health > other.health {
861///             Ordering::Greater
862///         } else {
863///             Ordering::Equal
864///         }
865///     }
866/// }
867///
868/// impl PartialOrd for Character {
869///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
870///         Some(self.cmp(other))
871///     }
872/// }
873///
874/// impl PartialEq for Character {
875///     fn eq(&self, other: &Self) -> bool {
876///         self.health == other.health
877///     }
878/// }
879///
880/// impl Eq for Character {}
881///
882/// let a = Character { health: 4.5 };
883/// let b = Character { health: f32::NAN };
884///
885/// // Mistake: floating-point values do not form a total order and using the built-in comparison
886/// // operands to implement `Ord` irregardless of that reality does not change it. Use
887/// // `f32::total_cmp` if you need a total order for floating-point values.
888///
889/// // Reflexivity requirement of `Ord` is not given.
890/// assert!(a == a);
891/// assert!(b != b);
892///
893/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
894/// // true, not both or neither.
895/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
896/// ```
897///
898/// ```
899/// use std::cmp::Ordering;
900///
901/// #[derive(Debug)]
902/// struct Character {
903///     health: u32,
904///     experience: u32,
905/// }
906///
907/// impl PartialOrd for Character {
908///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
909///         Some(self.cmp(other))
910///     }
911/// }
912///
913/// impl Ord for Character {
914///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
915///         if self.health < 50 {
916///             self.health.cmp(&other.health)
917///         } else {
918///             self.experience.cmp(&other.experience)
919///         }
920///     }
921/// }
922///
923/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
924/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
925/// impl PartialEq for Character {
926///     fn eq(&self, other: &Self) -> bool {
927///         self.cmp(other) == Ordering::Equal
928///     }
929/// }
930///
931/// impl Eq for Character {}
932///
933/// let a = Character {
934///     health: 3,
935///     experience: 5,
936/// };
937/// let b = Character {
938///     health: 10,
939///     experience: 77,
940/// };
941/// let c = Character {
942///     health: 143,
943///     experience: 2,
944/// };
945///
946/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
947/// // `self.health`, the resulting order is not total.
948///
949/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
950/// // c, by transitive property a must also be smaller than c.
951/// assert!(a < b && b < c && c < a);
952///
953/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
954/// // true, not both or neither.
955/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
956/// ```
957///
958/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
959/// [`PartialOrd`] and [`PartialEq`] to disagree.
960///
961/// [`cmp`]: Ord::cmp
962#[doc(alias = "<")]
963#[doc(alias = ">")]
964#[doc(alias = "<=")]
965#[doc(alias = ">=")]
966#[stable(feature = "rust1", since = "1.0.0")]
967#[rustc_diagnostic_item = "Ord"]
968#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
969pub const trait Ord: [const] Eq + [const] PartialOrd<Self> + PointeeSized {
970    /// This method returns an [`Ordering`] between `self` and `other`.
971    ///
972    /// By convention, `self.cmp(&other)` returns the ordering matching the expression
973    /// `self <operator> other` if true.
974    ///
975    /// # Examples
976    ///
977    /// ```
978    /// use std::cmp::Ordering;
979    ///
980    /// assert_eq!(5.cmp(&10), Ordering::Less);
981    /// assert_eq!(10.cmp(&5), Ordering::Greater);
982    /// assert_eq!(5.cmp(&5), Ordering::Equal);
983    /// ```
984    #[must_use]
985    #[stable(feature = "rust1", since = "1.0.0")]
986    #[rustc_diagnostic_item = "ord_cmp_method"]
987    fn cmp(&self, other: &Self) -> Ordering;
988
989    /// Compares and returns the maximum of two values.
990    ///
991    /// Returns the second argument if the comparison determines them to be equal.
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// assert_eq!(1.max(2), 2);
997    /// assert_eq!(2.max(2), 2);
998    /// ```
999    /// ```
1000    /// use std::cmp::Ordering;
1001    ///
1002    /// #[derive(Eq)]
1003    /// struct Equal(&'static str);
1004    ///
1005    /// impl PartialEq for Equal {
1006    ///     fn eq(&self, other: &Self) -> bool { true }
1007    /// }
1008    /// impl PartialOrd for Equal {
1009    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1010    /// }
1011    /// impl Ord for Equal {
1012    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1013    /// }
1014    ///
1015    /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1016    /// ```
1017    #[stable(feature = "ord_max_min", since = "1.21.0")]
1018    #[inline]
1019    #[must_use]
1020    #[rustc_diagnostic_item = "cmp_ord_max"]
1021    fn max(self, other: Self) -> Self
1022    where
1023        Self: Sized + [const] Destruct,
1024    {
1025        if other < self { self } else { other }
1026    }
1027
1028    /// Compares and returns the minimum of two values.
1029    ///
1030    /// Returns the first argument if the comparison determines them to be equal.
