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Summary

In behavioural ecology, stochastic dynamic programming may be used as a
general methéd for calculating animals’ optimal behavioural policies. But. how
might the animals themselves learn optimal policies from their experience? The
aim of the thesis is to give a systematic analysis of possible computational
methods of learning efficient behaviour.

First, it is argued that it does follow from the optimality assumption that
animals should leam optimal policies, even though they may not always follow
them. Next, it is argued that Markov decision processes are a general formal
model of an animal’s behavioural choices in its environment. The conventional
methods of determining optimal policies by dynamic programming are then
described. It is not plausible that animals carry out calculations of this type.

However, there is a range of alternative methods of organising the
dynamic programming calculation, in ways that are plausible computational
models of animal leaming. In particular, there is an incremental Monte-Carlo
method that enables the optimal values ( or ‘canonical costs’) of actions to be
learned directly, without any requirement for the animal to model its environ-
ment, or to remember situations and actions for more than a short period of
time. A proof is given that this learmning method works. Leaming methods of
this type are also possible for hierarchical policies. Previously suggested learn-
ing methods are reviewed, and some even simpler learning methods are
presented without proof. Demonstration implementations of some of the learn-

ing methods are described.



Corrigenda

Page 90, lines 13-21 should be replaced by:
Note that

(1-)UK x, ) + or* = UK %)+ @ i ) enn + 5_‘, AV WorlEr) = Uit )]

A learning method can be unplememed by, at each time step, adding appropnate fracnons of the
current prediction dnffcrence to previously visited states.

Page 91, insert after line 16:
The total change in U(x) that results from a visit to x at time ¢ is

a[el + VAL, + (‘Yk)z €2+ - ] = cc[r} = Ulx )] - o 2(7)")‘ Cl(xyq » t41—=1) €40y
. . mal .

Note that [C(x,1)| < 1 lk for all x and ¢, If U is exactly conféct, then the average value of the

first term on the RHS above will be zero; however, if there is any error in U, then the second
term on the RHS above will become neghglble for sufﬁc:ently small c.

Page 98, in line 21: : ‘ o : : -
‘Michie (1967)' should be deleted; ‘Widrow et al (1972)° should be replaced by
‘Widrow et al (1973)". . -

Page 227, lines 7 to 13 should be replaced by:
Sufficient conditions are that: .
. For each observation, x, a, and & may be chosen with knowledge of previous observations,

but r and y are sampled, independently of other observations, from a joint distribution that
depends only on x and a. :

. For all x and a, the rewards should have finite mean and finite variance.

. For each state-action pair x, a, the subsequence of leaming factors for observations of the
form [ x a y, r, ] is monotonically decreasing, tends to zero, and sums to infinity.

Page 228, replace lines 14 to 23 by:
between each value of n in the sequence.

To show this, consider the subsequence of observations in which action a is performed in
state x, Let the index of the ith observation in this subsequence have index m; in the main
sequence of observations. The replay probabilities when performing a in state <x,m;> in the ARP
may be written explicitly as follows. Let B;, be the probability that the m,th observation will be
replayed when action a is performed in <x,m;>. Then '

B, = 0 for s>i
B = o

H(l-a,)]a,-., fors=1toi, takingoy=1

£ a4l



If for some j>0
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then it may be shown that
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That is, if d(<x,n’>,a) - d(<x n>,a) = D then if action a is performed i m <x,n"> then the probabil- |
ity that the observation replayed has index less than »# is less than 1-e¢™2

Hence, the depth construction given previously on page 228 shows that, for any chosen
number of replays k and any chosen value € of the learning factor and for any small probability §,
it is possible to choose a level n in the ARP so large that, starting at any state <x,n> and follow-
ing any sequence of actions, the number of replays will be greater than k and the maximal value
of o encountered during any of the first k replayed moves will be less than €, with probability
greater than 1-8. k and & may be chosen so that the expected k-step truncated returns of the ARP
are as close as desired to the expected returns of the ARP.

It remains to show that the transition probabilities and expected rewards in the ARP con-
verge to those of the RP. There is a delicate problem here: the ARP is constructed from a
sequence of observations, and some observation sequences will be unrepresentative samples.
Furthermore, x, , a,, and o, may all be chosen with knowledge of the previous observations 1
to n~1. So to give a convergence result, it is necessary to regard the observed rewards and transi-
tions as random variables, and to argue that, for any RP, the transition probabilities and expected
rewards in the ARP will converge to those in the RP with probability 1, the probabmty being
taken over the set of possible sequences of observations for each state action pair. :

Consider once more the subsequence of observations of action a4 in state x, and let the ith
observation in this subsequence be observation m; in the main sequence, and let R; be the random
variable denoting the reward observed on this mth observation. Let the states be numbered from
1to S, and let 'I‘,l v+« .+ TY be random variables such that if the observed destination state at the
m;th observation is the kth state, then T¥ = 1 and Tl— 0 for j # k. Note that E[ T? ] = P, (a) and
E[ R; ] = p(x,a) for all i.

The expected reward and the transition probabilities in the ARP (which are now random vari-
ables, since they depend on the observation sequence) are:

pARP(Q, m>a) = z Bi.rR

=0

and

i
P‘Mmp.q, s(@) = Z 5;,1 T;

s=Q . R
Note that E[ p**"(<x, m>,a)]=p(x,a) and E[ P >, . 5(8) 1 = Py(a), and observe that
max {B:s} - 0 as x—) oo, Since, by hypothesis, the means and variances of all rewards are
ﬁmte. and the TF are bounded, the strong law of large numbers implies that as i — oo,
p**P(<x, m>,a) = p(xa) and Pﬁ,’f’,,‘_,,q. >(@) = P, (a), both with probability 1. Since there is

only a finite number of state-action pairs, all transition probabilities and expected rewards in the
ARP converge uniformly with probability 1 to the corresponding values in the RP as the level in
the ARP tends to infinity, This completes the proof.
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Chapter 1
" Introduction

Learning to act in ways that are rewarded is aAsign'of intelligence. It is,
for e)tample, natural to train a dog by rewarding it when it responds appropri-
~ately to }corn:nands That animals can learn to obtain rewards and to avoid pun-
ishments is generally accepted and thls aspect of animal mtelhgence has been
studied extensively in expenmental psychology. But it is strange that this type
of learmng has been largely neglected in cognitive science, and I do not know
'of a smgle paper on animal learmng publxshed in the main stream of hterature

on aruﬁc1al mtelhgence

| This thesis will present a general computational approach to learmng from
rewards and pumshments, which may be applied to a wide range of situations
in which anirnal leamin.g} has been stndied, as well as to many other types of
'learn'ing probllem " The aim of the thesis is not to present speeiﬁc eomputational
models to explam the results of specxﬁc psychologxcal expenments Instead, I

| W111 present systemaﬂca.lly a fanuly of algonthms that could m principle be
used by animals to optxrmse their behaviour, and which have potentxa.l applica-

" tions in amﬁcxal mtelhgence and in adaptxve control systems.

In this 1ntroduct10n I will d1scuss how amrnal learnmg has been studled

and what the requirements for a computanonal theory of leammg are.
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Chapter | — Introduction

1. Classical and Instrumental Conditioning

I will not give any comprehensive review of the enormous literature on
the experimental study of animal learning. Instead I will describe the essential
aims of the experimental research, the nature of the phenomena studied, and

some of the main conclusions.

‘There is a long history of research into conditioning and associative leam-
-ing, as described by Mackintosh (1983). Animals’ ability to learn has been stu-
died by keeping them in controlled artificial environments, in whieh events and
contingencies are under the control of the experimenter. The prototypical
aniﬁcial environment is the Skinner box, in whieh an animal may be con-
fronted with stimuli, such as tﬁe sound of a buzzer oe the sigﬁt of an
illurni;xated laanp, and thel animal may perform responses‘rsuch as pfessing a
lever in the case of a rat, or pecking at a light in the case of a pigeon. The
ani‘mal may be automatically prc;vided with reinforeeis. In behavioural terms, a
-positive reinforcer is something that may increaee the brobability of a preceding
reSpo.nse;‘ a positiye reinlferc'er might‘be a morsel of food foe a hungry animal,
for ins‘tance ora sip of water for a thirsty animal. Converéely, a negative rein-
forcer, such as an electric shock, is somethmg that may reduce the probabxlty of
a precedmg reSponse Ina typxcal expenment the ammal S envu'onment may be
conu'olled automancally for a long penod of tlme, and the dehvcry of rein-
~ forcers may be made contmgent upon the stimuli presentcd and on the
'.responses of the animal. The events and contmgencxes that are specified for the

artificial environment are known as the reinforcement schedule.

Two principal types of experimental procedure have been used: instrumen-

tal and classical conditioning schedules.

In instrumental schedules, the reinforcement that the animal receives

depends on what it does. /nstrumental learning is learning to perform actions to
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_ obtain rewards and to avoid punishments: the animal learns to behave in a cer-
tain way because behaving in that way leads to positive reinforcement. The
adaptive function of instrumental conditioning in animals is clear: blue tits will

obtain more food in winter if they can learn to visit well stocked bird-tables.

In classical . (or ‘Pavlovian’) experiments, the animal is exposed to
sequences of ‘Ievents and reinforcers. The reinforcers are contingent on the
events, not on the animal’s own behaviour: a rat may be exposed to a light, and
then given an electric shock regardless of what it does, for example. Experi-
ments of this type are often preferred (bickinson 19'80) because the correlations
| between events and rc;inforccrsmay.be controlled by the experimenter, whereas
th; animal’s actiops may not.

Classical conditioning experiments depend on the fact that an animal may
naturally rcspond_ to certain stimuli without any previous learning: a man will
withdraw his hand from a pin-prick; a dog will salivate at the sight of food.
The stimulus that elicits the response is termed the unconditioned stimulus or
US. If the animal is Iplaced in an environment in which another stimulus—the
~.conditioned stimulus or CS—tends to occur before the US, so that the
occurrence of the CS is .corrclatcd wi;h the occurrence of the US, then an
~animal may produce the response after the CS only. It is as if the animal leamns

to expect the US as a result of the CS, and responds in anticipation.

Whether there are in fact two types of learning in instrumental and classi-
cal conditioning is much disputed, and complex and difficult issués are
involved in attempting to settle this question by expérimcnt. However, I will be
concemed not with animal experiments but with learning algorithms. I will
_therefore give only a brief discussion of one interpretation of vthé _cxpén'mcntal
evidence from animal ‘experiments, as part of the argument in favour of the

type of leaming algorithm I will develop later.
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Mackintosh (1983) discusses the relationship between classical and instru-

mental conditioning at length.

Flrst, it nught seem temptmg to regard classical condmomng as a form of
mstrumcntal condmomng might a dog not learn to salivate in anticipation of
food because the dog found that if it salivated the food was more palatable?
Mackintosh argues that classical conditioning cannot be explained as instrumen-
tal conditioning in this way. One of the neatest experiments is that of (Browne

'1976) in which animals were initially prevented from giving any response while
they observed a correlation between a stimulus and a subsequent reward.
"When the constraint that prevented ihc animals giviﬁg ‘the response was
removed, they immediately gave the response; there was no possibility of any

instrumental learning because the animals had been prevented from responding.

‘Mackintosh also notes that, perhaps more suprisingly, much apparently
instrumental condmonmg may be explamablc as cla551ca1 conditioning. In an
instrumental expcnment in which animals learn to perform some action in
| response to a conditioned stimulus, the animal must incvitably observe a corre-
~ lation betwéen the conditioned stimulus and thé reward that occurs as a result
of its action. This correlation, produced by the anixﬁal itself, may give rise to a
~ classically conditioned response: if this classically conditioned response is the
same as the instrumental response, then each response will S&cngthen the corre-
lation between the CS and the reward, thus strengthening the conditioning of
the CS. Learning would thus be a positive feedback process: the more reliably
~ the animal responds, the greater the correlation it observes, and the greater the

correlation it observes, the more reliably the animal will respond.

But, as Mackintosh argues, not all instrumental learning may be explained
in this way. A direct and conclusive argument that not all instrumental learning

is explainable as classical conditioning is the common observation that animals
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can learn to perform different responses in response to the same stimuli to.
obtain the same rewards. "

VIacidntosh sug‘ocsts, however, th‘at no instrumental conditioning experi-
ment is totally free of classmally condmoned effects, and vice versa. For
instrumcntal leaming to occur an ammal must producc at least one response, or
scqucncc of rcsponscs, that rcsults in a rcwa.rd—why docs the animal produce
the ﬁrst such response? Instrumental learning consists of attemptmg to repeat
previous successes; the ach1evement of the ﬁrst success requires a different
explanation. One possibility. is that an animal performs a totally random
exploration of its environment: but this cannot be accepted as a complete expla-
nation. A reasonable hypothesis is that cla.sslica-l conditioning' is the expression
““of indate knOWIedgc of what éctions hre usually appropriate when certain types

'of ‘ev'efnts are observed tovbe correlated in the environment The roughly
éppropriéte innate behaviour releascdiby classical conditioning may then be
ﬁnc-tuncd by instrumental lvenrning The qncstion of the relationship bctwccn‘
classxcal and mstrumcntal condmomng is, therefore, one aspect of a more fun-
damcntal qucstlon what types of innate knowlcdgc do ammals have and in

what ways does this innate knowlcdgc conmbutc to lcammg"

Condmonmg theory sccks to explain ammals bchavmur in detail: to
cxplain, for cxamplc, just how the time interval between a response and a rein-
forccr affects the rate at which thc rcsponsc is learned. As a consequence of
thxs level of detail, condmomng thcory cannot readily be used to cxplam or to
predict animal leammg undcr more natural condmons: the rclanonshlps between
stimnli, responses, and reinforcers becomc too cor'nple‘x for models of instru-
mental conditioning to make predictions. It is clear in a general way that instru-‘
mental conditioning could enable an animal to learn to obtain what it needs, but

conditioning theory cannot in practice be used to predict the results of learning
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" quantitatively under most natural conditions. The difﬁcnlty is that conditioning
theory has tended to be developed to explain the results of cenain types of

experiment rather than to predict the effect of learning on behaviour overall,

The opumahry argument as used in behavioural ecology can prov1de, I
beheve a clear and well mouvated descnptxon of what instrumental leammg
should ideally be. I will later consrder systemautally the different ways in

which this type of instrumental learning may be achieved.

2. The Optimality Argument

Behavioural ecologists seek to explain animal behaviour by starting from a
different direction. They argue méi animals need to behave efﬁciently if they
are to survive and breed: selecuve pressure should therefore, lead to animals
adopung behavioural strategies that ensure maximal reproductive success. Just
as evolution has provxded animals with bodies exqursxtely adapted to survwal in

their ecologlcal niches, should not evolut1on also lead to sumlarly exquxsne
| adaptatxons of behavrour° On thlS view, it should be possible to explain natural
ammal behaviour in terms of its contribution to reproducnve success. This

approach to the analysrs of animal behaviour is known as the optzmaluv argu-

ment,

The opnmahty argument is controversial: Gould and Lewontin (1979)
attack its uncnncal use, and Stephens and Krebs (1986) gwe an extended dis-
cussmn of when the use of the opumahty argument can be Justrﬁed It is clear
that there are both practical and theoretical difficulties w1th the optimality argu-

ment,

~ One difficulty that Gould and Lewontin point out is that the optimality
~ argument must be applied to an animal and its behaviour as a whole, and not to

each aspect of the animal separately. Further, optimality can only be assessed
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. relative to the animal’s ‘choice’ of overall design (or ‘bauplan’) and mode of

life. One cannot recommend a whale to become a butterfly.

- A potential weakness of the optimality argument is that evolution is not a
perfect optimiser. It is likely, therefore, that there are some aspects of
-behaviour which have no adaptive value, just as there are some parts of the
body that migﬁt benefit from being re-designed; Nevertheless, there are many
example§ where optimality arguments can be .applied convincingly to explain

aspects of animals’ natural behaviour,

And, of course, optimality arguments may often be difficult to provide in
practice because it may be difficult to establish what the optimal behavioural
strategy actually is for an animal in the wild. The difficulty fnay be either that
it is difficult to determine what an animal’s intermediate goals should be if it is
to leave as many surviving descendants as possible, or else the difficulty may
be that although the goals of optimal behaviour are reasonably clear, it is
difficult for a behavioural ecologist to know how animals could best go about

. achieving them. What is the best way for a squirrel to look for nuts?

To apply the optimality argument to any particular example of animal
behaviour is fraught with subtle difficulties, and a substantial amount of investi-
gation of the animal’s behaviour and habitat is necessary. But I am not going to
. do this—all I need to assume is a rather limited form of the optimality argu-

. ment, which is set out below.

3. Optimality and Efficiency
The optimality argument as applied to behaviour suggests that the function
“of ‘instrumental learning is to leamn to behave optimally. Some aspects of

behaviour are innate, other aspects are learned, but all behaviour should be

optimal. But this is much too simple.
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There is a basic difficulty: animals cannot learn how to leave as many
descendants as poss'iblc. It is not possiblé for an animal to live its life many
times and to determine from its experience the optimal strategy for perpetuating
its genes. All that an animal can learn to do is to achieve certain intermediate
objectives. To ensure ‘maximal reproductive success, animals may need to
achieve a varieiy of intermediate goals: finding food and water, finding shelter,
defending territory, attracting a mate, raising offspring, avoiding predators, rest-
ing, grooming, and so on. Animals may learn to achieve these goals, but they

cannot learn optimal fitness directly.

It is often possible to identify certain skills that animals need to have—
one such skill that many animals need is the ability to forige sO as to gain
energif at the maximum possible rate. To describe an intermediate objective
quantitatively, it is necessary to specify a performance criterion, which can be
used to ‘score’ different possible behavioural strategies. The maximally efficient
- behavioural strétegy is the one that leads to the best score according to the per-
formance criterion. If animals can represent suitable performance criteria inter-
nally, so that they can score their current behaviour, then it becomes possible
for them to learn efficient behaviour. This is the type of learning I will exam-
ine.

But an animal will not always need to achieve all its intermediate objec-
tives with maximal efficiency. A plausible view is that, for each species of
animal, there are certain critical objectives, in that the levels of performance an
animal achieves in these areas strongly affect its reproductive fitness. In other
areas of behaviour, provided -that the animal's performance is above some
minimum level of efficiency, further improvements do not greatly affect fitness.
For example, a bird may have ample leisure during the autumn when food is

plentiful and it has finished rearing its young, but its survival in the winter may
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dcpcnd cntxcally on its ability to forage cfﬁc1cnt1y There is, therefore, an
1mportant dxstmcuon betwcen optimal bchav1our in thc sense of bchavxour that
cnsurcs maximal rcproducuvc success, and behav1our that is maxzmally efficiens

in achxcvmg some 1ntcrmed1ate objective.

| It is possxble that some ammals need to 1earn to optumse theu‘ behavmur
- overall by lcarnmg to choosc to devote appropriate amounts of umc to different
acnvmcs; but it is hkcly that it is more usual that animals need to learn certain
specific skills, such as how to hunt efﬁmently It is unhkely that an ammal will

have to leamn to seek food when it is hungry it is more likely to need to learn

 how to find food efﬁcxently, 50 that 1t can exercise thls skill whcn 1t is hungry.

Arurnals may, thereforc, nccd to leam skxlls that they do not always nccd
to use. Learning of [hlS type is to some extent incidental: an animal may learn
, hoyv to forage efﬁciently while actually foraging somewhat inefﬁciently, so that
_ the animal’s true level of skill may only become evident when the animal needs
. to use it. Furthermore, it is usually necessary to make rmstakes in order to
learn: animals must necessarily behave inefficiently sometimes in order to learn
how to behave efﬁcicntly ~whc:n they need to. This view .of leamning is rather
~ different from traditional views of reinforcement Icamihg, as presented by, for

example, Bush and Mosteller (1955).

4. Learning and the Optimality Argument .
- The optimality argument does predict that animals should have the ability

to learn—to adapt their behaviour to the environment they find. The reason for

this is that

o The same genotype may encounter circumstances in which different

behavioural strategies are optimal.
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That is, either the same individual may nccd to adapt its behaviour, or different
individuals may encounter different circumstances. This is not an cntirciy trivial
point: one reason why we do not learn to beat our hearts is that the design of
the heart, the circulatory system, and the metabolism is encoded in the genes,
so that the 6ptin‘1ai stratégy' fdr beating thc heart may:be' genetically coded as
‘well, It is possible, howéver,’ that there could be a mechanism fbr ﬁn;:-tuning
the control system for the heart-beat in'fcéponse to experience, because physi-
cal development is not entirely determined by the genotype. |

| Naturally, optimality thebry prcdicis optixnaﬁiy in learning, vbut there are
two notibnS :of Optirpality in learning: dpn‘mal learﬁing, and Ilearningrof efficient
| vsrrategievs. ‘Optimal léarnihg’ is a proéesslof collecting‘and ;xsing information
during learning in an optirhal manner, so that the learner makes the best possi-
ble decisions at all stages of learning: learning itself is regarded as a multi-
| stage decision process, and lcaming} is optimal.‘if tﬁe learner adopts a strategy -
that will yield the highcst possible return from actions over the whole course of
learning. ‘Léaming of an efficient strategy" or ‘asyrﬁptotically bptimal’ leamning
(Houston et al 1987) is a much weaker nétioné—all that is meant is that after
sufficient experience, the learner will eventually acquire the ability to follow

the maximally efficient strategy.

The difference between these tv.o notions may be made clear by consider-
ing the ‘two-armed bandit’ problém. In this problem, a piaycr is faced with two
levers. On each tumn, the player may pull either lever A or lever B, but not
both. After pulling a lever, the player receives a reward. Let us supposé that,
for each lever, the rewards are grenerated according to a different prdbability
distribution.’ Successive rewards are independent of each other, given the
choice of lever. The average rewards given by the two levers are different.

The reward the player obtains, therefore, depends only on the lever he pulls.

10
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Now, suppose that the player is allowed only 10 turns; at each turn, the player
may decide which lever to pull based on the rewards he has received so far in

the session,

If the player knows that lever A gives a higher reward than lever B, then
clearly his .maxima.lly efficient strategy is to pull lever A 10 times. But if the
player is uncertain about the relative mean rewards offered by the two levers,
and his aim is to maximise his total reward over n tums, then thc_ problem
‘becomes interesting. The point is that the player should try pulling both levers
alternately at first, to determine which lever appears to give higher rewards;
- once the player has sampled enough from both levers, he may choose to pull
one of the levers for the rest of the session. Other sampling strategies are possi-

ble.

The difference between optimal learning and learmning an efficient strategy
- is clear for this problem. Learning an efficient strategy is learning which lever
gives the higher rewards on average; a learning method learns the efficient stra-
tegy if it always eventually finds out which. lever gives the higher rewards.
"However, a learning method is optimal for a session of length » if it results in
_ the player obtaining the highest possible expected reward over the n tums,
‘highest possible’ taking into account the player’s initial uncertainty about the

reward distributions of the levers. . -

Optimal learning is the §ptimal use of information to inform behaviour. It
is learning that is optimal when considered over the whole course of leamning,
- taking into account both early mistakes and later successes. Optimality in this
sense refers to the learning method itself, not to the final behaviour attained. In
- the two-armed bahdit problem, for example, if only a few turns are allowed, it
may be optimal for the player to perform very little initigl sampling before

choosing one lever to pull for the rest of the session. If the player does not

11
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: perfbrm enough sampling, then he may easily choose the wrong lever: if many
turns are allowed, therefore, the optimal strategy may be to do mbrc sampling.
Note that optimal learning does not necessarily lead to the acquisition of the
maximally efficient strategy: if learning the maximally efficient skill is costly, it

may not be worthwhile for the animal to leamn it.

