core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//! `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//! `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
134//! | `&U` | when `U: Sized` |
135//! | `&mut U` | when `U: Sized` |
136//! | `fn`, `extern "C" fn`[^extern_fn] | always |
137//! | [`num::NonZero*`] | always |
138//! | [`ptr::NonNull<U>`] | when `U: Sized` |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//! <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//! <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//! <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//! <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//! If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//! If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//! (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//! function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//! [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//! a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//! [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//! if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//! the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//! provided function to the contained value of [`Some`] and leaving
256//! [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//! [`Some`], or returns the provided default value if the [`Option`] is
269//! [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//! of [`Some`], or returns the result of evaluating the provided
272//! fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method | self | input | output |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None` | (ignored) | `None` |
307//! | [`and`] | `Some(x)` | `None` | `None` |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`] | `None` | `None` | `None` |
310//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
311//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None` | `None` | `None` |
313//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method | self | function input | function result | output |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
329//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
330//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
331//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
332//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
333//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//! .into_iter()
351//! .map(|x| {
352//! // `checked_sub()` returns `None` on error
353//! x.checked_sub(1)
354//! // same with `checked_mul()`
355//! .and_then(|x| x.checked_mul(2))
356//! // `BTreeMap::get` returns `None` on error
357//! .and_then(|x| bt.get(&x))
358//! // Substitute an error message if we have `None` so far
359//! .or(Some(&"error!"))
360//! .copied()
361//! // Won't panic because we unconditionally used `Some` above
362//! .unwrap()
363//! })
364//! .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation. With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`. If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//! value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//! contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//! contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//! // Explicit returns to illustrate return types matching
430//! match do_insert {
431//! true => return (0..4).chain(Some(42)).chain(4..8),
432//! false => return (0..4).chain(None).chain(4..8),
433//! }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//! // Explicit returns to illustrate return types not matching
452//! match do_insert {
453//! true => return (0..4).chain(once(42)).chain(4..8),
454//! false => return (0..4).chain(empty()).chain(4..8),
455//! }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//! default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//! default value of type `T` (which must implement [`Default`]) if it is
504//! [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//! computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//! any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//! if any, replacing the [`Option`] with a [`Some`] containing the
520//! provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//! println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//! Kingdom::Plant(250, "redwood"),
549//! Kingdom::Plant(230, "noble fir"),
550//! Kingdom::Plant(229, "sugar pine"),
551//! Kingdom::Animal(25, "blue whale"),
552//! Kingdom::Animal(19, "fin whale"),
553//! Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//! match *big_thing {
562//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//! // Now we've found the name of some big animal
564//! size_of_biggest_animal = size;
565//! name_of_biggest_animal = Some(name);
566//! }
567//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//! }
569//! }
570//!
571//! match name_of_biggest_animal {
572//! Some(name) => println!("the biggest animal is {name}"),
573//! None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579use crate::iter::{self, FusedIterator, TrustedLen};
580use crate::marker::Destruct;
581use crate::ops::{self, ControlFlow, Deref, DerefMut};
582use crate::panicking::{panic, panic_display};
583use crate::pin::Pin;
584use crate::{cmp, convert, hint, mem, slice};
585
586/// The `Option` type. See [the module level documentation](self) for more.
587#[doc(search_unbox)]
588#[derive(Copy, Eq, Debug, Hash)]
589#[rustc_diagnostic_item = "Option"]
590#[lang = "Option"]
591#[stable(feature = "rust1", since = "1.0.0")]
592#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
593pub enum Option<T> {
594 /// No value.
595 #[lang = "None"]
596 #[stable(feature = "rust1", since = "1.0.0")]
597 None,
598 /// Some value of type `T`.
599 #[lang = "Some"]
600 #[stable(feature = "rust1", since = "1.0.0")]
601 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
602}
603
604/////////////////////////////////////////////////////////////////////////////
605// Type implementation
606/////////////////////////////////////////////////////////////////////////////
607
608impl<T> Option<T> {
609 /////////////////////////////////////////////////////////////////////////
610 // Querying the contained values
611 /////////////////////////////////////////////////////////////////////////
612
613 /// Returns `true` if the option is a [`Some`] value.
614 ///
615 /// # Examples
616 ///
617 /// ```
618 /// let x: Option<u32> = Some(2);
619 /// assert_eq!(x.is_some(), true);
620 ///
621 /// let x: Option<u32> = None;
622 /// assert_eq!(x.is_some(), false);
623 /// ```
624 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
625 #[inline]
626 #[stable(feature = "rust1", since = "1.0.0")]
627 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
628 pub const fn is_some(&self) -> bool {
629 matches!(*self, Some(_))
630 }
631
632 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
633 ///
634 /// # Examples
635 ///
636 /// ```
637 /// let x: Option<u32> = Some(2);
638 /// assert_eq!(x.is_some_and(|x| x > 1), true);
639 ///
640 /// let x: Option<u32> = Some(0);
641 /// assert_eq!(x.is_some_and(|x| x > 1), false);
642 ///
643 /// let x: Option<u32> = None;
644 /// assert_eq!(x.is_some_and(|x| x > 1), false);
645 ///
646 /// let x: Option<String> = Some("ownership".to_string());
647 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
648 /// println!("still alive {:?}", x);
649 /// ```
650 #[must_use]
651 #[inline]
652 #[stable(feature = "is_some_and", since = "1.70.0")]
653 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
654 pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
655 match self {
656 None => false,
657 Some(x) => f(x),
658 }
659 }
660
661 /// Returns `true` if the option is a [`None`] value.
662 ///
663 /// # Examples
664 ///
665 /// ```
666 /// let x: Option<u32> = Some(2);
667 /// assert_eq!(x.is_none(), false);
668 ///
669 /// let x: Option<u32> = None;
670 /// assert_eq!(x.is_none(), true);
671 /// ```
672 #[must_use = "if you intended to assert that this doesn't have a value, consider \
673 wrapping this in an `assert!()` instead"]
674 #[inline]
675 #[stable(feature = "rust1", since = "1.0.0")]
676 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
677 pub const fn is_none(&self) -> bool {
678 !self.is_some()
679 }
680
681 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
682 ///
683 /// # Examples
684 ///
685 /// ```
686 /// let x: Option<u32> = Some(2);
687 /// assert_eq!(x.is_none_or(|x| x > 1), true);
688 ///
689 /// let x: Option<u32> = Some(0);
690 /// assert_eq!(x.is_none_or(|x| x > 1), false);
691 ///
692 /// let x: Option<u32> = None;
693 /// assert_eq!(x.is_none_or(|x| x > 1), true);
694 ///
695 /// let x: Option<String> = Some("ownership".to_string());
696 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
697 /// println!("still alive {:?}", x);
698 /// ```
699 #[must_use]
700 #[inline]
701 #[stable(feature = "is_none_or", since = "1.82.0")]
702 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
703 pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
704 match self {
705 None => true,
706 Some(x) => f(x),
707 }
708 }
709
710 /////////////////////////////////////////////////////////////////////////
711 // Adapter for working with references
712 /////////////////////////////////////////////////////////////////////////
713
714 /// Converts from `&Option<T>` to `Option<&T>`.
715 ///
716 /// # Examples
717 ///
718 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
719 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
720 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
721 /// reference to the value inside the original.
722 ///
723 /// [`map`]: Option::map
724 /// [String]: ../../std/string/struct.String.html "String"
725 /// [`String`]: ../../std/string/struct.String.html "String"
726 ///
727 /// ```
728 /// let text: Option<String> = Some("Hello, world!".to_string());
729 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
730 /// // then consume *that* with `map`, leaving `text` on the stack.
731 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
732 /// println!("still can print text: {text:?}");
733 /// ```
734 #[inline]
735 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
736 #[stable(feature = "rust1", since = "1.0.0")]
737 pub const fn as_ref(&self) -> Option<&T> {
738 match *self {
739 Some(ref x) => Some(x),
740 None => None,
741 }
742 }
743
744 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// let mut x = Some(2);
750 /// match x.as_mut() {
751 /// Some(v) => *v = 42,
752 /// None => {},
753 /// }
754 /// assert_eq!(x, Some(42));
755 /// ```
756 #[inline]
757 #[stable(feature = "rust1", since = "1.0.0")]
758 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
759 pub const fn as_mut(&mut self) -> Option<&mut T> {
760 match *self {
761 Some(ref mut x) => Some(x),
762 None => None,
763 }
764 }
765
766 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
767 ///
768 /// [&]: reference "shared reference"
769 #[inline]
770 #[must_use]
771 #[stable(feature = "pin", since = "1.33.0")]
772 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
773 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
774 // FIXME(const-hack): use `map` once that is possible
775 match Pin::get_ref(self).as_ref() {
776 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
777 // which is pinned.