1031    ///
1032    /// # Examples
1033    ///
1034    /// ```
1035    /// assert_eq!(1.min(2), 1);
1036    /// assert_eq!(2.min(2), 2);
1037    /// ```
1038    /// ```
1039    /// use std::cmp::Ordering;
1040    ///
1041    /// #[derive(Eq)]
1042    /// struct Equal(&'static str);
1043    ///
1044    /// impl PartialEq for Equal {
1045    ///     fn eq(&self, other: &Self) -> bool { true }
1046    /// }
1047    /// impl PartialOrd for Equal {
1048    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1049    /// }
1050    /// impl Ord for Equal {
1051    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1052    /// }
1053    ///
1054    /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1055    /// ```
1056    #[stable(feature = "ord_max_min", since = "1.21.0")]
1057    #[inline]
1058    #[must_use]
1059    #[rustc_diagnostic_item = "cmp_ord_min"]
1060    fn min(self, other: Self) -> Self
1061    where
1062        Self: Sized + [const] Destruct,
1063    {
1064        if other < self { other } else { self }
1065    }
1066
1067    /// Restrict a value to a certain interval.
1068    ///
1069    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1070    /// less than `min`. Otherwise this returns `self`.
1071    ///
1072    /// # Panics
1073    ///
1074    /// Panics if `min > max`.
1075    ///
1076    /// # Examples
1077    ///
1078    /// ```
1079    /// assert_eq!((-3).clamp(-2, 1), -2);
1080    /// assert_eq!(0.clamp(-2, 1), 0);
1081    /// assert_eq!(2.clamp(-2, 1), 1);
1082    /// ```
1083    #[must_use]
1084    #[inline]
1085    #[stable(feature = "clamp", since = "1.50.0")]
1086    fn clamp(self, min: Self, max: Self) -> Self
1087    where
1088        Self: Sized + [const] Destruct,
1089    {
1090        assert!(min <= max);
1091        if self < min {
1092            min
1093        } else if self > max {
1094            max
1095        } else {
1096            self
1097        }
1098    }
1099}
1100
1101/// Derive macro generating an impl of the trait [`Ord`].
1102/// The behavior of this macro is described in detail [here](Ord#derivable).
1103#[rustc_builtin_macro]
1104#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1105#[allow_internal_unstable(core_intrinsics)]
1106pub macro Ord($item:item) {
1107    /* compiler built-in */
1108}
1109
1110/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1111///
1112/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1113/// `>=` operators, respectively.
1114///
1115/// This trait should **only** contain the comparison logic for a type **if one plans on only
1116/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1117/// and this trait implemented with `Some(self.cmp(other))`.
1118///
1119/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1120/// The following conditions must hold:
1121///
1122/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1123/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1124/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1125/// 4. `a <= b` if and only if `a < b || a == b`
1126/// 5. `a >= b` if and only if `a > b || a == b`
1127/// 6. `a != b` if and only if `!(a == b)`.
1128///
1129/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1130/// by [`PartialEq`].
1131///
1132/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1133/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1134/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1135///
1136/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1137/// `A`, `B`, `C`):
1138///
1139/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1140///   < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1141///   work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1142///   PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1143/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1144///   a`.
1145///
1146/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1147/// to exist, but these requirements apply whenever they do exist.
1148///
1149/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1150/// specified, but users of the trait must ensure that such logic errors do *not* result in
1151/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1152/// methods.
1153///
1154/// ## Cross-crate considerations
1155///
1156/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1157/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1158/// standard library). The recommendation is to never implement this trait for a foreign type. In
1159/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1160/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1161///
1162/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1163/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1164/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1165/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1166/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1167/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1168/// transitivity.
1169///
1170/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1171/// more `PartialOrd` implementations can cause build failures in downstream crates.
1172///
1173/// ## Corollaries
1174///
1175/// The following corollaries follow from the above requirements:
1176///
1177/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1178/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1179/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1180///
1181/// ## Strict and non-strict partial orders
1182///
1183/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1184/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1185/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1186/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1187///
1188/// ```
1189/// let a = f64::sqrt(-1.0);
1190/// assert_eq!(a <= a, false);
1191/// ```
1192///
1193/// ## Derivable
1194///
1195/// This trait can be used with `#[derive]`.
1196///
1197/// When `derive`d on structs, it will produce a
1198/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1199/// top-to-bottom declaration order of the struct's members.
1200///
1201/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1202/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1203/// top, and largest for variants at the bottom. Here's an example:
1204///
1205/// ```
1206/// #[derive(PartialEq, PartialOrd)]
1207/// enum E {
1208///     Top,
1209///     Bottom,
1210/// }
1211///
1212/// assert!(E::Top < E::Bottom);
1213/// ```
1214///
1215/// However, manually setting the discriminants can override this default behavior:
1216///
1217/// ```
1218/// #[derive(PartialEq, PartialOrd)]
1219/// enum E {
1220///     Top = 2,
1221///     Bottom = 1,
1222/// }
1223///
1224/// assert!(E::Bottom < E::Top);
1225/// ```
1226///
1227/// ## How can I implement `PartialOrd`?
1228///
1229/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1230/// generated from default implementations.
1231///
1232/// However it remains possible to implement the others separately for types which do not have a
1233/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1234/// (cf. IEEE 754-2008 section 5.11).