The two-arqu bandit problem is perhaps the simplest learning problem
which involves a trade-off between exploration of the possibilities of the
. environment, and exploitation of the st'rateAgies that have been discovered so far.
This is a dilemma that arises in almost any instrumental leamning problem. If an
animal performs too much exploration, it may not spend enough time in
exploiting to advantégc what it has learned: conversely, if an animal is incuri-
ous and does too little exploration, it may miss discovering some alternative
behaviours that would bring much higher returns, and it may spend all its time
exploiting an initial mediocre strategy. This is known as the exploration-
exploitation trade-off. During its life time, an animal must continually choose
whether to explore or whether to exploit what it knows already. One prediction
of optimality theory, therefore, is that an animal should make an optimal choice
in the exploration-exploitation trade-off. It may happen that, in following the
optimal strategy, the animal will not necessarily perform enough exploration to
achieve maximally efficient performance: it may be better to be incurious and
so avoid making too many mistakes during exploration.

Houston and McNamara (1988) and Mangel and Clark (1988), propose
explaining natural animal leaming as optimal learning in this sense. This
approach is surely correct for learning in the sense of collecting and using

information, but it is in practice impossible to apply for learning in the sense of

the gradual improvement of skill.
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. Rather confusingly, ‘learning’ is used in the operational research and
dynamic programming literature (for example, de Groot (1970) or Dreyfus and
Law (1977)) to refer to the short-term collection of vinformation for immediate
use. This is the sense of ‘learning’ as in ‘In the darkness of the room there
came a slow;rustling sound and then the sound of the sofa being pushed across
the floor, so I learned I was dealing with a snake of remarkable size.” as
opposed to the sense of learning in ‘It took him three months of continuous
practice to learn to ride that unicycle.” The short-term collection and use of
information (learning in the first sense) is a skill that can itself be gradually
improved by practice (l¢aming in the scqond sense). |

Krebs, Kacelnik, and Taylor (1978) performed one of thc~ﬁ_rst experiments
to determine whether animals could leamn to collect and use information in an
optimal way—indeed, one of the first experiments to determine whether
animals could leamn an optimal strategy, where the optimality of the strategy
was deien‘m’ned by reference to a d&namic mbdel. Théykkhept 4birds (great ti{s)
in an artificial environment iﬁ which they wére~fed in a series of short sessions.
For tlic duration éf each feeding seséion, the bird was preséﬁtcd with two
feeders, one of which would yield féod more readily than the other. The birds
could only tell which feeder was better by trial‘ and error, so that each session
was in effect a two armed bandit ‘problem, and successive sessions were
independent problems of the same typé. HA Areasonable strategy for.a bird—.ﬁnd
. one thaf is very nearly opdmal%is to Qamplc from both feeders for a short time
at the start of each session, and then to feed for the reSt of the séssion
~ exclusively from the feeder that gave out food most rez;dily during thc sampling
period. Over many' sessions, the birds did indeed acquire near optimal -st_rategies

of this type.
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But the type of learning that I will be interested in is the improvement in
performance over many feeding sessions. In this example, the birds gradually
learned a maximally efficient strategy for the problem. Was this gradual leam-

ing also optimal? That is a very difficult question to answer, for two reasons.

" The first reason is that it is exceedingly difficult to devise demonstrably
optimal lea.min.g strategies for any but the simplcst of formal problems. Even
for the two-armed bandit problem, finding the optimal strategy is a formidable
computation, There is a straightforward general method, as explained in
de Groot (1970), for constructing optimal learning strategies, but the strategies
and the computation become impractically complex for any but small problems,
or problems for which simplifying assumptions are possible, The problem of
leafnihg the 6ptimal stratcgyiin repeated two-armed bandit problems is far too
complex for it to be possible to determine the optimal learning strategy.

But ﬁ'éecond and more fundamental difficulty is ‘that an optimal leamning
strategy is i&p.timal 6'nl).r"vvit.h respect to some prior assumptions concerning the
probabilities of 'encbumering various possible environments. In an experiment
similar to that of Krebs et al (1978), the Optinial strategy within a feeding ses-
sion depends on the distribution of yiclds from the feeders in different sessions.
After the great tits have experienced many feeding scssioné, they have enough
information to ‘know’ the'statistiéal distﬁbution of the yields from each feeder,
and it makes sense to ask whether they can acquire the optimal strategy for the
distribution of yiclcis that they hai/e experienced. But to ask whether the birds’
learning is Opﬁmal over the whole experiment is a different matter: the optimal
' strategy from. thev birds' point of view is depends on the birds’ prior expecta-
tions, and we have no means of kxiowing what these expectations are or what

they should optimally be.
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In other words, to show that some particular learning method is optimal, it
is necessary to specify a probability ‘distribution over the environments that the
animal may encounter, as noted by McNamara and Houston (1985). In prac-
tircc,‘ this is likciy to be an insuperable difficulty in providing convincing quanti-
tative optimélitycxplangtions for any type of skill acquisition.

_But although }quantitative arguments on optimal learning may be difficult
to pfovide, some qualitative explanations involying optimal learning are com-
mon sense. Animals that are physically specialised so that tht;,y are adapted to a
particular way of life, for efcample, should in general b‘e less curious and
exploratory than animals that are physically adapted'to eat many different
foods. The reason for this is that a highly specialiséd animal is unlikely to dis-
~ cover viable alternative sources of food, while an omnivore lives by adapting

its behaviour to exploit whatever is most available. ' ‘

I am not going.té consider computational models of optimal learning, both
- because of the technical difficulty of constructing 6ptimal leirning fnethods,
and because of the need to introduce explicit assumptions about a probability
distribution over possible environments. In any case, optimal learning will sel-
dom be a practical qﬁantitativc' method of cxplaining animal learning,

| Lci ‘us rctuml to‘th‘c‘ second type of lca‘ming—learning- of efficient stra-
tegies. By the learningv of efficient stra_tégics, I mean the acquisition of the abil-
ity to follow a strategy that is maximally efficient according to an intermediate
" criterion. Note that this is learning of the abiliy to follow a maximally efficient
strategy: an animal with this ability nccd not a.lWays actually follow the

efficient strategy, but it can do so if it chooses to.

An example where optimality theory would predict that an animal should
learn an efficient strategy is that a prey animal should learn how to retum to its

burrow as fast as possible from any point in its territory. Of course, the animal
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need not always return to its burrow as fast as possible—but it is vitally neces-
sary that it should be able to do so .if danger threatens. Similarly, it is not
importani that an animal should_follbw an efficient strategy in searching for
food if it has just eaten, but it is advantageous for an animal to be able to fol-

low an efficient s&ategy'in searching for food if it needs to.

Optimal learning will reqﬁirc the learning of an efficient strategy if the

following three conditions hold:
o  The capacity for maximally efficient performance is valuable.v
o Exploration is cheap.

e  The time taken to learn the behaviour is short compared to the period of

time during which the behaviour will be used.

The third condition implies that the final level of performance reached is more
important than the time taken to learn it—hence optimal learning will consist of

learning the efficient strategy.

Animals need to be able to survive adverse conditions that are more
extreme than those they usually encounter. It is likely, therefore, _that under nor-
mal circumstances most animals have some leisure for exploration; in other
words, the opportunity cost of éxploration is usually small. Animals may, there-
forc, norrhally perform with slightly less than maximum _cfﬁcicnéy ih order to
be able to leamn: m&imﬂly efficient performance is only oécasibnally neces-
sary. Efficient performance may ber valuable for the animal to acquire éither
because it is occasionaily vital (as in avoiding prcdators), or eléé b'ecause it

continuously ensures a small competitive advantage (as in searching for food).

~ Even if these assumptions are not entirely satisfied, it is still plausible that
animals should learn efficient strategies. The point is that optimal learning will

entail learning an efficient strategy unless learning is expensive. Learning may
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be expensrve if rmstakes are costly prey animals would be unwise to attempt to
learn which anxmals were theu' predators by cxperience for exarnple If animals
have innate behav1ours that prevent them from making disastrous mistakes,
there 1s no reason why these behavrours should not be ﬁne tuned by instrumen-
tal Ieammg I.t' an innately feared predator never behaves 1n a threatemng way,
for example, the prey anirnal may lose some of its fear and so cease spending
time and energy in avordmg the predators. Amrnals may have mnate knowledge
or behaviours that prevent them from making costly initial mistakes, and these
innate behaviours may be progressrvely modified to become maximally efficient
behavxours through 1nstrumental leamrng In other words, innate knowledge

may take the pain out of learning.

I conclusion, the o;l)tim-ality' assumption leads to the hypothesis that
animals wili be abllle' to learn efﬁcient behavioura.l su'ategies. That is, after
sufficient experience in an environment, an animal should acquire‘ the ability to
exploit that environment with maximal efficiency. Most of the thesis is devoted

' to investigating what algorithms animals might use to learn in this way.

4.1. Learning Efficient Strategies and Conditioning

' Instrumental conditioning and the learning of efficient strategies are related
concepts, but they are not at all the same. The motivation for studying instru-
- mental conditioning is that it is possihle mechanism for a type'of learning that
could be useful to an animal in the wild. However, operant conditioning theory
_does not explicitly consider efficiency of strategy, and many aspects of instru-
‘mental conditioning experiments are not directly interpretable from the

viewpoint of optimality theory. Conversely, many experiments that test whether
animals can learn an efficient behavioural strategy are not easy to interpret as

instrumental conditioning experiments.

17



Chapter 1 — Introduction

Although they are superﬁcxally similar to mstrurncntal conditioning experi-
ments, experiments to test whcther ammals can learn maxlmally efficient
behavioural strateglcs are desxgned qune d1fferent1y A well desxgned ‘lcammg
of efficiency’ expenmcnt should give ammals both mcennve and opportumty to

learn the maxxmally efﬁcxent strategy.

J Ammals should be pla_ced in an artificial envirénmenf for which the exper-
imenter can determine the méximally efficient behavioural straterg'y. |

¢  The animals éhould be left in the artiﬁcial environment for long enough

. for them to have ample opponlinify 6f'optimising.their strategies. The

environment should not be changed during this time.

A )

*  The animals should have an adequate motivation to acquxre the optimal
strategy, but the incentive should not be 5O severe that explorauon of alter-

native behaviours is too costly.

e  Control groups should be placed in artificial environments that differ in
chosen respects from the environment of the experimental group. Control
groups should be given the same opportunities of optimising their

behaviour as the experimental group.

Experiments designed in this way have two considerable advantages. First, it is
possible to devise experiments that simulate directly certain aspects of natural
conditions. Second, optimality theory can be used to make quantitative predic-

tions about what strategy the animals will eventually learn.

Some conditioning experiments satisfy these design requirements; others
do not. For example, the phenomenon known as ‘extinction’ in.conditioning
theory, in which a leamed response gradually extinguishes when the stimulus is
repeatedly presented without the reinforcer, is not directly interpretable in terms
of optimality. This is because in a typical instrumental conditioning experiment,

the purpose of testing animals under extinction is to determine the persistence
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_or ‘strength’ of the animal’s expectation of a reward following the stimulus.
This concept of ‘strength’ is difficult to interpret in terms of optimality. There
is often no ‘correct’ behaviour during extinction: whether an animal should
continue to respond for a long time or not depends entirely upon what types of
regularity 1t should expect to find in its environment. Since the extinction con-
- dition- occurs only once during the experiment, the animal is not given enough

data for it to work out what it ought to do.

If, on the other hand, extinction were to occur repeatedly in the course of
an experiment, the ar;imal has the chance to leam how to react in an optimal
way. Kacelnik and Cuthill (1988) report an experiment iﬁ which starlings
~ repeatedly obtain food from a feeder. Each time it is used, the feeder will sup-
ply only a limited amount of food, so that as the birds continue to peck at the
’feeder ;hcy obtain fQod less and less often, until cventualiy the _fecder gives out
no more food at all. To obtain more food, they must then leave the feeder and
ﬁop from perch to perch iﬁ their cage until a light goes on that indicates that
ihe feeder has been reset. In terms of conditioning theory, this _expcriment is
(roughly) a sequence of repeated extinctions of reinforcement that is contingent
upon pecking at the feeder: however, because the birds have the oﬁportunity to
accumulate sufficient experience over many days, they have the necessary
infbrmatidn tojﬁnd an optimal S&atcgy‘ forA choosing when to stop pecking the
ere’der. - - o

I do not want at all to suggest that condiﬁoning experiments are uninter-
pretable: they ask different questions and, perhaps, provide some more detailed
answers than pptimality experiments do. However, the optimality approach is
both qu»antitativer and strongly motivated, .‘and I will afguc in the‘ rest of this
7 thesis that it is possible to classify and to imi:lement a range of algoﬁthms for

learning optimal behaviour,
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5. Special-Purpose Learning Methods

McNamara and Houston (1980) describe how decision theory may be used
~ to analyse the choices that animals face in some simple tasks and to calculate
the efﬁcient‘;strategy.' They point out that it is in principle possible that animals
might leamn by'statiétical estimation of pfobabilitics, and ‘then use decision
theory to calcﬁlate their s'tr‘ategies, but they suggest that it is more likely that
animals learn by special purpose, ad hoc methods. McNamara and Houston

give two main arguments in favour of this conclusion.

First, they point out that the calculations using decision theory are quite
complex even for simple problems, and that, in order to perform them, the
animals would need to collect a éonsiderable amount of information that they
would not otherwise need. Their second argument is that animals do not face
the pfoblcm of determining optimal stratcgicS in gc'ncralz each species of animal
has evolved to face a limited range 6f learning problems in a limited range of
environ'merits.. ‘Animals, therefore, shoﬁld'only néed siniple, special-purpose
heuristic learning methods for tuning their behaviour to the optirhum. These
special-purpose strategies may bfeak down in artificial environments that are
different from those in which the animals evolved.

The classic example of a 'heuriéﬁc, special-purpose, falliﬁle learning
method of this type is the mcchanism_ of imprinting as d;:séﬁbcd by Lorenz. In
captivity, the ducklings may become imprinted on their keeper rather than on
their mother. There can be no doubt that many other special-purpose leaming

methods exist, of exactly the type that McNamara and Houston describe.

But I do not think that McNamara and Houston’s arguments are convinc-
 ing in general. Although some 'innate special-purpose’ adaptivc mechanisms
demonstrably exist, it is impiausiblc that all animal leamning can be described in

this way. Many species such as rats or starlings are opportunists, and can learn
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to invade many different habitats and to exploit novel sources of food. Animals
can be trained to perform many different tasks in conditioning ‘cx‘perimcnts, and
different species appear to leamn in broadly similar ways. Is it not more plausi-
ble that there are generally applicable learning mechanisms, common to many
species, that Jcan enable animals to learn patterns of behaviour that their ances-

tors never needed?

The next section presents a speculative argument that spcciﬂ-pumosc
learning methods may sometimes evolve from general learning methods applied
to particular tasks. But the most convincing argument against the hypothesis of
special-purpose learmning methods will be to show that simple general leaming

methods are possible, which I will attempt to do later on.

6. Learning Optimal Strategies and Evolution

- - Evolution may speed up leaming. If the learning of a critical skill is slow
and expensive, then there will be selective pressure to increase the efficiency of
- learning. The efficiency of learning may be ifnproved by providing what might
be called ‘innate knowledge'. By this, I do not necessarily mean knowledge in
the ordinary sense of knowing how to perform a task, or of knowing facts or
information. Instead, I mean by ‘innate knowledge’ any innate behavioural ten-
dency, desire, aversion, or area of curiosity, or anything else that influences the
course of learning. An animal that fxas evolved to have innate knowledge
~ appropriate for learning some skill doles. not necessarily know anything in the
- normal sense of the word, but in normal circumstances it is able to learn that

skill more quickly than another animgl without this innate knowiedge.

A plausible hypothesis, therefore, is that useful behaviours and skills are
~initially learnt by some individuals at some high cost: if that behaviour or skill

is sufficiently useful, the effect of selective pressure will be to make the
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learning of it quicker, less costly, and more reliable. One origin of special-
purpose learning methods, therefore, may be as innate characteristics that have

evolved to speed up learning by a general purpose method.

7. How Can a Léarning Method be General?

A ‘general leaming mecixanism’ is an intuitively appealing idea, but it
difficult to pin down the sense in which a leaming mechanism can be general,
because all 'leamihg must start from some innate structure. It has become a
commonplace in pﬁilosophy that learning from a rabula rasa is necessarily
imposéible. Any form of learning pr empirical induction consists of combining
a finite amount of data from:experience with some prior structure. No learning
method, therefore, can be completely general, in the sense that it depends on no
prior assumptions at all.

- However, there is another,- more restricted sense in which a leaming
"method can be ‘general’. An animal has sensory abilities that enable it to dis-
tinguish certain aspects of its surroundings, it can remember a certain amount
about the recent past, and it has a certain range.of desires, needs, and internal
sensations that it can experience. It can perform a variety of physical actions.
A behavioural strategy is a method of deciding what action to take on the basis
of the surroundings, of the recent past, and of the animal’s internal sensations
and needs. A strategy might be viewed as a set of situation-action rules, or as a
set of stimulus-response associations, where the situations or ‘stimuli’ consist of
the épbea.rance of the surroundings, memories of the recent past, and internal
sensations and desires, and the ‘responses’ aré the actions the animal can take. I
do not wish to imply that a strategy is actually represenred as a set of
stimulus-response associations, although some strategies can be: the point is

merely that a strategy is a method of choosing an action in any situation.
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-Learning is a process of finding better strategies. Now, a given animal will be
able to distinguish a certain set of situations, and tor perform a certain_ set of
actions, and it W111 have the potentxal ability to construct a certain range of

situation- actlon strategies. A gcneral leammg mcthod is a rncthod of using

experience to improve the current stratcgy, and, 1dca11y, to find the stratcgy that
is the best one for the current environment, given the situations the animal can
recognise and the actions the animal can perform. As will be shown, there are
general vmethods of.irhproving and obiimising behavioural stra‘teg.ies in this

sense.

8. Conclusion
o I have argued fhat the dptimality afgﬁmcnt of Bchaﬁbural ccology does
indicate an analysis ot’ assocxanve mstrumcntal lcammg, but the connection
v-betwecn the opumalxty a.rgumcnt and associative instrumental leammg is
indirect. Ammals cannot directly learn to‘optumse their fitness, because they
cannot live their lives many times and learn to perpetuate their genes as much
as poséiblé. 'I;is'tcad, 'aniinals may learn critical skills that improve their fimess.
By a ‘éfitical skill’, I mean 5. skiil _for' which improvements in performance
»result directly in increas.e‘s in ﬁtness For example, the rate at which a bird can
bring food to 1ts ncst dlrcctly affects the number of chicks it can raise. In
-many cases, an ammal need not always perform its critical skills with maximal
efficiency: it is the capaciry to perform with maximal efficiency when necessary
that is valuable. A bird may need to obtain food with maximal efficiency all the

time during the breeding season, but at other times it may have leisure.

One role of instrumental learning, therefore, is in acquiring the ability to
perform critical skills as efficiently as possible. This learning may be to some

extent incidental, in that performance does not always have to be maximally
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-'efﬁc'iertt during learning: indeed, sub-optimal pefformance may be a necessary
"'part of leaming. |

According to the optimality ‘ar.gurrtent, if an animal has many opportunities
to practise a critical skill, and if it is able to try out some alternative strategies
without disaste.r,' then the axtimal sheuld ultimately' acquire a ca.pacity for maxi-
mally efficient pert’ormance.

In the next chapter, [ will describe how a wide range of leaming problems
'may be posed as problems of learning how to obtain delayed rewards, [ will
argue that it is plausible that animals may represent tasks subjectively in this
way. After that, I will describe the established method for calculating an
optlmal strategy, assuming that complete knowledge of the envu’onment is
avatlable Then I will con51der systematxcally what leammg methods are possi-
ble. The learning methods will be presented as altematwe algorithms for per-
for'mmg dynamic programmmg After that, I thl describe computer 1rnp1emen-

tauons of some of these leaming methods

From now on, I wﬂl speak more often about hypothetmal agents or
‘learners’ rather than about ‘animals’, because the dlscussmn will not be related
to spccxﬁc examples of animal learning. The leammg algonthms are strong
candtdates as computational models of some types of ammal leamtng, but they

may also have practxcal apphcauons in the constructxon of leammg machmcs
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Learning Problems

In this chapter I will describe several problems to which the leaming

methods are applicable, and I will indicate how the problems are related.

1. The Pole-Balancing Problem

A well-known example of a proccdurai learning problem, studied by
Michic; <i967), and Barto, Sutton, and Anderson (1983), is the ‘polc-balanci.ng’
problem, illustrated overleaf. - o |

The cart is free to roll bac':'k' and forth on the track between the two end-
blocks. The pole is jo;med to the cart by a hinge, and is free to move in the
vertical plane aligned with the track. There are two possible control actions,
which are to appiy a constant force to the cart, pushing it either to the right or
to the left. The procedural skill.to be acquired is that of pushing the cart to left
and right so as to keep the pole balanced more or léss vertically above thé éart,
and to keep the cart from bumping against the ends of the track. This skill
vrr-aight be repreSehted as a rule for deéidihg whether to push the cart to the right

or to the left, the decision being made on the basis of the state of the cart-pole

system.

There are several ways of posing this as a learning problem. If an ‘expert’
is available, who knows how to push the cart to balance the pole, then one
approach would be to train an automatic system to imitate the expert’s
behaviour. If the leamer is told which action would be correct at each time, the

learning problem becomes one of constructing a mapping from states of the cart
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At each time step, the controller may push the cart either to

" the right or to the left.

The task is to keep the pole balanced, and to keép the cart from

~ hitting the endstops.
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~and pole to actions. The problem of learning a procedural skill is reduced to the
problem of learning a single functional mapping from examples. The disadvan-
tage of this ‘imitate the teacher’ method is that a teacher may not be available:
indeed, if there is a machine teacher, there is rarely any point in having a

machine learner,

A more interesting and general formulation of the learning problem is that
the leamner receives occasional rewards and penalties, and that the learner’s aim
is to find a policy that maximises the rewards it receives. The pole-balancing
problem, for example, can be formulated as follows. The learner may repeat-
edly set up the cart and pole in any position, and it may then push the cart to
and fro, ﬁ'ying to keép the pole balanced. The information that the leamer can
use consists of the sequence of states of the cart-pole system and of the actions
that the learner itself performs; the leamer is informed when the pole is deemed
to have fallen. The falling of the pole may be thought of as a punishment or
‘penalty’, and the learner may be viewed as having the goal of avoiding these
penalties. Note that the leamner is not given the aim of ‘keeping the pole nearly
vertical and the cart away from the ends of the track’: it is just given the aim
of avoiding penalties, and it must work out for itself how to do this. The
learner does not know beforehand when penalties will occur or what sort of
strategy it might follow to avoid them. The learning method of Barto, Sutton,

and Anderson (1983) leamns under these conditions.

In the ‘imitate the teacher’ formulation of proéedural learning, the learner
is told whether each action it performs is correct; in the reward/punishment for-
mulation, the rewards or punishments may occur several steps after the actions
that caused them. For example, it may be impossible for the leamner to prevent
the pole from falling for some time before the pole actually falls: the final

actons the learner took may have been correct in that by these actions the
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falling of the pole was delayed as long as possible, and the actual mistaken

acdons may have occurred some time earlier.

1.1. States, Actions, and Rewards

The pole-_bé.lancing problem has a particularly clear structure. What needs
to be learned is a method for deciding whether to push right or left. At any
time, all the information that is needed to make this decision can be summed

up in the values of four szate-variables:

the position of the carf on the track
the velocity of the cart
the angular position of the pole relative to the cart

the angular velocity of the pole’

These variables describe the physical state of the system completely for the
purposes of pole-balancing: there is no point in considering any more informa-
tion than this when deciding in which direction to.push. If this information is
available for the current time, then it is not necessary to know anything more

about the past history of the process.

