X DevAPI User Guide for MySQL Shell in Python
Mode

Abstract
User documentation for developers using X DevAPI.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2026-02-09 (revision: 84384)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
L OVERIVIBW ..ottt ettt oottt e ettt e et h e et e b e et e et e et e e e e e et e e e nb e eees 1
2 Connection and SESSION CONCEPLScceuuuuiiieetieetiti ettt ettt e et e et et ee e e eai e eera e eenanns 3
2.1 Database Connection EXAmMPIEccoouiiiiiiiiiii e 3

2.2 CONNECLING 10 @ SESSION ...ceiutieeiiit ettt e e ettt ettt e e ettt e et et e e e ettt e e e eab e e e e eabaeeeenanaeeeee 4
2.2.1 Connecting to a Single MYSQL SEIVEIiiiiiiiiiiiiiii et 4

2.2.2 Connection OPLioN SUMIMANYc..uuuiiiiiiieeiiii ettt et e et e e e et e e et e e enraaaeeees 5

2.2.3 CONNECLION AMIDULES ...oeeeiieii et 5

2.3 Working with @ SEeSSION ODJECTcccuuiiiiiiiie et 6

2.4 USING SQL WIth SESSIONiiiiiiiiiiii ettt e et e e e et e eeent e eees 6

2.5 Setting the CUITENt SCEMAcoiiii e 7

2.6 DYNAMIC SOL .ottt e et ettt e e e 7

3 CRUD OPEIALIONSueeietiee et e ettt ettt e et e et e et et e et e et ettt e et ee s e et e e e et e tbn e et eba e e eenens 9
3.1 CRUD OPEratioNS OVEIVIEWuuueiietieietti ettt ettt e et e e et e e et et et e e e et eeeaa s 9

3.2 Method CR@INING .. .ccoutiiiiiiie ettt e e et e e e e e eeaans 10

3.3 Parameter BiNGINGoeeeeeiieiiiiie ettt ettt et 10

3.4 MySQL Shell Automatic Code EXECULIONoeiieiiieiiiiiiieeiiii et e e 11

4 WOorking With COIECHONSuuiiiiii et ettt e e e eaanns 13
4.1 Basic CRUD Operations 0N COlECLONSuiiiiiiiiieiiiiie et 13

4.2 COllECHON ODBJECES ...ouuiciiiiii ettt ettt e et 14
4.2.1 Creating @ COllECHIONcciiiiiiiei e 14

4.2.2 Working with EXisting ColleCtiONSooiiiiiiiiiiii e 14

4.3 Collection CRUD FUNCHON OVEIVIEWiiiiiiiieiiiiieeeeii ettt e e et e e et e eeeni e eeens 14
4.3.1 COlECON.AAU() +..eeeerieeeei et 14

4.3.2 COlleCtioN.FINA() +oeerrneieeii ettt e 15

4.3.3 ColleCtion.MOGITY() ...coevunieeiiii e 19

4.3.4 COllECtiON.TEMOVE() ...oeitiieeiii ettt e e 25

4.4 INdeXING COlIECLONSiiiiti ettt et e e et e e e e e e eeeans 25

4.5 Single DOCUMENt OPETALIONSuuiiiieitieeeiii et e et e e et e et e e e e e eena e eeenans 28

4.6 JSON Schema Validationicieuuiiiiiie et 29

5 WOrking With DOCUMENTSeeiitii ittt e e et e e et e e et e e e e en e e et e e eanaeeannas 31
5.1 Creating DOCUMENTScouuiiiiiii ettt et e et e et e et b e e e et e e e raa s 31

5.2 Working wWith DOCUMENT IDSccuuiiiiieei et e e e e e e eaas 31

5.3 Understanding DOCUMENT IDSciiuiiiiiiiiiie ettt ettt e e e e eeeans 33

6 Working with Relational TabIes ... e e 35
6.1 Syntax of the SQL CRUD FUNCLONScoiutiiiiiiiiiieiiiti ettt e e 35

7 Working with Relational Tables and DOCUMENEScc.uuiiiiiiiiiiiiie et 39
7.1 Collections as Relational TabIesooiiiiiiiiiiii e 39

8 STALEMENT EXECULIONuiiiti ettt ettt e ettt e e e et e e e e 41
8.1 Transaction HaNAINGcoouiuiiiiii ettt e e et e e e e e e 41
8.1.1 ProCeSSING WAaIMINGS ...cccuuuiiieitieiiiti ettt ettt et e e et e e e e e e ena e eenans 41

8.1.2 Error HANAIING ...ccevviiiiiiiie ettt et e e e 43

8.2 WOrking With SAVEPOINTScouuiiiiiiiiee it e e 43

8.3 WOrking With LOCKINGiiiiiiieiii et et eea e 45

8.4 Working with Prepared State€mMeNTSccouuuiiiiiiiiiieiiii e 46

9 WOrking With RESUIL SISuuiiiiiiiei i et et a7
9.1 RESUIL SEE CIASSES ...eeitueiiiiii ettt ettt e et ettt e ettt e e et et e e e eat e e e ena e aeen 47

9.2 Working with AUTO- | NCRENVENT VAIUEScooiiiiiiiiiiiie ittt 48

9.3 WOrking With DAt SISiiiiiiiiiiiiiii ettt et e e et e e e anan s 48

9.4 Fetching All Data ItemMS @t ONCEuuiiiiiiiii e 49

9.5 Working with SQL RESUIt SESc.uuiiiiiiiieii e 50

9.6 WOrking With METAUALAueiiiiieiiii et e e enees 51

9.7 Support for Language Native ITEratorscoouuiiieiiiiiiieiii e 52

O = 1011 Fo [T g Vo = d o] (=115 (o] 1S PSRN 53
10.1 EXPIreSSION SEIMNGS . oevuuieittneeiitt ettt ettt ettt ettt et e et e et r et e ebea e e e et et enni e eennes 53

X DevAPI User Guide for MySQL Shell in Python Mode

10.1.1 Boolean EXPresSion SIINGSoiuuieiiieiiieiie e e e e e e e e e e et e e e eanaeenes 53

10.1.2 Value EXPreSSiON SNGSciuuciiieii e e e e e e e e e e e e e et e e eeaes 53

11 CRUD EBNF DEfINILIONS ...iuvtiiiiiiieeiiiiieiees ettt s s e e e e e e ettt e s s e e e e e e aaataennaaeeeeeannees 55
11.1 Session Objects and FUNCLIONSuiiiiiiiii e e e e e 55

11.2 Schema Objects and FUNCLONScoouiiiiiii e e e e e 57

11.3 Collection CRUD FUNCHONScuuuiiiiiiieeeiii s ee et e et e et e et e e et s e e e et e e e eaaa e eeaees 60

11.4 Collection Index Management FUNCHONSc.uuviiiiiiiiieeeie e e e e e e e e eaes 62

11.5 Table CRUD FUNCLONSciiiiiiiiiiiiee ettt e et e e et e e e et e e e e et 62

11.6 RESUIL FUNCHIONS ...oeviiieiiiiii ettt ettt e e et e e et e e e et e e e et e e eeean s 64

11.7 Other EBNF DefiNItiONS ... coiuiiiiiiiii et e e e e 67

12 Expressions EBNF DEefiNitIONScouuiiiiiiiiie e e e e e e e e e e e eaens 73
RS [0T o] L= aa =T a1 e= LT T A\ o) (= 89
13.1 MySQL Shell X DEVAPI EXIENSIONScovuiiiiiiieiiieie et e e e e e e e e e e et e eanaeees 89

Preface and Legal Notices

This is the X DevAPI User Guide for MySQL Shell in Python mode.

Legal Notices

Copyright © 2015, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Access to Oracle Support for Accessibility

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=accé& d=tr s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview

This guide explains how to use the X DevAPI and provides examples of its functionality. The X DevAPI
is implemented by MySQL Shell and MySQL Connectors that support X Protocol. For more background
information and instructions on how to install and get started using X DevAPI, see Using MySQL as

a Document Store. For quick-start tutorials introducing you to X DevAPI, see JavaScript Quick-Start
Guide: MySQL Shell for Document Store and Python Quick-Start Guide: MySQL Shell for Document
Store. In addition to this documentation, there is developer documentation for all X DevAPI methods in
the API references, available from Connectors and APIs.

This section introduces the X DevAPI and provides an overview of the features available when using it
to develop applications.

The X DevAPI wraps powerful concepts in a simple API.

» A new high-level session concept enables you to write code that can transparently scale from single
MySQL Server to a multiple server environment. See Chapter 2, Connection and Session Concepts.

» Read operations are simple and easy to understand.
» Non-blocking, asynchronous calls follow common host language patterns.
The X DevAPI introduces a hew, modern, and easy-to-learn way to work with your data.

» Documents are stored in Collections and have their dedicated CRUD operation set. See Chapter 4,
Working with Collections and Chapter 5, Working with Documents.

» Work with your existing domain objects or generate code based on structure definitions for strictly
typed languages. See Chapter 5, Working with Documents.

» Focus is put on working with data via CRUD operations. See Section 3.1, “CRUD Operations
Overview”.

» Modern practices and syntax styles are used to get away from traditional SQL-String-Building. See
Chapter 10, Building Expressions for details.

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-javascript.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-javascript.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-python.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-shell-tutorial-python.html
https://dev.mysql.com/doc/index-connectors.html

Chapter 2 Connection and Session Concepts

Table of Contents

2.1 Database ConNection EXAMPIEcoouiiiiiii e 3
2.2 CONNECHING 10 @ SESSIONeevtiieeiii ettt e et e et e e et et et e et et r e et e bt r e e e abeaeaeaaa e eeeneen 4
2.2.1 Connecting to @ Single MYSQL SEIVETiiiiiiiiiiiii e 4
2.2.2 Connection OPLtION SUMMATYcouuuiiiiiiiieeeii et ettt e ettt e e e et e e eebe e e eereaeeeens 5
2.2.3 CONNECLION AHIDULES ..ooueiiiiei et e e e b 5
2.3 Working with @ SeSSION ODJECEceuuuiiiiiii et eeea e e 6
2.4 USING SQL WItN SESSIONiiiiiiiiiiiiie ettt et e et e et et e e e et e e eetenaeeees 6
2.5 Setting the CUIMTENt SCREMAciiiii et et e e b e e 7
2.6 DYNAMIC SOQL utuiiiiiti ettt ettt e ettt e ettt e et e e et e e et e et aeab s 7

This section explains the concepts of connections and sessions as used by the X DevAPI. Code
examples for connecting to a MySQL Document Store (see Using MySQL as a Document Store) and
using sessions are provided.

An X DevAPI session is a high-level database session concept that is different from working with
traditional low-level MySQL connections. Sessions can encapsulate one or more actual MySQL
connections when using the X Protocol. Use of this higher abstraction level decouples the physical
MySQL setup from the application code. Sessions provide full support of X DevAPI and limited support
of SQL.

For MySQL Shell, when a low-level MySQL connection to a single MySQL instance is needed this is
still supported by using a ClassicSession, which provides full support of SQL.

Before looking at the concepts in more detail, the following examples show how to connect using a
session.

2.1 Database Connection Example

The code that is needed to connect to a MySQL document store looks a lot like the traditional MySQL
connection code, but now applications can establish logical sessions to MySQL server instances
running the X Plugin. Sessions are produced by the nmysql x factory, and the returned sessions can
encapsulate access to one or more MySQL server instances running X Plugin. Applications that use
Session objects by default can be deployed on both single server setups and database clusters with no
code changes.

Create an X DevAPI session using the mysgl x. get Sessi on(connecti on) method. You pass in
the connection parameters to connect to the MySQL server, such as the hostname and user, very
much like the code in one of the classic APIs. The connection parameters can be specified as either a
URI type string, for example user : @ ocal host : 33060, or as a data dictionary, for example { user :
myuser, password: nypassword, host: exanple.com port: 33060}.See Connecting to
the Server Using URI-Like Strings or Key-Value Pairs for more information.

The MySQL user account used for the connection should use either the mysql _nati ve_passwor d
or cachi ng_sha2_passwor d authentication plugin, see Pluggable Authentication. The server

you are connecting to should have encrypted connections enabled, the default in MySQL 8.0 and
later. This ensures that the client uses the X Protocol PLAI N password mechanism which works
with user accounts that use either of the authentication plugins. If you try to connect to a server
instance which does not have encrypted connections enabled, for user accounts that use the

nysql _nati ve_passwor d plugin authentication is attempted using MYSQL41 first, and for user
accounts that use cachi ng_sha2_ passwor d authentication falls back to SHA256 MEMORY.

The following example code shows how to connect to a MySQL server and get a document from
the my_col | ecti on collection that has the field nane starting with L. The example assumes that a

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html

Connecting to a Session

schema called t est exists, and the my_col | ect i on collection exists. To make the example work,
replace user with your username, and passwor d with your password. If you are connecting to a
different host or through a different port, change the host from | ocal host and the port from 33060.

from nysqgl sh i nport nysql x

Connect to server on | ocal host
nmySessi on = nysql x. get _sessi on({
"host': 'local host', '"port': 33060,
'user': 'user', 'password': 'password' })

myDb = nySessi on. get_schema('test')

Use the collection 'nmy_collection'
myCol | = nmyDb. get _col |l ection(' ny_collection')

Speci fy which docunent to find with Coll ection.find() and
fetch it fromthe database with .execute()
myDocs = nyCol | .find('nane like :param).limt(1).bind(' param, 'L%).execute()

Print docunent
docunment = nyDocs. f et ch_one()
print (docunent)

nmySessi on. cl ose()

2.2 Connecting to a Session

There are several ways of using a session to connect to MySQL depending on the specific setup in
use. This section explains the different methods available.

2.2.1 Connecting to a Single MySQL Server

In this example a connection to a local MySQL Server instance running X Plugin on the default TCP/
IP port 33060 is established using the MySQL user account user with its password. As no other
parameters are set, default values are used.

Passing the paraneters in the { param value } format
di ct Sessi on = nysqgl x. get _session({

"host': 'local host', 'port': 33060,

‘user': 'user', 'password': 'password' })

dbl = dict Sessi on. get _schema('test')

Passing the paraneters in the UR format
uri Sessi on = nysql x. get _sessi on(' user: passwor d@ ocal host : 33060')

db2 = uri Sessi on. get_schema('test')

The following example shows how to connect to a single MySQL Server instance by providing a TCP/
IP address “localhost” and the same user account as before. You are prompted to enter the user name
and password in this case.

Passing the paraneters in the { param value } format

Query the user for the account infornation
print("Please enter the database user information.")

usr shel | . pronpt ("Usernane: ", {'defaultValue': "user"})
pwd shel | . pronpt ("Password: ", {'type': "password"})

Connect to MySQL Server on a network nachine
nySessi on = nysqgl x. get _sessi on({
"host': 'local host', 'port': 33060,
"user': usr, 'password' : pwd})

nyDb = nySessi on. get_schema('test')

Connection Option Summary

2.2.2 Connection Option Summary

When using an X DevAPI session the following options are available to configure the connection.

Option Name Optional Default Notes

TCP/IP Host host - localhost, IPv4 host
name, no IP-range

TCP/IP Port port Yes 33060 Standard X Plugin
port is 33060

MySQL user user - MySQL database
user

MySQL password |password - The MySQL user's
password

Supported authentication methods are:
e PLAIN
e MYSQL 4.1

URI elements and format.

Figure 2.1 Connection URI

ConnectURI1::='user' "' 'password' '@' 'host' ' 'port’

2.2.3 Connection Attributes

Connection attributes are key-value pairs that application programs can pass to the server during
connection time to be stored in the PERFORMANCE_SCHEMA tables session_account_connect_attrs
and session_connect_attrs. There are two different kinds of connection attributes:

 Client-defined attributes are reserved key-value mappings implicitly encoded by a client. The set
of client-defined attributes differ from client to client—see the X DevAPI references of you client for
details. The client-defined attributes are sent to the server by default.

» User-defined attributes are key-value mappings provided by the user or application.

X DevAPI supports MySQL connection attributes through the connection parameter connect i on-
attribut es (xdevapi . connection-attributes for Connector/Jd), set through the
get Sessi on() and get C i ent () methods. Here are the different ways to use the parameter:

» These settings for the parameter are equivalent to the default behavior (that is, sending client-
defined attributes) when the parameter is not used:

e connection-attributes

e connection-attributes=

e connection-attributes=true
e connection-attributes=[]

e connection-attributes=fal se prevents any connection attributes to be sent, including the
client-defined ones.

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html

Working with a Session Object

e connection-attributes=[keyl=val uel, key2=val ue2, ...] sends user-defined
connection attributes as key-value pairs alongside the client-defined connection attributes. When a
value is missing from a key-value pair, a null value is set for the attribute

The following is a generic example of a connection string that configures the connection attributes:

nysql x: // user: passwor d@ ocal host : 33060?connecti on-attri but es=[keyl=val uel, key2=val ue2, key3=]

2.3 Working with a Session Object

All previous examples used the get Schema() or get Def aul t Schena() methods of the Session
object, which return a Schema object. You use this Schema object to access Collections and Tables.
Most examples make use of the X DevAPI ability to chain all object constructions, enabling you to get
to the Schema object in one line. For example:

schema = nysql x. get Session(...).get Schema();

This object chain is equivalent to the following, with the difference that the intermediate step is omitted:

sessi on = nysql x. get Sessi on() ;
schema = sessi on. get Schema() .

There is no requirement to always chain calls until you get a Schema object, neither is it always what
you want. If you want to work with the Session object, for example, to call the Session object method
get Schenmas() , there is no need to navigate down to the Schema. For example:

sessi on = nysql x. get Sessi on(); session. get Schenmas().

In this example the nysqgl x. get Sessi on() function is used to open a Session. Then the
Sessi on. get Schenas() function is used to get a list of all available schemas and print them to the
console.

Connecting to MySQL and working with a Session
from nysql sh i nport nysql x

Connect to a dedicated MySQL server using a connection URI
nySessi on = nysql x. get _sessi on(' user: passwor d@ ocal host ")

CGet a list of all avail able schenas
schemalLi st = nySessi on. get _schemas()

print (' Avail able schemas in this session:\n')
Loop over all avail able schenas and print their nane
for schema in schenalLi st:

print('%\n' % schema. nane)

nySessi on. cl ose()

2.4 Using SQL with Session

In addition to the simplified X DevAPI syntax of the Session object, the Session object has a sql ()
function that takes any SQL statement as a string.

