core/iter/traits/
iterator.rs

1use super::super::{
2    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
3    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
4    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
5    Zip, try_process,
6};
7use super::TrustedLen;
8use crate::array;
9use crate::cmp::{self, Ordering};
10use crate::num::NonZero;
11use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
12
13fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
14
15/// A trait for dealing with iterators.
16///
17/// This is the main iterator trait. For more about the concept of iterators
18/// generally, please see the [module-level documentation]. In particular, you
19/// may want to know how to [implement `Iterator`][impl].
20///
21/// [module-level documentation]: crate::iter
22/// [impl]: crate::iter#implementing-iterator
23#[stable(feature = "rust1", since = "1.0.0")]
24#[rustc_on_unimplemented(
25    on(
26        Self = "core::ops::range::RangeTo<Idx>",
27        note = "you might have meant to use a bounded `Range`"
28    ),
29    on(
30        Self = "core::ops::range::RangeToInclusive<Idx>",
31        note = "you might have meant to use a bounded `RangeInclusive`"
32    ),
33    label = "`{Self}` is not an iterator",
34    message = "`{Self}` is not an iterator"
35)]
36#[doc(notable_trait)]
37#[lang = "iterator"]
38#[rustc_diagnostic_item = "Iterator"]
39#[must_use = "iterators are lazy and do nothing unless consumed"]
40pub trait Iterator {
41    /// The type of the elements being iterated over.
42    #[rustc_diagnostic_item = "IteratorItem"]
43    #[stable(feature = "rust1", since = "1.0.0")]
44    type Item;
45
46    /// Advances the iterator and returns the next value.
47    ///
48    /// Returns [`None`] when iteration is finished. Individual iterator
49    /// implementations may choose to resume iteration, and so calling `next()`
50    /// again may or may not eventually start returning [`Some(Item)`] again at some
51    /// point.
52    ///
53    /// [`Some(Item)`]: Some
54    ///
55    /// # Examples
56    ///
57    /// ```
58    /// let a = [1, 2, 3];
59    ///
60    /// let mut iter = a.into_iter();
61    ///
62    /// // A call to next() returns the next value...
63    /// assert_eq!(Some(1), iter.next());
64    /// assert_eq!(Some(2), iter.next());
65    /// assert_eq!(Some(3), iter.next());
66    ///
67    /// // ... and then None once it's over.
68    /// assert_eq!(None, iter.next());
69    ///
70    /// // More calls may or may not return `None`. Here, they always will.
71    /// assert_eq!(None, iter.next());
72    /// assert_eq!(None, iter.next());
73    /// ```
74    #[lang = "next"]
75    #[stable(feature = "rust1", since = "1.0.0")]
76    fn next(&mut self) -> Option<Self::Item>;
77
78    /// Advances the iterator and returns an array containing the next `N` values.
79    ///
80    /// If there are not enough elements to fill the array then `Err` is returned
81    /// containing an iterator over the remaining elements.
82    ///
83    /// # Examples
84    ///
85    /// Basic usage:
86    ///
87    /// ```
88    /// #![feature(iter_next_chunk)]
89    ///
90    /// let mut iter = "lorem".chars();
91    ///
92    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
93    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
94    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
95    /// ```
96    ///
97    /// Split a string and get the first three items.
98    ///
99    /// ```
100    /// #![feature(iter_next_chunk)]
101    ///
102    /// let quote = "not all those who wander are lost";
103    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
104    /// assert_eq!(first, "not");
105    /// assert_eq!(second, "all");
106    /// assert_eq!(third, "those");
107    /// ```
108    #[inline]
109    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
110    fn next_chunk<const N: usize>(
111        &mut self,
112    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
113    where
114        Self: Sized,
115    {
116        array::iter_next_chunk(self)
117    }
118
119    /// Returns the bounds on the remaining length of the iterator.
120    ///
121    /// Specifically, `size_hint()` returns a tuple where the first element
122    /// is the lower bound, and the second element is the upper bound.
123    ///
124    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
125    /// A [`None`] here means that either there is no known upper bound, or the
126    /// upper bound is larger than [`usize`].
127    ///
128    /// # Implementation notes
129    ///
130    /// It is not enforced that an iterator implementation yields the declared
131    /// number of elements. A buggy iterator may yield less than the lower bound
132    /// or more than the upper bound of elements.
133    ///
134    /// `size_hint()` is primarily intended to be used for optimizations such as
135    /// reserving space for the elements of the iterator, but must not be
136    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
137    /// implementation of `size_hint()` should not lead to memory safety
138    /// violations.
139    ///
140    /// That said, the implementation should provide a correct estimation,
141    /// because otherwise it would be a violation of the trait's protocol.
142    ///
143    /// The default implementation returns <code>(0, [None])</code> which is correct for any
144    /// iterator.
145    ///
146    /// # Examples
147    ///
148    /// Basic usage:
149    ///
150    /// ```
151    /// let a = [1, 2, 3];
152    /// let mut iter = a.iter();
153    ///
154    /// assert_eq!((3, Some(3)), iter.size_hint());
155    /// let _ = iter.next();
156    /// assert_eq!((2, Some(2)), iter.size_hint());
157    /// ```
158    ///
159    /// A more complex example:
160    ///
161    /// ```
162    /// // The even numbers in the range of zero to nine.
163    /// let iter = (0..10).filter(|x| x % 2 == 0);
164    ///
165    /// // We might iterate from zero to ten times. Knowing that it's five
166    /// // exactly wouldn't be possible without executing filter().
167    /// assert_eq!((0, Some(10)), iter.size_hint());
168    ///
169    /// // Let's add five more numbers with chain()
170    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
171    ///
172    /// // now both bounds are increased by five
173    /// assert_eq!((5, Some(15)), iter.size_hint());
174    /// ```
175    ///
176    /// Returning `None` for an upper bound:
177    ///
178    /// ```
179    /// // an infinite iterator has no upper bound
180    /// // and the maximum possible lower bound
181    /// let iter = 0..;
182    ///
183    /// assert_eq!((usize::MAX, None), iter.size_hint());
184    /// ```
185    #[inline]
186    #[stable(feature = "rust1", since = "1.0.0")]
187    fn size_hint(&self) -> (usize, Option<usize>) {
188        (0, None)
189    }
190
191    /// Consumes the iterator, counting the number of iterations and returning it.
192    ///
193    /// This method will call [`next`] repeatedly until [`None`] is encountered,
194    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
195    /// called at least once even if the iterator does not have any elements.
196    ///
197    /// [`next`]: Iterator::next
198    ///
199    /// # Overflow Behavior
200    ///
201    /// The method does no guarding against overflows, so counting elements of
202    /// an iterator with more than [`usize::MAX`] elements either produces the
203    /// wrong result or panics. If overflow checks are enabled, a panic is
204    /// guaranteed.
205    ///
206    /// # Panics
207    ///
208    /// This function might panic if the iterator has more than [`usize::MAX`]
209    /// elements.
210    ///
211    /// # Examples
212    ///
213    /// ```
214    /// let a = [1, 2, 3];
215    /// assert_eq!(a.iter().count(), 3);
216    ///
217    /// let a = [1, 2, 3, 4, 5];
218    /// assert_eq!(a.iter().count(), 5);
219    /// ```
220    #[inline]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    fn count(self) -> usize
223    where
224        Self: Sized,
225    {
226        self.fold(
227            0,
228            #[rustc_inherit_overflow_checks]
229            |count, _| count + 1,
230        )
231    }
232
233    /// Consumes the iterator, returning the last element.
234    ///
235    /// This method will evaluate the iterator until it returns [`None`]. While
236    /// doing so, it keeps track of the current element. After [`None`] is
237    /// returned, `last()` will then return the last element it saw.
238    ///
239    /// # Examples
240    ///
241    /// ```
242    /// let a = [1, 2, 3];
243    /// assert_eq!(a.into_iter().last(), Some(3));
244    ///
245    /// let a = [1, 2, 3, 4, 5];
246    /// assert_eq!(a.into_iter().last(), Some(5));
247    /// ```
248    #[inline]
249    #[stable(feature = "rust1", since = "1.0.0")]
250    fn last(self) -> Option<Self::Item>
251    where
252        Self: Sized,
253    {
254        #[inline]
255        fn some<T>(_: Option<T>, x: T) -> Option<T> {
256            Some(x)
257        }
258
259        self.fold(None, some)
260    }
261
262    /// Advances the iterator by `n` elements.
263    ///
264    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
265    /// times until [`None`] is encountered.
266    ///
267    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
268    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
269    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
270    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
271    /// Otherwise, `k` is always less than `n`.
272    ///
273    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
274    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
275    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
276    ///
277    /// [`Flatten`]: crate::iter::Flatten
278    /// [`next`]: Iterator::next
279    ///
280    /// # Examples
281    ///
282    /// ```
283    /// #![feature(iter_advance_by)]
284    ///
285    /// use std::num::NonZero;
286    ///
287    /// let a = [1, 2, 3, 4];
288    /// let mut iter = a.into_iter();
289    ///
290    /// assert_eq!(iter.advance_by(2), Ok(()));
291    /// assert_eq!(iter.next(), Some(3));
292    /// assert_eq!(iter.advance_by(0), Ok(()));
293    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
294    /// ```
295    #[inline]
296    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
297    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
298        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
299        trait SpecAdvanceBy {
300            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
301        }
302
303        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
304            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
305                for i in 0..n {
306                    if self.next().is_none() {
307                        // SAFETY: `i` is always less than `n`.
308                        return Err(unsafe { NonZero::new_unchecked(n - i) });
309                    }
310                }
311                Ok(())
312            }
313        }
314
315        impl<I: Iterator> SpecAdvanceBy for I {
316            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
317                let Some(n) = NonZero::new(n) else {
318                    return Ok(());
319                };
320
321                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
322
323                match res {
324                    None => Ok(()),
325                    Some(n) => Err(n),
326                }
327            }
328        }
329
330        self.spec_advance_by(n)
331    }
332
333    /// Returns the `n`th element of the iterator.
334    ///
335    /// Like most indexing operations, the count starts from zero, so `nth(0)`
336    /// returns the first value, `nth(1)` the second, and so on.
337    ///
338    /// Note that all preceding elements, as well as the returned element, will be
339    /// consumed from the iterator. That means that the preceding elements will be
340    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
341    /// will return different elements.
342    ///
343    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
344    /// iterator.
345    ///
346    /// # Examples
347    ///
348    /// Basic usage:
349    ///
350    /// ```
351    /// let a = [1, 2, 3];
352    /// assert_eq!(a.into_iter().nth(1), Some(2));
353    /// ```
354    ///
355    /// Calling `nth()` multiple times doesn't rewind the iterator:
356    ///
357    /// ```
358    /// let a = [1, 2, 3];
359    ///
360    /// let mut iter = a.into_iter();
361    ///
362    /// assert_eq!(iter.nth(1), Some(2));
363    /// assert_eq!(iter.nth(1), None);
364    /// ```
365    ///
366    /// Returning `None` if there are less than `n + 1` elements:
367    ///
368    /// ```
369    /// let a = [1, 2, 3];
370    /// assert_eq!(a.into_iter().nth(10), None);
371    /// ```
372    #[inline]
373    #[stable(feature = "rust1", since = "1.0.0")]
374    fn nth(&mut self, n: usize) -> Option<Self::Item> {
375        self.advance_by(n).ok()?;
376        self.next()
377    }
378
379    /// Creates an iterator starting at the same point, but stepping by
380    /// the given amount at each iteration.
381    ///
382    /// Note 1: The first element of the iterator will always be returned,
383    /// regardless of the step given.
384    ///
385    /// Note 2: The time at which ignored elements are pulled is not fixed.
386    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
387    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
388    /// `advance_n_and_return_first(&mut self, step)`,
389    /// `advance_n_and_return_first(&mut self, step)`, …
390    /// Which way is used may change for some iterators for performance reasons.
391    /// The second way will advance the iterator earlier and may consume more items.
392    ///
393    /// `advance_n_and_return_first` is the equivalent of:
394    /// ```
395    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
396    /// where
397    ///     I: Iterator,
398    /// {
399    ///     let next = iter.next();
400    ///     if n > 1 {
401    ///         iter.nth(n - 2);
402    ///     }
403    ///     next
404    /// }
405    /// ```
406    ///
407    /// # Panics
408    ///
409    /// The method will panic if the given step is `0`.
410    ///
411    /// # Examples
412    ///
413    /// ```
414    /// let a = [0, 1, 2, 3, 4, 5];
415    /// let mut iter = a.into_iter().step_by(2);
416    ///
417    /// assert_eq!(iter.next(), Some(0));
418    /// assert_eq!(iter.next(), Some(2));
419    /// assert_eq!(iter.next(), Some(4));
420    /// assert_eq!(iter.next(), None);
421    /// ```
422    #[inline]
423    #[stable(feature = "iterator_step_by", since = "1.28.0")]
424    fn step_by(self, step: usize) -> StepBy<Self>
425    where
426        Self: Sized,
427    {
428        StepBy::new(self, step)
429    }
430
431    /// Takes two iterators and creates a new iterator over both in sequence.
432    ///
433    /// `chain()` will return a new iterator which will first iterate over
434    /// values from the first iterator and then over values from the second
435    /// iterator.
436    ///
437    /// In other words, it links two iterators together, in a chain. 🔗
438    ///
439    /// [`once`] is commonly used to adapt a single value into a chain of
440    /// other kinds of iteration.
441    ///
442    /// # Examples
443    ///
444    /// Basic usage:
445    ///
446    /// ```
447    /// let s1 = "abc".chars();
448    /// let s2 = "def".chars();
449    ///
450    /// let mut iter = s1.chain(s2);
451    ///
452    /// assert_eq!(iter.next(), Some('a'));
453    /// assert_eq!(iter.next(), Some('b'));
454    /// assert_eq!(iter.next(), Some('c'));
455    /// assert_eq!(iter.next(), Some('d'));
456    /// assert_eq!(iter.next(), Some('e'));
457    /// assert_eq!(iter.next(), Some('f'));
458    /// assert_eq!(iter.next(), None);
459    /// ```
460    ///
461    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
462    /// anything that can be converted into an [`Iterator`], not just an
463    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
464    /// [`IntoIterator`], and so can be passed to `chain()` directly:
465    ///
466    /// ```
467    /// let a1 = [1, 2, 3];
468    /// let a2 = [4, 5, 6];
469    ///
470    /// let mut iter = a1.into_iter().chain(a2);
471    ///
472    /// assert_eq!(iter.next(), Some(1));
473    /// assert_eq!(iter.next(), Some(2));
474    /// assert_eq!(iter.next(), Some(3));
475    /// assert_eq!(iter.next(), Some(4));
476    /// assert_eq!(iter.next(), Some(5));
477    /// assert_eq!(iter.next(), Some(6));
478    /// assert_eq!(iter.next(), None);
479    /// ```
480    ///
481    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
482    ///
483    /// ```
484    /// #[cfg(windows)]
485    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
486    ///     use std::os::windows::ffi::OsStrExt;
487    ///     s.encode_wide().chain(std::iter::once(0)).collect()
488    /// }
489    /// ```
490    ///
491    /// [`once`]: crate::iter::once
492    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
493    #[inline]
494    #[stable(feature = "rust1", since = "1.0.0")]
495    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
496    where
497        Self: Sized,
498        U: IntoIterator<Item = Self::Item>,
499    {
500        Chain::new(self, other.into_iter())
501    }
502
503    /// 'Zips up' two iterators into a single iterator of pairs.
504    ///
505    /// `zip()` returns a new iterator that will iterate over two other
506    /// iterators, returning a tuple where the first element comes from the
507    /// first iterator, and the second element comes from the second iterator.
508    ///
509    /// In other words, it zips two iterators together, into a single one.
510    ///
511    /// If either iterator returns [`None`], [`next`] from the zipped iterator
512    /// will return [`None`].
513    /// If the zipped iterator has no more elements to return then each further attempt to advance
514    /// it will first try to advance the first iterator at most one time and if it still yielded an item
515    /// try to advance the second iterator at most one time.
