core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//! `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//! `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
134//! | `&U` | when `U: Sized` |
135//! | `&mut U` | when `U: Sized` |
136//! | `fn`, `extern "C" fn`[^extern_fn] | always |
137//! | [`num::NonZero*`] | always |
138//! | [`ptr::NonNull<U>`] | when `U: Sized` |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//! <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//! <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//! <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//! <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//! If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//! If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//! (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//! function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//! [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//! a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//! [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//! if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//! the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//! provided function to the contained value of [`Some`] and leaving
256//! [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//! [`Some`], or returns the provided default value if the [`Option`] is
269//! [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//! of [`Some`], or returns the result of evaluating the provided
272//! fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method | self | input | output |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None` | (ignored) | `None` |
307//! | [`and`] | `Some(x)` | `None` | `None` |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`] | `None` | `None` | `None` |
310//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
311//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None` | `None` | `None` |
313//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method | self | function input | function result | output |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
329//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
330//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
331//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
332//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
333//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//! .into_iter()
351//! .map(|x| {
352//! // `checked_sub()` returns `None` on error
353//! x.checked_sub(1)
354//! // same with `checked_mul()`
355//! .and_then(|x| x.checked_mul(2))
356//! // `BTreeMap::get` returns `None` on error
357//! .and_then(|x| bt.get(&x))
358//! // Substitute an error message if we have `None` so far
359//! .or(Some(&"error!"))
360//! .copied()
361//! // Won't panic because we unconditionally used `Some` above
362//! .unwrap()
363//! })
364//! .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation. With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`. If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//! value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//! contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//! contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//! // Explicit returns to illustrate return types matching
430//! match do_insert {
431//! true => return (0..4).chain(Some(42)).chain(4..8),
432//! false => return (0..4).chain(None).chain(4..8),
433//! }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//! // Explicit returns to illustrate return types not matching
452//! match do_insert {
453//! true => return (0..4).chain(once(42)).chain(4..8),
454//! false => return (0..4).chain(empty()).chain(4..8),
455//! }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//! default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//! default value of type `T` (which must implement [`Default`]) if it is
504//! [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//! computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//! any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//! if any, replacing the [`Option`] with a [`Some`] containing the
520//! provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//! println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//! Kingdom::Plant(250, "redwood"),
549//! Kingdom::Plant(230, "noble fir"),
550//! Kingdom::Plant(229, "sugar pine"),
551//! Kingdom::Animal(25, "blue whale"),
552//! Kingdom::Animal(19, "fin whale"),
553//! Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//! match *big_thing {
562//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//! // Now we've found the name of some big animal
564//! size_of_biggest_animal = size;
565//! name_of_biggest_animal = Some(name);
566//! }
567//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//! }
569//! }
570//!
571//! match name_of_biggest_animal {
572//! Some(name) => println!("the biggest animal is {name}"),
573//! None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579use crate::iter::{self, FusedIterator, TrustedLen};
580use crate::marker::Destruct;
581use crate::ops::{self, ControlFlow, Deref, DerefMut};
582use crate::panicking::{panic, panic_display};
583use crate::pin::Pin;
584use crate::{cmp, convert, hint, mem, slice};
585
586/// The `Option` type. See [the module level documentation](self) for more.
587#[doc(search_unbox)]
588#[derive(Copy, Debug, Hash)]
589#[derive_const(Eq)]
590#[rustc_diagnostic_item = "Option"]
591#[lang = "Option"]
592#[stable(feature = "rust1", since = "1.0.0")]
593#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
594pub enum Option<T> {
595 /// No value.
596 #[lang = "None"]
597 #[stable(feature = "rust1", since = "1.0.0")]
598 None,
599 /// Some value of type `T`.
600 #[lang = "Some"]
601 #[stable(feature = "rust1", since = "1.0.0")]
602 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
603}
604
605/////////////////////////////////////////////////////////////////////////////
606// Type implementation
607/////////////////////////////////////////////////////////////////////////////
608
609impl<T> Option<T> {
610 /////////////////////////////////////////////////////////////////////////
611 // Querying the contained values
612 /////////////////////////////////////////////////////////////////////////
613
614 /// Returns `true` if the option is a [`Some`] value.
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// let x: Option<u32> = Some(2);
620 /// assert_eq!(x.is_some(), true);
621 ///
622 /// let x: Option<u32> = None;
623 /// assert_eq!(x.is_some(), false);
624 /// ```
625 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
626 #[inline]
627 #[stable(feature = "rust1", since = "1.0.0")]
628 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
629 pub const fn is_some(&self) -> bool {
630 matches!(*self, Some(_))
631 }
632
633 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// let x: Option<u32> = Some(2);
639 /// assert_eq!(x.is_some_and(|x| x > 1), true);
640 ///
641 /// let x: Option<u32> = Some(0);
642 /// assert_eq!(x.is_some_and(|x| x > 1), false);
643 ///
644 /// let x: Option<u32> = None;
645 /// assert_eq!(x.is_some_and(|x| x > 1), false);
646 ///
647 /// let x: Option<String> = Some("ownership".to_string());
648 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
649 /// println!("still alive {:?}", x);
650 /// ```
651 #[must_use]
652 #[inline]
653 #[stable(feature = "is_some_and", since = "1.70.0")]
654 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
655 pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
656 match self {
657 None => false,
658 Some(x) => f(x),
659 }
660 }
661
662 /// Returns `true` if the option is a [`None`] value.
663 ///
664 /// # Examples
665 ///
666 /// ```
667 /// let x: Option<u32> = Some(2);
668 /// assert_eq!(x.is_none(), false);
669 ///
670 /// let x: Option<u32> = None;
671 /// assert_eq!(x.is_none(), true);
672 /// ```
673 #[must_use = "if you intended to assert that this doesn't have a value, consider \
674 wrapping this in an `assert!()` instead"]
675 #[inline]
676 #[stable(feature = "rust1", since = "1.0.0")]
677 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
678 pub const fn is_none(&self) -> bool {
679 !self.is_some()
680 }
681
682 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
683 ///
684 /// # Examples
685 ///
686 /// ```
687 /// let x: Option<u32> = Some(2);
688 /// assert_eq!(x.is_none_or(|x| x > 1), true);
689 ///
690 /// let x: Option<u32> = Some(0);
691 /// assert_eq!(x.is_none_or(|x| x > 1), false);
692 ///
693 /// let x: Option<u32> = None;
694 /// assert_eq!(x.is_none_or(|x| x > 1), true);
695 ///
696 /// let x: Option<String> = Some("ownership".to_string());
697 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
698 /// println!("still alive {:?}", x);
699 /// ```
700 #[must_use]
701 #[inline]
702 #[stable(feature = "is_none_or", since = "1.82.0")]
703 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
704 pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
705 match self {
706 None => true,
707 Some(x) => f(x),
708 }
709 }
710
711 /////////////////////////////////////////////////////////////////////////
712 // Adapter for working with references
713 /////////////////////////////////////////////////////////////////////////
714
715 /// Converts from `&Option<T>` to `Option<&T>`.
716 ///
717 /// # Examples
718 ///
719 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
720 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
721 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
722 /// reference to the value inside the original.
723 ///
724 /// [`map`]: Option::map
725 /// [String]: ../../std/string/struct.String.html "String"
726 /// [`String`]: ../../std/string/struct.String.html "String"
727 ///
728 /// ```
729 /// let text: Option<String> = Some("Hello, world!".to_string());
730 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
731 /// // then consume *that* with `map`, leaving `text` on the stack.
732 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
733 /// println!("still can print text: {text:?}");
734 /// ```
735 #[inline]
736 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
737 #[stable(feature = "rust1", since = "1.0.0")]
738 pub const fn as_ref(&self) -> Option<&T> {
739 match *self {
740 Some(ref x) => Some(x),
741 None => None,
742 }
743 }
744
745 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
746 ///
747 /// # Examples
748 ///
749 /// ```
750 /// let mut x = Some(2);
751 /// match x.as_mut() {
752 /// Some(v) => *v = 42,
753 /// None => {},
754 /// }
755 /// assert_eq!(x, Some(42));
756 /// ```
757 #[inline]
758 #[stable(feature = "rust1", since = "1.0.0")]
759 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
760 pub const fn as_mut(&mut self) -> Option<&mut T> {
761 match *self {
762 Some(ref mut x) => Some(x),
763 None => None,
764 }
765 }
766
767 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
768 ///
769 /// [&]: reference "shared reference"
770 #[inline]
771 #[must_use]
772 #[stable(feature = "pin", since = "1.33.0")]
773 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
774 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
775 // FIXME(const-hack): use `map` once that is possible
776 match Pin::get_ref(self).as_ref() {
777 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
778 // which is pinned.