The following example uses a Session to call an SQL Stored Procedure on the specific node.

from nysgl sh i nport nysql x

Connect to server using a Session
mySessi on = nysql x. get _sessi on(' user: passwor d@ ocal host ")

Switch to use schema 'test’
mySessi on. sql ("USE test"). execute()

In a Session context the full SQ |anguage can be used
sql = """ CREATE PROCEDURE ny_add_one_pr ocedure

Setting the Current Schema

(I NOUT i ncr_param | NT)
BEG N

SET i ncr_param = i ncr_param + 1;
END

mySessi on. sql (sql). execut e()

mySessi on. sql ("SET @ry_var = ?"). bi nd(10). execut e()

mySessi on. sql (" CALL nmy_add_one_pr ocedure(@y_var)"). execut e()
mySessi on. sql (" DROP PROCEDURE ny_add_one_procedure") . execut e()

Use an SQL query to get the result
myResult = nySession. sql ("SELECT @ry_var"). execut e()

Gets the row and prints the first col um
row = nyResul t.fetch_one()
print(row 0])

mySessi on. cl ose()

When using literal/verbatim SQL the common API patterns are mostly the same compared to using
DML and CRUD operations on Tables and Collections. Two differences exist: setting the current
schema and escaping names.

2.5 Setting the Current Schema

A default schema for a session can be specified using the schena attribute in the URI-like
connection string or key-value pairs when opening a connection session. The Sessi on class
get Def aul t Schema() method returns the default schema for the Sessi on.

If no default schema has been selected at connection, the Sessi on class set Curr ent Schena()
function can be used to set a current schema.

from nysgl sh i nport nysql x

Direct connect with no client-side default schema specified
mySessi on = nysql x. get _sessi on(' user: passwor d@ ocal host ")
mySessi on. set _current_schema("test")

Notice that set Cur r ent Schema() does not change the session's default schema, which remains
unchanged throughout the session, or remains nul | if not set at connection. The schema set by
set Current Schema() can be returned by the get Cur r ent Schena() method.

An alternative way to set the current schema is to use the Sessi on class sql() method and the USE
db_nane statement.

2.6 Dynamic SQL

A quoting function exists to escape SQL names and identifiers. Sessi on. quot eNane() escapes the
identifier given in accordance to the settings of the current connection.

syntax of Sessi on. sql () instead; see Section 2.4, “Using SQL with Session”

Note
@ The quoting function must not be used to escape values. Use the value binding
for some examples.

def createTest Tabl e(sessi on, nane):

use escape function to quote nanes/identifier

quot ed_nane = sessi on. quot e_nane(hane)

sessi on. sql ("DROP TABLE | F EXI STS " + quot ed_nane) . execut e()
create = "CREATE TABLE "

create += quot ed_nane

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/use.html

Dynamic SQL

create += " (id INT NOT NULL PRI MARY KEY AUTO_ | NCREMENT) "
sessi on. sql (create). execute()
return session. get_current_schema().get_tabl e(nane)

from nmysqgl sh i nport nysql x
sessi on = nysql x. get _sessi on(' user: passwor d@ ocal host : 33060/t est ')

def aul t _schema = session. get _defaul t _schenma(). nane
sessi on. set _current _schema(def aul t _schena)

Creates sone tables
tabl el = createTest Tabl e(session, 'testl')
t abl e2 creat eTest Tabl e(session, 'test2')

Code that uses X DevAPI does not need to escape identifiers. This is true for working with collections
and for working with relational tables.

Chapter 3 CRUD Operations

Table of Contents

3.1 CRUD OPEratioNS OVEIVIEWuuuiiiiiiieieiii ettt e et e e e e et eb e e et e e et e e e e bt e e e eban s 9
3.2 MEethod CREINING .. .ceeetieieii et ettt ettt e et et et e eb e e e nba e eenaans 10
3.3 Parameter BiNOINGoieeiii ittt ettt 10
3.4 MySQL Shell Automatic Code EXECULIONcieuuinieiiiii ettt et e e e eeaens 11

This section explains how to use the X DevAPI for Create Read, Update, and Delete (CRUD)
operations.

MySQL's core domain has always been working with relational tables. X DevAPI extends this domain
by adding support for CRUD operations that can be run against collections of documents. This section
explains how to use these.

3.1 CRUD Operations Overview

CRUD operations are available as methods, which operate on Schema objects. The available Schema
objects consist of Collection objects containing Documents, or Table objects consisting of rows and
Collections containing Documents.

The following table shows the available CRUD operations for both Collection and Table objects.

Operation Document Relational

Create Section 4.3.1, “Collection.add()” |Table.insert()

Read Section 4.3.2, “Collection.find()” |Table.select()

Update Section 4.3.3, Table.update()
“Collection.modify()”

Delete Section 4.3.4, Table.delete()
“Collection.remove()”

Database Object Classes

Figure 3.1 Database Object - Class Diagram

@ DatabaseObject

General Functions
@ getSession(): XSessionOhj
@ getSchemall : SchemaObj
@ getNamel() . String
o existsinDatabasel) . Boolean|Unknown

‘F

@ Collection @ -~

@ Schema
CRUD Functions
. @ addl) : CollectionlnsertOhbj Relational SQL CRUD Functions
tC ”Brt:.wsetfunctmns @ findi) : CollectionFindObj o insert() . InsertObj
O get_roblec I(?ns @ modifyl) : CollectionUpdateObj o select() : SelectObj
O e _ES . @ remove() : CollectionDeleteObj o update() : UpdateObj
DtbCOllnljectt_ In(SJténcce”FchtI%nbs Index Functions o deletei) : Delet=0hj
g g:tT:bleec(JI?rjl'aklnleg)ch tontbl @ createlndex() Index Functions
@ getCollectionAsTablel) : TableObj e dropindex) o dropindexi]
; o getindexes() o getindexes()
CrlTate_ FL.I(?CtIOnS Decument and Structure Functions General Functions
mjc=ate o EEtion @ newDocl) @ countl) : Integer

@ countl) : Integer

Method Chaining

3.2 Method Chaining

X DeVvAPI supports a number of modern practices to make working with CRUD operations easier
and to fit naturally into modern development environments. This section explains how to use method
chaining instead of working with SQL strings of JSON structures.

The following example shows how method chaining is used instead of an SQL string when working with
Session objects. The example assumes that the t est schema exists and an enpl oyee table exists.

New net hod chai ning used for executing an SQL SELECT st at enent
Recommended way for executing queries
enpl oyees = db. get _tabl e(' enpl oyee')

res = enpl oyees.select(['nanme', 'age']) \
.where('nanme |ike :param) \
.order_by(['nane']) \
.bind(' param, 'nP6).execute()

Traditional SQ execution by passing an SQL string
It should only be used when absol utely necessary
result = session.sqgl (' SELECT nane, age ' +

' FROM enpl oyee ' +

'WHERE nane |ike ? ' +

' ORDER BY nan®'). bind(' n?). execut e()

3.3 Parameter Binding

Instead of using values directly in an expression string it is good practice to separate values from the
expression string. This is done using parameters in the expression string and the bi nd() function to
bind values to the parameters.

Parameters can be specified in the following ways: anonymous and named.

Parameter Type |Syntax Example Allowed in CRUD |Allowed in SQL
operations strings

Anonymous ? 'age > ?' no yes

Named <name> ‘age > :age' yes no

The following example shows how to use the bi nd() function before an execut e() function. For
each named parameter, provide an argument to bi nd() that contains the parameter name and its
value. The order in which the parameter value pairs are passed to bi nd() is of no importance. The
example assumes that the t est schema has been assigned to the variable db and that the collection
my_col | ecti on exists.

Col |l ection.find() function with hardcoded val ues
myCol | = db.get_collection(' my_collection')

myResl = nyCol | . find('age = 18'). execute()

Using the .bind() function to bind paraneters
nmyRes2 = nyCol | . find(' nane = :paraml AND age = :paran®').bind(' paraml',' Rohit').bind(' paranR', 18).execut e(

Usi ng named paraneters
myCol | . modi fy(' nane = :parani).set('age', 55).bind('param, 'Nadya').execute()

Binding works for all CRUD statenents except add()
myRes3 = nyCol | . find(' nane |ike :param).bind(' param, 'R%).execute()

Anonymous placeholders are not supported in X DevAPI. This restriction improves code clarity in
CRUD command chains with multiple methods using placeholders. Regardless of the bi nd() syntax
variant used there is always a clear association between parameters and placeholders based on the
parameter name.

10

Preparing CRUD Statements

All methods of a CRUD command chain form one namespace for placeholders. In the following
example, nodi f y() and set () are chained. Both methods take an expression with placeholders. The
placeholders refer to one combined namespace. Both use one placeholder called : par am A single call
to bi nd() with one name value parameter for : par amis used to assign a placeholder value to both
occurrences of : par amin the chained methods.

one bind() per paraneter
myCol | = db.get_collection('relatives')
juniors = nyColl.find('alias = "jr"').execute().fetch_all ()

for junior in juniors:
myCol | . modi fy(' nane = :param). \
set (' parent _nane', nysql x. expr (' :param)). \
bi nd(' param , junior.nane). execute()

It is not permitted for a named parameter to use a name that starts with a digit. For example, : 1one
and : 1 are not allowed.

Preparing CRUD Statements

Instead of directly binding and executing CRUD operations with bi nd() and execut e() or
execut e() itis also possible to store the CRUD operation object in a variable for later execution.

The advantage of doing so is to be able to bind several sets of variables to the parameters defined in
the expression strings and therefore get better performance when executing a large number of similar
operations. The example assumes that the t est schema has been assigned to the variable db and
that the collection my_col | ect i on exists.

myCol | = db.get_collection(' my_collection')

Only prepare a Collection.renove() operation, but do not run it yet
myRenove = nyCol | .renove(' name = :paranl AND age = :paranR')

Binding paraneters to the prepared function and . execute()
myRenove. bi nd(' paraml', 'Leon').bind('paranR', 39).execute()
myRenove. bi nd(' paraml', 'Johannes').bind(' paran?', 28).execute()

Binding works for all CRUD statenents but add()
nmyFind = nyCol | .find('nane |ike :paranli AND age > :paranR')

myDocs = nyFi nd. bi nd(' paraml', 'L%).bind(' paran?', 20).execute()
MyQt her Docs = nyFi nd. bi nd(' paranl', 'J%).bi nd(' paranR', 25).execute()

3.4 MySQL Shell Automatic Code Execution

When you use X DevAPI in a programming language that fully specifies the syntax to be used, for
example, when executing SQL statements through an X DevAPI session or working with any of the
CRUD operations, the actual operation is performed only when the execut e() function is called. For
example:

var result = nySession.sql (' show dat abases'). execute()
var result2 = nyColl.find().execute()

The call of the execut e() function above causes the operation to be executed and returns a Result
object. The returned Result object is then assigned to a variable, and the assignment is the last
operation executed, which returns no data. Such operations can also return a Result object, which is
used to process the information returned from the operation.

Alternatively, MySQL Shell provides the following usability features that make it easier to work with X
DevAPI interactively:

» Automatic execution of CRUD and SQL operations.

» Automatic processing of results.

11

Automatic Code Execution

To achieve this functionality MySQL Shell monitors the result of the last operation executed every time
you enter a statement. The combination of these features makes using the MySQL Shell interactive
mode ideal for prototyping code, as operations are executed immediately and their results are
displayed without requiring any additional coding. For more information see MySQL Shell 8.0.

Automatic Code Execution

If MySQL Shell detects that a CRUD operation ready to execute has been returned, it automatically
calls the execut e() function. Repeating the example above in MySQL Shell and removing the
assignment operation shows the operation is automatically executed.

nysqgl -j s> nySessi on. sql (' show dat abases')
nmysql -j s> nyCol | . find()

MySQL Shell executes the SQL operation, and as mentioned above, once this operation is executed a
Result object is returned.

Automatic Result Processing

If MySQL Shell detects that a Result object is going to be returned, it automatically processes it,
printing the result data in the best format possible. There are different types of Result objects and the
format changes across them.

nysql -j s> db. countrylnfo.find().limt(1)
[

"GNP": 828,

"I ndepYear": null,

"Nanme": "Aruba",

'id": "ABW,

"denogr aphi cs": {
"Li f eExpect ancy": 78.4000015258789,
" Popul ation": 103000

I

"geography": {
"Continent": "North America",
"Regi on": "Cari bbean",
"SurfaceArea": 193

I

"governnment": {
"CGovernment Form': "Nonnmetropolitan Territory of The Netherl ands",

"HeadOf State": "Beatrix"

]

1 docunent in set (0.00 sec)

12

https://dev.mysql.com/doc/mysql-shell/8.0/en/

Chapter 4 Working with Collections

Table of Contents

4.1 Basic CRUD Operations 0N COIECONSc..uiiiiiiiiiieiii e 13
o @] | [=Tox 1o] o I ©]] [T 14
4.2.1 Creating @ COllECHONiitiiie e e e e 14
4.2.2 Working with EXiSting COlECHONSciuiiiiii e 14
4.3 Collection CRUD FUNCHON OVEIVIEWcuuiiiiiiii ettt ettt e e et e e e e e e et e e e e eanaas 14
V0 T4 I @] | [=Tox 1o 1 1= To [[PN 14
e T @] | 1=Tox 1o T o 141 o [) P 15
4.3.3 ColleCtioN.MOIfY() ..vuieniire e e 19
oC I A @o]| [=Tox 1o o W =10 0 [o Y= I 25
4.4 INdeXiNG COHBCLONS e e e e e e e e e et e et e e e e e e eneees 25
4.5 Single DOCUMENt OPEIALIONS ... ettt ettt et et e e e e et e e et e eaaaees 28
4.6 JSON Schema Validationoiiuiiii et e e e eea e eees 29

The following section explains how to work with Collections, how to use CRUD operations on
Collections and return Documents.

4.1 Basic CRUD Operations on Collections

Working with collections of documents is straightforward when using X DevAPI. The following example
shows the basic usage of CRUD operations (see Section 4.3, “Collection CRUD Function Overview”
for more details) when working with documents: After establishing a connection to a MySQL Server
instance, a new collection that can hold JSON documents is created and several documents are
inserted. Then, a find operation is executed to search for a specific document from the collection.
Finally, the collection is dropped again from the database. The example assumes that the t est
schema exists and that the collection my_col | ect i on does not exist.

Connecting to MySQL Server and working with a Coll ection
from nysql sh i nport nysql x

Connect to server

nySessi on = nysqgl x. get _sessi on({

"host': 'local host', 'port': 33060,
"user': 'user', 'password': 'password'})

nyDb = nySessi on. get _schema('test')

Create a new col lection 'ny_col |l ection’
nyCol | = nyDb.create_collection(' my_collection')

I nsert docunents

nyCol | . add({ 'nane': 'Laurie', 'age': 19 }).execute()
nyCol | . add({ 'nane': 'Nadya', 'age': 54 }).execute()
nyCol | . add({ 'nane': 'Lukas', 'age': 32 }).execute()

Find a docunent
docs = nyCol | .find('name |ike :paranml AND age < :paran?') \
dimt(1) \
. bind(' parant’,'L%) \
. bi nd("' paran2', 20) \
. execut e()

Print docunent
doc = docs. fetch_one()
print (doc)

Drop the collection
nmyDb. drop_col | ection(' nmy_col |l ection')

13

Collection Objects

4.2 Collection Objects

Documents of the same type (for example users, products) are grouped together and stored in the
database as collections. X DevAPI uses Collection objects to store and retrieve documents.

4.2.1 Creating a Collection

In order to create a new collection call the cr eat eCol | ecti on() function from a Schema object.
It returns a Collection object that can be used right away to, for example, insert documents into the
database.

Create a new collection called 'ny_collection'
myCol | = db.create_collection('ny_collection")

4.2.2 Working with Existing Collections

In order to retrieve a Collection object for an existing collection stored in the database call the
get Col | ecti on() function from a Schema object.

Get a collection object for 'my_collection’
myCol | = db.get_collection('my_collection')

The creat eCol | ecti on(), together with the ReuseExi sti ngObj ect field set to true, can be
used to create a new collection or reuse an existing collection with the given name. See Section 4.2.1,
“Creating a Collection” for details.

time and refrain from creating them on the fly during the production phase of
a database project. Therefore it is best to separate the code that creates the

Note
@ In most cases it is good practice to create database objects during development
collections in the database from the actual user application code.

4.3 Collection CRUD Function Overview

The following section explains the individual functions of the Collection object.

The most common operations to be performed on a Collection are the Create Read Update Delete
(CRUD) operations. In order to speed up find operations it is recommended to make proper use of
indexes.

additional functions that operate on single documents identified by their

Note
@ Beyond the CRUD functions described in this section, X DevAPI also provides
document IDs; see Section 4.5, “Single Document Operations” for details.

4.3.1 Collection.add()

The Col | ecti on. add() function is for storing documents in a collection, similar to the INSERT
statement for an SQL database. It takes a single document or a list of documents as its argument, and
is executed by the execut e() function.

The collection needs to be created with the Scherna. creat eCol | ecti on() function
before documents can be inserted. To insert documents into an existing collection use the
Schena. get Col | ecti on() function to retrieve the Collection object.

The following example shows how to use the Col | ecti on. add() function. The example assumes
that the test schema exists and that the collection ny_col | ecti on does not exist.

Create a new col l ection
nyCol | = db.create_collection('nmy_collection')

14

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Collection.find()

I nsert a document
myCol | . add({ 'nane': 'Laurie', 'age': 19 }).execute()

Insert several docunents at once

nyCol | . add([
{ '"nanme': 'Nadya', 'age': 54 },
{ '"name': 'Lukas', 'age': 32 }]).execute()

See also CollectionAddFunction for the syntax of add() in EBNF.

4.3.2 Collection.find()

The f i nd(Sear chCondi ti onStr) function is for searching documents in a collection, similar to the
SELECT statement for an SQL database. It takes a search condition string (SearchConditionStr) as

a parameter to specify the documents that should be returned from the database. The execut e()
function triggers the actual execution of the fi nd() operation.

The SearchConditionStr can be in one of these forms:

 If no SearchConditionStr is specified, the f i nd() operation returns all the documents in the
collection.