516    ///
517    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
518    ///
519    /// [`unzip`]: Iterator::unzip
520    ///
521    /// # Examples
522    ///
523    /// Basic usage:
524    ///
525    /// ```
526    /// let s1 = "abc".chars();
527    /// let s2 = "def".chars();
528    ///
529    /// let mut iter = s1.zip(s2);
530    ///
531    /// assert_eq!(iter.next(), Some(('a', 'd')));
532    /// assert_eq!(iter.next(), Some(('b', 'e')));
533    /// assert_eq!(iter.next(), Some(('c', 'f')));
534    /// assert_eq!(iter.next(), None);
535    /// ```
536    ///
537    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
538    /// anything that can be converted into an [`Iterator`], not just an
539    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
540    /// [`IntoIterator`], and so can be passed to `zip()` directly:
541    ///
542    /// ```
543    /// let a1 = [1, 2, 3];
544    /// let a2 = [4, 5, 6];
545    ///
546    /// let mut iter = a1.into_iter().zip(a2);
547    ///
548    /// assert_eq!(iter.next(), Some((1, 4)));
549    /// assert_eq!(iter.next(), Some((2, 5)));
550    /// assert_eq!(iter.next(), Some((3, 6)));
551    /// assert_eq!(iter.next(), None);
552    /// ```
553    ///
554    /// `zip()` is often used to zip an infinite iterator to a finite one.
555    /// This works because the finite iterator will eventually return [`None`],
556    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
557    ///
558    /// ```
559    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
560    ///
561    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
562    ///
563    /// assert_eq!((0, 'f'), enumerate[0]);
564    /// assert_eq!((0, 'f'), zipper[0]);
565    ///
566    /// assert_eq!((1, 'o'), enumerate[1]);
567    /// assert_eq!((1, 'o'), zipper[1]);
568    ///
569    /// assert_eq!((2, 'o'), enumerate[2]);
570    /// assert_eq!((2, 'o'), zipper[2]);
571    /// ```
572    ///
573    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
574    ///
575    /// ```
576    /// use std::iter::zip;
577    ///
578    /// let a = [1, 2, 3];
579    /// let b = [2, 3, 4];
580    ///
581    /// let mut zipped = zip(
582    ///     a.into_iter().map(|x| x * 2).skip(1),
583    ///     b.into_iter().map(|x| x * 2).skip(1),
584    /// );
585    ///
586    /// assert_eq!(zipped.next(), Some((4, 6)));
587    /// assert_eq!(zipped.next(), Some((6, 8)));
588    /// assert_eq!(zipped.next(), None);
589    /// ```
590    ///
591    /// compared to:
592    ///
593    /// ```
594    /// # let a = [1, 2, 3];
595    /// # let b = [2, 3, 4];
596    /// #
597    /// let mut zipped = a
598    ///     .into_iter()
599    ///     .map(|x| x * 2)
600    ///     .skip(1)
601    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
602    /// #
603    /// # assert_eq!(zipped.next(), Some((4, 6)));
604    /// # assert_eq!(zipped.next(), Some((6, 8)));
605    /// # assert_eq!(zipped.next(), None);
606    /// ```
607    ///
608    /// [`enumerate`]: Iterator::enumerate
609    /// [`next`]: Iterator::next
610    /// [`zip`]: crate::iter::zip
611    #[inline]
612    #[stable(feature = "rust1", since = "1.0.0")]
613    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
614    where
615        Self: Sized,
616        U: IntoIterator,
617    {
618        Zip::new(self, other.into_iter())
619    }
620
621    /// Creates a new iterator which places a copy of `separator` between adjacent
622    /// items of the original iterator.
623    ///
624    /// In case `separator` does not implement [`Clone`] or needs to be
625    /// computed every time, use [`intersperse_with`].
626    ///
627    /// # Examples
628    ///
629    /// Basic usage:
630    ///
631    /// ```
632    /// #![feature(iter_intersperse)]
633    ///
634    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
635    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
636    /// assert_eq!(a.next(), Some(100)); // The separator.
637    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
638    /// assert_eq!(a.next(), Some(100)); // The separator.
639    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
640    /// assert_eq!(a.next(), None);       // The iterator is finished.
641    /// ```
642    ///
643    /// `intersperse` can be very useful to join an iterator's items using a common element:
644    /// ```
645    /// #![feature(iter_intersperse)]
646    ///
647    /// let words = ["Hello", "World", "!"];
648    /// let hello: String = words.into_iter().intersperse(" ").collect();
649    /// assert_eq!(hello, "Hello World !");
650    /// ```
651    ///
652    /// [`Clone`]: crate::clone::Clone
653    /// [`intersperse_with`]: Iterator::intersperse_with
654    #[inline]
655    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
656    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
657    where
658        Self: Sized,
659        Self::Item: Clone,
660    {
661        Intersperse::new(self, separator)
662    }
663
664    /// Creates a new iterator which places an item generated by `separator`
665    /// between adjacent items of the original iterator.
666    ///
667    /// The closure will be called exactly once each time an item is placed
668    /// between two adjacent items from the underlying iterator; specifically,
669    /// the closure is not called if the underlying iterator yields less than
670    /// two items and after the last item is yielded.
671    ///
672    /// If the iterator's item implements [`Clone`], it may be easier to use
673    /// [`intersperse`].
674    ///
675    /// # Examples
676    ///
677    /// Basic usage:
678    ///
679    /// ```
680    /// #![feature(iter_intersperse)]
681    ///
682    /// #[derive(PartialEq, Debug)]
683    /// struct NotClone(usize);
684    ///
685    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
686    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
687    ///
688    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
689    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
690    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
691    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
692    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
693    /// assert_eq!(it.next(), None);               // The iterator is finished.
694    /// ```
695    ///
696    /// `intersperse_with` can be used in situations where the separator needs
697    /// to be computed:
698    /// ```
699    /// #![feature(iter_intersperse)]
700    ///
701    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
702    ///
703    /// // The closure mutably borrows its context to generate an item.
704    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
705    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
706    ///
707    /// let result = src.intersperse_with(separator).collect::<String>();
708    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
709    /// ```
710    /// [`Clone`]: crate::clone::Clone
711    /// [`intersperse`]: Iterator::intersperse
712    #[inline]
713    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
714    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
715    where
716        Self: Sized,
717        G: FnMut() -> Self::Item,
718    {
719        IntersperseWith::new(self, separator)
720    }
721
722    /// Takes a closure and creates an iterator which calls that closure on each
723    /// element.
724    ///
725    /// `map()` transforms one iterator into another, by means of its argument:
726    /// something that implements [`FnMut`]. It produces a new iterator which
727    /// calls this closure on each element of the original iterator.
728    ///
729    /// If you are good at thinking in types, you can think of `map()` like this:
730    /// If you have an iterator that gives you elements of some type `A`, and
731    /// you want an iterator of some other type `B`, you can use `map()`,
732    /// passing a closure that takes an `A` and returns a `B`.
733    ///
734    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
735    /// lazy, it is best used when you're already working with other iterators.
736    /// If you're doing some sort of looping for a side effect, it's considered
737    /// more idiomatic to use [`for`] than `map()`.
738    ///
739    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
740    ///
741    /// # Examples
742    ///
743    /// Basic usage:
744    ///
745    /// ```
746    /// let a = [1, 2, 3];
747    ///
748    /// let mut iter = a.iter().map(|x| 2 * x);
749    ///
750    /// assert_eq!(iter.next(), Some(2));
751    /// assert_eq!(iter.next(), Some(4));
752    /// assert_eq!(iter.next(), Some(6));
753    /// assert_eq!(iter.next(), None);
754    /// ```
755    ///
756    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
757    ///
758    /// ```
759    /// # #![allow(unused_must_use)]
760    /// // don't do this:
761    /// (0..5).map(|x| println!("{x}"));
762    ///
763    /// // it won't even execute, as it is lazy. Rust will warn you about this.
764    ///
765    /// // Instead, use a for-loop:
766    /// for x in 0..5 {
767    ///     println!("{x}");
768    /// }
769    /// ```
770    #[rustc_diagnostic_item = "IteratorMap"]
771    #[inline]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    fn map<B, F>(self, f: F) -> Map<Self, F>
774    where
775        Self: Sized,
776        F: FnMut(Self::Item) -> B,
777    {
778        Map::new(self, f)
779    }
780
781    /// Calls a closure on each element of an iterator.
782    ///
783    /// This is equivalent to using a [`for`] loop on the iterator, although
784    /// `break` and `continue` are not possible from a closure. It's generally
785    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
786    /// when processing items at the end of longer iterator chains. In some
787    /// cases `for_each` may also be faster than a loop, because it will use
788    /// internal iteration on adapters like `Chain`.
789    ///
790    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
791    ///
792    /// # Examples
793    ///
794    /// Basic usage:
795    ///
796    /// ```
797    /// use std::sync::mpsc::channel;
798    ///
799    /// let (tx, rx) = channel();
800    /// (0..5).map(|x| x * 2 + 1)
801    ///       .for_each(move |x| tx.send(x).unwrap());
802    ///
803    /// let v: Vec<_> = rx.iter().collect();
804    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
805    /// ```
806    ///
807    /// For such a small example, a `for` loop may be cleaner, but `for_each`
808    /// might be preferable to keep a functional style with longer iterators:
809    ///
810    /// ```
811    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
812    ///       .enumerate()
813    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
814    ///       .for_each(|(i, x)| println!("{i}:{x}"));
815    /// ```
816    #[inline]
817    #[stable(feature = "iterator_for_each", since = "1.21.0")]
818    fn for_each<F>(self, f: F)
819    where
820        Self: Sized,
821        F: FnMut(Self::Item),
822    {
823        #[inline]
824        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
825            move |(), item| f(item)
826        }
827
828        self.fold((), call(f));
829    }
830
831    /// Creates an iterator which uses a closure to determine if an element
832    /// should be yielded.
833    ///
834    /// Given an element the closure must return `true` or `false`. The returned
835    /// iterator will yield only the elements for which the closure returns
836    /// `true`.
837    ///
838    /// # Examples
839    ///
840    /// Basic usage:
841    ///
842    /// ```
843    /// let a = [0i32, 1, 2];
844    ///
845    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
846    ///
847    /// assert_eq!(iter.next(), Some(1));
848    /// assert_eq!(iter.next(), Some(2));
849    /// assert_eq!(iter.next(), None);
850    /// ```
851    ///
852    /// Because the closure passed to `filter()` takes a reference, and many
853    /// iterators iterate over references, this leads to a possibly confusing
854    /// situation, where the type of the closure is a double reference:
855    ///
856    /// ```
857    /// let s = &[0, 1, 2];
858    ///
859    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
860    ///
861    /// assert_eq!(iter.next(), Some(&2));
862    /// assert_eq!(iter.next(), None);
863    /// ```
864    ///
865    /// It's common to instead use destructuring on the argument to strip away one:
866    ///
867    /// ```
868    /// let s = &[0, 1, 2];
869    ///
870    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
871    ///
872    /// assert_eq!(iter.next(), Some(&2));
873    /// assert_eq!(iter.next(), None);
874    /// ```
875    ///
876    /// or both:
877    ///
878    /// ```
879    /// let s = &[0, 1, 2];
880    ///
881    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
882    ///
883    /// assert_eq!(iter.next(), Some(&2));
884    /// assert_eq!(iter.next(), None);
885    /// ```
886    ///
887    /// of these layers.
888    ///
889    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
890    #[inline]
891    #[stable(feature = "rust1", since = "1.0.0")]
892    #[rustc_diagnostic_item = "iter_filter"]
893    fn filter<P>(self, predicate: P) -> Filter<Self, P>
894    where
895        Self: Sized,
896        P: FnMut(&Self::Item) -> bool,
897    {
898        Filter::new(self, predicate)
899    }
900
901    /// Creates an iterator that both filters and maps.
902    ///
903    /// The returned iterator yields only the `value`s for which the supplied
904    /// closure returns `Some(value)`.
905    ///
906    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
907    /// concise. The example below shows how a `map().filter().map()` can be
908    /// shortened to a single call to `filter_map`.
909    ///
910    /// [`filter`]: Iterator::filter
911    /// [`map`]: Iterator::map
912    ///
913    /// # Examples
914    ///
915    /// Basic usage:
916    ///
917    /// ```
918    /// let a = ["1", "two", "NaN", "four", "5"];
919    ///
920    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
921    ///
922    /// assert_eq!(iter.next(), Some(1));
923    /// assert_eq!(iter.next(), Some(5));
924    /// assert_eq!(iter.next(), None);
925    /// ```
926    ///
927    /// Here's the same example, but with [`filter`] and [`map`]:
928    ///
929    /// ```
930    /// let a = ["1", "two", "NaN", "four", "5"];
931    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
932    /// assert_eq!(iter.next(), Some(1));
933    /// assert_eq!(iter.next(), Some(5));
934    /// assert_eq!(iter.next(), None);
935    /// ```
936    #[inline]
937    #[stable(feature = "rust1", since = "1.0.0")]
938    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
939    where
940        Self: Sized,
941        F: FnMut(Self::Item) -> Option<B>,
942    {
943        FilterMap::new(self, f)
944    }
945
946    /// Creates an iterator which gives the current iteration count as well as
947    /// the next value.
948    ///
949    /// The iterator returned yields pairs `(i, val)`, where `i` is the
950    /// current index of iteration and `val` is the value returned by the
951    /// iterator.
952    ///
953    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
954    /// different sized integer, the [`zip`] function provides similar
955    /// functionality.
956    ///
957    /// # Overflow Behavior
958    ///
959    /// The method does no guarding against overflows, so enumerating more than
960    /// [`usize::MAX`] elements either produces the wrong result or panics. If
961    /// overflow checks are enabled, a panic is guaranteed.
962    ///
963    /// # Panics
964    ///
965    /// The returned iterator might panic if the to-be-returned index would
966    /// overflow a [`usize`].
967    ///
968    /// [`zip`]: Iterator::zip
969    ///
970    /// # Examples
971    ///
972    /// ```
973    /// let a = ['a', 'b', 'c'];
974    ///
975    /// let mut iter = a.into_iter().enumerate();
976    ///
977    /// assert_eq!(iter.next(), Some((0, 'a')));
978    /// assert_eq!(iter.next(), Some((1, 'b')));
979    /// assert_eq!(iter.next(), Some((2, 'c')));
980    /// assert_eq!(iter.next(), None);
981    /// ```
982    #[inline]
983    #[stable(feature = "rust1", since = "1.0.0")]
984    #[rustc_diagnostic_item = "enumerate_method"]
985    fn enumerate(self) -> Enumerate<Self>
986    where
987        Self: Sized,
988    {
989        Enumerate::new(self)
990    }
991
992    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
993    /// to look at the next element of the iterator without consuming it. See
994    /// their documentation for more information.
995    ///
996    /// Note that the underlying iterator is still advanced when [`peek`] or
997    /// [`peek_mut`] are called for the first time: In order to retrieve the
998    /// next element, [`next`] is called on the underlying iterator, hence any
999    /// side effects (i.e. anything other than fetching the next value) of
1000    /// the [`next`] method will occur.
1001    ///
1002    ///
1003    /// # Examples
1004    ///
1005    /// Basic usage:
1006    ///
1007    /// ```
1008    /// let xs = [1, 2, 3];
1009    ///
1010    /// let mut iter = xs.into_iter().peekable();
1011    ///
1012    /// // peek() lets us see into the future
1013    /// assert_eq!(iter.peek(), Some(&1));
1014    /// assert_eq!(iter.next(), Some(1));
1015    ///
1016    /// assert_eq!(iter.next(), Some(2));
1017    ///
1018    /// // we can peek() multiple times, the iterator won't advance
1019    /// assert_eq!(iter.peek(), Some(&3));
1020    /// assert_eq!(iter.peek(), Some(&3));
1021    ///
1022    /// assert_eq!(iter.next(), Some(3));
1023    ///
1024    /// // after the iterator is finished, so is peek()
1025    /// assert_eq!(iter.peek(), None);
1026    /// assert_eq!(iter.next(), None);
1027    /// ```
1028    ///
1029    /// Using [`peek_mut`] to mutate the next item without advancing the
1030    /// iterator:
1031    ///
1032    /// ```
1033    /// let xs = [1, 2, 3];
1034    ///
1035    /// let mut iter = xs.into_iter().peekable();
1036    ///
1037    /// // `peek_mut()` lets us see into the future
1038    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1039    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1040    /// assert_eq!(iter.next(), Some(1));
1041    ///
1042    /// if let Some(p) = iter.peek_mut() {
1043    ///     assert_eq!(*p, 2);
1044    ///     // put a value into the iterator
1045    ///     *p = 1000;
1046    /// }
1047    ///
1048    /// // The value reappears as the iterator continues
1049    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1050    /// ```
1051    /// [`peek`]: Peekable::peek
1052    /// [`peek_mut`]: Peekable::peek_mut
1053    /// [`next`]: Iterator::next
1054    #[inline]
1055    #[stable(feature = "rust1", since = "1.0.0")]
1056    fn peekable(self) -> Peekable<Self>
1057    where
1058        Self: Sized,
1059    {
1060        Peekable::new(self)
1061    }
1062
1063    /// Creates an iterator that [`skip`]s elements based on a predicate.