1235///
1236/// `PartialOrd` requires your type to be [`PartialEq`].
1237///
1238/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1239///
1240/// ```
1241/// use std::cmp::Ordering;
1242///
1243/// struct Person {
1244///     id: u32,
1245///     name: String,
1246///     height: u32,
1247/// }
1248///
1249/// impl PartialOrd for Person {
1250///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1251///         Some(self.cmp(other))
1252///     }
1253/// }
1254///
1255/// impl Ord for Person {
1256///     fn cmp(&self, other: &Self) -> Ordering {
1257///         self.height.cmp(&other.height)
1258///     }
1259/// }
1260///
1261/// impl PartialEq for Person {
1262///     fn eq(&self, other: &Self) -> bool {
1263///         self.height == other.height
1264///     }
1265/// }
1266///
1267/// impl Eq for Person {}
1268/// ```
1269///
1270/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1271/// `Person` types who have a floating-point `height` field that is the only field to be used for
1272/// sorting:
1273///
1274/// ```
1275/// use std::cmp::Ordering;
1276///
1277/// struct Person {
1278///     id: u32,
1279///     name: String,
1280///     height: f64,
1281/// }
1282///
1283/// impl PartialOrd for Person {
1284///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1285///         self.height.partial_cmp(&other.height)
1286///     }
1287/// }
1288///
1289/// impl PartialEq for Person {
1290///     fn eq(&self, other: &Self) -> bool {
1291///         self.height == other.height
1292///     }
1293/// }
1294/// ```
1295///
1296/// ## Examples of incorrect `PartialOrd` implementations
1297///
1298/// ```
1299/// use std::cmp::Ordering;
1300///
1301/// #[derive(PartialEq, Debug)]
1302/// struct Character {
1303///     health: u32,
1304///     experience: u32,
1305/// }
1306///
1307/// impl PartialOrd for Character {
1308///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1309///         Some(self.health.cmp(&other.health))
1310///     }
1311/// }
1312///
1313/// let a = Character {
1314///     health: 10,
1315///     experience: 5,
1316/// };
1317/// let b = Character {
1318///     health: 10,
1319///     experience: 77,
1320/// };
1321///
1322/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1323///
1324/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1325/// assert_ne!(a, b); // a != b according to `PartialEq`.
1326/// ```
1327///
1328/// # Examples
1329///
1330/// ```
1331/// let x: u32 = 0;
1332/// let y: u32 = 1;
1333///
1334/// assert_eq!(x < y, true);
1335/// assert_eq!(x.lt(&y), true);
1336/// ```
1337///
1338/// [`partial_cmp`]: PartialOrd::partial_cmp
1339/// [`cmp`]: Ord::cmp
1340#[lang = "partial_ord"]
1341#[stable(feature = "rust1", since = "1.0.0")]
1342#[doc(alias = ">")]
1343#[doc(alias = "<")]
1344#[doc(alias = "<=")]
1345#[doc(alias = ">=")]
1346#[rustc_on_unimplemented(
1347    message = "can't compare `{Self}` with `{Rhs}`",
1348    label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1349    append_const_msg
1350)]
1351#[rustc_diagnostic_item = "PartialOrd"]
1352#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1353#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1354pub const trait PartialOrd<Rhs: PointeeSized = Self>: PartialEq<Rhs> + PointeeSized {
1355    /// This method returns an ordering between `self` and `other` values if one exists.
1356    ///
1357    /// # Examples
1358    ///
1359    /// ```
1360    /// use std::cmp::Ordering;
1361    ///
1362    /// let result = 1.0.partial_cmp(&2.0);
1363    /// assert_eq!(result, Some(Ordering::Less));
1364    ///
1365    /// let result = 1.0.partial_cmp(&1.0);
1366    /// assert_eq!(result, Some(Ordering::Equal));
1367    ///
1368    /// let result = 2.0.partial_cmp(&1.0);
1369    /// assert_eq!(result, Some(Ordering::Greater));
1370    /// ```
1371    ///
1372    /// When comparison is impossible:
1373    ///
1374    /// ```
1375    /// let result = f64::NAN.partial_cmp(&1.0);
1376    /// assert_eq!(result, None);
1377    /// ```
1378    #[must_use]
1379    #[stable(feature = "rust1", since = "1.0.0")]
1380    #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1381    fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1382
1383    /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1384    ///
1385    /// # Examples
1386    ///
1387    /// ```
1388    /// assert_eq!(1.0 < 1.0, false);
1389    /// assert_eq!(1.0 < 2.0, true);
1390    /// assert_eq!(2.0 < 1.0, false);
1391    /// ```
1392    #[inline]
1393    #[must_use]
1394    #[stable(feature = "rust1", since = "1.0.0")]
1395    #[rustc_diagnostic_item = "cmp_partialord_lt"]
1396    fn lt(&self, other: &Rhs) -> bool {
1397        self.partial_cmp(other).is_some_and(Ordering::is_lt)
1398    }
1399
1400    /// Tests less than or equal to (for `self` and `other`) and is used by the
1401    /// `<=` operator.