/] Get a collection

var myCol | = session. get Schema("worl d_x").getCol | ecti on("countryinfo");
// To return all docunments in world_x:

nyCol | . find().execute();

* The most common form for a SearchConditionStr is:

JSON-path [operator { value | JSON-path}]
Here are some explanations for the different parts of a SearchConditionStr:

e JSON- pat h: A JSON path identifies an element in a JSON document; see JSON Path Syntax for
details . Here is a short summary of the JSON path syntax:

* A JSON path starts with a scope: in MySQL's JSON document implementation, the scope of
the path is always the document being operated on, represented as $, which is always implicitly
assumed, so it can be skipped in most cases; for example, the path $. geogr aphy. Regi on is
equivalent to geogr aphy. Regi on.

Note
@ In some cases, $ cannot be omitted; for example:

* When the ** wildcard is used (for example, fi nd(" $**. b1") ; see
the discussion on wildcards below),

* When the JSON path only contains a literal string if $ is omitted (for
example, find("$.' country nane'") for finding all documents
that have a count ry nane field.

 After the scope, a path consists of one or more path legs. A path leg leads from one level of the
JSON tree down to the next, and consecutive paths are separated by a period (.). For example:
nyCol | . find("geography. Continent = 'Africa' ") finds all documents that have the
value Af ri ca for the field Cont i nent under the field geogr aphy .

« Elements in arrays are represented by [N] , where Nis an array index, which has to be a non-
negative integer.

nyCol | . add({ nane:'John', favorNums: [1, 3, 5, 7, 9] }).execute();
nyCol | . find("favorNuns[0] = 1").execute(); //Returns the docunent just added

}

15

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/json.html#json-path-syntax

Collection.find()

e The wildcard tokens * and ** can be used in JSON paths as follows:

* obj ect . * represents the values of all members under the member obj ect . For example, in
the count r yi nf o collection in the sample wor | d_x schema, geogr aphy. * represents all
members under the object geogr aphy, and myCol | . find(""' Africa' in geography.*")
returns all documents that have the value Af r i ca in any of the members under geogr aphy.

e array[*] represents the values of all elements in an array. For example:

nmyCol | . add({ nane:'John', favorNuns: [1, 3, 5, 7, 9] }).execute();

nmyCol | . add({ nane:'Jane', favorNuns: [2, 4, 6, 8, 10] }).execute();

nyCol | . find("1 in favorNums[*]").execute(); //Returns the first docunent added above
nyCol | . find("2 in favorNums[*]").execute(); //Returns the second docunent added above

}

e [prefix]**suffix represents all paths under the document pr ef i x that end with suf fi x,
regardless of the depth of the path. The following examples illustrate how ** can be used to
return different results:

nysql -js> nyCol | . find().execute();

{
"a": "bar",
b {
"bl": 6,
"b2": 7,
"b3": {
"bl": 99,
"b2": 98,
"b3": {
"bl": 999,
"b2": 998
}
}
b
"_id": "000061313aa10000000000000001"
}
{
"a": "baz",
b {
"b1": 1,
"b2": 7
b
"_id": "000061313aa10000000000000002"
}
{
"a": "bbr,
"e": 37,
"_id": "0000613247ed0000000000000001"
}

3 docunents in set (0.0007 sec)
nysql -js> nyCol | . find("$**.b2"). execute();

{
"a": "bar",
"b": {
"b1": 6,
"b2": 7,
"b3": {
"bl": 99,
"b2": 98,
"b3": {
"bl": 999,
"b2": 998
}
}
b
"_id": "000061313aa10000000000000001"
}

Collection.find()

"a": "baz",
"b": {
b1": 1,
"b2": 7

_id": "000061313aa10000000000000002"
2 docunents in set, 1 warning (0.0008 sec)

nysql -j s> nyCol | . find("$**. b3**. b2"). execute();
{

"b1": 99,
"b2": 98,

"b1": 999,
"b2": 998

b
"_id": "000061313aa10000000000000001"
}

1 docunent in set, 1 warning (0.0011 sec)
The following requirements apply when using the ** wildcard:

» prefix should be $ or an element that is a document itself.

» suf fix should be a path leg and is always required (that is, a path expression may not end in

* %)
» A path expression may not contain the sequence ** * .

e val ue is a value to be compared to an element on the JSON- pat h. The %and _ wildcard
characters can be used in val ue with the LI KE operator, just like in a MySQL WHERE clause. For
example:

myCol | . find("Name LIKE ' Austra%")
myCol | . fi nd("geography. Conti nent LIKE 'Asi_"'")

< oper at or : The following operators can be used in a SearchConditionStr: OR (||), AND (&&),
XOR, | S, NOT, BETVEEN, | N, LI KE, OVERLAPS, ! =, <>, > >=,<, <=, &, |, <<, >>, +,-,*, [, ~,
and % Here are some examples for using the operators:

myCol | . find("Nane = 'Australia'")

myCol | . fi nd("denogr aphi cs. Popul ati on >= 1000000")

myCol | . fi nd(" denogr aphi cs. Li f eExpect ancy BETWEEN 50 AND 60")

myCol | . fi nd("government. HeadOf State = 'Elizabeth I1' AND geography. Regi on = ' Cari bbean'")

If no operator and subsequent JSON path is supplied, f i nd() returns all documents for which the
JSON path supplied points to some non-null elements. For example:

nmyCol | . fi nd("denographi cs. Popul ati on").execute();

Returns all documents that have a denogr aphi cs. Popul ati on element:

{
"GN\P": 828,
'_id": "00005de917d80000000000000000",
"Code": "ABW,

"Nane": "Aruba",
"l ndepYear": null,

17

Collection.find()

"geography": {
"Region": "Caribbean",
"Continent": "North America",
"SurfaceArea": 193
.
"government": {
"HeadOr State": "Beatrix",
"Covernment Form': "Nonnetropolitan Territory of The Netherl ands"
.
"denogr aphi cs": {
"Popul ati on": 103000,
"Li f eExpect ancy”: 78.4000015258789

"GN\P": 5976,
"_id": "00005de917d80000000000000001",

232 docunents in set, 1 warning (0.0013 sec)

Warni ng (code 3986): Evaluating a JSON value in SQ bool ean context does an inplicit conparison agai nst
if this is not what you want, consider converting JSON to an SQL numeric type with JSON VALUE RETURNI N

Use the | N operator in the SearchConditionStr to check for a value within all the members covered
by a wildcard:

nysqgl -js> nyCol | . find("$**. bl"). execute();

{
"a": "bar",
b {
"bl": 6,
"h2": 7,
"b3": {
"bl": 99,
"b2": 98,
"b3": {
"bl": 999,
"b2": 998
}
}
2
"_id": "000061313aa10000000000000001"
}
{
"a": "baz",
b {
"b1": 1,
"b2": 7
"_id": "000061313aa10000000000000002"
}

2 docunents in set, 1 warning (0.0012 sec)

-rril-sql -js> nyCol | .find("99 IN $**.bl").execute();

{
"a": "bar",
"b": {
"b1": 6,
"b2": 7,
"b3": {
"b1": 99,
"b2": 98,
"b3": {
"b1": 999,
"b2": 998
}
}
Ba
"_id": "000061313aa10000000000000001"
}
1 docunent in set (0.0016 sec)

Collection.modify()

The OVERLAPS operator compares two JSON fragments and returns true (1) if the two fragments
have any values in any key-value pair or array element in common. For example:

nmysql -js> nyCol | . find("list").execute();

{
"oid'ro "1,
"list": [
1,
4
]
}
{
_id": "2
"list": [
4,
7
]
}

2 docunents in set, 1 warning (0.0010 sec)
nysqgl-js> nyCol | .find("[1,2,3] OVERLAPS $.list")

{
"idUrot1t,
"list": [
1,
4
]
}

1 docunent in set (0.0006 sec)

Several methods such asfi el ds(),sort() ,and!limt() can be chainedtothe fi nd() function
to further refine the result. For example:

nmyCol | . find("Name LIKE 'Austra% ").fiel ds(" Code")
nmyCol | . fi nd("geography. Continent LIKE 'A% ").lint(10)

Parameter binding using bi nd() is also supported. The following example illustrates the use of
bi nd() withfind():

Use the collection 'nmy_collection'
myCol | = db.get_collection(' my_collection')

Find a single docunent that has a field 'nane' that starts with 'L’
docs = nyCol | .find('nane like :param).limt(1).bind('param, 'L%).execute()

print (docs. fetch_one())

Get all docunents with a field 'nanme' that starts with 'L’
docs = nmyCol | . find(' nane |ike :param).bind(' param ,' L%). execute()

myDoc = docs. fetch_one()
whi | e nyDoc:

pri nt (myDoc)
myDoc = docs. fetch_one()

See also CollectionFindFunction for the syntax of f i nd() in EBNF.

4.3.3 Collection.modify()

The nodi f y(Sear chCondi ti onStr) function is for modifying documents in a collection, similar to
an UPDATE statement for an SQL database. It takes a search condition string (SearchConditionStr)
as a parameter to specify the documents that are to be modified—a detailed discussion on the
SearchConditionStr can be found in Section 4.3.2, “Collection.find()".

If one or more documents are matched by the search condition string, they are modified by any of
these methods that are chained after the nodi f y() method. They can be chained one after another
and for multiple times:

19

https://dev.mysql.com/doc/refman/8.0/en/update.html

Collection.modify()

Notes
@ e The _i d of a document cannot be modified or removed by the methods

* set (" DocPat h",

below.

¢ For any methods below that take a DocPath expression as one of its
arguments, the following rules apply:

« Within the DocPath expression, any field names containing a space or
a special character must be quoted; for example, set (" nane. ' | ast

name' ", "Smth"),unset("name."'| ast%mane'")
« The DocPath expression cannot contain a wildcard token (either * or **).

« The DocPath expression cannot be null or empty.

expression with the value represented by the Expression or Literal (ExprOrLiteral) expression.

The DocPath expression is a JSON path expression identifying one or more JSON elements in the
documents found by the nodi f y() function. See discussions on the JSON path in Section 4.3.2,
“Collection.find()". If the element specified by DocPath does not exist, it is added to the document as

a new element.

ExprOrLiteral specifies the value to be set for the element represented by DocPath. It can be any of

the following:

< Aliteral value. For example, 10 or "John".

« Any X DevAPI Expression, wrapped in the expr () function (or mysqgl . expr () for MySQL Shell
and some Connectors), so that it is not taken as a literal value. Here are some examples, which do

not exhaust the possibilities of using mysql . expr (Expr essi on) for ExprOrLiteral:

Another DocPath selecting a value from the document that is being modified (for example,
set("favorNuns[0] ", nysql x. expr("favorNuns[1] ")), orset("nane",
nysql x. expr("$.'last nane'")).

A functional expression that involves one or more Expressions (for example,
set ("favorNuns[0] ", mysqgl x. expr ("abs(favorNuns[1])")).

One or more Expressions connected by operators (for example, set (" f avor Nuns[0] ",
nmysql x. expr (" favor Nuns[1] +f avor Nuns[2] +f avor Nuns[3] +3")) , or
set (" SameVal ueOr Not ", nysql x. expr ("favorNums[1] = favorNunms[2]")).

A JSON document (for example, set (" G eeti ng",
mysql x. expr("{' season':"winter', 'phrase': 'Happy Holiday'}"))

matched by nodi f y() with the supplied j son_docunent , except for the

Note
@ set ("$", nysql x. expr ("] son_docunent") replaces all documents

original _i d field, which is inalterable once set at document creation.

20

Expr Or Li t er al) : Set the elements matched by the Document Path (DocPath)

Collection.modify()

e unset ("DocPat h[, DocPath] ..."):Delete one or more fields or array elements represented
by a list of one or more DocPath (for example, unset (" nane"), unset ("nane.' | ast nane'",
nane.'first nane'"),orunset ("favorNuns[0]")).

An error is returned if no DocPath is supplied, or if DocPath is $ (use remove() instead if you want to
delete a whole document).

Warning

O Notice that when multiple array elements are unset or deleted, they are being
removed one after another, and the same array index in a statement might,
therefore, refer to different elements for each unset action. Take that into
consideration when removing array elements. For example, for the document:

nysql -js> nyCol | . find("nane = 'Ann'");

{
'_id": "00006239f 74a0000000000000004",
"name": "Ann",
"favor Nunms": [
i,
2
3,
4,
5
]
}

The following statement does not remove the first and second elements of the
array as one might expect:

nysql -j s> nyCol | . nodi fy("nane = ' Ann'").unset ("favor Nuns[0] ", "favor Nuns[1] ");
Query OK, 1 itemaffected (0.0038 sec)

nysql -js> nyCol |l .find("nane = "Ann'").fields("favorNuns");

{
"favor Nunms": [
2,
4,
5
]
}

1 docunent in set (0.0007 sec)

Instead, it removed the first and third elements of the array. To delete the first
two elements, you can do the following:

nysqgl -j s> nyCol | . nodi fy("nane = ' Ann' ") . unset ("favor Nuns[0] ", "favor Nuns[0] ") ;
Query OK, 1 itemaffected (0.0108 sec)

Rows matched: 1 Changed: 1 Warnings: O
nysqgl-js > nyCol|l.find("nane = "Ann'").fields("favor Nuns");

{
"favor Nums": [
3,
4,
5
]
}

1 docunent in set (0.0005 sec)

» pat ch(Docunent) : Performs a merge patch for any documents matched by nodi f y() and the
JSON Docunent supplied as its parameter. The operation follows the RFC 7396 specification for
JSON merge patch created by the Internet Engineering Task Force (IETF). The following table

21

Collection.modify()

explains the action on a field, which depends on the field statuses in the two documents (notice that
this is a recursive operation):

Table 4.1 JSON Patch Merge of Document Fields

Field Status in the Original Field Status in Patch Action to be Taken on

Document Document the Field in the Original
Document

Any value Value is Null Remove field

Value B Value A (not Null) If either Value A or B is a scalar,

replace Value B with Value A

If both Value A and B are JSON
objects, they are merged using
the same rules described in
this table (that is, the merge is
applied recursively for JSON

documents).
Field does not exist Value A (not Null) Add field with Value A
Value C Field does not exist No change to field

Here is a simple example of a merge using pat ch():

nmysql -j s> nyCol | . find("nane = 'John Doe'");
{
"DOB": "1970-01-01",
"_id": "0000626028c30000000000000002",
"nane": "John Doe",
"Phone": 1234567,
" Standi ng": " Good",
“favor Nums": {
"a": 1,
"b":2
}
}
1 docunent in set (0.0009 sec)

nysql -j s> nyCol | . nodi fy("name = 'John Doe'")
.patch({ name: "Jane Doe", DOB: null, Phone: 9876543, favorNums: { a: 3, b:4} });
Query OK, 1 itemaffected (0.0413 sec)

Rows matched: 1 Changed: 1 Warnings: O

nysql -js> nyCol | . find("nane = 'Jane Doe'");
{
"_id": "0000626028c30000000000000002",
"nane": "Jane Doe",
"Phone": 9876543,
" Standi ng": " Good",
“favor Nums": {
"a": 3,
"b": 4
}
}
1 docunent in set (0.0008 sec)

arrayl nsert (DocPat h, ExprOrLiteral):Insertan ExprOrLiteral (see explanations above)
into an array at the location identified by DocPath, shifting any following values in the array to the

right. For example: arrayl nsert ("favorNuns[1]", 7),arraylnsert("favorNuns[1]",
{even: 2, odd: 3, irrational: 'pi'}).Thefollowing rules apply:

« If DocPath does not identify an array element, an error is returned.

Collection.modify()

« If DocPath identifies an array position past the end of an array, the value is inserted at the end of
the array.

o arrayAppend(DocPat h, ExprOrLiteral): Append a value represented by ExprOrLiteral to the
end of an array identified by DocPath. For example, ar r ay Append(" f avor Nuns", 555).

Notice that if DocPath points to a scalar or a document value, that value is autowrapped within an
array and the value represented by ExprOrLiteral is added to that array. For example:

nysql -j s> nyCol | . find("nane="Jane Doe'");

{
"_id": "000062bOf af 90000000000000001",
"nanme": "Jane Doe",
"favor Nuni': 2

}

1 docunent in set (0.0011 sec)

nysql -j s> nyCol | . nodi fy("nane="Jane Doe'"). arrayAppend("favor Nuni, 3);
Query OK, 1 itemaffected (0.0094 sec)

Rows matched: 1 Changed: 1 Warnings: 0O
nysql -j s> nyCol | . find("nane="Jane Doe'");

{
"_id": "000062b0f af 90000000000000001",
"nane": "Jane Doe",
“favor Num': [
Z;
3
]
}

1 docunent in set (0.0006 sec)

The following methods can be chained to the modification methods described above to configure the
modification:

e sort(sortCriterialist): Sortthe order in which documents are to be modified according to
sort Criterialist, which is either a comma-separated list or an array of sort Cri t eri a. Each
sort Criteri a consists of a component name and a search order (asc for ascending, or desc for
descending). For example:

e sort('nanme asc', 'age desc')
e sort(['nane asc', 'age desc'])

The method is used in combination with the | i m t () method to determine which of the documents
matched by nodi f y(Sear chCondi ti onStr) are to be modified.

e |imt(int):Limits the number of documents to be modified to i nt . When chained after sort (),
only the first i nt of documents in the sorted list are modified.