1064    ///
1065    /// [`skip`]: Iterator::skip
1066    ///
1067    /// `skip_while()` takes a closure as an argument. It will call this
1068    /// closure on each element of the iterator, and ignore elements
1069    /// until it returns `false`.
1070    ///
1071    /// After `false` is returned, `skip_while()`'s job is over, and the
1072    /// rest of the elements are yielded.
1073    ///
1074    /// # Examples
1075    ///
1076    /// Basic usage:
1077    ///
1078    /// ```
1079    /// let a = [-1i32, 0, 1];
1080    ///
1081    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1082    ///
1083    /// assert_eq!(iter.next(), Some(0));
1084    /// assert_eq!(iter.next(), Some(1));
1085    /// assert_eq!(iter.next(), None);
1086    /// ```
1087    ///
1088    /// Because the closure passed to `skip_while()` takes a reference, and many
1089    /// iterators iterate over references, this leads to a possibly confusing
1090    /// situation, where the type of the closure argument is a double reference:
1091    ///
1092    /// ```
1093    /// let s = &[-1, 0, 1];
1094    ///
1095    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1096    ///
1097    /// assert_eq!(iter.next(), Some(&0));
1098    /// assert_eq!(iter.next(), Some(&1));
1099    /// assert_eq!(iter.next(), None);
1100    /// ```
1101    ///
1102    /// Stopping after an initial `false`:
1103    ///
1104    /// ```
1105    /// let a = [-1, 0, 1, -2];
1106    ///
1107    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1108    ///
1109    /// assert_eq!(iter.next(), Some(0));
1110    /// assert_eq!(iter.next(), Some(1));
1111    ///
1112    /// // while this would have been false, since we already got a false,
1113    /// // skip_while() isn't used any more
1114    /// assert_eq!(iter.next(), Some(-2));
1115    ///
1116    /// assert_eq!(iter.next(), None);
1117    /// ```
1118    #[inline]
1119    #[doc(alias = "drop_while")]
1120    #[stable(feature = "rust1", since = "1.0.0")]
1121    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1122    where
1123        Self: Sized,
1124        P: FnMut(&Self::Item) -> bool,
1125    {
1126        SkipWhile::new(self, predicate)
1127    }
1128
1129    /// Creates an iterator that yields elements based on a predicate.
1130    ///
1131    /// `take_while()` takes a closure as an argument. It will call this
1132    /// closure on each element of the iterator, and yield elements
1133    /// while it returns `true`.
1134    ///
1135    /// After `false` is returned, `take_while()`'s job is over, and the
1136    /// rest of the elements are ignored.
1137    ///
1138    /// # Examples
1139    ///
1140    /// Basic usage:
1141    ///
1142    /// ```
1143    /// let a = [-1i32, 0, 1];
1144    ///
1145    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1146    ///
1147    /// assert_eq!(iter.next(), Some(-1));
1148    /// assert_eq!(iter.next(), None);
1149    /// ```
1150    ///
1151    /// Because the closure passed to `take_while()` takes a reference, and many
1152    /// iterators iterate over references, this leads to a possibly confusing
1153    /// situation, where the type of the closure is a double reference:
1154    ///
1155    /// ```
1156    /// let s = &[-1, 0, 1];
1157    ///
1158    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1159    ///
1160    /// assert_eq!(iter.next(), Some(&-1));
1161    /// assert_eq!(iter.next(), None);
1162    /// ```
1163    ///
1164    /// Stopping after an initial `false`:
1165    ///
1166    /// ```
1167    /// let a = [-1, 0, 1, -2];
1168    ///
1169    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1170    ///
1171    /// assert_eq!(iter.next(), Some(-1));
1172    ///
1173    /// // We have more elements that are less than zero, but since we already
1174    /// // got a false, take_while() ignores the remaining elements.
1175    /// assert_eq!(iter.next(), None);
1176    /// ```
1177    ///
1178    /// Because `take_while()` needs to look at the value in order to see if it
1179    /// should be included or not, consuming iterators will see that it is
1180    /// removed:
1181    ///
1182    /// ```
1183    /// let a = [1, 2, 3, 4];
1184    /// let mut iter = a.into_iter();
1185    ///
1186    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1187    ///
1188    /// assert_eq!(result, [1, 2]);
1189    ///
1190    /// let result: Vec<i32> = iter.collect();
1191    ///
1192    /// assert_eq!(result, [4]);
1193    /// ```
1194    ///
1195    /// The `3` is no longer there, because it was consumed in order to see if
1196    /// the iteration should stop, but wasn't placed back into the iterator.
1197    #[inline]
1198    #[stable(feature = "rust1", since = "1.0.0")]
1199    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1200    where
1201        Self: Sized,
1202        P: FnMut(&Self::Item) -> bool,
1203    {
1204        TakeWhile::new(self, predicate)
1205    }
1206
1207    /// Creates an iterator that both yields elements based on a predicate and maps.
1208    ///
1209    /// `map_while()` takes a closure as an argument. It will call this
1210    /// closure on each element of the iterator, and yield elements
1211    /// while it returns [`Some(_)`][`Some`].
1212    ///
1213    /// # Examples
1214    ///
1215    /// Basic usage:
1216    ///
1217    /// ```
1218    /// let a = [-1i32, 4, 0, 1];
1219    ///
1220    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1221    ///
1222    /// assert_eq!(iter.next(), Some(-16));
1223    /// assert_eq!(iter.next(), Some(4));
1224    /// assert_eq!(iter.next(), None);
1225    /// ```
1226    ///
1227    /// Here's the same example, but with [`take_while`] and [`map`]:
1228    ///
1229    /// [`take_while`]: Iterator::take_while
1230    /// [`map`]: Iterator::map
1231    ///
1232    /// ```
1233    /// let a = [-1i32, 4, 0, 1];
1234    ///
1235    /// let mut iter = a.into_iter()
1236    ///                 .map(|x| 16i32.checked_div(x))
1237    ///                 .take_while(|x| x.is_some())
1238    ///                 .map(|x| x.unwrap());
1239    ///
1240    /// assert_eq!(iter.next(), Some(-16));
1241    /// assert_eq!(iter.next(), Some(4));
1242    /// assert_eq!(iter.next(), None);
1243    /// ```
1244    ///
1245    /// Stopping after an initial [`None`]:
1246    ///
1247    /// ```
1248    /// let a = [0, 1, 2, -3, 4, 5, -6];
1249    ///
1250    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1251    /// let vec: Vec<_> = iter.collect();
1252    ///
1253    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1254    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1255    /// assert_eq!(vec, [0, 1, 2]);
1256    /// ```
1257    ///
1258    /// Because `map_while()` needs to look at the value in order to see if it
1259    /// should be included or not, consuming iterators will see that it is
1260    /// removed:
1261    ///
1262    /// ```
1263    /// let a = [1, 2, -3, 4];
1264    /// let mut iter = a.into_iter();
1265    ///
1266    /// let result: Vec<u32> = iter.by_ref()
1267    ///                            .map_while(|n| u32::try_from(n).ok())
1268    ///                            .collect();
1269    ///
1270    /// assert_eq!(result, [1, 2]);
1271    ///
1272    /// let result: Vec<i32> = iter.collect();
1273    ///
1274    /// assert_eq!(result, [4]);
1275    /// ```
1276    ///
1277    /// The `-3` is no longer there, because it was consumed in order to see if
1278    /// the iteration should stop, but wasn't placed back into the iterator.
1279    ///
1280    /// Note that unlike [`take_while`] this iterator is **not** fused.
1281    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1282    /// If you need a fused iterator, use [`fuse`].
1283    ///
1284    /// [`fuse`]: Iterator::fuse
1285    #[inline]
1286    #[stable(feature = "iter_map_while", since = "1.57.0")]
1287    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1288    where
1289        Self: Sized,
1290        P: FnMut(Self::Item) -> Option<B>,
1291    {
1292        MapWhile::new(self, predicate)
1293    }
1294
1295    /// Creates an iterator that skips the first `n` elements.
1296    ///
1297    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1298    /// iterator is reached (whichever happens first). After that, all the remaining
1299    /// elements are yielded. In particular, if the original iterator is too short,
1300    /// then the returned iterator is empty.
1301    ///
1302    /// Rather than overriding this method directly, instead override the `nth` method.
1303    ///
1304    /// # Examples
1305    ///
1306    /// ```
1307    /// let a = [1, 2, 3];
1308    ///
1309    /// let mut iter = a.into_iter().skip(2);
1310    ///
1311    /// assert_eq!(iter.next(), Some(3));
1312    /// assert_eq!(iter.next(), None);
1313    /// ```
1314    #[inline]
1315    #[stable(feature = "rust1", since = "1.0.0")]
1316    fn skip(self, n: usize) -> Skip<Self>
1317    where
1318        Self: Sized,
1319    {
1320        Skip::new(self, n)
1321    }
1322
1323    /// Creates an iterator that yields the first `n` elements, or fewer
1324    /// if the underlying iterator ends sooner.
1325    ///
1326    /// `take(n)` yields elements until `n` elements are yielded or the end of
1327    /// the iterator is reached (whichever happens first).
1328    /// The returned iterator is a prefix of length `n` if the original iterator
1329    /// contains at least `n` elements, otherwise it contains all of the
1330    /// (fewer than `n`) elements of the original iterator.
1331    ///
1332    /// # Examples
1333    ///
1334    /// Basic usage:
1335    ///
1336    /// ```
1337    /// let a = [1, 2, 3];
1338    ///
1339    /// let mut iter = a.into_iter().take(2);
1340    ///
1341    /// assert_eq!(iter.next(), Some(1));
1342    /// assert_eq!(iter.next(), Some(2));
1343    /// assert_eq!(iter.next(), None);
1344    /// ```
1345    ///
1346    /// `take()` is often used with an infinite iterator, to make it finite:
1347    ///
1348    /// ```
1349    /// let mut iter = (0..).take(3);
1350    ///
1351    /// assert_eq!(iter.next(), Some(0));
1352    /// assert_eq!(iter.next(), Some(1));
1353    /// assert_eq!(iter.next(), Some(2));
1354    /// assert_eq!(iter.next(), None);
1355    /// ```
1356    ///
1357    /// If less than `n` elements are available,
1358    /// `take` will limit itself to the size of the underlying iterator:
1359    ///
1360    /// ```
1361    /// let v = [1, 2];
1362    /// let mut iter = v.into_iter().take(5);
1363    /// assert_eq!(iter.next(), Some(1));
1364    /// assert_eq!(iter.next(), Some(2));
1365    /// assert_eq!(iter.next(), None);
1366    /// ```
1367    ///
1368    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1369    /// continue using the original iterator:
1370    ///
1371    /// ```
1372    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1373    ///
1374    /// // Take the first two words.
1375    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1376    /// assert_eq!(hello_world, vec!["hello", "world"]);
1377    ///
1378    /// // Collect the rest of the words.
1379    /// // We can only do this because we used `by_ref` earlier.
1380    /// let of_rust: Vec<_> = words.collect();
1381    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1382    /// ```
1383    ///
1384    /// [`by_ref`]: Iterator::by_ref
1385    #[doc(alias = "limit")]
1386    #[inline]
1387    #[stable(feature = "rust1", since = "1.0.0")]
1388    fn take(self, n: usize) -> Take<Self>
1389    where
1390        Self: Sized,
1391    {
1392        Take::new(self, n)
1393    }
1394
1395    /// An iterator adapter which, like [`fold`], holds internal state, but
1396    /// unlike [`fold`], produces a new iterator.
1397    ///
1398    /// [`fold`]: Iterator::fold
1399    ///
1400    /// `scan()` takes two arguments: an initial value which seeds the internal
1401    /// state, and a closure with two arguments, the first being a mutable
1402    /// reference to the internal state and the second an iterator element.
1403    /// The closure can assign to the internal state to share state between
1404    /// iterations.
1405    ///
1406    /// On iteration, the closure will be applied to each element of the
1407    /// iterator and the return value from the closure, an [`Option`], is
1408    /// returned by the `next` method. Thus the closure can return
1409    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1410    ///
1411    /// # Examples
1412    ///
1413    /// ```
1414    /// let a = [1, 2, 3, 4];
1415    ///
1416    /// let mut iter = a.into_iter().scan(1, |state, x| {
1417    ///     // each iteration, we'll multiply the state by the element ...
1418    ///     *state = *state * x;
1419    ///
1420    ///     // ... and terminate if the state exceeds 6
1421    ///     if *state > 6 {
1422    ///         return None;
1423    ///     }
1424    ///     // ... else yield the negation of the state
1425    ///     Some(-*state)
1426    /// });
1427    ///
1428    /// assert_eq!(iter.next(), Some(-1));
1429    /// assert_eq!(iter.next(), Some(-2));
1430    /// assert_eq!(iter.next(), Some(-6));
1431    /// assert_eq!(iter.next(), None);
1432    /// ```
1433    #[inline]
1434    #[stable(feature = "rust1", since = "1.0.0")]
1435    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1436    where
1437        Self: Sized,
1438        F: FnMut(&mut St, Self::Item) -> Option<B>,
1439    {
1440        Scan::new(self, initial_state, f)
1441    }
1442
1443    /// Creates an iterator that works like map, but flattens nested structure.
1444    ///
1445    /// The [`map`] adapter is very useful, but only when the closure
1446    /// argument produces values. If it produces an iterator instead, there's
1447    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1448    /// on its own.
1449    ///
1450    /// You can think of `flat_map(f)` as the semantic equivalent
1451    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1452    ///
1453    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1454    /// one item for each element, and `flat_map()`'s closure returns an
1455    /// iterator for each element.
1456    ///
1457    /// [`map`]: Iterator::map
1458    /// [`flatten`]: Iterator::flatten
1459    ///
1460    /// # Examples
1461    ///
1462    /// ```
1463    /// let words = ["alpha", "beta", "gamma"];
1464    ///
1465    /// // chars() returns an iterator
1466    /// let merged: String = words.iter()
1467    ///                           .flat_map(|s| s.chars())
1468    ///                           .collect();
1469    /// assert_eq!(merged, "alphabetagamma");
1470    /// ```
1471    #[inline]
1472    #[stable(feature = "rust1", since = "1.0.0")]
1473    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1474    where
1475        Self: Sized,
1476        U: IntoIterator,
1477        F: FnMut(Self::Item) -> U,
1478    {
1479        FlatMap::new(self, f)
1480    }
1481
1482    /// Creates an iterator that flattens nested structure.
1483    ///
1484    /// This is useful when you have an iterator of iterators or an iterator of
1485    /// things that can be turned into iterators and you want to remove one
1486    /// level of indirection.