1402    ///
1403    /// # Examples
1404    ///
1405    /// ```
1406    /// assert_eq!(1.0 <= 1.0, true);
1407    /// assert_eq!(1.0 <= 2.0, true);
1408    /// assert_eq!(2.0 <= 1.0, false);
1409    /// ```
1410    #[inline]
1411    #[must_use]
1412    #[stable(feature = "rust1", since = "1.0.0")]
1413    #[rustc_diagnostic_item = "cmp_partialord_le"]
1414    fn le(&self, other: &Rhs) -> bool {
1415        self.partial_cmp(other).is_some_and(Ordering::is_le)
1416    }
1417
1418    /// Tests greater than (for `self` and `other`) and is used by the `>`
1419    /// operator.
1420    ///
1421    /// # Examples
1422    ///
1423    /// ```
1424    /// assert_eq!(1.0 > 1.0, false);
1425    /// assert_eq!(1.0 > 2.0, false);
1426    /// assert_eq!(2.0 > 1.0, true);
1427    /// ```
1428    #[inline]
1429    #[must_use]
1430    #[stable(feature = "rust1", since = "1.0.0")]
1431    #[rustc_diagnostic_item = "cmp_partialord_gt"]
1432    fn gt(&self, other: &Rhs) -> bool {
1433        self.partial_cmp(other).is_some_and(Ordering::is_gt)
1434    }
1435
1436    /// Tests greater than or equal to (for `self` and `other`) and is used by
1437    /// the `>=` operator.
1438    ///
1439    /// # Examples
1440    ///
1441    /// ```
1442    /// assert_eq!(1.0 >= 1.0, true);
1443    /// assert_eq!(1.0 >= 2.0, false);
1444    /// assert_eq!(2.0 >= 1.0, true);
1445    /// ```
1446    #[inline]
1447    #[must_use]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_diagnostic_item = "cmp_partialord_ge"]
1450    fn ge(&self, other: &Rhs) -> bool {
1451        self.partial_cmp(other).is_some_and(Ordering::is_ge)
1452    }
1453
1454    /// If `self == other`, returns `ControlFlow::Continue(())`.
1455    /// Otherwise, returns `ControlFlow::Break(self < other)`.
1456    ///
1457    /// This is useful for chaining together calls when implementing a lexical
1458    /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1459    /// check `==` and `<` separately to do rather than needing to calculate
1460    /// (then optimize out) the three-way `Ordering` result.
1461    #[inline]
1462    // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1463    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1464    #[doc(hidden)]
1465    fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1466        default_chaining_impl(self, other, Ordering::is_lt)
1467    }
1468
1469    /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1470    #[inline]
1471    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1472    #[doc(hidden)]
1473    fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1474        default_chaining_impl(self, other, Ordering::is_le)
1475    }
1476
1477    /// Same as `__chaining_lt`, but for `>` instead of `<`.
1478    #[inline]
1479    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1480    #[doc(hidden)]
1481    fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1482        default_chaining_impl(self, other, Ordering::is_gt)
1483    }
1484
1485    /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1486    #[inline]
1487    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1488    #[doc(hidden)]
1489    fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1490        default_chaining_impl(self, other, Ordering::is_ge)
1491    }
1492}
1493
1494#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1495const fn default_chaining_impl<T, U>(
1496    lhs: &T,
1497    rhs: &U,
1498    p: impl [const] FnOnce(Ordering) -> bool + [const] Destruct,
1499) -> ControlFlow<bool>
1500where
1501    T: [const] PartialOrd<U> + PointeeSized,
1502    U: PointeeSized,
1503{
1504    // It's important that this only call `partial_cmp` once, not call `eq` then
1505    // one of the relational operators.  We don't want to `bcmp`-then-`memcp` a
1506    // `String`, for example, or similarly for other data structures (#108157).
1507    match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1508        Some(Equal) => ControlFlow::Continue(()),
1509        Some(c) => ControlFlow::Break(p(c)),
1510        None => ControlFlow::Break(false),
1511    }
1512}
1513
1514/// Derive macro generating an impl of the trait [`PartialOrd`].
1515/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1516#[rustc_builtin_macro]
1517#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1518#[allow_internal_unstable(core_intrinsics)]
1519pub macro PartialOrd($item:item) {
1520    /* compiler built-in */
1521}
1522
1523/// Compares and returns the minimum of two values.
1524///
1525/// Returns the first argument if the comparison determines them to be equal.
1526///
1527/// Internally uses an alias to [`Ord::min`].
1528///
1529/// # Examples
1530///
1531/// ```
1532/// use std::cmp;
1533///
1534/// assert_eq!(cmp::min(1, 2), 1);
1535/// assert_eq!(cmp::min(2, 2), 2);
1536/// ```
1537/// ```
1538/// use std::cmp::{self, Ordering};
1539///
1540/// #[derive(Eq)]
1541/// struct Equal(&'static str);
1542///
1543/// impl PartialEq for Equal {
1544///     fn eq(&self, other: &Self) -> bool { true }
1545/// }
1546/// impl PartialOrd for Equal {
1547///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1548/// }
1549/// impl Ord for Equal {
1550///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1551/// }
1552///
1553/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1554/// ```
1555#[inline]
1556#[must_use]
1557#[stable(feature = "rust1", since = "1.0.0")]
1558#[rustc_diagnostic_item = "cmp_min"]
1559#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1560pub const fn min<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1561    v1.min(v2)
1562}
1563
1564/// Returns the minimum of two values with respect to the specified comparison function.
