
A Proposal to Tweak Certain C++ Contextual Conversions, v3

Document #: WG21/N3323 = PL22.16/12-0013
Date: 2011-12-08
Revises: N3306, N3253
Project: Programming Language C++
Reply to: Walter E. Brown<wb@fnal.gov>

FPE Dept., Scientific Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1 Introduction 1
2 Motivating example 2
3 Discussion 3
4 Proposed wording 3
5 Acknowledgments 4
6 Revision history 5

1 Introduction

The context in which a C++ expression appears often influences how the expression is evaluated,
and therefore may impose requirements on the expression to ensure such evaluation is possible.
For example, it is well-understood that an expression used in an if, while, or similar context
must be convertible to bool so that the expression can be converted to bool during its evaluation.
This conversion is termed contextual, and is set forth in [conv]/3.

In four cases, the FDIS (N3290) uses different language to specify an analogous context-
dependent conversion. In those four contexts, when an operand is of class type, that type must
have a “single non-explicit conversion function” to a suitable (context-specific) type. Here are the
relevant excerpts (bold emphasis added), in order of occurrence:

• [expr.new]/6: “The expression in a noptr-new-declarator shall be of integral type, unscoped
enumeration type, or a class type for which a single non-explicit conversion function
to integral or unscoped enumeration type exists (12.3).”

• [expr.delete]/1: “The operand shall have a pointer to object type, or a class type having a
single non-explicit conversion function (12.3.2) to a pointer to object type.”

• [expr.const]/5: “If an expression of literal class type is used in a context where an integral
constant expression is required, then that class type shall have a single non-explicit
conversion function to an integral or enumeration type and that conversion function shall
be constexpr.”

• [stmt.switch]/2: “The condition shall be of integral type, enumeration type, or of a class
type for which a single non-explicit conversion function to integral or enumeration type
exists (12.3).”

Each excerpt cited above is followed by language stating or implying that the required conversion
function will be used to convert an operand of class type and that the resulting converted value

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3306.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3253.pdf
mailto:wb@fnal.gov
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3290.pdf

2 N3323: A Proposal to Tweak Certain C++ Contextual Conversions, v3

will be used instead of the original. However, consider the small but very reasonable examples
presented in the next section.

2 Motivating example

Listing 1 presents a modest template that wraps a value of arithmetic or pointer type T, ensuring
that the wrapped value will by default be initialized with T’s zero value. Note in particular the
pair of conversion operators (lines 13-14), provided according to a well-established C++ coding
pattern that allows const and non-const objects to be treated differently:

1 // Listing 1
2 template< class T
3 , class = typename std::enable_if< std::is_arithmetic<T>::value
4 || std::is_pointer <T>::value
5 >::type
6 >
7 class zero_init
8 {
9 public:

10 zero_init() : val(static_cast<T>(0)) { }
11 zero_init(T val) : val(val) { }

13 operator T & () { return val; }
14 operator T () const { return val; }

16 private:
17 T val;
18 };

Listing 2 shows a simple use of this template. We observe (verified with two modern compil-
ers) that most expressions (e.g., *p) have no compilation issue, but that the expression delete p
produces diagnostics. More embarrassingly, the equivalent expressions delete (p+0) and
delete +p are fine:

1 // Listing 2
2 zero_init<int*> p; assert(p == 0);
3 p = new int(7); assert(*p == 7);
4 delete p; // error!
5 delete (p+0); // okay
6 delete +p; // also okay

Listing 3 shows another use of this template. Here, too, the arithmetic, assignment, and com-
parison operations work fine, yet the simple expression i is embarrassingly ill-formed (although
the equivalent i+0 and +i are well-formed!) when used as the switch condition:

1 // Listing 3
2 zero_init<int> i; assert(i == 0);
3 i = 7; assert(i == 7);
4 switch(i) { ... } // error!
5 switch(i+0) { ... } // okay
6 switch(+i) { ... } // also okay

N3323: A Proposal to Tweak Certain C++ Contextual Conversions, v3 3

3 Discussion

The principal issue, in each of the four contexts cited in the Introduction, seems to lie in their
common helpful but very strict requirement that limits a class to only one conversion operator
while allowing for the conversion of a value of the class’s type to a corresponding value of a
type specified by the context. As shown earlier, such a limitation disallows straightforward
code; the above examples must work around the restriction by otherwise uselessly adding zero
or unnecessarily applying unary + (so that the conversion occurs in a different context that
obeys different rules). We conclude from this that the current “single non-explicit conversion
function” approach is unnecessarily strict, as it is less helpful than it could be and thus forces
workarounds that seem silly.

Another concern is the scope of the qualifier “single” in the current wording. Must there be
but a single conversion function in the class, or may there be several so long as a single one is
appropriate to the context? The current language seems unclear on this point.

It is also unclear whether a conversion operator that produces a reference to an appropriate
type is an appropriate conversion operator. (A question on this point was posted to the Core
reflector on 2011-02-21, but has gone unanswered as of this writing.) Current compiler practice
seems to admit such operators, but the current language seems not to.

Just as it does not allow a class to treat const and non-const objects of its type differently,
the current approach also seems not always to admit a conversion function that may be declared
in a base class. The concern here is the slight dichotomy in the current wording: Two cases
speak of the class “having” an appropriate conversion function, while the other two require that
the function “exist”. If the conversion function is in a base class, it “exists”, but the class at issue
is not the one that “has” the function.

To address all these concerns, we recommend instead to use the proven approach typified by
the term contextually converted to bool as defined in [conv]/3. We therefore propose a modest
addition to [conv]/3 to define contextual conversion to other specified types, and then appeal to
this new definition.

