|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# |
| 3 | +# Copyright 2020 Google LLC |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +import datetime |
| 17 | +import decimal |
| 18 | +import pandas as pd |
| 19 | +import pyarrow as pa |
| 20 | + |
| 21 | +from google.cloud import bigquery |
| 22 | +from google.cloud.bigquery import enums |
| 23 | +from google.cloud.bigquery_storage_v1 import types as gapic_types |
| 24 | +from google.cloud.bigquery_storage_v1.writer import AppendRowsStream |
| 25 | + |
| 26 | + |
| 27 | +TABLE_LENGTH = 100_000 |
| 28 | + |
| 29 | +BQ_SCHEMA = [ |
| 30 | + bigquery.SchemaField("bool_col", enums.SqlTypeNames.BOOLEAN), |
| 31 | + bigquery.SchemaField("int64_col", enums.SqlTypeNames.INT64), |
| 32 | + bigquery.SchemaField("float64_col", enums.SqlTypeNames.FLOAT64), |
| 33 | + bigquery.SchemaField("numeric_col", enums.SqlTypeNames.NUMERIC), |
| 34 | + bigquery.SchemaField("bignumeric_col", enums.SqlTypeNames.BIGNUMERIC), |
| 35 | + bigquery.SchemaField("string_col", enums.SqlTypeNames.STRING), |
| 36 | + bigquery.SchemaField("bytes_col", enums.SqlTypeNames.BYTES), |
| 37 | + bigquery.SchemaField("date_col", enums.SqlTypeNames.DATE), |
| 38 | + bigquery.SchemaField("datetime_col", enums.SqlTypeNames.DATETIME), |
| 39 | + bigquery.SchemaField("time_col", enums.SqlTypeNames.TIME), |
| 40 | + bigquery.SchemaField("timestamp_col", enums.SqlTypeNames.TIMESTAMP), |
| 41 | + bigquery.SchemaField("geography_col", enums.SqlTypeNames.GEOGRAPHY), |
| 42 | + bigquery.SchemaField( |
| 43 | + "range_date_col", enums.SqlTypeNames.RANGE, range_element_type="DATE" |
| 44 | + ), |
| 45 | + bigquery.SchemaField( |
| 46 | + "range_datetime_col", |
| 47 | + enums.SqlTypeNames.RANGE, |
| 48 | + range_element_type="DATETIME", |
| 49 | + ), |
| 50 | + bigquery.SchemaField( |
| 51 | + "range_timestamp_col", |
| 52 | + enums.SqlTypeNames.RANGE, |
| 53 | + range_element_type="TIMESTAMP", |
| 54 | + ), |
| 55 | +] |
| 56 | + |
| 57 | +PYARROW_SCHEMA = pa.schema( |
| 58 | + [ |
| 59 | + pa.field("bool_col", pa.bool_()), |
| 60 | + pa.field("int64_col", pa.int64()), |
| 61 | + pa.field("float64_col", pa.float64()), |
| 62 | + pa.field("numeric_col", pa.decimal128(38, scale=9)), |
| 63 | + pa.field("bignumeric_col", pa.decimal256(76, scale=38)), |
| 64 | + pa.field("string_col", pa.string()), |
| 65 | + pa.field("bytes_col", pa.binary()), |
| 66 | + pa.field("date_col", pa.date32()), |
| 67 | + pa.field("datetime_col", pa.timestamp("us")), |
| 68 | + pa.field("time_col", pa.time64("us")), |
| 69 | + pa.field("timestamp_col", pa.timestamp("us")), |
| 70 | + pa.field("geography_col", pa.string()), |
| 71 | + pa.field( |
| 72 | + "range_date_col", |
| 73 | + pa.struct([("start", pa.date32()), ("end", pa.date32())]), |
| 74 | + ), |
| 75 | + pa.field( |
| 76 | + "range_datetime_col", |
| 77 | + pa.struct([("start", pa.timestamp("us")), ("end", pa.timestamp("us"))]), |
| 78 | + ), |
| 79 | + pa.field( |
| 80 | + "range_timestamp_col", |
| 81 | + pa.struct([("start", pa.timestamp("us")), ("end", pa.timestamp("us"))]), |
| 82 | + ), |
| 83 | + ] |
| 84 | +) |
| 85 | + |
| 86 | + |
| 87 | +def bqstorage_write_client(): |
| 88 | + from google.cloud import bigquery_storage_v1 |
| 89 | + |
| 90 | + return bigquery_storage_v1.BigQueryWriteClient() |
| 91 | + |
| 92 | + |
| 93 | +def make_table(project_id, dataset_id, bq_client): |
| 94 | + table_id = "append_rows_w_arrow_test" |
| 95 | + table_id_full = f"{project_id}.{dataset_id}.{table_id}" |
| 96 | + bq_table = bigquery.Table(table_id_full, schema=BQ_SCHEMA) |
| 97 | + created_table = bq_client.create_table(bq_table) |
| 98 | + |
| 99 | + return created_table |
| 100 | + |
| 101 | + |
| 102 | +def create_stream(bqstorage_write_client, table): |
| 103 | + stream_name = f"projects/{table.project}/datasets/{table.dataset_id}/tables/{table.table_id}/_default" |
| 104 | + request_template = gapic_types.AppendRowsRequest() |
| 105 | + request_template.write_stream = stream_name |
| 106 | + |
| 107 | + # Add schema to the template. |
| 108 | + arrow_data = gapic_types.AppendRowsRequest.ArrowData() |
| 109 | + arrow_data.writer_schema.serialized_schema = PYARROW_SCHEMA.serialize().to_pybytes() |
| 110 | + request_template.arrow_rows = arrow_data |
| 111 | + |