1487    ///
1488    /// # Examples
1489    ///
1490    /// Basic usage:
1491    ///
1492    /// ```
1493    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1494    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1495    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1496    /// ```
1497    ///
1498    /// Mapping and then flattening:
1499    ///
1500    /// ```
1501    /// let words = ["alpha", "beta", "gamma"];
1502    ///
1503    /// // chars() returns an iterator
1504    /// let merged: String = words.iter()
1505    ///                           .map(|s| s.chars())
1506    ///                           .flatten()
1507    ///                           .collect();
1508    /// assert_eq!(merged, "alphabetagamma");
1509    /// ```
1510    ///
1511    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1512    /// in this case since it conveys intent more clearly:
1513    ///
1514    /// ```
1515    /// let words = ["alpha", "beta", "gamma"];
1516    ///
1517    /// // chars() returns an iterator
1518    /// let merged: String = words.iter()
1519    ///                           .flat_map(|s| s.chars())
1520    ///                           .collect();
1521    /// assert_eq!(merged, "alphabetagamma");
1522    /// ```
1523    ///
1524    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1525    ///
1526    /// ```
1527    /// let options = vec![Some(123), Some(321), None, Some(231)];
1528    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1529    /// assert_eq!(flattened_options, [123, 321, 231]);
1530    ///
1531    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1532    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1533    /// assert_eq!(flattened_results, [123, 321, 231]);
1534    /// ```
1535    ///
1536    /// Flattening only removes one level of nesting at a time:
1537    ///
1538    /// ```
1539    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1540    ///
1541    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1542    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1543    ///
1544    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1545    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1546    /// ```
1547    ///
1548    /// Here we see that `flatten()` does not perform a "deep" flatten.
1549    /// Instead, only one level of nesting is removed. That is, if you
1550    /// `flatten()` a three-dimensional array, the result will be
1551    /// two-dimensional and not one-dimensional. To get a one-dimensional
1552    /// structure, you have to `flatten()` again.
1553    ///
1554    /// [`flat_map()`]: Iterator::flat_map
1555    #[inline]
1556    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1557    fn flatten(self) -> Flatten<Self>
1558    where
1559        Self: Sized,
1560        Self::Item: IntoIterator,
1561    {
1562        Flatten::new(self)
1563    }
1564
1565    /// Calls the given function `f` for each contiguous window of size `N` over
1566    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1567    /// the windows during mapping overlap as well.
1568    ///
1569    /// In the following example, the closure is called three times with the
1570    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1571    ///
1572    /// ```
1573    /// #![feature(iter_map_windows)]
1574    ///
1575    /// let strings = "abcd".chars()
1576    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1577    ///     .collect::<Vec<String>>();
1578    ///
1579    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1580    /// ```
1581    ///
1582    /// Note that the const parameter `N` is usually inferred by the
1583    /// destructured argument in the closure.
1584    ///
1585    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1586    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1587    /// empty iterator.
1588    ///
1589    /// The returned iterator implements [`FusedIterator`], because once `self`
1590    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1591    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1592    /// should be fused.
1593    ///
1594    /// [`slice::windows()`]: slice::windows
1595    /// [`FusedIterator`]: crate::iter::FusedIterator
1596    ///
1597    /// # Panics
1598    ///
1599    /// Panics if `N` is zero. This check will most probably get changed to a
1600    /// compile time error before this method gets stabilized.
1601    ///
1602    /// ```should_panic
1603    /// #![feature(iter_map_windows)]
1604    ///
1605    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1606    /// ```
1607    ///
1608    /// # Examples
1609    ///
1610    /// Building the sums of neighboring numbers.
1611    ///
1612    /// ```
1613    /// #![feature(iter_map_windows)]
1614    ///
1615    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1616    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1617    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1618    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1619    /// assert_eq!(it.next(), None);
1620    /// ```
1621    ///
1622    /// Since the elements in the following example implement `Copy`, we can
1623    /// just copy the array and get an iterator over the windows.
1624    ///
1625    /// ```
1626    /// #![feature(iter_map_windows)]
1627    ///
1628    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1629    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1630    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1631    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1632    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1633    /// assert_eq!(it.next(), None);
1634    /// ```
1635    ///
1636    /// You can also use this function to check the sortedness of an iterator.
1637    /// For the simple case, rather use [`Iterator::is_sorted`].
1638    ///
1639    /// ```
1640    /// #![feature(iter_map_windows)]
1641    ///
1642    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1643    ///     .map_windows(|[a, b]| a <= b);
1644    ///
1645    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1646    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1647    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1648    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1649    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1650    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1651    /// assert_eq!(it.next(), None);
1652    /// ```
1653    ///
1654    /// For non-fused iterators, they are fused after `map_windows`.
1655    ///
1656    /// ```
1657    /// #![feature(iter_map_windows)]
1658    ///
1659    /// #[derive(Default)]
1660    /// struct NonFusedIterator {
1661    ///     state: i32,
1662    /// }
1663    ///
1664    /// impl Iterator for NonFusedIterator {
1665    ///     type Item = i32;
1666    ///
1667    ///     fn next(&mut self) -> Option<i32> {
1668    ///         let val = self.state;
1669    ///         self.state = self.state + 1;
1670    ///
1671    ///         // yields `0..5` first, then only even numbers since `6..`.
1672    ///         if val < 5 || val % 2 == 0 {
1673    ///             Some(val)
1674    ///         } else {
1675    ///             None
1676    ///         }
1677    ///     }
1678    /// }
1679    ///
1680    ///
1681    /// let mut iter = NonFusedIterator::default();
1682    ///
1683    /// // yields 0..5 first.
1684    /// assert_eq!(iter.next(), Some(0));
1685    /// assert_eq!(iter.next(), Some(1));
1686    /// assert_eq!(iter.next(), Some(2));
1687    /// assert_eq!(iter.next(), Some(3));
1688    /// assert_eq!(iter.next(), Some(4));
1689    /// // then we can see our iterator going back and forth
1690    /// assert_eq!(iter.next(), None);
1691    /// assert_eq!(iter.next(), Some(6));
1692    /// assert_eq!(iter.next(), None);
1693    /// assert_eq!(iter.next(), Some(8));
1694    /// assert_eq!(iter.next(), None);
1695    ///
1696    /// // however, with `.map_windows()`, it is fused.
1697    /// let mut iter = NonFusedIterator::default()
1698    ///     .map_windows(|arr: &[_; 2]| *arr);
1699    ///
1700    /// assert_eq!(iter.next(), Some([0, 1]));
1701    /// assert_eq!(iter.next(), Some([1, 2]));
1702    /// assert_eq!(iter.next(), Some([2, 3]));
1703    /// assert_eq!(iter.next(), Some([3, 4]));
1704    /// assert_eq!(iter.next(), None);
1705    ///
1706    /// // it will always return `None` after the first time.
1707    /// assert_eq!(iter.next(), None);
1708    /// assert_eq!(iter.next(), None);
1709    /// assert_eq!(iter.next(), None);
1710    /// ```
1711    #[inline]
1712    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1713    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1714    where
1715        Self: Sized,
1716        F: FnMut(&[Self::Item; N]) -> R,
1717    {
1718        MapWindows::new(self, f)
1719    }
1720
1721    /// Creates an iterator which ends after the first [`None`].
1722    ///
1723    /// After an iterator returns [`None`], future calls may or may not yield
1724    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1725    /// [`None`] is given, it will always return [`None`] forever.
1726    ///
1727    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1728    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1729    /// if the [`FusedIterator`] trait is improperly implemented.
1730    ///
1731    /// [`Some(T)`]: Some
1732    /// [`FusedIterator`]: crate::iter::FusedIterator
1733    ///
1734    /// # Examples
1735    ///
1736    /// ```
1737    /// // an iterator which alternates between Some and None
1738    /// struct Alternate {
1739    ///     state: i32,
1740    /// }
1741    ///
1742    /// impl Iterator for Alternate {
1743    ///     type Item = i32;
1744    ///
1745    ///     fn next(&mut self) -> Option<i32> {
1746    ///         let val = self.state;
1747    ///         self.state = self.state + 1;
1748    ///
1749    ///         // if it's even, Some(i32), else None
1750    ///         (val % 2 == 0).then_some(val)
1751    ///     }
1752    /// }
1753    ///
1754    /// let mut iter = Alternate { state: 0 };
1755    ///
1756    /// // we can see our iterator going back and forth
1757    /// assert_eq!(iter.next(), Some(0));
1758    /// assert_eq!(iter.next(), None);
1759    /// assert_eq!(iter.next(), Some(2));
1760    /// assert_eq!(iter.next(), None);
1761    ///
1762    /// // however, once we fuse it...
1763    /// let mut iter = iter.fuse();
1764    ///
1765    /// assert_eq!(iter.next(), Some(4));
1766    /// assert_eq!(iter.next(), None);
1767    ///
1768    /// // it will always return `None` after the first time.
1769    /// assert_eq!(iter.next(), None);
1770    /// assert_eq!(iter.next(), None);
1771    /// assert_eq!(iter.next(), None);
1772    /// ```
1773    #[inline]
1774    #[stable(feature = "rust1", since = "1.0.0")]
1775    fn fuse(self) -> Fuse<Self>
1776    where
1777        Self: Sized,
1778    {
1779        Fuse::new(self)
1780    }
1781
1782    /// Does something with each element of an iterator, passing the value on.
1783    ///
1784    /// When using iterators, you'll often chain several of them together.
1785    /// While working on such code, you might want to check out what's
1786    /// happening at various parts in the pipeline. To do that, insert
1787    /// a call to `inspect()`.
1788    ///
1789    /// It's more common for `inspect()` to be used as a debugging tool than to
1790    /// exist in your final code, but applications may find it useful in certain
1791    /// situations when errors need to be logged before being discarded.
1792    ///
1793    /// # Examples
1794    ///
1795    /// Basic usage:
1796    ///
1797    /// ```
1798    /// let a = [1, 4, 2, 3];
1799    ///
1800    /// // this iterator sequence is complex.
1801    /// let sum = a.iter()
1802    ///     .cloned()
1803    ///     .filter(|x| x % 2 == 0)
1804    ///     .fold(0, |sum, i| sum + i);
1805    ///
1806    /// println!("{sum}");
1807    ///
1808    /// // let's add some inspect() calls to investigate what's happening
1809    /// let sum = a.iter()
1810    ///     .cloned()
1811    ///     .inspect(|x| println!("about to filter: {x}"))
1812    ///     .filter(|x| x % 2 == 0)
1813    ///     .inspect(|x| println!("made it through filter: {x}"))
1814    ///     .fold(0, |sum, i| sum + i);
1815    ///
1816    /// println!("{sum}");
1817    /// ```
1818    ///
1819    /// This will print:
1820    ///
1821    /// ```text
1822    /// 6
1823    /// about to filter: 1
1824    /// about to filter: 4
1825    /// made it through filter: 4
1826    /// about to filter: 2
1827    /// made it through filter: 2
1828    /// about to filter: 3
1829    /// 6
1830    /// ```
1831    ///
1832    /// Logging errors before discarding them:
1833    ///
1834    /// ```
1835    /// let lines = ["1", "2", "a"];
1836    ///
1837    /// let sum: i32 = lines
1838    ///     .iter()
1839    ///     .map(|line| line.parse::<i32>())
1840    ///     .inspect(|num| {
1841    ///         if let Err(ref e) = *num {
1842    ///             println!("Parsing error: {e}");
1843    ///         }
1844    ///     })
1845    ///     .filter_map(Result::ok)
1846    ///     .sum();
1847    ///
1848    /// println!("Sum: {sum}");
1849    /// ```
1850    ///
1851    /// This will print:
1852    ///
1853    /// ```text
1854    /// Parsing error: invalid digit found in string
1855    /// Sum: 3
1856    /// ```
1857    #[inline]
1858    #[stable(feature = "rust1", since = "1.0.0")]
1859    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1860    where
1861        Self: Sized,
1862        F: FnMut(&Self::Item),
1863    {
1864        Inspect::new(self, f)
1865    }
1866
1867    /// Creates a "by reference" adapter for this instance of `Iterator`.
1868    ///
1869    /// Consuming method calls (direct or indirect calls to `next`)
1870    /// on the "by reference" adapter will consume the original iterator,
1871    /// but ownership-taking methods (those with a `self` parameter)
1872    /// only take ownership of the "by reference" iterator.
1873    ///
1874    /// This is useful for applying ownership-taking methods
1875    /// (such as `take` in the example below)
1876    /// without giving up ownership of the original iterator,
1877    /// so you can use the original iterator afterwards.
1878    ///
1879    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1880    ///
1881    /// # Examples
1882    ///
1883    /// ```
1884    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1885    ///
1886    /// // Take the first two words.
1887    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1888    /// assert_eq!(hello_world, vec!["hello", "world"]);
1889    ///
1890    /// // Collect the rest of the words.
1891    /// // We can only do this because we used `by_ref` earlier.
1892    /// let of_rust: Vec<_> = words.collect();
1893    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1894    /// ```
1895    #[stable(feature = "rust1", since = "1.0.0")]
1896    fn by_ref(&mut self) -> &mut Self
1897    where
1898        Self: Sized,
1899    {
1900        self
1901    }
1902
1903    /// Transforms an iterator into a collection.
1904    ///
1905    /// `collect()` can take anything iterable, and turn it into a relevant
1906    /// collection. This is one of the more powerful methods in the standard
1907    /// library, used in a variety of contexts.
1908    ///
1909    /// The most basic pattern in which `collect()` is used is to turn one
1910    /// collection into another. You take a collection, call [`iter`] on it,
1911    /// do a bunch of transformations, and then `collect()` at the end.
1912    ///
1913    /// `collect()` can also create instances of types that are not typical
1914    /// collections. For example, a [`String`] can be built from [`char`]s,
1915    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1916    /// into `Result<Collection<T>, E>`. See the examples below for more.
1917    ///
1918    /// Because `collect()` is so general, it can cause problems with type
1919    /// inference. As such, `collect()` is one of the few times you'll see
1920    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1921    /// helps the inference algorithm understand specifically which collection
1922    /// you're trying to collect into.
1923    ///
1924    /// # Examples
1925    ///
1926    /// Basic usage:
1927    ///
1928    /// ```
1929    /// let a = [1, 2, 3];
1930    ///
1931    /// let doubled: Vec<i32> = a.iter()
1932    ///                          .map(|x| x * 2)
1933    ///                          .collect();
1934    ///
1935    /// assert_eq!(vec![2, 4, 6], doubled);
1936    /// ```
1937    ///
1938    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1939    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1940    ///
1941    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1942    ///
1943    /// ```
1944    /// use std::collections::VecDeque;
1945    ///
1946    /// let a = [1, 2, 3];
1947    ///
1948    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1949    ///
1950    /// assert_eq!(2, doubled[0]);
1951    /// assert_eq!(4, doubled[1]);
1952    /// assert_eq!(6, doubled[2]);
1953    /// ```
1954    ///
1955    /// Using the 'turbofish' instead of annotating `doubled`:
1956    ///
1957    /// ```
1958    /// let a = [1, 2, 3];
1959    ///
1960    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1961    ///
1962    /// assert_eq!(vec![2, 4, 6], doubled);
1963    /// ```
1964    ///
1965    /// Because `collect()` only cares about what you're collecting into, you can
1966    /// still use a partial type hint, `_`, with the turbofish:
1967    ///
1968    /// ```
1969    /// let a = [1, 2, 3];
1970    ///
1971    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
1972    ///
1973    /// assert_eq!(vec![2, 4, 6], doubled);
1974    /// ```
1975    ///
1976    /// Using `collect()` to make a [`String`]:
1977    ///
1978    /// ```
1979    /// let chars = ['g', 'd', 'k', 'k', 'n'];
1980    ///
1981    /// let hello: String = chars.into_iter()
1982    ///     .map(|x| x as u8)
1983    ///     .map(|x| (x + 1) as char)
1984    ///     .collect();
1985    ///
1986    /// assert_eq!("hello", hello);
1987    /// ```
1988    ///
1989    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
1990    /// see if any of them failed:
1991    ///
1992    /// ```
1993    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1994    ///
1995    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
1996    ///
1997    /// // gives us the first error
1998    /// assert_eq!(Err("nope"), result);
1999    ///
2000    /// let results = [Ok(1), Ok(3)];
2001    ///
2002    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2003    ///
2004    /// // gives us the list of answers
2005    /// assert_eq!(Ok(vec![1, 3]), result);
2006    /// ```
2007    ///
2008    /// [`iter`]: Iterator::next
2009    /// [`String`]: ../../std/string/struct.String.html
2010    /// [`char`]: type@char
2011    #[inline]
2012    #[stable(feature = "rust1", since = "1.0.0")]
2013    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2014    #[rustc_diagnostic_item = "iterator_collect_fn"]
2015    fn collect<B: FromIterator<Self::Item>>(self) -> B
2016    where
2017        Self: Sized,
2018    {
2019        // This is too aggressive to turn on for everything all the time, but PR#137908
2020        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2021        // so this will help catch such things in debug-assertions-std runners,
2022        // even if users won't actually ever see it.