1565///
1566/// Returns the first argument if the comparison determines them to be equal.
1567///
1568/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1569/// always passed as the first argument and `v2` as the second.
1570///
1571/// # Examples
1572///
1573/// ```
1574/// use std::cmp;
1575///
1576/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1577///
1578/// let result = cmp::min_by(2, -1, abs_cmp);
1579/// assert_eq!(result, -1);
1580///
1581/// let result = cmp::min_by(2, -3, abs_cmp);
1582/// assert_eq!(result, 2);
1583///
1584/// let result = cmp::min_by(1, -1, abs_cmp);
1585/// assert_eq!(result, 1);
1586/// ```
1587#[inline]
1588#[must_use]
1589#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1590#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1591pub const fn min_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1592    v1: T,
1593    v2: T,
1594    compare: F,
1595) -> T {
1596    if compare(&v1, &v2).is_le() { v1 } else { v2 }
1597}
1598
1599/// Returns the element that gives the minimum value from the specified function.
1600///
1601/// Returns the first argument if the comparison determines them to be equal.
1602///
1603/// # Examples
1604///
1605/// ```
1606/// use std::cmp;
1607///
1608/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1609/// assert_eq!(result, -1);
1610///
1611/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1612/// assert_eq!(result, 2);
1613///
1614/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1615/// assert_eq!(result, 1);
1616/// ```
1617#[inline]
1618#[must_use]
1619#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1620#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1621pub const fn min_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1622where
1623    T: [const] Destruct,
1624    F: [const] FnMut(&T) -> K + [const] Destruct,
1625    K: [const] Ord + [const] Destruct,
1626{
1627    if f(&v2) < f(&v1) { v2 } else { v1 }
1628}
1629
1630/// Compares and returns the maximum of two values.
1631///
1632/// Returns the second argument if the comparison determines them to be equal.
1633///
1634/// Internally uses an alias to [`Ord::max`].
1635///
1636/// # Examples
1637///
1638/// ```
1639/// use std::cmp;
1640///
1641/// assert_eq!(cmp::max(1, 2), 2);
1642/// assert_eq!(cmp::max(2, 2), 2);
1643/// ```
1644/// ```
1645/// use std::cmp::{self, Ordering};
1646///
1647/// #[derive(Eq)]
1648/// struct Equal(&'static str);
1649///
1650/// impl PartialEq for Equal {
1651///     fn eq(&self, other: &Self) -> bool { true }
1652/// }
1653/// impl PartialOrd for Equal {
1654///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1655/// }
1656/// impl Ord for Equal {
1657///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1658/// }
1659///
1660/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1661/// ```
1662#[inline]
1663#[must_use]
1664#[stable(feature = "rust1", since = "1.0.0")]
1665#[rustc_diagnostic_item = "cmp_max"]
1666#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1667pub const fn max<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1668    v1.max(v2)
1669}
1670
1671/// Returns the maximum of two values with respect to the specified comparison function.
1672///
1673/// Returns the second argument if the comparison determines them to be equal.
1674///
1675/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1676/// always passed as the first argument and `v2` as the second.
1677///
1678/// # Examples
1679///
1680/// ```
1681/// use std::cmp;
1682///
1683/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1684///
1685/// let result = cmp::max_by(3, -2, abs_cmp) ;
1686/// assert_eq!(result, 3);
1687///
1688/// let result = cmp::max_by(1, -2, abs_cmp);
1689/// assert_eq!(result, -2);
1690///
1691/// let result = cmp::max_by(1, -1, abs_cmp);
1692/// assert_eq!(result, -1);
1693/// ```
1694#[inline]
1695#[must_use]
1696#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1697#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1698pub const fn max_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1699    v1: T,
1700    v2: T,
1701    compare: F,
1702) -> T {
1703    if compare(&v1, &v2).is_gt() { v1 } else { v2 }
1704}
1705
1706/// Returns the element that gives the maximum value from the specified function.
1707///
1708/// Returns the second argument if the comparison determines them to be equal.
1709///
1710/// # Examples
1711///
1712/// ```
1713/// use std::cmp;
1714///
1715/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1716/// assert_eq!(result, 3);
1717///
1718/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1719/// assert_eq!(result, -2);
1720///
1721/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1722/// assert_eq!(result, -1);
1723/// ```
1724#[inline]
1725#[must_use]
1726#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1727#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1728pub const fn max_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1729where
1730    T: [const] Destruct,
1731    F: [const] FnMut(&T) -> K + [const] Destruct,
1732    K: [const] Ord + [const] Destruct,
1733{
1734    if f(&v2) < f(&v1) { v1 } else { v2 }
1735}
1736
1737/// Compares and sorts two values, returning minimum and maximum.