778 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
779 None => None,
780 }
781 }
782
783 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
784 ///
785 /// [&mut]: reference "mutable reference"
786 #[inline]
787 #[must_use]
788 #[stable(feature = "pin", since = "1.33.0")]
789 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
790 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
791 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
792 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
793 unsafe {
794 // FIXME(const-hack): use `map` once that is possible
795 match Pin::get_unchecked_mut(self).as_mut() {
796 Some(x) => Some(Pin::new_unchecked(x)),
797 None => None,
798 }
799 }
800 }
801
802 #[inline]
803 const fn len(&self) -> usize {
804 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
805 let discriminant: isize = crate::intrinsics::discriminant_value(self);
806 discriminant as usize
807 }
808
809 /// Returns a slice of the contained value, if any. If this is `None`, an
810 /// empty slice is returned. This can be useful to have a single type of
811 /// iterator over an `Option` or slice.
812 ///
813 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
814 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
815 ///
816 /// # Examples
817 ///
818 /// ```rust
819 /// assert_eq!(
820 /// [Some(1234).as_slice(), None.as_slice()],
821 /// [&[1234][..], &[][..]],
822 /// );
823 /// ```
824 ///
825 /// The inverse of this function is (discounting
826 /// borrowing) [`[_]::first`](slice::first):
827 ///
828 /// ```rust
829 /// for i in [Some(1234_u16), None] {
830 /// assert_eq!(i.as_ref(), i.as_slice().first());
831 /// }
832 /// ```
833 #[inline]
834 #[must_use]
835 #[stable(feature = "option_as_slice", since = "1.75.0")]
836 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
837 pub const fn as_slice(&self) -> &[T] {
838 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
839 // to the payload, with a length of 1, so this is equivalent to
840 // `slice::from_ref`, and thus is safe.
841 // When the `Option` is `None`, the length used is 0, so to be safe it
842 // just needs to be aligned, which it is because `&self` is aligned and
843 // the offset used is a multiple of alignment.
844 //
845 // Here we assume that `offset_of!` always returns an offset to an
846 // in-bounds and correctly aligned position for a `T` (even if in the
847 // `None` case it's just padding).
848 unsafe {
849 slice::from_raw_parts(
850 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
851 self.len(),
852 )
853 }
854 }
855
856 /// Returns a mutable slice of the contained value, if any. If this is
857 /// `None`, an empty slice is returned. This can be useful to have a
858 /// single type of iterator over an `Option` or slice.
859 ///
860 /// Note: Should you have an `Option<&mut T>` instead of a
861 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
862 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
863 ///
864 /// # Examples
865 ///
866 /// ```rust
867 /// assert_eq!(
868 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
869 /// [&mut [1234][..], &mut [][..]],
870 /// );
871 /// ```
872 ///
873 /// The result is a mutable slice of zero or one items that points into
874 /// our original `Option`:
875 ///
876 /// ```rust
877 /// let mut x = Some(1234);
878 /// x.as_mut_slice()[0] += 1;
879 /// assert_eq!(x, Some(1235));
880 /// ```
881 ///
882 /// The inverse of this method (discounting borrowing)
883 /// is [`[_]::first_mut`](slice::first_mut):
884 ///
885 /// ```rust
886 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
887 /// ```
888 #[inline]
889 #[must_use]
890 #[stable(feature = "option_as_slice", since = "1.75.0")]
891 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
892 pub const fn as_mut_slice(&mut self) -> &mut [T] {
893 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
894 // to the payload, with a length of 1, so this is equivalent to
895 // `slice::from_mut`, and thus is safe.
896 // When the `Option` is `None`, the length used is 0, so to be safe it
897 // just needs to be aligned, which it is because `&self` is aligned and
898 // the offset used is a multiple of alignment.
899 //
900 // In the new version, the intrinsic creates a `*const T` from a
901 // mutable reference so it is safe to cast back to a mutable pointer
902 // here. As with `as_slice`, the intrinsic always returns a pointer to
903 // an in-bounds and correctly aligned position for a `T` (even if in
904 // the `None` case it's just padding).
905 unsafe {
906 slice::from_raw_parts_mut(
907 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
908 self.len(),
909 )
910 }
911 }
912
913 /////////////////////////////////////////////////////////////////////////
914 // Getting to contained values
915 /////////////////////////////////////////////////////////////////////////
916
917 /// Returns the contained [`Some`] value, consuming the `self` value.
918 ///
919 /// # Panics
920 ///
921 /// Panics if the value is a [`None`] with a custom panic message provided by
922 /// `msg`.
923 ///
924 /// # Examples
925 ///
926 /// ```
927 /// let x = Some("value");
928 /// assert_eq!(x.expect("fruits are healthy"), "value");
929 /// ```
930 ///
931 /// ```should_panic
932 /// let x: Option<&str> = None;
933 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
934 /// ```
935 ///
936 /// # Recommended Message Style
937 ///
938 /// We recommend that `expect` messages are used to describe the reason you
939 /// _expect_ the `Option` should be `Some`.
940 ///
941 /// ```should_panic
942 /// # let slice: &[u8] = &[];
943 /// let item = slice.get(0)
944 /// .expect("slice should not be empty");
945 /// ```
946 ///
947 /// **Hint**: If you're having trouble remembering how to phrase expect
948 /// error messages remember to focus on the word "should" as in "env
949 /// variable should be set by blah" or "the given binary should be available
950 /// and executable by the current user".
951 ///
952 /// For more detail on expect message styles and the reasoning behind our
953 /// recommendation please refer to the section on ["Common Message
954 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
955 #[inline]
956 #[track_caller]
957 #[stable(feature = "rust1", since = "1.0.0")]
958 #[rustc_diagnostic_item = "option_expect"]
959 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
960 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
961 pub const fn expect(self, msg: &str) -> T {
962 match self {
963 Some(val) => val,
964 None => expect_failed(msg),
965 }
966 }
967
968 /// Returns the contained [`Some`] value, consuming the `self` value.
969 ///
970 /// Because this function may panic, its use is generally discouraged.
971 /// Panics are meant for unrecoverable errors, and
972 /// [may abort the entire program][panic-abort].
973 ///
974 /// Instead, prefer to use pattern matching and handle the [`None`]
975 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
976 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
977 /// [the `?` (try) operator][try-option].
978 ///
979 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
980 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
981 /// [`unwrap_or`]: Option::unwrap_or
982 /// [`unwrap_or_else`]: Option::unwrap_or_else
983 /// [`unwrap_or_default`]: Option::unwrap_or_default
984 ///
985 /// # Panics
986 ///
987 /// Panics if the self value equals [`None`].
988 ///
989 /// # Examples
990 ///
991 /// ```
992 /// let x = Some("air");
993 /// assert_eq!(x.unwrap(), "air");
994 /// ```
995 ///
996 /// ```should_panic
997 /// let x: Option<&str> = None;
998 /// assert_eq!(x.unwrap(), "air"); // fails
999 /// ```
1000 #[inline(always)]
1001 #[track_caller]
1002 #[stable(feature = "rust1", since = "1.0.0")]
1003 #[rustc_diagnostic_item = "option_unwrap"]
1004 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1005 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1006 pub const fn unwrap(self) -> T {
1007 match self {
1008 Some(val) => val,
1009 None => unwrap_failed(),
1010 }
1011 }
1012
1013 /// Returns the contained [`Some`] value or a provided default.
1014 ///
1015 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1016 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1017 /// which is lazily evaluated.
1018 ///
1019 /// [`unwrap_or_else`]: Option::unwrap_or_else
1020 ///
1021 /// # Examples
1022 ///
1023 /// ```
1024 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1025 /// assert_eq!(None.unwrap_or("bike"), "bike");
1026 /// ```
1027 #[inline]
1028 #[stable(feature = "rust1", since = "1.0.0")]
1029 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1030 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1031 pub const fn unwrap_or(self, default: T) -> T
1032 where
1033 T: [const] Destruct,
1034 {
1035 match self {
1036 Some(x) => x,
1037 None => default,
1038 }
1039 }
1040
1041 /// Returns the contained [`Some`] value or computes it from a closure.
1042 ///
1043 /// # Examples
1044 ///
1045 /// ```
1046 /// let k = 10;
1047 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1048 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1049 /// ```
1050 #[inline]
1051 #[track_caller]
1052 #[stable(feature = "rust1", since = "1.0.0")]
1053 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1054 pub const fn unwrap_or_else<F>(self, f: F) -> T
1055 where
1056 F: [const] FnOnce() -> T + [const] Destruct,
1057 {
1058 match self {
1059 Some(x) => x,
1060 None => f(),
1061 }
1062 }
1063
1064 /// Returns the contained [`Some`] value or a default.
