core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//!   `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//!   (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//!   function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//!   [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//!   the provided function to the contained value of [`Ok`] and leaving
349//!   [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//!   provided function to the contained value by reference,
352//!   and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//!   applying the provided function to the contained value of [`Err`] and
361//!   leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//!   provided function to the contained value of [`Err`] by reference,
364//!   and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//!   [`Ok`], or returns the provided default value if the [`Result`] is
374//!   [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//!   of [`Ok`], or applies the provided default fallback function to the
377//!   contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method  | self     | input     | output   |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
399//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
400//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
401//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
402//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method       | self     | function input | function result | output   |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
418//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
419//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
420//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
421//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively.  If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//!   value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//!   contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//!   contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//!    .into_iter()
485//!    .map(u8::from_str)
486//!    // Save clones of the raw `Result` values to inspect
487//!    .inspect(|x| results.push(x.clone()))
488//!    // Challenge: explain how this captures only the `Err` values
489//!    .inspect(|x| errs.extend(x.clone().err()))
490//!    .flatten()
491//!    .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536use crate::iter::{self, FusedIterator, TrustedLen};
537use crate::marker::Destruct;
538use crate::ops::{self, ControlFlow, Deref, DerefMut};
539use crate::{convert, fmt, hint};
540
541/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
542///
543/// See the [module documentation](self) for details.
544#[doc(search_unbox)]
545#[derive(Copy, Debug, Hash)]
546#[derive_const(PartialEq, PartialOrd, Eq, Ord)]
547#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
548#[rustc_diagnostic_item = "Result"]
549#[stable(feature = "rust1", since = "1.0.0")]
550pub enum Result<T, E> {
551    /// Contains the success value
552    #[lang = "Ok"]
553    #[stable(feature = "rust1", since = "1.0.0")]
554    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
555
556    /// Contains the error value
557    #[lang = "Err"]
558    #[stable(feature = "rust1", since = "1.0.0")]
559    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
560}
561
562/////////////////////////////////////////////////////////////////////////////
563// Type implementation
564/////////////////////////////////////////////////////////////////////////////
565
566impl<T, E> Result<T, E> {
567    /////////////////////////////////////////////////////////////////////////
568    // Querying the contained values
569    /////////////////////////////////////////////////////////////////////////
570
571    /// Returns `true` if the result is [`Ok`].
572    ///
573    /// # Examples
574    ///
575    /// ```
576    /// let x: Result<i32, &str> = Ok(-3);
577    /// assert_eq!(x.is_ok(), true);
578    ///
579    /// let x: Result<i32, &str> = Err("Some error message");
580    /// assert_eq!(x.is_ok(), false);
581    /// ```
582    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
583    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
584    #[inline]
585    #[stable(feature = "rust1", since = "1.0.0")]
586    pub const fn is_ok(&self) -> bool {
587        matches!(*self, Ok(_))
588    }
589
590    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
591    ///
592    /// # Examples
593    ///
594    /// ```
595    /// let x: Result<u32, &str> = Ok(2);
596    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
597    ///
598    /// let x: Result<u32, &str> = Ok(0);
599    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
600    ///
601    /// let x: Result<u32, &str> = Err("hey");
602    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
603    ///
604    /// let x: Result<String, &str> = Ok("ownership".to_string());
605    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
606    /// println!("still alive {:?}", x);
607    /// ```
608    #[must_use]
609    #[inline]
610    #[stable(feature = "is_some_and", since = "1.70.0")]
611    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
612    pub const fn is_ok_and<F>(self, f: F) -> bool
613    where
614        F: [const] FnOnce(T) -> bool + [const] Destruct,
615        T: [const] Destruct,
616        E: [const] Destruct,
617    {
618        match self {
619            Err(_) => false,
620            Ok(x) => f(x),
621        }
622    }
623
624    /// Returns `true` if the result is [`Err`].
625    ///
626    /// # Examples
627    ///
628    /// ```
629    /// let x: Result<i32, &str> = Ok(-3);
630    /// assert_eq!(x.is_err(), false);
631    ///
632    /// let x: Result<i32, &str> = Err("Some error message");
633    /// assert_eq!(x.is_err(), true);
634    /// ```
635    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
636    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
637    #[inline]
638    #[stable(feature = "rust1", since = "1.0.0")]
639    pub const fn is_err(&self) -> bool {
640        !self.is_ok()
641    }
642
643    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// use std::io::{Error, ErrorKind};
649    ///
650    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
651    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
652    ///
653    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
654    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
655    ///
656    /// let x: Result<u32, Error> = Ok(123);
657    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
658    ///
659    /// let x: Result<u32, String> = Err("ownership".to_string());
660    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
661    /// println!("still alive {:?}", x);
662    /// ```
663    #[must_use]
664    #[inline]
665    #[stable(feature = "is_some_and", since = "1.70.0")]
666    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
667    pub const fn is_err_and<F>(self, f: F) -> bool
668    where
669        F: [const] FnOnce(E) -> bool + [const] Destruct,
670        E: [const] Destruct,
671        T: [const] Destruct,
672    {
673        match self {
674            Ok(_) => false,
675            Err(e) => f(e),
676        }
677    }
678
679    /////////////////////////////////////////////////////////////////////////
680    // Adapter for each variant
681    /////////////////////////////////////////////////////////////////////////
682
683    /// Converts from `Result<T, E>` to [`Option<T>`].
684    ///
685    /// Converts `self` into an [`Option<T>`], consuming `self`,
686    /// and discarding the error, if any.
687    ///
688    /// # Examples
689    ///
690    /// ```
691    /// let x: Result<u32, &str> = Ok(2);
692    /// assert_eq!(x.ok(), Some(2));
693    ///
694    /// let x: Result<u32, &str> = Err("Nothing here");
695    /// assert_eq!(x.ok(), None);
696    /// ```
697    #[inline]
698    #[stable(feature = "rust1", since = "1.0.0")]
699    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
700    #[rustc_diagnostic_item = "result_ok_method"]
701    pub const fn ok(self) -> Option<T>
702    where
703        T: [const] Destruct,
704        E: [const] Destruct,
705    {
706        match self {
707            Ok(x) => Some(x),
708            Err(_) => None,
709        }
710    }
711
712    /// Converts from `Result<T, E>` to [`Option<E>`].