1738///
1739/// Returns `[v1, v2]` if the comparison determines them to be equal.
1740///
1741/// # Examples
1742///
1743/// ```
1744/// #![feature(cmp_minmax)]
1745/// use std::cmp;
1746///
1747/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1748/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1749///
1750/// // You can destructure the result using array patterns
1751/// let [min, max] = cmp::minmax(42, 17);
1752/// assert_eq!(min, 17);
1753/// assert_eq!(max, 42);
1754/// ```
1755/// ```
1756/// #![feature(cmp_minmax)]
1757/// use std::cmp::{self, Ordering};
1758///
1759/// #[derive(Eq)]
1760/// struct Equal(&'static str);
1761///
1762/// impl PartialEq for Equal {
1763///     fn eq(&self, other: &Self) -> bool { true }
1764/// }
1765/// impl PartialOrd for Equal {
1766///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1767/// }
1768/// impl Ord for Equal {
1769///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1770/// }
1771///
1772/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1773/// ```
1774#[inline]
1775#[must_use]
1776#[unstable(feature = "cmp_minmax", issue = "115939")]
1777#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1778pub const fn minmax<T>(v1: T, v2: T) -> [T; 2]
1779where
1780    T: [const] Ord,
1781{
1782    if v2 < v1 { [v2, v1] } else { [v1, v2] }
1783}
1784
1785/// Returns minimum and maximum values with respect to the specified comparison function.
1786///
1787/// Returns `[v1, v2]` if the comparison determines them to be equal.
1788///
1789/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1790/// always passed as the first argument and `v2` as the second.
1791///
1792/// # Examples
1793///
1794/// ```
1795/// #![feature(cmp_minmax)]
1796/// use std::cmp;
1797///
1798/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1799///
1800/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1801/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1802/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1803///
1804/// // You can destructure the result using array patterns
1805/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1806/// assert_eq!(min, 17);
1807/// assert_eq!(max, -42);
1808/// ```
1809#[inline]
1810#[must_use]
1811#[unstable(feature = "cmp_minmax", issue = "115939")]
1812#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1813pub const fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1814where
1815    F: [const] FnOnce(&T, &T) -> Ordering,
1816{
1817    if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
1818}
1819
1820/// Returns minimum and maximum values with respect to the specified key function.
1821///
1822/// Returns `[v1, v2]` if the comparison determines them to be equal.
1823///
1824/// # Examples
1825///
1826/// ```
1827/// #![feature(cmp_minmax)]
1828/// use std::cmp;
1829///
1830/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1831/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1832///
1833/// // You can destructure the result using array patterns
1834/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1835/// assert_eq!(min, 17);
1836/// assert_eq!(max, -42);
1837/// ```
1838#[inline]
1839#[must_use]
1840#[unstable(feature = "cmp_minmax", issue = "115939")]
1841#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1842pub const fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1843where
1844    F: [const] FnMut(&T) -> K + [const] Destruct,
1845    K: [const] Ord + [const] Destruct,
1846{
1847    if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1848}
1849
1850// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1851mod impls {
1852    use crate::cmp::Ordering::{self, Equal, Greater, Less};
1853    use crate::hint::unreachable_unchecked;
1854    use crate::marker::PointeeSized;
1855    use crate::ops::ControlFlow::{self, Break, Continue};
1856
1857    macro_rules! partial_eq_impl {
1858        ($($t:ty)*) => ($(
1859            #[stable(feature = "rust1", since = "1.0.0")]
1860            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1861            impl const PartialEq for $t {
1862                #[inline]
1863                fn eq(&self, other: &Self) -> bool { *self == *other }
1864                #[inline]
1865                fn ne(&self, other: &Self) -> bool { *self != *other }
1866            }
1867        )*)
1868    }
1869
1870    #[stable(feature = "rust1", since = "1.0.0")]
1871    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1872    impl const PartialEq for () {
1873        #[inline]
1874        fn eq(&self, _other: &()) -> bool {
1875            true
1876        }
1877        #[inline]
1878        fn ne(&self, _other: &()) -> bool {
1879            false
1880        }
1881    }
1882
1883    partial_eq_impl! {
1884        bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1885    }
1886
1887    macro_rules! eq_impl {
1888        ($($t:ty)*) => ($(
1889            #[stable(feature = "rust1", since = "1.0.0")]
1890            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1891            impl const Eq for $t {}
1892        )*)
1893    }
1894
1895    eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1896
1897    #[rustfmt::skip]
1898    macro_rules! partial_ord_methods_primitive_impl {
1899        () => {
1900            #[inline(always)]
1901            fn lt(&self, other: &Self) -> bool { *self <  *other }
1902            #[inline(always)]
1903            fn le(&self, other: &Self) -> bool { *self <= *other }
1904            #[inline(always)]
1905            fn gt(&self, other: &Self) -> bool { *self >  *other }
1906            #[inline(always)]
1907            fn ge(&self, other: &Self) -> bool { *self >= *other }
1908
1909            // These implementations are the same for `Ord` or `PartialOrd` types
1910            // because if either is NAN the `==` test will fail so we end up in
1911            // the `Break` case and the comparison will correctly return `false`.