2023        if cfg!(debug_assertions) {
2024            let hint = self.size_hint();
2025            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2026        }
2027
2028        FromIterator::from_iter(self)
2029    }
2030
2031    /// Fallibly transforms an iterator into a collection, short circuiting if
2032    /// a failure is encountered.
2033    ///
2034    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2035    /// conversions during collection. Its main use case is simplifying conversions from
2036    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2037    /// types (e.g. [`Result`]).
2038    ///
2039    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2040    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2041    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2042    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2043    ///
2044    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2045    /// may continue to be used, in which case it will continue iterating starting after the element that
2046    /// triggered the failure. See the last example below for an example of how this works.
2047    ///
2048    /// # Examples
2049    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2050    /// ```
2051    /// #![feature(iterator_try_collect)]
2052    ///
2053    /// let u = vec![Some(1), Some(2), Some(3)];
2054    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2055    /// assert_eq!(v, Some(vec![1, 2, 3]));
2056    /// ```
2057    ///
2058    /// Failing to collect in the same way:
2059    /// ```
2060    /// #![feature(iterator_try_collect)]
2061    ///
2062    /// let u = vec![Some(1), Some(2), None, Some(3)];
2063    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2064    /// assert_eq!(v, None);
2065    /// ```
2066    ///
2067    /// A similar example, but with `Result`:
2068    /// ```
2069    /// #![feature(iterator_try_collect)]
2070    ///
2071    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2072    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2073    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2074    ///
2075    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2076    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2077    /// assert_eq!(v, Err(()));
2078    /// ```
2079    ///
2080    /// Finally, even [`ControlFlow`] works, despite the fact that it
2081    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2082    /// continue to be used, even if a failure is encountered:
2083    ///
2084    /// ```
2085    /// #![feature(iterator_try_collect)]
2086    ///
2087    /// use core::ops::ControlFlow::{Break, Continue};
2088    ///
2089    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2090    /// let mut it = u.into_iter();
2091    ///
2092    /// let v = it.try_collect::<Vec<_>>();
2093    /// assert_eq!(v, Break(3));
2094    ///
2095    /// let v = it.try_collect::<Vec<_>>();
2096    /// assert_eq!(v, Continue(vec![4, 5]));
2097    /// ```
2098    ///
2099    /// [`collect`]: Iterator::collect
2100    #[inline]
2101    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2102    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2103    where
2104        Self: Sized,
2105        Self::Item: Try<Residual: Residual<B>>,
2106        B: FromIterator<<Self::Item as Try>::Output>,
2107    {
2108        try_process(ByRefSized(self), |i| i.collect())
2109    }
2110
2111    /// Collects all the items from an iterator into a collection.
2112    ///
2113    /// This method consumes the iterator and adds all its items to the
2114    /// passed collection. The collection is then returned, so the call chain
2115    /// can be continued.
2116    ///
2117    /// This is useful when you already have a collection and want to add
2118    /// the iterator items to it.
2119    ///
2120    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2121    /// but instead of being called on a collection, it's called on an iterator.
2122    ///
2123    /// # Examples
2124    ///
2125    /// Basic usage:
2126    ///
2127    /// ```
2128    /// #![feature(iter_collect_into)]
2129    ///
2130    /// let a = [1, 2, 3];
2131    /// let mut vec: Vec::<i32> = vec![0, 1];
2132    ///
2133    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2134    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2135    ///
2136    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2137    /// ```
2138    ///
2139    /// `Vec` can have a manual set capacity to avoid reallocating it:
2140    ///
2141    /// ```
2142    /// #![feature(iter_collect_into)]
2143    ///
2144    /// let a = [1, 2, 3];
2145    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2146    ///
2147    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2148    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2149    ///
2150    /// assert_eq!(6, vec.capacity());
2151    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2152    /// ```
2153    ///
2154    /// The returned mutable reference can be used to continue the call chain:
2155    ///
2156    /// ```
2157    /// #![feature(iter_collect_into)]
2158    ///
2159    /// let a = [1, 2, 3];
2160    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2161    ///
2162    /// let count = a.iter().collect_into(&mut vec).iter().count();
2163    ///
2164    /// assert_eq!(count, vec.len());
2165    /// assert_eq!(vec, vec![1, 2, 3]);
2166    ///
2167    /// let count = a.iter().collect_into(&mut vec).iter().count();
2168    ///
2169    /// assert_eq!(count, vec.len());
2170    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2171    /// ```
2172    #[inline]
2173    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2174    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2175    where
2176        Self: Sized,
2177    {
2178        collection.extend(self);
2179        collection
2180    }
2181
2182    /// Consumes an iterator, creating two collections from it.
2183    ///
2184    /// The predicate passed to `partition()` can return `true`, or `false`.
2185    /// `partition()` returns a pair, all of the elements for which it returned
2186    /// `true`, and all of the elements for which it returned `false`.
2187    ///
2188    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2189    ///
2190    /// [`is_partitioned()`]: Iterator::is_partitioned
2191    /// [`partition_in_place()`]: Iterator::partition_in_place
2192    ///
2193    /// # Examples
2194    ///
2195    /// ```
2196    /// let a = [1, 2, 3];
2197    ///
2198    /// let (even, odd): (Vec<_>, Vec<_>) = a
2199    ///     .into_iter()
2200    ///     .partition(|n| n % 2 == 0);
2201    ///
2202    /// assert_eq!(even, [2]);
2203    /// assert_eq!(odd, [1, 3]);
2204    /// ```
2205    #[stable(feature = "rust1", since = "1.0.0")]
2206    fn partition<B, F>(self, f: F) -> (B, B)
2207    where
2208        Self: Sized,
2209        B: Default + Extend<Self::Item>,
2210        F: FnMut(&Self::Item) -> bool,
2211    {
2212        #[inline]
2213        fn extend<'a, T, B: Extend<T>>(
2214            mut f: impl FnMut(&T) -> bool + 'a,
2215            left: &'a mut B,
2216            right: &'a mut B,
2217        ) -> impl FnMut((), T) + 'a {
2218            move |(), x| {
2219                if f(&x) {
2220                    left.extend_one(x);
2221                } else {
2222                    right.extend_one(x);
2223                }
2224            }
2225        }
2226
2227        let mut left: B = Default::default();
2228        let mut right: B = Default::default();
2229
2230        self.fold((), extend(f, &mut left, &mut right));
2231
2232        (left, right)
2233    }
2234
2235    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2236    /// such that all those that return `true` precede all those that return `false`.
2237    /// Returns the number of `true` elements found.
2238    ///
2239    /// The relative order of partitioned items is not maintained.
2240    ///
2241    /// # Current implementation
2242    ///
2243    /// The current algorithm tries to find the first element for which the predicate evaluates
2244    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2245    ///
2246    /// Time complexity: *O*(*n*)
2247    ///
2248    /// See also [`is_partitioned()`] and [`partition()`].
2249    ///
2250    /// [`is_partitioned()`]: Iterator::is_partitioned
2251    /// [`partition()`]: Iterator::partition
2252    ///
2253    /// # Examples
2254    ///
2255    /// ```
2256    /// #![feature(iter_partition_in_place)]
2257    ///
2258    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2259    ///
2260    /// // Partition in-place between evens and odds
2261    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2262    ///
2263    /// assert_eq!(i, 3);
2264    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2265    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2266    /// ```
2267    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2268    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2269    where
2270        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2271        P: FnMut(&T) -> bool,
2272    {
2273        // FIXME: should we worry about the count overflowing? The only way to have more than
2274        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2275
2276        // These closure "factory" functions exist to avoid genericity in `Self`.
2277
2278        #[inline]
2279        fn is_false<'a, T>(
2280            predicate: &'a mut impl FnMut(&T) -> bool,
2281            true_count: &'a mut usize,
2282        ) -> impl FnMut(&&mut T) -> bool + 'a {
2283            move |x| {
2284                let p = predicate(&**x);
2285                *true_count += p as usize;
2286                !p
2287            }
2288        }
2289
2290        #[inline]
2291        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2292            move |x| predicate(&**x)
2293        }
2294
2295        // Repeatedly find the first `false` and swap it with the last `true`.
2296        let mut true_count = 0;
2297        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2298            if let Some(tail) = self.rfind(is_true(predicate)) {
2299                crate::mem::swap(head, tail);
2300                true_count += 1;
2301            } else {
2302                break;
2303            }
2304        }
2305        true_count
2306    }
2307
2308    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2309    /// such that all those that return `true` precede all those that return `false`.
2310    ///
2311    /// See also [`partition()`] and [`partition_in_place()`].
2312    ///
2313    /// [`partition()`]: Iterator::partition
2314    /// [`partition_in_place()`]: Iterator::partition_in_place
2315    ///
2316    /// # Examples
2317    ///
2318    /// ```
2319    /// #![feature(iter_is_partitioned)]
2320    ///
2321    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2322    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2323    /// ```
2324    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2325    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2326    where
2327        Self: Sized,
2328        P: FnMut(Self::Item) -> bool,
2329    {
2330        // Either all items test `true`, or the first clause stops at `false`
2331        // and we check that there are no more `true` items after that.
2332        self.all(&mut predicate) || !self.any(predicate)
2333    }
2334
2335    /// An iterator method that applies a function as long as it returns
2336    /// successfully, producing a single, final value.
2337    ///
2338    /// `try_fold()` takes two arguments: an initial value, and a closure with
2339    /// two arguments: an 'accumulator', and an element. The closure either
2340    /// returns successfully, with the value that the accumulator should have
2341    /// for the next iteration, or it returns failure, with an error value that
2342    /// is propagated back to the caller immediately (short-circuiting).
2343    ///
2344    /// The initial value is the value the accumulator will have on the first
2345    /// call. If applying the closure succeeded against every element of the
2346    /// iterator, `try_fold()` returns the final accumulator as success.
2347    ///
2348    /// Folding is useful whenever you have a collection of something, and want
2349    /// to produce a single value from it.
2350    ///
2351    /// # Note to Implementors
2352    ///
2353    /// Several of the other (forward) methods have default implementations in
2354    /// terms of this one, so try to implement this explicitly if it can
2355    /// do something better than the default `for` loop implementation.
2356    ///
2357    /// In particular, try to have this call `try_fold()` on the internal parts
2358    /// from which this iterator is composed. If multiple calls are needed,
2359    /// the `?` operator may be convenient for chaining the accumulator value
2360    /// along, but beware any invariants that need to be upheld before those
2361    /// early returns. This is a `&mut self` method, so iteration needs to be
2362    /// resumable after hitting an error here.
2363    ///
2364    /// # Examples
2365    ///
2366    /// Basic usage:
2367    ///
2368    /// ```
2369    /// let a = [1, 2, 3];
2370    ///
2371    /// // the checked sum of all of the elements of the array
2372    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2373    ///
2374    /// assert_eq!(sum, Some(6));
2375    /// ```
2376    ///
2377    /// Short-circuiting:
2378    ///
2379    /// ```
2380    /// let a = [10, 20, 30, 100, 40, 50];
2381    /// let mut iter = a.into_iter();
2382    ///
2383    /// // This sum overflows when adding the 100 element
2384    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2385    /// assert_eq!(sum, None);
2386    ///
2387    /// // Because it short-circuited, the remaining elements are still
2388    /// // available through the iterator.
2389    /// assert_eq!(iter.len(), 2);
2390    /// assert_eq!(iter.next(), Some(40));
2391    /// ```
2392    ///
2393    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2394    /// a similar idea:
2395    ///
2396    /// ```
2397    /// use std::ops::ControlFlow;
2398    ///
2399    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2400    ///     if let Some(next) = prev.checked_add(x) {
2401    ///         ControlFlow::Continue(next)
2402    ///     } else {
2403    ///         ControlFlow::Break(prev)
2404    ///     }
2405    /// });
2406    /// assert_eq!(triangular, ControlFlow::Break(120));
2407    ///
2408    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2409    ///     if let Some(next) = prev.checked_add(x) {
2410    ///         ControlFlow::Continue(next)
2411    ///     } else {
2412    ///         ControlFlow::Break(prev)
2413    ///     }
2414    /// });
2415    /// assert_eq!(triangular, ControlFlow::Continue(435));
2416    /// ```
2417    #[inline]
2418    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2419    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2420    where
2421        Self: Sized,
2422        F: FnMut(B, Self::Item) -> R,
2423        R: Try<Output = B>,
2424    {
2425        let mut accum = init;
2426        while let Some(x) = self.next() {
2427            accum = f(accum, x)?;
2428        }
2429        try { accum }
2430    }
2431
2432    /// An iterator method that applies a fallible function to each item in the
2433    /// iterator, stopping at the first error and returning that error.
2434    ///
2435    /// This can also be thought of as the fallible form of [`for_each()`]
2436    /// or as the stateless version of [`try_fold()`].
2437    ///
2438    /// [`for_each()`]: Iterator::for_each
2439    /// [`try_fold()`]: Iterator::try_fold
2440    ///
2441    /// # Examples
2442    ///
2443    /// ```
2444    /// use std::fs::rename;
2445    /// use std::io::{stdout, Write};
2446    /// use std::path::Path;
2447    ///
2448    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2449    ///
2450    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2451    /// assert!(res.is_ok());
2452    ///
2453    /// let mut it = data.iter().cloned();
2454    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2455    /// assert!(res.is_err());
2456    /// // It short-circuited, so the remaining items are still in the iterator:
2457    /// assert_eq!(it.next(), Some("stale_bread.json"));
2458    /// ```
2459    ///
2460    /// The [`ControlFlow`] type can be used with this method for the situations
2461    /// in which you'd use `break` and `continue` in a normal loop:
2462    ///
2463    /// ```
2464    /// use std::ops::ControlFlow;
2465    ///
2466    /// let r = (2..100).try_for_each(|x| {
2467    ///     if 323 % x == 0 {
2468    ///         return ControlFlow::Break(x)
2469    ///     }
2470    ///
2471    ///     ControlFlow::Continue(())
2472    /// });
2473    /// assert_eq!(r, ControlFlow::Break(17));
2474    /// ```
2475    #[inline]
2476    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2477    fn try_for_each<F, R>(&mut self, f: F) -> R
2478    where
2479        Self: Sized,
2480        F: FnMut(Self::Item) -> R,
2481        R: Try<Output = ()>,
2482    {
2483        #[inline]
2484        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2485            move |(), x| f(x)
2486        }
2487
2488        self.try_fold((), call(f))
2489    }
2490
2491    /// Folds every element into an accumulator by applying an operation,
2492    /// returning the final result.
2493    ///
2494    /// `fold()` takes two arguments: an initial value, and a closure with two
2495    /// arguments: an 'accumulator', and an element. The closure returns the value that
2496    /// the accumulator should have for the next iteration.
2497    ///
2498    /// The initial value is the value the accumulator will have on the first
2499    /// call.
2500    ///
2501    /// After applying this closure to every element of the iterator, `fold()`
2502    /// returns the accumulator.
2503    ///
2504    /// This operation is sometimes called 'reduce' or 'inject'.
2505    ///
2506    /// Folding is useful whenever you have a collection of something, and want
2507    /// to produce a single value from it.
2508    ///
2509    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2510    /// might not terminate for infinite iterators, even on traits for which a
2511    /// result is determinable in finite time.
2512    ///
2513    /// Note: [`reduce()`] can be used to use the first element as the initial
2514    /// value, if the accumulator type and item type is the same.
2515    ///
2516    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2517    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2518    /// operators like `-` the order will affect the final result.
2519    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2520    ///
2521    /// # Note to Implementors
2522    ///
2523    /// Several of the other (forward) methods have default implementations in
2524    /// terms of this one, so try to implement this explicitly if it can
2525    /// do something better than the default `for` loop implementation.
2526    ///
2527    /// In particular, try to have this call `fold()` on the internal parts
2528    /// from which this iterator is composed.