713    ///
714    /// Converts `self` into an [`Option<E>`], consuming `self`,
715    /// and discarding the success value, if any.
716    ///
717    /// # Examples
718    ///
719    /// ```
720    /// let x: Result<u32, &str> = Ok(2);
721    /// assert_eq!(x.err(), None);
722    ///
723    /// let x: Result<u32, &str> = Err("Nothing here");
724    /// assert_eq!(x.err(), Some("Nothing here"));
725    /// ```
726    #[inline]
727    #[stable(feature = "rust1", since = "1.0.0")]
728    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
729    pub const fn err(self) -> Option<E>
730    where
731        T: [const] Destruct,
732        E: [const] Destruct,
733    {
734        match self {
735            Ok(_) => None,
736            Err(x) => Some(x),
737        }
738    }
739
740    /////////////////////////////////////////////////////////////////////////
741    // Adapter for working with references
742    /////////////////////////////////////////////////////////////////////////
743
744    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
745    ///
746    /// Produces a new `Result`, containing a reference
747    /// into the original, leaving the original in place.
748    ///
749    /// # Examples
750    ///
751    /// ```
752    /// let x: Result<u32, &str> = Ok(2);
753    /// assert_eq!(x.as_ref(), Ok(&2));
754    ///
755    /// let x: Result<u32, &str> = Err("Error");
756    /// assert_eq!(x.as_ref(), Err(&"Error"));
757    /// ```
758    #[inline]
759    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    pub const fn as_ref(&self) -> Result<&T, &E> {
762        match *self {
763            Ok(ref x) => Ok(x),
764            Err(ref x) => Err(x),
765        }
766    }
767
768    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
769    ///
770    /// # Examples
771    ///
772    /// ```
773    /// fn mutate(r: &mut Result<i32, i32>) {
774    ///     match r.as_mut() {
775    ///         Ok(v) => *v = 42,
776    ///         Err(e) => *e = 0,
777    ///     }
778    /// }
779    ///
780    /// let mut x: Result<i32, i32> = Ok(2);
781    /// mutate(&mut x);
782    /// assert_eq!(x.unwrap(), 42);
783    ///
784    /// let mut x: Result<i32, i32> = Err(13);
785    /// mutate(&mut x);
786    /// assert_eq!(x.unwrap_err(), 0);
787    /// ```
788    #[inline]
789    #[stable(feature = "rust1", since = "1.0.0")]
790    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
791    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
792        match *self {
793            Ok(ref mut x) => Ok(x),
794            Err(ref mut x) => Err(x),
795        }
796    }
797
798    /////////////////////////////////////////////////////////////////////////
799    // Transforming contained values
800    /////////////////////////////////////////////////////////////////////////
801
802    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
803    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
804    ///
805    /// This function can be used to compose the results of two functions.
806    ///
807    /// # Examples
808    ///
809    /// Print the numbers on each line of a string multiplied by two.
810    ///
811    /// ```
812    /// let line = "1\n2\n3\n4\n";
813    ///
814    /// for num in line.lines() {
815    ///     match num.parse::<i32>().map(|i| i * 2) {
816    ///         Ok(n) => println!("{n}"),
817    ///         Err(..) => {}
818    ///     }
819    /// }
820    /// ```
821    #[inline]
822    #[stable(feature = "rust1", since = "1.0.0")]
823    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
824    pub const fn map<U, F>(self, op: F) -> Result<U, E>
825    where
826        F: [const] FnOnce(T) -> U + [const] Destruct,
827    {
828        match self {
829            Ok(t) => Ok(op(t)),
830            Err(e) => Err(e),
831        }
832    }
833
834    /// Returns the provided default (if [`Err`]), or
835    /// applies a function to the contained value (if [`Ok`]).
836    ///
837    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
838    /// the result of a function call, it is recommended to use [`map_or_else`],
839    /// which is lazily evaluated.
840    ///
841    /// [`map_or_else`]: Result::map_or_else
842    ///
843    /// # Examples
844    ///
845    /// ```
846    /// let x: Result<_, &str> = Ok("foo");
847    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
848    ///
849    /// let x: Result<&str, _> = Err("bar");
850    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
851    /// ```
852    #[inline]
853    #[stable(feature = "result_map_or", since = "1.41.0")]
854    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
855    #[must_use = "if you don't need the returned value, use `if let` instead"]
856    pub const fn map_or<U, F>(self, default: U, f: F) -> U
857    where
858        F: [const] FnOnce(T) -> U + [const] Destruct,
859        T: [const] Destruct,
860        E: [const] Destruct,
861        U: [const] Destruct,
862    {
863        match self {
864            Ok(t) => f(t),
865            Err(_) => default,
866        }
867    }
868
869    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
870    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
871    ///
872    /// This function can be used to unpack a successful result
873    /// while handling an error.
874    ///
875    ///
876    /// # Examples
877    ///
878    /// ```
879    /// let k = 21;
880    ///
881    /// let x : Result<_, &str> = Ok("foo");
882    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
883    ///
884    /// let x : Result<&str, _> = Err("bar");
885    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
886    /// ```
887    #[inline]
888    #[stable(feature = "result_map_or_else", since = "1.41.0")]
889    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
890    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
891    where
892        D: [const] FnOnce(E) -> U + [const] Destruct,
893        F: [const] FnOnce(T) -> U + [const] Destruct,
894    {
895        match self {
896            Ok(t) => f(t),
897            Err(e) => default(e),
898        }
899    }
900
901    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
902    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
903    /// [default value] for the type `U`.
904    ///
905    /// # Examples
906    ///
907    /// ```
908    /// #![feature(result_option_map_or_default)]
909    ///
910    /// let x: Result<_, &str> = Ok("foo");
911    /// let y: Result<&str, _> = Err("bar");
912    ///
913    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
914    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
915    /// ```
916    ///
917    /// [default value]: Default::default
918    #[inline]
919    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
920    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
921    pub const fn map_or_default<U, F>(self, f: F) -> U
922    where
923        F: [const] FnOnce(T) -> U + [const] Destruct,
924        U: [const] Default,
925        T: [const] Destruct,
926        E: [const] Destruct,
927    {
928        match self {
929            Ok(t) => f(t),
930            Err(_) => U::default(),
931        }
932    }
933
934    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
935    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
936    ///
937    /// This function can be used to pass through a successful result while handling
938    /// an error.