1065 ///
1066 /// Consumes the `self` argument then, if [`Some`], returns the contained
1067 /// value, otherwise if [`None`], returns the [default value] for that
1068 /// type.
1069 ///
1070 /// # Examples
1071 ///
1072 /// ```
1073 /// let x: Option<u32> = None;
1074 /// let y: Option<u32> = Some(12);
1075 ///
1076 /// assert_eq!(x.unwrap_or_default(), 0);
1077 /// assert_eq!(y.unwrap_or_default(), 12);
1078 /// ```
1079 ///
1080 /// [default value]: Default::default
1081 /// [`parse`]: str::parse
1082 /// [`FromStr`]: crate::str::FromStr
1083 #[inline]
1084 #[stable(feature = "rust1", since = "1.0.0")]
1085 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1086 pub const fn unwrap_or_default(self) -> T
1087 where
1088 T: [const] Default,
1089 {
1090 match self {
1091 Some(x) => x,
1092 None => T::default(),
1093 }
1094 }
1095
1096 /// Returns the contained [`Some`] value, consuming the `self` value,
1097 /// without checking that the value is not [`None`].
1098 ///
1099 /// # Safety
1100 ///
1101 /// Calling this method on [`None`] is *[undefined behavior]*.
1102 ///
1103 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1104 ///
1105 /// # Examples
1106 ///
1107 /// ```
1108 /// let x = Some("air");
1109 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1110 /// ```
1111 ///
1112 /// ```no_run
1113 /// let x: Option<&str> = None;
1114 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1115 /// ```
1116 #[inline]
1117 #[track_caller]
1118 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1119 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1120 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1121 pub const unsafe fn unwrap_unchecked(self) -> T {
1122 match self {
1123 Some(val) => val,
1124 // SAFETY: the safety contract must be upheld by the caller.
1125 None => unsafe { hint::unreachable_unchecked() },
1126 }
1127 }
1128
1129 /////////////////////////////////////////////////////////////////////////
1130 // Transforming contained values
1131 /////////////////////////////////////////////////////////////////////////
1132
1133 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1134 ///
1135 /// # Examples
1136 ///
1137 /// Calculates the length of an <code>Option<[String]></code> as an
1138 /// <code>Option<[usize]></code>, consuming the original:
1139 ///
1140 /// [String]: ../../std/string/struct.String.html "String"
1141 /// ```
1142 /// let maybe_some_string = Some(String::from("Hello, World!"));
1143 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1144 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1145 /// assert_eq!(maybe_some_len, Some(13));
1146 ///
1147 /// let x: Option<&str> = None;
1148 /// assert_eq!(x.map(|s| s.len()), None);
1149 /// ```
1150 #[inline]
1151 #[stable(feature = "rust1", since = "1.0.0")]
1152 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1153 pub const fn map<U, F>(self, f: F) -> Option<U>
1154 where
1155 F: [const] FnOnce(T) -> U + [const] Destruct,
1156 {
1157 match self {
1158 Some(x) => Some(f(x)),
1159 None => None,
1160 }
1161 }
1162
1163 /// Calls a function with a reference to the contained value if [`Some`].
1164 ///
1165 /// Returns the original option.
1166 ///
1167 /// # Examples
1168 ///
1169 /// ```
1170 /// let list = vec![1, 2, 3];
1171 ///
1172 /// // prints "got: 2"
1173 /// let x = list
1174 /// .get(1)
1175 /// .inspect(|x| println!("got: {x}"))
1176 /// .expect("list should be long enough");
1177 ///
1178 /// // prints nothing
1179 /// list.get(5).inspect(|x| println!("got: {x}"));
1180 /// ```
1181 #[inline]
1182 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1183 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1184 pub const fn inspect<F>(self, f: F) -> Self
1185 where
1186 F: [const] FnOnce(&T) + [const] Destruct,
1187 {
1188 if let Some(ref x) = self {
1189 f(x);
1190 }
1191
1192 self
1193 }
1194
1195 /// Returns the provided default result (if none),
1196 /// or applies a function to the contained value (if any).
1197 ///
1198 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1199 /// the result of a function call, it is recommended to use [`map_or_else`],
1200 /// which is lazily evaluated.
1201 ///
1202 /// [`map_or_else`]: Option::map_or_else
1203 ///
1204 /// # Examples
1205 ///
1206 /// ```
1207 /// let x = Some("foo");
1208 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1209 ///
1210 /// let x: Option<&str> = None;
1211 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1212 /// ```
1213 #[inline]
1214 #[stable(feature = "rust1", since = "1.0.0")]
1215 #[must_use = "if you don't need the returned value, use `if let` instead"]
1216 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1217 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1218 where
1219 F: [const] FnOnce(T) -> U + [const] Destruct,
1220 U: [const] Destruct,
1221 {
1222 match self {
1223 Some(t) => f(t),
1224 None => default,
1225 }
1226 }
1227
1228 /// Computes a default function result (if none), or
1229 /// applies a different function to the contained value (if any).
1230 ///
1231 /// # Basic examples
1232 ///
1233 /// ```
1234 /// let k = 21;
1235 ///
1236 /// let x = Some("foo");
1237 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1238 ///
1239 /// let x: Option<&str> = None;
1240 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1241 /// ```
1242 ///
1243 /// # Handling a Result-based fallback
1244 ///
1245 /// A somewhat common occurrence when dealing with optional values
1246 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1247 /// a fallible fallback if the option is not present. This example
1248 /// parses a command line argument (if present), or the contents of a file to
1249 /// an integer. However, unlike accessing the command line argument, reading
1250 /// the file is fallible, so it must be wrapped with `Ok`.
1251 ///
1252 /// ```no_run
1253 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1254 /// let v: u64 = std::env::args()
1255 /// .nth(1)
1256 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1257 /// .parse()?;
1258 /// # Ok(())
1259 /// # }
1260 /// ```
1261 #[inline]
1262 #[stable(feature = "rust1", since = "1.0.0")]
1263 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1264 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1265 where
1266 D: [const] FnOnce() -> U + [const] Destruct,
1267 F: [const] FnOnce(T) -> U + [const] Destruct,
1268 {
1269 match self {
1270 Some(t) => f(t),
1271 None => default(),
1272 }
1273 }
1274
1275 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1276 /// value if the option is [`Some`], otherwise if [`None`], returns the
1277 /// [default value] for the type `U`.
1278 ///
1279 /// # Examples
1280 ///
1281 /// ```
1282 /// #![feature(result_option_map_or_default)]
1283 ///
1284 /// let x: Option<&str> = Some("hi");
1285 /// let y: Option<&str> = None;
1286 ///
1287 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1288 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1289 /// ```
1290 ///
1291 /// [default value]: Default::default
1292 #[inline]
1293 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1294 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1295 pub const fn map_or_default<U, F>(self, f: F) -> U
1296 where
1297 U: [const] Default,
1298 F: [const] FnOnce(T) -> U + [const] Destruct,
1299 {
1300 match self {
1301 Some(t) => f(t),
1302 None => U::default(),
1303 }
1304 }
1305
1306 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1307 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1308 ///
1309 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1310 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1311 /// lazily evaluated.
1312 ///
1313 /// [`Ok(v)`]: Ok
1314 /// [`Err(err)`]: Err
1315 /// [`Some(v)`]: Some
1316 /// [`ok_or_else`]: Option::ok_or_else
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// let x = Some("foo");
1322 /// assert_eq!(x.ok_or(0), Ok("foo"));
1323 ///
1324 /// let x: Option<&str> = None;
1325 /// assert_eq!(x.ok_or(0), Err(0));
1326 /// ```
1327 #[inline]
1328 #[stable(feature = "rust1", since = "1.0.0")]
1329 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1330 pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1331 match self {
1332 Some(v) => Ok(v),
1333 None => Err(err),
1334 }
1335 }
1336
1337 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1338 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1339 ///
1340 /// [`Ok(v)`]: Ok
1341 /// [`Err(err())`]: Err
1342 /// [`Some(v)`]: Some
1343 ///
1344 /// # Examples
1345 ///
1346 /// ```
1347 /// let x = Some("foo");
1348 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1349 ///
1350 /// let x: Option<&str> = None;
1351 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1352 /// ```
1353 #[inline]
1354 #[stable(feature = "rust1", since = "1.0.0")]
1355 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1356 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1357 where
1358 F: [const] FnOnce() -> E + [const] Destruct,
1359 {
1360 match self {
1361 Some(v) => Ok(v),
1362 None => Err(err()),
1363 }
1364 }
1365
1366 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1367 ///
1368 /// Leaves the original Option in-place, creating a new one with a reference
1369 /// to the original one, additionally coercing the contents via [`Deref`].