1912
1913            #[inline]
1914            fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1915                let (lhs, rhs) = (*self, *other);
1916                if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1917            }
1918            #[inline]
1919            fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1920                let (lhs, rhs) = (*self, *other);
1921                if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1922            }
1923            #[inline]
1924            fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1925                let (lhs, rhs) = (*self, *other);
1926                if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1927            }
1928            #[inline]
1929            fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1930                let (lhs, rhs) = (*self, *other);
1931                if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1932            }
1933        };
1934    }
1935
1936    macro_rules! partial_ord_impl {
1937        ($($t:ty)*) => ($(
1938            #[stable(feature = "rust1", since = "1.0.0")]
1939            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1940            impl const PartialOrd for $t {
1941                #[inline]
1942                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1943                    match (*self <= *other, *self >= *other) {
1944                        (false, false) => None,
1945                        (false, true) => Some(Greater),
1946                        (true, false) => Some(Less),
1947                        (true, true) => Some(Equal),
1948                    }
1949                }
1950
1951                partial_ord_methods_primitive_impl!();
1952            }
1953        )*)
1954    }
1955
1956    #[stable(feature = "rust1", since = "1.0.0")]
1957    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1958    impl const PartialOrd for () {
1959        #[inline]
1960        fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1961            Some(Equal)
1962        }
1963    }
1964
1965    #[stable(feature = "rust1", since = "1.0.0")]
1966    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1967    impl const PartialOrd for bool {
1968        #[inline]
1969        fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1970            Some(self.cmp(other))
1971        }
1972
1973        partial_ord_methods_primitive_impl!();
1974    }
1975
1976    partial_ord_impl! { f16 f32 f64 f128 }
1977
1978    macro_rules! ord_impl {
1979        ($($t:ty)*) => ($(
1980            #[stable(feature = "rust1", since = "1.0.0")]
1981            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1982            impl const PartialOrd for $t {
1983                #[inline]
1984                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1985                    Some(crate::intrinsics::three_way_compare(*self, *other))
1986                }
1987
1988                partial_ord_methods_primitive_impl!();
1989            }
1990
1991            #[stable(feature = "rust1", since = "1.0.0")]
1992            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1993            impl const Ord for $t {
1994                #[inline]
1995                fn cmp(&self, other: &Self) -> Ordering {
1996                    crate::intrinsics::three_way_compare(*self, *other)
1997                }
1998            }
1999        )*)
2000    }
2001
2002    #[stable(feature = "rust1", since = "1.0.0")]
2003    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2004    impl const Ord for () {
2005        #[inline]
2006        fn cmp(&self, _other: &()) -> Ordering {
2007            Equal
2008        }
2009    }
2010
2011    #[stable(feature = "rust1", since = "1.0.0")]
2012    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2013    impl const Ord for bool {
2014        #[inline]
2015        fn cmp(&self, other: &bool) -> Ordering {
2016            // Casting to i8's and converting the difference to an Ordering generates
2017            // more optimal assembly.
2018            // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2019            match (*self as i8) - (*other as i8) {
2020                -1 => Less,
2021                0 => Equal,
2022                1 => Greater,
2023                // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2024                _ => unsafe { unreachable_unchecked() },
2025            }
2026        }
2027
2028        #[inline]
2029        fn min(self, other: bool) -> bool {
2030            self & other
2031        }
2032
2033        #[inline]
2034        fn max(self, other: bool) -> bool {
2035            self | other
2036        }
2037
2038        #[inline]
2039        fn clamp(self, min: bool, max: bool) -> bool {
2040            assert!(min <= max);
2041            self.max(min).min(max)
2042        }
2043    }
2044
2045    ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2046
2047    #[unstable(feature = "never_type", issue = "35121")]
2048    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2049    impl const PartialEq for ! {
2050        #[inline]
2051        fn eq(&self, _: &!) -> bool {
2052            *self
2053        }
2054    }
2055
2056    #[unstable(feature = "never_type", issue = "35121")]
2057    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2058    impl const Eq for ! {}
2059
2060    #[unstable(feature = "never_type", issue = "35121")]
2061    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2062    impl const PartialOrd for ! {
2063        #[inline]
2064        fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2065            *self
2066        }
2067    }
2068
2069    #[unstable(feature = "never_type", issue = "35121")]
2070    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2071    impl const Ord for ! {
2072        #[inline]
2073        fn cmp(&self, _: &!) -> Ordering {
2074            *self
2075        }
2076    }
2077
2078    // & pointers
2079
2080    #[stable(feature = "rust1", since = "1.0.0")]
2081    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2082    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2083    where