779 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
780 None => None,
781 }
782 }
783
784 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
785 ///
786 /// [&mut]: reference "mutable reference"
787 #[inline]
788 #[must_use]
789 #[stable(feature = "pin", since = "1.33.0")]
790 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
791 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
792 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
793 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
794 unsafe {
795 // FIXME(const-hack): use `map` once that is possible
796 match Pin::get_unchecked_mut(self).as_mut() {
797 Some(x) => Some(Pin::new_unchecked(x)),
798 None => None,
799 }
800 }
801 }
802
803 #[inline]
804 const fn len(&self) -> usize {
805 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
806 let discriminant: isize = crate::intrinsics::discriminant_value(self);
807 discriminant as usize
808 }
809
810 /// Returns a slice of the contained value, if any. If this is `None`, an
811 /// empty slice is returned. This can be useful to have a single type of
812 /// iterator over an `Option` or slice.
813 ///
814 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
815 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
816 ///
817 /// # Examples
818 ///
819 /// ```rust
820 /// assert_eq!(
821 /// [Some(1234).as_slice(), None.as_slice()],
822 /// [&[1234][..], &[][..]],
823 /// );
824 /// ```
825 ///
826 /// The inverse of this function is (discounting
827 /// borrowing) [`[_]::first`](slice::first):
828 ///
829 /// ```rust
830 /// for i in [Some(1234_u16), None] {
831 /// assert_eq!(i.as_ref(), i.as_slice().first());
832 /// }
833 /// ```
834 #[inline]
835 #[must_use]
836 #[stable(feature = "option_as_slice", since = "1.75.0")]
837 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
838 pub const fn as_slice(&self) -> &[T] {
839 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
840 // to the payload, with a length of 1, so this is equivalent to
841 // `slice::from_ref`, and thus is safe.
842 // When the `Option` is `None`, the length used is 0, so to be safe it
843 // just needs to be aligned, which it is because `&self` is aligned and
844 // the offset used is a multiple of alignment.
845 //
846 // Here we assume that `offset_of!` always returns an offset to an
847 // in-bounds and correctly aligned position for a `T` (even if in the
848 // `None` case it's just padding).
849 unsafe {
850 slice::from_raw_parts(
851 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
852 self.len(),
853 )
854 }
855 }
856
857 /// Returns a mutable slice of the contained value, if any. If this is
858 /// `None`, an empty slice is returned. This can be useful to have a
859 /// single type of iterator over an `Option` or slice.
860 ///
861 /// Note: Should you have an `Option<&mut T>` instead of a
862 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
863 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
864 ///
865 /// # Examples
866 ///
867 /// ```rust
868 /// assert_eq!(
869 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
870 /// [&mut [1234][..], &mut [][..]],
871 /// );
872 /// ```
873 ///
874 /// The result is a mutable slice of zero or one items that points into
875 /// our original `Option`:
876 ///
877 /// ```rust
878 /// let mut x = Some(1234);
879 /// x.as_mut_slice()[0] += 1;
880 /// assert_eq!(x, Some(1235));
881 /// ```
882 ///
883 /// The inverse of this method (discounting borrowing)
884 /// is [`[_]::first_mut`](slice::first_mut):
885 ///
886 /// ```rust
887 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
888 /// ```
889 #[inline]
890 #[must_use]
891 #[stable(feature = "option_as_slice", since = "1.75.0")]
892 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
893 pub const fn as_mut_slice(&mut self) -> &mut [T] {
894 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
895 // to the payload, with a length of 1, so this is equivalent to
896 // `slice::from_mut`, and thus is safe.
897 // When the `Option` is `None`, the length used is 0, so to be safe it
898 // just needs to be aligned, which it is because `&self` is aligned and
899 // the offset used is a multiple of alignment.
900 //
901 // In the new version, the intrinsic creates a `*const T` from a
902 // mutable reference so it is safe to cast back to a mutable pointer
903 // here. As with `as_slice`, the intrinsic always returns a pointer to
904 // an in-bounds and correctly aligned position for a `T` (even if in
905 // the `None` case it's just padding).
906 unsafe {
907 slice::from_raw_parts_mut(
908 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
909 self.len(),
910 )
911 }
912 }
913
914 /////////////////////////////////////////////////////////////////////////
915 // Getting to contained values
916 /////////////////////////////////////////////////////////////////////////
917
918 /// Returns the contained [`Some`] value, consuming the `self` value.
919 ///
920 /// # Panics
921 ///
922 /// Panics if the value is a [`None`] with a custom panic message provided by
923 /// `msg`.
924 ///
925 /// # Examples
926 ///
927 /// ```
928 /// let x = Some("value");
929 /// assert_eq!(x.expect("fruits are healthy"), "value");
930 /// ```
931 ///
932 /// ```should_panic
933 /// let x: Option<&str> = None;
934 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
935 /// ```
936 ///
937 /// # Recommended Message Style
938 ///
939 /// We recommend that `expect` messages are used to describe the reason you
940 /// _expect_ the `Option` should be `Some`.
941 ///
942 /// ```should_panic
943 /// # let slice: &[u8] = &[];
944 /// let item = slice.get(0)
945 /// .expect("slice should not be empty");
946 /// ```
947 ///
948 /// **Hint**: If you're having trouble remembering how to phrase expect
949 /// error messages remember to focus on the word "should" as in "env
950 /// variable should be set by blah" or "the given binary should be available
951 /// and executable by the current user".
952 ///
953 /// For more detail on expect message styles and the reasoning behind our
954 /// recommendation please refer to the section on ["Common Message
955 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
956 #[inline]
957 #[track_caller]
958 #[stable(feature = "rust1", since = "1.0.0")]
959 #[rustc_diagnostic_item = "option_expect"]
960 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
961 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
962 pub const fn expect(self, msg: &str) -> T {
963 match self {
964 Some(val) => val,
965 None => expect_failed(msg),
966 }
967 }
968
969 /// Returns the contained [`Some`] value, consuming the `self` value.
970 ///
971 /// Because this function may panic, its use is generally discouraged.
972 /// Panics are meant for unrecoverable errors, and
973 /// [may abort the entire program][panic-abort].
974 ///
975 /// Instead, prefer to use pattern matching and handle the [`None`]
976 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
977 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
978 /// [the `?` (try) operator][try-option].
979 ///
980 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
981 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
982 /// [`unwrap_or`]: Option::unwrap_or
983 /// [`unwrap_or_else`]: Option::unwrap_or_else
984 /// [`unwrap_or_default`]: Option::unwrap_or_default
985 ///
986 /// # Panics
987 ///
988 /// Panics if the self value equals [`None`].
989 ///
990 /// # Examples
991 ///
992 /// ```
993 /// let x = Some("air");
994 /// assert_eq!(x.unwrap(), "air");
995 /// ```
996 ///
997 /// ```should_panic
998 /// let x: Option<&str> = None;
999 /// assert_eq!(x.unwrap(), "air"); // fails
1000 /// ```
1001 #[inline(always)]
1002 #[track_caller]
1003 #[stable(feature = "rust1", since = "1.0.0")]
1004 #[rustc_diagnostic_item = "option_unwrap"]
1005 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1006 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1007 pub const fn unwrap(self) -> T {
1008 match self {
1009 Some(val) => val,
1010 None => unwrap_failed(),
1011 }
1012 }
1013
1014 /// Returns the contained [`Some`] value or a provided default.
1015 ///
1016 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1017 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1018 /// which is lazily evaluated.
1019 ///
1020 /// [`unwrap_or_else`]: Option::unwrap_or_else
1021 ///
1022 /// # Examples
1023 ///
1024 /// ```
1025 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1026 /// assert_eq!(None.unwrap_or("bike"), "bike");
1027 /// ```
1028 #[inline]
1029 #[stable(feature = "rust1", since = "1.0.0")]
1030 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1031 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1032 pub const fn unwrap_or(self, default: T) -> T
1033 where
1034 T: [const] Destruct,
1035 {
1036 match self {
1037 Some(x) => x,
1038 None => default,
1039 }
1040 }
1041
1042 /// Returns the contained [`Some`] value or computes it from a closure.
1043 ///
1044 /// # Examples
1045 ///
1046 /// ```
1047 /// let k = 10;
1048 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1049 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1050 /// ```
1051 #[inline]
1052 #[track_caller]
1053 #[stable(feature = "rust1", since = "1.0.0")]
1054 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1055 pub const fn unwrap_or_else<F>(self, f: F) -> T
1056 where
1057 F: [const] FnOnce() -> T + [const] Destruct,
1058 {
1059 match self {
1060 Some(x) => x,
1061 None => f(),
1062 }
1063 }
1064
1065 /// Returns the contained [`Some`] value or a default.