939    ///
940    ///
941    /// # Examples
942    ///
943    /// ```
944    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
945    ///
946    /// let x: Result<u32, u32> = Ok(2);
947    /// assert_eq!(x.map_err(stringify), Ok(2));
948    ///
949    /// let x: Result<u32, u32> = Err(13);
950    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
951    /// ```
952    #[inline]
953    #[stable(feature = "rust1", since = "1.0.0")]
954    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
955    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
956    where
957        O: [const] FnOnce(E) -> F + [const] Destruct,
958    {
959        match self {
960            Ok(t) => Ok(t),
961            Err(e) => Err(op(e)),
962        }
963    }
964
965    /// Calls a function with a reference to the contained value if [`Ok`].
966    ///
967    /// Returns the original result.
968    ///
969    /// # Examples
970    ///
971    /// ```
972    /// let x: u8 = "4"
973    ///     .parse::<u8>()
974    ///     .inspect(|x| println!("original: {x}"))
975    ///     .map(|x| x.pow(3))
976    ///     .expect("failed to parse number");
977    /// ```
978    #[inline]
979    #[stable(feature = "result_option_inspect", since = "1.76.0")]
980    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
981    pub const fn inspect<F>(self, f: F) -> Self
982    where
983        F: [const] FnOnce(&T) + [const] Destruct,
984    {
985        if let Ok(ref t) = self {
986            f(t);
987        }
988
989        self
990    }
991
992    /// Calls a function with a reference to the contained value if [`Err`].
993    ///
994    /// Returns the original result.
995    ///
996    /// # Examples
997    ///
998    /// ```
999    /// use std::{fs, io};
1000    ///
1001    /// fn read() -> io::Result<String> {
1002    ///     fs::read_to_string("address.txt")
1003    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1004    /// }
1005    /// ```
1006    #[inline]
1007    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1008    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1009    pub const fn inspect_err<F>(self, f: F) -> Self
1010    where
1011        F: [const] FnOnce(&E) + [const] Destruct,
1012    {
1013        if let Err(ref e) = self {
1014            f(e);
1015        }
1016
1017        self
1018    }
1019
1020    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1021    ///
1022    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1023    /// and returns the new [`Result`].
1024    ///
1025    /// # Examples
1026    ///
1027    /// ```
1028    /// let x: Result<String, u32> = Ok("hello".to_string());
1029    /// let y: Result<&str, &u32> = Ok("hello");
1030    /// assert_eq!(x.as_deref(), y);
1031    ///
1032    /// let x: Result<String, u32> = Err(42);
1033    /// let y: Result<&str, &u32> = Err(&42);
1034    /// assert_eq!(x.as_deref(), y);
1035    /// ```
1036    #[inline]
1037    #[stable(feature = "inner_deref", since = "1.47.0")]
1038    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1039    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1040    where
1041        T: [const] Deref,
1042    {
1043        self.as_ref().map(Deref::deref)
1044    }
1045
1046    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1047    ///
1048    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1049    /// and returns the new [`Result`].
1050    ///
1051    /// # Examples
1052    ///
1053    /// ```
1054    /// let mut s = "HELLO".to_string();
1055    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1056    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1057    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1058    ///
1059    /// let mut i = 42;
1060    /// let mut x: Result<String, u32> = Err(42);
1061    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1062    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1063    /// ```
1064    #[inline]
1065    #[stable(feature = "inner_deref", since = "1.47.0")]
1066    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1067    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1068    where
1069        T: [const] DerefMut,
1070    {
1071        self.as_mut().map(DerefMut::deref_mut)
1072    }
1073
1074    /////////////////////////////////////////////////////////////////////////
1075    // Iterator constructors
1076    /////////////////////////////////////////////////////////////////////////
1077
1078    /// Returns an iterator over the possibly contained value.
1079    ///
1080    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1081    ///
1082    /// # Examples
1083    ///
1084    /// ```
1085    /// let x: Result<u32, &str> = Ok(7);
1086    /// assert_eq!(x.iter().next(), Some(&7));
1087    ///
1088    /// let x: Result<u32, &str> = Err("nothing!");
1089    /// assert_eq!(x.iter().next(), None);
1090    /// ```
1091    #[inline]
1092    #[stable(feature = "rust1", since = "1.0.0")]
1093    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1094    pub const fn iter(&self) -> Iter<'_, T> {
1095        Iter { inner: self.as_ref().ok() }
1096    }
1097
1098    /// Returns a mutable iterator over the possibly contained value.
1099    ///
1100    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1101    ///
1102    /// # Examples
1103    ///
1104    /// ```
1105    /// let mut x: Result<u32, &str> = Ok(7);
1106    /// match x.iter_mut().next() {
1107    ///     Some(v) => *v = 40,
1108    ///     None => {},
1109    /// }
1110    /// assert_eq!(x, Ok(40));
1111    ///
1112    /// let mut x: Result<u32, &str> = Err("nothing!");
1113    /// assert_eq!(x.iter_mut().next(), None);
1114    /// ```
1115    #[inline]
1116    #[stable(feature = "rust1", since = "1.0.0")]
1117    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1118    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1119        IterMut { inner: self.as_mut().ok() }
1120    }
1121
1122    /////////////////////////////////////////////////////////////////////////
1123    // Extract a value
1124    /////////////////////////////////////////////////////////////////////////
1125
1126    /// Returns the contained [`Ok`] value, consuming the `self` value.
1127    ///
1128    /// Because this function may panic, its use is generally discouraged.
1129    /// Instead, prefer to use pattern matching and handle the [`Err`]
1130    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1131    /// [`unwrap_or_default`].
1132    ///
1133    /// [`unwrap_or`]: Result::unwrap_or
1134    /// [`unwrap_or_else`]: Result::unwrap_or_else
1135    /// [`unwrap_or_default`]: Result::unwrap_or_default
1136    ///
1137    /// # Panics
1138    ///
1139    /// Panics if the value is an [`Err`], with a panic message including the
1140    /// passed message, and the content of the [`Err`].
1141    ///
1142    ///
1143    /// # Examples
1144    ///
1145    /// ```should_panic
1146    /// let x: Result<u32, &str> = Err("emergency failure");
1147    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1148    /// ```
1149    ///
1150    /// # Recommended Message Style
1151    ///
1152    /// We recommend that `expect` messages are used to describe the reason you
1153    /// _expect_ the `Result` should be `Ok`.