2529    ///
2530    /// # Examples
2531    ///
2532    /// Basic usage:
2533    ///
2534    /// ```
2535    /// let a = [1, 2, 3];
2536    ///
2537    /// // the sum of all of the elements of the array
2538    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2539    ///
2540    /// assert_eq!(sum, 6);
2541    /// ```
2542    ///
2543    /// Let's walk through each step of the iteration here:
2544    ///
2545    /// | element | acc | x | result |
2546    /// |---------|-----|---|--------|
2547    /// |         | 0   |   |        |
2548    /// | 1       | 0   | 1 | 1      |
2549    /// | 2       | 1   | 2 | 3      |
2550    /// | 3       | 3   | 3 | 6      |
2551    ///
2552    /// And so, our final result, `6`.
2553    ///
2554    /// This example demonstrates the left-associative nature of `fold()`:
2555    /// it builds a string, starting with an initial value
2556    /// and continuing with each element from the front until the back:
2557    ///
2558    /// ```
2559    /// let numbers = [1, 2, 3, 4, 5];
2560    ///
2561    /// let zero = "0".to_string();
2562    ///
2563    /// let result = numbers.iter().fold(zero, |acc, &x| {
2564    ///     format!("({acc} + {x})")
2565    /// });
2566    ///
2567    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2568    /// ```
2569    /// It's common for people who haven't used iterators a lot to
2570    /// use a `for` loop with a list of things to build up a result. Those
2571    /// can be turned into `fold()`s:
2572    ///
2573    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2574    ///
2575    /// ```
2576    /// let numbers = [1, 2, 3, 4, 5];
2577    ///
2578    /// let mut result = 0;
2579    ///
2580    /// // for loop:
2581    /// for i in &numbers {
2582    ///     result = result + i;
2583    /// }
2584    ///
2585    /// // fold:
2586    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2587    ///
2588    /// // they're the same
2589    /// assert_eq!(result, result2);
2590    /// ```
2591    ///
2592    /// [`reduce()`]: Iterator::reduce
2593    #[doc(alias = "inject", alias = "foldl")]
2594    #[inline]
2595    #[stable(feature = "rust1", since = "1.0.0")]
2596    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2597    where
2598        Self: Sized,
2599        F: FnMut(B, Self::Item) -> B,
2600    {
2601        let mut accum = init;
2602        while let Some(x) = self.next() {
2603            accum = f(accum, x);
2604        }
2605        accum
2606    }
2607
2608    /// Reduces the elements to a single one, by repeatedly applying a reducing
2609    /// operation.
2610    ///
2611    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2612    /// result of the reduction.
2613    ///
2614    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2615    /// For iterators with at least one element, this is the same as [`fold()`]
2616    /// with the first element of the iterator as the initial accumulator value, folding
2617    /// every subsequent element into it.
2618    ///
2619    /// [`fold()`]: Iterator::fold
2620    ///
2621    /// # Example
2622    ///
2623    /// ```
2624    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2625    /// assert_eq!(reduced, 45);
2626    ///
2627    /// // Which is equivalent to doing it with `fold`:
2628    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2629    /// assert_eq!(reduced, folded);
2630    /// ```
2631    #[inline]
2632    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2633    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2634    where
2635        Self: Sized,
2636        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2637    {
2638        let first = self.next()?;
2639        Some(self.fold(first, f))
2640    }
2641
2642    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2643    /// closure returns a failure, the failure is propagated back to the caller immediately.
2644    ///
2645    /// The return type of this method depends on the return type of the closure. If the closure
2646    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2647    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2648    /// `Option<Option<Self::Item>>`.
2649    ///
2650    /// When called on an empty iterator, this function will return either `Some(None)` or
2651    /// `Ok(None)` depending on the type of the provided closure.
2652    ///
2653    /// For iterators with at least one element, this is essentially the same as calling
2654    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2655    ///
2656    /// [`try_fold()`]: Iterator::try_fold
2657    ///
2658    /// # Examples
2659    ///
2660    /// Safely calculate the sum of a series of numbers:
2661    ///
2662    /// ```
2663    /// #![feature(iterator_try_reduce)]
2664    ///
2665    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2666    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2667    /// assert_eq!(sum, Some(Some(58)));
2668    /// ```
2669    ///
2670    /// Determine when a reduction short circuited:
2671    ///
2672    /// ```
2673    /// #![feature(iterator_try_reduce)]
2674    ///
2675    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2676    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2677    /// assert_eq!(sum, None);
2678    /// ```
2679    ///
2680    /// Determine when a reduction was not performed because there are no elements:
2681    ///
2682    /// ```
2683    /// #![feature(iterator_try_reduce)]
2684    ///
2685    /// let numbers: Vec<usize> = Vec::new();
2686    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2687    /// assert_eq!(sum, Some(None));
2688    /// ```
2689    ///
2690    /// Use a [`Result`] instead of an [`Option`]:
2691    ///
2692    /// ```
2693    /// #![feature(iterator_try_reduce)]
2694    ///
2695    /// let numbers = vec!["1", "2", "3", "4", "5"];
2696    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2697    ///     numbers.into_iter().try_reduce(|x, y| {
2698    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2699    ///     });
2700    /// assert_eq!(max, Ok(Some("5")));
2701    /// ```
2702    #[inline]
2703    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2704    fn try_reduce<R>(
2705        &mut self,
2706        f: impl FnMut(Self::Item, Self::Item) -> R,
2707    ) -> ChangeOutputType<R, Option<R::Output>>
2708    where
2709        Self: Sized,
2710        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2711    {
2712        let first = match self.next() {
2713            Some(i) => i,
2714            None => return Try::from_output(None),
2715        };
2716
2717        match self.try_fold(first, f).branch() {
2718            ControlFlow::Break(r) => FromResidual::from_residual(r),
2719            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2720        }
2721    }
2722
2723    /// Tests if every element of the iterator matches a predicate.
2724    ///
2725    /// `all()` takes a closure that returns `true` or `false`. It applies
2726    /// this closure to each element of the iterator, and if they all return
2727    /// `true`, then so does `all()`. If any of them return `false`, it
2728    /// returns `false`.
2729    ///
2730    /// `all()` is short-circuiting; in other words, it will stop processing
2731    /// as soon as it finds a `false`, given that no matter what else happens,
2732    /// the result will also be `false`.
2733    ///
2734    /// An empty iterator returns `true`.
2735    ///
2736    /// # Examples
2737    ///
2738    /// Basic usage:
2739    ///
2740    /// ```
2741    /// let a = [1, 2, 3];
2742    ///
2743    /// assert!(a.into_iter().all(|x| x > 0));
2744    ///
2745    /// assert!(!a.into_iter().all(|x| x > 2));
2746    /// ```
2747    ///
2748    /// Stopping at the first `false`:
2749    ///
2750    /// ```
2751    /// let a = [1, 2, 3];
2752    ///
2753    /// let mut iter = a.into_iter();
2754    ///
2755    /// assert!(!iter.all(|x| x != 2));
2756    ///
2757    /// // we can still use `iter`, as there are more elements.
2758    /// assert_eq!(iter.next(), Some(3));
2759    /// ```
2760    #[inline]
2761    #[stable(feature = "rust1", since = "1.0.0")]
2762    fn all<F>(&mut self, f: F) -> bool
2763    where
2764        Self: Sized,
2765        F: FnMut(Self::Item) -> bool,
2766    {
2767        #[inline]
2768        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2769            move |(), x| {
2770                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2771            }
2772        }
2773        self.try_fold((), check(f)) == ControlFlow::Continue(())
2774    }
2775
2776    /// Tests if any element of the iterator matches a predicate.
2777    ///
2778    /// `any()` takes a closure that returns `true` or `false`. It applies
2779    /// this closure to each element of the iterator, and if any of them return
2780    /// `true`, then so does `any()`. If they all return `false`, it
2781    /// returns `false`.
2782    ///
2783    /// `any()` is short-circuiting; in other words, it will stop processing
2784    /// as soon as it finds a `true`, given that no matter what else happens,
2785    /// the result will also be `true`.
2786    ///
2787    /// An empty iterator returns `false`.
2788    ///
2789    /// # Examples
2790    ///
2791    /// Basic usage:
2792    ///
2793    /// ```
2794    /// let a = [1, 2, 3];
2795    ///
2796    /// assert!(a.into_iter().any(|x| x > 0));
2797    ///
2798    /// assert!(!a.into_iter().any(|x| x > 5));
2799    /// ```
2800    ///
2801    /// Stopping at the first `true`:
2802    ///
2803    /// ```
2804    /// let a = [1, 2, 3];
2805    ///
2806    /// let mut iter = a.into_iter();
2807    ///
2808    /// assert!(iter.any(|x| x != 2));
2809    ///
2810    /// // we can still use `iter`, as there are more elements.
2811    /// assert_eq!(iter.next(), Some(2));
2812    /// ```
2813    #[inline]
2814    #[stable(feature = "rust1", since = "1.0.0")]
2815    fn any<F>(&mut self, f: F) -> bool
2816    where
2817        Self: Sized,
2818        F: FnMut(Self::Item) -> bool,
2819    {
2820        #[inline]
2821        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2822            move |(), x| {
2823                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2824            }
2825        }
2826
2827        self.try_fold((), check(f)) == ControlFlow::Break(())
2828    }
2829
2830    /// Searches for an element of an iterator that satisfies a predicate.
2831    ///
2832    /// `find()` takes a closure that returns `true` or `false`. It applies
2833    /// this closure to each element of the iterator, and if any of them return
2834    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2835    /// `false`, it returns [`None`].
2836    ///
2837    /// `find()` is short-circuiting; in other words, it will stop processing
2838    /// as soon as the closure returns `true`.
2839    ///
2840    /// Because `find()` takes a reference, and many iterators iterate over
2841    /// references, this leads to a possibly confusing situation where the
2842    /// argument is a double reference. You can see this effect in the
2843    /// examples below, with `&&x`.
2844    ///
2845    /// If you need the index of the element, see [`position()`].
2846    ///
2847    /// [`Some(element)`]: Some
2848    /// [`position()`]: Iterator::position
2849    ///
2850    /// # Examples
2851    ///
2852    /// Basic usage:
2853    ///
2854    /// ```
2855    /// let a = [1, 2, 3];
2856    ///
2857    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2858    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2859    /// ```
2860    ///
2861    /// Stopping at the first `true`:
2862    ///
2863    /// ```
2864    /// let a = [1, 2, 3];
2865    ///
2866    /// let mut iter = a.into_iter();
2867    ///
2868    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2869    ///
2870    /// // we can still use `iter`, as there are more elements.
2871    /// assert_eq!(iter.next(), Some(3));
2872    /// ```
2873    ///
2874    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2875    #[inline]
2876    #[stable(feature = "rust1", since = "1.0.0")]
2877    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2878    where
2879        Self: Sized,
2880        P: FnMut(&Self::Item) -> bool,
2881    {
2882        #[inline]
2883        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2884            move |(), x| {
2885                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2886            }
2887        }
2888
2889        self.try_fold((), check(predicate)).break_value()
2890    }
2891
2892    /// Applies function to the elements of iterator and returns
2893    /// the first non-none result.
2894    ///
2895    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2896    ///
2897    /// # Examples
2898    ///
2899    /// ```
2900    /// let a = ["lol", "NaN", "2", "5"];
2901    ///
2902    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2903    ///
2904    /// assert_eq!(first_number, Some(2));
2905    /// ```
2906    #[inline]
2907    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2908    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2909    where
2910        Self: Sized,
2911        F: FnMut(Self::Item) -> Option<B>,
2912    {
2913        #[inline]
2914        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2915            move |(), x| match f(x) {
2916                Some(x) => ControlFlow::Break(x),
2917                None => ControlFlow::Continue(()),
2918            }
2919        }
2920
2921        self.try_fold((), check(f)).break_value()
2922    }
2923
2924    /// Applies function to the elements of iterator and returns
2925    /// the first true result or the first error.
2926    ///
2927    /// The return type of this method depends on the return type of the closure.
2928    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2929    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2930    ///
2931    /// # Examples
2932    ///
2933    /// ```
2934    /// #![feature(try_find)]
2935    ///
2936    /// let a = ["1", "2", "lol", "NaN", "5"];
2937    ///
2938    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2939    ///     Ok(s.parse::<i32>()? == search)
2940    /// };
2941    ///
2942    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2943    /// assert_eq!(result, Ok(Some("2")));
2944    ///
2945    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2946    /// assert!(result.is_err());
2947    /// ```
2948    ///
2949    /// This also supports other types which implement [`Try`], not just [`Result`].
2950    ///
2951    /// ```
2952    /// #![feature(try_find)]
2953    ///
2954    /// use std::num::NonZero;
2955    ///
2956    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2957    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2958    /// assert_eq!(result, Some(Some(4)));
2959    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2960    /// assert_eq!(result, Some(None));
2961    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2962    /// assert_eq!(result, None);
2963    /// ```
2964    #[inline]
2965    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
2966    fn try_find<R>(
2967        &mut self,
2968        f: impl FnMut(&Self::Item) -> R,
2969    ) -> ChangeOutputType<R, Option<Self::Item>>
2970    where
2971        Self: Sized,
2972        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
2973    {
2974        #[inline]
2975        fn check<I, V, R>(
2976            mut f: impl FnMut(&I) -> V,
2977        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
2978        where
2979            V: Try<Output = bool, Residual = R>,
2980            R: Residual<Option<I>>,
2981        {
2982            move |(), x| match f(&x).branch() {
2983                ControlFlow::Continue(false) => ControlFlow::Continue(()),
2984                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
2985                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
2986            }
2987        }
2988
2989        match self.try_fold((), check(f)) {
2990            ControlFlow::Break(x) => x,
2991            ControlFlow::Continue(()) => Try::from_output(None),
2992        }
2993    }
2994
2995    /// Searches for an element in an iterator, returning its index.
2996    ///
2997    /// `position()` takes a closure that returns `true` or `false`. It applies
2998    /// this closure to each element of the iterator, and if one of them
2999    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3000    /// them return `false`, it returns [`None`].
3001    ///
3002    /// `position()` is short-circuiting; in other words, it will stop
3003    /// processing as soon as it finds a `true`.
3004    ///
3005    /// # Overflow Behavior
3006    ///
3007    /// The method does no guarding against overflows, so if there are more
3008    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3009    /// result or panics. If overflow checks are enabled, a panic is
3010    /// guaranteed.
3011    ///
3012    /// # Panics
3013    ///
3014    /// This function might panic if the iterator has more than `usize::MAX`
3015    /// non-matching elements.
3016    ///
3017    /// [`Some(index)`]: Some
3018    ///
3019    /// # Examples
3020    ///
3021    /// Basic usage:
3022    ///
3023    /// ```
3024    /// let a = [1, 2, 3];
3025    ///
3026    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3027    ///
3028    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3029    /// ```
3030    ///
3031    /// Stopping at the first `true`:
3032    ///
3033    /// ```
3034    /// let a = [1, 2, 3, 4];
3035    ///
3036    /// let mut iter = a.into_iter();
3037    ///
3038    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3039    ///
3040    /// // we can still use `iter`, as there are more elements.
3041    /// assert_eq!(iter.next(), Some(3));
3042    ///
3043    /// // The returned index depends on iterator state
3044    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3045    ///
3046    /// ```
3047    #[inline]
3048    #[stable(feature = "rust1", since = "1.0.0")]
3049    fn position<P>(&mut self, predicate: P) -> Option<usize>
3050    where
3051        Self: Sized,
3052        P: FnMut(Self::Item) -> bool,
3053    {
3054        #[inline]
3055        fn check<'a, T>(
3056            mut predicate: impl FnMut(T) -> bool + 'a,
3057            acc: &'a mut usize,
3058        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3059            #[rustc_inherit_overflow_checks]
3060            move |_, x| {
3061                if predicate(x) {
3062                    ControlFlow::Break(*acc)
3063                } else {
3064                    *acc += 1;
3065                    ControlFlow::Continue(())
3066                }
3067            }
3068        }
3069
3070        let mut acc = 0;
3071        self.try_fold((), check(predicate, &mut acc)).break_value()
3072    }
3073
3074    /// Searches for an element in an iterator from the right, returning its
3075    /// index.