1066 ///
1067 /// Consumes the `self` argument then, if [`Some`], returns the contained
1068 /// value, otherwise if [`None`], returns the [default value] for that
1069 /// type.
1070 ///
1071 /// # Examples
1072 ///
1073 /// ```
1074 /// let x: Option<u32> = None;
1075 /// let y: Option<u32> = Some(12);
1076 ///
1077 /// assert_eq!(x.unwrap_or_default(), 0);
1078 /// assert_eq!(y.unwrap_or_default(), 12);
1079 /// ```
1080 ///
1081 /// [default value]: Default::default
1082 /// [`parse`]: str::parse
1083 /// [`FromStr`]: crate::str::FromStr
1084 #[inline]
1085 #[stable(feature = "rust1", since = "1.0.0")]
1086 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1087 pub const fn unwrap_or_default(self) -> T
1088 where
1089 T: [const] Default,
1090 {
1091 match self {
1092 Some(x) => x,
1093 None => T::default(),
1094 }
1095 }
1096
1097 /// Returns the contained [`Some`] value, consuming the `self` value,
1098 /// without checking that the value is not [`None`].
1099 ///
1100 /// # Safety
1101 ///
1102 /// Calling this method on [`None`] is *[undefined behavior]*.
1103 ///
1104 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1105 ///
1106 /// # Examples
1107 ///
1108 /// ```
1109 /// let x = Some("air");
1110 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1111 /// ```
1112 ///
1113 /// ```no_run
1114 /// let x: Option<&str> = None;
1115 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1116 /// ```
1117 #[inline]
1118 #[track_caller]
1119 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1120 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1121 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1122 pub const unsafe fn unwrap_unchecked(self) -> T {
1123 match self {
1124 Some(val) => val,
1125 // SAFETY: the safety contract must be upheld by the caller.
1126 None => unsafe { hint::unreachable_unchecked() },
1127 }
1128 }
1129
1130 /////////////////////////////////////////////////////////////////////////
1131 // Transforming contained values
1132 /////////////////////////////////////////////////////////////////////////
1133
1134 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1135 ///
1136 /// # Examples
1137 ///
1138 /// Calculates the length of an <code>Option<[String]></code> as an
1139 /// <code>Option<[usize]></code>, consuming the original:
1140 ///
1141 /// [String]: ../../std/string/struct.String.html "String"
1142 /// ```
1143 /// let maybe_some_string = Some(String::from("Hello, World!"));
1144 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1145 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1146 /// assert_eq!(maybe_some_len, Some(13));
1147 ///
1148 /// let x: Option<&str> = None;
1149 /// assert_eq!(x.map(|s| s.len()), None);
1150 /// ```
1151 #[inline]
1152 #[stable(feature = "rust1", since = "1.0.0")]
1153 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1154 pub const fn map<U, F>(self, f: F) -> Option<U>
1155 where
1156 F: [const] FnOnce(T) -> U + [const] Destruct,
1157 {
1158 match self {
1159 Some(x) => Some(f(x)),
1160 None => None,
1161 }
1162 }
1163
1164 /// Calls a function with a reference to the contained value if [`Some`].
1165 ///
1166 /// Returns the original option.
1167 ///
1168 /// # Examples
1169 ///
1170 /// ```
1171 /// let list = vec![1, 2, 3];
1172 ///
1173 /// // prints "got: 2"
1174 /// let x = list
1175 /// .get(1)
1176 /// .inspect(|x| println!("got: {x}"))
1177 /// .expect("list should be long enough");
1178 ///
1179 /// // prints nothing
1180 /// list.get(5).inspect(|x| println!("got: {x}"));
1181 /// ```
1182 #[inline]
1183 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1184 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1185 pub const fn inspect<F>(self, f: F) -> Self
1186 where
1187 F: [const] FnOnce(&T) + [const] Destruct,
1188 {
1189 if let Some(ref x) = self {
1190 f(x);
1191 }
1192
1193 self
1194 }
1195
1196 /// Returns the provided default result (if none),
1197 /// or applies a function to the contained value (if any).
1198 ///
1199 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1200 /// the result of a function call, it is recommended to use [`map_or_else`],
1201 /// which is lazily evaluated.
1202 ///
1203 /// [`map_or_else`]: Option::map_or_else
1204 ///
1205 /// # Examples
1206 ///
1207 /// ```
1208 /// let x = Some("foo");
1209 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1210 ///
1211 /// let x: Option<&str> = None;
1212 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1213 /// ```
1214 #[inline]
1215 #[stable(feature = "rust1", since = "1.0.0")]
1216 #[must_use = "if you don't need the returned value, use `if let` instead"]
1217 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1218 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1219 where
1220 F: [const] FnOnce(T) -> U + [const] Destruct,
1221 U: [const] Destruct,
1222 {
1223 match self {
1224 Some(t) => f(t),
1225 None => default,
1226 }
1227 }
1228
1229 /// Computes a default function result (if none), or
1230 /// applies a different function to the contained value (if any).
1231 ///
1232 /// # Basic examples
1233 ///
1234 /// ```
1235 /// let k = 21;
1236 ///
1237 /// let x = Some("foo");
1238 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1239 ///
1240 /// let x: Option<&str> = None;
1241 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1242 /// ```
1243 ///
1244 /// # Handling a Result-based fallback
1245 ///
1246 /// A somewhat common occurrence when dealing with optional values
1247 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1248 /// a fallible fallback if the option is not present. This example
1249 /// parses a command line argument (if present), or the contents of a file to
1250 /// an integer. However, unlike accessing the command line argument, reading
1251 /// the file is fallible, so it must be wrapped with `Ok`.
1252 ///
1253 /// ```no_run
1254 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1255 /// let v: u64 = std::env::args()
1256 /// .nth(1)
1257 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1258 /// .parse()?;
1259 /// # Ok(())
1260 /// # }
1261 /// ```
1262 #[inline]
1263 #[stable(feature = "rust1", since = "1.0.0")]
1264 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1265 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1266 where
1267 D: [const] FnOnce() -> U + [const] Destruct,
1268 F: [const] FnOnce(T) -> U + [const] Destruct,
1269 {
1270 match self {
1271 Some(t) => f(t),
1272 None => default(),
1273 }
1274 }
1275
1276 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1277 /// value if the option is [`Some`], otherwise if [`None`], returns the
1278 /// [default value] for the type `U`.
1279 ///
1280 /// # Examples
1281 ///
1282 /// ```
1283 /// #![feature(result_option_map_or_default)]
1284 ///
1285 /// let x: Option<&str> = Some("hi");
1286 /// let y: Option<&str> = None;
1287 ///
1288 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1289 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1290 /// ```
1291 ///
1292 /// [default value]: Default::default
1293 #[inline]
1294 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1295 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1296 pub const fn map_or_default<U, F>(self, f: F) -> U
1297 where
1298 U: [const] Default,
1299 F: [const] FnOnce(T) -> U + [const] Destruct,
1300 {
1301 match self {
1302 Some(t) => f(t),
1303 None => U::default(),
1304 }
1305 }
1306
1307 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1308 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1309 ///
1310 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1311 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1312 /// lazily evaluated.
1313 ///
1314 /// [`Ok(v)`]: Ok
1315 /// [`Err(err)`]: Err
1316 /// [`Some(v)`]: Some
1317 /// [`ok_or_else`]: Option::ok_or_else
1318 ///
1319 /// # Examples
1320 ///
1321 /// ```
1322 /// let x = Some("foo");
1323 /// assert_eq!(x.ok_or(0), Ok("foo"));
1324 ///
1325 /// let x: Option<&str> = None;
1326 /// assert_eq!(x.ok_or(0), Err(0));
1327 /// ```
1328 #[inline]
1329 #[stable(feature = "rust1", since = "1.0.0")]
1330 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1331 pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1332 match self {
1333 Some(v) => Ok(v),
1334 None => Err(err),
1335 }
1336 }
1337
1338 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1339 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1340 ///
1341 /// [`Ok(v)`]: Ok
1342 /// [`Err(err())`]: Err
1343 /// [`Some(v)`]: Some
1344 ///
1345 /// # Examples
1346 ///
1347 /// ```
1348 /// let x = Some("foo");
1349 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1350 ///
1351 /// let x: Option<&str> = None;
1352 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1353 /// ```
1354 #[inline]
1355 #[stable(feature = "rust1", since = "1.0.0")]
1356 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1357 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1358 where
1359 F: [const] FnOnce() -> E + [const] Destruct,
1360 {
1361 match self {
1362 Some(v) => Ok(v),
1363 None => Err(err()),
1364 }
1365 }
1366
1367 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1368 ///
1369 /// Leaves the original Option in-place, creating a new one with a reference
1370 /// to the original one, additionally coercing the contents via [`Deref`].