1154    ///
1155    /// ```should_panic
1156    /// let path = std::env::var("IMPORTANT_PATH")
1157    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1158    /// ```
1159    ///
1160    /// **Hint**: If you're having trouble remembering how to phrase expect
1161    /// error messages remember to focus on the word "should" as in "env
1162    /// variable should be set by blah" or "the given binary should be available
1163    /// and executable by the current user".
1164    ///
1165    /// For more detail on expect message styles and the reasoning behind our recommendation please
1166    /// refer to the section on ["Common Message
1167    /// Styles"](../../std/error/index.html#common-message-styles) in the
1168    /// [`std::error`](../../std/error/index.html) module docs.
1169    #[inline]
1170    #[track_caller]
1171    #[stable(feature = "result_expect", since = "1.4.0")]
1172    pub fn expect(self, msg: &str) -> T
1173    where
1174        E: fmt::Debug,
1175    {
1176        match self {
1177            Ok(t) => t,
1178            Err(e) => unwrap_failed(msg, &e),
1179        }
1180    }
1181
1182    /// Returns the contained [`Ok`] value, consuming the `self` value.
1183    ///
1184    /// Because this function may panic, its use is generally discouraged.
1185    /// Panics are meant for unrecoverable errors, and
1186    /// [may abort the entire program][panic-abort].
1187    ///
1188    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1189    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1190    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1191    ///
1192    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1193    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1194    /// [`unwrap_or`]: Result::unwrap_or
1195    /// [`unwrap_or_else`]: Result::unwrap_or_else
1196    /// [`unwrap_or_default`]: Result::unwrap_or_default
1197    ///
1198    /// # Panics
1199    ///
1200    /// Panics if the value is an [`Err`], with a panic message provided by the
1201    /// [`Err`]'s value.
1202    ///
1203    ///
1204    /// # Examples
1205    ///
1206    /// Basic usage:
1207    ///
1208    /// ```
1209    /// let x: Result<u32, &str> = Ok(2);
1210    /// assert_eq!(x.unwrap(), 2);
1211    /// ```
1212    ///
1213    /// ```should_panic
1214    /// let x: Result<u32, &str> = Err("emergency failure");
1215    /// x.unwrap(); // panics with `emergency failure`
1216    /// ```
1217    #[inline(always)]
1218    #[track_caller]
1219    #[stable(feature = "rust1", since = "1.0.0")]
1220    pub fn unwrap(self) -> T
1221    where
1222        E: fmt::Debug,
1223    {
1224        match self {
1225            Ok(t) => t,
1226            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1227        }
1228    }
1229
1230    /// Returns the contained [`Ok`] value or a default
1231    ///
1232    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1233    /// value, otherwise if [`Err`], returns the default value for that
1234    /// type.
1235    ///
1236    /// # Examples
1237    ///
1238    /// Converts a string to an integer, turning poorly-formed strings
1239    /// into 0 (the default value for integers). [`parse`] converts
1240    /// a string to any other type that implements [`FromStr`], returning an
1241    /// [`Err`] on error.
1242    ///
1243    /// ```
1244    /// let good_year_from_input = "1909";
1245    /// let bad_year_from_input = "190blarg";
1246    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1247    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1248    ///
1249    /// assert_eq!(1909, good_year);
1250    /// assert_eq!(0, bad_year);
1251    /// ```
1252    ///
1253    /// [`parse`]: str::parse
1254    /// [`FromStr`]: crate::str::FromStr
1255    #[inline]
1256    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1257    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1258    pub const fn unwrap_or_default(self) -> T
1259    where
1260        T: [const] Default + [const] Destruct,
1261        E: [const] Destruct,
1262    {
1263        match self {
1264            Ok(x) => x,
1265            Err(_) => Default::default(),
1266        }
1267    }
1268
1269    /// Returns the contained [`Err`] value, consuming the `self` value.
1270    ///
1271    /// # Panics
1272    ///
1273    /// Panics if the value is an [`Ok`], with a panic message including the
1274    /// passed message, and the content of the [`Ok`].
1275    ///
1276    ///
1277    /// # Examples
1278    ///
1279    /// ```should_panic
1280    /// let x: Result<u32, &str> = Ok(10);
1281    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1282    /// ```
1283    #[inline]
1284    #[track_caller]
1285    #[stable(feature = "result_expect_err", since = "1.17.0")]
1286    pub fn expect_err(self, msg: &str) -> E
1287    where
1288        T: fmt::Debug,
1289    {
1290        match self {
1291            Ok(t) => unwrap_failed(msg, &t),
1292            Err(e) => e,
1293        }
1294    }
1295
1296    /// Returns the contained [`Err`] value, consuming the `self` value.
1297    ///
1298    /// # Panics
1299    ///
1300    /// Panics if the value is an [`Ok`], with a custom panic message provided
1301    /// by the [`Ok`]'s value.
1302    ///
1303    /// # Examples
1304    ///
1305    /// ```should_panic
1306    /// let x: Result<u32, &str> = Ok(2);
1307    /// x.unwrap_err(); // panics with `2`
1308    /// ```
1309    ///
1310    /// ```
1311    /// let x: Result<u32, &str> = Err("emergency failure");
1312    /// assert_eq!(x.unwrap_err(), "emergency failure");
1313    /// ```
1314    #[inline]
1315    #[track_caller]
1316    #[stable(feature = "rust1", since = "1.0.0")]
1317    pub fn unwrap_err(self) -> E
1318    where
1319        T: fmt::Debug,
1320    {
1321        match self {
1322            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1323            Err(e) => e,
1324        }
1325    }
1326
1327    /// Returns the contained [`Ok`] value, but never panics.
1328    ///
1329    /// Unlike [`unwrap`], this method is known to never panic on the
1330    /// result types it is implemented for. Therefore, it can be used
1331    /// instead of `unwrap` as a maintainability safeguard that will fail
1332    /// to compile if the error type of the `Result` is later changed
1333    /// to an error that can actually occur.