1370 ///
1371 /// # Examples
1372 ///
1373 /// ```
1374 /// let x: Option<String> = Some("hey".to_owned());
1375 /// assert_eq!(x.as_deref(), Some("hey"));
1376 ///
1377 /// let x: Option<String> = None;
1378 /// assert_eq!(x.as_deref(), None);
1379 /// ```
1380 #[inline]
1381 #[stable(feature = "option_deref", since = "1.40.0")]
1382 pub fn as_deref(&self) -> Option<&T::Target>
1383 where
1384 T: Deref,
1385 {
1386 self.as_ref().map(|t| t.deref())
1387 }
1388
1389 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1390 ///
1391 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1392 /// the inner type's [`Deref::Target`] type.
1393 ///
1394 /// # Examples
1395 ///
1396 /// ```
1397 /// let mut x: Option<String> = Some("hey".to_owned());
1398 /// assert_eq!(x.as_deref_mut().map(|x| {
1399 /// x.make_ascii_uppercase();
1400 /// x
1401 /// }), Some("HEY".to_owned().as_mut_str()));
1402 /// ```
1403 #[inline]
1404 #[stable(feature = "option_deref", since = "1.40.0")]
1405 pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1406 where
1407 T: DerefMut,
1408 {
1409 self.as_mut().map(|t| t.deref_mut())
1410 }
1411
1412 /////////////////////////////////////////////////////////////////////////
1413 // Iterator constructors
1414 /////////////////////////////////////////////////////////////////////////
1415
1416 /// Returns an iterator over the possibly contained value.
1417 ///
1418 /// # Examples
1419 ///
1420 /// ```
1421 /// let x = Some(4);
1422 /// assert_eq!(x.iter().next(), Some(&4));
1423 ///
1424 /// let x: Option<u32> = None;
1425 /// assert_eq!(x.iter().next(), None);
1426 /// ```
1427 #[inline]
1428 #[stable(feature = "rust1", since = "1.0.0")]
1429 pub fn iter(&self) -> Iter<'_, T> {
1430 Iter { inner: Item { opt: self.as_ref() } }
1431 }
1432
1433 /// Returns a mutable iterator over the possibly contained value.
1434 ///
1435 /// # Examples
1436 ///
1437 /// ```
1438 /// let mut x = Some(4);
1439 /// match x.iter_mut().next() {
1440 /// Some(v) => *v = 42,
1441 /// None => {},
1442 /// }
1443 /// assert_eq!(x, Some(42));
1444 ///
1445 /// let mut x: Option<u32> = None;
1446 /// assert_eq!(x.iter_mut().next(), None);
1447 /// ```
1448 #[inline]
1449 #[stable(feature = "rust1", since = "1.0.0")]
1450 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1451 IterMut { inner: Item { opt: self.as_mut() } }
1452 }
1453
1454 /////////////////////////////////////////////////////////////////////////
1455 // Boolean operations on the values, eager and lazy
1456 /////////////////////////////////////////////////////////////////////////
1457
1458 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1459 ///
1460 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1461 /// result of a function call, it is recommended to use [`and_then`], which is
1462 /// lazily evaluated.
1463 ///
1464 /// [`and_then`]: Option::and_then
1465 ///
1466 /// # Examples
1467 ///
1468 /// ```
1469 /// let x = Some(2);
1470 /// let y: Option<&str> = None;
1471 /// assert_eq!(x.and(y), None);
1472 ///
1473 /// let x: Option<u32> = None;
1474 /// let y = Some("foo");
1475 /// assert_eq!(x.and(y), None);
1476 ///
1477 /// let x = Some(2);
1478 /// let y = Some("foo");
1479 /// assert_eq!(x.and(y), Some("foo"));
1480 ///
1481 /// let x: Option<u32> = None;
1482 /// let y: Option<&str> = None;
1483 /// assert_eq!(x.and(y), None);
1484 /// ```
1485 #[inline]
1486 #[stable(feature = "rust1", since = "1.0.0")]
1487 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1488 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1489 where
1490 T: [const] Destruct,
1491 U: [const] Destruct,
1492 {
1493 match self {
1494 Some(_) => optb,
1495 None => None,
1496 }
1497 }
1498
1499 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1500 /// wrapped value and returns the result.
1501 ///
1502 /// Some languages call this operation flatmap.
1503 ///
1504 /// # Examples
1505 ///
1506 /// ```
1507 /// fn sq_then_to_string(x: u32) -> Option<String> {
1508 /// x.checked_mul(x).map(|sq| sq.to_string())
1509 /// }
1510 ///
1511 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1512 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1513 /// assert_eq!(None.and_then(sq_then_to_string), None);
1514 /// ```
1515 ///
1516 /// Often used to chain fallible operations that may return [`None`].
1517 ///
1518 /// ```
1519 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1520 ///
1521 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1522 /// assert_eq!(item_0_1, Some(&"A1"));
1523 ///
1524 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1525 /// assert_eq!(item_2_0, None);
1526 /// ```
1527 #[doc(alias = "flatmap")]
1528 #[inline]
1529 #[stable(feature = "rust1", since = "1.0.0")]
1530 #[rustc_confusables("flat_map", "flatmap")]
1531 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1532 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1533 where
1534 F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1535 {
1536 match self {
1537 Some(x) => f(x),
1538 None => None,
1539 }
1540 }
1541
1542 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1543 /// with the wrapped value and returns:
1544 ///
1545 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1546 /// value), and
1547 /// - [`None`] if `predicate` returns `false`.
1548 ///
1549 /// This function works similar to [`Iterator::filter()`]. You can imagine
1550 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1551 /// lets you decide which elements to keep.
1552 ///
1553 /// # Examples
1554 ///
1555 /// ```rust
1556 /// fn is_even(n: &i32) -> bool {
1557 /// n % 2 == 0
1558 /// }
1559 ///
1560 /// assert_eq!(None.filter(is_even), None);
1561 /// assert_eq!(Some(3).filter(is_even), None);
1562 /// assert_eq!(Some(4).filter(is_even), Some(4));
1563 /// ```
1564 ///
1565 /// [`Some(t)`]: Some
1566 #[inline]
1567 #[stable(feature = "option_filter", since = "1.27.0")]
1568 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1569 pub const fn filter<P>(self, predicate: P) -> Self
1570 where
1571 P: [const] FnOnce(&T) -> bool + [const] Destruct,
1572 T: [const] Destruct,
1573 {
1574 if let Some(x) = self {
1575 if predicate(&x) {
1576 return Some(x);
1577 }
1578 }
1579 None
1580 }
1581
1582 /// Returns the option if it contains a value, otherwise returns `optb`.
1583 ///
1584 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1585 /// result of a function call, it is recommended to use [`or_else`], which is
1586 /// lazily evaluated.
1587 ///
1588 /// [`or_else`]: Option::or_else
1589 ///
1590 /// # Examples
1591 ///
1592 /// ```
1593 /// let x = Some(2);
1594 /// let y = None;
1595 /// assert_eq!(x.or(y), Some(2));
1596 ///
1597 /// let x = None;
1598 /// let y = Some(100);
1599 /// assert_eq!(x.or(y), Some(100));
1600 ///
1601 /// let x = Some(2);
1602 /// let y = Some(100);
1603 /// assert_eq!(x.or(y), Some(2));
1604 ///
1605 /// let x: Option<u32> = None;
1606 /// let y = None;
1607 /// assert_eq!(x.or(y), None);
1608 /// ```
1609 #[inline]
1610 #[stable(feature = "rust1", since = "1.0.0")]
1611 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1612 pub const fn or(self, optb: Option<T>) -> Option<T>
1613 where
1614 T: [const] Destruct,
1615 {
1616 match self {
1617 x @ Some(_) => x,
1618 None => optb,
1619 }
1620 }
1621
1622 /// Returns the option if it contains a value, otherwise calls `f` and
1623 /// returns the result.