This is an example of using sort ().l i m t () to limit modifications to the documents:

nysql -js> nyCol | . find("nane |ike '%oe'");

{
"_id": "000062b0Of af 90000000000000001",
"nanme": "Jane Doe",
"favor Nunm': [
2,
3
]
}
{

'_id": "000062b372f 80000000000000001",
"nane": "Bob Doe",
"favor Nunm': [

1,

2

23

Collection.modify()

}
{
_id": "000062bh372f 80000000000000002",
"nane": "Mark Doe",
"favor Num': [
7,
8
]
}
{
_id": "000062bh372f 80000000000000003",
"nane": "John Doe",
"favor Num': [
0,
4
]
}

nmysql -j s> nyCol | . nodi fy("nanme |ike '%Doe'").unset("favorNuni').sort("nane asc").limt(2);
Query OK, 2 itens affected (0.0082 sec)

Rows matched: 2 Changed: 2 Warnings: O
mysql -js> nyCol | . find("nanme |ike '%Doe'").sort (' nane asc');

{
"_id": "000062b372f 80000000000000001",
"nane": "Bob Doe"
}
{
_id": "000062b0f af 90000000000000001",
"name": "Jane Doe"
}
{
_id": "000062b372f 80000000000000003",
"nane": "John Doe",
"favor Num': [
0,
4
]
}
{
_id": "000062b372f 80000000000000002",
"nane": "Mark Doe",
"favor Num': [
7,
8
]
}

4 docurments in set (0.0068 sec)

Parameter binding using bi nd() is also supported. The execut e() function triggers the actual
execution of the nodi f y() operation. The following example illustrates the use of nodi fy() :

Use the collection 'nmy_collection'

myCol | = db.get_collection(' my_collection')

Add a new docunent to the collection

nmyCol | . add({ "nane":"John Doe", "DOB"':"1970-01-01", "Phone":1234567, "Standing": "Good" }).execute()

Patch the added docunent, addi ng, renoving, and changi ng sonme fields
myCol | . nodi fy("nane = 'John Doe'").patch({ "nanme": "Jane Doe", "DOB": None, "Phone": 9876543, "favorNuns":

Modify fields with different methods

myCol | . modi fy("nane |ike :parant).set("Standing", "Bad").bind("parant, "J%oe").execute()

myCol | . nodi fy("nane |ike :parant). unset ("Phone"). bind("parani, "J%oe").execute()

myCol | . modi fy("nane |ike :parant').array_insert("favorNuns[1]", 7).bind("parani, "J%oe").execute()
myCol | . nodi fy("nane |ike :parant).array_append("favorNuns", 99).bind("paran, "J%oe").execute()
myCol | . nodi fy("nane |ike :parant).unset ("favorNunms[2]"). bi nd("parant, "J%oe").execute()

doc = nyCol | .find('nane like :param).limt(1).bind(' param, 'J%oe').execute()
print(doc. fetch_one())

The out put | ooks Iike:

24

Collection.remove()

{"Standi ng": "Bad", "_id": "0000626718c10000000000000005", "favorNums": [1, 7, 3, 4, 5, 99], "nane"

See also CollectionModifyFunction for the syntax of add() in EBNF.

4.3.4 Collection.remove()

The Col | ecti on. renove() function is for removing documents in a collection, similar to the
DELETE statement for an SQL database. It takes a search condition string (SearchConditionStr) as a
parameter to specify the documents that should be removed from the collection (a detailed explanation
of the SearchConditionStr can be found in Section 4.3.2, “Collection.find()”). r enove() returns an
error if no search condition string is provided, or if an empty string is provided. All documents in the
collection are removed if any expression that evaluates to true without matching any document (for
example, “true”or“_id |'S NOT NULL”")is passed as the search condition string.

The following methods can be chained to the r enove() method to configure the deletion:
e [imt(int):Limitsthe number of documents to be deleted to i nt .

e sort(sortCriterialist): Sortthe order in which documents are to be deleted according to
sort Criterialist, which is either a comma-separated list or an array of sort Cri t eri a. Each
sort Criteria consists of a component name and a search order (asc for ascending, or desc for
descending). For example:

e sort('nanme asc', 'age desc')
e sort(['name asc', 'age desc'])

The method is usually used in combination with the | i mi t () method to determine which of the
documents matched by the search condition string are to be deleted.

Parameter binding using bi nd() is also supported, and the execut e() function triggers

the actual execution of the remove operation. The following example shows how to use the

Col I ection. renove() function. It assumes some documents have been added to the collection as
illustrated by the code example in Section 4.3.1, “Collection.add()":

Use the collection 'ny_collection
nyCol | = db. get_collection(' nmy_collection')

Renove docunents by criteria
nyCol | . renove(' nane |ike :name AND age < :age') \
limt(1). bind(' nane', ' N%). bi nd(' age', 60) . execut e()

See also CollectionRemoveFunction for the syntax of add() in EBNF.

4.4 Indexing Collections

To make large collections of documents more efficient to navigate you can create an index based on
one or more fields found in the documents in the collection. This section describes how to index a
collection.

Creating an Index

Collection indexes are ordinary MySQL indexes on virtual columns that extract data from the
documents in the collection. Because MySQL cannot index JSON values directly, to enable indexing
of a collection, you provide a JSON document that specifies the document's fields to be used by the
index. You pass the JSON document defining the index as the | ndexDef i ni t i on parameter to the
Col | ection. creat el ndex(nane, |ndexDefinition) method. This generic example (actual
syntax might vary for different programming languages) shows how to create a mandatory integer type
index based on the field count :

25

https://dev.mysql.com/doc/refman/8.0/en/delete.html

Defining an Index

nyCol | ecti on. creat el ndex("count", {fields:[{"field": "$.count", "type":"INT", required:true}]});

This example shows how to create an index based on a text field: a zip code in this case. For a text
field, you must specify a prefix length for the index, as required by MySQL Server:

nyCol | ection. createl ndex("zip", {fields: [{field: "$.zip", type: "TEXT(10)"}]})

See Defining an Index for information on the format of | ndexDef i ni t i on and on the supported field
types for indexing.

The Col | ecti on. cr eat el ndex() method fails with an error if an index with the same name already
exists or if the index definition is not correctly formed. The name parameter is required and must be a
valid index name as accepted by the SQL statement CREATE | NDEX.

To remove an existing index use the col | ecti on. dropl ndex(string nane) method. This would
delete the index with the passed name, and the operation silently succeeds if the named index does
not exist.

The indexes of a collection are stored as virtual columns. To verify a created index use the SHOW
| NDEX statement. For example to use this SQL from MySQL Shell:

sessi on. runSgl (* SHOW | NDEX FROM nmySchema. nyCol | ection');

Defining an Index

To create an index based on the documents in a collection you need to create an | ndexDef i ni ti on
JSON document. This section explains the valid fields you can use in such a JSON document to define
an index.

To define a document field to index a collection on, the type of that field must be uniform across the
whole collection. In other words, the type must be consistent. The JSON document used for defining
anindex, suchas{fields: [{field: '$. usernane', type: 'TEXT }]}, can containthe
following:

« fiel ds:anarray of at least one | ndexFi el d object, each of which describes a JSON document
field to be included in the index.

A single | ndexFi el d description consists of the following fields:
e fi el d:a string with the full document path to the document member or field to be indexed

* type: a string for one of the supported column types to map the field to (see Field Data Types).
For numeric types, the optional UNSI GNED keyword can follow. For the TEXT type you must define
the length to consider for indexing (the prefix length).

e required: an optional boolean that should be set to t r ue if the field is required to exist in the
document. Defaults to f al se for all types except GEQJ SON, which defaults to t r ue.

e opti ons: an optional integer that is used as a special option flag when decoding GEQJ SON data
(see the description for ST _CGeonfr onGe0JSON() for details).

e sri d: an optional integer to be used as the srid value when decoding GEOJ SON data (see the
description for ST_Geonfr onGeoJSON() for details).

e array: An optional boolean that is set to t r ue if the field contains arrays. The default value is
f al se. See Indexing Array Fields for details.

Important

supported in the index; specifying a field that contains array data does not

A For MySQL 8.0.16 and earlier, fields that are JSON arrays are not
generate an error from the server, but the index does not function correctly.

26

https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html#function_st-geomfromgeojson

Field Data Types

e type: an optional string that defines the type of index. Value is one of | NDEX or SPATI AL. The
default is | NDEX and can be omitted.

Including any other fields in an | ndexDef i ni ti on or | ndexFi el d JSON document which is not
described above causes col | ecti on. creat el ndex() to fail with an error.

If index type is not specified or is set to | NDEX then the resulting index is created in the same way as it
would be created by issuing CREATE | NDEX. If index type is set to SPATI AL then the created index is
the same as it would be created by issuing CREATE | NDEX with the SPATI AL keyword, see SPATIAL
Index Optimization and Creating Spatial Indexes. For example:

myCol | ecti on. creat el ndex(' nyl ndex', //
{fields: [{field: '$. nmyGeoJsonField ,h type: 'GEQISON, required: true}], type:' SPATIAL'})

Important

A When using the SPATI AL type of index the r equi r ed field cannot be set to
fal sein| ndexFi el d entries.

This is an example to create an index based on multiple fields:

nyCol | ecti on. creat el ndex(' nyl ndex', {fields: [{field: '$.nyField , type: 'TEXT'}, //
{field: '$.nyField2', type: 'TEXT(10)'}, {field: '$.nyField3', type: '"INT"}]})

The values of indexed fields are converted from JSON to the type specified in the | ndexFi el d
description using standard MySQL type conversions (see Type Conversion in Expression Evaluation),
except for the GEQJ SON type, which uses the ST _Geontr omGe0JSON() function for conversion. That
means when using a numeric type in an | ndexFi el d description, an actual field value that is non-
numeric is converted to 0.

The opti ons and sri d fields in | ndexFi el d can only be presentif t ype is set to GEOQJ SON. If
present, they are used as parameters for ST_CGeonfr once0JSON() when converting GEQJ SON data
into MySQL native GEOVETRY values.

Field Data Types

The following data types are supported for document fields. Type names are case-insensitive when
used in the t ype field.

| NT [UNSIGNED]

« TI NYI NT [UNSIGNED]
« SMALLI NT [UNSIGNED]
« MVEDI UM NT [UNSIGNED]
« | NTEGER [UNSIGNED]
« BI G NT [UNSIGNED]

« REAL [UNSIGNED]

« FLOAT [UNSIGNED]

« DOUBLE [UNSIGNED]

- DECI MAL [UNSIGNED]
« NUVERI C[UNSIGNED]

* DATE

27

https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-index-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-index-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html#function_st-geomfromgeojson
https://dev.mysql.com/doc/refman/8.0/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Indexing Array Fields

« TIME

TI MESTAMP

DATETI ME

TEXT(| engt h)

e GEQJSON (extra options: options, srid)
Indexing Array Fields

X DevAPI supports creating indexes based on array fields by setting the boolean ar r ay field in the
I ndexFi el d description to t r ue. For example, to create an index on the enai | s array field:

col |l ection. createl ndex("emails_idx", //
{fields: [{"field": "$.emils", "type":"CHAR(128)", "array": true}]});

The following restrictions apply to creating indexes based on arrays:

» For each index, only one indexed field can be an arr ay

» Data types for which index on arrays can be created:
¢ Numeric types: | NTEGER [UNSI GNED] (I NT is NOT supported)
» Fixed-point types: DECI MAL(m n) (the precision and scale values are mandatory)
« Date and time types: DATE, TI Mg, and DATETI ME

e String types: CHAR(n) and Bl NARY(n) ; the character or byte length n is mandatory (TEXT is NOT
supported)

4.5 Single Document Operations

The CRUD commands described at Section 4.3, “Collection CRUD Function Overview” all act on a
group of documents in a collection that match a filter. X DevAPI also provides the following operations,
which work on single documents that are identified by their document IDs:

e Col l ection.getOne(string id) returns the document with the given i d. This is a shortcut for
Collection.find("_id = :id").bind("id", id).execute().fetchOne().

e Collection.replaceOne(string id, Docunment doc) updates or replaces the document
identified by i d, if it exists, with the provided document.

e Col l ection.addOr Repl aceOne(string id, Docunment doc) adds the given document;
however, if the i d or any other field that has a unique index on it already exists in the collection, the
operation updates the matching document instead.

* Col l ection.renpoveOne(string id) removes the document with the giveni d. Thisis a
shortcut for Col | ecti on.remove(" _id = :id").bind("id", id).execute().

Using these operations you can reference a document by its ID (see Section 5.2, “Working with
Document IDs”), making operations on single documents simpler by following a "load, modify, and
save" pattern such as the following:

doc = collection.getOne(id); // Load docunent of the specified id into a tenporary docunent called doc
doc["address"] = "123 Long Street"; //Mdify the "address" field of doc
col l ection. repl aceOne(id, doc); // Save doc into the docunment with the specified id

Syntax of Single Document Operations

The syntax of the single document operations is as follows:

28

https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

JSON Schema Validation

e Docunent get One(string id),whereid isthe document ID of the document to be retrieved.
This operation returns the document, or NULL if no match is found. Searches for the document that
has the given i d and returns it.

* Result replaceOne(string id, Docurment doc), wherei d isthe document ID of the
document to be replaced, and doc, which can contain expressions, is the new document for
replacing the document identified by i d. If doc itself contains an _i d value and it is different from
i d, the operation fails. The operation also fails if the new document contains a unique key value that
conflicts with any other document in the collection. The operation returns a Resul t object, which
indicates the number of affected documents (1 or 0). If no matches are found for i d, the function
returns normally with no changes being made.

* Result addOrRepl aceOne(string id, Docunent doc), wherei d isthe document ID of
the document to be replaced or added (if no match can be found for the i d), and doc, which can
contain expressions, is the new document used for replacement or addition. If doc itself contains an
_i dvalue and it is different from i d, the operation fails. The operation also fails if the new document
contains a unique key value that conflicts with any other document in the collection. This operation
returns a Resul t object, which indicates the number of affected documents (1 or 0).

e Result renoveOne(string id),whereidisthe document ID of the document to be removed.
This operation returns a Resul t object, which indicates the number of removed documents (1 or 0,
if none).

4.6 JSON Schema Validation

Collections can be configured to verify documents against a JSON schema. This enables you to
require that documents have a certain structure before they can be inserted or updated in a collection.
You specify a JISON schema as described at http://json-schema.org. Schema validation is performed
by the server, which returns an error message if a document in a collection does not validate against
the assigned JSON schema. For more information on JSON schema validation in MySQL, see

JSON Schema Validation Functions. This section describes how to configure a collection to validate
documents against a JSON schema.

To enable or modify JSON schema validation, you supply to a collection a val i dat i on JSON object
like the following:

{
val i dation: {
level: "off|strict",
schema: "json-schema"
}
}

Here, val i dat i on is a JSON object that contains the keys you can use to configure JSON schema
validation. The first key is | evel , which can take the value stri ct or of f. The second key, schens,
is a JSON schema, as defined at http://json-schema.org. If the | evel keyis setto stri ct, documents
are validated against the j son- schema when they are added to the collection or, if they are already in
the collection, when they are updated by some operations. If a document does not validate, the server
generates an error and the operation fails. If the | evel key is set to of f , documents are not validated
against the] son- schena.

Creating a Validated Collection

To enable JSON schema validation when you create a new collection, supply a val i dat i on JSON
object as described above. For example, to create a collection that holds longitude and latitude values
and require validating those values as numbers:

coll = schema.create_collection("longlang", validation={
"level ": "strict",
"schema": {
"id": "http://json-schema. org/ geo",

29

http://json-schema.org
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html
http://json-schema.org

Modifying Collection Validation

"$schema": "http://json-schema. org/draft-06/ schema#"
"description": "A geographical coordinate"
"type": "object"
"properties": {
“"latitude": {
"type": "number"

}

"

ongi tude": {
"type": "nunber"
}
}

"

equired": ["latitude", "longitude"]
}
b

Modifying Collection Validation

You can modify a collection to control the JSON schema validation of documents. For example you can

enable or disable validation, or change the JSON schema that documents are validated against.

In order to modify the JISON schema validation of a collection, supply a val i dat i on JSON object
when calling the Collection.modify() method. For example, to modify a collection to disable JISON
schema validation, the val i dat i on object would be:

{
val i dation: {
"level": "off"
}

}

When modifying the JSON schema validation, you can supply the | evel option alone to change just
the level of schema validation. For example, pass the JSON object shown above to disable JSON
schema validation. This makes no change to the JSON schema previously specified and does not
remove the JSON schema from the collection. Alternatively, you can modify the schema only by
passing just a new JSON schema object.

30

Chapter 5 Working with Documents

Table of Contents

5.1 Creating DOCUMENTSouuiiiiiii ettt et e e et e e et et e e e e et e e e e et e e e e ena s 31
5.2 WOrking With DOCUMENT IDSuiiiiiiieieiie ettt et e et e e et e e 31
5.3 Understanding DOCUMENT IDSciiiuiiiiiii ettt et e et e b es 33

5.1 Creating Documents

Once a collection has been created, it can store JSON documents. You store documents by passing

a JSON data structure to the Col | ecti on. add() function. Some languages have direct support

for JSON data, others have an equivalent syntax to represent that data. MySQL Connectors that
implement X DevAPI aim to implement support for all JSON methods that are native to the Connectors'
specific languages.

In addition, in some MySQL Connectors the generic DbDoc objects can be used. The most convenient
way to create them is by calling the Col | ect i on. newDoc() . DbDoc is a data type to represent JSON
documents and how it is implemented is not defined by X DevAPI. Languages implementing X DevAPI
are free to follow an object-oriented approach with getter and setter methods, or use a C struct style
with public members.

For strictly-typed languages it is possible to create class files based on the document structure
definition of collections. MySQL Shell can be used to create those files.

Table 5.1 Different Types of Document Objects, Their Supported Languages, and Their

Advantages

Document Objects Supported languages Advantages

Native JSON Scripting languages (JavaScript, |Easy to use
Python)

JSON equivalent syntax C# (Anonymous Types, Easy to use
ExpandoObject)

DbDoc All languages Unified across languages

Generated Doc Classes Strictly typed languages (C#) Natural to use

The following example shows the different methods of inserting documents into a collection.

/] Create a new collection 'ny_collection'
var nyCol| = db.createCollection('ny_collection');

// Insert JSON data directly
nyCol | . add({_id: '8901', nane: 'Mats', age: 21}).execute();

/1 Inserting several docs at once
nyCol | . add([{_id: '8902', nane: 'Lotte', age: 24},
{_id: '8903", nane: 'Vera', age: 39}]).execute();

5.2 Working with Document IDs

This section describes what a document ID is and how to work with it.

Every document has a unique identifier called the document ID, which can be thought of as the
equivalent of a table's primary key. The document ID value is usually automatically generated by the
server when the document is added, but can also be manually assigned. The assigned document ID
is returned in the gener at edl ds property of the Resul t (AddResul t for Connector/J) object for the

31

Working with Document IDs

col I ecti on. add() operation and can be accessed using the get Gener at edl ds() method. See
Section 5.3, “Understanding Document IDs” for more background information on document IDs.