The space of possible combinations of values of these state variables is the
state-space of the system—the set of possible situations that the agent may
face. The purpose of leamning is to find some mctho& for deciding what action
to perform in each 'stéte: the agent has mastered the skill if it can decide what
to do in any situation it may face. There need not necessarily be a single
prescribed action in any state—there may be some states in which either action

is equally good, and a skilful agent will know that it can perform either.

The state-space may be described in alternative ways. For example, sup-
pose that the agent cannot perceive the rates of change of the position of the

cart or of the angle of the pole. It cannot, therefore, perceive the state of the
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_system directly. However, if it can remember previous positions and angles and
the actions it has recently taken, then it can describe the state in terms of its
memories of previous positions and previous actions. If the information that the
agent uses to describe the current state would be sufficient to determine approx-
imate values of all four state variables, then it is in principle sufficient informa-
tion for the agent to decide what to do. In the cart and pole problem, it is easy
to define one adequate state-space: many other systems of descriptions of the
state are possible. The criterion for whether a method of description of state is
adequate is that distinct points in the adequate state space should correspond to

distinct descriptions.

2. Foraging Problems

Stephens and Krebs (1987) review a number of decision-making problems
that animals face during foraging, and describe formal models of these prob-
lems that have been developed for predicting what animal behaviour should be

according to thé optimality argument.

One ubiquitous problem that animals face is that food 'is non-uniformly
distributed—it occurs in ‘patches’: foraging consists of searching for a ‘patch’
of food, exploiting the patch until food becomes harder to obtain there, and
then leaving to search for a new patch. While searching for a patch, the animal
expends energy but obtains no food. When an animal finds a patch,.the rate of
intake of food becomes high initially, and then declines, as the obtainable food

in the patch becomes progressively exhausted. Eventually, the animal has to
make an unpleasant decision to leave the current patch and search for a new
patch to exploit. This decision is ‘unpleasant’ in that the animal must leave
behind some food to go and search for more, and the initial effect of leaving a

patch is to reduce the rate of intake of food.
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This dilemma is known as the parch-leaving problem. If the animal stays
in patches too long, it will waste time searching for the last vestiges of food in
exhausted patches. If, on the other hand, the animal leaves patches too soon,

then it will leave behind food that it could profitably have eaten.

The animal gains energy from food, and spends energy in looking for and
in acquiring it. It is reasonable to suppose that the optimal foraging strategy for
an animal is to behave so as to maximise some average rate of net energy gain.
A common assumption is that an animal will maximise its long-term average
rate of energy gain; this is not the only assumption that is possible, but it is one

that is frequently used by foraging theorists.

Charmnov and Orians (1973), as cited by Stephens and Krebs (1986),
Chapter 3, considered this and similar problems, and proposéd the marginal

value theorem. This applies in circumstances where

e At any time, an animal may be either searching for opportunities (e.g.
prey, patches), or else engaged in consumption (e.g. eating prey, foraging
in a patch).

e  The animal may abandon consumption at any time, and return to searching

for a new opportunity. The animal may only stop searching once it has

found a new opportunity.

e  The results of searches on different occasions—the values of the opportun-
ity discovered, the time taken to find the opportunities, etc—are statisti-

cally independent.
e New opportunities are not encountered during consumption.

e The rate of energy intake during consumption declines monotonically.

That is, ‘patch depression’ is monotonic.
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e  The decision problem for the animal is that of when to stop consumption
and return to searching. An animal has the option of not starting consump-

tion at all if an opportunity is not sufficiently promising.

If all these assumptions are satisfied, then there is a simple optimal decision
rule, which iﬁas the following form. Suppose that the best possiblc long-term
average rate of energy gain is L. Then the optimal decision rule is to abandon
consumption and return to search when the instantaneous rate of energy gain
falls to L or below. This definition might appear circular but it is not: L is a
well defined quantity that could in principle be found by calculating the long
term average returns of all possible strategies, and then choosing the largest of
the results. The marginal value theorem states that the optimal strategy consists
of leaving a patch when the rate of return drops below L, and this fact can

often be used as a short-cut in finding L.

This decision rule, however, requires an animal to assess the instantaneous
. rate of energy gain during consumption. There are some circumstances where
it is reasonable for animals to be able to do this (e.g. a continuous feeder such
as a caterpillar), but it also often happens that energy gain in a patch is a sto-
chastic process, in which food comes in chunks within a patch (such as a bird
eating berries in a bush). In this case, the animal cannot directly measure its
instantaneous rate of energy gain, but the marginal value theorem still applies if
the instantaneous expected rate of energy gain is used. To use a decision rule
based on the expected instantaneous rate of return, the animal must estimate
this on the basis of other information, such as the appearance of the patch, the
history of finding food during residence in the patch, and whether it has found
signs of food in the patch.

McNamara (1982) has proposed a more general type of decision rule,

based on the idea of potenrial. This formulation is more general than that
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required for the marginal value theorem in that it is no longer necessary to
assume that the rate of energy gain declines monotonically as an animal

exploits a patch: the other assumptions remain the same.

The pb_tential is rather cumbersome to define in words, but a definition
runs as foUow§.' An animal continually estimates the potential of a patch on
the basis of what it curréntly knows about the patch. The potential is the
estimated maximum achievable ratio of energy gain to residence time in the
patch, the maximum being taken over all possible exploitation strategies that
the animal might adopt. A bird might, for example, estimate the potential of a
particular tree on the basis of the type of tree, the season, how long it has been
searching in the tree, and how many berries it has found recer{tly. The decision

rule is to leave the patch if the potential drops below L, and to stay otherwise.

This is a considerably.more complex analysis than Charnov and Orians’
original presentation of the marginal value theorem. All that is left of the sim-
plifying assumptions for the marginal value theorem is that the searches are sta-
tistically independent, and this assumption itself may not always be plausible. If
this assumption too is dropped, a still more general method of determining
optimal strategies may be used: dynamic programming.

The point is that, to calculate optimal strategies and how they depend on
certain environmental variables, iﬁ is necessary to construct a simplified formal
model of the foraging problem that the animal faces. It is sometimes possible to
justify a very simple type of model, such as the type of model needed to apply
the marginal value theorem, and the optimal strategy can then be derived by
some simple statistical rcaséning and a little algebra. However, these strong

assumptions will often be unrealistic.
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2.1, Dynamic Models of Foraging

The most general form of foraging model that it is reasonable to construct
is a dynamic model, which can be described in the following terms. The forag-
ing problem is described abstractly, in such a way that the foraging could in
principle be simulated on a computer. At any time, the animal and the environ-
ment can be in any of a certain set of objective states, the objective state being
the information about the state of the animal and its envkonﬁent that is neces-
sary for continuing the simulation. The objective state may contain information
that would not be available to the animal, such as how much food is left in the

current patch.

Let us suppose that the animal does not make decisions continuously, but
that decision points occur at intervals during the simulation. The foraging prob-
lem faced by the animal is that of taking decisions as to what to do next: at
each decision point, there is a certain range of alternative actions that the
animal can choose between. The action the (simulated) animal chooses will
affect the amount of food that it finds in the time up to the next decision point,

and it will affect the objective state at the next decision point.

The book by Mangel and Clark (1988) is an extended description of this

approach to the modelling of the behavioural choices that animals face.

3. Subjective Dynamic Models

One constraint on foraging is that an animal can take decisions only on
the basis of the information available to it. The animal may not be able to
know the objective state, but the information that the animal uses to decide
what to do might be called the subjective state. The subjective state may con-
sist of information about the appearance of the environment, about recent

events in the past, and about the animal’s internal state, and about its current
p
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goals, if it has any. I will suppose that an animal has an internal subjective
model of the foraging problem, different from, but corresponding to the objec-
tive model. The animal forms subjective descriptions of the situations it faces,

the actions it '_ takes, and of the benefits or costs of the actions it takes (the

rewards).

What are the subjective rewards and costs? A behavioural ecologist may
determine what an animal’s short term goals ought, objectively, to be, but need
thé animal’s subjective reward system correspond directly to the objective
reward system? If animals learn to achieve subjective rewards rather than
objective rewards, then all that can be deduced from the optimality argument is
that the optimal strategy according to the subjective reward system should be
the same as the optimal strategy according to the objective reward system. This

does nor imply that the objective and subjective rewards are the same.

A plausible example where there is a difference between subjective and
* objective rewards is that of an innate fear of predators. If a bird feeds in a cer-
tain spot, sees a kestrel, and escapes, it has suffered no objective penalty
because it has survived. The only objective penalties from predation occur
when animals get eaten, after which they can no longer leamn. In order for
animals to avoid predators, it is plausible that sights and sounds of predators
should be subjectively undesirable experiences that the animals should seek to
évoid. Within the framework of a subjective dynamic model, the sight of a pre-
dator should therefore be a subjective penalty. In the bird’s natural environ-
ment, a policy of avoiding situations in which predators are seen may be a

good policy for avoiding predation.

To suggest possible learning methods, I do need to assume that the animal
or agent's subjective representation of the problem is sufficiently detailed that

the subjective problem is that of controlling a Markov decision process. This is
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a large assumption to have to make, but it is unavoidable. The only consolation
is that the learning may often succeed even if the assumption does not hold. As
I will not mention this assumption for the rest of the thesis, I will give two
examples of how things can go wrong if the agent does not encode enough

information about states for the results of its actions to be predictable.

The first exafnplc is that of finding one’s way about in central London. It
is easy enough to build up a mental map of the streets and the junctions, so
that one can mentally plan a route; the ‘states’ in this case are the junctions,
and the ‘actions’ are the decisions as to which street to turn into at each junc-
tion. Now, the street layout and even the one way system are easy enough to
remember, but‘this information is not sufficient, because there are heavy restric-
tions on which way one is allowed to turn at each junction. That is, a descrip-
tion of which junction one is at is nor a description of the state that is sufficient
for determining what action to take—it is also necessary to specify which street
one is in at the junction. If one does not succeed in remembering the tumning

restrictions, one cannot plan efficient routes.

As a second example of a non-Markovian subjective problem, consider an
animal undergoing some conditioning experiment in which the reinforcements
depend in a complicated way on the sequence of recent events and actions. If
the animal does not remember enough information about. the recent past to be
able to distinguish aspects that are relevant to the reinforcement it will receive,
then it may not be able to learn the most efficient strategy for exploiting that
environment. Furthermore, the environment could be contrived so as to frustrate
the animal’s attempts to learn a simple strategy that made use only of the infor-

mation that it could encode.

In both of these examples, the problem is that the agent does not encode

enough relevant information about the situation it is in to be able to have
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effective situation action rules. In both cases the remedy is clear: the agent
should base its decisions on more information: it is a question of determining

what information defines the state.

Autonomous learning agents will surely need to have some methods, pos-
sibly heuristic, of detecting whether their current encoding of state is adequate.
I have not considered this problem, and I think that it is unlikely that there is
any single general approach to it. From now on, I will assume that the agent’s

subjective formulation of the problem is indeed a Markov decision process.

To suppose that animals formulate subjective problems in this way is to
make a psychological hypothesis. I think that this hypothesis is both plausible

and fully consistent with long established assumptions about associative learn-

ing.
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Markov Decision Processes

The formal model that will be used for these and other problems is the
Markov decision proccss;lthcre are a number of books that treat Markov deci-
sion processes. A clear and concise account of discrete Markov processes is
given in Ross (1983); other books are Bellman and Dreyfus (1962),
Denardo (1975), Bertsekas (1976), Dreyfus and Law (1‘977),7and Dynkin and
Yushkevich (1976). To make this document self-contained, I will give a brief

account of the main methods and results for finite-state problems here.

A Markov decision process, or controlled Markov chain, consists of four
parts: a state-space S, a function A that gives the possible actions for each

state, a transition function T, and a reward function R.

The state-space S is the set of possible states of the system to be con-
trolled. In the case of the cart-pole system, the state-space is the set of 4-
vectors of values of the position and velocity of the cart, and of the angular

position and angular velocity of the pole.

In each state, the controller of the system may perform any of a set of
possible actions. The set of actions possib'lc in state x is denoted by A(x). In the
case of the cart-pole system, every state allows the same two actions: to push

right or to push left.
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1. Finite Approximation to Continuous Processes

To avoid the complications of systems which have continuous state-spaces,
continuous action sets, or which operate in continuous time, I will consider
only finite, discrete-time Markov decision processes. That is,

e Sis a finite sét of discrete states

e A(x) is a finite set of discrete actions for all x in S

e  states are observed, actions taken, and rewards received at discrete times

1,23, -

Any non-pathological continuous Markov decision process may be approx-
imated adequately for present purposes by a finite, discrete-time Markov deci- -
sion process. From now on, I will discuss only finite Markov decision processes
unless I specifically say otherwise.

The random variable denoting the state at time ¢ is X, and the actual state
at time r is x,. The state at time r+1 depends upon the state at time ¢ and upon
the action a, performed at time ¢. This dependence is described by the transition
function T, so that T( x;, @, ) = X, , which is the state at time +1. Transi-
tions may be probabilistic, so that T(x,a) may return a state sampled from a

probability distribution over S.

Since there is only a finite number of states, we may define ny(a) to be
the probability that performing action a in state x will transform x into state y.

That is
Py(a) = Pr(T(x,a) =y)
For finite systems, T is fully specified by the numbers P,(a) for all %, y, and a.

Finally, at each observation, the controller receives a reward that depends
upon the state and the action performed. The random variable denoting the

reward at time ¢ is R,, and the actual reward at time ¢ is r,. That is, the reward
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received is R;=R(x;, a;). In the case of the pole-balancing problem, the
rewards might be defined as -1 at the time-step during which the pole falls, and
0 at all other times. Rewards may be probabiliistic: the actﬁal reward may be
sampled from a probability distribution determined by x and a.

Usually, we need not consider the reward function itself, but only its

expectation, which is written
p(x,a) = E[R(x,e)] for fixed x and a

This completes the definition of a Markov decision process.

2. The Markov Property

Note that although both transitions and rewards may be probabilistic, they
depend only upon the current state and the current action: there is' no further
dependence on previous states, actions, or rewards. This is the Markov pro-
perty. This property is crucial: it means that the current state of the system is
all the information that is needed to decide what action to take—knowledge of

the current state makes it unnecessary to know about the system'’s past.

It is important to note that the Markov properties for transitions and for
rewards are not intrinsic properties of a real process: they are properties of the
state-space of the model of the real process. Any process can ‘be modelled as a
Markov process if the state-space is made detailed enough to ensure that a
" description of the current state captures those aspects of the world that are

relevant to predicting state-transitions and rewards.

39



Chapter 3 — Markov Decision Processes

3. 'Policies

A policy is a mapping from states to actions—in other words, a policy is a
rule for deciding what to do given knowledge of the current state. A policy
should be defined over the entire state-space: the policy should specify what to
do in any situation'..

A policy that specifies the same action each time a state is visited is
termed a stationary policy (Ross 1983). A policy that specifies that an action
be independently chosen from the same probability distribution over the possi-
ble actions each time a state is visited is termed a stochastic policy. During
learning, the learmner’s behaviour will change, so that it wili be neither station-
ary nor stochastic; however, the optimal policies that the learner seeks to con-

struct will be stationary.
If a stochastic policy f is followed in state x, , the probability that the next

state is y is

Pr(X=y) = 3 Pr(fi=a)Py(a)

ae Ax)

It will be convenient to write the transition probability from x to y when fol-

lowing policy f as
Po(f)
and, similarly, let

T(x,f), R(xf), p(xf)

be the next state, the reward, and the expected reward respectively when fol-

lowing policy f in state x.
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4. Return

Broadly, the aim of the agent is to maximise the rewards it receives. The
agent does not merely wish to maximise the immediate reward in the curmrent
state, but wishes to maximise the rewards it will receive over a period of future

time.

There are three main methods of assessing future rewards that have been
studied: total reward; average reward; and total discounted reward. I will
assume that the agent seeks to maximise total discounted rewards, because this
is the simplest case. The learning methods can, however, be modified for leamn-

ing to maximise total rewards, or average rewards under certain conditions.

The total discounted reward from time ¢ is defined to be
2 L] * @ .
e+ Yre+Y rua +Y" rn +

where r, is the reward received at time k and ¥ is a number between 0 and 1
(usually slightly less than 1). y is termed the discoz;nt factor. The total
.discountcd reward will be called the return. The effect of v is to determine the
present value of future rewards: if ¥ is set to zero, a reward at time #+1 is con-
sidered to be worth nothing at time r, and the return is the same as the immedi-
ate reward. If vy is set to be slightly less than one, then the expected return from
the current state will take into account expected rewards for some time into the
future. Nevertheless, for any value of "y strictly less than one, the value of

future rewards will eventually become negligible.

5. Optimal Policies

The aim of the leamer will be to construct a policy that is optimal in the
sense that, starting from any state, following the policy yields the maximum

possible expected return that can be achieved starting from that state. That is,
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an optimal policy indicates the ‘best’ action to take in any possible situation in
the sense that continuing to follow the policy will lead to the highest possible

expected return.

It may not be obvious that the highest possible expected return can be
achieved by folloy&ing a stationary policy, or even that there is a single policy
that will be optimal over all states. Nevertheless, it can be proved that for every
Markov decision process as described above, there will be a stationary optimal
policy, and the proof may be found in Ross (1983). The essential reason for
this is that, in a Markov process, a description of the current state contains all
information that is needed to decide what to do next; hence the same decision

will always be optimal each time a state is visited.

6. The Credit-Assignment Problem

It is not immediately obvious how to compute the optimal policy, let alone
how to learn it. The problem is that some judicious actions now may enable
high rewards to be achieved later; each of a sequence of actions may be essen-
tial to achieving a reward, even though not all of the actions are followed by
immediate rewards. Conversely, in the pole-balancing problem, the cart and
pole may enter a ‘doomed’ state from which it is impossible to prﬁvcnt the pole
from eventually falling—but the pole actuglly falls some time later. It would be
wrong to blame the decisions taken immediately before the pqlc fell, for these
decisions may have been the best that could be taken in the cir;:umstanccs. The

actual mistake may have been made some time previously.

Because of this difficulty of determining which decisions were right and
which were wrong, it may be difficult to decide what changes should be made
to a suboptimal policy. In artificial intelligence, this problem of assigning credit

or blame to one of a set of interacting decisions is known as the ‘credit
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assignment problem’. For efficient learning, it is necessary to have some
efficient way of finding changes to a policy that improve it, because the sheer
number of different possible policies in any significant problem makes a stra-

tegy of policy optimisation by trial and error hopelessly inefficient.
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Dynamic prdgrarnming is a method of solving the credit-assignment prob-
lem in multistage decision processes. The scope of dynamic programming is
often misrepresented in the computer science literature—the true variety of its
applications is perhaps best explained in Bellman and Dreyfus (1962) or
Dreyfus and Law (1977). The basic principle of dynamic programming is to
solve the credit assignment problem by constructing an evaluation function,

also known as a value function or a return function, on the state-space.

In discussing Markov decision processes, it is necessary to be able to refer
to random quantities such as ‘the state that results after starting at state x and
following policy f for five time steps’. A notation for this is the following,

where x is a state, fis a policy, and » is a non-negative integer:
X(xf,n) and R(x/fn)

are the random variables denoting the state reached and the immediate reward

obtained, after starting at state x, and following policy f for n steps. Clearly,
X(xf0)==x
and
Rx£,0) = R(x/)
I will also write
X(x,a,1)

as the state that results from performing action g in state x.
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1. Value Functions

In a Markov decision process, the future evolution of the process—in par-
ticular, the expected retum—depcnds only upon the current state and on the
policy that will be followed. If the process is in state x and the policy f is fol-

lowed, the cxpefctcd‘rcturn will be written Vf (x). That is,
Vf(x)=E [Rxf0) + YR@xAD + -+ + Y*Rxfin) + - 1]

Note that the value function could in principle be estimated by repeatedly simu-
lating the process under the policy f, starting from state x, and averaging the
discounted sums of the rewards that follow, the sums of rewards being taken
over a sufficient period of time for ¥* to become negligible. But because value

discounting is exponential, Vy also satisfies the following equation for all x:
Vi) =p(x,f) + YE[V(X&AD) ]

For a finite-state problem, the evaluation function is known if its value is
known for each state. The evaluation function may, therefore, be specified by

the |S| linear equations

V) = pixf) + Zny(f) V) for eaéh x
y

Thus in a finite-state problem, if p and P are kﬁown, the evaluation function
can be calculated by solving a set of linear equations, one for each state. The
calculation of the evaluation function for ‘a policy is, therefore, swraightforward

~ but time-consuming,

2. Using the Evaluation Function in Improving a Sub-Optimal Policy

The point of constructing the evaluation function V for a policy f is that,
once the evaluation function is known, it becomes computationally simple to

improve the policy f if it is sub-optimai, or else to establish that fisin fact
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optimal.

Suppose one wishes to know whether some proposed policy g will yield
higher expected returns for all states‘ than the existing policy f, for which the
cvaluatibn function V is known. This question might be phrased as ‘Is g uni-
formly better than f?’ One way of determining whether g is uniformly better
than f would be to compute V, , and then to compare V, with V over the entire
state space. But calculating the evaluation function for a policy g is computa-
tionally expensive: to do this whole calculation for each proposed meodification
of the policy f would be extremely wasteful.

A simpler method of comparing f and g using V; only is as follows. Con-
sider the expected returns from following policy g for one step, and then fol-
lowing policy f thereafter. Suppose that the policy g recommcnds‘ action b at
state x, while policy f recommends action a. The expccted return from starting

at x, following policy g for one step (i.e. taking action b) and then following

policy f thereafter is

Qr(xb) = pxb) + T Pyy(®) V5 ()
y

This is much simpler to calculate than V, , for to calculate Qf(x,8(x)) it is only
necessary to look one step ahead from state x, rather than calculating the whole
evaluation function of g. I will call the quantity Qs(x.a) the action-value of

action a at state x under policy f. Note that Qf (x,f(x)) = V(x), by definition.

To allow for the possibility that g may be a stochastic policy, I will define
Qf (xyg) by

0/ (xg) = ¥, Prig(x) = a) Qs (x, @)

That is, Of (x.,g) is the expected return from starting at x, following policy g for

one step, and then following policy f thereafter.
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Action-values are useful for the following reason. Suppose that the
expected return from performing one step of g and then switching to f is uni-

formly as good as or better than the expected return from f itself, that is

0 (xg) 2 V)

for all states x. O_rie can then argue inductively that g is uniformly as good as
or better than f. Starting at any state x, it is (by assumption) better to follow g
for one step and then to follow f, than it is to start off by following f. However,
by the same argument, it is better to follow g for one further step from the state
just reached. The same argument applies at the next state, and the next. Hence
it is always better to follow g than it is to follow £ The proof is given in detail

in Bellman and Dreyfus (1962), and in Ross (1983). The result is

Policy Improvement Theorem

Let f and g be policies, and let g be chosen so that
Qr(x,8)2Vi(x) forall xe S
Then it follows that g is uniformly better than f, i.e.