3076    ///
3077    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3078    /// this closure to each element of the iterator, starting from the end,
3079    /// and if one of them returns `true`, then `rposition()` returns
3080    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3081    ///
3082    /// `rposition()` is short-circuiting; in other words, it will stop
3083    /// processing as soon as it finds a `true`.
3084    ///
3085    /// [`Some(index)`]: Some
3086    ///
3087    /// # Examples
3088    ///
3089    /// Basic usage:
3090    ///
3091    /// ```
3092    /// let a = [1, 2, 3];
3093    ///
3094    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3095    ///
3096    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3097    /// ```
3098    ///
3099    /// Stopping at the first `true`:
3100    ///
3101    /// ```
3102    /// let a = [-1, 2, 3, 4];
3103    ///
3104    /// let mut iter = a.into_iter();
3105    ///
3106    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3107    ///
3108    /// // we can still use `iter`, as there are more elements.
3109    /// assert_eq!(iter.next(), Some(-1));
3110    /// assert_eq!(iter.next_back(), Some(3));
3111    /// ```
3112    #[inline]
3113    #[stable(feature = "rust1", since = "1.0.0")]
3114    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3115    where
3116        P: FnMut(Self::Item) -> bool,
3117        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3118    {
3119        // No need for an overflow check here, because `ExactSizeIterator`
3120        // implies that the number of elements fits into a `usize`.
3121        #[inline]
3122        fn check<T>(
3123            mut predicate: impl FnMut(T) -> bool,
3124        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3125            move |i, x| {
3126                let i = i - 1;
3127                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3128            }
3129        }
3130
3131        let n = self.len();
3132        self.try_rfold(n, check(predicate)).break_value()
3133    }
3134
3135    /// Returns the maximum element of an iterator.
3136    ///
3137    /// If several elements are equally maximum, the last element is
3138    /// returned. If the iterator is empty, [`None`] is returned.
3139    ///
3140    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3141    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3142    /// ```
3143    /// assert_eq!(
3144    ///     [2.4, f32::NAN, 1.3]
3145    ///         .into_iter()
3146    ///         .reduce(f32::max)
3147    ///         .unwrap_or(0.),
3148    ///     2.4
3149    /// );
3150    /// ```
3151    ///
3152    /// # Examples
3153    ///
3154    /// ```
3155    /// let a = [1, 2, 3];
3156    /// let b: [u32; 0] = [];
3157    ///
3158    /// assert_eq!(a.into_iter().max(), Some(3));
3159    /// assert_eq!(b.into_iter().max(), None);
3160    /// ```
3161    #[inline]
3162    #[stable(feature = "rust1", since = "1.0.0")]
3163    fn max(self) -> Option<Self::Item>
3164    where
3165        Self: Sized,
3166        Self::Item: Ord,
3167    {
3168        self.max_by(Ord::cmp)
3169    }
3170
3171    /// Returns the minimum element of an iterator.
3172    ///
3173    /// If several elements are equally minimum, the first element is returned.
3174    /// If the iterator is empty, [`None`] is returned.
3175    ///
3176    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3177    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3178    /// ```
3179    /// assert_eq!(
3180    ///     [2.4, f32::NAN, 1.3]
3181    ///         .into_iter()
3182    ///         .reduce(f32::min)
3183    ///         .unwrap_or(0.),
3184    ///     1.3
3185    /// );
3186    /// ```
3187    ///
3188    /// # Examples
3189    ///
3190    /// ```
3191    /// let a = [1, 2, 3];
3192    /// let b: [u32; 0] = [];
3193    ///
3194    /// assert_eq!(a.into_iter().min(), Some(1));
3195    /// assert_eq!(b.into_iter().min(), None);
3196    /// ```
3197    #[inline]
3198    #[stable(feature = "rust1", since = "1.0.0")]
3199    fn min(self) -> Option<Self::Item>
3200    where
3201        Self: Sized,
3202        Self::Item: Ord,
3203    {
3204        self.min_by(Ord::cmp)
3205    }
3206
3207    /// Returns the element that gives the maximum value from the
3208    /// specified function.
3209    ///
3210    /// If several elements are equally maximum, the last element is
3211    /// returned. If the iterator is empty, [`None`] is returned.
3212    ///
3213    /// # Examples
3214    ///
3215    /// ```
3216    /// let a = [-3_i32, 0, 1, 5, -10];
3217    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3218    /// ```
3219    #[inline]
3220    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3221    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3222    where
3223        Self: Sized,
3224        F: FnMut(&Self::Item) -> B,
3225    {
3226        #[inline]
3227        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3228            move |x| (f(&x), x)
3229        }
3230
3231        #[inline]
3232        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3233            x_p.cmp(y_p)
3234        }
3235
3236        let (_, x) = self.map(key(f)).max_by(compare)?;
3237        Some(x)
3238    }
3239
3240    /// Returns the element that gives the maximum value with respect to the
3241    /// specified comparison function.
3242    ///
3243    /// If several elements are equally maximum, the last element is
3244    /// returned. If the iterator is empty, [`None`] is returned.
3245    ///
3246    /// # Examples
3247    ///
3248    /// ```
3249    /// let a = [-3_i32, 0, 1, 5, -10];
3250    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3251    /// ```
3252    #[inline]
3253    #[stable(feature = "iter_max_by", since = "1.15.0")]
3254    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3255    where
3256        Self: Sized,
3257        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3258    {
3259        #[inline]
3260        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3261            move |x, y| cmp::max_by(x, y, &mut compare)
3262        }
3263
3264        self.reduce(fold(compare))
3265    }
3266
3267    /// Returns the element that gives the minimum value from the
3268    /// specified function.
3269    ///
3270    /// If several elements are equally minimum, the first element is
3271    /// returned. If the iterator is empty, [`None`] is returned.
3272    ///
3273    /// # Examples
3274    ///
3275    /// ```
3276    /// let a = [-3_i32, 0, 1, 5, -10];
3277    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3278    /// ```
3279    #[inline]
3280    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3281    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3282    where
3283        Self: Sized,
3284        F: FnMut(&Self::Item) -> B,
3285    {
3286        #[inline]
3287        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3288            move |x| (f(&x), x)
3289        }
3290
3291        #[inline]
3292        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3293            x_p.cmp(y_p)
3294        }
3295
3296        let (_, x) = self.map(key(f)).min_by(compare)?;
3297        Some(x)
3298    }
3299
3300    /// Returns the element that gives the minimum value with respect to the
3301    /// specified comparison function.
3302    ///
3303    /// If several elements are equally minimum, the first element is
3304    /// returned. If the iterator is empty, [`None`] is returned.
3305    ///
3306    /// # Examples
3307    ///
3308    /// ```
3309    /// let a = [-3_i32, 0, 1, 5, -10];
3310    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3311    /// ```
3312    #[inline]
3313    #[stable(feature = "iter_min_by", since = "1.15.0")]
3314    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3315    where
3316        Self: Sized,
3317        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3318    {
3319        #[inline]
3320        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3321            move |x, y| cmp::min_by(x, y, &mut compare)
3322        }
3323
3324        self.reduce(fold(compare))
3325    }
3326
3327    /// Reverses an iterator's direction.
3328    ///
3329    /// Usually, iterators iterate from left to right. After using `rev()`,
3330    /// an iterator will instead iterate from right to left.
3331    ///
3332    /// This is only possible if the iterator has an end, so `rev()` only
3333    /// works on [`DoubleEndedIterator`]s.
3334    ///
3335    /// # Examples
3336    ///
3337    /// ```
3338    /// let a = [1, 2, 3];
3339    ///
3340    /// let mut iter = a.into_iter().rev();
3341    ///
3342    /// assert_eq!(iter.next(), Some(3));
3343    /// assert_eq!(iter.next(), Some(2));
3344    /// assert_eq!(iter.next(), Some(1));
3345    ///
3346    /// assert_eq!(iter.next(), None);
3347    /// ```
3348    #[inline]
3349    #[doc(alias = "reverse")]
3350    #[stable(feature = "rust1", since = "1.0.0")]
3351    fn rev(self) -> Rev<Self>
3352    where
3353        Self: Sized + DoubleEndedIterator,
3354    {
3355        Rev::new(self)
3356    }
3357
3358    /// Converts an iterator of pairs into a pair of containers.
3359    ///
3360    /// `unzip()` consumes an entire iterator of pairs, producing two
3361    /// collections: one from the left elements of the pairs, and one
3362    /// from the right elements.
3363    ///
3364    /// This function is, in some sense, the opposite of [`zip`].
3365    ///
3366    /// [`zip`]: Iterator::zip
3367    ///
3368    /// # Examples
3369    ///
3370    /// ```
3371    /// let a = [(1, 2), (3, 4), (5, 6)];
3372    ///
3373    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3374    ///
3375    /// assert_eq!(left, [1, 3, 5]);
3376    /// assert_eq!(right, [2, 4, 6]);
3377    ///
3378    /// // you can also unzip multiple nested tuples at once
3379    /// let a = [(1, (2, 3)), (4, (5, 6))];
3380    ///
3381    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3382    /// assert_eq!(x, [1, 4]);
3383    /// assert_eq!(y, [2, 5]);
3384    /// assert_eq!(z, [3, 6]);
3385    /// ```
3386    #[stable(feature = "rust1", since = "1.0.0")]
3387    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3388    where
3389        FromA: Default + Extend<A>,
3390        FromB: Default + Extend<B>,
3391        Self: Sized + Iterator<Item = (A, B)>,
3392    {
3393        let mut unzipped: (FromA, FromB) = Default::default();
3394        unzipped.extend(self);
3395        unzipped
3396    }
3397
3398    /// Creates an iterator which copies all of its elements.
3399    ///
3400    /// This is useful when you have an iterator over `&T`, but you need an
3401    /// iterator over `T`.
3402    ///
3403    /// # Examples
3404    ///
3405    /// ```
3406    /// let a = [1, 2, 3];
3407    ///
3408    /// let v_copied: Vec<_> = a.iter().copied().collect();
3409    ///
3410    /// // copied is the same as .map(|&x| x)
3411    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3412    ///
3413    /// assert_eq!(v_copied, [1, 2, 3]);
3414    /// assert_eq!(v_map, [1, 2, 3]);
3415    /// ```
3416    #[stable(feature = "iter_copied", since = "1.36.0")]
3417    #[rustc_diagnostic_item = "iter_copied"]
3418    fn copied<'a, T>(self) -> Copied<Self>
3419    where
3420        T: Copy + 'a,
3421        Self: Sized + Iterator<Item = &'a T>,
3422    {
3423        Copied::new(self)
3424    }
3425
3426    /// Creates an iterator which [`clone`]s all of its elements.
3427    ///
3428    /// This is useful when you have an iterator over `&T`, but you need an
3429    /// iterator over `T`.
3430    ///
3431    /// There is no guarantee whatsoever about the `clone` method actually
3432    /// being called *or* optimized away. So code should not depend on
3433    /// either.
3434    ///
3435    /// [`clone`]: Clone::clone
3436    ///
3437    /// # Examples
3438    ///
3439    /// Basic usage:
3440    ///
3441    /// ```
3442    /// let a = [1, 2, 3];
3443    ///
3444    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3445    ///
3446    /// // cloned is the same as .map(|&x| x), for integers
3447    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3448    ///
3449    /// assert_eq!(v_cloned, [1, 2, 3]);
3450    /// assert_eq!(v_map, [1, 2, 3]);
3451    /// ```
3452    ///
3453    /// To get the best performance, try to clone late:
3454    ///
3455    /// ```
3456    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3457    /// // don't do this:
3458    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3459    /// assert_eq!(&[vec![23]], &slower[..]);
3460    /// // instead call `cloned` late
3461    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3462    /// assert_eq!(&[vec![23]], &faster[..]);
3463    /// ```
3464    #[stable(feature = "rust1", since = "1.0.0")]
3465    #[rustc_diagnostic_item = "iter_cloned"]
3466    fn cloned<'a, T>(self) -> Cloned<Self>
3467    where
3468        T: Clone + 'a,
3469        Self: Sized + Iterator<Item = &'a T>,
3470    {
3471        Cloned::new(self)
3472    }
3473
3474    /// Repeats an iterator endlessly.
3475    ///
3476    /// Instead of stopping at [`None`], the iterator will instead start again,
3477    /// from the beginning. After iterating again, it will start at the
3478    /// beginning again. And again. And again. Forever. Note that in case the
3479    /// original iterator is empty, the resulting iterator will also be empty.
3480    ///
3481    /// # Examples
3482    ///
3483    /// ```
3484    /// let a = [1, 2, 3];
3485    ///
3486    /// let mut iter = a.into_iter().cycle();
3487    ///
3488    /// loop {
3489    ///     assert_eq!(iter.next(), Some(1));
3490    ///     assert_eq!(iter.next(), Some(2));
3491    ///     assert_eq!(iter.next(), Some(3));
3492    /// #   break;
3493    /// }
3494    /// ```
3495    #[stable(feature = "rust1", since = "1.0.0")]
3496    #[inline]
3497    fn cycle(self) -> Cycle<Self>
3498    where
3499        Self: Sized + Clone,
3500    {
3501        Cycle::new(self)
3502    }
3503
3504    /// Returns an iterator over `N` elements of the iterator at a time.
3505    ///
3506    /// The chunks do not overlap. If `N` does not divide the length of the
3507    /// iterator, then the last up to `N-1` elements will be omitted and can be
3508    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3509    /// function of the iterator.
3510    ///
3511    /// # Panics
3512    ///
3513    /// Panics if `N` is zero.
3514    ///
3515    /// # Examples
3516    ///
3517    /// Basic usage:
3518    ///
3519    /// ```
3520    /// #![feature(iter_array_chunks)]
3521    ///
3522    /// let mut iter = "lorem".chars().array_chunks();
3523    /// assert_eq!(iter.next(), Some(['l', 'o']));
3524    /// assert_eq!(iter.next(), Some(['r', 'e']));
3525    /// assert_eq!(iter.next(), None);
3526    /// assert_eq!(iter.into_remainder().unwrap().as_slice(), &['m']);
3527    /// ```
3528    ///
3529    /// ```
3530    /// #![feature(iter_array_chunks)]
3531    ///
3532    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3533    /// //          ^-----^  ^------^
3534    /// for [x, y, z] in data.iter().array_chunks() {
3535    ///     assert_eq!(x + y + z, 4);
3536    /// }
3537    /// ```
3538    #[track_caller]
3539    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3540    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3541    where
3542        Self: Sized,
3543    {
3544        ArrayChunks::new(self)
3545    }
3546
3547    /// Sums the elements of an iterator.
3548    ///
3549    /// Takes each element, adds them together, and returns the result.
3550    ///
3551    /// An empty iterator returns the *additive identity* ("zero") of the type,
3552    /// which is `0` for integers and `-0.0` for floats.
3553    ///
3554    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3555    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3556    ///
3557    /// # Panics
3558    ///
3559    /// When calling `sum()` and a primitive integer type is being returned, this
3560    /// method will panic if the computation overflows and overflow checks are
3561    /// enabled.
3562    ///
3563    /// # Examples
3564    ///
3565    /// ```
3566    /// let a = [1, 2, 3];
3567    /// let sum: i32 = a.iter().sum();
3568    ///
3569    /// assert_eq!(sum, 6);
3570    ///
3571    /// let b: Vec<f32> = vec![];
3572    /// let sum: f32 = b.iter().sum();
3573    /// assert_eq!(sum, -0.0_f32);
3574    /// ```
3575    #[stable(feature = "iter_arith", since = "1.11.0")]
3576    fn sum<S>(self) -> S
3577    where
3578        Self: Sized,
3579        S: Sum<Self::Item>,
3580    {
3581        Sum::sum(self)
3582    }
3583
3584    /// Iterates over the entire iterator, multiplying all the elements
3585    ///
3586    /// An empty iterator returns the one value of the type.
3587    ///
3588    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3589    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3590    ///
3591    /// # Panics
3592    ///
3593    /// When calling `product()` and a primitive integer type is being returned,
3594    /// method will panic if the computation overflows and overflow checks are
3595    /// enabled.