The following example in JavaScript code shows adding a document to a collection, retrieving the
added document's IDs and testing that duplicate IDs cannot be added.

nmysql-js > var result = nycollection.add({test:' denp01'}). execute()
nmysql-js > print(result.generatedlds)

[

]
mysql-js > var result = nycollection.add({test:' denp02'}).add({test:' denp03'}). execute()

nmysql-js > print(result.generatedlds)
[

" 00006075f 6810000000000000006"

" 00006075f 6810000000000000007",
" 00006075f 6810000000000000008"

]

nmysql -js > nycol |l ection. find()

{
"_id": "00006075f 6810000000000000006",
"test": "denpOl"

}

{
"_id": "00006075f6810000000000000007",
"test": "denp02"

}

{
"_id": "00006075f 6810000000000000008",
"test": "denp03"

}

3 docunments in set (0.0102 sec)
mysql-js > var result = nycol |l ection.add({_id:"' 00006075f 6810000000000000008' , test:'denp04'}).execute()
Docurment contains a field value that is not unique but required to be (M/SQ Error 5116)

As shown in the example above, the document ID is stored in the _i d field of a document. The
document ID is a VARBI NARY() with a maximum length of 32 characters. If an _i d is provided
when a document is created, it is honored; if no _i d is provided, one is automatically assigned to the
document.

The following example illustrates how the i d value can either be provided or autogenerated. It
is assumed that the t est schema exists and is assigned to the variable db, that the collection
ny_col | ecti on exists and that cust om i d is unique.

If the _id is provided, it will be honored

result = nyColl.add({ '_id': 'customid , '"a" : 1}).execute()
docurment = nyColl.find('a = 1').execute().fetch_one()
print("User Provided |d: 9" % docunent. _id)

If the _id is not provided, one will be autonatically assigned
result = nyColl.add({ 'b': 2 }).execute()
print("Autogenerated Id: 9%" %result.get_generated_ids()[0])

Some documents have a natural unique key. For example, a collection that holds a list of books is likely
to include the International Standard Book Number (ISBN) for each document that represents a book.
The ISBN is a string with a length of 13 characters, which is well within the length limit of 32 characters
for the i d field.

/'l using a book's unique I SBN as the object ID

nyCol | . add({

_id: "978-1449374020",

title: "M/SQL Cookbook: Solutions for Database Devel opers and Admi ni strators"
}) . execute();

Use f i nd() to fetch the newly inserted book from the collection by its document ID.

var book = nyCol|.find('_id = "978-1449374020""') . execute();

32

https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html

Understanding Document IDs

Currently, X DevAPI does not support using any document field other than the implicit _i d as the
document ID—there is no way to define another key to perform the same function.

5.3 Understanding Document IDs

This sections describes in detail how document IDs are generated and how to interpret them. X DevAPI
relies on server-based document ID generation, which results in sequentially increasing document IDs
across all clients. | nnoDB uses the document ID as a primary key, resulting in efficient page splits and
tree reorganizations.

This section describes the properties and format of the automatically generated document IDs.
Document ID Properties

The _i d field of a document behaves in the same way as any other fields of the document during
gueries, except that its value cannot be changed once it has been inserted to the collection. The i d
field is used as the primary key of the collection . It is possible to override the automatic generation of
document IDs by manually including an ID in an inserted document.

Important

manual document IDs you use. When using manual document IDs, you must
ensure that they do not clash with any IDs that might ever be generated
automatically by the server (see Document ID Generation for details), in order to

A X Plugin is not aware of the data inserted into the collection, including any
avoid any errors due to primary key duplication.

Whenever an _i d field value is not present in an inserted document, the server generates an _i d
value. The generated _i d value used for a document is returned to the client as part of the Resul t
(Resul t for Connector/J) object of the add() operation. If you are using X DevAPI on an InnoDB
Cluster, the automatically generated i d must be unique within the whole cluster. By setting the
nmysql x_docunent _i d_uni que_pr efi x to a unique value per cluster instance, you can ensure
document IDs are unique across all the instances.

The _i d field must be sequential (always incrementing) for optimal InnoDB insertion performance (at
least within a single server). The sequential nature of _i d values is maintained across server restarts.

In a multi-primary Group Replication or InnoDB Cluster environment, the generated _i d values of a
table are unique across instances to avoid primary key conflicts and minimize transaction certification.

Document ID Generation

This section describes how document IDs are formatted.

The format of automatically generated document ID is:

unique_prefix start_timestamp serial
4 bytes 8 bytes 16 bytes
Where:

» uni que_prefi x is a value assigned by InnoDB Cluster to the instance, which is used to make the
document ID unique across all instances from the same cluster. The range of uni que_prefi x is
from O to 216—1, which is hex encoded. Default value is O, if it is neither set by InnoDB Cluster nor by
the nysql x_docunent _i d_uni que_pr ef i x system variable.

e start_timestanp is the time stamp of the startup time of the server instance, which is hex
encoded. In the unlikely event that the value of seri al overflows, the start _ti nestanp is
incremented by 1 and the seri al value then restarts at 0.

33

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_document_id_unique_prefix
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_document_id_unique_prefix

Document ID Generation

e seri al is a per-instance automatically incremented integer serial number value, which
is hex encoded and has a range of 0 to 2%%.1. The initial value of seri al is set to the
aut o_i ncrenent _of f set system variable, and the increment of the value is set by the
aut o_i ncrenent i ncrenent system variable.

This document ID format ensures that:

» The primary key value monotonically increments for inserts originating from a single server instance,
although the interval between values is not uniform within a table.

» When using multi-primary Group Replication or InnoDB Cluster, inserts to the same table from
different instances do not have conflicting primary key values, as long as the instances have the
aut o_increnent of fset andthe aut o_i ncrenent i ncrenent system variables configured
properly (see descriptions of the variables for details).

34

https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment

Chapter 6 Working with Relational Tables

Table of Contents
6.1 Syntax of the SQL CRUD FUNCHONSccuuuiiiiiiiieiii et 35

The X DevAPI SQL CRUD functions allow you to work with relational tables in manners similar to using
traditional SQL statements. The following code sample shows how to use the add() and sel ect ()
methods of the X DevAPIl SQL CRUD functions, which are similar to running | NSERT and SELECT
statements on a table with an SQL client. Compare this with the examples found in Section 4.3,
“Collection CRUD Function Overview” to see the differences and similarities between the CRUD
functions for tables and collections in the X DevAPI.

Working with Rel ational Tables
from nysql sh i nport nysql x

Connect to server using a connection URL
nmySessi on = nysql x. get _sessi on({
"host': 'local host', 'port': 33060
‘user': 'user', 'password': 'password'})

nmyDb = nySessi on. get _schema('test')

Accessing an existing table
nmyTabl e = nyDb. get _tabl e(' nmy_table')

Insert SQL Table data
nyTabl e.insert([' nane', "' birthday','age']) \
.val ues(' Laurie', nysqgl x.date_val ue(2000, 5, 27), 19).execute()

Find a rowin the SQ. Tabl e

nyResult = nyTable.select(['_id, 'nane', 'birthday']) \
.where('nanme |ike :name AND age < :age') \
.bind('name', 'L%) \
.bind(' age', 30).execute()

Print result
print(nyResult.fetch_all())

6.1 Syntax of the SQL CRUD Functions

The following SQL CRUD functions are available in X DevAPI.

Table.insert()

The Tabl e. i nsert () method works like an | NSERT statement in SQL. It is used to store data in a
relational table in the database. It is executed by the execut e() function.

The following example shows how to use the Tabl e. i nsert () functi on. The example assumes
that the t est schema exists and is assigned to the variable db, and that an empty table called
nmy_t abl e exists.

Accessing an existing table
nmyTabl e = db. get _table(' ny_table')

Insert a row of data
nmyTable.insert(['id , 'name']).values(1l, 'Inmani').values(2, 'Adam).execute()

35

Table.select()

Figure 6.1 Table.insert() Syntax Diagram

»_- . Exprorumral . =

Table.select()

The Tabl e. sel ect () method works like a SELECT statement in SQL. Notice that Tabl e. sel ect ()
and col | ection. find() use different methods for sorting results: Tabl e. sel ect () uses the
method or der By () , reminiscent of the ORDER BY keyword in SQL, while the sor t () method is used
to sort the results returned by Col | ection. find().

Figure 6.2 Table.select() Syntax Diagram

1—| ProjectedSea rchE>(|:}rSI:|1_isl:I-j SearchConditionStr
SearchExprStrlList SearchConditionStr
e /

\[[Placeholdervalues] J -, ~ -

LockContention

Table.update()

The Tabl e. updat e() method works like an UPDATE statement in SQL.

Figure 6.3 Table.update() Syntax Diagram

»—[@—L[.set()—{ TableField , ExprOrLiteral) .whem(H SearchConditionStr)

L(.orderﬂy(H SortExprstriist)] L(.Ilmlt(H NumberOfRows)

TL[H nd(H PlaceholderValues)
.execute()

The Tabl e. del et e() method works like a DELETE statement in SQL.

Table.delete()

36

Table.delete()

Figure 6.4 Table.delete() Syntax Diagram

SearchConditionStr

SortExprStrlist

NumberOfRows

g

S @
')

el
-

37

38

Chapter 7 Working with Relational Tables and Documents

Table of Contents

7.1 Collections as Relational TabIESc.ouiiriiii e e e e aeaas 39

After seeing how to work with documents and how to work with relational tables, this section explains
how to combine the two and work with both at the same time.

It can be beneficial to use documents for very specific tasks inside an application and rely on relational
tables for other tasks. Or a very simple document only application can outgrow the document model
and incrementally integrate or move to a more powerful relational database. This way the advantages
of both documents and relational tables can be combined. SQL tables contribute strictly typed value
semantics, predictable and optimized storage. Documents contribute type flexibility, schema flexibility
and non-scalar types.

7.1 Collections as Relational Tables

Applications that seek to store standard SQL columns with Documents can cast a

collection to a table. In this case a collection can be fetched as a Table object with the

Schena. get Col | ecti onAsTabl e() function. From that moment on it is treated as a regular table.
Document values can be accessed in SQL CRUD operations using the following syntax:

doc->'$.field

doc->'$.field isusedtoaccess the document top level fields. More complex paths can be
specified as well.

doc->'$.sone.field.like[3].this'

Once a collection has been fetched as a table with the Schenma. get Col | ecti onAsTabl e() function,
all SQL CRUD operations can be used. Using the syntax for document access, you can select data
from the Documents of the Collection and the extra SQL columns.

The following example shows how to insert a JSON document string into the doc field.

Cet the custoners collection as a table

custonmers = db. get_col |l ecti on_as_tabl e(' custoners')
custoners.insert('doc').values('{"_id":"001", "name": "Ana", "last_name": "Silva"}"').execute()

Now do a find operation to retrieve the inserted docunent

result = custoners.sel ect(["doc->'$.nane'", "doc->'$.last_name'"]).where("doc->'$. _id = '001"").execut

record = result.fetch_one()

print("Name : %\n" %record[0])
print("Last Name : %\n" % record[1])

39

40

Chapter 8 Statement Execution

Table of Contents

8.1 Transaction HANAINGoouuiii e e e e e e e e e e e eenas 41
8.1.1 ProCeSSING WAaITNGS .. .cuuiiiiiiii ettt e et e et et e e et e et e et e e e et e e et e e et e aean e eennas 41
8.1.2 Error HANIING ...t et an s 43

8.2 WOrking With SAVEPOINTSie ettt e et e et e e e e eanns 43

8.3 WOrking With LOCKINGieeieeie et e e et e et e e e e een s 45

8.4 Working with Prepared StatemeENtS oo e e e e e eaa e 46

This section explains statement execution, with information on how to handle transactions and errors.

8.1 Transaction Handling

Transactions can be used to group operations into an atomic unit. Either all operations of a transaction
succeed when they are committed, or none. It is possible to roll back a transaction as long as it has not
been committed.

Transactions can be started in a session using the st art Tr ansact i on() method, committed with
conmi t Transacti on() and cancelled or rolled back with r ol | backTr ansacti on(). Thisis
illustrated in the following example. The example assumes that the t est schema exists and that the
collection ny_col | ect i on does not exist.

from nysqgl sh i nport nysql x

Connect to server
nmySessi on = nysql x. get _sessi on({
"host': 'local host', 'port': 33060,
‘user': 'user', 'password': 'password' })

Cet the Schema test
myDb = nmySessi on. get_schema('test')

Create a new coll ection
myCol | = nmyDb. create_col | ection(' my_collection')

Start a transaction
nmySessi on. start_transaction()
try:
myCol | . add({' name': 'Rohit', 'age': 18, 'height': 1.76}).execute()
nmyCol | . add({' name': 'Msaki', 'age': 24, 'height': 1.65}).execute()
myCol | . add({' name': 'Leon', 'age': 39, 'height': 1.9}).execute()
Commit the transaction if everything went well
mySessi on. conmi t ()
print('Data inserted successfully.")
except Exception as err:
Rol | back the transaction in case of an error
mySessi on. rol | back()

Printing the error message
print('Data could not be inserted: %' %str(err))

8.1.1 Processing Warnings

Similar to the execution of single statements committing or rolling back a transaction can also trigger
warnings. To be able to process these warnings the replied result object of Sessi on. comm t () ; or
Session. rol | back(); needs to be checked.

This is shown in the following example. The example assumes that the test schema exists and that the
collection my_col | ect i on does not exist.

41

Processing Warnings

from nmysqgl sh i nport nysql x

Connect to server
mySessi on = nysql x. get _sessi on({
"host': 'local host', 'port': 33060,
‘user': 'user', 'password': 'password' })

Cet the Schema test
myDb = nmySessi on. get_schema('test')

Create a new coll ection
myCol | = nmyDb. create_col | ection(' my_collection')

Start a transaction

mySessi on. start_transaction()

try:
myCol | . add({' name': 'Rohit', 'age': 18, 'height': 1.76}).execute()
nmyCol | . add({' name': 'Msaki', 'age': 24, 'height': 1.65}).execute()
myCol | . add({' name': 'Leon', 'age': 39, 'height': 1.9}).execute()

Commit the transaction if everything went well
reply = mySession. commi t ()

handl e war ni ngs
if reply.warning_count:
for warning in result.get_warnings():
print(' Type [%] (Code %): %\n' % (warning.|evel, warning.code, warning.nessage))

print('Data inserted successfully.")

except Exception as err:
Rol | back the transaction in case of an error
reply = mySession. rol |l back()

handl e war ni ngs
if reply.warning_count:
for warning in result.get_warnings():
print (' Type [%] (Code %): %\n' % (warning.|evel, warning.code, warning. nessage))

Printing the error message
print('Data could not be inserted: %' %str(err))

By default all warnings are sent from the server to the client. If an operation is known to generate
many warnings and the warnings are of no value to the application then sending the warnings can
be suppressed. This helps to save bandwith. sessi on. set Fet ch\War ni ngs() controls whether
warnings are discarded at the server or are sent to the client. sessi on. get Fet chVWar ni ngs() is
used to learn the currently active setting.

from nysgl sh i nport nysql x

def process_warnings(result):
if result.get_warnings_count():
for warning in result.get_warnings():
print(' Type [%] (Code ¥%): %\n' % (warning.|evel, warning.code, warning.nessage))
el se:
print("No warnings were returned.\n")

Connect to server
nmySessi on = nysql x. get _sessi on({
"host': 'local host', 'port': 33060,
‘user': 'user', 'password': 'password' });

Di sabl es warni ng generation

nmySessi on. set _f et ch_war ni ngs(Fal se)

result = mySession.sqgl ('drop schema if exists unexisting').execute()
process_war ni ngs(resul t)

Enabl es war ni ng generation
nmySessi on. set _f et ch_war ni ngs(Tr ue)
result = mySession.sqgl ('drop schema if exists unexisting').execute()

Error Handling

process_war ni ngs(resul t)

8.1.2 Error Handling

When writing scripts for MySQL Shell you can often simply rely on the exception handling done by
MySQL Shell. For all other languages either proper exception handling is required to catch errors or the
traditional error handling pattern needs to be used if the language does not support exceptions.

The default error handling can be changed by creating a custom Sessi onCont ext and passing it to
the nysql x. get Sessi on() function. This enables switching from exceptions to result based error
checking.

The following example shows how to perform proper error handling. The example assumes that the
test schema exists and that the collection my _col | ecti on exists.

from nysqgl sh i nport nysql x
mySessi on

try:
Connect to server on | ocal host
nmySessi on = nysql x. get _sessi on({
"host': 'local host', 'port': 33060,
‘user': 'user', 'password': 'password' })

except Exception as err:
print (' The dat abase session could not be opened: %' %str(err))

try:
myDb = nmySessi on. get_schema('test')

Use the collection 'nmy_collection'
myCol | = myDb. get _col |l ection(' ny_collection')

Find a docunent
myDoc = nmyCol | . find(' nane like :param).limt(1).bind(' param ,'L%).execute()

Print document

print(myDoc.first())
except Exception as err:

print (' The following error occurred: %' %str(err))
finally:

Close the session in any case

nmySessi on. cl ose()

8.2 Working with Savepoints

X DevAPI supports savepoints, which enable you to set a named point within a transaction that you
can revert to. By setting savepoints within a transaction, you can later use the rollback functionality to
undo any statements issued after setting the savepoint. Savepoints can be released if you no longer
require them. This section documents how to work with savepoints in X DevAPI. See SAVEPO NT for
background information.

Setting a Savepoint

Savepoints are identified by a string name. The string can contain any character allowed for an
identifier. To create a savepoint, use the sessi on. set Savepoi nt () operation, which maps to the
SQL statement SAVEPO NT nane; . If you do not specify a nane, one is automatically generated. For
example by issuing:

sessi on. set Savepoi nt ()

a transaction savepoint is created with an automatically generated name and a string is returned
with the name of the savepoint. This name can be used with the sessi on. rol | backTo() or

43

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html

Rolling Back to a Savepoint

session. rel easeSavepoi nt () operations. The sessi on. set Savepoi nt () operation can be
called multiple times within a session and each time a unique savepoint name is generated.

It is also possible to manually define the name of the savepoint by passing in a string nane. For
example issuing:

sessi on. set Savepoi nt (' nane')

results in a transaction savepoint with the specified nane, which is returned by the operation as a
string. The sessi on. set Savepoi nt (' nane') operation can be called multiple times in this way,
and if the nane has already been used for a savepoint then the previous savepoint is is deleted and a
new one is set.