V)2 Vp(x) forall xe S

The significance of the policy improvement theorem is that it is possible
to find uniformly better policies than f, if such exist, in a computationally
efficient way. If the starting policy is £, then an improved policy is found by

first calculating Vj;, and then calculating the action-values

Qf (I la)

for each state x and each possible action a at x. A new policy f is defined by

choosing at each state the action with the largest action-value. That is,
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f(x) =ae A() : max Q¢(x,a)

According to the policy-improvement theorem, f* is uniformly as good as or
better than f. This process repeats: the evaluation function and action-values for
f may be computed, and a new policy f” obtained, and £ will be uniformly as
good as or better than f. Witha finitc Markov decision process, this process of
policy improvement will terminate after a finite number of steps when the final

policy f* is found for which
f¥x)=ae A(x): mafo.(x,a)

In other words, no improvement can be found over f* or Vpa using the policy
improvement theorem. Might f* still be sub-optimal? The-answer is no,
according to the following theorem, proved }in e.g. Bellman and Dreyfus
(1962):
Optimality Theorem |
Ler a policy f* have associated value function V* andraction-value func-
tion Q*. If policy f* cannot be further improved using the policy-

improvement theorem, that is if

V*(x) = max Q*(x,a)
a € A(x)

and
F(x) = a such that Q*(x,a) = V*(x)

for all x € S, then V* and Q* are the unique, uniformly optimal value and
action-value functions respectively, and f* is an optimal policy. The
optimal policy f* is unique unless there are states at which there are
several actions with maximal action-value, in which case any policy that
recommends actions with maximal action-value according to Q* is an

optimal policy.
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As a consequence of these two theorems, the following algorithm is

guaranteed to find the optimal policy in a finite Markov decision problem:

f := arbitrary initial policy;

Repeat
l. ca)culate the evaluation function Vf
2. calcu.late the action-values Qf (x,a) for all x, a
3. update the policy for all x by

f(x) ;= a such that Qf (x,a) = max Qf (x,a)
ae Alx)
until there is no change in f at step 3.

This method of c'alculating an optimal policy is the policy-improvement algo-
rithm. Note that the entire evaluation function has to be recalculated at each
stage, which is expensive. Even though the new evaluation function may be
similar to the old, there is no dramatic short cut for this calculation. There is,
however, another method of finding the optimal policy that avoids the repeated

calculation of the evaluation function. This method is known as value iteration.

2.1. Value Iteration

Value iteration is often a more efficient computati-onal technique for
finding the optimal evaluation function and policy. The principle is to solve the
optimality equation directly for each of a sequence of finite-horizon problems.
As the ﬁ;lite horizon is made more distant, the evaluation function of the
finite-horizon problem converges uniformly to the evaluation function for the

infinite-horizon problem.

A finite-horizon problem is a problem in which some finite number of
actions are taken, which may have immediate rewards as in the infinite horizon

problem, and then a final reward is given; the final reward depends only on the
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final state,

Let V(x) be the final reward for state x. V° is the optimal return after no
stages: if there is an initial estimate of the optimal evaluation function, then this
may be used as V9, or alternatively V® may be an arbitrary guess. The only
restriction that needé to be placed on VP is that it should be bounded: in finite-
state problems, any V? is necessarily bounded. Let V*(x) be the optimal

expected return achievable in # stages, starting in state x.

Once V9 has been choSen, it is then possible to calculate 1740 2 T

follows. V™ can be calculated from V™! by

Vi(x) = max {p(x, a) + Y TPy V") }
ae Alx) y

The point of this procedure is that as n — es, | V* = Vs | = 0 uniformly
over all states. This proof is given in Ross (1983), and it is generalised in
appendix 1 where is is used to prove the convergence of a learning method.

" The value-iteration algorithm is

W = arbitrary bounded funcrion over states;
i:=0;
Repeat

i ‘= P+ 1

for each state x do

Vi) := max {p(x,a) + ¥ XPya) V') }
a € A(x) y
until the differences between V* and Vi=! are small for all x.

The method of value iteration that has just been described requires that,
after V0 has been defined, V! is calculated for all states, then V2 is calculated
for all states using the values of V!, and then V3 is calculated using the values

of V2, and so on. This is a simple and efficient way to organise the calculation
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in a computer: for instance, the values of V* and V*! may be held in two
arrays, and once V" has been computed, the values of V™! are no longer
needed, and the array used to hold them may be re-used for the values of V**!
as they are computed in turn. In addition to the computational simplicity, the

time-horizon argument is intuitively clear.

However, in.thc learning processes I will consider, the learner may not be
able to consider all the possible states in turmn systematically, and so fill in the
values for a new time-horizon. The value iteration method need not be carried
out in a systematic way in which V°, V!, - -+ are ¢omputcd in sequence. Pro-
vided that the values of all states are updated often enough, the value iteration
method also converges if the values of individual states are updated in an arbi-
trary order. As with policy iteration, the computation may be less efficient if

the states are updated in arbitrary order, but it remains valid.

A different argument for the convergence of .the value-iteration method
runs as follows. At some intermediate stage in the calculation, let the approxi-
mate value function be U, and let the (as yet unknown) optimal value function

be V. Let M be the maximal absolute difference between U and V, that is

M = max | UR) — V(x) |
x
If some state y is chosen, the value of U(y) may be updated according to

U6) = max {p(3,a) + T Pyle) U@)

where U'(y) is the updated estimate of the value of y. It is possible to show

Local Value Improvement Theorem

If|U) = V(x) | £ M for all states x, then for any state y

1T -VO)| < M
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Proof:

By the definition of V,
Vo) = Jnax, {p0(.a) + Y E[V(T(y,a))]}
E pO.a*) + vy E[V(T(y,a*))]
for some optimal action a*. Similarly,

U'y)= max { p(y,a) + vE[UTH,a)N}
acA(y)
=p(y.a’) + E[U(T(y,a))]

for some action a’, which is the optimal action with respect to U. Qbserve

that

U®y) 2 pr,a*) + YE[U(T(,a%)]

2 p(.a*) + YE[V(T(,a*) - M]
=V0) - M
Similarly,

U®) spna) + YEV(TK.aY) +M]
SpOa*) + YE[V(T(y.a%) + M]
=V + YM |

so the proposition is proved.

Note that U’ will not necessarily be uniformly more accurate than U. Ho(vever,
since the maximal error of U’ is guaranteed to be geometrically smaller than
the maximal error of U, it follows that the value iteration method is guaranteed
to converge, and that the maximum error of the estimated evaluation function is

guaranteed to decline geometrically, the rate of decline depending upon the

discount factor .
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. Note also that the updating of the estimated value function may be done
one state at a time, in any arbitrary order—it is not necessary to perform the
updates systematically over the state-space as in the value-iteration algorithm.
The estimated value function will converge to the true value function as the
total number of .. updates tends to infinity provided that all states are updated

infinitely many times.
The Local Improvement Theorem has an immediate corollary:

The Approximation Assessment Corollary

If U is an approximation to V, and

max |U(x) = V(x)| = M

there is at least one x such that
U'(x) = Ux)| 2 (1-y) M
Equivalently,

max 1L& = UL o

x (1-v)

This is a most useful result, for it yields an efficient method of determin-
ing whether some function U is a good approximation to the optimal evaluation
function V. Given an approximate value function U, one can obtain an upper
bound on .mfx |U(x) - V(x)| by carrying.out oﬁe pass of the value iteration
mfoU'(x) - U)|

(1-7)

algoﬁthm and observing

2.2. Discussion

This has been a very brief account of the principle of dynamic program-
ming applied to Markov decision problems. The main point I wish to convey is

that the computation consists of three processes: computing the evaluation
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function for the current policy; computing action-values with respect to the
current evaluation function; and improving the current policy by choosing
actions with optimal current action-values. These three procedures may be car-
ried out repeatedly in succession, as in the policy-improvement method, or else
they may be carried out concurrently, state by state, as in the value-iteration
method. In either case, the policy and the evaluation function will eventually
converge to optimal solutions. In this optimisation process, there are no local
maxima, and uniform improvements can be found at every step. Furthermore,
the minimum improvement theorem shows that convergence of either method is -
rapid.

These results together paint a picture of an optimisation pro.blem that is as
benign as it is possible for an optimisation problem to be; and small, finite
problems are indeed benign. However, in practical problems, the state-space
may be extremely large, and it may be impossible ever to examine all parts of
the state-space. Although it is not necessary to examine the whole state-space
to find guaranteed improvements to the current policy, it is necessary to exam-
ine the entire state-space to be sure of finding the optimal policy. The
minimum improvement theorem states only that there is some state for which
an improvement of a certain size may be found, not that such improvements
can be found for any state. Hence, if it is not possible to examine thé entire
state space, it is not in general possible ‘to establish whether the current bolicy

is indeed optimal.
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Chapter 5
Modes of Control of Behaviour

An animal or agent chooses what actions to perform by doing some com-
putations on internally stored information, The type of computation done and

the type of information used constitute the mode of control of behaviour.

Different modes of control require different leamning algorithms, so it is
necessary to classify possible modcé ofﬂcontfol of behaviour before considering
1carriing algorithms. .

In classifying modes of control, the first d@stinction to make is between
modes in which fhc agent looks ahead aﬁd considers the future states and
rewards that would result from various courses of action, and modes in which
the agent decides what to do by conSidexing only the curreﬁt state. If the agent
considers the effects of different courses of action, it may be said to use a
‘model-based’ orl ‘look-ahead’ mode of conirol, and if it considers only the

current state, it may be said to use a ‘primitive’ mode of control. Hierarchical

control will be considered in chapter 9.

1. Look-Ahead

In controlling its actions by look-ahead, an agent uses an internal model of
its world to simulate various courses of action mentally before it performs one
of them. That is, the'agcnt considerS the likely rewards from each of a number
of possible courses of action, and chooses that'course of action that appears
best. For example a hill-walker may need to consider how best to cross a

mountain stream with stepping stones without getting his feet wet. He may do
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this by tracing out various possible routes from rock to rock across the stream,
and for each route he should consider how likely he is to fall in, taking into

account the distances between the rocks, and how slippery they appear.

The method of deciding what to do by ‘look-ahead’ is important because
it is much used in artificial intelligence. For example, chess-playing programs
decide what to do at each turn by ;racing out many thousénds of possible
sequences of further moves, and considering the desirabilities of the positions

that result.

In abstract terms, the essential abilities that an agent must have to use
look-ahead control are: a transition model, a reward model, and an ability to
consider states other than the current state. An agent with these abilities can in
principle compute the best course of action for any finite number of time-steps

into the future.

The computation for this may be laid out in the form of a tree, as illus-
trated as the upper tree in the diagram overleaf. Let us assume for the moment
that actions have deterministic effects, so that a unique state results from apply-
ing any action. Each node represents a state, and each branbh represents an
action, leading from one state to another. Thc‘ root bf the tree—the leftmost
state in the diagram—is the current state. Paths from the root through the tree
represent possible sequences of actions and states leading into the future. Each

action is labelled with the expected reward that would result from it.

If the tree is extended fully to a depth of n, so that it represents all possi-
ble céurses of action for n time-steps into the future, then it is possible to
deténninc the sequence of moves that will lead to the grcaicst expected reward
over the next n ﬁmc steps. The path from root to leaf in the tree that has maxi-
mal total discounted reward represents the optimal sequence of actions. This

path may be found efficiently as follows. The nodes in the tree are labelled
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A look-ahead tree.

The actions are labelled with the
expected rewards. 2

1.75

The same look-ahead tree, with
the states labelled with their backed-up :
values, using a discount factor of 0.5 . 0

The action at each state that is optimal in the look-ahead tree is marked in bold.
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with their values, the value of a node being the maximal possible expected
return obtainable by starting in that node and following a course of action
represented in the tree. The values may be computed efficiently by starting with
the leaves and working back to the root, labelling each node of the tree with its
value. The node 1a'bels for the previous tree are shown on the lower tree in the

diagram, assuming, for convenience, a discount factor of 0.5

The optimal path from each node—that is, the optimal path within the tree
of possibilities—is drawn as a thicker line. The node values are calculated as
follows. Leaf nodes are given zero value, since no actions for them are
represented in the tree. If x is an interior node of the tree then the estimated

value of x, written V(x), is given by

V(x) = max {p(x.a) + W(T(x,a)}

where T(x,a) ranges over all the successor nodes of x as a varies.

With this mode of cor}n'ol, the action the agent chooses to perform is the
first action on the path with maximal expected return. Once the agent has done
this, it chooses the next action in the same way as before, by extending a new
tree of possibilities to the same depth as before, and then recomputing the path

with maximal expected return.

This mode of control is equivalent to following the policy that is optimal
- over a time-horizon of n steps—the nth policy calculated in the value-iteration
| method of dynamic programming. |
If the state-transitions are not deterministic, then the tree of possibilities
becomes much larger. This is because each action may lead to any of a number
of possible states, so that at each level, many more possible transitions have to
be considered. An example of a (small) tree of possibilities for actions with

probabilistic effects is shown in the diagram overleaf. In this case, actions are
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0.3

0.3

0.4

—pe
Starting
state.

A small stochastic look-ahead tree.
Each action may have several possible results, so that the size of the tree

grows rapidly as more actions are considered.

The actions need to be labelled both with the expected reward
and with the probability of each result; only one action has

been labelled as an example.
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represented by multi-headed arrows, because each action may lead to any one
of several states. Not only must each action be labelled with the expected
immediate reward—each possible transition between a state x and a successor

state y must be labelled with P (a).

It is still possible to calculate the optimal course of action over the next n
moves, with the difference that future actions will depend on which states are
reached. With probabilistic actions, a ‘course of action’ itself has the form of a
tree, a tree that specifies a single action for each state reached, but which

branches to take account of the possibility of reaching different states.

The best.course of action may be found by a procedure that is similar to
that for the deterministic case. The value of a node is still defined as the maxi-
mal expected return that can be obtained by starting from that node and follow-

ing a course of action represented in the tree, but V(x) is given by

V(x) = max {p(xa) + YEPo(@VO)}
y

That is, the agent must take into account all possible states that could

result when computing the expected return from performing the action.

It is only computationally possible to extend a tree of possible courses of
action to a finite depth. If the agent 'wishcs to follow a policy that yields
optimal total discounted rewards, then it must extend the tree of possibilities far
enough into the future for the return}from subsequent rewards to become negli-

gible.

However, the number of nodes in the tree will in general grow exponen-
tially with the depth of the tree. It is therefore usually impractical to consider
courses of action that extend for more than a short time into the future—the
number of possible sequences of state transitions becomes far too large. This is

the so called ‘combinatorial explosion’ of artificial intelligence.
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If the agent can extend the tree of possible courses of action far enough
into the future, then it can compute the optimal policy and value function.
However, it is just this vast calculation that dynamic programming avoids, if

the state-space is small enough.

2. Look-Ahead with an Evaluation Function

The amount of computation required for look-ahead control may be
greatly reduced if the value function, or even an approximate value function, is

known.

If the agent can compute ah evaluation function, then it may choose its
actions by considering a much smaller tree of possibilities than would be
needed if the naive look-ahead method of the previous section ‘were used.
Recall that in computing the values, the leaf states Wem assigned values of zero
in the naive look-ahead method. If, instead, the leaf nodes are given estimated
values, the values computed for interior nodes of the tree may be more accu-

rate,

2.1, One-Step Look Ahead

In fact, if an accurate optimal value function is available, the agent need
only look one step ahead to compute the optimal action to take. That is, the

agent selects the action to perform by finding an action for which

P(x,a) + YZPo(@V(O)
Y

is maximal, Note that a policy determined in this way from V will be optimal,
because this is just the optimality condition of dynamic programming. Even if
the estimated value function is not optimal, the size of tree needed to compute

an adequate policy may be substantially reduced.
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2.2. One Step Look Ahead

The special case of one-step look-ahead control is important because the
agent only needs to consider possible actions to take in the current state: the
agent needs to imagine what new states it might reach as a result of actions in
the current state, gnd it must estimate the values of these new states, but it need

not consider what actions to take in the new states.

Tt is possible that there are examples of agents that can consider the conse-
quences of actions in the current state, but which cannot consider systematically |
what to do in subsequent states. For example, in playing chess one considers
the positions that would be reached after playing various sequences of moves:
the longer the sequence of moves, the more different the appearance of the
board would become, and the more difficult it is Vtc; consider what further

moves would be possible, and what the values of the positions are.

2.3. Discussion

Much research in artificial intelligence has been devoted to finding
methods of using an evaluation function to reduce the size of the tree of possi-
bilities that it is necessary to construct to determine the optimal action to take.
The formulation of the problem is, however, usually in terms of minimising
total distance to a goal‘statc, rather than of maximising total discounted reward.
Pearl (1984) is a standard reference on this topic.

In conclusion, it is only feasible for an agent to choose its actions using

naive look ahead if
e The agent has accurate transition and reward models.

e  The effects of actions are deterministic or nearly so.
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o  The number of alternative actions at each stage is small.

e The agent seeks to find an optimal course of action for only a few steps

into the future.

e The agent has enough time to consider the tree of possible courses of

action.

If the agent has can compute a value function or an approximate value func-
tion, the amount of computation required may be greatly reduced, and the
method of look-ahead becomes more feasible. The limiting case is that of one-

step look-ahead, which requires an accurate value function.

3. Primitive Modes of Control

In primitive control, the agent does not consider future states. .This means
that primitive control methods are suitable for simple animals in stochastic
environments. Although higher animals are capab'le of considering the conse-
quences of their actions, this certainly does not mean that they govern all of
their behaviour using look-ahead. If actions must be chosen quickly, or if the
environment is stochastic, or if the effects of actions are poorly understood or
difficult to predict, then it is likely that higher animals may also use these

‘primitive’ control methods.

 There are three basic types of primitive control: by policy, by action- -
values, and by value function alone. The amount of information that the agent
may need to store in order to represent any of these three functions may on
occasion be far smaller than the amount of information that would be needed to
represent a transition or reward model. Furthermore, each type of primitive con-
t;ol may be leamed, by methods that will be described in the following

chapters.
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3.1, Explicit Representation of Policy

The most direct way for the agent to choose what actions to perform is for
it to store a policy f explicitly. In effect, the agent then has a ‘situation-action
rule’: in any state x it performs the action f(x).

However, if an agent only has a representation of a policy, then it is not
able to compute values of states or action-values without considerable further
computation. As a result, efficient unsupervised leamning of a policy alone may
be difficult, and some additional internal representation either of action-values

or of a value function may be hc'lpful for learning.

3.2. Explicit Representation of Action Values

In choosing actions by one-step look-ahead with a value function, the
agent computes the action value for each possible action, and then chooses an

action with maximal action value. That is, the action value of an action is

Q(x,0) = p(x,a) + Y Po(@V(G)
y

and the agent chooses an action a for which Q(x,a) is maximal. If the agent
were to store the values of the function Q explicitly, instead of computing them
by a one step look ahead, then it could choose the action a for which the stored
value of Q(x,a) was maximal. This is primitive control according to stored

action values.

" This type of primitive control has the advantage that the agent represents
the costs of choosing sub-optimal actions. If special circumstances arise, so that
exceptional rewards or penalties attach to some actions, then the agent may

choose sub-optimal actions with action values that are as high as possible.

Note that the agent does not need to store the actual values: any function

of x and a that is monotonically increasing in Q(x,a) at x will serve as well,
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because the agent just chooses the action with maximal Q(x,a). It is, therefore,
still possible to represent a policy using an inaccurate action-value function

which has the same maxima at each state as the value function.

3.3. Control Using a Value Function Alone.

Selfridge (1983) describes a mode of control of behaviour that he terms

run and rwiddle. Loosely, this may be defined as

If things are improving, then carry on with the same action.

If things are getting worse, then try doing something—anything—else.

Perhaps the classic example of control of this type is that of the motion of
bacteria, described by Koshland (1979). Certain bacteria are cox;crcd in motile
cilia, and they can move in two ways: they may move roughly in a straight
line; or they can ‘tumble’ in place, so that they do not change position but they
do change direction. A bacterium alternates between these two types of motion.
The bacterium seeks to move from areas with low concentrations of nutrients to
areas with high concentrations. It does this by moving in the direction of
increasing concentration of nutrients. Too small to sense changes in concentra-
tion along its length, the bacterium can nevertheless sense the time variation of

concentration as it swims along in a straight line.

A bacterium will continue to swim jn its straight-line mode as long as the
concentration of nutrients continues to increase. However, if the concentration
begins to fall, the bacterium will stop swimming in a straight line, and start
tumbling in place. After a short time, it will set off again, but in a new direc-
tion that is almost uncorrelated with the direction in which it was swimming
before. The result of this behaviour is that the bacteria tend to climb concentra-

tion gradients of desirable substances, and cluster around sources of nutrients.
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Although this is perhaps the most elegant example of run and twiddle
behaviour—and particularly impressive because it is so effective a strategy for
such a simple organism—run and twiddle may also be used by higher animals.
Selfridge (1983) describes the behaviour of moths following concentration gra-
dients of pheromories to find their mates as a form of ‘run and twiddle’ with
some additional c-:ontrol rules. But even humans may use run and twiddle
sometimes: who has not tried a form of ‘run and twiddle’ while, say, trying to
work the key_ in a difficult lock, or in trying to fly a steerable kite for the first
time, when one does not know which actions affect the motion of the kite?
Run and twiddle is a suitable control strategy if the agent cannot predict the
effects of its actions, or, perhaps, even represent adequately the actions that it is

perférming,

It is necessary to distinguish between run and twiddle control by immedi-
ate rewards from control according to a value function and immediate rewards.
Consider some hypothetical bacteria that control their movement in the manner
described above. A bacterium’s aim is to absorb as much nutrient as possible:
the amount of nutrient absorbed per unit time is the ‘immediate reward’ for that
time. If the bacterium decides whether to tumble or to continue to move in a
straight line on the basis of the change in the concentratidn of nutrients, then it
is controlling its actions according to immediate rewards. In contrast, consider a
fly looking for rotten meat. The fly could find rotting meat by following con-
centration gradients of the smell of rotting meat, in a similar way to that in
which the bacteria followed the concentration gradients of nutrients. The meat,
however, is the reward—not the smell: the current smell may be used in the
definition of the current state, on which a value function may be defined. 4In this

case, therefore, the state might be defined as the current smell.
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One method of run and twiddle control using a value function works as
follows. The value of the current state is an estimate of the expected return.
Suppose an action a is performed on a state x, resulting in a new state y and an
immediate reward r. Let the value function be V. Then the return expected from
following the ‘control policy at x is V(x). The return that results from perform-

ing a may be estimated as

r+ V()

The action is deemed successful if the resulting return is better than expected,
and it is deemed unsuccessful if return is less than expected. That is, a is suc-

cessful if
| r+yV(y) 2 V(x)
and unsuccessful if
r +yV(y) < V(x)

A control rule is ‘If the last action was successful, then repeat that action, oth-

erwise perform another action.’

This is a very simple method of control. More complex control rules are

possible. The essential feature of ‘run and twiddle’ control is that

o  The returns estimated using the evaluation function are used in choosing

subsequent actions.

As in action-valuc control, run and twiddle need not necessarily use the value
function itself: it may also use functions that are monotonically related to the
value function. Such a function of states might be called a desirability function.
An alternative description of these control methods is as desirability gradient
methods, since the control s&atcgy is a form of stochastic hill-climbing of a

desirability function. Many such control methods are possible.
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A published example of an artificial learning system which chooses its
actions by a desirability-gradient method is that of Connell and Utgoff (1987),
who describe a learning system for the cart and pole problem dcscﬁbed in
chapter 2. Thi; problem is particularly simple in that there are only two possi-
ble actions in each state, so that it is suitable for desirability gradient control.,
The desirability function is not a value function. It is constructed by using ad
hoc heuristic rules to identify a certain number of ‘desirable’ and ‘undesirable’
points in the state space during performance. The desirability function is con-
structed assigning a desirability of 1 to each desirable point, and of -1 to each
undesirable point, and then smoothly interpolating between the desirable and
undesirable points. The undesirable points are the states of the system after a
failure has occurred; the desirable boints are states after which balancing con-
tinued for at least 50 time steps, and which satisfy certain other conditions. In
Connell and Utgoff’s system, the controller continues to perform the same
action until the desirabilities of successive states start to decline; when this hap-
pens, it switches to the other action. Their method was highly effective for the
cart and pole problem, but it is of course based on an ad hoc method of con-

structing a desirability function.