1371 ///
1372 /// # Examples
1373 ///
1374 /// ```
1375 /// let x: Option<String> = Some("hey".to_owned());
1376 /// assert_eq!(x.as_deref(), Some("hey"));
1377 ///
1378 /// let x: Option<String> = None;
1379 /// assert_eq!(x.as_deref(), None);
1380 /// ```
1381 #[inline]
1382 #[stable(feature = "option_deref", since = "1.40.0")]
1383 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1384 pub const fn as_deref(&self) -> Option<&T::Target>
1385 where
1386 T: [const] Deref,
1387 {
1388 self.as_ref().map(Deref::deref)
1389 }
1390
1391 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1392 ///
1393 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1394 /// the inner type's [`Deref::Target`] type.
1395 ///
1396 /// # Examples
1397 ///
1398 /// ```
1399 /// let mut x: Option<String> = Some("hey".to_owned());
1400 /// assert_eq!(x.as_deref_mut().map(|x| {
1401 /// x.make_ascii_uppercase();
1402 /// x
1403 /// }), Some("HEY".to_owned().as_mut_str()));
1404 /// ```
1405 #[inline]
1406 #[stable(feature = "option_deref", since = "1.40.0")]
1407 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1408 pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1409 where
1410 T: [const] DerefMut,
1411 {
1412 self.as_mut().map(DerefMut::deref_mut)
1413 }
1414
1415 /////////////////////////////////////////////////////////////////////////
1416 // Iterator constructors
1417 /////////////////////////////////////////////////////////////////////////
1418
1419 /// Returns an iterator over the possibly contained value.
1420 ///
1421 /// # Examples
1422 ///
1423 /// ```
1424 /// let x = Some(4);
1425 /// assert_eq!(x.iter().next(), Some(&4));
1426 ///
1427 /// let x: Option<u32> = None;
1428 /// assert_eq!(x.iter().next(), None);
1429 /// ```
1430 #[inline]
1431 #[stable(feature = "rust1", since = "1.0.0")]
1432 pub fn iter(&self) -> Iter<'_, T> {
1433 Iter { inner: Item { opt: self.as_ref() } }
1434 }
1435
1436 /// Returns a mutable iterator over the possibly contained value.
1437 ///
1438 /// # Examples
1439 ///
1440 /// ```
1441 /// let mut x = Some(4);
1442 /// match x.iter_mut().next() {
1443 /// Some(v) => *v = 42,
1444 /// None => {},
1445 /// }
1446 /// assert_eq!(x, Some(42));
1447 ///
1448 /// let mut x: Option<u32> = None;
1449 /// assert_eq!(x.iter_mut().next(), None);
1450 /// ```
1451 #[inline]
1452 #[stable(feature = "rust1", since = "1.0.0")]
1453 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1454 IterMut { inner: Item { opt: self.as_mut() } }
1455 }
1456
1457 /////////////////////////////////////////////////////////////////////////
1458 // Boolean operations on the values, eager and lazy
1459 /////////////////////////////////////////////////////////////////////////
1460
1461 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1462 ///
1463 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1464 /// result of a function call, it is recommended to use [`and_then`], which is
1465 /// lazily evaluated.
1466 ///
1467 /// [`and_then`]: Option::and_then
1468 ///
1469 /// # Examples
1470 ///
1471 /// ```
1472 /// let x = Some(2);
1473 /// let y: Option<&str> = None;
1474 /// assert_eq!(x.and(y), None);
1475 ///
1476 /// let x: Option<u32> = None;
1477 /// let y = Some("foo");
1478 /// assert_eq!(x.and(y), None);
1479 ///
1480 /// let x = Some(2);
1481 /// let y = Some("foo");
1482 /// assert_eq!(x.and(y), Some("foo"));
1483 ///
1484 /// let x: Option<u32> = None;
1485 /// let y: Option<&str> = None;
1486 /// assert_eq!(x.and(y), None);
1487 /// ```
1488 #[inline]
1489 #[stable(feature = "rust1", since = "1.0.0")]
1490 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1491 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1492 where
1493 T: [const] Destruct,
1494 U: [const] Destruct,
1495 {
1496 match self {
1497 Some(_) => optb,
1498 None => None,
1499 }
1500 }
1501
1502 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1503 /// wrapped value and returns the result.
1504 ///
1505 /// Some languages call this operation flatmap.
1506 ///
1507 /// # Examples
1508 ///
1509 /// ```
1510 /// fn sq_then_to_string(x: u32) -> Option<String> {
1511 /// x.checked_mul(x).map(|sq| sq.to_string())
1512 /// }
1513 ///
1514 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1515 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1516 /// assert_eq!(None.and_then(sq_then_to_string), None);
1517 /// ```
1518 ///
1519 /// Often used to chain fallible operations that may return [`None`].
1520 ///
1521 /// ```
1522 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1523 ///
1524 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1525 /// assert_eq!(item_0_1, Some(&"A1"));
1526 ///
1527 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1528 /// assert_eq!(item_2_0, None);
1529 /// ```
1530 #[doc(alias = "flatmap")]
1531 #[inline]
1532 #[stable(feature = "rust1", since = "1.0.0")]
1533 #[rustc_confusables("flat_map", "flatmap")]
1534 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1535 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1536 where
1537 F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1538 {
1539 match self {
1540 Some(x) => f(x),
1541 None => None,
1542 }
1543 }
1544
1545 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1546 /// with the wrapped value and returns:
1547 ///
1548 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1549 /// value), and
1550 /// - [`None`] if `predicate` returns `false`.
1551 ///
1552 /// This function works similar to [`Iterator::filter()`]. You can imagine
1553 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1554 /// lets you decide which elements to keep.
1555 ///
1556 /// # Examples
1557 ///
1558 /// ```rust
1559 /// fn is_even(n: &i32) -> bool {
1560 /// n % 2 == 0
1561 /// }
1562 ///
1563 /// assert_eq!(None.filter(is_even), None);
1564 /// assert_eq!(Some(3).filter(is_even), None);
1565 /// assert_eq!(Some(4).filter(is_even), Some(4));
1566 /// ```
1567 ///
1568 /// [`Some(t)`]: Some
1569 #[inline]
1570 #[stable(feature = "option_filter", since = "1.27.0")]
1571 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1572 pub const fn filter<P>(self, predicate: P) -> Self
1573 where
1574 P: [const] FnOnce(&T) -> bool + [const] Destruct,
1575 T: [const] Destruct,
1576 {
1577 if let Some(x) = self {
1578 if predicate(&x) {
1579 return Some(x);
1580 }
1581 }
1582 None
1583 }
1584
1585 /// Returns the option if it contains a value, otherwise returns `optb`.
1586 ///
1587 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1588 /// result of a function call, it is recommended to use [`or_else`], which is
1589 /// lazily evaluated.
1590 ///
1591 /// [`or_else`]: Option::or_else
1592 ///
1593 /// # Examples
1594 ///
1595 /// ```
1596 /// let x = Some(2);
1597 /// let y = None;
1598 /// assert_eq!(x.or(y), Some(2));
1599 ///
1600 /// let x = None;
1601 /// let y = Some(100);
1602 /// assert_eq!(x.or(y), Some(100));
1603 ///
1604 /// let x = Some(2);
1605 /// let y = Some(100);
1606 /// assert_eq!(x.or(y), Some(2));
1607 ///
1608 /// let x: Option<u32> = None;
1609 /// let y = None;
1610 /// assert_eq!(x.or(y), None);
1611 /// ```
1612 #[inline]
1613 #[stable(feature = "rust1", since = "1.0.0")]
1614 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1615 pub const fn or(self, optb: Option<T>) -> Option<T>
1616 where
1617 T: [const] Destruct,
1618 {
1619 match self {
1620 x @ Some(_) => x,
1621 None => optb,
1622 }
1623 }
1624
1625 /// Returns the option if it contains a value, otherwise calls `f` and
1626 /// returns the result.