Rolling Back to a Savepoint

When a session has transaction savepoints, you can undo any subsequent transactions using the
session. rol | backTo() operation, which maps to the ROLLBACK TO nane statement. For
example, issuing:

sessi on. rol | backTo(' nane')

rolls back to the transaction savepoint nane. This operation succeeds as long as the given savepoint
has not been released. Rolling back to a savepoint which was created prior to other savepoints results
in the subsequent savepoints being either released or rolled back. For example:

sessi on. start Transacti on()
(sonme data nodifications occur...)

sessi on. set Savepoi nt (' poi nt1') <---- succeeds
(some data nodifications occur...)

sessi on. set Savepoi nt (' poi nt2') <---- succeeds
(some data nodifications occur...)

sessi on. rol | backTo(' point1') <---- succeeds

sessi on. rol | backTo(' point1') <---- still succeeds, but position stays the sane

sessi on. rol | backTo(' point2') <---- generates an error because |ines above already cleared point2
sessi on. rol | backTo(' point1') <---- still succeeds

Releasing a Savepoint

To cancel a savepoint, for example when it is no longer needed, use r el easeSavepoi nt () and pass
in the name of the savepoint you want to release. For example, issuing:

sessi on. rel easeSavepoi nt (' nane')

releases the savepoint nane.

Savepoints and Implicit Transaction Behavior

The exact behavior of savepoints is defined by the server, and specifically how autocommit is
configured. See autocommit, Commit, and Rollback.

For example, consider the following statements with no explicit BEG N,
session. start Transacti on() or similar call:

sessi on. set Savepoi nt (' t est savepoi nt"')
sessi on. rel easeSavepoi nt (' t est savepoi nt"')

If autocommit mode is enabled on the server, these statements result in an error because

the savepoint named t est savepoi nt does not exist. This is because the call to

sessi on. set Savepoi nt () creates a transaction, then the savepoint and directly commits it. The
result is that savepoint does not exist by the time the call to r el easeSavepoi nt () is issued, which

44

https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-autocommit-commit-rollback.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

Working with Locking

is instead in its own transaction. In this case, for the savepoint to survive you need to start an explicit
transaction block first.

8.3 Working with Locking

X DevAPI supports MySQL locking through the | ockShar ed() and | ockExcl usi ve() methods
for the Collection.find() and Table.select() methods. This enables you to control row locking to
ensure safe, transactional document updates on collections and to avoid concurrency problems, for
example when using the modify() method. This section describes how to use the | ockShar ed()
and | ockExcl usi ve() methods for both the Collection.find() and Table.select() methods. For more
background information on locking, see Locking Reads.

The | ockShared() and | ockExcl usi ve() methods have the following properties, whether they are
used with a Collection or a Table.

» Multiple calls to the lock methods are permitted. If a locking statement executes while a different
transaction holds the same lock, it blocks until the other transaction releases it. If multiple calls
to the lock methods are made, the last called lock method takes precedence. In other words
find().lockShared().| ockExclusive() isequivalenttofi nd().l ockExclusive().

* | ockShar ed() has the same semantics as SELECT ... LOCK I N SHARE MODE. Sets a shared
mode lock on any rows that are read. Other sessions can read the rows, but cannot modify them until
your transaction commits. If any of these rows were changed by another transaction that has not yet
committed, your query waits until that transaction ends and then uses the latest values.

* | ockExcl usi ve() has the same semantics as SELECT ... FOR UPDATE. For any index records
the search encounters, it locks the rows and any associated index entries, in the same way as if
you issued an UPDATE statement for those rows. Other transactions are blocked from updating
those rows, from doing SELECT ... LOCK | N SHARE MODE, or from reading the data in certain
transaction isolation levels. Consistent reads ignore any locks set on the records that exist in the
read view. Old versions of a record cannot be locked; they are reconstructed by applying undo logs
on an in-memory copy of the record.

» Locks are held for as long as the transaction which they were acquired in exists. They are
immediately released after the statement finishes unless a transaction is open or autocommit mode
is turned off.

Both locking methods support the NOAI T and SKI P LOCKED | nnoDB locking modes. For more
information see Locking Read Concurrency with NOWAIT and SKIP LOCKED. To use these locking
modes with the locking methods, pass in one of the following:

* NOWAI T - if the function encounters a row lock it aborts and generates an ER_LOCK_NOWAI T error
e SKI P_LOCKED - if the function encounters a row lock it skips the row and continues

» DEFAULT - if the function encounters a row lock it waits until there is no lock. The equivalent of
calling the lock method without a mode.

Locking considerations
When working with locking modes note the following:

» aut oconmi t mode means that there is always a transaction open, which is commited automatically
when an SQL statement executes.

» By default sessions are in autocommit mode.
* You disable autocommit mode implicitly when you call st art Tr ansacti on().

« When in autocommit mode, if a lock is acquired, it is released after the statement finishes. This could
lead you to conclude that the locks were not acquired, but that is not the case.

45

https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit

Working with Prepared Statements

 Similarly, if you try to acquire a lock that is already owned by someone else, the statement blocks
until the other lock is released.

8.4 Working with Prepared Statements

X DevAPI improves performance for each CRUD statement that is executed repeatedly by using a
server-side prepared statement for its second and subsequent executions. This happens internally
—applications do not need to do anything extra to utilize the feature, as long as the same operation
object is reused.

When a statement is executed for a second time with changes only in data values or in values that
refine the execution results (for example, different of f set () orli m t () values), the server prepares
the statement for subsequent executions, so that there is no need to reparse the statement when it is
being run again. New values for re-executions of the prepared statement are provided with parameter
binding. When the statement is modified by chaining to it a method that refines the result (for example,
sort(),limt(),oroffset()), the statement is reprepared. The following pseudocode and the
comments on them demonstrate the feature:

var f = coll.find("field = :field");

f.bind("field", 1).execute(); // Normal execution

f.bind("field", 2).execute(); // Sane statenent executed with a different paraneter value triggers statener
f.bind("field", 3).execute(); // Prepared statenent executed with a new val ue

f.bind("field", 3).limt(10).execute(); // Statenent reprepared as it is nodified with limt()
f.bind("field", 4).limt(20).execute(); // Reprepared statenent executed with new paraneters

Notice that to take advantage of the feature, the same operation object must be reused in the
repetitions of the statement. Look at this example

for (i=0; i<100; ++i) {
coll.find("field = :field").bind("field", i).execute();
}

This loop cannot take advantage of the prepared statement feature, because the operation object of
col I . find() isrecreated at each iteration of the f or loop. Now, look at this example:

var f = coll.find("field = :field");
for (i=0; i<100; ++i) {

f.bind("field", i).execute();
}

The repeated statement is prepared once and then reused, as the same operation of col | . fi nd() is
re-executed for each iteration of the f or loop.

Prepared statements are part of a Sessi on. When a Cl i ent resets the Sessi on (by using, for
example, Mysql x. Sessi on. Reset), the prepared statements are dropped.

46

Chapter 9 Working with Result Sets

Table of Contents

9.1 RESUIL SEE CIASSES . .eittiieiiiii ettt ettt ettt e et et e e et et e e et et e e et e e e e et aenn 47
9.2 Working with AUTO- | NCRENMENT VAIUESccouuiiiiiiiiieeiiiie ettt 48
9.3 WOrKing WIth DAt SISiiiiiiiiiiiiii ettt e et e et e e e 48
9.4 Fetching All Data ITEMS @t ONCEiiiiiiiieeeit et ettt e et e et e eeeene e eees 49
9.5 Working with SQL RESUIL SISuiiiiiii e et e e e 50
9.6 WOrKing WIth METAUALAuiiiiiiii ettt e e e e e eeaans 51
9.7 Support for Language Native ITEratOrsccouuuiiiiiiiee et 52

This section explains how to work with result sets returned by database operations.

9.1 Result Set Classes

All database operations return a result. The type of result returned depends on the operation that was
executed. The different types of results are outlined in the following table.

Table 9.1 The Result Classes and the Information They Provide

Result Class Returned By Provides

Resul t add() . execut e(), Number of rows affected by
insert().execute(), the operation, auto generated
nmodi fy(). execute(), document IDs, last auto-
updat e() . execute() , generated AUTO | NCREMENT
remove() . execute(), column values, or warnings,
del ete(). execute() depending on the operation for

which Resul t is returned.

Sql Resul t session.sql ().execute() |Number of rows affected by
the operation, auto generated
document IDs, last auto-
generated AUTO | NCREMENT
column values, warnings, or
fetched data set, depending
on the operation for which

Sql Resul t is returned.

DocResul t find().execute() The fetched data set
RowResul t sel ect. execut e() The fetched data set

The following class diagram gives a basic overview of the result classes and their functions.

47

Working with AUTO- | NCREMENT Values

Figure 9.1 Result Classes

[1 means "list of". This can be any appropriate list type in the target language (Array, Collection,)%

‘ () BaseResult ‘

+getWarnings(): Warmng[
+getWarningsCount(}: int

\

(©) RowResult

‘ © Result | ‘ () DocResult |
+getAffectedItemsCour1tl{]l int +fetchAlll): Rowl]
+getAutoincrementvaluel): int ‘ +fetchAll(); Document[] +fetchOne(): Row
+getGeneratedids(): String[] <=5 =15 D1 =T Pl G e il

+nextResult(): boolean

I

‘ (© SqlResult |

+hasDatal): boolean
+getAffecteditemsCount(): int
+getautoincrementvaluel(): int

9.2 Working with AUTO- | NCREMENT Values

AUTO | NCREMENT columns can be used in MySQL for generating primary key or i d values, but are
not limited to these uses. This section explains how to retrieve AUTO | NCREMVENT values when adding
rows using X DevAPI. For more background information, see Using AUTO_INCREMENT.

X DevAPI provides the get Aut ol ncr enment Val ue() method to return the first AUTO | NCREMVENT
column value that was successfully inserted by the operation, taken from the return value of

tabl e.insert (). Inthe following example it is assumed that the table contains a PRI MARY KEY
column for which the AUTO | NCREMENT attribute is set:

res = nyTable.insert(['nane']).values('Mats').values(' Gxto').execute();
print (res. get Autol ncrenent Val ue());

Thist abl e. i nsert () operation inserted multiple rows. get Aut ol ncr emrent Val ue() returns the
AUTO | NCREMENT column value generated for the first inserted row only, so in this example, for the
row containing “Mats”. The reason for this is to make it possible to reproduce easily the same operation
against some other server.

9.3 Working with Data Sets

Operations that fetch data items return a cursor that can be used to consume those data items

from the result set. Data items can be read from the database using Col | ecti on. fi nd(),

Tabl e. sel ect () and Sessi on. sql (). Col I ection. find() returns a data set with documents
and Tabl e. sel ect () respectively Sessi on. sql () return a data set with rows.

All result sets implement a unified way of iterating their data items. The unified syntax supports fetching
items one by one using f et chOne() or retrieving a list of all items using f et chAl | (). fetchOne()
and f et chAl | () follow forward-only iteration semantics. Connectors implementing the X DevAPI can
offer more advanced iteration patterns on top to match common native language patterns.

The following example shows how to access the documents returned by a Col | ecti on. fi nd()
operation by using f et chOne() to loop over all documents.

48

https://dev.mysql.com/doc/refman/8.0/en/example-auto-increment.html

Fetching All Data Items at Once

The first call to f et chOne() returns the first document found. All subsequent calls increment the
internal data item iterator cursor by one position and return the item found making the second call to
fet chOne() return the second document found, if any. When the last data item has been read and
fet chOne() is called again, a NULL value is returned. This ensures that the basic while loop shown
works with all languages that support such an implementation.

When using f et chOne() , it is not possible to reset the internal data item cursor to the first data item
to start reading the data items again. A data item (here a Document) that has been fetched once using
f et chOne() can be discarded by the Connector. The data item's life time is decoupled from the data
set. From a Connector perspective items are consumed by the caller as they are fetched. This example
assumes that the test schema exists.

myCol | = db.get_collection('my_collection')
res = nyColl.find('nanme |ike :name').bind(' name',' L%). execute()

doc = res.fetch_one()
whi | e doc:
print (doc)
doc = res.fetch_one()

The following example shows how to directly access the rows returned by a Tabl e. sel ect ()
operation. The basic code pattern for result iteration is the same. The difference between the following
and the previous example is in the data item handling. Here, f et chOne() returns Rows. The exact
syntax to access the column values of a Row is language dependent. Implementations seek to provide
a language native access pattern. The example assumes that the t est schema exists and that the
employee table exists in ny Tabl e.

nyRows = nyTabl e. sel ect ([' nane', 'age']).where(' nane |ike :nanme').bind(' name','L%).execute()

row = nyRows. f et ch_one()
while row
Accessing the fields by array
print (' Name: %\n' % row 0])
Accessing the fields by dynamic attribute
print('Age: %\n' % row age)
row = nyRows. f et ch_one()

9.4 Fetching All Data Items at Once

In addition to the pattern of using f et chOne() explained at Section 9.3, “Working with Data Sets”,
which enables applications to consume data items one by one, X DevAPI also provides a pattern
using f et chAl | (), which passes all data items of a data set as a list to the application. The different
X DevAPI implementations use appropriate data types for their programming language for the list.
Because different data types are used, the language's native constructs are supported to access the
list elements. The following example assumes that the t est schema exists and that the employee
table exists in my Tabl e.

myResult = nyTabl e. sel ect ([' nane', 'age']) \
.where('nanme |ike :name').bind('name','L%) \
.execut e()

myRows = nyResult.fetch_all ()

for row in myRows:
print("% is % years old." % (row nane, row. age))

When mixing f et chOne() and f et chAl | () to read from one data set keep in mind that every call
tofetchOne() orfetchAll () consumes the data items returned. ltems consumed cannot be
requested again. If, for example, an application calls f et chOne() to fetch the first data item of a data
set, then a subsequent call to f et chAl | () returns the second to last data item. The first item is not

49

Working with SQL Result Sets

part of the list of data items returned by f et chAl | () . Similarly, when calling f et chAl | () again for a
data set after calling it previously, the second call returns an empty collection.

The use of f et chAl | () forces a Connector to build a list of all items in memory before the list as a
whole can be passed to the application. The life time of the list is independent from the life of the data
set that has produced it.

9.5 Working with SQL Result Sets

When you execute an SQL operation on a Session using the sqgl () method, an Sgl Resul t is
returned. Iterating over an Sql Resul t is identical to working with results from CRUD operations. The
following example assumes that the users table exists.

res = nySession. sql (' SELECT nane, age FROM users'). execute()
row = res. fetch_one()

while row
print (' Name: %\n' % row 0])
print(' Age: %\n' % row age)
row = res.fetch_one()

Sql Resul t differs from results returned by CRUD operations in the way how result sets and data sets
are represented. An Sql Resul t combines a result set produced by, for example, | NSERT, and a data
set, produced by, for example, SELECT in one. Unlike with CRUD operations, there is no distinction
between the two types for Sql Resul t . An Sgl Resul t instance exports methods for accessing data
and to retrieving the last inserted ID or number of affected rows.

Use the hasDat a() method to learn whether an SqLResul t is a data set or a result. The method is
useful when code is to be written that has no knowledge about the origin of an Sql Resul t . This can
be the case when writing a generic application function to print query results or when processing stored
procedure results. If hasDat a() returnstr ue, then the Sql Resul t origins from a SELECT or similar
command that can return rows.

A return value of t r ue does not indicate whether the data set contains any rows. The data set can be
empty if, for example, f et chOne() returns NULL or f et chAl | () returns an empty list. And if multiple
result sets are returned, any of the result sets may be empty too. The following example assumes that
the procedure my _pr oc exists.

res = nySession.sql (' CALL nmy_proc()"').execute()
if res.has_data():

row = res. fetch_one()
if row
print('List of rows available for fetching.')
whil e row
print (row)
row = res.fetch_one()
el se:
print('Enpty list of rows.")
el se:
print("No rowresult.")

Itis an error to call either f et chOne() orfetchAll () when hasDat a() indicates that an
Sql Resul t is not a data set.

def print_result(res):
if res.has_data():
SELECT
col ums = res. get_col ums()
record = res.fetch_one()

50

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Working with Metadata

whil e record
index = 0

for columm in col ums
print("%: % \n" % (col um. get _col um_nanme(), record[index]))
index = index + 1

Cet the next record
record = res.fetch_one()
el se
#|1 NSERT, UPDATE, DELETE
print (' Rows affected: %' % res.get_affected_itens_count())

print_result(mSession.sql (' DELETE FROM users WHERE age < 30').execute())
print_result(mSession.sqgl (' SELECT * FROM users WHERE age = 40').execute())

Calling a stored procedure might result in having to deal with multiple result sets as part of a single
execution. As a result for the query execution an Sgl Resul t object is returned, which encapsulates
the first result set. After processing the result set you can call next Resul t () to move forward to the
next result, if there is any. Once you advanced to the next result set, it replaces the previously loaded
result which then becomes unavailable.

def print_result(res):
if res.has_data():
SELECT
colums = res. get_col ums()
record = res.fetch_one()

whil e record
index = 0

for columm in col ums
print("%: % \n" % (colum. get_col umm_nane(), record[index]))
index = index + 1

Get the next record
record = res.fetch_one()
el se
#| NSERT, UPDATE, DELETE
print(' Rows affected: %' % res.get_affected_itens_count())

res = nySession.sql (' CALL nmy_proc()"').execute()

Prints each returned result
nmore = True
whi | e nore:

print_result(res)

nmore = res. next_result()

The number of result sets is not known immediately after the query execution. Query results can be

streamed to the client or buffered at the client. In the streaming or partial buffering mode a client cannot

tell whether a query emits more than one result set.

9.6 Working with Metadata

Results contain metadata related to the origin and types of results from relational queries. This

metadata can be used by applications that need to deal with dynamic query results or format results for
transformation or display. Result metadata is accessible via instances of Col urm. An array of columns

can be obtained from any RowResult using the get Col unms() method.

For example, the following metadata is returned in response to the query SELECT 1+1 AS a, b
FROM nydb. sone_table with b AS b_table.