It is possible to learn value functions for run and twiddle methods by
incremental dynamic programming. I do not know of general, pfinciplcd
methods for leaming desirability functions of other kinds. It is possible that
Connell and Utgoff’s method of identifying desirable and undesirable states
during performance and then intexpolating'betwecn them can be applied more

generally.
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4. Hybrid Modes of Control |

A mode of control is simply a method of choo‘sing an action on the basis
of a knowledge of the current state: given the current state, one or more alter-
native actions are recommend;zd for performance. There is, therefore, no reason
why different r;lodes of control may not be used as alternatives to one another.,
An agent may have alternative modes of control that it can use, or else it may

use different modes of control in different parts of the state space.

For example, an agent may be able to predict the effects of some actions,
but be unable to predict the effects of others. It may, therefore, evaluate some
actions with one-step look-ahead, and it compare these values with stored

action-values for the other actions.

5. Learning Faster Modes of Control

This is an appropriate point to describe one type of learning which I am
not going to consider further. This is the learning of a fast mode of control
using a slow mode of control to provide training data. This type of learning is

analogous to the ‘imitate the teacher’ learning considered in chapter 2.

Suppose, for example, that an agent can use look-ahead to control its
actions, but that this mode of control is inconveniently slow, or that it con-
sumes valuable mental resburces that could be employed on some other
activity. It would, therefore, be advantageous for the agent to acquire a faster or

computationally less expensive form of control.

While using the slow mode of control, the learner may collect a set of
situation-action pairs that may be used as training data for learning a faster
mode of control. The situation-action pairs, laboriously calculated by look-
ahead, for example, may be used to learn situaton-action rules inductively.

Learning of this type has been studied in artificial intelligence, by Mitchell,
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Utgoff, and Banerji (1983).

Another approach has been suggested by Laird, Rosenbloom, and
Newell (1986) who propose .‘chunking’ as the general learning mechanism.
‘Chunking’ is the process of cacheing action sequences performed, and then
treating these stpfe" action sequences as single actions. Once an action
sequence has been ...nd by look-ahead search, and successfully applied, the
entire action sequence is associated wifh the startiné state, generalised if possi-

ble, and then stored, ready to be applied again in the same situation.

The particular method of chunking has the limitation that as more and
more action-sequences are stored in this way, the search for an appropriate
action sequence may become more and more lengthy, so that th.c actual speed
of the mode of control may sometimes get worse. An abstract model of this

phenomenbn has recently been given by Shrager et al (1988).

Chunking appears to be a possible general learning mechanism—but is is

not plausible to claim that it is the general learning mechanism.

Learning a fast control mode using by (internal) observation of the perfor-
mance of a slow control mode may have considerable importance in leaming

many skills. In skill-leaming, slow closed-loop control is gradually altered to

the faster open-loop control..

6. Conclusion

There are, therefore, a number of possible modes of control of action, each
based on the use of a different type of internally represented knowledge. For

each control mode, there is at least one method of learning.

The possible modes of control of action can be divided according to
whether or not the agent can predict state-transitions and rewards—that is,

according to whether the agent can look ahead. From now on I will concentrate
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on those modes of control of action in which the agent cannot predict the

effects of its actions in the sense of predicting state-transitions or rewards.

These modes of control are: _

* by using an explicitly represented policy, and choosing the action

‘ .récommcndcd by the policy

. ‘by using explicitly represented action-evaluations, and choosing

an action with maximal action-value

e by following the gradient of a desirability function, by
preferentially performing those actions that cu&ently appear

to lead to net increases in desirability.

These modes of control are in a sense more primitive than those in which the
agent uses an internal model of its world to look ahead. One of the main con-
tributions of this research is to show that it is still possible to optimise these

primitive modes of control through experience, without the agent ever needing

to look ahead using an internal model.
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Chapter 6
Model-Based Learning Methods

Learning in ‘which the agent uses a transition and a reward model will be
termed ‘model-based’ learning. There are essentially two possibilities: either the
learner knows the transition and reward models at the start, or else it acquires

them through experience.

1, Learning with Given Transition and Reward Models

Consider a learning problem in which an agent initially kn6w§ accurate
transition and reward modcls,- but does not know the optimal value function or
policy. In other words, suppose the agent has all the information it needs to cal-
culate the 6pﬁma1 solution by one of the standard dynamic programming
methods, but that it ﬁas not done so. This might not appear to be a leamning
problem at all: in principle, the agent could use its initial knowledge to calcu-

late the optimal solution. But this may not be possible,

One reason is that the agent may not have the leisure or the computational
ability to consider all states systematically in carrying out one of the conven-
tional optimisation methods. An animal might know the layout of its territory,
and, if located in any spot, it might know how to reach various nearby places:
however, it nﬁght be unable to use this knowledge to plan ahead because it
might be unable to consider alternative possible routes from a place different
from its current location. A specific reason an agent might not be able to com-
pute an optimal policy or course of action is that it may not be able to sys-

tematically consider alternative courses of action in states different from its
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current state: the ability to use the transition and reward models might be tied

to the agent’s current situation.

In other problems, it is completely impractical to compute the optimal pol-
icy at all, because the state-space is too large. The classic examples of such
problems are board games, in which the rules of the game are easy to state but
the winning strﬁtégy is hard to find. The whole problem of leaming to play a
game such as solitaire, draughts, or chess is not in understanding the rules but
in improving the quality of legal play.

In learning from experience, the agent will not be surprised by any
rewards it receives, or by any state-transitions it observes, since it- already
possesses transition and reward models. The new information is.in the form of
the-sequence of states that are visited. One method of improving an initial
evaluation function is to carry out a value-iteration operation at each state
visited. The value-iteration can be neatly combined with look-ahead control of

action, since many of the same computations need to be performed for both.

Let the agent’s approximate current value function be U, and suppose the
agent controls its actions by one-step look-ahead. If the current state is x, then
the action chosen by one-step look-ahead according to U will be an action a

that maximises

P(xa) + 7 UT(xa))

among actions a; possible in x; that is, an action with maximal estimated return
according to U. But the value iteration at x is to set U(x) to be equal to the

maximum estimated return according to U, that is:

U'(x) & max p(x,a;) + ‘y U(T(x,a))

So the improvement of U using value-iteration can be done as a by-product of

one-step look-ahead control.
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If the agent performs a multi-step look-ahead search, so that it constructs a
large tree of possibilities, then it is also valid—indeed usually better—to com-

bine many-step look-ahead control with value iteration in the same way.

This type of ‘learning’ is just value-iteration carried out at the states the
agent happens to visit or to consider, rather than value iteration carried out sys-
tematically over the whole state space. If the agent does not repeatedly visit or
consider all states, then the learning may not cénvcrgc to an optimal value
function because U may remain perpetually in error on states that the agent
does not visit. There is also no guarantee that each value iteration will be an
actual improvement of U towards the optimal value function: if U is correct for
some state x but in error for the successors of x, then the valu.e iteration may
worsen U at x. But according to the local improvement theorem, U’(x) cannot
be in error by more than ¥ times the maximal error of U. If there is a subset of
the state-space that the agent covers repeatedly, then the agent must develop an

optimal value function for the problem restricted to that set of states.

1.0.1. Samuel’s Checker-Playing Program

The classic implementation of this method of learning is Samuel’s (1963,
1967) program for playing checkers. This program refined its position-
evaluation heuristic during play by what was essentially value-iteration. Two

learning methods were used.

'Onc incthod was to cache certain board positions ‘encountered together
with their values estimated from a look-ahead search. The store of cached posi-
tions and values can be viewed as a partial function from states (board posi-
tions) to their estimated values—a partial implcincntation of U. If a cached
position is encountered during a look-ahead search, the search need not go

beyond the cached position—the cached value may be used as an estimate of
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the value of the look-ahead tree from the cached position, so that the effective
~ size of the look-ahcad search is increased. Note that the values associated with
the cached positions should in principle be updated periodically because the
look-ahead search used to compute the cached value did not take advantage of
the positions a;xd values éachcd subsequently: it is unclear whether Samuel’s
program did this.  Cacheing and the recomputation of cached values is thus a
form of value iteration. The effect of the cacheing may be described either in
terms of increasing the effective size of look-ahead search, or equally in terms

of storing and improving an evaluation function by value iteration.

- The disadvantage of cacheing in a game éuch as checkers is that it is
impractical to cache more than a tiny fraction of all positions. The second
learning method that Samuel’s program used was a‘ method of developing and
improving a value function that could be applied to any position, not just to
cached positions. This was a parametrised function of certain features of board
positions, and the parameters could be altered by a gradient method to fit the
function to revised values. The parameters were incrementally adjusted during

play according to a value-iteration method.

This method of learning is similar to methods I will consider later. The
danger in adjusting a parametrised value function is that in changing the param-
eters, the value function changes for many positions other than the current posi-

tion. There is, therefore, the possibility tﬁat different adjustments will work in
opposite directions and the overall quality of the value function will deteriorate.
Samuel reports that he found that this method of adjustment of the evaluation
function was far from reliable, and that occasional manual interventions were

necessary.

A further danger of the value-iteration learning method is that in checkers,

where the payoff occurs at the end of the game only, values must be adjusted
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to be consistent over very long chains of moves. Although an approximate
value function might be locally near-consistent according to value-iteration, it
might nevertheless be largely wrong. This simply reflects the fact that value
iteration is not always guaranteed to improve the value function at every stage.
Samuel’s form'ulation of checkers did not use discounted rewards; in this case,
although value iteration would in principle be guaranteed to converge to the
optimal value function if the iteration could be carried out repeatedly over all
states, a single value-iteration, even over all states, <;ould not even be

guaranteed to reduce the maximum error of the value function.

Samuel’s program did not really need to play games of checkers to leam
to improve its evaluation function: in principle, the learning could have been -
doné by performing value-iteration on an arbitrary collection of checkers posi-
tions, instead of doing it on the positions encouﬁtered during the games the
program played. As far as I know, Samuel did not try the experiment of com-
paring learning from an arbitrary collection of positions to learning from the
positions encountered during play, and it seems probable that learning from
arbitrary positions would have been worse. On the other hand, if the arbitrary
positions were taken from games between human expert players, the learning

might have been better.

The reason why it may often be useful to perform value iteration at the
states encountered during performance is' that many arbitrarily generated states
might never be reached in actual performance. In chess, for example, only a
tiny proportion of random.conﬁgurations of pieces on the board could plausibly
occur as game positions. Even if a chess-player developed an ability to choose
good moves from random positions, this hard-won skill might not be applicable
in actual play since the type of position encountered in games Between people

would be qualitatively different.
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In spite of the limitations I have mentioned, Samuel’s program worked
very well. In fact, it may still claim to be the most impressive ‘learning pro-
gram’ produced in the field of artificial intelligence, as it achieved near-expert
levels of performance at a non-trivial game. I have argued that both of the
learning methocis that Samuel used may be regarded as forms of value iteration
applied at the states the program visits during play. In the case of checkers, this
type of learning cannot be guaranteed to improve the value function, but the
analysis in terms of incremental dynamic programming provides a framework

for explaining both the program’s successes and its limitations.

L1. Learning with Adaptive Transition and Reward Models -

A different type of learning problem arises when the learner does not pos-
sess accurate transition and reward models initially, and the leaming task is

both to learn transition and reward models and to optimise the value function.

A learner may have initial approximate transition and reward models, and
an initial approximate value function; it may improve both its models and its

value function through experience.

The problem of improving the transition and reward models is a problem
of inductive inference. In a finite system, the most general way of inferring the,
transition and reward models is to visit all states repeatedly and to try out all
. possible actions repeatedly in each state; it is then possible to keep counts, for
each state-action pair, of the numbers of transitions to each other state, and to
record the rewards received. The relative frequency of each transition may be
used to estimate its probability, and the records of rewards may be used to esti-
mate the expected reward as a function of state and action. The construction of
the transition and reward models is a problem of system identification, which

may be described as a problem of statistical estimation complicated by the need

77



Chapter 6 — Model-Based Learning Methods

to visit a sufficient variety of states to obtain the necessary empirical data.

"An obvious and straightforward approach to combining model estimation,
action, and learning is for an agent to maintain current estimated transition and
reward models that are incrementally updatéd according to experience. The
agent also maintains a current estimated value function, and the agent uses its
current estimated models and its current estimated value function to choose its
actions by look-ahead. Because both the models and the value function may be
in error, the problem of choosing an appropriate look-ahead method in the early

stages of leamning is difficult.

However, as learning goes on, the transition and reward models will
become progressively more accurate, so that the learner’s poiicy' and value

function approach optimality asymptotically.

1.2. Relationship to Self-Tuning Control

Many self-tuning control problems are of this type. In self-tuning control
theory, it is usual to assume that the structure of a model of the process is
known, and that what remains to be done is to estimate the values of a (rela-
tivclyvsmall) number of initially unknown parameters. It is taken for granted
that once the parameter values of the model have been estimated, an appropri-
ate policy to follow may be computed immcdiatcly—thc computation of a pol-
icy or value function from the estimated model is not regarded as a part of the
adaptive process. A common assumption is that an appropriate policy to follow
given uncertain estimates of the parameter values is a policy that would be
optimal if the estimated parameter values were correct; this is known as a ‘cer-
tainty equivalence’ assumption. If the estimation process is consistent so that
the parameter elstimates do eventually converge to their true values, then ‘cer-

tainty equivalence control’ will ultimately converge to an optimal control
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policy, even if a certainty-equivalent policy is not optimal while the paraineter
estimates are uncertain.

This method of empirical model identification combined with certainty
equivalent control is conceptually simple, but there is a snag that may some-
times arise. The problem is that the early estimates of the model parameters
may be in error, and if the agent (i.e. the controller) follows a certainty-
equivalent policy for the erroneous parameter estimates, then it may limit its
subsequent experience, so that the wrong parameter estimates are never
corrected, and performance never improves. To ensure that the learning agent
does obtain sufficiently varied experience for it to be sure of estimating the
parameter values correctly eventually, it may be necessary for the agent to per-

form experiments as part of its learning strategy.

A number of papers have been published in the control literature on self-
tuning control of Markov decision processes, mainly considering the average
reward criterion rather than the discounted reward criterion. Mandl (1974)
proved that a certainty-equivalence approach to self-tuning control of finite
Markov decision processes would converge under certain restrictive conditions.
Kumar and Becker (1982) criticise Mandl’s approach as requiring too restrictive
conditions, and they propose a method based upon intermittent experimentation,
with the intervals between experiments growing progressively longer. The
experiments they suggest consist of following the certainty equivalent control
policy for a randomly chosen set of parameter values until the starting state is
revisited (one of their requirements is that the chain should be recurrent for all
certainty equivalent policies). They prove that the average performance of their
self-tuning controller taken from the start of the run will tend to the optimal
possible value, although their controller will, of course, continue to behave

sub-optimally during its intermittent experiments.
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There are two differences between mainstream self-tuning control theory
and the learning methods I have described in this section. The first, and most
important, is that I regard the computation of the optimal value function as a
part of the learning process, rather than as something which can be done instan-
taneously. The second difference is one of emphasis: most self-tuning control
theory is concerned with linear systems or with non-linear systems for which it
is assumed that the form of the model is known, and that the values of only a
relatively small number of parameters need to be determined. In the problems
I wish to consider, the uncertainty about the form of the model may be much
greater. In problems with continuous state-spaces, the models will be con-
structed from large families of explicitly represented functions, and it will also

be possible to consider other problems in which the state-space is discrete.
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Chapter 7
Primitive Learning

By ‘primitive’ learning, I mean leaming in which the agent does not have
and does not estimate transition or reward models. Instead, the agent develops a
policy and evaluation function directly. In pﬁnciplc, the agent may dcvélop an
optimal policy and value function without having to remember more than one
past observation, and without being able to predict the state-transitions or the
immediate rewards that result from its actions. Although such an agent has
only ‘primitive’ abilities, it may still be able to learn complex and effective pat-
terns of behaviour. -

Primitive leaming may be described as incremental dynamic programming
by a Monte-Carlo method: the agent’s experience—the state-transitions and the
rewards that the agent observes—are used in place of transition and reward
models. In primitive learning, the agent does not perform mental
experiments—it cannot, fof it has no intcrhal models. The agent performs actual

experiments instead.

Methods of primitive learning are described and discussed from section 3

to the end of the chapter;‘these are the main results of the thesis.

1. Importance of Primitive Learning

Primitive learning is important because it requires only simple computa-
tions and because the transition and reward models are often difficult to con-

struct and to represent if the environment is complex.
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Transition models, in particular, may be complex. If actions do not have
deterministic effects—if performing an action may lead to any of a number of
possible states—then the transition model is a mapping from state-action pairs
to probability distributions over states. A large amount of information may need
to be stored to represent this mapping, and a large number of experiments

might need to be performed to acquire it inductively.

For a finite Markov decision process, the reward model may have [S|{A|
parameters, and the transition model may be larger with as many as IS/2A]
parameters, where IS| and |A| are the numbers of possible states and actions
respectively. In contrast, a value function requires orily Y paramc.tcrs, and even
a stochastic policy requires at most |S{|A] parameters. Thus, as .Ho»'vard (1960)
rémarked, the practical applicability of the conventional approaches to policy
optimisation in finite Markov decision processes is severely limited by the need
to represent the transition model. Even if other methods of representing the
transition model are used, it will still often be the most complex data object in
the learning system, since it must represent a mapping from one la.rgé set

S x A into another large set—the set of probability distfibutions over S.

A more subtle reason why it may often be difficult to construct a suitable
transition model is the following. No model can represent the world
completely—in constructing any model, it is ncéessary to decide which aspects
of the world to ignorc and which to represent. However, consider an agent that
is constructing a transition model with which to construct an optimal policy:
how can the agent know which aspects of the world are relevant for construct-
ing the optimal policy, and which are not? If the agent models the world in
unnecessary detail then it will waste resources. On the oihcr hand, if the agent
models the world in too little detail, and so ignores some relevant aspects of

the state of the world, then a policy that is optimal according to its model may
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not in fact be optimal at all.

The trouble is that, in model-based learning, the agent in effect replaces
the real world with an internal model, and constructs an optimal policy by per-
forming mental experiments with its internal model. If the agent considers the
agreement of ’its model with the world and the optimality of its policy with
respect to the model separately, then it cannot determine whether its model is
an adequate representation of the world for the purposes of constructing an
optimal policy.

To determine what aspects of the world are relevant to the value of a
course of action, the agent must experiment in the world and keep track of the
returns that result from different states. The agent must actuaily observe the
returns that its policy brings, and it must choose to distinguish states according
to whether they lead to differing returns. As will become apparent, this is what

is done in primitive learning.

1.1. Information Available to the Learner

The learner’s task is to find an optimal policy after trying out various pos-
sible sequences of actions, and observing the rewards it receives and the
changes of state that occur. Thus an episode of the learner’s experience con-

sists of a sequence of triples of states, actions, and rewards:

X1 a n

The x, are observed by the learner; the a, are chosen by the learner; and the 7,

 are measures of whether the learner is achieving its goals.
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For successful learmning, the agent must obtain sufficient experience. In a
finite-state problem, the learner must try out each possible action in each state

repeatedly to be sure of finding the optimal policy.

The constraints on what experience the learner can easily obtain depend
on the learhing problem. For example, a solitaire player may set up the pieces
in any position he chooses, and return to any previous position to study it, and
he may try out many different sequences of moves from the same board posi-
tion. A lion leaming how to stalk and kill gazelles does not have this luxury:
if the lion charges too early so that the gazelle escapes, then it must start again
from the beginning, and find another gazelle and stalk it, until it faces a similar
situation and it can try creeping just a little closer before starting to charge.

The lion’s experience is hard won.

2. Methods of Estimating Values and Action-Values

All methods of primitive learning rely upon estimating values and action
values directly from experience. At all times, the agent will have a current pol-
icy: values and action values are estimated according to this policy. The first
technique to discuss, thcréforc, is the various methods of forming estimates of
expected returns. In this section of the chapter, I will develop a notation for
describing a family of estimators of returns; this notation will be convenient for

the concise description of learning methods in later parts of the chapter.

The simplest way to estimate expected returns is just to keep track of the
sum of discounted rewards while following the policy. Let us define the actual

return from time ¢ as

B =Rt Y+ P+ 0 F Y Tun+
That is, the actual return r, is the actual sum of discounted rewards obtained

after time ¢. The optimal policy is that policy which, if followed in perpetuity,
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will optimise the expected actual return from every state. For any given policy
f, Vg(x) is the cxpected value of the actual return that would be received after

starting in state x and following policy f thereafter.

Because y < 1, ¥* will approach zero as n becomes large, and because all
rewards are assumed to be bounded, for each value of ¥y there will be some
number of time-.steps n after which the remaining part of the actual return will
be negligible. Hence the agent may calculate an acceptably accurate value of

the actual retumn from time ¢ at time t+n—1. The n-step truncated return is

= .o -1
) = r o+ Yy + Yru + + Y el

If the rewards are bounded, then the maximal difference between the truncated
return and the actual return is bounded, and tends to zero as the number of

steps before truncation is increased.

Clearly, one method of estimating the value function for a given policy f
is to follow f and, for each state, to average its n-step truncated returns, for
some sufficiently large n.

There are three disadvantages of this method of estimating the value func-
tion: |
e  The value of the truncated return is only available to the agent after a time

delay of n steps. To calculate the actual return from each state visited, the

agent must remember the last n states and the last n rewards.

e  The truncated retums may have a high variance, so that many observations

are necessary to obtain accurate estimates.

e To use the truncated return from time r to estimate the value of state x;

according to policy f, the agent must continue to follow policy f for at

least n steps after time .
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These problems may be avoided by using a different class of estimators; some
of these have been described by Sutton (1988), and he terms them ‘temporal
difference’ methods. These methods rely upon the agent maintaining a current
approximation’ to the value function. This approximate value function is
denoted by U. The agent seeks to make U approximate the value function

more closely, and U will change with time: U at time ¢ is denoted by U, .

The n-step truncated return ry + Yr + * ' + ¥ 'r, . does not take
into account the discounted rewards Y'r,, + Y 'rune + ¢ ¢ that would be
received if the agent continued following its policy f. But the sum
Fion + Yrioney + ©°© can be approximated by the agent as Uy, ,(x.,). This can

be used as a correction for the n-step truncated return. The corrected n-step

truncated return for time ¢ is

rgn) = r‘ + ‘Yr‘+1 + rr + Y‘.lr&fﬂ-l + Yl UH-II( x:+n )

If U were equal to Vf , then the corrected truncated returns would be unbiased

estimators of Vf, since

Vr() = B[ Rofi0) + Wy KoL) |

=E| R(x/£0) + 1R(xA1) + PV, (X(x2)) ]

=E| R(xf0) + YRxA1) + - -~ ]

The reason that corrected truncated returns are useful estimators is that the
expected value of the corrected truncated return tends to be closer to Vy than U

is. Let K be defined as the maximum absolute error of U, that is

K =max | Ulx) - V(%) |
Then

max | Efrf@)] - V;(0) | <7'K
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This might be called the error-reduction properry of corrected truncated
~returns. For D), the proof is a special case of the local improvement theorem
proved in the chapter on dynamic programming; for r{™ the proof is essentially
the same. Note that E[r{”(x)] is not necessarily closer fo V¢ (x) than U(x) is for
all x—but the ‘.ma.ximum error of E[r(®(x)] is less than the maximum error of

U.
One is not restricted to using r™ for just a single value of : it is possible
to use weighted averages of r for different values of n. These weighted aver-

ages of corrected truncated returns will still have the error-reduction property in

the following sense. If r®™ is a weighted sum of corrected truncated returns

r™ = Tw;r®
i

where the weights w; sum to 1, then

max|E[r™] - V;(x)] < Tyl K
x i
Note that Zy"lwil < 1 provided that all the w; are between O and 1.
i

An important case is to use a weighted sum in which the weight of r™ is
proportional to A” for some A between O and 1: this weighted sum will be

A

denoted by r*. This estimator has been investigated by Sutton (1988); I will

describe his work in my notation.
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What Sutton terms the TD(A) return from time ¢ is
e = (10D + Ar® + A2® + -]

=r+y(-N)U(xy )+
.Y)"[rﬁ-l + 7 (1-) Ut X2 ) +
'Y}-[’uz + ¥ (1-2) Upa( x5 ) +

YX[rHs + v[

Because r* is a weighted average of corrected truncated retumns, it has the
error-reduction property. Note that U is time-indexed; in value estimation, U
may change slightly at each time step. However, the changes in U will be small

if the learning factor is small.