1627 ///
1628 /// # Examples
1629 ///
1630 /// ```
1631 /// fn nobody() -> Option<&'static str> { None }
1632 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1633 ///
1634 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1635 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1636 /// assert_eq!(None.or_else(nobody), None);
1637 /// ```
1638 #[inline]
1639 #[stable(feature = "rust1", since = "1.0.0")]
1640 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1641 pub const fn or_else<F>(self, f: F) -> Option<T>
1642 where
1643 F: [const] FnOnce() -> Option<T> + [const] Destruct,
1644 //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1645 // no value of type `T` gets dropped here
1646 T: [const] Destruct,
1647 {
1648 match self {
1649 x @ Some(_) => x,
1650 None => f(),
1651 }
1652 }
1653
1654 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1655 ///
1656 /// # Examples
1657 ///
1658 /// ```
1659 /// let x = Some(2);
1660 /// let y: Option<u32> = None;
1661 /// assert_eq!(x.xor(y), Some(2));
1662 ///
1663 /// let x: Option<u32> = None;
1664 /// let y = Some(2);
1665 /// assert_eq!(x.xor(y), Some(2));
1666 ///
1667 /// let x = Some(2);
1668 /// let y = Some(2);
1669 /// assert_eq!(x.xor(y), None);
1670 ///
1671 /// let x: Option<u32> = None;
1672 /// let y: Option<u32> = None;
1673 /// assert_eq!(x.xor(y), None);
1674 /// ```
1675 #[inline]
1676 #[stable(feature = "option_xor", since = "1.37.0")]
1677 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1678 pub const fn xor(self, optb: Option<T>) -> Option<T>
1679 where
1680 T: [const] Destruct,
1681 {
1682 match (self, optb) {
1683 (a @ Some(_), None) => a,
1684 (None, b @ Some(_)) => b,
1685 _ => None,
1686 }
1687 }
1688
1689 /////////////////////////////////////////////////////////////////////////
1690 // Entry-like operations to insert a value and return a reference
1691 /////////////////////////////////////////////////////////////////////////
1692
1693 /// Inserts `value` into the option, then returns a mutable reference to it.
1694 ///
1695 /// If the option already contains a value, the old value is dropped.
1696 ///
1697 /// See also [`Option::get_or_insert`], which doesn't update the value if
1698 /// the option already contains [`Some`].
1699 ///
1700 /// # Example
1701 ///
1702 /// ```
1703 /// let mut opt = None;
1704 /// let val = opt.insert(1);
1705 /// assert_eq!(*val, 1);
1706 /// assert_eq!(opt.unwrap(), 1);
1707 /// let val = opt.insert(2);
1708 /// assert_eq!(*val, 2);
1709 /// *val = 3;
1710 /// assert_eq!(opt.unwrap(), 3);
1711 /// ```
1712 #[must_use = "if you intended to set a value, consider assignment instead"]
1713 #[inline]
1714 #[stable(feature = "option_insert", since = "1.53.0")]
1715 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1716 pub const fn insert(&mut self, value: T) -> &mut T
1717 where
1718 T: [const] Destruct,
1719 {
1720 *self = Some(value);
1721
1722 // SAFETY: the code above just filled the option
1723 unsafe { self.as_mut().unwrap_unchecked() }
1724 }
1725
1726 /// Inserts `value` into the option if it is [`None`], then
1727 /// returns a mutable reference to the contained value.
1728 ///
1729 /// See also [`Option::insert`], which updates the value even if
1730 /// the option already contains [`Some`].
1731 ///
1732 /// # Examples
1733 ///
1734 /// ```
1735 /// let mut x = None;
1736 ///
1737 /// {
1738 /// let y: &mut u32 = x.get_or_insert(5);
1739 /// assert_eq!(y, &5);
1740 ///
1741 /// *y = 7;
1742 /// }
1743 ///
1744 /// assert_eq!(x, Some(7));
1745 /// ```
1746 #[inline]
1747 #[stable(feature = "option_entry", since = "1.20.0")]
1748 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1749 self.get_or_insert_with(|| value)
1750 }
1751
1752 /// Inserts the default value into the option if it is [`None`], then
1753 /// returns a mutable reference to the contained value.
1754 ///
1755 /// # Examples
1756 ///
1757 /// ```
1758 /// let mut x = None;
1759 ///
1760 /// {
1761 /// let y: &mut u32 = x.get_or_insert_default();
1762 /// assert_eq!(y, &0);
1763 ///
1764 /// *y = 7;
1765 /// }
1766 ///
1767 /// assert_eq!(x, Some(7));
1768 /// ```
1769 #[inline]
1770 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1771 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1772 pub const fn get_or_insert_default(&mut self) -> &mut T
1773 where
1774 T: [const] Default + [const] Destruct,
1775 {
1776 self.get_or_insert_with(T::default)
1777 }
1778
1779 /// Inserts a value computed from `f` into the option if it is [`None`],
1780 /// then returns a mutable reference to the contained value.
1781 ///
1782 /// # Examples
1783 ///
1784 /// ```
1785 /// let mut x = None;
1786 ///
1787 /// {
1788 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1789 /// assert_eq!(y, &5);
1790 ///
1791 /// *y = 7;
1792 /// }
1793 ///
1794 /// assert_eq!(x, Some(7));
1795 /// ```
1796 #[inline]
1797 #[stable(feature = "option_entry", since = "1.20.0")]
1798 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1799 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1800 where
1801 F: [const] FnOnce() -> T + [const] Destruct,
1802 T: [const] Destruct,
1803 {
1804 if let None = self {
1805 *self = Some(f());
1806 }
1807
1808 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1809 // variant in the code above.
1810 unsafe { self.as_mut().unwrap_unchecked() }
1811 }
1812
1813 /////////////////////////////////////////////////////////////////////////
1814 // Misc
1815 /////////////////////////////////////////////////////////////////////////
1816
1817 /// Takes the value out of the option, leaving a [`None`] in its place.
1818 ///
1819 /// # Examples
1820 ///
1821 /// ```
1822 /// let mut x = Some(2);
1823 /// let y = x.take();
1824 /// assert_eq!(x, None);
1825 /// assert_eq!(y, Some(2));
1826 ///
1827 /// let mut x: Option<u32> = None;
1828 /// let y = x.take();
1829 /// assert_eq!(x, None);
1830 /// assert_eq!(y, None);
1831 /// ```
1832 #[inline]
1833 #[stable(feature = "rust1", since = "1.0.0")]
1834 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1835 pub const fn take(&mut self) -> Option<T> {
1836 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1837 mem::replace(self, None)
1838 }
1839
1840 /// Takes the value out of the option, but only if the predicate evaluates to
1841 /// `true` on a mutable reference to the value.
1842 ///
1843 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1844 /// This method operates similar to [`Option::take`] but conditional.
1845 ///
1846 /// # Examples
1847 ///
1848 /// ```
1849 /// let mut x = Some(42);
1850 ///
1851 /// let prev = x.take_if(|v| if *v == 42 {
1852 /// *v += 1;
1853 /// false
1854 /// } else {
1855 /// false
1856 /// });
1857 /// assert_eq!(x, Some(43));
1858 /// assert_eq!(prev, None);
1859 ///
1860 /// let prev = x.take_if(|v| *v == 43);
1861 /// assert_eq!(x, None);
1862 /// assert_eq!(prev, Some(43));
1863 /// ```
1864 #[inline]
1865 #[stable(feature = "option_take_if", since = "1.80.0")]
1866 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1867 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1868 where
1869 P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1870 {
1871 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1872 }
1873
1874 /// Replaces the actual value in the option by the value given in parameter,
1875 /// returning the old value if present,
1876 /// leaving a [`Some`] in its place without deinitializing either one.
1877 ///
1878 /// # Examples
1879 ///
1880 /// ```
1881 /// let mut x = Some(2);
1882 /// let old = x.replace(5);
1883 /// assert_eq!(x, Some(5));
1884 /// assert_eq!(old, Some(2));
1885 ///
1886 /// let mut x = None;
1887 /// let old = x.replace(3);
1888 /// assert_eq!(x, Some(3));
1889 /// assert_eq!(old, None);
1890 /// ```
1891 #[inline]
1892 #[stable(feature = "option_replace", since = "1.31.0")]
1893 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1894 pub const fn replace(&mut self, value: T) -> Option<T> {
1895 mem::replace(self, Some(value))
1896 }
1897
1898 /// Zips `self` with another `Option`.
1899 ///
1900 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1901 /// Otherwise, `None` is returned.