1334    ///
1335    /// [`unwrap`]: Result::unwrap
1336    ///
1337    /// # Examples
1338    ///
1339    /// ```
1340    /// # #![feature(never_type)]
1341    /// # #![feature(unwrap_infallible)]
1342    ///
1343    /// fn only_good_news() -> Result<String, !> {
1344    ///     Ok("this is fine".into())
1345    /// }
1346    ///
1347    /// let s: String = only_good_news().into_ok();
1348    /// println!("{s}");
1349    /// ```
1350    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1351    #[inline]
1352    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1353    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1354    pub const fn into_ok(self) -> T
1355    where
1356        E: [const] Into<!>,
1357    {
1358        match self {
1359            Ok(x) => x,
1360            Err(e) => e.into(),
1361        }
1362    }
1363
1364    /// Returns the contained [`Err`] value, but never panics.
1365    ///
1366    /// Unlike [`unwrap_err`], this method is known to never panic on the
1367    /// result types it is implemented for. Therefore, it can be used
1368    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1369    /// to compile if the ok type of the `Result` is later changed
1370    /// to a type that can actually occur.
1371    ///
1372    /// [`unwrap_err`]: Result::unwrap_err
1373    ///
1374    /// # Examples
1375    ///
1376    /// ```
1377    /// # #![feature(never_type)]
1378    /// # #![feature(unwrap_infallible)]
1379    ///
1380    /// fn only_bad_news() -> Result<!, String> {
1381    ///     Err("Oops, it failed".into())
1382    /// }
1383    ///
1384    /// let error: String = only_bad_news().into_err();
1385    /// println!("{error}");
1386    /// ```
1387    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1388    #[inline]
1389    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1390    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1391    pub const fn into_err(self) -> E
1392    where
1393        T: [const] Into<!>,
1394    {
1395        match self {
1396            Ok(x) => x.into(),
1397            Err(e) => e,
1398        }
1399    }
1400
1401    ////////////////////////////////////////////////////////////////////////
1402    // Boolean operations on the values, eager and lazy
1403    /////////////////////////////////////////////////////////////////////////
1404
1405    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1406    ///
1407    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1408    /// result of a function call, it is recommended to use [`and_then`], which is
1409    /// lazily evaluated.
1410    ///
1411    /// [`and_then`]: Result::and_then
1412    ///
1413    /// # Examples
1414    ///
1415    /// ```
1416    /// let x: Result<u32, &str> = Ok(2);
1417    /// let y: Result<&str, &str> = Err("late error");
1418    /// assert_eq!(x.and(y), Err("late error"));
1419    ///
1420    /// let x: Result<u32, &str> = Err("early error");
1421    /// let y: Result<&str, &str> = Ok("foo");
1422    /// assert_eq!(x.and(y), Err("early error"));
1423    ///
1424    /// let x: Result<u32, &str> = Err("not a 2");
1425    /// let y: Result<&str, &str> = Err("late error");
1426    /// assert_eq!(x.and(y), Err("not a 2"));
1427    ///
1428    /// let x: Result<u32, &str> = Ok(2);
1429    /// let y: Result<&str, &str> = Ok("different result type");
1430    /// assert_eq!(x.and(y), Ok("different result type"));
1431    /// ```
1432    #[inline]
1433    #[stable(feature = "rust1", since = "1.0.0")]
1434    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1435    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1436    where
1437        T: [const] Destruct,
1438        E: [const] Destruct,
1439        U: [const] Destruct,
1440    {
1441        match self {
1442            Ok(_) => res,
1443            Err(e) => Err(e),
1444        }
1445    }
1446
1447    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1448    ///
1449    ///
1450    /// This function can be used for control flow based on `Result` values.
1451    ///
1452    /// # Examples
1453    ///
1454    /// ```
1455    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1456    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1457    /// }
1458    ///
1459    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1460    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1461    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1462    /// ```
1463    ///
1464    /// Often used to chain fallible operations that may return [`Err`].
1465    ///
1466    /// ```
1467    /// use std::{io::ErrorKind, path::Path};
1468    ///
1469    /// // Note: on Windows "/" maps to "C:\"
1470    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1471    /// assert!(root_modified_time.is_ok());
1472    ///
1473    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1474    /// assert!(should_fail.is_err());
1475    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1476    /// ```
1477    #[inline]
1478    #[stable(feature = "rust1", since = "1.0.0")]
1479    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1480    #[rustc_confusables("flat_map", "flatmap")]
1481    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1482    where
1483        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1484    {
1485        match self {
1486            Ok(t) => op(t),
1487            Err(e) => Err(e),
1488        }
1489    }
1490
1491    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1492    ///
1493    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1494    /// result of a function call, it is recommended to use [`or_else`], which is
1495    /// lazily evaluated.
1496    ///
1497    /// [`or_else`]: Result::or_else
1498    ///
1499    /// # Examples
1500    ///
1501    /// ```
1502    /// let x: Result<u32, &str> = Ok(2);
1503    /// let y: Result<u32, &str> = Err("late error");
1504    /// assert_eq!(x.or(y), Ok(2));
1505    ///
1506    /// let x: Result<u32, &str> = Err("early error");
1507    /// let y: Result<u32, &str> = Ok(2);
1508    /// assert_eq!(x.or(y), Ok(2));
1509    ///
1510    /// let x: Result<u32, &str> = Err("not a 2");
1511    /// let y: Result<u32, &str> = Err("late error");
1512    /// assert_eq!(x.or(y), Err("late error"));
1513    ///
1514    /// let x: Result<u32, &str> = Ok(2);
1515    /// let y: Result<u32, &str> = Ok(100);
1516    /// assert_eq!(x.or(y), Ok(2));
1517    /// ```
1518    #[inline]
1519    #[stable(feature = "rust1", since = "1.0.0")]
1520    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1521    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1522    where
1523        T: [const] Destruct,
1524        E: [const] Destruct,
1525        F: [const] Destruct,
1526    {
1527        match self {
1528            Ok(v) => Ok(v),
1529            Err(_) => res,
1530        }
1531    }
1532
1533    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1534    ///
1535    /// This function can be used for control flow based on result values.
1536    ///
1537    ///
1538    /// # Examples
1539    ///
1540    /// ```
1541    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1542    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1543    ///
1544    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1545    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1546    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1547    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1548    /// ```
1549    #[inline]
1550    #[stable(feature = "rust1", since = "1.0.0")]
1551    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1552    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1553    where
1554        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1555    {
1556        match self {
1557            Ok(t) => Ok(t),
1558            Err(e) => op(e),
1559        }
1560    }
1561
1562    /// Returns the contained [`Ok`] value or a provided default.