The expression above may be written recursively as
r* = YA Ulxy) + YA TS,
The TD(0) return, with A = 0 is just
(P =r + Y Uk

and if A is set to 1, the expression for the TD(1) return is

1— L]
ry —r:+'Yrt+1+'er:+2+

which is just the actual return.

2.1. Choice of A as a Trade-Off between Bias and Variance

* All these different estimators of the expected return may be defined, but
what use are they? In particular, how should one choose the values A? If the
agent follows the policy V; for long periods of time, then should it not use the

obvious method of truncated returns for some sufficiently large n? Although I
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have not developed any rigorous argument, the following considerations should

affect the choice of A.

The choice of values of A depends on a trade-off between bias and vari-
ance. If the values of U are close to those of V, then it is easy to show that the
variance will be lowest for A =0, and highest for A = 1. However, low vari-
ance is obtained -by truncating the sequence of discounted returns and adding a
value of U as a correction. If these corrections are wrong, then the estimates
will be biased. The optimal choice of A, therefore, depends upon how close the
current values of U are to Vy. It seems plausible that, to estimate V¢ by follow-
ing f and observing rewards, the fastest method is to use A = 1 to start with,
and then reduce A to zero as U becomes more accurate.

- I have not done any quantitative analysis of this problem, but Sut-
ton (1988) reports some computational experiments for a related problem in
which A was kept constant throughout estiination, and he found that the most

rapid convergence during the time course of his experiment was obtained with

intermediate values of A.

2.2. Implementation Using Prediction Differences

Sutton (1988) defines the prediction difference at time ¢ as

The motivation for the term ‘prediction difference’ is that at time ¢ the agent
might predict the return from time ¢ to be U,( x, ); at time r+1 the agent has
more information to go on in predicting the return from time ¢, as it has
observed r, and x,,, . It may, therefore, make a new prediction of the return
from time ¢ as r, +YU/(x,, ). The prediction difference is the difference

between these two predictions. If U is equal to Vy for all states, then the
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expected value of all prediction differences is zero. (The individual prediction
differences actually observed will not be zero if the process is random so that

state transitions or rewards may vary.)
Now, as Sutton suggests, the difference between the TD(A) return and the

estimated value may be rewritten as

r:l -Ulx )=¢ +Y\ey + Yzlzenz + .73138‘4_3 + oo
+ 3 (A" Unalxn) - Urin1(x4n)]
=1

If the learning factor is small, so that U is adjusted slowly, then the second

summation on the right hand side above will be small.

The usefulness of this way of calculating r* - U(x ) in terms of predic-
tion differences is that the agent can calculate the prediction difference for time
k at time k+1—a delay of only one time-step. Furthermore, if U is close to V,
the average value of the prediction differences will be small. Now, the natural

way to use r* to improve the estimated value function U is to use an update

rule
Uni( % ) = (1-)U( x, ) + ord
=Uf(x )+o(rr-Ulx, ))
=U(x )+ a[e, + ey + (W g+ - ]

Thus the update rule can be implemented by, at each time step, adding

appropriate fractions of the current prediction difference to previously visited

states.

One way of doing this is to maintain an ‘activity trace’ for each state
visited (Barto et al (1983) describe this as an ‘eligibility trace’—a trace of how

‘eligible’ the estimated value of a state is to be modified). When a state is
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visited, the activity becomes high; the activity then declines gradually after-
wards. The amount by which the estimated value of the state is adjusted is &
times the current activity of the state times the current prediction difference.
Let the ‘activity’ of a state x at time r be C(x,r). The levels of activity of all

states may be L;pdatcd at each time step by the following rules:
C(x, ?) ='0 if x has never been visited.
Clx, ) =YAC(x, t=1) ifx, #x
Clx,)=1+Y\C(x, t~1) ifx, =x

That is, 1 is added to the activity of the current state, and the activities of all
states decay exponentially with a time constant of yA. This form of the algo-
rithm may be natural to use in connectionist implementations, where the
memory of a recent visit to a state might take the for;n_ of ‘traces of activity’ in
a distributed representation of the state. This method is us;& in the learning

algorithm in Barto, Sutton, and Anderson (1983).

The value updating rule suggested by Sutton is

C U(x) = Ux) + o Clx, 1+1) ¢,

This rule may be most suitable for connectionist implementations of incremen-
tal updating of value functions, where it may be natural to update all states at
each time step, but for implementations on sequential computers, it is inefficient
to update all states at each time step, and a more efficient way is to keep track
of the last n states visited for sufficiently large n. The size of n required will
depend on the value of A used: the smaller the value of A, the smaller the value
of nneeded. If A =0, thenn =1,

Sutton (1988) describes the use of these temporal difference estimators for

estimating value functions in Markov processes with rewards. He considers a
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more general formulation of the problem, in which the states of the Markov
process are described by linearly independent vectors, and the value function is
represented by a vector of adjustable weights. The value of any state is the

inner product of the state vector with the weight vector.

Sutton also spggests that these methods can be used in procedural leam-
ing: the learming method of Barto, Sutton, and Anderson (1983) uses a
connectionist-style implementation of this method of estimating expected
returns. Sutton (1988) suggests widespread application of the method in
behavioural learning. Sutton and Barto (1988) suggest a model of classical con-
ditioning in terms of the animal learmning to estimate the expected total
discounted unconditioned stimulus that it will receive. The probal;ility of a clas-
sical response was assumed to be proportional to this estimate. In this model,
learning is »continuousv during experience, rather than occurring at the end of
each ‘trial’; this is an édvantagc, since the animal might not divide its flow of

experience into ‘trials’ in the same way that the experimenter would.

2.3. Estimating Values and Action Values in a Markov Decision Process

So far, a range of methods have been introduced for estimating expected
returns in a Markov process with rewards. In a decision process, in which
different actions are possible at each state, there is a complication: it is only

* meaningful to estimate a return relative to some policy.

In the learning methods to be described, the agent seeks to estimate
returns relative to an internally représcnted policy—its estimarion policy. In
some methods of learning the estimation policy is stochastic, in others, it is sta-
tionary. In some methods, the agent always follows its estimation policy; in

other methods, the agent may deviate from its estimation policy.
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If the agent always follows its estimation policy, then the estimation prob-
lem is the same as the previous problem for Markov processes with rewards.
B.ut whai if the agefit does not fdllbw its cétimation policy f but instead follows
anothcr pohcy 8 or else does not follow a con51stcnt pohcy at all" Can the

agent sull estimate Vf and Qf then?

Yes it can, by using different values of A at different time steps, with the
value of A depending on whether the current action is a policy action or not.

One may define |
I‘f\ =n + 79 (l"lwl) Uil + Y)"u-l r;}-l
= (1—l,+1)r,) + lr+l(1'7‘r+2)r: + )'r+l)‘r+2(l')‘r+3)r$3) +

whcrc A is thc sequcncc of values A, 3\4 cee and whcré O < A, <1 forall
. A nccd not bc defined in advancc A, may depend on the state and action at

time 2. Since x'A is a wexghted average of corrected mmcated returns, it has the
error reduction property. - |

The point of this definition is that by a suitable choice of A, the agent may
estimate the returns'vunder- one policy while behaving quite differently. Let the
agent divide the steps of its experience into two classes: ‘policy steps’ and
‘experimental steps’. If the agent’s,cgtimation policy is stationary—that is,
there is a ‘uniquc policy action for each state—then all steps in which the agent
performs the policy action are policy st;:ps, and all other steps are experimental
steps. | |

If the estimation policy is stochastic, so that the policy is to choose actions
by sampling from a probability d_istribution at each state, then the question of
whethcr é stcp .is pohcy of c.xp-erimcntal is not so‘clear cut. One mcthod that
the agent can usc is to accept or reject steps in such a way that for cach state,

the relative rates of acceptance of actions are kcpt approximately the same as
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the action probabilities according to the policy.

Suppose the agent immediately ‘cljass‘iﬁes‘ each step of its cXperieﬁce e.ither
as policy or as experiment, It must ensure that its estimated returns are not
contaminated-by the effects of experimental actions. If the agent‘pe'rfofms an
experimental actioh at time ¢, then it cannot ﬁsc any of its experience after time

¢t in an estimate of the return from an action taken before time ¢. To do this, the

agent may define A by

A* if g, is a policy action
A=y o
0 if a, is an experimental action

where A* is a chosen value between 0 and 1. The essential point is that if step
tis expenmental then l must be zero. If A is defined in this way, then r;*
wxll be an estimate of Q,(x,, a)), uncontaminated by the effects of subsequent

experimental actions.

To see this, consxdcr the recursive definition of r? in terms of g
= =rp + Y( )-t+l) U(xtﬂ) + Y Ae1 T

If step t+1 is experimental then A,,; =0, so that the term on the right hand
side containing the subsequent return r? is multiplied by 0. r is, therefore, an
estimate of Qr (x; ,a;), because after step ¢, it is constructed from Uy, (x;,) and
from any further policy steps from t+1 onwards. If some step r+n is an experi-
ment, A,,, = 0, and no further time steps contribute to the estimate. r® has the

error reduction propcrty', therefore.

Note that r? is an estimate of the acrion-value of x, ,a,. The next state x,
is always taken into account in forming the estimate. But if a, is experimental,
then it is not p0531blc to use r to estimate Vf(x,) Let us thcrcforc define u,

as
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= (I-A)U) + e

The agent may estimate Ve (x,) only if the action at time +— a, — is a policy
action: the agent cannot use the rewards following a non-policy step to estimate

the value of the state according to the pohcy

The above method of deﬁmng A 1s a special case of thc more general
methods used for variance reduction in Monte-Carlo estimation in Markov

processes (see Rubinstein 1981, chapter 5).

3. Learning Action-Values

- The problem of finding the optimil value function for a dc_cision problem
is more complex than that of merely estimating values and returns: the optimal
policy is initially unknown, so that initially it is not possible to estimate the
optimal value function directly. Instead, learning is a process of improving a

policy and value function together.

"One method of representing a pohcy and value function, as dcscnbcd in
chaptcr 5, is to store action values Q(x a) for each state x and action a. The
values of 0 at time ¢ are denoted by Q. From its values of Q, the agent may |

estimate the value of a state x as
0P = max{ Q)T
Tho superscript Q@ in U2 is to indicate that U2 is calculated froﬁ Q. Q impli- .
citly defines a current policy 72 which is -
fQ(x) = @ such that Q,(x,a) UQ(x)

That is, thc current policy is aJways to choose acnons with maximal estimated

action value.
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How might the agent improve Q through its experience? The simplest
method is one-step Q-learning, in which the values of Q are adjusted according

to

Qi (%) = (1000, (%, @) + olr, + YUR(z,01))
= (l—a)Q‘(x, ,c;,).+ drsl)

where o is a ‘learning factor’, a small positive number. The values of Q for all

other combinations of x and a are left unchanged.

Note that the actions that the agent should take are not specified. In fact,
the agent is free to take whatever actions it likes, but for it to be sure of finding
the optimal action value function eventually, it must try out each action in each
state 'many times.

Does this learning method work? It does indeed, because it is a form of
value iteration, one of the conventional dynamic programming algorithms
. described in chapter 4. As is explained in appendix 1, one-step Q-learning can
be viewed as incrémental, Monte-Carlo value itération: Q,,, is estimated frqm

U2, and U2 is obtained by maximising Q, at each state,

Appendix 1 presents a proof that this learning method does work for finite
Markov decision processes. The proof also shows that the learning method will
converge rapidly to the optimal 'at;tion-r\_;aluc function. Although this is a very
simple idea, it has not, as far as I know, been suggested previously. However, -
it must be said that finite Markov decision processes and stochastic dynamic
programming have been extensively studied for use in several different fields
for over thirty years, and it is unlikely that nobody has considered this Monte-
Carlo rhethod before. | | o |
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»

3.1. Learning Action Values using General Estimates of Returns

In fact, there is a family of methods of Q-learniﬁg, which use different
estimators of expected returns. The principle of all the methods is that the
values of Q are updated using estimates rd of the action values. As before, A,

may be defined by. K

"~ JA* if g, is a policy action
A = {O otherwise
With A, defined in this way, returns are estimated only over sequences of policy
actions. A ‘softer’ definition of A,, which is used in the second demonstration
program in chapter 11, is to make A, depend on the difference between the
estimated action value of the action performed and the estimated value of the
state. If O,(x; ,a,) is much less than U2(x, ) then A, should be small, whereas if
O,(x, ,a) is ncarly as large as UP(x,) then A, should be ncarly as largc as A*,

One method of achieving this is to ca.lculatc A, thus:

', = exp( U, ) — Oitx, ,a,))x*

where the parameter 7 is non-negative real number. If N is zero, then A, = A*
. for all t, whereas 1f 'r| is large then A, will be small if Q,(x, ,a,) is even slxghtly
less than UL(x, ).

Note that the value of the estimated return r* will only become available
at some later timc. As a ’r‘esult, Q cannot be updated immediately according to

r} —the update must be made later on, at time t+T, say:

Qurai(ra) = (1-00Qur(x @) + orf
or else the updates may be'perfox"méd inére‘méntally‘ using the method of pred-
iction differences described in section 2.3 above. There is a pbtenﬁal problem
here: Q is being incrementally updated at each t'imcvst'cp, but it is also being

used in calculating the estimates of returns r* on which the updates are based.
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That is, changes in Q may affect r®, which then affect the .changcs in @, and so
on: however, these effects are proportional to o, and so will be negligible for

small ct.

This is a family of leaming methods that'appear‘plausible—do they work?
Unfortunately, I,Havc not been able to show that they will always work,-for the
following reason. The difficulty is that if the values of Q differ from the
optimal values Q*, then the implicit policy /2 may differ from the optimal pol-
icy f*. V'I’he proble;m is that if Q is perturbed away from the optimal action
values O* by only a small amount, so that the implicit policy /2 differs from
the optimal policy, the value function for f2 may differ from tl?c optimal value
function V by a larger amount. That is, a small perturbation of Q away from
_the optimum ma‘y under some circumstances lead to instability. These instabili-
ties need not necessarily occur, bﬁt I have not been able to find useful condi-
tions under which &ey can be gua:antcca nth tov occur. In computer implemen-

tations to be described later, the instabilities were not significant.

4. Learning a Policy and a Value Function

In previous work on wﬁat I have termed pfiﬁu’u've learning methods, the
policy has been represented by action-weights, or action probébilities, rather
than by action-values. The values of states were repnesénted explicitly, but
action-values were not. Methods of this type have been described by
Michie (1967), Widrow et al (1972)," Mendel and McLaren (1972), Wit-
ten (1977), Barto, Sutton, and Anderson (1983) and Sutton (1984), Wheeler and
Narendra (1986), and Anderson (1987), and also by Liepins et al (1989), and
Hampsoh (‘1983).7 | | | | -

- These previous methods divide naturally into two types: learning a policy

alone, and leamning a policyAtogethcr. with a value function.
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4.1. Learning a Policy Alone

The agent maintains and adjusts a representation of a policy during learn- -
ing. The policy is stochastic. Different actions may be performed on different
visits to the same state, so that the agent has the opportunity to compare the
effects of different actions. After an action has been performed, the agent uses
its subsequent c*periencc to form an estimate of the expected return from that
action that results froin following the current policy. The agent then gradually
increases the probabilities of those a;tions that lead to high estim_atcd returns,
and iﬁ reduces the prébabilitic';s of : actions that lead to lower expected retumns.
Provided Vt‘hatjthe,agent’s est-im‘;ncs ofvexpcctcd,rctums are unbiased, this leam-
ing process can be viewed as a form of incremental, Monte-Carlo policy

improvement.

Wheeler and Narendra (1986) propose an interesting method for the case -
of a finite Markov decision process in which the aim is to maximise long-run
ave;—age reward, rather than expected discounted reward. Their estimate. of the
cxpcct;d retumn was obtained by a recurrence method. If the state at time ¢ is x,
and action a is performed, and the next time at which the process returns to
state x is ++7, they use

ntrngt o0+
T

as an unbiased estimate of the expected average return that would result from a
policy of performing a in x, and of following the current policy elsewhere. Of
course, the policy is changing slowly at all states during the estimation of
expcctcd average returns, but Wheeler and Narendra give a proof that the sys- .
tem can be made to converge to an optimal policy with as high a probability as

desired.
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They represent the policy directly as a set of action-probabilities at each
state. They assume that the Markov processes for all possible policies are
recurrent, and that the estimated returns lie between 0 and 1. They update the
state probabilities by the Lp_j rule (Narendra and Thathachar (1974) or Laksh-

mivarahan (1981) are surveys of stochastic learning automata).

Widrow et al (1972) considered a sequential task (playing Blackjack) that
always ﬁmshcd after a finite number of actions; when the task ﬁmshed the
agent received a reward depending on the outcome. The return that was to be
maximised by an optimal policy was the expected terminal reward. The termi-
nal reward actually obtained was used as the estimate of expected terminal
reward for eéch actioﬁ taken during each —bidding sequence. Thc action proba-
bilities were adjusted so that actions taken became more probable if the reward

was high, and the probabilities became lower if the reward was low.

Barto, Sutton, and Anderson (1983) implemented a method of this type
with discounted returns for the pole-balancing problem as a method to com-
pare with their adaptivé heuristic critic algorithm. The results were disappoint-
ing. However, their formulation of the pole-balancing task had a larger number
of states than either blackjack bidding or the demonsu'ation'probiefns used by
Wheeler and Narendra—and it is possible that for some choice of very' small
learning parameters, the method would .yvork after a large number of training
runs. In addition, the formulation of the pole-balancing problem used was not
actually a Markov process, since the cart and pole system moves deterministi-
cally in response to actions, and the state-space was panitiohcd into quite

coarse regions.
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4.2. | Learning a _Pplicy with a Value Function

In the leamning methods described by Witten (1977), Barto, Sutton, and
Anderson (1983)‘ and Sutton (1984), and Anderson (1987), the agent acquires
both a policy and :i value function. The estimated value function is used to pro-
vidé: TD(X) returnis that are of lower variance than observed retums, and which
are available wi&in a shorter time. A possible drawback, however, is that these

estimates may be biased if the estimated value function happens to be in error.

In Witten’s method there are two concurrent adaptive processes: improve-
ment of the policy and estimation of the value function for the current policy.

At each time-step, the value function is adjusted by
Uip1(x) = (1-0)U,(x;) + ar; + YU (x;1))

Witten proposes that the policy at each state should be adjusted by an
unspecified learning automaton, using r, + YU,(x,;) as the reward. Witten
recommends that the learning rate of | the value function shoﬁld-be much higher
than that for the policy, so that on the time scale of the policy adjustment, the
mean value of U at each state can be assumed to be équal to V. He then proi/cs
that, under these conditions, there is a unique optimal value function and class
of optimal policics; but he does not point out any connection with dynamic pro-
gramming.

There are two differences between the adaptive heuristic critic algorithm
and Witten’s method: the AHC algorithm uses TD()) returhs; rather than j'ust
TD(O) returns, and the policy is adjustcd according”to a reinforcement com-
pdrisan method (Su'tton‘ (1984)). That is, the qﬁantity ‘that is used to adjust the
policy is the difference between the TD(A) estimated return 1from the state x and
the estimated value of x. Sutton (1984) showed in a number of simulation
experiments that learning automata that used the difference between the rein-

forcement from the environment and an estimate of the expected reinforcement
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under the current policy appeared to converge considerably faster than conven-

tional learning automata,

I have not been able to prove that either of these policy learning methods
‘will necessarily work, nor have I been able to construct any problem for which,
using stochastic .approximation rather than learmming automata, the methods
would fail. I think it very probable that it is possible to give conditions under
~ which these meth9ds cbuld be guaranteed to work, but the proof techniques
used for action-value estimation cannot be applied in this case, because the

action-values themselves are not represented.
The reason for the difficulty is that there are two concurrent adaptive

processes—value estimation and policy improvement—and there is a possibility

that these may interact during learning to prevent convergence.

4.3. Representing a Polfcy by a Sihgle Action at Each State

A still simpler way to represent a policy isr to store a single action for
each state: the pélicy is then stored as a function from states to actions. In this
case, the agent dqes not need to determine which action has the highest
strength in the current state—it simply uses its stored policy to compute an
appropriatc'action. Note that this representation of the policy may require very
much less information than either the action strength or the action-value
reéresentations. This is a genuinely simpler learning method: if many actigns
are possible»in each state, this method of representing the policy could have
considerable advantages. As far as [ know, the following learning method has

. not been suggested before.

- If the possible actions at each state themselves form a vector space, the
choice of action may be improved by a gradient method, in the following way.

Let the current policy be f. Suppose the agent is in some state x, and it
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performs the action a, different from the policy action f{x). One method of

adjusting the policy is according to the rule

Jura1Ge) = fiur(x) + B} = Upr(x )@y = fragdx,))
where B is a learning factor, 2 small number greater than zero. The effect of
this adjustment rule is that if r} = U,q{x,) is positive, so that the estimated
return from performing a, was greater than the estimated value of X, —in other
words, if d, was ‘unexpectedly good’—then the policy action for x, is adjustcd.

towards a,.

This learning rule may be extended to cover some stochastic policies. If

the stochastic policy is to perform an action

f)+¢
where { is a (vector) random variable of zero mean, then the same adjustment
rule for f may be used.

A modification of this adjustment rule is to have two learning factors B*
and B~ If r} > Uy(x, ), so that a, is better than expected, then B* is used in the
adjustment rule; if the action is worse than expected, the learning factor B~ is

used. Both B* and B~ are greater than 0, and
P> pT
The learning rule becomes

' +1(%; ) ".’\B"’(rf\ = Utz ) a =Jur(x)) lf r{* > Upyr(xr)
Juri®) =
a7 ) + B(cP - U,+1(x, N a=fur(x)) if "zA s Ur+7<x:
The motivation for modxfymg the adjustment rulc in this way is t.hat if f and U
are ncarly optimal, thcn cxpcnmcntal non-pohcy acnons will usually lead to

esumatcd returns that are lower than U(x). If §~ is largc, thcn each experiment
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will cause f(x) to change: experiments will, thercfbre, cause rﬁndom perturba-
tions of f{x) about the optimum. If B~ is made small in comparison‘to B* then
the random perturbations caused by sub-optimal experiments will be smaller
and more quickly corrected. This technique of asymmetric learning factors has
been widely used for stochastic leaming automata (Bm§ and Anandan A1985,
and the review by Lakshmivarahan 1981). Widrow (1972) uses asymmetric
learning factors for analogous reasons, and reports a greatly increased speed of
convergence. o |

The estimated value function, U may be modified using the estimator for

values u® :

Uiirei(x) = (1=0)Upr(x, ) + ol
= (1= U1l ) + L1M7 ) + Ayrf ]
Once again, A may be defined so that u® is an estimated return according to £ -

Note that the processes of adjusting U and f 'are quite separate, and

different estimators for the returns may be used in each.

Should this method work? One limitation to note immediately is that the
policy is updated by a gradient method at each state. If, therefore, at any time
there is more than one maximum in the action-value function at a state, then it
is possible for the policy action at that state to converge to a sub-optimal local
maximum.