Col unn[0] . dat abaseNanme = NULL
Col um([0] . t abl eNane = NULL
Col um([0] . t abl eLabel = NULL

51

Support for Language Native Iterators

Col um[0] .
Col um[0] .
Col um[0] .
Col um[0] .
Col um[0] .
Col um[0] .
Col umm[0] .
Col um[0] .
Col um[0] .

Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .
Col umm[1] .

col umName = NULL

col utmLabel = "a"

type = BIG NT

length = 3
fractionalDigits = 0
nunber Si gned = TRUE

col I ati onName = "bi nary"
char act er Set Nane = "bi nary"
padded = FALSE

dat abaseNane = "nydb"

tabl eNane = "sone_t abl e_w t h_b"
tabl eLabel = "b_tabl e"

col umNane = "b"

col uimLabel = "b"

type = STRI NG

length = 20 (e.qg.)

fractionalDigits = 0

nunber Si gned = TRUE

col I ati onName = "utf8nb4_general _ci"
char act er Set Name = "utf 8mb4"

padded = FALSE

9.7 Support for Language Native Iterators

All implementations of the DevAPI feature the methods shown in the UML diagram at the beginning

of this chapter. All implementations allow result set iteration using f et chOne(), fetchAl | () and
next Resul t (). In addition to the unified API drivers should implement language native iteration
patterns. This applies to any type of data set (DocResul t , RowResul t, Sgl Resul t) and to the list of
items returned by f et chAl | () . You can choose whether you want your X DevAPI-based application
code to offer the same look and feel in all programming languages used or go for the natural style of a

programming language.

52

Chapter 10 Building Expressions

Table of Contents

10.1 EXPIESSION SIMNGS . oevuueeiitieeitti ettt ettt ettt e e et e et et e et et e et et e et e aba e et eab e e e eaaa e eeennns 53
10.1.1 Boolean EXPresSion SINGSuuu ittt e s 53
10.1.2 Value EXPreSSION STNGSuuuiiieiiieiiiie ettt ettt e et e e e e e 53

This section explains how to build expressions using X DevAPI.

When working with MySQL expressions used in CRUD, statements can be specified in two ways. The
first is to use strings to formulate the expressions which should be familiar if you have developed code
with SQL before. The other method is to use Expression Builder functionality.

10.1 Expression Strings

Defining string expressions is straightforward as these are easy to read and write. The disadvantage

is that they need to be parsed before they can be transfered to the MySQL server. In addition, type
checking can only be done at runtime. All implementations can use the syntax illustrated here, which is
shown as MySQL Shell JavaScript code.

/] Using a string expression to get all docunents that

/! have the nane field starting with 'S
var myDocs = nyCol|l.find('nane |ike :nane').bind(' nane', 'S%).execute();

10.1.1 Boolean Expression Strings

Boolean expression strings can be used when filtering collections or tables using operations, such as
find() andrenove(). The expression is evaluated once for each document or row.

The following example of a boolean expression string uses f i nd() to search for all documents with a
“red” color attribute from the collection “apples”:

appl es.find('color = "red"').execute()

Similarly, to delete all red apples:

appl es. renove(' color = "red"'). execute()

10.1.2 Value Expression Strings

Value expression strings are used to compute a value which can then be assigned to a given field
or column. This is necessary for both nodi f y() and updat e() , as well as computing values in
documents at insertion time.

An example use of a value expression string would be to increment a counter. The expr () function is
used to wrap strings where they would otherwise be interpreted literally. For example, to increment a
counter:

/] the expression is evaluated on the server
collection.modi fy('true').set("counter", expr("counter + 1")).execute()

If you do not wrap the string with expr (), it would be assigning the literal string "counter + 1" to the
"counter" member:

/] equivalent to directly assigning a string: counter = "counter + 1"
collection.modify('true').set("counter", "counter + 1").execute()

53

54

Chapter 11 CRUD EBNF Definitions

Table of Contents

11.1 Session ODbJects and FUNCLONSiiiiiiiieiii et e eeaees 55
11.2 Schema ODjJects and FUNCHONSiiiiiiiieiiii ettt e e eneas 57
11.3 Collection CRUD FUNCHONScuiiitieii ettt e e e et e e et e e et e aeaeaeanaaes 60
11.4 Collection Index Management FUNCLIONSc.uuuiiiiriiiii et eeees 62
11.5 Table CRUD FUNCHONSceuiiiiie et e et e et e e et e e et e e et e e et e e e eeanns 62
11.6 RESUIL FUNCHIONS ... ettt ettt e et e et e e et e et e e e e e e an e eetnaaeanaaees 64
11.7 Other EBNF DEefiNITIONS ... c.uiiiiiiiiiiiii et e e e e e et e e eaeeeanns 67

This chapter provides a visual reference guide to the objects and functions available in the X DevAPI.

11.1 Session Objects and Functions

Session

The syntax for this object shown in EBNF is:

Sessi on
;.= '.getSchena(' StringLiteral ')’
| '.getSchenas()'
| '.createSchena(' StringLiteral ')’
| '.dropSchena(' StringLiteral ")’
| '.getDefaul t Schena()"'
| '.startTransaction()"'
| ".commit()'
| *".rollback()"'
| '.setSavepoint()'
| '.setSavepoint(' StringLiteral ')’
| '.rel easeSavePoint (' StringLiteral ')’
| '.roll backTo(' StringLiteral ")’
| ".close()'
| Sql Execut e

55

SqlExecute

Figure 11.1 Session

StringLiteral —.—N

(
7
:

SqlExecute

The syntax for this function shown in EBNF is:

Sql Execut e
c:=".sql (' Sql StatenentStr ')’
('".bind(" Literal ('," Literal)* ')")*
('.execute()')?

Figure 11.2 SqlExecute

Literal

»—.— SqlStatementStr

SQLPlaceholderValues

The syntax for this function shown in EBNF is:

SQLPI acehol der Val ues
::= '{' SQLPl acehol derNane ':' (SQ.Literal) '}’

Figure 11.3 SQLPlaceholderValues

»—.— SQLPlaceholderName 4.— SQLLiteral 4.—51

56

SQLPlaceholderName

SQLPlaceholderName

The syntax for this function shown in EBNF is:

SQLPI acehol der Nane
=

Figure 11.4 SQLPlaceholderName

SQLLiteral
The syntax for this function shown in EBNF is:
SQLLi teral
c:= """ StringLiteral """ | Number | Documnent

Figure 11.5 SQLLiteral

StringLiteral

Number

Document

11.2 Schema Objects and Functions

Schema

The syntax for this function shown in EBNF is:

Schema
;= "'.getName()'
| '.existslnDatabase()"'
| '.getSession()'
| ".getCollection('" StringLiteral ")’
| '.getCollections()'
| '.getCollectionAsTable(' StringLiteral ')’
| '.dropCollection(' StringLiteral ")’
| '.getTable(' StringLiteral ')’
| '.getTables()'
| ".createCollection(' StringLiteral ")’

Collection

Figure 11.6 Schema

{.exislslnl‘.‘latabase()} A

.getCollection(StringLiteral
{.get:ollecﬂonﬁ;ﬂable()—/
{.createt:ollectlon{)—/

\—| .getCollections() J A

.getTables() -

Collection

The syntax for this function shown in EBNF is:

Col | ecti on
;1= "'.get Schema()"'
'.get Nanme()"'
'. get Session()'
' . exi st sl nDat abase()"'
'.replaceOne(' Docunentld ',' DocumentOrJSON ')'
' . addOr Repl aceOne(' Docunentld ',' DocumentOrJSON ')'
'.getOne(' Docurentld ')’
.removeOne(' Docurentld ')’
Col | ect i onFi ndFuncti on
Col | ecti onMbdi f yFuncti on
Col | ecti onAddFuncti on
Col | ecti onRenpveFuncti on
Col | ect i onCr eat el ndex
Col | ect i onDr opl ndex

58

Table

Table

Figure 11.7 Collection

bb—\—I .getSchemaf) i

\—I .getName() i

\—I .getSession() i

{.exlsl:slnnata base()

)

J

DocumentId

.addOrReplaceOne(

—9

[~ CollectionFindFunction

DocumentOrlSON

Documentld

[~ CollectionMadifyFunction

[~ CollectionAddFunction

[~ CollectionRemoveFunctio

[~ CollectionCreatelndex

“— CollectionDroplndex

el
Falla |

The syntax for this function shown in EBNF is:

Tabl e

;= '.getSchenma()'
' . get Nane()'

' . get Session()"'
' . exi st sl nDat abase()"'

"isView()'

Tabl eUpdat eFuncti on
Tabl el nsert Functi on
Tabl eDel et eFuncti on

I
I
I
I
| Tabl eSel ect Functi on
I
I
I

59

Collection CRUD Functions

Figure 11.8 Table

.getSchema()
.getMame()
.getSession()

L[.exlslsln Database())—’

JdsView()

i

F

I~ TableSelectFunction }—

M TableUpdateFunction |—|

[~ TableInsertFunction |—

“— TableDeleteFunction |—~

11.3 Collection CRUD Functions

CollectionFindFunction

The syntax for this function in EBNF is:

Col | ecti onFi ndFuncti on
;= '.find(' SearchConditionStr? ')' ('.fields(' ProjectedDocunent ExprStr ')"')?

'.groupBy(' SearchExprStrList ')')? ('.having(' SearchConditionStr '")')?
".sort(' SortExprStrList ')')? ('.limt(' NunmberORows ')' ('.offset(' NunmberOiRows ')')?)?
' .l ockExcl usi ve(' LockContention ')' | '.lockShared(' LockContention ')')?