1563    ///
1564    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1565    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1566    /// which is lazily evaluated.
1567    ///
1568    /// [`unwrap_or_else`]: Result::unwrap_or_else
1569    ///
1570    /// # Examples
1571    ///
1572    /// ```
1573    /// let default = 2;
1574    /// let x: Result<u32, &str> = Ok(9);
1575    /// assert_eq!(x.unwrap_or(default), 9);
1576    ///
1577    /// let x: Result<u32, &str> = Err("error");
1578    /// assert_eq!(x.unwrap_or(default), default);
1579    /// ```
1580    #[inline]
1581    #[stable(feature = "rust1", since = "1.0.0")]
1582    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1583    pub const fn unwrap_or(self, default: T) -> T
1584    where
1585        T: [const] Destruct,
1586        E: [const] Destruct,
1587    {
1588        match self {
1589            Ok(t) => t,
1590            Err(_) => default,
1591        }
1592    }
1593
1594    /// Returns the contained [`Ok`] value or computes it from a closure.
1595    ///
1596    ///
1597    /// # Examples
1598    ///
1599    /// ```
1600    /// fn count(x: &str) -> usize { x.len() }
1601    ///
1602    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1603    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1604    /// ```
1605    #[inline]
1606    #[track_caller]
1607    #[stable(feature = "rust1", since = "1.0.0")]
1608    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1609    pub const fn unwrap_or_else<F>(self, op: F) -> T
1610    where
1611        F: [const] FnOnce(E) -> T + [const] Destruct,
1612    {
1613        match self {
1614            Ok(t) => t,
1615            Err(e) => op(e),
1616        }
1617    }
1618
1619    /// Returns the contained [`Ok`] value, consuming the `self` value,
1620    /// without checking that the value is not an [`Err`].
1621    ///
1622    /// # Safety
1623    ///
1624    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1625    ///
1626    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1627    ///
1628    /// # Examples
1629    ///
1630    /// ```
1631    /// let x: Result<u32, &str> = Ok(2);
1632    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1633    /// ```
1634    ///
1635    /// ```no_run
1636    /// let x: Result<u32, &str> = Err("emergency failure");
1637    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1638    /// ```
1639    #[inline]
1640    #[track_caller]
1641    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1642    pub unsafe fn unwrap_unchecked(self) -> T {
1643        match self {
1644            Ok(t) => t,
1645            // SAFETY: the safety contract must be upheld by the caller.
1646            Err(_) => unsafe { hint::unreachable_unchecked() },
1647        }
1648    }
1649
1650    /// Returns the contained [`Err`] value, consuming the `self` value,
1651    /// without checking that the value is not an [`Ok`].
1652    ///
1653    /// # Safety
1654    ///
1655    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1656    ///
1657    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```no_run
1662    /// let x: Result<u32, &str> = Ok(2);
1663    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1664    /// ```
1665    ///
1666    /// ```
1667    /// let x: Result<u32, &str> = Err("emergency failure");
1668    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1669    /// ```
1670    #[inline]
1671    #[track_caller]
1672    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1673    pub unsafe fn unwrap_err_unchecked(self) -> E {
1674        match self {
1675            // SAFETY: the safety contract must be upheld by the caller.
1676            Ok(_) => unsafe { hint::unreachable_unchecked() },
1677            Err(e) => e,
1678        }
1679    }
1680}
1681
1682impl<T, E> Result<&T, E> {
1683    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1684    /// `Ok` part.
1685    ///
1686    /// # Examples
1687    ///
1688    /// ```
1689    /// let val = 12;
1690    /// let x: Result<&i32, i32> = Ok(&val);
1691    /// assert_eq!(x, Ok(&12));
1692    /// let copied = x.copied();
1693    /// assert_eq!(copied, Ok(12));
1694    /// ```
1695    #[inline]
1696    #[stable(feature = "result_copied", since = "1.59.0")]
1697    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1698    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1699    pub const fn copied(self) -> Result<T, E>
1700    where
1701        T: Copy,
1702    {
1703        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1704        // ready yet, should be reverted when possible to avoid code repetition
1705        match self {
1706            Ok(&v) => Ok(v),
1707            Err(e) => Err(e),
1708        }
1709    }
1710
1711    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1712    /// `Ok` part.
1713    ///
1714    /// # Examples
1715    ///
1716    /// ```
1717    /// let val = 12;
1718    /// let x: Result<&i32, i32> = Ok(&val);
1719    /// assert_eq!(x, Ok(&12));
1720    /// let cloned = x.cloned();
1721    /// assert_eq!(cloned, Ok(12));
1722    /// ```
1723    #[inline]
1724    #[stable(feature = "result_cloned", since = "1.59.0")]
1725    pub fn cloned(self) -> Result<T, E>
1726    where
1727        T: Clone,
1728    {
1729        self.map(|t| t.clone())
1730    }
1731}
1732
1733impl<T, E> Result<&mut T, E> {
1734    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1735    /// `Ok` part.
1736    ///
1737    /// # Examples
1738    ///
1739    /// ```
1740    /// let mut val = 12;
1741    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1742    /// assert_eq!(x, Ok(&mut 12));
1743    /// let copied = x.copied();
1744    /// assert_eq!(copied, Ok(12));
1745    /// ```
1746    #[inline]
1747    #[stable(feature = "result_copied", since = "1.59.0")]
1748    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1749    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1750    pub const fn copied(self) -> Result<T, E>
1751    where
1752        T: Copy,
1753    {
1754        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1755        // ready yet, should be reverted when possible to avoid code repetition
1756        match self {
1757            Ok(&mut v) => Ok(v),
1758            Err(e) => Err(e),
1759        }
1760    }
1761
1762    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1763    /// `Ok` part.
1764    ///
1765    /// # Examples
1766    ///
1767    /// ```
1768    /// let mut val = 12;
1769    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1770    /// assert_eq!(x, Ok(&mut 12));
1771    /// let cloned = x.cloned();
1772    /// assert_eq!(cloned, Ok(12));
1773    /// ```
1774    #[inline]
1775    #[stable(feature = "result_cloned", since = "1.59.0")]
1776    pub fn cloned(self) -> Result<T, E>
1777    where
1778        T: Clone,
1779    {
1780        self.map(|t| t.clone())
1781    }
1782}
1783
1784impl<T, E> Result<Option<T>, E> {
1785    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1786    ///
1787    /// `Ok(None)` will be mapped to `None`.