| 112 | + append_rows_stream = AppendRowsStream( |
| 113 | + bqstorage_write_client, |
| 114 | + request_template, |
| 115 | + ) |
| 116 | + return append_rows_stream |
| 117 | + |
| 118 | + |
| 119 | +def generate_pyarrow_table(num_rows=TABLE_LENGTH): |
| 120 | + date_1 = datetime.date(2020, 10, 1) |
| 121 | + date_2 = datetime.date(2021, 10, 1) |
| 122 | + |
| 123 | + datetime_1 = datetime.datetime(2016, 12, 3, 14, 11, 27, 123456) |
| 124 | + datetime_2 = datetime.datetime(2017, 12, 3, 14, 11, 27, 123456) |
| 125 | + |
| 126 | + timestamp_1 = datetime.datetime( |
| 127 | + 1999, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc |
| 128 | + ) |
| 129 | + timestamp_2 = datetime.datetime( |
| 130 | + 2000, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc |
| 131 | + ) |
| 132 | + |
| 133 | + # Pandas Dataframe. |
| 134 | + rows = [] |
| 135 | + for i in range(num_rows): |
| 136 | + row = { |
| 137 | + "bool_col": True, |
| 138 | + "int64_col": i, |
| 139 | + "float64_col": float(i), |
| 140 | + "numeric_col": decimal.Decimal("0.000000001"), |
| 141 | + "bignumeric_col": decimal.Decimal("0.1234567891"), |
| 142 | + "string_col": "data as string", |
| 143 | + "bytes_col": str.encode("data in bytes"), |
| 144 | + "date_col": datetime.date(2019, 5, 10), |
| 145 | + "datetime_col": datetime_1, |
| 146 | + "time_col": datetime.time(23, 59, 59, 999999), |
| 147 | + "timestamp_col": timestamp_1, |
| 148 | + "geography_col": "POINT(-121 41)", |
| 149 | + "range_date_col": {"start": date_1, "end": date_2}, |
| 150 | + "range_datetime_col": {"start": datetime_1, "end": datetime_2}, |
| 151 | + "range_timestamp_col": {"start": timestamp_1, "end": timestamp_2}, |
| 152 | + } |
| 153 | + rows.append(row) |
| 154 | + df = pd.DataFrame(rows) |
| 155 | + |
| 156 | + # Dataframe to PyArrow Table. |
| 157 | + table = pa.Table.from_pandas(df, schema=PYARROW_SCHEMA) |
| 158 | + |
| 159 | + return table |
| 160 | + |
| 161 | + |
| 162 | +def generate_write_requests(pyarrow_table): |
| 163 | + # Determine max_chunksize of the record batches. Because max size of |
| 164 | + # AppendRowsRequest is 10 MB, we need to split the table if it's too big. |
| 165 | + # See: https://cloud.google.com/bigquery/docs/reference/storage/rpc/google.cloud.bigquery.storage.v1#appendrowsrequest |
| 166 | + max_request_bytes = 10 * 2**20 # 10 MB |
| 167 | + chunk_num = int(pyarrow_table.nbytes / max_request_bytes) + 1 |
| 168 | + chunk_size = int(pyarrow_table.num_rows / chunk_num) |
| 169 | + |
| 170 | + # Construct request(s). |
| 171 | + for batch in pyarrow_table.to_batches(max_chunksize=chunk_size): |
| 172 | + request = gapic_types.AppendRowsRequest() |
| 173 | + request.arrow_rows.rows.serialized_record_batch = batch.serialize().to_pybytes() |
| 174 | + yield request |
| 175 | + |
| 176 | + |
| 177 | +def append_rows(bqstorage_write_client, table): |
| 178 | + append_rows_stream = create_stream(bqstorage_write_client, table) |
| 179 | + pyarrow_table = generate_pyarrow_table() |
| 180 | + futures = [] |
| 181 | + |
| 182 | + for request in generate_write_requests(pyarrow_table): |
| 183 | + response_future = append_rows_stream.send(request) |
| 184 | + futures.append(response_future) |
| 185 | + response_future.result() |
| 186 | + |
| 187 | + return futures |
| 188 | + |
| 189 | + |
| 190 | +def verify_result(client, table, futures): |
| 191 | + bq_table = client.get_table(table) |
| 192 | + |
| 193 | + # Verify table schema. |
| 194 | + assert bq_table.schema == BQ_SCHEMA |
| 195 | + |
| 196 | + # Verify table size. |
| 197 | + query = client.query(f"SELECT COUNT(1) FROM `{bq_table}`;") |
| 198 | + query_result = query.result().to_dataframe() |
| 199 | + # There might be extra rows due to retries. |
| 200 | + assert query_result.iloc[0, 0] >= TABLE_LENGTH |
| 201 | + |
| 202 | + # Verify that table was split into multiple requests. |
| 203 | + assert len(futures) == 2 |
| 204 | + |
| 205 | + |
| 206 | +def main(project_id, dataset): |
| 207 | + write_client = bqstorage_write_client() |
| 208 | + bq_client = bigquery.Client() |
| 209 | + table = make_table(project_id, dataset.dataset_id, bq_client) |
| 210 | + |
| 211 | + futures = append_rows(write_client, table) |
| 212 | + verify_result(bq_client, table, futures) |
0 commit comments