1902 ///
1903 /// # Examples
1904 ///
1905 /// ```
1906 /// let x = Some(1);
1907 /// let y = Some("hi");
1908 /// let z = None::<u8>;
1909 ///
1910 /// assert_eq!(x.zip(y), Some((1, "hi")));
1911 /// assert_eq!(x.zip(z), None);
1912 /// ```
1913 #[stable(feature = "option_zip_option", since = "1.46.0")]
1914 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1915 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1916 where
1917 T: [const] Destruct,
1918 U: [const] Destruct,
1919 {
1920 match (self, other) {
1921 (Some(a), Some(b)) => Some((a, b)),
1922 _ => None,
1923 }
1924 }
1925
1926 /// Zips `self` and another `Option` with function `f`.
1927 ///
1928 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1929 /// Otherwise, `None` is returned.
1930 ///
1931 /// # Examples
1932 ///
1933 /// ```
1934 /// #![feature(option_zip)]
1935 ///
1936 /// #[derive(Debug, PartialEq)]
1937 /// struct Point {
1938 /// x: f64,
1939 /// y: f64,
1940 /// }
1941 ///
1942 /// impl Point {
1943 /// fn new(x: f64, y: f64) -> Self {
1944 /// Self { x, y }
1945 /// }
1946 /// }
1947 ///
1948 /// let x = Some(17.5);
1949 /// let y = Some(42.7);
1950 ///
1951 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1952 /// assert_eq!(x.zip_with(None, Point::new), None);
1953 /// ```
1954 #[unstable(feature = "option_zip", issue = "70086")]
1955 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1956 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1957 where
1958 F: [const] FnOnce(T, U) -> R + [const] Destruct,
1959 T: [const] Destruct,
1960 U: [const] Destruct,
1961 {
1962 match (self, other) {
1963 (Some(a), Some(b)) => Some(f(a, b)),
1964 _ => None,
1965 }
1966 }
1967
1968 /// Reduces two options into one, using the provided function if both are `Some`.
1969 ///
1970 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1971 /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1972 /// If both `self` and `other` are `None`, `None` is returned.
1973 ///
1974 /// # Examples
1975 ///
1976 /// ```
1977 /// #![feature(option_reduce)]
1978 ///
1979 /// let s12 = Some(12);
1980 /// let s17 = Some(17);
1981 /// let n = None;
1982 /// let f = |a, b| a + b;
1983 ///
1984 /// assert_eq!(s12.reduce(s17, f), Some(29));
1985 /// assert_eq!(s12.reduce(n, f), Some(12));
1986 /// assert_eq!(n.reduce(s17, f), Some(17));
1987 /// assert_eq!(n.reduce(n, f), None);
1988 /// ```
1989 #[unstable(feature = "option_reduce", issue = "144273")]
1990 pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
1991 where
1992 T: Into<R>,
1993 U: Into<R>,
1994 F: FnOnce(T, U) -> R,
1995 {
1996 match (self, other) {
1997 (Some(a), Some(b)) => Some(f(a, b)),
1998 (Some(a), _) => Some(a.into()),
1999 (_, Some(b)) => Some(b.into()),
2000 _ => None,
2001 }
2002 }
2003}
2004
2005impl<T, U> Option<(T, U)> {
2006 /// Unzips an option containing a tuple of two options.
2007 ///
2008 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2009 /// Otherwise, `(None, None)` is returned.
2010 ///
2011 /// # Examples
2012 ///
2013 /// ```
2014 /// let x = Some((1, "hi"));
2015 /// let y = None::<(u8, u32)>;
2016 ///
2017 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2018 /// assert_eq!(y.unzip(), (None, None));
2019 /// ```
2020 #[inline]
2021 #[stable(feature = "unzip_option", since = "1.66.0")]
2022 pub fn unzip(self) -> (Option<T>, Option<U>) {
2023 match self {
2024 Some((a, b)) => (Some(a), Some(b)),
2025 None => (None, None),
2026 }
2027 }
2028}
2029
2030impl<T> Option<&T> {
2031 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2032 /// option.
2033 ///
2034 /// # Examples
2035 ///
2036 /// ```
2037 /// let x = 12;
2038 /// let opt_x = Some(&x);
2039 /// assert_eq!(opt_x, Some(&12));
2040 /// let copied = opt_x.copied();
2041 /// assert_eq!(copied, Some(12));
2042 /// ```
2043 #[must_use = "`self` will be dropped if the result is not used"]
2044 #[stable(feature = "copied", since = "1.35.0")]
2045 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2046 pub const fn copied(self) -> Option<T>
2047 where
2048 T: Copy,
2049 {
2050 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2051 // ready yet, should be reverted when possible to avoid code repetition
2052 match self {
2053 Some(&v) => Some(v),
2054 None => None,
2055 }
2056 }
2057
2058 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2059 /// option.
2060 ///
2061 /// # Examples
2062 ///
2063 /// ```
2064 /// let x = 12;
2065 /// let opt_x = Some(&x);
2066 /// assert_eq!(opt_x, Some(&12));
2067 /// let cloned = opt_x.cloned();
2068 /// assert_eq!(cloned, Some(12));
2069 /// ```
2070 #[must_use = "`self` will be dropped if the result is not used"]
2071 #[stable(feature = "rust1", since = "1.0.0")]
2072 pub fn cloned(self) -> Option<T>
2073 where
2074 T: Clone,
2075 {
2076 match self {
2077 Some(t) => Some(t.clone()),
2078 None => None,
2079 }
2080 }
2081}
2082
2083impl<T> Option<&mut T> {
2084 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2085 /// option.
2086 ///
2087 /// # Examples
2088 ///
2089 /// ```
2090 /// let mut x = 12;
2091 /// let opt_x = Some(&mut x);
2092 /// assert_eq!(opt_x, Some(&mut 12));
2093 /// let copied = opt_x.copied();
2094 /// assert_eq!(copied, Some(12));
2095 /// ```
2096 #[must_use = "`self` will be dropped if the result is not used"]
2097 #[stable(feature = "copied", since = "1.35.0")]
2098 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2099 pub const fn copied(self) -> Option<T>
2100 where
2101 T: Copy,
2102 {
2103 match self {
2104 Some(&mut t) => Some(t),
2105 None => None,
2106 }
2107 }
2108
2109 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2110 /// option.
2111 ///
2112 /// # Examples
2113 ///
2114 /// ```
2115 /// let mut x = 12;
2116 /// let opt_x = Some(&mut x);
2117 /// assert_eq!(opt_x, Some(&mut 12));
2118 /// let cloned = opt_x.cloned();
2119 /// assert_eq!(cloned, Some(12));
2120 /// ```
2121 #[must_use = "`self` will be dropped if the result is not used"]
2122 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2123 pub fn cloned(self) -> Option<T>
2124 where
2125 T: Clone,
2126 {
2127 match self {
2128 Some(t) => Some(t.clone()),
2129 None => None,
2130 }
2131 }
2132}
2133
2134impl<T, E> Option<Result<T, E>> {
2135 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2136 ///
2137 /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2138 /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2139 /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2140 ///
2141 /// # Examples
2142 ///
2143 /// ```
2144 /// #[derive(Debug, Eq, PartialEq)]
2145 /// struct SomeErr;
2146 ///
2147 /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2148 /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2149 /// assert_eq!(x.transpose(), y);
2150 /// ```
2151 #[inline]
2152 #[stable(feature = "transpose_result", since = "1.33.0")]
2153 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2154 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2155 pub const fn transpose(self) -> Result<Option<T>, E> {
2156 match self {
2157 Some(Ok(x)) => Ok(Some(x)),
2158 Some(Err(e)) => Err(e),
2159 None => Ok(None),
2160 }
2161 }
2162}
2163
2164#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2165#[cfg_attr(feature = "panic_immediate_abort", inline)]
2166#[cold]
2167#[track_caller]
2168const fn unwrap_failed() -> ! {
2169 panic("called `Option::unwrap()` on a `None` value")
2170}
2171
2172// This is a separate function to reduce the code size of .expect() itself.
2173#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2174#[cfg_attr(feature = "panic_immediate_abort", inline)]
2175#[cold]
2176#[track_caller]
2177const fn expect_failed(msg: &str) -> ! {
2178 panic_display(&msg)
2179}
2180
2181/////////////////////////////////////////////////////////////////////////////
2182// Trait implementations
2183/////////////////////////////////////////////////////////////////////////////
2184
2185#[stable(feature = "rust1", since = "1.0.0")]
2186#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2187impl<T> const Clone for Option<T>
2188where
2189 // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2190 // See https://github.com/rust-lang/rust/issues/144207
2191 T: [const] Clone + [const] Destruct,
2192{
2193 #[inline]
2194 fn clone(&self) -> Self {
2195 match self {
2196 Some(x) => Some(x.clone()),
2197 None => None,
2198 }
2199 }
2200
2201 #[inline]
2202 fn clone_from(&mut self, source: &Self) {
2203 match (self, source) {
2204 (Some(to), Some(from)) => to.clone_from(from),
2205 (to, from) => *to = from.clone(),
2206 }
2207 }
2208}
2209
2210#[unstable(feature = "ergonomic_clones", issue = "132290")]
2211impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2212
2213#[stable(feature = "rust1", since = "1.0.0")]
2214#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2215impl<T> const Default for Option<T> {
2216 /// Returns [`None`][Option::None].