1788    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1789    ///
1790    /// # Examples
1791    ///
1792    /// ```
1793    /// #[derive(Debug, Eq, PartialEq)]
1794    /// struct SomeErr;
1795    ///
1796    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1797    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1798    /// assert_eq!(x.transpose(), y);
1799    /// ```
1800    #[inline]
1801    #[stable(feature = "transpose_result", since = "1.33.0")]
1802    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1803    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1804    pub const fn transpose(self) -> Option<Result<T, E>> {
1805        match self {
1806            Ok(Some(x)) => Some(Ok(x)),
1807            Ok(None) => None,
1808            Err(e) => Some(Err(e)),
1809        }
1810    }
1811}
1812
1813impl<T, E> Result<Result<T, E>, E> {
1814    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1820    /// assert_eq!(Ok("hello"), x.flatten());
1821    ///
1822    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1823    /// assert_eq!(Err(6), x.flatten());
1824    ///
1825    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1826    /// assert_eq!(Err(6), x.flatten());
1827    /// ```
1828    ///
1829    /// Flattening only removes one level of nesting at a time:
1830    ///
1831    /// ```
1832    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1833    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1834    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1835    /// ```
1836    #[inline]
1837    #[stable(feature = "result_flattening", since = "1.89.0")]
1838    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1839    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1840    pub const fn flatten(self) -> Result<T, E> {
1841        // FIXME(const-hack): could be written with `and_then`
1842        match self {
1843            Ok(inner) => inner,
1844            Err(e) => Err(e),
1845        }
1846    }
1847}
1848
1849// This is a separate function to reduce the code size of the methods
1850#[cfg(not(feature = "panic_immediate_abort"))]
1851#[inline(never)]
1852#[cold]
1853#[track_caller]
1854fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1855    panic!("{msg}: {error:?}");
1856}
1857
1858// This is a separate function to avoid constructing a `dyn Debug`
1859// that gets immediately thrown away, since vtables don't get cleaned up
1860// by dead code elimination if a trait object is constructed even if it goes
1861// unused
1862#[cfg(feature = "panic_immediate_abort")]
1863#[inline]
1864#[cold]
1865#[track_caller]
1866const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1867    panic!()
1868}
1869
1870/////////////////////////////////////////////////////////////////////////////
1871// Trait implementations
1872/////////////////////////////////////////////////////////////////////////////
1873
1874#[stable(feature = "rust1", since = "1.0.0")]
1875impl<T, E> Clone for Result<T, E>
1876where
1877    T: Clone,
1878    E: Clone,
1879{
1880    #[inline]
1881    fn clone(&self) -> Self {
1882        match self {
1883            Ok(x) => Ok(x.clone()),
1884            Err(x) => Err(x.clone()),
1885        }
1886    }
1887
1888    #[inline]
1889    fn clone_from(&mut self, source: &Self) {
1890        match (self, source) {
1891            (Ok(to), Ok(from)) => to.clone_from(from),
1892            (Err(to), Err(from)) => to.clone_from(from),
1893            (to, from) => *to = from.clone(),
1894        }
1895    }
1896}
1897
1898#[unstable(feature = "ergonomic_clones", issue = "132290")]
1899impl<T, E> crate::clone::UseCloned for Result<T, E>
1900where
1901    T: crate::clone::UseCloned,
1902    E: crate::clone::UseCloned,
1903{
1904}
1905
1906#[stable(feature = "rust1", since = "1.0.0")]
1907impl<T, E> IntoIterator for Result<T, E> {
1908    type Item = T;
1909    type IntoIter = IntoIter<T>;
1910
1911    /// Returns a consuming iterator over the possibly contained value.
1912    ///
1913    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1914    ///
1915    /// # Examples
1916    ///
1917    /// ```
1918    /// let x: Result<u32, &str> = Ok(5);
1919    /// let v: Vec<u32> = x.into_iter().collect();
1920    /// assert_eq!(v, [5]);
1921    ///
1922    /// let x: Result<u32, &str> = Err("nothing!");
1923    /// let v: Vec<u32> = x.into_iter().collect();
1924    /// assert_eq!(v, []);
1925    /// ```
1926    #[inline]
1927    fn into_iter(self) -> IntoIter<T> {
1928        IntoIter { inner: self.ok() }
1929    }
1930}
1931
1932#[stable(since = "1.4.0", feature = "result_iter")]
1933impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1934    type Item = &'a T;
1935    type IntoIter = Iter<'a, T>;
1936
1937    fn into_iter(self) -> Iter<'a, T> {
1938        self.iter()
1939    }
1940}
1941
1942#[stable(since = "1.4.0", feature = "result_iter")]
1943impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1944    type Item = &'a mut T;
1945    type IntoIter = IterMut<'a, T>;
1946
1947    fn into_iter(self) -> IterMut<'a, T> {
1948        self.iter_mut()
1949    }
1950}
1951
1952/////////////////////////////////////////////////////////////////////////////
1953// The Result Iterators
1954/////////////////////////////////////////////////////////////////////////////
1955
1956/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1957///
1958/// The iterator yields one value if the result is [`Ok`], otherwise none.
1959///
1960/// Created by [`Result::iter`].
1961#[derive(Debug)]
1962#[stable(feature = "rust1", since = "1.0.0")]
1963pub struct Iter<'a, T: 'a> {
1964    inner: Option<&'a T>,
1965}
1966
1967#[stable(feature = "rust1", since = "1.0.0")]
1968impl<'a, T> Iterator for Iter<'a, T> {
1969    type Item = &'a T;
1970
1971    #[inline]
1972    fn next(&mut self) -> Option<&'a T> {
1973        self.inner.take()
1974    }
1975    #[inline]
1976    fn size_hint(&self) -> (usize, Option<usize>) {
1977        let n = if self.inner.is_some() { 1 } else { 0 };
1978        (n, Some(n))
1979    }
1980}
1981
1982#[stable(feature = "rust1", since = "1.0.0")]
1983impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1984    #[inline]
1985    fn next_back(&mut self) -> Option<&'a T> {
1986        self.inner.take()
1987    }
1988}
1989
1990#[stable(feature = "rust1", since = "1.0.0")]
1991impl<T> ExactSizeIterator for Iter<'_, T> {}
1992
1993#[stable(feature = "fused", since = "1.26.0")]
1994impl<T> FusedIterator for Iter<'_, T> {}
1995
1996#[unstable(feature = "trusted_len", issue = "37572")]
1997unsafe impl<A> TrustedLen for Iter<'_, A> {}
1998
1999#[stable(feature = "rust1", since = "1.0.0")]
2000impl<T> Clone for Iter<'_, T> {
2001    #[inline]
2002    fn clone(&self) -> Self {
2003        Iter { inner: self.inner }
2004    }
2005}
2006
2007/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2008///
2009/// Created by [`Result::iter_mut`].