'.bind(' Placehol derValues ")"')*
.execute()')?

~~~—~

Figure 11.9 CollectionFindFunction

o>—{(CinaC) - 0)
SearchConditionStr L[.ﬂelds()—{ ProjectedDocumentExprStr
L[.gmupw’()—{ SearchExprStrList L[.ha\alng()—{ SearchConditionStr

L[.SOH(H SortExprStrList L[.Ilrnit()—{ NumberOfRows I—@ J
L[.umt(H NumberOfRows

JockExclusive(

[ [.blnd(H PlaceholderValues I—@ ] -
LockContention 1 J

CollectionModifyFunction

JockShared(

The syntax for this function shown in EBNF is:

60



CollectionAddFunction

Col | ecti onModi f yFuncti on
::="'".nodify(' SearchConditionStr ")’

( '".set(' DocPath ',' ExprOrLiteral ')' |
‘.unset (' DocPath ( ',' DocPath )* ')' |
‘.arraylnsert(' DocPath ',' ExprOrLiteral ')' |
'.arrayAppend(' DocPath ',' ExprOrLiteral ')' |
' . patch(' DocumentOrJSON ')’
)+
( '.sort(' SortExprStrList ")' )? ( '.limt(" NumberOFRows ')' )?
( '.bind(" Placehol derValues ")"' )*
( '.execute()' )?

Figure 11.10 CollectionModifyFunction
»—[.mole(H SearchConditionStr I—@ [\ set( '| I DocPath I—O—{ ExprOrLiteral I—,—[E)—l
—
£ ) | ocPa |
{unset() | DocPatn |j

L(.patch()—{ DocumentOrISON I

1 [ [.Mnd(H PlaceholderValues |_®_JT
.:oﬂ(H SortExprStrlist .IImH(H MNumberOfRows

[y

Re=n g

CollectionAddFunction

The syntax for this function shown in EBNF is:
Col | ecti onAddFuncti on

:=( '.add(' ( DocunentOrJSON | '[' DocumentOrJSON ( ',' DocumentOrJSON )* ']' )? ')" )+
( '.execute()' )?

Figure 11.11 CollectionAddFunction

"—L("T“} . ﬂ
DocumentOrlSON

DocumentOrJSON

CollectionRemoveFunction

The syntax for this function shown in EBNF is:

Col | ecti onRenmpveFuncti on
::= '.renove(' SearchConditionStr ')’

( ".sort(' SortExprStrList ")' )? ( '.limt('" NunmberOfRows ')' )?

( '.bind(" Placehol derValues ")"' )*

61



Collection Index Management Functions

( '.execute()' )?

Figure 11.12 CollectionRemoveFunction

))—(.remoue(H SearchConditionStrI—@
L—[.‘;orl()—{ SortExprStrListI—@—j L—[.r-n'n()—{ NumberOfRows I—@—j

%{ h'lul(H PIacehoIder\faIuesI—@ ) =
J

11.4 Collection Index Management Functions

Collection.createlndex() Function

The syntax for this function shown in EBNF is:

Col | ecti onCr eat el ndex
::="'".createlndex(' StringLiteral ',' DocunentOrJSON ')'

Figure 11.13 CollectionCreatelndexFunction

))—{.createllulex()— StringLiteral O— DocumentOrISOM @—N

CollectionDroplindex

The syntax for this function shown in EBNF is:

Col | ect i onDr opl ndex
::= '.droplndex(' StringLiteral ")*

Figure 11.14 CollectionDroplIndex

»—(.drop]ndex( )— StringLiteral 4@%

11.5 Table CRUD Functions

TableSelectFunction

Tabl e. sel ect () and col | ecti on. find() use different methods for sorting results.

Tabl e. sel ect () follows the SQL language naming and calls the sort method or der By() .
Col I ection. find() does not. Use the method sort () to sort the results returned by

Col I ection. find().Proximity with the SQL standard is considered more important than API
uniformity here.

The syntax for this function shown in EBNF is:

Tabl eSel ect Functi on
;= "'.select(' ProjectedSearchExprStrList? ')' ( '.where(' SearchConditionStr ")' )?

'.bind(" ( PlaceholderValues ) ")"' )*
'.execute()' )?

( '.groupBy(' SearchExprStrList '")' )? ( '.having(' SearchConditionStr '")' )?

( '".orderBy(' SortExprStrList '")' )? ( '.limt(' NunberORows ')' ( '.offset(' Nunmber O Rows
( '.lockExclusive(' LockContention ')' | '.lockShared(' LockContention ')' )?

(

(

62

e

)? )"



TablelnsertFunction

Figure 11.15 TableSelectFunction

- () M)
1—| ProjectedSearchExprStrListI-j 1—(.lmhere()—' SearchConditionStrI—@J

1—( .groupBy( )—| SearchExprStrListI—@J 1—( .having( )—| SearchConditionStrI—@J
1—( .ordernv()—' SortExprstrList I—@J 1—( .r-n'n()—| NumberOfRows I—@ J
L( .offset( )—| NumberOfRows I—@J

JlockExclusive(

Lm )
1 thﬂ()—' PIacehoIder\faIuesI—@ J
LockContention

TablelnsertFunction

The syntax for this function shown in EBNF is:

Tabl el nsert Functi on
i:='.insert(' ( TableFields )? ')’
( ".values(' ExprOlLiteral (',' ExprOlLiteral)* ")' )+
( '.execute()' )?

Figure 11.16 TablelnsertFunction

ExprOrLiteral

»—@ ) ~values(
\—{ TableFields i—j

TableUpdateFunction

The syntax for this function shown in EBNF is:

Tabl eUpdat eFuncti on

;= '".update()’
'.set(' TableField ','" ExprOlLiteral '")' )+ '.where(' SearchConditionStr ')’
'.orderBy(' SortExprStrList ')" )? ( '".limt(" NunberO*Rows ')' )?

'.bind(' ( PlaceholderValues ) ')' )*
.execute()' )?

—~—~

Figure 11.17 TableUpdateFunction

»—[.update())—L[.set()—{ TableField , ExprOrLiteral '—@—Lt.where()—{ SearchConditionStr )
L[.ordernv(H SortExprStrList ) L[.IImR(H NumberOfRows )

--—TLE.blnd( H PlaceholderValues ) ] J L)

63




TableDeleteFunction

TableDeleteFunction

The syntax for this function shown in EBNF is:

Tabl eDel et eFuncti on
::= '".delete()" '.where(' SearchConditionStr ')’

( ".orderBy(' SortExprStrList '")' )? ( '.limt(’

( '.bind(' ( Placeholdervalues ) ")' )*
( '.execute()' )?

Figure 11.18 TableDeleteFunction

SearchConditionStr

Nunmber Of Rows ')' )?

SortExprStrList

NumberOfRows 1

11.6 Result Functions

Result

The syntax for this function shown in EBNF is:

Resul t
c:="'.getAffectedltensCount ()’
| '.getAutolncrenentVal ue()'
| '.getCGeneratedlds()'
| '.getWarningsCount ()"
| '.getWarnings()'

Figure 11.19 Result

DocResult

The syntax for this function shown in EBNF is:

DocResul t
;= "'.getWarni ngsCount ()"
| *.getWarnings()'
| *.fetchAll()'
| ".fetchOne()"'

Placeholder\falues—. J I . -

d
4

64



RowResult

Figure 11.20 DocResult

.getWarningsCount()

=)
l fetchOne() -

RowResult

The syntax for this function shown in EBNF is:

RowResul t
;1= '.getWarni ngsCount ()"
| '.getWarnings()'
| *.fetchAll()'
| '".fetchOne()'
| '.getColums()’

Figure 11.21 RowResult

w—

.getWarnings()

%
3
@
g
2

k

.fetchOne()

.getColumns()

Column

The syntax for this function shown in EBNF is:

Col um
;= '.get SchenaNane()'
| '.getTabl eNane()'
| '.getTabl eLabel ()'
| *.getCol umNane()"'
| '.getCol umLabel ()"
| '.getType()’
| '.getLength()'
| '.getFractional Digits()'
| ' .isNunberSigned()'
| '.getCollationNane()"'
| '.getCharacterSet Nane()'
| '.isPadded()"’

65



SqlResult

Figure 11.22 Column

(Ul

SqlResult

The syntax for this function shown in EBNF is:

Sql Resul t
;= "'.getWarni ngsCount ()"’
| *.getWarnings()'
| ".fetchAll()®
| *.fetchOne()"'
| *.getColums()"’
| *.getAutol ncrenent Val ue()"'
| *.hasData()"
| '.nextResult()"'

Figure 11.23 SqlResult

i,

66



Other EBNF Definitions

11.7 Other EBNF Definitions
SearchConditionStr

The syntax for this function shown in EBNF is:

Sear chCondi ti onStr
;= "'"" Expression '"'

Figure 11.24 SearchConditionStr

DD—O— Expression AO—N

SearchExprStrList

The syntax for this function shown in EBNF is:

Sear chExpr Str Li st
ci="[" """ Expression '"' ( ',' '"' Expression '"' )* ']’

Figure 11.25 SearchExprStrList

Expression AOJ—@—-

ProjectedDocumentExprStr

The syntax for this function shown in EBNF is:

Pr oj ect edDocunent Expr St r
;.= ProjectedSearchExprStrList | "expr("' JSONDocunent Expression '")'

Figure 11.26 ProjectedDocumentExprStr

ProjectedSearchExprStrList

emr(“)— 1SOMNDocumentExpression

ProjectedSearchExprStrList

The syntax for this function shown in EBNF is:

Proj ect

edSear chExpr StrLi st

i="'"[" """ Expression ( 'AS Alias )? '"" ( '," '"'" Expression ( 'AS Alias )? """ )* ']’

Figure 11.27 ProjectedSearchExprStrList

Expression _j OJ—(D—-
L—@— Alias

The syntax for this function shown in EBNF is:

SortExprStrList

Sort Expr StrLi st




ExprOrLiteral

o= "'"[" """ Expression ( "ASC | 'DESC )? """ ( '," '"' Expression ( "ASC | 'DESC )? '"' )* ']’

Figure 11.28 SortExprStrList

Expression O—L(D—N

ExprOrLiteral

The syntax for this function shown in EBNF is:

Expr OrLi t eral

ci= "expr("' Expression '")' | Literal

Figure 11.29 ExprOrLiteral

emr(")_ Expression @T
Literal

ExprOrLiterals

The syntax for this function shown in EBNF is:

ExprOrLiteral s
:= ExprOlLiteral (',' ExprOlLiteral )*

Figure 11.30 ExprOrLiterals

ExprOrLiteral

ExprOrLiteralOrOperand

The syntax for this function shown in EBNF is:

Expr Or Li t er al Or Oper and
c:= ExprOrLiteral

Figure 11.31 ExprOrLiteralOrOperand

»»— ExprOrLiteral |»a

PlaceholderValues

The syntax for this function shown in EBNF is:

Pl acehol der Val ues
::="'"{" PlaceholderNane ':' ( ExprOrLiteral ) "}’

Figure 11.32 PlaceholderValues

PlaceholderMName —O— ExprOrLiteral

68



PlaceholderName

PlaceholderName

The syntax for this function shown in EBNF is:

Pl acehol der Nane
;.= NanmedPl acehol der Not Quest i onmar kNot Nunber ed

Figure 11.33 PlaceholderName

pe=— NamedPlaceholderNotQuestionmarkMotMumbered =]

DocPath
The syntax for this function shown in EBNF is:
DocPat h
=11 [t Index "]t ) | ".* | (.t StringLiteral ) | "** )+

Figure 11.34 DocPath

[*1 )
Index —@—/

StringLiteral |—

HOEE

Literal

The syntax for this function shown in EBNF is:

Literal
ci= """ StringLiteral """ | Number | true | false | Document

Figure 11.35 Literal

B INT —— pa

I~ FLOAT ——]

I~— STRING_SQ |

| STRING DQ

NULL

TRUE

o

Expression

Expr essi on

69



Document

= Literal
DocPat h
Tabl eFi el d
FunctionName ' (' Expression ( ',' Expression )* ')’
Pl acehol der Nane
Expr essi on Operat or Expression
JSONEXxpr essi on

Figure 11.36 Expression

pp———— Literal -
~— DocPath o
~— TableField o

I~ FunctionMame @7 Expression
@ PlaceholderName o

M Expression |— Operator |—| Expression |—— ]
“— JSOMNExpression -
Document

An API call expecting a JSON document allows the use of many data types to describe the document.
Depending on the X DevAPI implementation and language any of the following data types can be used:

» String

Native JSON
» JSON equivalent syntax

» DbDoc

Generated Doc Classes

All implementations of X DevAPI allow expressing a document by the special DbDoc type and as a
string.

The syntax for this function shown in EBNF is:

Docunent
;= JSONDocunent | JSONEqui val ent Docunent | DbDoc | Generat edDocunent Cl asses

Figure 11.37 Document

JSOMDocument

J1SOMEguivalentDocument

DbDoc

GeneratedDocumentClasses

70



JSONEXxpression

JSONEXxpression

The syntax for this function shown in EBNF is:

JSONExpr essi on

;= JSONDocunent Expression | '[' Expression ( ',' Expression )* '

Figure 11.38 JSONExpression

1SONDocumentExpression

Expression

JSONDocumentExpression

The syntax for this function shown in EBNF is:

JSONDocumnent Expr essi on

c:="{" StringLiteral ':' JSONExpression (',"' StringLiteral

Figure 11.39 JSONDocumentExpression

StringLiteral —O— 1SONExpression

FunctionName

The syntax for this function shown in EBNF is:

Funct i onNane
;= StringLiteral | StringLiteral '.' StringLiteral

Figure 11.40 FunctionName
1—(:)— StringLiteral J

The syntax for this function shown in EBNF is:

p»—| StringLiteral

A

DocumentOrJSON

Document Or JSON
::= Docurent | 'expr ("' JSONDocument Expression '")'

Figure 11.41 DocumentOrJSON

Document

4
A

e:qlr(“)— 1SONDocumentExpression

TableField

The syntax for this function shown in EBNF is:

Tabl eFi el d

' JSONExpr essi on) *

y

71



TableFields

::= ( StringLiteral '

Figure 11.42 TableField

' )? ( StringLiteral '

' )? StringLiteral

('@ DocPath )?

p»— StringLiteral p—

StringLiteral

StringLiteral

e

TableFields

The syntax for this function shown in EBNF is:

Tabl eFi el ds
ci=( '[' TableField (

Figure 11.43 TableFields

TableField

' TableField )* ']' )

e

DocPath

J

-
»

a
.|

72



Chapter 12 Expressions EBNF Definitions

This section provides a visual reference guide to the grammar for the expression language used in X
DeVvAPI.

ident

i dent

ID| QUOTED I D

Figure 12.1 ident

it

QUOTED_ID

schemaQualifiedldent

schemaQual i fi edl dent

::= ( ident_schena '

Figure 12.2 schemaQualifiedldent

ident |

e

ident_schema —O—j

columnldent

Figure 12.3 columnident

col umml dent

::=( ident ".'

( ident '

' )? ident

* )2 )2 ident ( ( '->

v

J

dent {) T

ident

Y

ident |-

el

documentPathLastltem

docunent Pat hLast I t em

B

[INT ]

| .

documentPath

-

' docunent Pat hMenber

SN

" '$' docunentPath "'" )?

73



documentPathltem

Figure 12.4 documentPathLastltem

ARRAYSTAR '

LSOBRACEET p— INT }— RSOQBRACKET

DOTSTAR

DOT p— docurmentPathMember
documentPathltem

docunent Pat hl t em
;.= docunent Pat hLast |t em

| e

Figure 12.5 documentPathltem

documentPathLastItem T
* ok

documentPath

docunent Pat h
;.= docunent Pat hl t ent docunent Pat hLast|tem

Figure 12.6 documentPath

(—— documentPathitem —]

documentField

docurnentPathlLastitern -

Figure 12.7 documentField

docunent Fi el d
::= fieldld docunent Pat h*
| '$" docunent Path

( documentPath j
fieldId e
documentPath J

argsList

argsList ::=expr ( ',"' expr )*

Figure 12.8 argsList

expr

74



lengthSpec

lengthSpec

lengthSpec ::= " (" INT ")’
Figure 12.9 lengthSpec
»—@— INT 4®—N

castType

cast Type ::= 'SIGNED '|NTECGER *

" UNSI GNED' ' | NTEGER *
' CHAR | engt hSpec*

' Bl NARY' | engt hSpec*

" TI ME'
' DATE'
' DATETI ME'
' JSON

Figure 12.10 castType

' DECI MAL' (| engt hSpec |

"(" INT "," INT ")" )?

&=

\—[UNSIGNED“'[ — ]

CHAR\ ( lengthSpec j

( lengthSpec j
\—| BINARY i

lengthSpec

INT 407 INT

TIME

@)

\—| DATE i

\—| DATETIME i

functionCall

functionCal |
;= schemaQual i fi edl dent

L

argsList? ")’

75



placeholder

Figure 12.11 functionCall

p»—| schemaQualifisdIdent @ .

9alie

argsList

placeholder

pl aceholder ::=":" |ID

Figure 12.12 placeholder

»—@— ID |-
groupedExpr

groupedExpr ::="'(' expr ')’

Figure 12.13 groupedExpr

w—{ O 2o |H0 )
unaryOp

unar yOp = (' b= ' '-' ) atom cExpr

Figure 12.14 unaryOp

atomicExpr [

T

Il
literal

literal ::= INT
| FLOAT
| STRI NG SQ
| STRI NG DQ
| ' NULL'
| ' FALSE
| ' TRUE

76



jsonKeyValue

Figure 12.15 literal

B~ INT | pa

~— FLOAT ——]

— STRING_SQ

| STRING DQ |

NULL

TRUE

Ll

jsonKeyValue

j sonKeyVal ue ::= STRING DQ ':' expr
Figure 12.16 jsonKeyValue

pp— STRING_DQ 4®7 expr |-

jsonDoc

jsonDoc ::="'{' ( jsonKeyValue ( ',' jsonKeyValue )* )* '}'

Figure 12.17 jsonDoc

jsonKeyWValue
a0 &

jsonarray

jsonArray ::='[' ( expr ( ',' expr )* )* ']’

Figure 12.18 jsonarray

expr
9 Ohe

atomicExpr

at om cExpr
::= pl acehol der




intervalUnit

col umOr Pat h
functionCal |
gr oupedExpr
unar yOp

cast Op

Figure 12.19 atomicExpr

pe——— placeholder

g

I~ columnOrPath

|

[~ functionCall

M groupedExpr

M unaryOp F——

I castOp }——F

M literal |————|

I~ jsonDoc p———]

~ jsonArray |——

intervalUnit

I NTERVAL_UNI T

1= ' M CROSECOND

' SECOND
"M NUTE'
' HOUR

' DAY'

' VEEK'
* NONTH

' QUARTER
' YEAR

' SECOND_M CROSECOND

* M NUTE_SECOND
' HOUR_M CROSECOND
' HOUR_SECOND

" HOUR_M NUTE'

* DAY_M CROSECOND

' DAY_SECOND
' DAY_M NUTE'
' DAY_HOUR

' YEAR_MONTH

I
I
I
I
I
I
I
I
I
| * M NUTE_M CROSECOND
I
I
I
I
I
I
I
I
I

78



interval

Figure 12.20 INTERVAL_UNIT

MICROSECOND

SECOND

!

L

MINUTE

L9

HOUR

L

L

WEEK

L9

MONTH

L

LT

QUARTER

YEAR

|

0

SECOND_MICROSECOND

MINUTE_MICROSECOND

T |

MINUTE_SECOND

:

< &4 &4 &

HOUR_MICROSECOND

-

HOUR_SECOND

HOUR_MINUTE

y

T

DAY_MICROSECOND

:

DAY_SECOND

DAY_MINUTE

DAY_HOUR

YEAR_MONTH

interval

interval ::="I|NTERVAL'

Figure 12.21 interval

g

expr | NTERVAL_UNI T

»—(IHTER\ML)— expr

— INTERVAL_UNIT

[

intervalExpr

i nt erval Expr

79



mulDivEXxpr

::= atom cExpr ( ( '+ '-' ) interval )*

Figure 12.22 intervalExpr

p— atomicExpr interval

mulDivEXxpr

mul Di vExpr
i=interval BExpr ( ( "*" | "/" | "% ) interval Expr )*

Figure 12.23 mulDivExpr

intervalExpr

addSubExpr

addSubExpr
= mul Di vExpr ( ( "+ '-'" ) mul D vExpr )*

Figure 12.24 addSubExpr

mulDivExpr

shiftExpr

shi ft Expr
1= addSubExpr ( ( '<<' *>>' ) addSubExpr )*

Figure 12.25 shiftExpr

addSubExpr

bitExpr

bitExpr ::=shiftExpr ( ( "& | "|" | "~ ) shiftExpr )*

80



compExpr

Figure 12.26 bitExpr

shiftExpr

compExpr

conpExpr ::= bitExpr ( ( '>= ' 't <= ‘< ' f <> ‘I=") bitExpr )*

Figure 12.27 compExpr

pp—— bitExpr [——w»a

HriExpr

ilri Expr ::= compExpr 'IS" '"NOT'* ( 'NULL' | 'TRUE | 'FALSE )
conpExpr 'NOT'* "IN '(' argsList* ')’
conpExpr 'NOT'* "IN conmpExpr

conpExpr 'NOT' * ' LI KE conpExpr ( 'ESCAPE' conmpExpr )*
conpExpr ' NOT' * ' BETWEEN conpExpr ' AND conpExpr
conpExpr ' NOT' * ' REGEXP' conpExpr

conmpExpr




andExpr

Figure 12.28 ilriExpr

p——— compExpr

[—@—] ( argsList
I compExpr IN (

f{;;)]
I~ compExpr @ compExpr

(@] &=
I~ compExpr r’I.II(E compExpr

-

“— compExpr

\
f{;;)]
M compExpr [BE‘I’WEEH} compExpr —[AHD} compExpr
f{;;)]
M compExpr [REGEXP)— compExpr

el
raan!

andExpr

andExpr ::=ilriExpr ( ( '& | "AND ) ilriExpr )*

Figure 12.29 andExpr

ilriExpr

orExpr

or Expr o= andExpr ( ( ']]" | "OR ) andExpr )*

Figure 12.30 orExpr

andExpr

82



expr

expr

expr 1= or Expr

Figure 12.31 expr

pe— orExpr ed

DIGIT

DGAT a='0 -9
Figure 12.32 DIGIT

FLOAT

FLOAT = DIGT ' DIAT+ ('E ( '+ | °

| DAT+ 'E ( '+ | '-' )* DGT+

Figure 12.33 FLOAT

INT

Figure 12.34 INT

DIGIT

QUOTED_ID

QUOTED | D

=" D'

" )* DIGT+ )*




WS

10

ID = (ta - 'z | A -2 |

Figure 12.36 ID

W5 o= [ Vt\r\in] +

Figure 12.37 WS

Narw
203
-9
203
108

-
nOx

84



SCHAR

SCHAR

SCHAR

2= [\u0020\ u0021\ u0023\ u0024\ u0025\ u0026\ u0028-\ uOO05B\ UOO5D-\ UOO7E]

85



SCHAR

SOHAR

8

30009000000 0900000000 Ja000s

D
S
=

2

L

86



STRING_DQ

STRING_DQ

STRI NG_DQ

Figure 12.39 STRING_DQ

ESCAPED_DQ
SCHAR
STRING_SQ
STRI NG _SQ
ci= """ ( SCHAR | '"' | ESCAPED SQ)* "'"

Figure 12.40 STRING_SQ

ESCAPED_SQ

SCHAR

~U Ole

io='"" ( SCHAR | "'" | ESCAPED DQ )* ""'

87



88



Chapter 13 Implementation Notes

Table of Contents

13.1 MySQL Shell X DeVAPI EXIENSIONS .......uiiiiiiiieeiiii ettt e e et e e et e e e et e e e et e eeeeae e e e eernaaeeees 89

13.1 MySQL Shell X DevAPI extensions

MySQL Shell deviates from the Connector implementations of X DevAPI in certain places. A Connector
can connect to MySQL Server instances running X Plugin only by means of X Protocol. MySQL

Shell contains an extension of X DevAPI to access MySQL Server instances through X Protocol.

An additional ClassicSession class is available to establish a connection to a single MySQL Server
instance using classic MySQL protocol. The functionality of the ClassicSession is limited to basic
schema browsing and SQL execution.

See MySQL Shell 8.0, for more information.

89


https://dev.mysql.com/doc/mysql-shell/8.0/en/

90



	X DevAPI User Guide for MySQL Shell in Python Mode
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview
	Chapter 2 Connection and Session Concepts
	2.1 Database Connection Example
	2.2 Connecting to a Session
	2.2.1 Connecting to a Single MySQL Server
	2.2.2 Connection Option Summary
	2.2.3 Connection Attributes

	2.3 Working with a Session Object
	2.4 Using SQL with Session
	2.5 Setting the Current Schema
	2.6 Dynamic SQL

	Chapter 3 CRUD Operations
	3.1 CRUD Operations Overview
	3.2 Method Chaining
	3.3 Parameter Binding
	3.4 MySQL Shell Automatic Code Execution

	Chapter 4 Working with Collections
	4.1 Basic CRUD Operations on Collections
	4.2 Collection Objects
	4.2.1 Creating a Collection
	4.2.2 Working with Existing Collections

	4.3 Collection CRUD Function Overview
	4.3.1 Collection.add()
	4.3.2 Collection.find()
	4.3.3 Collection.modify()
	4.3.4 Collection.remove()

	4.4 Indexing Collections
	4.5 Single Document Operations
	4.6 JSON Schema Validation

	Chapter 5 Working with Documents
	5.1 Creating Documents
	5.2 Working with Document IDs
	5.3 Understanding Document IDs

	Chapter 6 Working with Relational Tables
	6.1 Syntax of the SQL CRUD Functions

	Chapter 7 Working with Relational Tables and Documents
	7.1 Collections as Relational Tables

	Chapter 8 Statement Execution
	8.1 Transaction Handling
	8.1.1 Processing Warnings
	8.1.2 Error Handling

	8.2 Working with Savepoints
	8.3 Working with Locking
	8.4 Working with Prepared Statements

	Chapter 9 Working with Result Sets
	9.1 Result Set Classes
	9.2 Working with AUTO-INCREMENT Values
	9.3 Working with Data Sets
	9.4 Fetching All Data Items at Once
	9.5 Working with SQL Result Sets
	9.6 Working with Metadata
	9.7 Support for Language Native Iterators

	Chapter 10 Building Expressions
	10.1 Expression Strings
	10.1.1 Boolean Expression Strings
	10.1.2 Value Expression Strings


	Chapter 11 CRUD EBNF Definitions
	11.1 Session Objects and Functions
	11.2 Schema Objects and Functions
	11.3 Collection CRUD Functions
	11.4 Collection Index Management Functions
	11.5 Table CRUD Functions
	11.6 Result Functions
	11.7 Other EBNF Definitions

	Chapter 12 Expressions EBNF Definitions
	Chapter 13 Implementation Notes
	13.1 MySQL Shell X DevAPI extensions