2084        A: [const] PartialEq<B>,
2085    {
2086        #[inline]
2087        fn eq(&self, other: &&B) -> bool {
2088            PartialEq::eq(*self, *other)
2089        }
2090        #[inline]
2091        fn ne(&self, other: &&B) -> bool {
2092            PartialEq::ne(*self, *other)
2093        }
2094    }
2095    #[stable(feature = "rust1", since = "1.0.0")]
2096    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2097    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&B> for &A
2098    where
2099        A: [const] PartialOrd<B>,
2100    {
2101        #[inline]
2102        fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2103            PartialOrd::partial_cmp(*self, *other)
2104        }
2105        #[inline]
2106        fn lt(&self, other: &&B) -> bool {
2107            PartialOrd::lt(*self, *other)
2108        }
2109        #[inline]
2110        fn le(&self, other: &&B) -> bool {
2111            PartialOrd::le(*self, *other)
2112        }
2113        #[inline]
2114        fn gt(&self, other: &&B) -> bool {
2115            PartialOrd::gt(*self, *other)
2116        }
2117        #[inline]
2118        fn ge(&self, other: &&B) -> bool {
2119            PartialOrd::ge(*self, *other)
2120        }
2121        #[inline]
2122        fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2123            PartialOrd::__chaining_lt(*self, *other)
2124        }
2125        #[inline]
2126        fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2127            PartialOrd::__chaining_le(*self, *other)
2128        }
2129        #[inline]
2130        fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2131            PartialOrd::__chaining_gt(*self, *other)
2132        }
2133        #[inline]
2134        fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2135            PartialOrd::__chaining_ge(*self, *other)
2136        }
2137    }
2138    #[stable(feature = "rust1", since = "1.0.0")]
2139    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2140    impl<A: PointeeSized> const Ord for &A
2141    where
2142        A: [const] Ord,
2143    {
2144        #[inline]
2145        fn cmp(&self, other: &Self) -> Ordering {
2146            Ord::cmp(*self, *other)
2147        }
2148    }
2149    #[stable(feature = "rust1", since = "1.0.0")]
2150    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2151    impl<A: PointeeSized> const Eq for &A where A: [const] Eq {}
2152
2153    // &mut pointers
2154
2155    #[stable(feature = "rust1", since = "1.0.0")]
2156    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2157    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2158    where
2159        A: [const] PartialEq<B>,
2160    {
2161        #[inline]
2162        fn eq(&self, other: &&mut B) -> bool {
2163            PartialEq::eq(*self, *other)
2164        }
2165        #[inline]
2166        fn ne(&self, other: &&mut B) -> bool {
2167            PartialEq::ne(*self, *other)
2168        }
2169    }
2170    #[stable(feature = "rust1", since = "1.0.0")]
2171    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2172    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&mut B> for &mut A
2173    where
2174        A: [const] PartialOrd<B>,
2175    {
2176        #[inline]
2177        fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2178            PartialOrd::partial_cmp(*self, *other)
2179        }
2180        #[inline]
2181        fn lt(&self, other: &&mut B) -> bool {
2182            PartialOrd::lt(*self, *other)
2183        }
2184        #[inline]
2185        fn le(&self, other: &&mut B) -> bool {
2186            PartialOrd::le(*self, *other)
2187        }
2188        #[inline]
2189        fn gt(&self, other: &&mut B) -> bool {
2190            PartialOrd::gt(*self, *other)
2191        }
2192        #[inline]
2193        fn ge(&self, other: &&mut B) -> bool {
2194            PartialOrd::ge(*self, *other)
2195        }
2196        #[inline]
2197        fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2198            PartialOrd::__chaining_lt(*self, *other)
2199        }
2200        #[inline]
2201        fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2202            PartialOrd::__chaining_le(*self, *other)
2203        }
2204        #[inline]
2205        fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2206            PartialOrd::__chaining_gt(*self, *other)
2207        }
2208        #[inline]
2209        fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2210            PartialOrd::__chaining_ge(*self, *other)
2211        }
2212    }
2213    #[stable(feature = "rust1", since = "1.0.0")]
2214    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2215    impl<A: PointeeSized> const Ord for &mut A
2216    where
2217        A: [const] Ord,
2218    {
2219        #[inline]
2220        fn cmp(&self, other: &Self) -> Ordering {
2221            Ord::cmp(*self, *other)
2222        }
2223    }
2224    #[stable(feature = "rust1", since = "1.0.0")]
2225    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2226    impl<A: PointeeSized> const Eq for &mut A where A: [const] Eq {}
2227
2228    #[stable(feature = "rust1", since = "1.0.0")]
2229    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2230    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2231    where
2232        A: [const] PartialEq<B>,
2233    {
2234        #[inline]
2235        fn eq(&self, other: &&mut B) -> bool {
2236            PartialEq::eq(*self, *other)
2237        }
2238        #[inline]
2239        fn ne(&self, other: &&mut B) -> bool {
2240            PartialEq::ne(*self, *other)
2241        }
2242    }
2243
2244    #[stable(feature = "rust1", since = "1.0.0")]
2245    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2246    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2247    where
2248        A: [const] PartialEq<B>,
2249    {
2250        #[inline]
2251        fn eq(&self, other: &&B) -> bool {
2252            PartialEq::eq(*self, *other)
2253        }
2254        #[inline]
2255        fn ne(&self, other: &&B) -> bool {
2256            PartialEq::ne(*self, *other)
2257        }
2258    }
2259}