2217 ///
2218 /// # Examples
2219 ///
2220 /// ```
2221 /// let opt: Option<u32> = Option::default();
2222 /// assert!(opt.is_none());
2223 /// ```
2224 #[inline]
2225 fn default() -> Option<T> {
2226 None
2227 }
2228}
2229
2230#[stable(feature = "rust1", since = "1.0.0")]
2231impl<T> IntoIterator for Option<T> {
2232 type Item = T;
2233 type IntoIter = IntoIter<T>;
2234
2235 /// Returns a consuming iterator over the possibly contained value.
2236 ///
2237 /// # Examples
2238 ///
2239 /// ```
2240 /// let x = Some("string");
2241 /// let v: Vec<&str> = x.into_iter().collect();
2242 /// assert_eq!(v, ["string"]);
2243 ///
2244 /// let x = None;
2245 /// let v: Vec<&str> = x.into_iter().collect();
2246 /// assert!(v.is_empty());
2247 /// ```
2248 #[inline]
2249 fn into_iter(self) -> IntoIter<T> {
2250 IntoIter { inner: Item { opt: self } }
2251 }
2252}
2253
2254#[stable(since = "1.4.0", feature = "option_iter")]
2255impl<'a, T> IntoIterator for &'a Option<T> {
2256 type Item = &'a T;
2257 type IntoIter = Iter<'a, T>;
2258
2259 fn into_iter(self) -> Iter<'a, T> {
2260 self.iter()
2261 }
2262}
2263
2264#[stable(since = "1.4.0", feature = "option_iter")]
2265impl<'a, T> IntoIterator for &'a mut Option<T> {
2266 type Item = &'a mut T;
2267 type IntoIter = IterMut<'a, T>;
2268
2269 fn into_iter(self) -> IterMut<'a, T> {
2270 self.iter_mut()
2271 }
2272}
2273
2274#[stable(since = "1.12.0", feature = "option_from")]
2275#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2276impl<T> const From<T> for Option<T> {
2277 /// Moves `val` into a new [`Some`].
2278 ///
2279 /// # Examples
2280 ///
2281 /// ```
2282 /// let o: Option<u8> = Option::from(67);
2283 ///
2284 /// assert_eq!(Some(67), o);
2285 /// ```
2286 fn from(val: T) -> Option<T> {
2287 Some(val)
2288 }
2289}
2290
2291#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2292#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2293impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2294 /// Converts from `&Option<T>` to `Option<&T>`.
2295 ///
2296 /// # Examples
2297 ///
2298 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2299 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2300 /// so this technique uses `from` to first take an [`Option`] to a reference
2301 /// to the value inside the original.
2302 ///
2303 /// [`map`]: Option::map
2304 /// [String]: ../../std/string/struct.String.html "String"
2305 ///
2306 /// ```
2307 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2308 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2309 ///
2310 /// println!("Can still print s: {s:?}");
2311 ///
2312 /// assert_eq!(o, Some(18));
2313 /// ```
2314 fn from(o: &'a Option<T>) -> Option<&'a T> {
2315 o.as_ref()
2316 }
2317}
2318
2319#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2320#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2321impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2322 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2323 ///
2324 /// # Examples
2325 ///
2326 /// ```
2327 /// let mut s = Some(String::from("Hello"));
2328 /// let o: Option<&mut String> = Option::from(&mut s);
2329 ///
2330 /// match o {
2331 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2332 /// None => (),
2333 /// }
2334 ///
2335 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2336 /// ```
2337 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2338 o.as_mut()
2339 }
2340}
2341
2342// Ideally, LLVM should be able to optimize our derive code to this.
2343// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2344// go back to deriving `PartialEq`.
2345#[stable(feature = "rust1", since = "1.0.0")]
2346impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2347#[stable(feature = "rust1", since = "1.0.0")]
2348#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2349impl<T: [const] PartialEq> const PartialEq for Option<T> {
2350 #[inline]
2351 fn eq(&self, other: &Self) -> bool {
2352 // Spelling out the cases explicitly optimizes better than
2353 // `_ => false`
2354 match (self, other) {
2355 (Some(l), Some(r)) => *l == *r,
2356 (Some(_), None) => false,
2357 (None, Some(_)) => false,
2358 (None, None) => true,
2359 }
2360 }
2361}
2362
2363// Manually implementing here somewhat improves codegen for
2364// https://github.com/rust-lang/rust/issues/49892, although still
2365// not optimal.
2366#[stable(feature = "rust1", since = "1.0.0")]
2367#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2368impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2369 #[inline]
2370 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2371 match (self, other) {
2372 (Some(l), Some(r)) => l.partial_cmp(r),
2373 (Some(_), None) => Some(cmp::Ordering::Greater),
2374 (None, Some(_)) => Some(cmp::Ordering::Less),
2375 (None, None) => Some(cmp::Ordering::Equal),
2376 }
2377 }
2378}
2379
2380#[stable(feature = "rust1", since = "1.0.0")]
2381#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2382impl<T: [const] Ord> const Ord for Option<T> {
2383 #[inline]
2384 fn cmp(&self, other: &Self) -> cmp::Ordering {
2385 match (self, other) {
2386 (Some(l), Some(r)) => l.cmp(r),
2387 (Some(_), None) => cmp::Ordering::Greater,
2388 (None, Some(_)) => cmp::Ordering::Less,
2389 (None, None) => cmp::Ordering::Equal,
2390 }
2391 }
2392}
2393
2394/////////////////////////////////////////////////////////////////////////////
2395// The Option Iterators
2396/////////////////////////////////////////////////////////////////////////////
2397
2398#[derive(Clone, Debug)]
2399struct Item<A> {
2400 opt: Option<A>,
2401}
2402
2403impl<A> Iterator for Item<A> {
2404 type Item = A;
2405
2406 #[inline]
2407 fn next(&mut self) -> Option<A> {
2408 self.opt.take()
2409 }
2410
2411 #[inline]
2412 fn size_hint(&self) -> (usize, Option<usize>) {
2413 let len = self.len();
2414 (len, Some(len))
2415 }
2416}
2417
2418impl<A> DoubleEndedIterator for Item<A> {
2419 #[inline]
2420 fn next_back(&mut self) -> Option<A> {
2421 self.opt.take()
2422 }
2423}
2424
2425impl<A> ExactSizeIterator for Item<A> {
2426 #[inline]
2427 fn len(&self) -> usize {
2428 self.opt.len()
2429 }
2430}
2431impl<A> FusedIterator for Item<A> {}
2432unsafe impl<A> TrustedLen for Item<A> {}
2433
2434/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2435///
2436/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2437///
2438/// This `struct` is created by the [`Option::iter`] function.
2439#[stable(feature = "rust1", since = "1.0.0")]
2440#[derive(Debug)]
2441pub struct Iter<'a, A: 'a> {
2442 inner: Item<&'a A>,
2443}
2444
2445#[stable(feature = "rust1", since = "1.0.0")]
2446impl<'a, A> Iterator for Iter<'a, A> {
2447 type Item = &'a A;
2448
2449 #[inline]
2450 fn next(&mut self) -> Option<&'a A> {
2451 self.inner.next()
2452 }
2453 #[inline]
2454 fn size_hint(&self) -> (usize, Option<usize>) {
2455 self.inner.size_hint()
2456 }
2457}
2458
2459#[stable(feature = "rust1", since = "1.0.0")]
2460impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2461 #[inline]
2462 fn next_back(&mut self) -> Option<&'a A> {
2463 self.inner.next_back()
2464 }
2465}
2466
2467#[stable(feature = "rust1", since = "1.0.0")]
2468impl<A> ExactSizeIterator for Iter<'_, A> {}
2469
2470#[stable(feature = "fused", since = "1.26.0")]
2471impl<A> FusedIterator for Iter<'_, A> {}
2472
2473#[unstable(feature = "trusted_len", issue = "37572")]
2474unsafe impl<A> TrustedLen for Iter<'_, A> {}
2475
2476#[stable(feature = "rust1", since = "1.0.0")]
2477impl<A> Clone for Iter<'_, A> {
2478 #[inline]
2479 fn clone(&self) -> Self {
2480 Iter { inner: self.inner.clone() }
2481 }
2482}
2483
2484/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2485///
2486/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2487///
2488/// This `struct` is created by the [`Option::iter_mut`] function.