2010#[derive(Debug)]
2011#[stable(feature = "rust1", since = "1.0.0")]
2012pub struct IterMut<'a, T: 'a> {
2013    inner: Option<&'a mut T>,
2014}
2015
2016#[stable(feature = "rust1", since = "1.0.0")]
2017impl<'a, T> Iterator for IterMut<'a, T> {
2018    type Item = &'a mut T;
2019
2020    #[inline]
2021    fn next(&mut self) -> Option<&'a mut T> {
2022        self.inner.take()
2023    }
2024    #[inline]
2025    fn size_hint(&self) -> (usize, Option<usize>) {
2026        let n = if self.inner.is_some() { 1 } else { 0 };
2027        (n, Some(n))
2028    }
2029}
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2033    #[inline]
2034    fn next_back(&mut self) -> Option<&'a mut T> {
2035        self.inner.take()
2036    }
2037}
2038
2039#[stable(feature = "rust1", since = "1.0.0")]
2040impl<T> ExactSizeIterator for IterMut<'_, T> {}
2041
2042#[stable(feature = "fused", since = "1.26.0")]
2043impl<T> FusedIterator for IterMut<'_, T> {}
2044
2045#[unstable(feature = "trusted_len", issue = "37572")]
2046unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2047
2048/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2049///
2050/// The iterator yields one value if the result is [`Ok`], otherwise none.
2051///
2052/// This struct is created by the [`into_iter`] method on
2053/// [`Result`] (provided by the [`IntoIterator`] trait).
2054///
2055/// [`into_iter`]: IntoIterator::into_iter
2056#[derive(Clone, Debug)]
2057#[stable(feature = "rust1", since = "1.0.0")]
2058pub struct IntoIter<T> {
2059    inner: Option<T>,
2060}
2061
2062#[stable(feature = "rust1", since = "1.0.0")]
2063impl<T> Iterator for IntoIter<T> {
2064    type Item = T;
2065
2066    #[inline]
2067    fn next(&mut self) -> Option<T> {
2068        self.inner.take()
2069    }
2070    #[inline]
2071    fn size_hint(&self) -> (usize, Option<usize>) {
2072        let n = if self.inner.is_some() { 1 } else { 0 };
2073        (n, Some(n))
2074    }
2075}
2076
2077#[stable(feature = "rust1", since = "1.0.0")]
2078impl<T> DoubleEndedIterator for IntoIter<T> {
2079    #[inline]
2080    fn next_back(&mut self) -> Option<T> {
2081        self.inner.take()
2082    }
2083}
2084
2085#[stable(feature = "rust1", since = "1.0.0")]
2086impl<T> ExactSizeIterator for IntoIter<T> {}
2087
2088#[stable(feature = "fused", since = "1.26.0")]
2089impl<T> FusedIterator for IntoIter<T> {}
2090
2091#[unstable(feature = "trusted_len", issue = "37572")]
2092unsafe impl<A> TrustedLen for IntoIter<A> {}
2093
2094/////////////////////////////////////////////////////////////////////////////
2095// FromIterator
2096/////////////////////////////////////////////////////////////////////////////
2097
2098#[stable(feature = "rust1", since = "1.0.0")]
2099impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2100    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2101    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2102    /// container with the values of each `Result` is returned.
2103    ///
2104    /// Here is an example which increments every integer in a vector,
2105    /// checking for overflow:
2106    ///
2107    /// ```
2108    /// let v = vec![1, 2];
2109    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2110    ///     x.checked_add(1).ok_or("Overflow!")
2111    /// ).collect();
2112    /// assert_eq!(res, Ok(vec![2, 3]));
2113    /// ```
2114    ///
2115    /// Here is another example that tries to subtract one from another list
2116    /// of integers, this time checking for underflow:
2117    ///
2118    /// ```
2119    /// let v = vec![1, 2, 0];
2120    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2121    ///     x.checked_sub(1).ok_or("Underflow!")
2122    /// ).collect();
2123    /// assert_eq!(res, Err("Underflow!"));
2124    /// ```
2125    ///
2126    /// Here is a variation on the previous example, showing that no
2127    /// further elements are taken from `iter` after the first `Err`.
2128    ///
2129    /// ```
2130    /// let v = vec![3, 2, 1, 10];
2131    /// let mut shared = 0;
2132    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2133    ///     shared += x;
2134    ///     x.checked_sub(2).ok_or("Underflow!")
2135    /// }).collect();
2136    /// assert_eq!(res, Err("Underflow!"));
2137    /// assert_eq!(shared, 6);
2138    /// ```
2139    ///
2140    /// Since the third element caused an underflow, no further elements were taken,
2141    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2142    #[inline]
2143    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2144        iter::try_process(iter.into_iter(), |i| i.collect())
2145    }
2146}
2147
2148#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2149#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2150impl<T, E> const ops::Try for Result<T, E> {
2151    type Output = T;
2152    type Residual = Result<convert::Infallible, E>;
2153
2154    #[inline]
2155    fn from_output(output: Self::Output) -> Self {
2156        Ok(output)
2157    }
2158
2159    #[inline]
2160    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2161        match self {
2162            Ok(v) => ControlFlow::Continue(v),
2163            Err(e) => ControlFlow::Break(Err(e)),
2164        }
2165    }
2166}
2167
2168#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2169#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2170impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2171    for Result<T, F>
2172{
2173    #[inline]
2174    #[track_caller]
2175    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2176        match residual {
2177            Err(e) => Err(From::from(e)),
2178        }
2179    }
2180}
2181#[diagnostic::do_not_recommend]
2182#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2183#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2184impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2185    #[inline]
2186    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2187        Err(From::from(e))
2188    }
2189}
2190
2191#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2192#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2193impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2194    type TryType = Result<T, E>;
2195}