1624 ///
1625 /// # Examples
1626 ///
1627 /// ```
1628 /// fn nobody() -> Option<&'static str> { None }
1629 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1630 ///
1631 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1632 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1633 /// assert_eq!(None.or_else(nobody), None);
1634 /// ```
1635 #[inline]
1636 #[stable(feature = "rust1", since = "1.0.0")]
1637 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1638 pub const fn or_else<F>(self, f: F) -> Option<T>
1639 where
1640 F: [const] FnOnce() -> Option<T> + [const] Destruct,
1641 //FIXME(const_hack): this `T: ~const Destruct` is unnecessary, but even precise live drops can't tell
1642 // no value of type `T` gets dropped here
1643 T: [const] Destruct,
1644 {
1645 match self {
1646 x @ Some(_) => x,
1647 None => f(),
1648 }
1649 }
1650
1651 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1652 ///
1653 /// # Examples
1654 ///
1655 /// ```
1656 /// let x = Some(2);
1657 /// let y: Option<u32> = None;
1658 /// assert_eq!(x.xor(y), Some(2));
1659 ///
1660 /// let x: Option<u32> = None;
1661 /// let y = Some(2);
1662 /// assert_eq!(x.xor(y), Some(2));
1663 ///
1664 /// let x = Some(2);
1665 /// let y = Some(2);
1666 /// assert_eq!(x.xor(y), None);
1667 ///
1668 /// let x: Option<u32> = None;
1669 /// let y: Option<u32> = None;
1670 /// assert_eq!(x.xor(y), None);
1671 /// ```
1672 #[inline]
1673 #[stable(feature = "option_xor", since = "1.37.0")]
1674 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1675 pub const fn xor(self, optb: Option<T>) -> Option<T>
1676 where
1677 T: [const] Destruct,
1678 {
1679 match (self, optb) {
1680 (a @ Some(_), None) => a,
1681 (None, b @ Some(_)) => b,
1682 _ => None,
1683 }
1684 }
1685
1686 /////////////////////////////////////////////////////////////////////////
1687 // Entry-like operations to insert a value and return a reference
1688 /////////////////////////////////////////////////////////////////////////
1689
1690 /// Inserts `value` into the option, then returns a mutable reference to it.
1691 ///
1692 /// If the option already contains a value, the old value is dropped.
1693 ///
1694 /// See also [`Option::get_or_insert`], which doesn't update the value if
1695 /// the option already contains [`Some`].
1696 ///
1697 /// # Example
1698 ///
1699 /// ```
1700 /// let mut opt = None;
1701 /// let val = opt.insert(1);
1702 /// assert_eq!(*val, 1);
1703 /// assert_eq!(opt.unwrap(), 1);
1704 /// let val = opt.insert(2);
1705 /// assert_eq!(*val, 2);
1706 /// *val = 3;
1707 /// assert_eq!(opt.unwrap(), 3);
1708 /// ```
1709 #[must_use = "if you intended to set a value, consider assignment instead"]
1710 #[inline]
1711 #[stable(feature = "option_insert", since = "1.53.0")]
1712 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1713 pub const fn insert(&mut self, value: T) -> &mut T
1714 where
1715 T: [const] Destruct,
1716 {
1717 *self = Some(value);
1718
1719 // SAFETY: the code above just filled the option
1720 unsafe { self.as_mut().unwrap_unchecked() }
1721 }
1722
1723 /// Inserts `value` into the option if it is [`None`], then
1724 /// returns a mutable reference to the contained value.
1725 ///
1726 /// See also [`Option::insert`], which updates the value even if
1727 /// the option already contains [`Some`].
1728 ///
1729 /// # Examples
1730 ///
1731 /// ```
1732 /// let mut x = None;
1733 ///
1734 /// {
1735 /// let y: &mut u32 = x.get_or_insert(5);
1736 /// assert_eq!(y, &5);
1737 ///
1738 /// *y = 7;
1739 /// }
1740 ///
1741 /// assert_eq!(x, Some(7));
1742 /// ```
1743 #[inline]
1744 #[stable(feature = "option_entry", since = "1.20.0")]
1745 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1746 self.get_or_insert_with(|| value)
1747 }
1748
1749 /// Inserts the default value into the option if it is [`None`], then
1750 /// returns a mutable reference to the contained value.
1751 ///
1752 /// # Examples
1753 ///
1754 /// ```
1755 /// let mut x = None;
1756 ///
1757 /// {
1758 /// let y: &mut u32 = x.get_or_insert_default();
1759 /// assert_eq!(y, &0);
1760 ///
1761 /// *y = 7;
1762 /// }
1763 ///
1764 /// assert_eq!(x, Some(7));
1765 /// ```
1766 #[inline]
1767 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1768 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1769 pub const fn get_or_insert_default(&mut self) -> &mut T
1770 where
1771 T: [const] Default + [const] Destruct,
1772 {
1773 self.get_or_insert_with(T::default)
1774 }
1775
1776 /// Inserts a value computed from `f` into the option if it is [`None`],
1777 /// then returns a mutable reference to the contained value.
1778 ///
1779 /// # Examples
1780 ///
1781 /// ```
1782 /// let mut x = None;
1783 ///
1784 /// {
1785 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1786 /// assert_eq!(y, &5);
1787 ///
1788 /// *y = 7;
1789 /// }
1790 ///
1791 /// assert_eq!(x, Some(7));
1792 /// ```
1793 #[inline]
1794 #[stable(feature = "option_entry", since = "1.20.0")]
1795 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1796 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1797 where
1798 F: [const] FnOnce() -> T + [const] Destruct,
1799 T: [const] Destruct,
1800 {
1801 if let None = self {
1802 *self = Some(f());
1803 }
1804
1805 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1806 // variant in the code above.
1807 unsafe { self.as_mut().unwrap_unchecked() }
1808 }
1809
1810 /////////////////////////////////////////////////////////////////////////
1811 // Misc
1812 /////////////////////////////////////////////////////////////////////////
1813
1814 /// Takes the value out of the option, leaving a [`None`] in its place.
1815 ///
1816 /// # Examples
1817 ///
1818 /// ```
1819 /// let mut x = Some(2);
1820 /// let y = x.take();
1821 /// assert_eq!(x, None);
1822 /// assert_eq!(y, Some(2));
1823 ///
1824 /// let mut x: Option<u32> = None;
1825 /// let y = x.take();
1826 /// assert_eq!(x, None);
1827 /// assert_eq!(y, None);
1828 /// ```
1829 #[inline]
1830 #[stable(feature = "rust1", since = "1.0.0")]
1831 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1832 pub const fn take(&mut self) -> Option<T> {
1833 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1834 mem::replace(self, None)
1835 }
1836
1837 /// Takes the value out of the option, but only if the predicate evaluates to
1838 /// `true` on a mutable reference to the value.
1839 ///
1840 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1841 /// This method operates similar to [`Option::take`] but conditional.
1842 ///
1843 /// # Examples
1844 ///
1845 /// ```
1846 /// let mut x = Some(42);
1847 ///
1848 /// let prev = x.take_if(|v| if *v == 42 {
1849 /// *v += 1;
1850 /// false
1851 /// } else {
1852 /// false
1853 /// });
1854 /// assert_eq!(x, Some(43));
1855 /// assert_eq!(prev, None);
1856 ///
1857 /// let prev = x.take_if(|v| *v == 43);
1858 /// assert_eq!(x, None);
1859 /// assert_eq!(prev, Some(43));
1860 /// ```
1861 #[inline]
1862 #[stable(feature = "option_take_if", since = "1.80.0")]
1863 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1864 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1865 where
1866 P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1867 {
1868 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1869 }
1870
1871 /// Replaces the actual value in the option by the value given in parameter,
1872 /// returning the old value if present,
1873 /// leaving a [`Some`] in its place without deinitializing either one.
1874 ///
1875 /// # Examples
1876 ///
1877 /// ```
1878 /// let mut x = Some(2);
1879 /// let old = x.replace(5);
1880 /// assert_eq!(x, Some(5));
1881 /// assert_eq!(old, Some(2));
1882 ///
1883 /// let mut x = None;
1884 /// let old = x.replace(3);
1885 /// assert_eq!(x, Some(3));
1886 /// assert_eq!(old, None);
1887 /// ```
1888 #[inline]
1889 #[stable(feature = "option_replace", since = "1.31.0")]
1890 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1891 pub const fn replace(&mut self, value: T) -> Option<T> {
1892 mem::replace(self, Some(value))
1893 }
1894
1895 /// Zips `self` with another `Option`.
1896 ///
1897 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1898 /// Otherwise, `None` is returned.
1899 ///
1900 /// # Examples
1901 ///
1902 /// ```
1903 /// let x = Some(1);
1904 /// let y = Some("hi");
1905 /// let z = None::<u8>;
1906 ///
1907 /// assert_eq!(x.zip(y), Some((1, "hi")));
1908 /// assert_eq!(x.zip(z), None);
1909 /// ```
1910 #[stable(feature = "option_zip_option", since = "1.46.0")]
1911 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1912 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1913 where
1914 T: [const] Destruct,
1915 U: [const] Destruct,
1916 {
1917 match (self, other) {
1918 (Some(a), Some(b)) => Some((a, b)),
1919 _ => None,
1920 }
1921 }
1922
1923 /// Zips `self` and another `Option` with function `f`.