Apart froin this difﬁc.:'ulty,‘ thc‘ ‘learning method’ ma); be subject to the
same instabilities as the action-strength methods of the previous section: [ do
not know under what condmons it can be guaranteed to converge to the
optimal value funcnon and pohcy Later on, however, I w111 descnbe an imple-
mentation of thls Ieammg method and, for that example, it appca,rs to work

rather well.
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5. Learning a Value Function Alone

Finally, perhaps the simplest learning method of all is to learn a value
functions alone, under desirability-gradient control of action. Once again, a pos-

sible leamning rule is

Unre1(x) = (1)U, p(x, ) + o
As before, this'may be implerhented in either the sequential or the conncctionist
style For this method to be vahd u, must be constructed according to the
desrrabrhty gradlent control polrcy There is no adjustment to the pohcy _
because the agent does not have one: U itself is used in the control of action.

Whether this learning process will converge will, I believe, depend on the par-

ticular desirability gradient control rnethod used.

'l'he reader may wonder whether learmng a value functlon in this way is
really a form of mstrumental learnmg For leammg of thrs srmple type, the drs-
uncuon between mstrumemal and classmal condmonmg begms to break down,
but a dxstmcnon can nevertheless be mamtamed in prmcxple, as follows Some
simple orgamsms may behave accordmg to the same control pohcy all the nme v
others may somenmcs behave accordmg to a parncular desirability-gradient
method and somenmes not For the leammg to be mstrumental it must only
happen wlule the agent is followmg its desuabrhty gradrent pohcy If there are“
temporal correlatmns of states and rewards that occur dunng times that the
agent is not usmg its control method then these cannot be atmbuted to the |
method of conl:rol, and so should not cause changes in the value function in
instrumental leaming. Hence if the agent learns from temporal correlatlons that
occur when the agent is not following its control policy, then it is classical

rather than instrumental conditioning,.
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This is a simple method of learning that could be used by simple organ-
isms, in the following way. Suppose that some fly had the ability to follow
certain odour gradients in the air, using a desirability-gradient method. Some -
odours might be innately attractive, and generally useful for the fly to follow.
However, for any' particular habitat, there might be some other odours that it
would be useful for the fly to leam about: these secondary odours would pro-
vide indications of the presence of the mnately attractive odours This type of
learning, therefore, might more conventxonally be described as a form of classi-

cal conditioning of odours.

6. Restricted Experience and Meta-Stable Policies

In chapter 4 on dynamic progrmnﬁﬁng, one of the conclusions ‘was that
there is only one optimal value function V, and the optimisation process will
always find V. In'primitive learning oﬁe of the condidons for suecess is that the
- agenf should sepeatedly. try"allr oossibie sctions in each possible state. But at
intermediate stages of lcarding, the agent’s po.licy mayﬂlead if to visit only a
part of the state-spaee: this can result in aiinbz'eta-stvable policy. |

A meta-sfabie policy is'one that is sdb-optimal, Jbut which, if followed,
prevems the agent from gaining the expedence neecssary to irhprove"it. Meta- .
stable policies occur frequently in everyday life: sitting in a corner at pames,

for exa.mple, is a su'ategy that may prevent people from leammg to en]oy them.

All the prevxously published pnmmve leammg methods I have cxted have

one aspcct in common:
¢ The agent always behaves according to its current estimation policy.

Each action the agent takes is used to adjdst the estimated value function, and
the policy is stochastic so that the agent necessarily experiments with different

actions in following the policy. This approach of combining experiment with
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value estimation might be called the ‘random policy trick’—a ‘trick’ because it
simplifies the learning algorithm, in that it is not necessary to specify any
further what the agent should do. This ‘trick’, however, may severely limit the

performance of the learning algbrithm..‘ ]

The random 'policy trick restricts the .amount of experimentation that the
agent can do duriﬁg the later stages of learning; and it goyemé the nature of the
expeﬁmenmﬁon at all stages. As the estimation poliéy approaches the optimal
policy, the agent will perform fewer and fewer cxpcrinienta.l actions, and
further improvement of the policy will become slow Worse still, at intermedi-
ate stages of leamning thc policy may be sub-optimal and almost dctcrrmmsuc in
some parts of the state space. In such regions of the state-space, ‘there will be 2
low level of experiment, so that changes in the policy in these regions will be
slow. To see how this may happen, consider the following simple example

problem, illustrated in the diagram overleaf.

The dots labelled with letters represent states, which are named A to F.
The arrows between Vthc; dots fciarcsent poSsiblc actions. For cxarhplc, the
arrows from A to C and from A to B signify that, in state A, the agent has the
choice of two actions: to move to state C or to move to sfatc B Whgncvcr the
agent reaches state B it recéives a' reward of 1, and whenever it 're'achés state F
it receives a reward of 2. The a.gcnt i\./ishes to ﬁhd a' i)blicy that optimises
expected return according to a discount factor of 0.9; otherwise, the agent

receives no rewards.

In this decision process, there are two loops of states that the agent can
traverse. The loop on the right, passing from state A to state B and back again,
gives low level of return. The loop on the left, from AtoCtoDto Eto Fto
A, yields a high reward at F. This path yields a high level of return provided

that the agent goes all the way round it. The optimal policy is to follow the
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The optimal policy is to follow the loop ACDEFACI.DEFA.;.

But if the initial policy at A, C, D, and E is to choose
either action with equal prbbability, then the probability

of AB will initially increase, since F is seldom reached.

Al

If the agent must follow its estimation policy, then acquiring

the optimal policy may take a very long time.
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path ACDEF repeatedly. However, at states C, D, and E thc agent has a choice
of either contmumg along Lhc opt1ma1 path, or of rcturmng to A wuh a small

reward
| Considcr the oodrsc of-‘loarrring acoording to the random policy trick if the |
initial policy is, at each state, to choose all possible actions with equal probabil-
ity. On this irﬁtiélr policj.J, the action .valué of goirrg from A to B is.high\er tt}an
the action value of going frorn A to C, because if drc agcrrt goes from A to C,
it is likely to return to A from either C, D, or E with no reward, whereas if it
goes from A to B then it W111 always receive the sure but sub-optimal return.
Initially, therefore, any pmmuvc learmng system will adjust its estimation pol-
icy zrt A so that goirxg to B t‘}ecomes' more probable than goirrg to C. As the
agent a'c‘cumulates more'éxperiehce, it will find, on the occasiorrs thdt it reaches
E, that it is much better to go to F than to go to A, and it will adjust its value
estimate for E upwards thn the value estimate for E is high, the agent w111
find, when it visits D, that it obtains a better return from going to E than from
going to A, and it:will adjust its pblicy accordingly. In this way, the estimation
pohcy will be adjusted towards the Opumal policy and the values will be

adjusted towards thc opnmal values startmg with E, then D, then C, and finally
A. |

However, dunng a substantial initial part of thlS lcarmng process, t}rc
action value at A of going to B w111 be hlghcr than the action value of going to. |
C, and the estimation pohcy will be adjusted to favour B over C. If thc agent is
following its cstimaﬁon policy, it will visit C less and less often. Provided that
the probability of go-ing from A to C does not decrease too quickly,' tho agent
will eventuaily"obfaixr onough experience of the path from C to recognise its
value, and, once the estimated vdlué of C has risen above the estimated value

of B, the probability of going from A to C will start to rise. Ultimately, the
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estimation policy will converge to the optimal policy.

The point of thls example is, however, that learmng may take an
indefinitely long time if the agent always follows its estimation pohcy because
the the rate of v1smng C may become very small. It is possxble to make the
learning mdeﬁmtely slow by increasing the number of states in the_ chain

between C and the state F in which the égent receives the reward.

What thlS example demonstrates 1s that the speed of leammg depends crit-
ically on the agent’s pattern of expenence during the course of lea.mmg To |
retumn bneﬁy to the example consxder how much more qmckly the agent rrught
learn if it were repeatedly placed in random states, so that it VlSlth D, E, and F
more fmquently, and would as a result have the opportumty to unprove 1ts pol-

icy and value functxon at D and E.

ThlS sma.ll artificial example is not a contnved or excepuonal case: itis a
sunple example of a general drfﬁculty In learning, the agent needs to improve
its policy, to estimate expected returns, and, depending on the learning method,
to construct a value function or an action-value function. In primitive learning,
an agent can only improve its current policy by trying out alternative actions,
and altering its. policy if it finds actions that yield higher returns. Yet, in most
of the leaming methods, this requirement to experimem is at odds with the
requucmcnt to follow the pohcy The policy may become almost detcrmmxsuc

while it is still sub- opnmal and further learning is then very slow _

| Not only must an agent try out a sufficient vanety of actions in the states
that it visits: it must visit all the possible states. In justifyingrtheir learning
methods; Wheeler and Narendra (1986) and Witten (1977) both need to assume
that the agent will repeatedly yisit all states while following any policy: but this
assqntption ‘is restr'tedve, and in many problems it is simply not true. If, under

some policies, the agent does not visit certain areas of the state space, then the
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agent cannot improve its policy in those areas. It is then possible for the
agent’s policy to be optimal for the decision problem restricted to the regions
of state space that it frequently visits; in this case, policy improvements could
only be made in the areas that the agent does not visit. The learning system can

settle into a metastable state, at a sub-optimal policy.

If the learnér must always follow its estimation policy, then this problem
of meta-stability will be particularly acute, because the leamner’s behaviour is so
restricted. If the learner uses a method that allows it to make experiments, then
the learner can porentially get the experience that it needs to improve its policy,

but it need not necessarily do so.

* Another, perhaps clearer, example of meta-stability migh£ be termed the
‘secret tunnel’ problem in route finding. When I' drive to work, I travel South
across London and down to Surrey. I know the alternative routes, and in South
London and North Surrey, I can follow an optimal policy. My choice of route
is to some extent stochastic, but the areas I may visit during the journey are
quite limited, being restricted to a narrow ellipse surrounding the optimal route.
I have found this route through experience: when I first started making the jour-
ney, I tried alternative routes over a wider area, but now I have narrowed it
down. There are, therefore, vast areas of England that I never visit during my
journeys to work. It is possible that, if I were to travel a few miles North, I
might, if I turned down some unpromising side-street, find the entrance to a
secret tunnel beneath London, that would take me directly, unimpeded by
traffic, to work. If such a tunnel existed, my present policy would be sub-
optimal and meta-stable: if I continued to follow it, I should never find the
secret tunnel. To guarantee to find the optimal route, I would have to make
experiments, so that eventually, over a long period of time, I would explore

every byway and eventually find the tunnel.
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If such a tunnel existed, my current policy would be, meta-stable in the
sense that I would never find the tunnel during my current explorations near the
route I now take: however, if I ever found the tunnel (or if I was led to it), I
would change my current policy. Note that the optimal policy may be quite’
different from the meta-stable policy even on those parts of the state space that
are visited while following the meta-stable policy: for example, if the secret
tunnel existed, it would be better for me to turn back and head for the secret

tunnel from up to half of my current route to work.

Meta-stability is a general phenomenon in learning by animals, machines,
and people. The difficulty may be overcome to some extent by allowing the
agent to perform actions inconsistent with its current policy. This allows the
agent to reach parts of the state space that it might not otherwise experience,
and to perform more experimental actions, and so be able to adapt its policy
more quickly. However, there is no general method for obtaining suitable -
experience in an efficient way. As I will argue in the next chapter, the experi-

mental strategy is an important type of prior knowledge for a learning agent. .

7. Summary and Discussion

- In this chapter, I have discussed a number of different plausible leaming
methods for Markov decision processes; but only for one of them—one-step
Q-learning—have I been able to give a proof (in appendix 1) that it will con-
verge to the optimal value function and policy. I have not been able to find
proofs of convergence for the other leaming methods: I believe that the
methods will generally work,'but I have not been able to find conditions on the
behavioural policy during learning that would ensure that the methods are
stable. The problem in proving that a learning method will converge is that, for

the proof to be useful, the behaviour of the agent must be allowed to vary
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almost arbitrarily, and some patterns of behaviour might cause instabilities that

would prevent convergence.

Finally, the problem' of mc-ta-stable policies affééfs all of these learning
methods. Unlqss the agent tries all actions in all states, no primitive leaning
method can be guaranteed to converge to an optimal solution. No local experi-
mental strafcgy cém succeed in clirninatiﬁg this problem in gkcncral. One of the
roles of prior knowledge and of advice is to induce the age_nt”to try out useful

actions, and to visit states of high value.
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Chapter 8
Possible Forms of Innate Knowledge

It is notorious that it is difficult to learn something unless there is a sense
in which one almost knows it already. Empirical observations need to be com-
bined with prior knowledge, and the practical usefulness of any learning
methods will be in proportion to how much use they can make of innate

knowledge, and to how easily innate knowledge can be provided.

In the study of animal learning, one of the most important questions is that
of what innate knowledge animals have, of what form it is encoded in, and of
how it affects leaming. In the introduction I argued that once members of a
species rely on acquiring some valuable skill by learning, there will be selective
advantage in that skill becoming innate. That is, animals that have some innate
characteristics that enable them to learn the skill faster or more reliably will
have an advantage over those individuals that do not learn the skill as fast or as
surely. What types of innate characteristics, or ‘knowledge’, might individuals
be provided with that would enable them to learn a behavioural strategy faster?
Any candidate theory of animal learning should provide a variety of ways in

which innate knowledge could be encoded and used.

1. Types of Innate Knowledge in Incremental Dynamic Programming

There are, perhaps, six types of innate ‘knowledge’ that may affect the
speed of learning by incremental dynamic programming. They are

e  physical capacities
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e  subjective reward systems

o  methods of representation and approximation of functions .

e (initial policies, value functions, and models

¢ * bounds and constraints on policies, value functioris, and models
¢ tendencies to ;:xperimcnt

I will consider these types of innate characteristics in turn. ‘Innate knowledge’
is, perhaps, an inapposite term: ‘innate characteristic that affects learning’

would be better, but is longer.

1.1. Physical Capacities

Appfopn’ate physical 'capaciti’es may help learhing in the same way that
good tools can help ca.rpentry For examplc, if a bird has an appropnately
shaped bill for opening a certam type of secd then the precision w1th which the
necessary acnons must be performcd to open a seed might bc much lcss than |
would be neccssary for a bird w1th an unsu1tably shaped bill. Both bxrds might,
if they were both skilled, be able to open the same seeds in the same time and
with the expenditure of the same amount of energy: howcvcr, the bird wn.h the
well adapted beak rmght be able to learn the skill more qulcldy because the

necessary pohcy rmght be simpler and rcqulrc less prccxslon to rcprcscnt.

In sum, a physxcal adaptanon may give an ammal an advantagc in mé.ny
d1ffercnt ways—and one of these ways is in making a valuablc strategy easier
to leam. To call this a form of innate ‘knowlcdgc 1s to stretch the term
‘knowledge’ a little far, but the effect of a more suitable bxll might be the same |

as that of an innate cognitive abxhty
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1.2. Subjective Reward Systems K

So far, I have usually implied that the immediate rewards that an animal
receives for its actions are the primary reinforcers that directly affect its

chances of survival: food, water, expenditure of energy, avoidance of danger,

and so on.

‘ However, an animal may have innate subjective reward systems to guide
its learning. Certainly, to predict an animal’s natural behaviour according to the
optimality argument, a behavioural ecologist will wish to argue that a certain
pattern of behaviour optimises an animal’s eventual reproductive success: the
behaviour may do this by optimising some necessary mtcrmcdmtc criterion,
such as thc rate of energy intake. However, although the ammal’s behaviour
may bc optlmal or near- optimal from the behav1oura.l ecologlst s point of view,
the animal itself may not be trying to opnrmse the behavmural ecologist’s cri-
terion. The ihimai may have innate “likes and dislikes’; and it may award itself
- subjective rewards aﬁd puhishments according .to this innate scheme, and it
might then learn to behave so as to maximise the expected discounted sum of

these subjective rewards and 'punishments.

va 50, thé animal will be learning according to a‘ special-purpose method,
in the sense of McNamara and Houston (1§85)' in thé anirﬁals’ natural environ-
ment the SUb_]CCthC rewards and pumshmcnts rmght be good guides to
behaviour, but it rrught be possxblc to construct amﬁcxal environments in whxch
the subjecnvc reward system was rmsleadmg and would lead the ammals to

learn to bchavc sub-optimally.

As a hypothetical example of how a subjective reward system might aid
learning, suppose that there were animals constructed just like the cart and pole
mentioned in chapter 2. Suppose that these animals experienced pain and possi-

ble injury whenever they fell over. Then the primary reinforcers that would
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motivate the animals to keep balancing are the primary punishments that occur
when they fall over. However, these primary reinforcers would provide rather
unhelpful informatibn as to how tb keep balancing—indccd, this is why the
pole balanéing problem is'interevstiné. Although the anirﬁals could in principle
learn 'to balance using thésc pnmary reinforcers alone, an. isdividual that had an |
innate prcfcrcncs to be ﬁear .‘thc ﬁddle of; thé track, nearly verticél, énd moving
slowly, and which awarded itself a subjective reward whenever it was in this
position, would learn to balance more quickly and with lcsAs‘ injufy than its less
fastidious compctitors' | . ‘

An mnate subjecnve rcward system, thcn, can serve as an encodmg for
useful behavioural stratcglcs an cncodmg that is ‘dccryptcd’ by associative
learning in an appropriate environment. Animals must have innate subjective
reward systems that enable them to recognise the primary reinforcers—food,
injury, sex—when they occur. The development o-f furthcrrinnatc subjective

rewards may, therefore, also be possible.

1.3. Methods of Represehtation and Approximation of Functions

The aspects of the state of the environment that the agent caﬁ distinguish,
the range of actions that it can encode, and the types of functional relationship
that it can construct, are all innate characteristics that can affect the rate of -
learning. In particular, the method of apiafoxifnation of functions that the sgcnt
uses in'constructing its policy and valt'le' function incrementally will affect the
geﬁefalisations ‘that it makes to ststcs that it has not'préviodsly cﬁcountered.

| This is the type of pnor knowledgc that can be mcluded in pattern recog-

nmon systcms what featums to use, what class of funcuon to construct to fit

the obscrvatxonal data.
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1.4. Initial Policies, Value Functions, and Models

| In incremental dynamic programmin.g, the egent’s starting state vvill affect
the amount of leamihg that it neede to do. All the leaming algorithms I have
described consist of the gradual modification of an initial Su'ategy Cieariy, if |

the initial strategy happens to be opumal then it does not have to be modified

at all

In the same way, if an agent were to construct‘é. modell‘of the world
empirically, then the .clolser its initial moelel is to predictieg events correctly, the '
less learning has to occur. | |

| This type of innate -‘knovv.ledge"'shquld be earefuliy distinguished from the
next ivpe, to which it might app‘ear superﬁcially sxmﬂar

1.5. Bounds and Constraints on Policies, Value Functions, and Models

The difference between a constraint and an initial state is that a constraint
applies throughout the whole course of learning, whereas the initial state is
altered during learning, and may eventually be entirely lost. A constraint, in
contrast, may influence any stage, or all stages of learning.

- One possible type of constraint that incremental dynamic programming
can take advantage of is a constraint on the value function. For exmple, sup-
pose one of the vhypothetical pole-balancing animals happened to fall over, or
be blown over, when it ,was“st.anding stili in the middle of its track. It might',
erroneously, assign a low value to that state, which under the optimal policy is
very safe. One type of mnate knowlege that could help to prevent such a mis- |
take and to speed up the leammg is to place innate bounds on the value func-
tion: the constraint might, for example, prevcnt the value funcuon in the safe

states from ever falling below some limit value.
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The strongest form of innate constraint on the policy is that the policy, or
a part of the policy, may be innately fixed, so that the agent has innate

responses to certain situations. .

A crucial difference between a constraint and an initial state is that a poor
initial state need not prevent an agent from attaining optimality in the end,
whereas if the agent has innate constraints that are inconsistent with the optimal

policy and value functon then it can never reach optimality.

1.6. Tendencies to Experiment .

Finally, an agent may have innate knowledge in the form of tendencies to
experiment. These tendencies may be general, in the form of ,cu‘n'osity or the

lack of it, or they may be specific.

Specific innate knowledge may be encoded as specific tendencies to exper-
iment. These tendencies are quite a different form of innate behaviour than an
innate policy: they are rendencies only, not constraints, These behavioural ten-
dencies may lead the agent to perform potentially useful actions that it may
then incorporate into its policy, or they may simply be actions that lead the

agent to regions of state space where it will obtain useful experience.

A tendency to experiment might be very difficult to distinguish experimen-
tally from an innate behaviour—but from the point of view of the leamning
algorithm, an innate behaviour is _an}unchangeable inheritance, while if experi-
ments do not work _the animal’s policy is unaffected, and the‘ experiments may

eventually be abandoned if their estimated action value becomes too low.

The dxstmcuon between tendenc1es to expenment mnate constramts, and
starting values is delicate but 1mportant. A tendcncy to cxpcnment may affect
learning at any stage, and may speed up or slow down learmng, but it does not

in principle affect the capacity to learn the optimal policy in the cnd. A starting
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policy or value function may greatly affect the course of learning, but its effect
will decline as time goes on. Innate constraints have a permanent effect, and
may aid learning in environments to which the constraints are appropriate, but

may prevent learning in inappropriate environments.

1.6.1. Particular Importance of Recommendations of Actions

Tendencies to experiment may be a particularly important type of prior
knowledge for learning systems because they provide a particularly useful type
of information—information as to which actions it might be profitable to per-

form in the current situation.

The point is that in primi'tive learning, an agent can onl)} determine the
consequences of an action by performing it. If many actions are possible in a
particular state, the agent must revisit the state many times and try out the
many different actions before it can be confident that it knows which action is
best. This is a slow process if there are many possible actions, because an

animal may only observe the results of one action at a time.

A tendency to experiment might be encoded in the form of recommenda-

tions for action, perhaps as an ‘if-then rule’:

'IF  the current state is of a certain type
THEN 'try perforrning a certain action
*(if it has not been tried often already, and if

“ the estimated action value of it is not too low)

The IF part of the rule is a description that the current stafc should satisfy; and
many types of deSc.ription’are possiblc: The 'dcscription may be couchcd either
as a dm:ct descnptmn of the statc or it may be couched in terms of charac-
teristics of the state that may thcmsclvcs havc bccn lcamcd In particular, the

statc-descnpnon xmght be one such as
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s

IF the current state has been found to be correlated
with the imminent occurrence of event F,

THEN try performing action B..

Innate knowledge in this form might be useful because an agent cannot help
bu't collect more information about correlations of events with states than it can’
collect about the effects of actions in states, because the agent must revisit a
state many times before it can learn the effects of all actions, whcre_as on each
visit it may observe subsequent events, and so improve its knowledge of corre-
lations.

The crucial point is that it is possible for an agent to learn mémy different
types of correlation in parallel, but the agent can only perform one action at a
time. Thus prior information in the form of recommendations for action based

upon correlations of events with states could be an important type of innate

knowledge to provide. -

2. Advice and Imitation

This discussion would not be complete without considering how an agent
could make use of observations of other agents or advice from a teacher. The
ability to experiment. without corrupting the existing policy and value function
allows an agent to try out advice, or to imitate another agent during learning.
The actions advised, or the actions the agent performs while imitating another
agent more skilled than itself, may be performed as experiments, so that the
advice or imitation may be incorporated into the policy if it turns out a success,

or it may be ignored and rejected if it fails.

This raises the possibility of automatic controllers with a manual override

such that a human operator could take control and try out a strategy of his own
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devising. The automatic controller could observe thé actions of the humaﬁ con-
troller, and would analyse the action sequence as if it were a sequence of
experiments that the automatic controller had performed itself. If the human
operator managed to perform better than the automatic controller’s current pol-
icy during the period of manual control, the automatic controller could use its

observations to improve its internally represented policy and value function.