2489#[stable(feature = "rust1", since = "1.0.0")]
2490#[derive(Debug)]
2491pub struct IterMut<'a, A: 'a> {
2492 inner: Item<&'a mut A>,
2493}
2494
2495#[stable(feature = "rust1", since = "1.0.0")]
2496impl<'a, A> Iterator for IterMut<'a, A> {
2497 type Item = &'a mut A;
2498
2499 #[inline]
2500 fn next(&mut self) -> Option<&'a mut A> {
2501 self.inner.next()
2502 }
2503 #[inline]
2504 fn size_hint(&self) -> (usize, Option<usize>) {
2505 self.inner.size_hint()
2506 }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
2510impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2511 #[inline]
2512 fn next_back(&mut self) -> Option<&'a mut A> {
2513 self.inner.next_back()
2514 }
2515}
2516
2517#[stable(feature = "rust1", since = "1.0.0")]
2518impl<A> ExactSizeIterator for IterMut<'_, A> {}
2519
2520#[stable(feature = "fused", since = "1.26.0")]
2521impl<A> FusedIterator for IterMut<'_, A> {}
2522#[unstable(feature = "trusted_len", issue = "37572")]
2523unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2524
2525/// An iterator over the value in [`Some`] variant of an [`Option`].
2526///
2527/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2528///
2529/// This `struct` is created by the [`Option::into_iter`] function.
2530#[derive(Clone, Debug)]
2531#[stable(feature = "rust1", since = "1.0.0")]
2532pub struct IntoIter<A> {
2533 inner: Item<A>,
2534}
2535
2536#[stable(feature = "rust1", since = "1.0.0")]
2537impl<A> Iterator for IntoIter<A> {
2538 type Item = A;
2539
2540 #[inline]
2541 fn next(&mut self) -> Option<A> {
2542 self.inner.next()
2543 }
2544 #[inline]
2545 fn size_hint(&self) -> (usize, Option<usize>) {
2546 self.inner.size_hint()
2547 }
2548}
2549
2550#[stable(feature = "rust1", since = "1.0.0")]
2551impl<A> DoubleEndedIterator for IntoIter<A> {
2552 #[inline]
2553 fn next_back(&mut self) -> Option<A> {
2554 self.inner.next_back()
2555 }
2556}
2557
2558#[stable(feature = "rust1", since = "1.0.0")]
2559impl<A> ExactSizeIterator for IntoIter<A> {}
2560
2561#[stable(feature = "fused", since = "1.26.0")]
2562impl<A> FusedIterator for IntoIter<A> {}
2563
2564#[unstable(feature = "trusted_len", issue = "37572")]
2565unsafe impl<A> TrustedLen for IntoIter<A> {}
2566
2567/////////////////////////////////////////////////////////////////////////////
2568// FromIterator
2569/////////////////////////////////////////////////////////////////////////////
2570
2571#[stable(feature = "rust1", since = "1.0.0")]
2572impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2573 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2574 /// no further elements are taken, and the [`None`][Option::None] is
2575 /// returned. Should no [`None`][Option::None] occur, a container of type
2576 /// `V` containing the values of each [`Option`] is returned.
2577 ///
2578 /// # Examples
2579 ///
2580 /// Here is an example which increments every integer in a vector.
2581 /// We use the checked variant of `add` that returns `None` when the
2582 /// calculation would result in an overflow.
2583 ///
2584 /// ```
2585 /// let items = vec![0_u16, 1, 2];
2586 ///
2587 /// let res: Option<Vec<u16>> = items
2588 /// .iter()
2589 /// .map(|x| x.checked_add(1))
2590 /// .collect();
2591 ///
2592 /// assert_eq!(res, Some(vec![1, 2, 3]));
2593 /// ```
2594 ///
2595 /// As you can see, this will return the expected, valid items.
2596 ///
2597 /// Here is another example that tries to subtract one from another list
2598 /// of integers, this time checking for underflow:
2599 ///
2600 /// ```
2601 /// let items = vec![2_u16, 1, 0];
2602 ///
2603 /// let res: Option<Vec<u16>> = items
2604 /// .iter()
2605 /// .map(|x| x.checked_sub(1))
2606 /// .collect();
2607 ///
2608 /// assert_eq!(res, None);
2609 /// ```
2610 ///
2611 /// Since the last element is zero, it would underflow. Thus, the resulting
2612 /// value is `None`.
2613 ///
2614 /// Here is a variation on the previous example, showing that no
2615 /// further elements are taken from `iter` after the first `None`.
2616 ///
2617 /// ```
2618 /// let items = vec![3_u16, 2, 1, 10];
2619 ///
2620 /// let mut shared = 0;
2621 ///
2622 /// let res: Option<Vec<u16>> = items
2623 /// .iter()
2624 /// .map(|x| { shared += x; x.checked_sub(2) })
2625 /// .collect();
2626 ///
2627 /// assert_eq!(res, None);
2628 /// assert_eq!(shared, 6);
2629 /// ```
2630 ///
2631 /// Since the third element caused an underflow, no further elements were taken,
2632 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2633 #[inline]
2634 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2635 // FIXME(#11084): This could be replaced with Iterator::scan when this
2636 // performance bug is closed.
2637
2638 iter::try_process(iter.into_iter(), |i| i.collect())
2639 }
2640}
2641
2642#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2643#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2644impl<T> const ops::Try for Option<T> {
2645 type Output = T;
2646 type Residual = Option<convert::Infallible>;
2647
2648 #[inline]
2649 fn from_output(output: Self::Output) -> Self {
2650 Some(output)
2651 }
2652
2653 #[inline]
2654 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2655 match self {
2656 Some(v) => ControlFlow::Continue(v),
2657 None => ControlFlow::Break(None),
2658 }
2659 }
2660}
2661
2662#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2663#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2664// Note: manually specifying the residual type instead of using the default to work around
2665// https://github.com/rust-lang/rust/issues/99940
2666impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2667 #[inline]
2668 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2669 match residual {
2670 None => None,
2671 }
2672 }
2673}
2674
2675#[diagnostic::do_not_recommend]
2676#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2677#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2678impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2679 #[inline]
2680 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2681 None
2682 }
2683}
2684
2685#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2686#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2687impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2688 type TryType = Option<T>;
2689}
2690
2691impl<T> Option<Option<T>> {
2692 /// Converts from `Option<Option<T>>` to `Option<T>`.
2693 ///
2694 /// # Examples
2695 ///
2696 /// Basic usage:
2697 ///
2698 /// ```
2699 /// let x: Option<Option<u32>> = Some(Some(6));
2700 /// assert_eq!(Some(6), x.flatten());
2701 ///
2702 /// let x: Option<Option<u32>> = Some(None);
2703 /// assert_eq!(None, x.flatten());
2704 ///
2705 /// let x: Option<Option<u32>> = None;
2706 /// assert_eq!(None, x.flatten());
2707 /// ```
2708 ///
2709 /// Flattening only removes one level of nesting at a time:
2710 ///
2711 /// ```
2712 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2713 /// assert_eq!(Some(Some(6)), x.flatten());
2714 /// assert_eq!(Some(6), x.flatten().flatten());
2715 /// ```
2716 #[inline]
2717 #[stable(feature = "option_flattening", since = "1.40.0")]
2718 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2719 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2720 pub const fn flatten(self) -> Option<T> {
2721 // FIXME(const-hack): could be written with `and_then`
2722 match self {
2723 Some(inner) => inner,
2724 None => None,
2725 }
2726 }
2727}
2728
2729impl<T, const N: usize> [Option<T>; N] {
2730 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2731 ///
2732 /// # Examples
2733 ///
2734 /// ```
2735 /// #![feature(option_array_transpose)]
2736 /// # use std::option::Option;
2737 ///
2738 /// let data = [Some(0); 1000];
2739 /// let data: Option<[u8; 1000]> = data.transpose();
2740 /// assert_eq!(data, Some([0; 1000]));
2741 ///
2742 /// let data = [Some(0), None];
2743 /// let data: Option<[u8; 2]> = data.transpose();
2744 /// assert_eq!(data, None);
2745 /// ```
2746 #[inline]
2747 #[unstable(feature = "option_array_transpose", issue = "130828")]
2748 pub fn transpose(self) -> Option<[T; N]> {
2749 self.try_map(core::convert::identity)
2750 }
2751}