1924 ///
1925 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1926 /// Otherwise, `None` is returned.
1927 ///
1928 /// # Examples
1929 ///
1930 /// ```
1931 /// #![feature(option_zip)]
1932 ///
1933 /// #[derive(Debug, PartialEq)]
1934 /// struct Point {
1935 /// x: f64,
1936 /// y: f64,
1937 /// }
1938 ///
1939 /// impl Point {
1940 /// fn new(x: f64, y: f64) -> Self {
1941 /// Self { x, y }
1942 /// }
1943 /// }
1944 ///
1945 /// let x = Some(17.5);
1946 /// let y = Some(42.7);
1947 ///
1948 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1949 /// assert_eq!(x.zip_with(None, Point::new), None);
1950 /// ```
1951 #[unstable(feature = "option_zip", issue = "70086")]
1952 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1953 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1954 where
1955 F: [const] FnOnce(T, U) -> R + [const] Destruct,
1956 T: [const] Destruct,
1957 U: [const] Destruct,
1958 {
1959 match (self, other) {
1960 (Some(a), Some(b)) => Some(f(a, b)),
1961 _ => None,
1962 }
1963 }
1964
1965 /// Reduces two options into one, using the provided function if both are `Some`.
1966 ///
1967 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1968 /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1969 /// If both `self` and `other` are `None`, `None` is returned.
1970 ///
1971 /// # Examples
1972 ///
1973 /// ```
1974 /// #![feature(option_reduce)]
1975 ///
1976 /// let s12 = Some(12);
1977 /// let s17 = Some(17);
1978 /// let n = None;
1979 /// let f = |a, b| a + b;
1980 ///
1981 /// assert_eq!(s12.reduce(s17, f), Some(29));
1982 /// assert_eq!(s12.reduce(n, f), Some(12));
1983 /// assert_eq!(n.reduce(s17, f), Some(17));
1984 /// assert_eq!(n.reduce(n, f), None);
1985 /// ```
1986 #[unstable(feature = "option_reduce", issue = "144273")]
1987 pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
1988 where
1989 T: Into<R>,
1990 U: Into<R>,
1991 F: FnOnce(T, U) -> R,
1992 {
1993 match (self, other) {
1994 (Some(a), Some(b)) => Some(f(a, b)),
1995 (Some(a), _) => Some(a.into()),
1996 (_, Some(b)) => Some(b.into()),
1997 _ => None,
1998 }
1999 }
2000}
2001
2002impl<T, U> Option<(T, U)> {
2003 /// Unzips an option containing a tuple of two options.
2004 ///
2005 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2006 /// Otherwise, `(None, None)` is returned.
2007 ///
2008 /// # Examples
2009 ///
2010 /// ```
2011 /// let x = Some((1, "hi"));
2012 /// let y = None::<(u8, u32)>;
2013 ///
2014 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2015 /// assert_eq!(y.unzip(), (None, None));
2016 /// ```
2017 #[inline]
2018 #[stable(feature = "unzip_option", since = "1.66.0")]
2019 pub fn unzip(self) -> (Option<T>, Option<U>) {
2020 match self {
2021 Some((a, b)) => (Some(a), Some(b)),
2022 None => (None, None),
2023 }
2024 }
2025}
2026
2027impl<T> Option<&T> {
2028 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2029 /// option.
2030 ///
2031 /// # Examples
2032 ///
2033 /// ```
2034 /// let x = 12;
2035 /// let opt_x = Some(&x);
2036 /// assert_eq!(opt_x, Some(&12));
2037 /// let copied = opt_x.copied();
2038 /// assert_eq!(copied, Some(12));
2039 /// ```
2040 #[must_use = "`self` will be dropped if the result is not used"]
2041 #[stable(feature = "copied", since = "1.35.0")]
2042 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2043 pub const fn copied(self) -> Option<T>
2044 where
2045 T: Copy,
2046 {
2047 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2048 // ready yet, should be reverted when possible to avoid code repetition
2049 match self {
2050 Some(&v) => Some(v),
2051 None => None,
2052 }
2053 }
2054
2055 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2056 /// option.
2057 ///
2058 /// # Examples
2059 ///
2060 /// ```
2061 /// let x = 12;
2062 /// let opt_x = Some(&x);
2063 /// assert_eq!(opt_x, Some(&12));
2064 /// let cloned = opt_x.cloned();
2065 /// assert_eq!(cloned, Some(12));
2066 /// ```
2067 #[must_use = "`self` will be dropped if the result is not used"]
2068 #[stable(feature = "rust1", since = "1.0.0")]
2069 pub fn cloned(self) -> Option<T>
2070 where
2071 T: Clone,
2072 {
2073 match self {
2074 Some(t) => Some(t.clone()),
2075 None => None,
2076 }
2077 }
2078}
2079
2080impl<T> Option<&mut T> {
2081 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2082 /// option.
2083 ///
2084 /// # Examples
2085 ///
2086 /// ```
2087 /// let mut x = 12;
2088 /// let opt_x = Some(&mut x);
2089 /// assert_eq!(opt_x, Some(&mut 12));
2090 /// let copied = opt_x.copied();
2091 /// assert_eq!(copied, Some(12));
2092 /// ```
2093 #[must_use = "`self` will be dropped if the result is not used"]
2094 #[stable(feature = "copied", since = "1.35.0")]
2095 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2096 pub const fn copied(self) -> Option<T>
2097 where
2098 T: Copy,
2099 {
2100 match self {
2101 Some(&mut t) => Some(t),
2102 None => None,
2103 }
2104 }
2105
2106 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2107 /// option.
2108 ///
2109 /// # Examples
2110 ///
2111 /// ```
2112 /// let mut x = 12;
2113 /// let opt_x = Some(&mut x);
2114 /// assert_eq!(opt_x, Some(&mut 12));
2115 /// let cloned = opt_x.cloned();
2116 /// assert_eq!(cloned, Some(12));
2117 /// ```
2118 #[must_use = "`self` will be dropped if the result is not used"]
2119 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2120 pub fn cloned(self) -> Option<T>
2121 where
2122 T: Clone,
2123 {
2124 match self {
2125 Some(t) => Some(t.clone()),
2126 None => None,
2127 }
2128 }
2129}
2130
2131impl<T, E> Option<Result<T, E>> {
2132 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2133 ///
2134 /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2135 /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2136 /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2137 ///
2138 /// # Examples
2139 ///
2140 /// ```
2141 /// #[derive(Debug, Eq, PartialEq)]
2142 /// struct SomeErr;
2143 ///
2144 /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2145 /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2146 /// assert_eq!(x.transpose(), y);
2147 /// ```
2148 #[inline]
2149 #[stable(feature = "transpose_result", since = "1.33.0")]
2150 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2151 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2152 pub const fn transpose(self) -> Result<Option<T>, E> {
2153 match self {
2154 Some(Ok(x)) => Ok(Some(x)),
2155 Some(Err(e)) => Err(e),
2156 None => Ok(None),
2157 }
2158 }
2159}
2160
2161#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2162#[cfg_attr(feature = "panic_immediate_abort", inline)]
2163#[cold]
2164#[track_caller]
2165const fn unwrap_failed() -> ! {
2166 panic("called `Option::unwrap()` on a `None` value")
2167}
2168
2169// This is a separate function to reduce the code size of .expect() itself.
2170#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2171#[cfg_attr(feature = "panic_immediate_abort", inline)]
2172#[cold]
2173#[track_caller]
2174const fn expect_failed(msg: &str) -> ! {
2175 panic_display(&msg)
2176}
2177
2178/////////////////////////////////////////////////////////////////////////////
2179// Trait implementations
2180/////////////////////////////////////////////////////////////////////////////
2181
2182#[stable(feature = "rust1", since = "1.0.0")]
2183#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2184impl<T> const Clone for Option<T>
2185where
2186 // FIXME(const_hack): the T: ~const Destruct should be inferred from the Self: ~const Destruct in clone_from.