Not only does the proposed change avoid the need for the embarrassing workarounds shown
above, it brings the benefit of more consistent behavior by eliminating four special cases for
contextual conversions, aligning them with the rules for the C++11 contextual conversion to
bool.

4 Proposed wording

The wording proposed in this section and in the next is based on that in FDIS N3290, with
deleted text shown thus and new language like this.

4.1 [conv] Changes to introduce a new term of art
3 An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is
well-formed, for some invented temporary variable t (8.5).

— Certain language constructs require that an expression be converted to a Boolean value. An
expression e appearing in such a context is said to be contextually converted to bool and
is well-formed if and only if the declaration bool t(e); is well-formed, for some invented
temporary variable t (8.5).

— Certain other language constructs require similar conversion, but to a value having one of a
specified set of types appropriate to the construct. An expression e of class type E appearing
in such a context is said to be contextually implicitly converted to a specified type T and is
well-formed if and only if e can be implicitly converted to a type T that is determined as

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3290.pdf

4 N3323: A Proposal to Tweak Certain C++ Contextual Conversions, v3

follows: E is searched for conversion functions whose return type is cv T or reference to cv T
such that T is allowed by the context. There shall be exactly one such T.

The effect of either any implicit conversion is the same as performing the corresponding declara-
tion and initialization and then using the temporary variable as the result of the conversion. The
result is an lvalue if T is an lvalue reference type or an rvalue reference to function type (8.3.2),
an xvalue if T is an rvalue reference to object type, and a prvalue otherwise. The expression e is
used as a glvalue if and only if the initialization uses it as a glvalue.

4.2 [expr.delete] Changes to apply the new term of art
1 The delete-expression operator destroys a most derived object (1.8) or array created by a new-
expression. The operand shall have a be of pointer to object type, or a of class type having
a single non-explicit conversion function (12.3.2). If of class type, the operand is contextually
implicitly converted (4) to a pointer to object type. The delete-expression’s result has type void.78

4.3 [expr.const] Changes to apply the new term of art
5 If an expression of literal class type is used in a context where an integral constant expression
is required, then that class type shall have a single non-explicit conversion function expression
is contextually implicitly converted (4) to an integral or unscoped enumeration type and that the
selected conversion function shall be constexpr. [Example: . . . — end example]

4.4 [stmt.switch] Changes to apply the new term of art
2 The condition shall be of integral type, enumeration type, or of a class type for which a single
non-explicit conversion function to integral or enumeration type exists (12.3). If the condition is
of class type, the condition is contextually implicitly converted by calling that conversion func-
tion and the result of the conversion is used in place of the original condition for the remainder
of this section (4) to an integral or enumeration type. Integral promotions are performed. Any
statement within the switch statement can be labeled

4.5 [expr.new] Changes to apply a different term of art
6 Every constant-expression in a noptr-new-declarator shall be an integral a converted constant
expression (5.19) of type std::size_t and shall evaluate to a strictly positive value. The expres-
sion in a noptr-new-declarator shall be of integral type, unscoped enumeration type, or a class
type for which a single non-explicit conversion function to integral or unscoped enumeration
type exists (12.3). If the expression is of class type, the expression is converted by calling that
conversion function, and the result of the conversion is used in place of the original expression is
implicitly converted to std::size_t. [Example: . . . — end example]

4.6 [expr.const] Adjustments due to the above [expr.new] changes
3 [Note: such expressions may be used in new expressions (5.3.4), as case expressions
(6.4.2), as enumerator initializers if the underlying type is fixed (7.2), as array bounds (8.3.4),
and as integral or enumeration non-type template arguments (14.3). — end note]

4.7 [dcl.array] Adjustments due to the above [expr.new] changes
1 If the constant-expression (5.19) is present, it shall be an integral a converted constant
expression (5.19) of type std::size_t and its value shall be greater than zero.

5 Acknowledgments

Many thanks to the reviewers of early drafts of this paper for their helpful and constructive
comments, and especially to James Widman for his very able drafting assistance and to Jens
Maurer for the idea underlying N3306’s §5. We also acknowledge the Fermi National Accelerator

N3323: A Proposal to Tweak Certain C++ Contextual Conversions, v3 5

Laboratory’s Computing Division, sponsor of our participation in the C++ standards effort, for its
past and continuing support of our efforts to improve C++ for all our user communities.

6 Revision history

6.1 From N3253, per CWG @ Bloomington and other feedback

1. Apply editorial tweaks.
2. Refer to FDIS N3290 as the base document rather than to Working Draft N3225, and adjust

the cited and proposed text accordingly.
3. Exhibit and mention unary + as a second weird workaround for the status quo.
4. Introduce, discuss, and apply contextually implicitly converted as the new term of art, re-

placing the simpler but potentially ambiguous contextually converted.
5. Tighten the language regarding the type T to be used in contextual implicit conversion, and

adjust accordingly the sections applying the revised language.
6. Introduce as Option 1 alternate wording for [expr.new].
7. Raise the issue of admitting explicit conversion operators, and introduce Option 2 for

consideration.
8. Update the acknowledgments.

6.2 From N3306, per CWG 2011-12-05 teleconference

1. Correct the cross-references and further tighten the proposed wording in §4.
2. Merge N3306’s §5 into §4 and adjust so as to reflect CWG preference for the N3306 “Option

1” formulation of [expr.new].
3. Remove all parts of N3306’s “Option 2” so as to reflect CWG rejection of direct-initialization

semantics throughout [conv]/3.
4. Remove now-extraneous drafting notes/explanations, and apply editorial tweaks.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3253.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3290.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3225.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3306.pdf

	1 Introduction
	2 Motivating example
	3 Discussion
	4 Proposed wording
	5 Acknowledgments
	6 Revision history