3596    ///
3597    /// # Examples
3598    ///
3599    /// ```
3600    /// fn factorial(n: u32) -> u32 {
3601    ///     (1..=n).product()
3602    /// }
3603    /// assert_eq!(factorial(0), 1);
3604    /// assert_eq!(factorial(1), 1);
3605    /// assert_eq!(factorial(5), 120);
3606    /// ```
3607    #[stable(feature = "iter_arith", since = "1.11.0")]
3608    fn product<P>(self) -> P
3609    where
3610        Self: Sized,
3611        P: Product<Self::Item>,
3612    {
3613        Product::product(self)
3614    }
3615
3616    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3617    /// of another.
3618    ///
3619    /// # Examples
3620    ///
3621    /// ```
3622    /// use std::cmp::Ordering;
3623    ///
3624    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3625    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3626    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3627    /// ```
3628    #[stable(feature = "iter_order", since = "1.5.0")]
3629    fn cmp<I>(self, other: I) -> Ordering
3630    where
3631        I: IntoIterator<Item = Self::Item>,
3632        Self::Item: Ord,
3633        Self: Sized,
3634    {
3635        self.cmp_by(other, |x, y| x.cmp(&y))
3636    }
3637
3638    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3639    /// of another with respect to the specified comparison function.
3640    ///
3641    /// # Examples
3642    ///
3643    /// ```
3644    /// #![feature(iter_order_by)]
3645    ///
3646    /// use std::cmp::Ordering;
3647    ///
3648    /// let xs = [1, 2, 3, 4];
3649    /// let ys = [1, 4, 9, 16];
3650    ///
3651    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3652    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3653    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3654    /// ```
3655    #[unstable(feature = "iter_order_by", issue = "64295")]
3656    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3657    where
3658        Self: Sized,
3659        I: IntoIterator,
3660        F: FnMut(Self::Item, I::Item) -> Ordering,
3661    {
3662        #[inline]
3663        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3664        where
3665            F: FnMut(X, Y) -> Ordering,
3666        {
3667            move |x, y| match cmp(x, y) {
3668                Ordering::Equal => ControlFlow::Continue(()),
3669                non_eq => ControlFlow::Break(non_eq),
3670            }
3671        }
3672
3673        match iter_compare(self, other.into_iter(), compare(cmp)) {
3674            ControlFlow::Continue(ord) => ord,
3675            ControlFlow::Break(ord) => ord,
3676        }
3677    }
3678
3679    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3680    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3681    /// evaluation, returning a result without comparing the remaining elements.
3682    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3683    ///
3684    /// # Examples
3685    ///
3686    /// ```
3687    /// use std::cmp::Ordering;
3688    ///
3689    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3690    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3691    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3692    /// ```
3693    ///
3694    /// For floating-point numbers, NaN does not have a total order and will result
3695    /// in `None` when compared:
3696    ///
3697    /// ```
3698    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3699    /// ```
3700    ///
3701    /// The results are determined by the order of evaluation.
3702    ///
3703    /// ```
3704    /// use std::cmp::Ordering;
3705    ///
3706    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3707    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3708    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3709    /// ```
3710    ///
3711    #[stable(feature = "iter_order", since = "1.5.0")]
3712    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3713    where
3714        I: IntoIterator,
3715        Self::Item: PartialOrd<I::Item>,
3716        Self: Sized,
3717    {
3718        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3719    }
3720
3721    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3722    /// of another with respect to the specified comparison function.
3723    ///
3724    /// # Examples
3725    ///
3726    /// ```
3727    /// #![feature(iter_order_by)]
3728    ///
3729    /// use std::cmp::Ordering;
3730    ///
3731    /// let xs = [1.0, 2.0, 3.0, 4.0];
3732    /// let ys = [1.0, 4.0, 9.0, 16.0];
3733    ///
3734    /// assert_eq!(
3735    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3736    ///     Some(Ordering::Less)
3737    /// );
3738    /// assert_eq!(
3739    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3740    ///     Some(Ordering::Equal)
3741    /// );
3742    /// assert_eq!(
3743    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3744    ///     Some(Ordering::Greater)
3745    /// );
3746    /// ```
3747    #[unstable(feature = "iter_order_by", issue = "64295")]
3748    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3749    where
3750        Self: Sized,
3751        I: IntoIterator,
3752        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3753    {
3754        #[inline]
3755        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3756        where
3757            F: FnMut(X, Y) -> Option<Ordering>,
3758        {
3759            move |x, y| match partial_cmp(x, y) {
3760                Some(Ordering::Equal) => ControlFlow::Continue(()),
3761                non_eq => ControlFlow::Break(non_eq),
3762            }
3763        }
3764
3765        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3766            ControlFlow::Continue(ord) => Some(ord),
3767            ControlFlow::Break(ord) => ord,
3768        }
3769    }
3770
3771    /// Determines if the elements of this [`Iterator`] are equal to those of
3772    /// another.
3773    ///
3774    /// # Examples
3775    ///
3776    /// ```
3777    /// assert_eq!([1].iter().eq([1].iter()), true);
3778    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3779    /// ```
3780    #[stable(feature = "iter_order", since = "1.5.0")]
3781    fn eq<I>(self, other: I) -> bool
3782    where
3783        I: IntoIterator,
3784        Self::Item: PartialEq<I::Item>,
3785        Self: Sized,
3786    {
3787        self.eq_by(other, |x, y| x == y)
3788    }
3789
3790    /// Determines if the elements of this [`Iterator`] are equal to those of
3791    /// another with respect to the specified equality function.
3792    ///
3793    /// # Examples
3794    ///
3795    /// ```
3796    /// #![feature(iter_order_by)]
3797    ///
3798    /// let xs = [1, 2, 3, 4];
3799    /// let ys = [1, 4, 9, 16];
3800    ///
3801    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3802    /// ```
3803    #[unstable(feature = "iter_order_by", issue = "64295")]
3804    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3805    where
3806        Self: Sized,
3807        I: IntoIterator,
3808        F: FnMut(Self::Item, I::Item) -> bool,
3809    {
3810        #[inline]
3811        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3812        where
3813            F: FnMut(X, Y) -> bool,
3814        {
3815            move |x, y| {
3816                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3817            }
3818        }
3819
3820        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3821    }
3822
3823    /// Determines if the elements of this [`Iterator`] are not equal to those of
3824    /// another.
3825    ///
3826    /// # Examples
3827    ///
3828    /// ```
3829    /// assert_eq!([1].iter().ne([1].iter()), false);
3830    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3831    /// ```
3832    #[stable(feature = "iter_order", since = "1.5.0")]
3833    fn ne<I>(self, other: I) -> bool
3834    where
3835        I: IntoIterator,
3836        Self::Item: PartialEq<I::Item>,
3837        Self: Sized,
3838    {
3839        !self.eq(other)
3840    }
3841
3842    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3843    /// less than those of another.
3844    ///
3845    /// # Examples
3846    ///
3847    /// ```
3848    /// assert_eq!([1].iter().lt([1].iter()), false);
3849    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3850    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3851    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3852    /// ```
3853    #[stable(feature = "iter_order", since = "1.5.0")]
3854    fn lt<I>(self, other: I) -> bool
3855    where
3856        I: IntoIterator,
3857        Self::Item: PartialOrd<I::Item>,
3858        Self: Sized,
3859    {
3860        self.partial_cmp(other) == Some(Ordering::Less)
3861    }
3862
3863    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3864    /// less or equal to those of another.
3865    ///
3866    /// # Examples
3867    ///
3868    /// ```
3869    /// assert_eq!([1].iter().le([1].iter()), true);
3870    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3871    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3872    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3873    /// ```
3874    #[stable(feature = "iter_order", since = "1.5.0")]
3875    fn le<I>(self, other: I) -> bool
3876    where
3877        I: IntoIterator,
3878        Self::Item: PartialOrd<I::Item>,
3879        Self: Sized,
3880    {
3881        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3882    }
3883
3884    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3885    /// greater than those of another.
3886    ///
3887    /// # Examples
3888    ///
3889    /// ```
3890    /// assert_eq!([1].iter().gt([1].iter()), false);
3891    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3892    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3893    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3894    /// ```
3895    #[stable(feature = "iter_order", since = "1.5.0")]
3896    fn gt<I>(self, other: I) -> bool
3897    where
3898        I: IntoIterator,
3899        Self::Item: PartialOrd<I::Item>,
3900        Self: Sized,
3901    {
3902        self.partial_cmp(other) == Some(Ordering::Greater)
3903    }
3904
3905    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3906    /// greater than or equal to those of another.
3907    ///
3908    /// # Examples
3909    ///
3910    /// ```
3911    /// assert_eq!([1].iter().ge([1].iter()), true);
3912    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3913    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3914    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3915    /// ```
3916    #[stable(feature = "iter_order", since = "1.5.0")]
3917    fn ge<I>(self, other: I) -> bool
3918    where
3919        I: IntoIterator,
3920        Self::Item: PartialOrd<I::Item>,
3921        Self: Sized,
3922    {
3923        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3924    }
3925
3926    /// Checks if the elements of this iterator are sorted.
3927    ///
3928    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3929    /// iterator yields exactly zero or one element, `true` is returned.
3930    ///
3931    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3932    /// implies that this function returns `false` if any two consecutive items are not
3933    /// comparable.
3934    ///
3935    /// # Examples
3936    ///
3937    /// ```
3938    /// assert!([1, 2, 2, 9].iter().is_sorted());
3939    /// assert!(![1, 3, 2, 4].iter().is_sorted());
3940    /// assert!([0].iter().is_sorted());
3941    /// assert!(std::iter::empty::<i32>().is_sorted());
3942    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
3943    /// ```
3944    #[inline]
3945    #[stable(feature = "is_sorted", since = "1.82.0")]
3946    fn is_sorted(self) -> bool
3947    where
3948        Self: Sized,
3949        Self::Item: PartialOrd,
3950    {
3951        self.is_sorted_by(|a, b| a <= b)
3952    }
3953
3954    /// Checks if the elements of this iterator are sorted using the given comparator function.
3955    ///
3956    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3957    /// function to determine whether two elements are to be considered in sorted order.
3958    ///
3959    /// # Examples
3960    ///
3961    /// ```
3962    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
3963    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
3964    ///
3965    /// assert!([0].iter().is_sorted_by(|a, b| true));
3966    /// assert!([0].iter().is_sorted_by(|a, b| false));
3967    ///
3968    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
3969    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
3970    /// ```
3971    #[stable(feature = "is_sorted", since = "1.82.0")]
3972    fn is_sorted_by<F>(mut self, compare: F) -> bool
3973    where
3974        Self: Sized,
3975        F: FnMut(&Self::Item, &Self::Item) -> bool,
3976    {
3977        #[inline]
3978        fn check<'a, T>(
3979            last: &'a mut T,
3980            mut compare: impl FnMut(&T, &T) -> bool + 'a,
3981        ) -> impl FnMut(T) -> bool + 'a {
3982            move |curr| {
3983                if !compare(&last, &curr) {
3984                    return false;
3985                }
3986                *last = curr;
3987                true
3988            }
3989        }
3990
3991        let mut last = match self.next() {
3992            Some(e) => e,
3993            None => return true,
3994        };
3995
3996        self.all(check(&mut last, compare))
3997    }
3998
3999    /// Checks if the elements of this iterator are sorted using the given key extraction
4000    /// function.
4001    ///
4002    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4003    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4004    /// its documentation for more information.
4005    ///
4006    /// [`is_sorted`]: Iterator::is_sorted
4007    ///
4008    /// # Examples
4009    ///
4010    /// ```
4011    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4012    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4013    /// ```
4014    #[inline]
4015    #[stable(feature = "is_sorted", since = "1.82.0")]
4016    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4017    where
4018        Self: Sized,
4019        F: FnMut(Self::Item) -> K,
4020        K: PartialOrd,
4021    {
4022        self.map(f).is_sorted()
4023    }
4024
4025    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4026    // The unusual name is to avoid name collisions in method resolution
4027    // see #76479.
4028    #[inline]
4029    #[doc(hidden)]
4030    #[unstable(feature = "trusted_random_access", issue = "none")]
4031    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4032    where
4033        Self: TrustedRandomAccessNoCoerce,
4034    {
4035        unreachable!("Always specialized");
4036    }
4037}
4038
4039trait SpecIterEq<B: Iterator>: Iterator {
4040    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4041    where
4042        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4043}
4044
4045impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4046    #[inline]
4047    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4048    where
4049        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4050    {
4051        iter_eq(self, b, f)
4052    }
4053}
4054
4055impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4056    #[inline]
4057    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4058    where
4059        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4060    {
4061        // we *can't* short-circuit if:
4062        match (self.size_hint(), b.size_hint()) {
4063            // ... both iterators have the same length
4064            ((_, Some(a)), (_, Some(b))) if a == b => {}
4065            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4066            ((_, None), (_, None)) => {}
4067            // otherwise, we can ascertain that they are unequal without actually comparing items
4068            _ => return false,
4069        }
4070
4071        iter_eq(self, b, f)
4072    }
4073}
4074
4075/// Compares two iterators element-wise using the given function.
4076///
4077/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4078/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4079/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4080/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4081/// the iterators.
4082///
4083/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4084/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4085#[inline]
4086fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4087where
4088    A: Iterator,
4089    B: Iterator,
4090    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4091{
4092    #[inline]
4093    fn compare<'a, B, X, T>(
4094        b: &'a mut B,
4095        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4096    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4097    where
4098        B: Iterator,
4099    {
4100        move |x| match b.next() {
4101            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4102            Some(y) => f(x, y).map_break(ControlFlow::Break),
4103        }
4104    }
4105
4106    match a.try_for_each(compare(&mut b, f)) {
4107        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4108            None => Ordering::Equal,
4109            Some(_) => Ordering::Less,
4110        }),
4111        ControlFlow::Break(x) => x,
4112    }
4113}
4114
4115#[inline]
4116fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4117where
4118    A: Iterator,
4119    B: Iterator,
4120    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4121{
4122    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4123}
4124
4125/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4126///
4127/// This implementation passes all method calls on to the original iterator.
4128#[stable(feature = "rust1", since = "1.0.0")]
4129impl<I: Iterator + ?Sized> Iterator for &mut I {
4130    type Item = I::Item;
4131    #[inline]
4132    fn next(&mut self) -> Option<I::Item> {
4133        (**self).next()
4134    }
4135    fn size_hint(&self) -> (usize, Option<usize>) {
4136        (**self).size_hint()
4137    }
4138    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4139        (**self).advance_by(n)
4140    }
4141    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4142        (**self).nth(n)
4143    }
4144    fn fold<B, F>(self, init: B, f: F) -> B
4145    where
4146        F: FnMut(B, Self::Item) -> B,
4147    {
4148        self.spec_fold(init, f)
4149    }
4150    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4151    where
4152        F: FnMut(B, Self::Item) -> R,
4153        R: Try<Output = B>,
4154    {
4155        self.spec_try_fold(init, f)
4156    }
4157}
4158
4159/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4160trait IteratorRefSpec: Iterator {
4161    fn spec_fold<B, F>(self, init: B, f: F) -> B
4162    where
4163        F: FnMut(B, Self::Item) -> B;
4164
4165    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4166    where
4167        F: FnMut(B, Self::Item) -> R,
4168        R: Try<Output = B>;
4169}
4170
4171impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4172    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4173    where
4174        F: FnMut(B, Self::Item) -> B,
4175    {
4176        let mut accum = init;
4177        while let Some(x) = self.next() {
4178            accum = f(accum, x);
4179        }
4180        accum
4181    }
4182
4183    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4184    where
4185        F: FnMut(B, Self::Item) -> R,
4186        R: Try<Output = B>,
4187    {
4188        let mut accum = init;
4189        while let Some(x) = self.next() {
4190            accum = f(accum, x)?;
4191        }
4192        try { accum }
4193    }
4194}
4195
4196impl<I: Iterator> IteratorRefSpec for &mut I {
4197    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4198
4199    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4200    where
4201        F: FnMut(B, Self::Item) -> R,
4202        R: Try<Output = B>,
4203    {
4204        (**self).try_fold(init, f)
4205    }
4206}