2187 // See https://github.com/rust-lang/rust/issues/144207
2188 T: [const] Clone + [const] Destruct,
2189{
2190 #[inline]
2191 fn clone(&self) -> Self {
2192 match self {
2193 Some(x) => Some(x.clone()),
2194 None => None,
2195 }
2196 }
2197
2198 #[inline]
2199 fn clone_from(&mut self, source: &Self) {
2200 match (self, source) {
2201 (Some(to), Some(from)) => to.clone_from(from),
2202 (to, from) => *to = from.clone(),
2203 }
2204 }
2205}
2206
2207#[unstable(feature = "ergonomic_clones", issue = "132290")]
2208impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2209
2210#[stable(feature = "rust1", since = "1.0.0")]
2211#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2212impl<T> const Default for Option<T> {
2213 /// Returns [`None`][Option::None].
2214 ///
2215 /// # Examples
2216 ///
2217 /// ```
2218 /// let opt: Option<u32> = Option::default();
2219 /// assert!(opt.is_none());
2220 /// ```
2221 #[inline]
2222 fn default() -> Option<T> {
2223 None
2224 }
2225}
2226
2227#[stable(feature = "rust1", since = "1.0.0")]
2228impl<T> IntoIterator for Option<T> {
2229 type Item = T;
2230 type IntoIter = IntoIter<T>;
2231
2232 /// Returns a consuming iterator over the possibly contained value.
2233 ///
2234 /// # Examples
2235 ///
2236 /// ```
2237 /// let x = Some("string");
2238 /// let v: Vec<&str> = x.into_iter().collect();
2239 /// assert_eq!(v, ["string"]);
2240 ///
2241 /// let x = None;
2242 /// let v: Vec<&str> = x.into_iter().collect();
2243 /// assert!(v.is_empty());
2244 /// ```
2245 #[inline]
2246 fn into_iter(self) -> IntoIter<T> {
2247 IntoIter { inner: Item { opt: self } }
2248 }
2249}
2250
2251#[stable(since = "1.4.0", feature = "option_iter")]
2252impl<'a, T> IntoIterator for &'a Option<T> {
2253 type Item = &'a T;
2254 type IntoIter = Iter<'a, T>;
2255
2256 fn into_iter(self) -> Iter<'a, T> {
2257 self.iter()
2258 }
2259}
2260
2261#[stable(since = "1.4.0", feature = "option_iter")]
2262impl<'a, T> IntoIterator for &'a mut Option<T> {
2263 type Item = &'a mut T;
2264 type IntoIter = IterMut<'a, T>;
2265
2266 fn into_iter(self) -> IterMut<'a, T> {
2267 self.iter_mut()
2268 }
2269}
2270
2271#[stable(since = "1.12.0", feature = "option_from")]
2272#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2273impl<T> const From<T> for Option<T> {
2274 /// Moves `val` into a new [`Some`].
2275 ///
2276 /// # Examples
2277 ///
2278 /// ```
2279 /// let o: Option<u8> = Option::from(67);
2280 ///
2281 /// assert_eq!(Some(67), o);
2282 /// ```
2283 fn from(val: T) -> Option<T> {
2284 Some(val)
2285 }
2286}
2287
2288#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2289#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2290impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2291 /// Converts from `&Option<T>` to `Option<&T>`.
2292 ///
2293 /// # Examples
2294 ///
2295 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2296 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2297 /// so this technique uses `from` to first take an [`Option`] to a reference
2298 /// to the value inside the original.
2299 ///
2300 /// [`map`]: Option::map
2301 /// [String]: ../../std/string/struct.String.html "String"
2302 ///
2303 /// ```
2304 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2305 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2306 ///
2307 /// println!("Can still print s: {s:?}");
2308 ///
2309 /// assert_eq!(o, Some(18));
2310 /// ```
2311 fn from(o: &'a Option<T>) -> Option<&'a T> {
2312 o.as_ref()
2313 }
2314}
2315
2316#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2317#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2318impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2319 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2320 ///
2321 /// # Examples
2322 ///
2323 /// ```
2324 /// let mut s = Some(String::from("Hello"));
2325 /// let o: Option<&mut String> = Option::from(&mut s);
2326 ///
2327 /// match o {
2328 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2329 /// None => (),
2330 /// }
2331 ///
2332 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2333 /// ```
2334 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2335 o.as_mut()
2336 }
2337}
2338
2339// Ideally, LLVM should be able to optimize our derive code to this.
2340// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2341// go back to deriving `PartialEq`.
2342#[stable(feature = "rust1", since = "1.0.0")]
2343impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2344#[stable(feature = "rust1", since = "1.0.0")]
2345#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2346impl<T: [const] PartialEq> const PartialEq for Option<T> {
2347 #[inline]
2348 fn eq(&self, other: &Self) -> bool {
2349 // Spelling out the cases explicitly optimizes better than
2350 // `_ => false`
2351 match (self, other) {
2352 (Some(l), Some(r)) => *l == *r,
2353 (Some(_), None) => false,
2354 (None, Some(_)) => false,
2355 (None, None) => true,
2356 }
2357 }
2358}
2359
2360// Manually implementing here somewhat improves codegen for
2361// https://github.com/rust-lang/rust/issues/49892, although still
2362// not optimal.
2363#[stable(feature = "rust1", since = "1.0.0")]
2364impl<T: PartialOrd> PartialOrd for Option<T> {
2365 #[inline]
2366 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2367 match (self, other) {
2368 (Some(l), Some(r)) => l.partial_cmp(r),
2369 (Some(_), None) => Some(cmp::Ordering::Greater),
2370 (None, Some(_)) => Some(cmp::Ordering::Less),
2371 (None, None) => Some(cmp::Ordering::Equal),
2372 }
2373 }
2374}
2375
2376#[stable(feature = "rust1", since = "1.0.0")]
2377impl<T: Ord> Ord for Option<T> {
2378 #[inline]
2379 fn cmp(&self, other: &Self) -> cmp::Ordering {
2380 match (self, other) {
2381 (Some(l), Some(r)) => l.cmp(r),
2382 (Some(_), None) => cmp::Ordering::Greater,
2383 (None, Some(_)) => cmp::Ordering::Less,
2384 (None, None) => cmp::Ordering::Equal,
2385 }
2386 }
2387}
2388
2389/////////////////////////////////////////////////////////////////////////////
2390// The Option Iterators
2391/////////////////////////////////////////////////////////////////////////////
2392
2393#[derive(Clone, Debug)]
2394struct Item<A> {
2395 opt: Option<A>,
2396}
2397
2398impl<A> Iterator for Item<A> {
2399 type Item = A;
2400
2401 #[inline]
2402 fn next(&mut self) -> Option<A> {
2403 self.opt.take()
2404 }
2405
2406 #[inline]
2407 fn size_hint(&self) -> (usize, Option<usize>) {
2408 let len = self.len();
2409 (len, Some(len))
2410 }
2411}
2412
2413impl<A> DoubleEndedIterator for Item<A> {
2414 #[inline]
2415 fn next_back(&mut self) -> Option<A> {
2416 self.opt.take()
2417 }
2418}
2419
2420impl<A> ExactSizeIterator for Item<A> {
2421 #[inline]
2422 fn len(&self) -> usize {
2423 self.opt.len()
2424 }
2425}
2426impl<A> FusedIterator for Item<A> {}
2427unsafe impl<A> TrustedLen for Item<A> {}
2428
2429/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2430///
2431/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2432///
2433/// This `struct` is created by the [`Option::iter`] function.
2434#[stable(feature = "rust1", since = "1.0.0")]
2435#[derive(Debug)]
2436pub struct Iter<'a, A: 'a> {
2437 inner: Item<&'a A>,
2438}
2439
2440#[stable(feature = "rust1", since = "1.0.0")]
2441impl<'a, A> Iterator for Iter<'a, A> {
2442 type Item = &'a A;
2443
2444 #[inline]
2445 fn next(&mut self) -> Option<&'a A> {
2446 self.inner.next()
2447 }
2448 #[inline]
2449 fn size_hint(&self) -> (usize, Option<usize>) {
2450 self.inner.size_hint()
2451 }
2452}
2453
2454#[stable(feature = "rust1", since = "1.0.0")]
2455impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2456 #[inline]
2457 fn next_back(&mut self) -> Option<&'a A> {
2458 self.inner.next_back()
2459 }
2460}
2461
2462#[stable(feature = "rust1", since = "1.0.0")]
2463impl<A> ExactSizeIterator for Iter<'_, A> {}
2464
2465#[stable(feature = "fused", since = "1.26.0")]
2466impl<A> FusedIterator for Iter<'_, A> {}
2467
2468#[unstable(feature = "trusted_len", issue = "37572")]
2469unsafe impl<A> TrustedLen for Iter<'_, A> {}
2470
2471#[stable(feature = "rust1", since = "1.0.0")]
2472impl<A> Clone for Iter<'_, A> {
2473 #[inline]
2474 fn clone(&self) -> Self {
2475 Iter { inner: self.inner.clone() }
2476 }
2477}
2478
2479/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2480///
2481/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2482///
2483/// This `struct` is created by the [`Option::iter_mut`] function.
2484#[stable(feature = "rust1", since = "1.0.0")]
2485#[derive(Debug)]
2486pub struct IterMut<'a, A: 'a> {
2487 inner: Item<&'a mut A>,
2488}
2489
2490#[stable(feature = "rust1", since = "1.0.0")]
2491impl<'a, A> Iterator for IterMut<'a, A> {
2492 type Item = &'a mut A;
2493
2494 #[inline]
2495 fn next(&mut self) -> Option<&'a mut A> {
2496 self.inner.next()
2497 }
2498 #[inline]
2499 fn size_hint(&self) -> (usize, Option<usize>) {
2500 self.inner.size_hint()
2501 }
2502}
2503
2504#[stable(feature = "rust1", since = "1.0.0")]
2505impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2506 #[inline]
2507 fn next_back(&mut self) -> Option<&'a mut A> {
2508 self.inner.next_back()
2509 }
2510}
2511
2512#[stable(feature = "rust1", since = "1.0.0")]
2513impl<A> ExactSizeIterator for IterMut<'_, A> {}
2514
2515#[stable(feature = "fused", since = "1.26.0")]
2516impl<A> FusedIterator for IterMut<'_, A> {}
2517#[unstable(feature = "trusted_len", issue = "37572")]
2518unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2519
2520/// An iterator over the value in [`Some`] variant of an [`Option`].
2521///
2522/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2523///
2524/// This `struct` is created by the [`Option::into_iter`] function.
2525#[derive(Clone, Debug)]
2526#[stable(feature = "rust1", since = "1.0.0")]
2527pub struct IntoIter<A> {
2528 inner: Item<A>,
2529}
2530
2531#[stable(feature = "rust1", since = "1.0.0")]
2532impl<A> Iterator for IntoIter<A> {
2533 type Item = A;
2534
2535 #[inline]
2536 fn next(&mut self) -> Option<A> {
2537 self.inner.next()
2538 }
2539 #[inline]
2540 fn size_hint(&self) -> (usize, Option<usize>) {
2541 self.inner.size_hint()
2542 }
2543}
2544
2545#[stable(feature = "rust1", since = "1.0.0")]
2546impl<A> DoubleEndedIterator for IntoIter<A> {
2547 #[inline]
2548 fn next_back(&mut self) -> Option<A> {
2549 self.inner.next_back()
2550 }
2551}
2552
2553#[stable(feature = "rust1", since = "1.0.0")]
2554impl<A> ExactSizeIterator for IntoIter<A> {}
2555
2556#[stable(feature = "fused", since = "1.26.0")]
2557impl<A> FusedIterator for IntoIter<A> {}
2558
2559#[unstable(feature = "trusted_len", issue = "37572")]
2560unsafe impl<A> TrustedLen for IntoIter<A> {}
2561
2562/////////////////////////////////////////////////////////////////////////////
2563// FromIterator
2564/////////////////////////////////////////////////////////////////////////////
2565
2566#[stable(feature = "rust1", since = "1.0.0")]
2567impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2568 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2569 /// no further elements are taken, and the [`None`][Option::None] is
2570 /// returned. Should no [`None`][Option::None] occur, a container of type
2571 /// `V` containing the values of each [`Option`] is returned.
2572 ///
2573 /// # Examples
2574 ///
2575 /// Here is an example which increments every integer in a vector.
2576 /// We use the checked variant of `add` that returns `None` when the
2577 /// calculation would result in an overflow.
2578 ///
2579 /// ```
2580 /// let items = vec![0_u16, 1, 2];
2581 ///
2582 /// let res: Option<Vec<u16>> = items
2583 /// .iter()
2584 /// .map(|x| x.checked_add(1))
2585 /// .collect();
2586 ///
2587 /// assert_eq!(res, Some(vec![1, 2, 3]));
2588 /// ```
2589 ///
2590 /// As you can see, this will return the expected, valid items.
2591 ///
2592 /// Here is another example that tries to subtract one from another list
2593 /// of integers, this time checking for underflow:
2594 ///
2595 /// ```
2596 /// let items = vec![2_u16, 1, 0];
2597 ///
2598 /// let res: Option<Vec<u16>> = items
2599 /// .iter()
2600 /// .map(|x| x.checked_sub(1))
2601 /// .collect();
2602 ///
2603 /// assert_eq!(res, None);
2604 /// ```
2605 ///
2606 /// Since the last element is zero, it would underflow. Thus, the resulting
2607 /// value is `None`.
2608 ///
2609 /// Here is a variation on the previous example, showing that no
2610 /// further elements are taken from `iter` after the first `None`.
2611 ///
2612 /// ```
2613 /// let items = vec![3_u16, 2, 1, 10];
2614 ///
2615 /// let mut shared = 0;
2616 ///
2617 /// let res: Option<Vec<u16>> = items
2618 /// .iter()
2619 /// .map(|x| { shared += x; x.checked_sub(2) })
2620 /// .collect();
2621 ///
2622 /// assert_eq!(res, None);
2623 /// assert_eq!(shared, 6);
2624 /// ```
2625 ///
2626 /// Since the third element caused an underflow, no further elements were taken,
2627 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2628 #[inline]
2629 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2630 // FIXME(#11084): This could be replaced with Iterator::scan when this
2631 // performance bug is closed.
2632
2633 iter::try_process(iter.into_iter(), |i| i.collect())
2634 }
2635}
2636
2637#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2638#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2639impl<T> const ops::Try for Option<T> {
2640 type Output = T;
2641 type Residual = Option<convert::Infallible>;
2642
2643 #[inline]
2644 fn from_output(output: Self::Output) -> Self {
2645 Some(output)
2646 }
2647
2648 #[inline]
2649 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2650 match self {
2651 Some(v) => ControlFlow::Continue(v),
2652 None => ControlFlow::Break(None),
2653 }
2654 }
2655}
2656
2657#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2658#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2659// Note: manually specifying the residual type instead of using the default to work around
2660// https://github.com/rust-lang/rust/issues/99940
2661impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2662 #[inline]
2663 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2664 match residual {
2665 None => None,
2666 }
2667 }
2668}
2669
2670#[diagnostic::do_not_recommend]
2671#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2672#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2673impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2674 #[inline]
2675 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2676 None
2677 }
2678}
2679
2680#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2681#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2682impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2683 type TryType = Option<T>;
2684}
2685
2686impl<T> Option<Option<T>> {
2687 /// Converts from `Option<Option<T>>` to `Option<T>`.
2688 ///
2689 /// # Examples
2690 ///
2691 /// Basic usage:
2692 ///
2693 /// ```
2694 /// let x: Option<Option<u32>> = Some(Some(6));
2695 /// assert_eq!(Some(6), x.flatten());
2696 ///
2697 /// let x: Option<Option<u32>> = Some(None);
2698 /// assert_eq!(None, x.flatten());
2699 ///
2700 /// let x: Option<Option<u32>> = None;
2701 /// assert_eq!(None, x.flatten());
2702 /// ```
2703 ///
2704 /// Flattening only removes one level of nesting at a time:
2705 ///
2706 /// ```
2707 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2708 /// assert_eq!(Some(Some(6)), x.flatten());
2709 /// assert_eq!(Some(6), x.flatten().flatten());
2710 /// ```
2711 #[inline]
2712 #[stable(feature = "option_flattening", since = "1.40.0")]
2713 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2714 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2715 pub const fn flatten(self) -> Option<T> {
2716 // FIXME(const-hack): could be written with `and_then`
2717 match self {
2718 Some(inner) => inner,
2719 None => None,
2720 }
2721 }
2722}
2723
2724impl<T, const N: usize> [Option<T>; N] {
2725 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2726 ///
2727 /// # Examples
2728 ///
2729 /// ```
2730 /// #![feature(option_array_transpose)]
2731 /// # use std::option::Option;
2732 ///
2733 /// let data = [Some(0); 1000];
2734 /// let data: Option<[u8; 1000]> = data.transpose();
2735 /// assert_eq!(data, Some([0; 1000]));
2736 ///
2737 /// let data = [Some(0), None];
2738 /// let data: Option<[u8; 2]> = data.transpose();
2739 /// assert_eq!(data, None);
2740 /// ```
2741 #[inline]
2742 #[unstable(feature = "option_array_transpose", issue = "130828")]
2743 pub fn transpose(self) -> Option<[T; N]> {
2744 self.try_map(core::convert::identity)
2745 }
2746}