3. Restrictive and Advisory Innate Knowledge

In this chapter, I have described various ways in which innate ‘knowledge’
could be provided to affect .le.aming by incrcn_iental dynamic programming.
Such knowledge can be provided in a much greater variety of w:;ys than is pos-
sible in simpler learning processes, such as supervised leaming in pattern
recognition. -

There are two points that I wish to emphasise most. First, the main limita-
tion of the primitive leamning methods is likely to be the amount of experiment-
ing that is required: the main use of prior knowledge may be to reduce the

amount of experiment needed by recommending actions.

Second, behaviour need not be either innate or learned—it can be innately
learned, in that the agent learns the behaviour with “the help of innate
knowlcdgc'. This innate knowledge may be either restrictive or advisory. Res-
trictive innate knowledge limits the range.ot' behaviours that the agent can ever
learn, while advisory knowledge may affect the rate of learning, but it does not
in principle affect the range of behavioural strategies that the agent could ulti-

mately acquire.
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Learning in a Hierarchy of Control

1. Ltmltatxons of Learmng Methods Descnbed So Far.

The learnmg methods so far described are suitable only for small prob-
lems. The methods rely for their success on visiting a sufficient variety of
states and tIying out sufﬁcient actions: if the state-space or the number of pos-
sible actions is large, then the leammg methods will take an 1mpract1cal amount

of time and expenment

Be31des the hrmtatlon on the size of the state- space there is also a limit
on the values of Y for which learning is practical. The limit is not so much
~ because of learmng ume—-the action replay argument of appendtx l shows that
the amount of expenence necessary is proportlonal to the number of steps that
have to be con51dered Instead the lumtatmn is that if vy is very close to 1, then
the action values must be represented to high pI'CClSlon the difference between

the action values of Opumal and sub opumal actions is proportxonal to (1-—7)

Indeed up unul now, I have dehberately avoided the ~question of what.
va.lue the discount factor Y should have. I have done this because there 1s no
stratghtforward opnmahty argument Certainly it is somettmes p0551ble to con-
struct an argument that an animal should seek to optumse dlscounted returns.
Suppose that an ammal forages for lmnted penods of time; a foragmg period
ends when the ammal is mterrupted and mterrupnons occur randomly at a con-,l
stant rate. Once an ammal has been mterrupted it must start foraging anew,

and it cannot return to the state where it left off in the prevxous session. In this
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case, it is clear that if the animal knows that it could obtain a reward r after a
further n time steps provided that the foraging session continues until then, then
it should value that future reward less than a fewé.rd of the same size that could
be obtained irhmediately, because the animal might not obtain the future reward
because the foraging period might be cut off by an interruption. If the probabil-
ity of continuing the session until the next time step is y < 1, then the animal
will be able to obtain a reward n steps intovthe future only with prbbabiliry Y‘;
It should, therefore, value a reward r that could be obtained n steps hence at
only Y* r.

This optimality argument for seeking to bptimise discounted rewa:ds.‘is
only sometimes relevant to foraging,'arid”where it applies, the discount factor is
a probability of interruption per unit time. However, the difﬁ@hy of leamning is
proportional tovthe discount factor per decision that the agent makes. Although
an agent may be subject te random interruptions, so that a time-based discount |
factor is appropriate it may still need to make far too many decisions between

mtemxpnons for learning to be feasible using the time based discount factor.

One p0551b1e response to thls d1fﬁculty is to suppose that animals might
seek to opurruse thexr policies relauve to a short nme honzon, even though a
longer time horizon (a larger dxseount factor) would be more appropnate for

their needs. But this is not a sufficient argument.

As behaviour is analysed in more detail, the rate as which an ani'mal
appears to take decisiens becomes larger. If the whele of an animal’s detailed
behaviour: were to be described in terms of a single Markoy decision process,
the state;space would be' enormous and the rate at which the animal would take
decisionskweuld be so great that it Wohld not be plausible to eXplairi ieaming in

terms of incremental dynamic programming in the one decision process.
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- One way of reducing the apparent complexity of behaviour is to analyse it
in terms of a hierarchy of strategies. In this chapter, I will present one method
of constructing hierarchies of Markov decision processes, and I will describe
how it is possrble for the controller at each level of the hxera.rchy to learn

mdependently of the others

2. Hierarchical Control

‘In a control hierarchy, an action at the top level consists of an instruction
to a lower level of control; in response to the top-level instruction, the lower
level of control may carry out one or more actions, and each action at the
lower level may be an instruction to a sull lower level of control and so on. In
the language [ have been using, once an actron has been chosen by the ‘top
level, it then forms part of the state for the lower level of control. The lower
level of control chooses actions on the basis of its current state, which consists
of the action specrﬁed by the top level, and other mformanon, such as the

appearance of the surroundmgs recent hrstory, and so on. An example may

make thrs clearer

Suppose that a navi'gator ;and a helmsman are sailing a ship‘ together. The
navrgator knows the intended destmatron, and he is responsrble for deciding
how to get there. To do this, he plots possrble routes on a chart estimates
expenses and nmes, and, by look-ahead, he chooses an 1mual course to take.
'I'he navigator then tells the helmsman in which drrectxon to steer the ship. Thcl
helrnsman s responsrbllrty is to steer the slup in the drrectron chosen by thev
navrgator Suppose that in order to change the drrectron in whrch the ship is
sarhng, the helmsman has to perform a number of actions such as movmg the
rudder and adJustrng the sails, and that the helmsman rnay have to perform

several such actions over a period of time to achieve a change of direction; the
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heading of the ship may drift, so that the helmsman may have to take intermit-
tent actions to keep the ship on the specified course. The navigator is the top

level controller, and the helmsman is the lower level controller.

This example can be described in terms of two interacting Markov deci-
sion processes, one at the top level, and one at the lower level. The navigator's

decision process is the following:

e The state consists of the position of the ship, and the direction of the

wind.

e The actions consist of sailing in a chosen direction for a certain (given)
interval of time.
e There is a fixed cost during each time interval, and a large reward is

received when the ship arrives at its port of destination.

The navigator makes decisions at ﬁxcd intervals of time, a.nd each decision is a
choice of a dlrcctJon in which to sml Thc information that 1s relevant to the
navigator’s dccmon is the posmon of thc sh1p, and the direction of the wind,
for this determines what directions are feasible, and how fast the ship will sail
on each possible course. If the intervals at which the navigator makes his deci-
sions are much longer than the time needed for the helmsman to change course,
then the navigator need not take the cufrent direction of 'the ship into account in
deciding in which direction to sail next. One might imagine, for example, an

18th ccntury navxgator in rmd-occan, who would take his posmon labonously
with a sextant at noon cvcry day, and who would then issue orders to the
helmsman as to what course to steer for the next twenty four hours after whxch
he would rcure to hlS cabln If, on thc other hand, the ship were sauhng in a
harbour, and the nav1gator nccdcd to give commands at short mtcrvals, then he
would need to incorporate the current dlrectlon and speed of the ship into h1s

description of state.
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The helmsman’s environment may also be described as a Markov decision
process, in which
o  The current state consists of the current direction of the ship, the direction

. of the wind, the configuration of the rudder and sails, and the navigator’s

current orders.
*  The actions are to alter the configuration of the rudder and sails.

* The rewards are given by the navigator: the navigator punishes the helms-
man when the ship is going in the wrong direction and rewards him when
it is going in the right direction.

Suppose that the helmsman behaves in such a way as to maxirf;ise his expected

discounted rewards. - The rewards may come at every time step—-if the naviga-

tor is sitting on the ship’s bridge monitoring pfogress, for example. Even in
this case, the helmsman's optimal strategy may sometimes be to take a punish-
ment now for more rewards later on: if the helmsman is changing course, it

may sometimes be more efficient to turn the ship through more than 180

degrees. Alternatively the rewards may come at longer intervals—for instance,

if the navigator emerges from his cabin at random intervals and either praises
or berates the helmsman according to the current heading of the ship. If both
the navigator and the helmsman follow optimal policies in their respective Mar-

kov decision processes, the progress of the ship will be smooth.

As I have described this example, the navigator at the top level is using a
sophisticated model-based mode of control. The helmsman might be using a
more ‘primitive’ explicitly represented policy, or perhaps a hybrid method. But
an importar}.t point is that any mode of control may be used at any level.

'~ For example, the navigator could be completely lost and could be trying to
find land by following the concentration gradient of flotsam using the search

strategy of E. Coli. In this case the mode of control at the top level would be
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more ‘primitive’ than that at the Iower‘ level. But in “genera‘l one might éxpect
model based methods to be used at the higher levels of control, for two rea-
sons. First, at higher levels decisions are made at a lower rate, so that there is
time for more computation for each decision. Second, at higher levels, obser-
vational data on t}_lé effects of actions is acquired more slowly, so that primitive

learning methods are less suitable as they require more observational data.

The point of formulating a control hierarchy in this way is that the control
problem at each level is that of controlling a Markov decision process. The
control system should be designed in such a way that simultaneous optimal per-

formance at each level results in good performance of the whole system.

The coupling between the levels is achieved by links between the decision
processes, rather than by direct links between the controllers. An action in the
higher process is a command for the lower process, which causes the lower
controller to pursue a certain policy. This command, however, does not go
directly to the lower controller—it affects the decision problem at the lower

level, in two ways,

First, the higher action causes a change in the state of the lower decision
process. This change in state affects the action that the lower controller takes.
Second, the change in state does not have meaning by itself: the commands
from the higher controller are given meaning by alterations in the reward sys-

tem for the lower process.

2.1. Supervisory and Delegatory Control

It is worth discussing one distinction that marks a striking difference
between natural and artificial systems: the difference between delegatory and
supervisory hierarchical control. In delegatory control, the top level passes a

command to the lower level, and the lower level then seeks to carry out the
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command. The lower level then has the responsibility for transferring control
back to the higher level: controi is returned to the higher level when the lower
level has successfully carried out the command, or perhaps when the lower
level has decxded either that it has failed, or that the command is impossible to .
complete The point is that once t.he command has been given, the lower level
is in control unnl it passes control back to the t0p level. In t.hls sense the top-

level delegates control to the lower level

This type of hierarchical control is natural for sequentlal programming -
languages. It has, however, the drawback that the lower level may not correctly .
pas_s control__ back to‘the, top level: the top level of a program may (all too
often)v wait }indeﬁnitely for an errnnt function call to return. This type of
behavxour $O common in sequennal machmes, is totally uncharactensnc of

ammals and people |

In supervzsary hierarchical control the top level retains the initiative. The
- current top-level command is part of the state for the lower level; if the top-
level changes its command the state for the lower level changes, and the lower
level may as a result choose a different action. On the ship, the navigator may
keep track of the state from his point of wew—whnch is the current position—
and he may then issue new instructions when the ship reaches appropriate posi-
tions. The navigator may change h1s current command at any time in response
to unexpected circumstances. Control does not pass to the helmsman once the
navigator has given his command, and then back to the navigator only When

the helmsman has ﬁmshed the nav1gator retains his initiative and superwses

contmually at Lhe top level

While lea.rmng is p0531ble, I belxeve, in both types of control hlerarchy,
this dlsuncuon is 1mportant because in amﬁcxal mtellxgence hierarchical control

is often tacxtly assumed to be delegatory rather than supervisory. But the .
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concept of ‘flow of control’ in a computer program is one that is alien to

natural systems, which appear to be inherently concurrent.

3. Learning in a Control Hierarchy

"Tna control hicrarchy, the controller at each level may seek to learn to
optimise its policy, indep;andenrtly of the -otheré. If this learning is ‘successful,
the result will be that all controllers will a.cquire optimal policies in the Markov
decision problems at their levels of control: this optimality ar each level rﬁust
be carefully distinguished from global optimality of the entire control system.
In this section, I will consider how optimality at each level can be achieved by
learning. - o |

It might initially seem thét, since each controller has its own dééisibn pfo-
cess to control, learning of optimality at each level is possible with no addi-
tional constraints; but two types of difficulty can arise. Both difﬁcﬁlties are the
result of the freedom of behaviour that learning by incremental dynamic pro-
gramming allows—the lcamcrvacquircs the capacity for optimal behaviour, But

it need not always behave optimally.I The definition of optimality at cach level

needs to be made more precise:

e A hierarchical control system is optimal at eacfz level if, whcﬁ all controll-

‘ers follow their estimation policics,. all of &c estimation policicé are

~ optimal. | |

The point of this definition is that the effects of the actioﬁs 6f a high level con-
troller are déﬁncd rclaﬁvc to the bchavibur of a' lower level controller. A high
level action consists of changing the state and rewa.rd system of a low level
concfollcr: the effect of a particular performance of a high level action is what
the low level controller actually does in response to the changed state—but if

low level controllers are to be able to learn they must be free to éxperimcnt.
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~ In terms of the ship example, the system is optimal at each level if

i)  for each possible command of the navigator, the helmsman has acquired a

~ policy that is optimal with respect to obtaining the navigator’s rewards.

if) the navigator’s policy is optimal, provided that the helmsman always fol-
_ lows his opgifna.l policy for the current command.
The simple vision is that each level of the control hierarchy should be a Mar-
kov decision process; if this is so, then each controller may learn to control its
own decision process independently of the other controllers. But there are two
potential complications which fnay destroy the Markov properties of the deci-
sion problems—lower controllers may experiment instead of following their
orders, and higher levels may directly and arbitrarily affect the state transitions

at the lower levels. Both of these problems may be solved.

3.1. Lower Controllers may Behave Sub-Optimally

If the helmsman does not follow his optimal policy for the current com-
mand, but persists in experimenting with different directions, then the navigator
may be disappointed if he follows a policy that would be optimal on the
assumption that the helmsman always obeyed orders. But the helmsman needs
to be free to experiment if he is to be able to learn; and if the helmsman
chooses a wild series of experiments so that he does not follow the same policy
each time the navigator issues a command, then he may prevent the navigator

from experiencing a Markov decision problem.

How can this difficulty be overcome? One approach is to stipulate that
lower levels of control must always follow their orders to the best of their abil-
ity; but this would make it more difficult for the lower levels to learn optimal
policies. A less severe restriction would be to allow the lower levels some lim-

ited freedom to experiment: this requirement might be formalised by allowing
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the lower levels to puréuc a stochastic policy with the probabilitics dependent
upon currently estimated action values. But this suggestion':has an ad hoc
flavour, and does not permit the arbitrary experimentation or advice-following

that incremental dynamic programming should allow. -

Another possibility is that higher levels of control should be able to com-
mand lower levels of control to follow their current estimation policies if neces-
sary, but that they should sometimes allow the lower levels some ‘time off’ in-
which to improve their policies by experiment. In a hierarchy of several levels
of control, if the nth controller from the top wanted to learn by experiment,
then all controllers above it would be switched off, and all controllers below it

would be instructed to follow orders.

A more flexible idea would be for the lower controller .to pass a message
saying "I am experimenting now" to the higher controller whenever it deviated
from its policy by more than a certain amount. When the upper controller
Treceived such a message, it would simply not use the current stage of experi-
ence as one of its training observations. The lower controller would still have
the freedom to behave as it liked—but it would have to declare its experiments
to the controller above. This system has the virtue that experiments are
allowed at any time during normal performance of the whole system. It would
also be compatible with allowing occasional directives from higher levels to
lower levels saying "Follow your optimal policies!". In this way the experience
of the higher controller may be made Markovian in that the effects of its .

actions may be made consistent.
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3.2. Higher Controllers may give Non-Markovian Commands

The second problem is more subtle. Recall that the effect of a high level
action is to alter the state of the low level controller. If the low level controller
is simultaneously performing actions of its own, it might ‘conclude’ that the

| change in state was caused by its own actions, and not by the high level action.
Would this matter;? It might indeed, because the high level controller has com-
plete freedom of action, and it is therefore possible that it might issue com-
mands in such a way that the effects of actions in the lower decision process
appeared non-Markovian. The ¢ntire discussion of learning methods has relied
heavily upon the Markov property, and if state-transitions and rewards are
non-Markovian, then the learning algorithms can no longer be guaranteed to

work.

. A simple solution to this problem is to require that when the higher level
controller initiates a new action, it should send a message to the lower con-
troller saying "High level action now changing”. While this message is -in
force, the lower controller should not use observations of its state-transitions,
actions, and‘rewards‘ as training data in optimising its policy, because the high
level action changes may be arbitrary and need not be Markovian with respect

to the low level state space.

Provided that high level action changes are occurring for only a small pro-
portion of the time, this solution is valid, in that it prevents the lower level con-

troller from corrupting its learning process with non-Markovian data. -

- But there is @ much more interesting solution. The lower level controller
seeks to protect its learning from non-Markovian data that is caused by arbi-

trary actions of the higher level controller.

Just suppose, for a moment, that the high level actions were in fact proba- -

bilistically chosen, and dependent only upon the current lower level state
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(which includes the current higher level "action); and the current 4Iowcr levcl»
acton.. If this were so, then the higher level actions would appear to be caused
by the lower level states and actions, and higher level action’s effect on the
state transitions and reward would appear to be caused by the lower level
actions. If the lowér level actions and states drove the higher level controller in
this way, then the effects of the higher level actions would be Markovian with
respect to the lower level process, and there would be no need to protect the

lower level learning from the effects of the higher level actions.

This odd situation in which the lower level process controlled the higher
level process should not actually occur in practice, but the lower level con-
troller can observe correlations of the high level actions with its current state
and its choice of action, and the lower level controller may then use the corre-
lations to predict the higher level actions from the lower level state and action.
If the higher level controller always chose the actions the lower level process
predicted, then the lower level process would seem to control the higher level

controller, and all the lower level data could be used in learning.

If the lower level controller can make strong predictions about the higher
level actions, then it can, in effect, alter the definition of its Markov decision -
process so that the effects of lower level actions include the predicted higher |
level actions: to ensure that its learning data is Markovian, the lower level con-
troller then only needs to reject those observations in which the high level |

action was not predicted.

The lower level controller may, therefore, learn to_predict the upper
controller’s actions, and then optimise its policy relarive to its predictions. I
have not yet determined under what circumstances this method of learning

would be stable.
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4. The Sequence of Learning

Initially, neither the top-level controller—or ‘master’—nor the lower level
controller—or ‘slave’——possesses an optimal policy. The first stage of learning
is that the master may perform arbitrary actions, and the slave leamns to obey
some of the master's commands. During this first stage, the master may possi-
bly not be able t.o learn anything, since the slave does not know how to obey
the commands. Even if the master does alter its policy, the slave’s policies will
be changing, so that there is no guarantee that the master’s initial policy -

changes will produce any lasting improvements. .

In the second stage, the slave has learned to obey enough commands well
enough for the master to start to improve its policy; as the mast.cr improves its
policy, it will tend to give the commands it finds useful more often than the
commands that it does not find useful. The slave will, therefore, gain more
experience with the commands that the master finds useful, and its performance -

on these will further improve. .

Ultimately, the master and slave will acquire stable or meta-stable policies.
One reason why the slave’s policy may be meta-stable is that it may not gain -
enough experience to lean to obey commands that the master did not initially
find useful; the master may cease to give these commands frequently, so that
the slave continues to have little experience with them. Note that the slave can-
not correct this deficit in its experience by initiating its own experiments,
because the srare in which it may gain the relevant experience is that in which -
the master has given the appropriate command; hence it is partly the master’s

responsibility to ensure that the slave receives a sufficient variety of opportuni-

ties of experience. =

Note also that the master’s policy may be optimal with respect to the

slave’s current abilities, but that the slave’s policy may be meta-stable in that it
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cannot obey certain potentially useful commands. Thus, even though from the
master’s point of view, its policy is optimal, the masters policy may be meta-

stable if the slave has not yet learned certain abilities.

~As the master’s policy ceases to change rapidly, the slave may, if it has
the ability to do s_d, learn to predict the master’s commands on the basis of its
own state (and, perhaps, action). In doing this, the slave is altering its own
decision problem, and it may adapt its policy accordingly. This changes the
way in which it obeys commands, and so causes the master to adapt its policy -
also. I do not know under what conditions this mutual adaptation of master and

slave is convergent, beneficial, or stable.

5. Discussion

In this chapter, I have presented informally a method of formulating
hierarchical control problems as coupled Markov decision problems, with auto-
nomous controllers at each level. Provided that the controllers are able to com-
municate in some simple ways, it is in principle possible for all the controllers
to converge to optimal policies for their own decision problems. This hierarch-
ical learning provides a mechanism for developmental self-organisation of a .
hierarchy of skills, using the method of incremental dynamic programming at -
each level. The rewards at each level may be determined both by the level
above, and also by the environment: at each level of the hierarchy, therefore,

the development of the skills may take account of environmental constraints.

There are also possibilities for mutual adaptation of the controllers in cou-
pled decision problems, and there are, of course, many more possible
configurations of coupled Markov decision problems besides a simple hierar-
chy. There are fascinating possibilities for further research here. Unfortunately

I have not yet implemented any examples of these hierarchical control systems.
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1. Limitations of Finite Problems =

Sd faf, I have only discussed pfoblems in which there are. finite numbers
of Statcs} and actions. ‘This is 4becausé', in a finite prbblcm; each action value
may be adjixsted separately, :ind ihe Ieafﬁing methods are easierjto ‘desr<':ribe and
to analyse. ‘Although iﬁ principlé, ‘problcmﬁ with céntinuous sets of states or
action;s may ibe. apbroximatcd as finite i)rotl)lcins, the ﬁnifc appréximﬁﬁon may
need to coﬁtain a lafgc number of adjustable parainctcrs%nc for each state-
action pair, perhaps. At each step of lcﬁing, 6n1y one of a few of these
par;ctmetcrs may'bc adjusted éigriiﬁcantly. Le_arm'ng will, ‘tﬁe'refore, be slow if
there are many statcs. |

Convcnhonal 1mp1emcntat10ns of dynmc programmmg use a finite-state
approxlmauon The state- spacc is typxcally a reglon m a Euclidean space, and
the value functxon is usually rcprcsentcd explxculy, by stonng values at each of
a rcgular gnd of locanons over the statc space. (Acnon va.lues are computcd
tcmporanly for each statc, but once the 'maximal action valuc has been deter-
rmned the other values are not usually stored.) With thls method of representa—
tion, the amount of storage required is proportional to the number of pomts- on'
the grid. For a high-diménsional state-space, one is faced with the choice of
either ha‘)ing a coarse"grid which rhay represent the fuhction inaccurately, or
else having a very laigc ‘number of grid points with a corhcspondingly large
requirement for storage, and also for calculation, since repeated calculations are

necessary to obtain the value at each grid point. This is the ‘curse of
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dimensionality’ that limits the applicability of dynamic programming in practice
(Bellman and Dreyfus 1962). For leaming by incremental dynamic program-
ming, the most important const'r‘ai‘nt is the amount of experience that is needed:
this corresponds roughly to the constraint on the amount of calculation in con-

ventional implementations.

The natural and straightforward representation of a function as values at
points on a grid gives, for most practical applications, a rcprcscntation with far
too many mdcpcndently adjustable parameters. But this dxfﬁculty of represent-
mg a funcnon on a high drmenswnal spacc may often be ﬁnessed by choosing
a more compact form of representation than that of storing the value at each
pomt on a regular gnd For examplc, Omohundro (1987) dcscnbcs a number of
representations for functxons on multi-dimensional spaces in which standard
corrlputer science techniqués are used to store the function economically. How-
ever, the methods of rcpresénting functions that 'hé.ve reéently attracted enor-

mous interest are ‘artificial neural networks’.

An ‘artificial neural network’ is a (usually simulated) collection of small
processing élcméntr that are intended to n‘iodél, or to have an analogous func-
tion to, neurons or small collecvtions _of neurons. Each elcincnt, or ‘ccli’, is con-
nected to rrrany other cells; these connections may be one-Qay or tv'vo-way..

Each connection has a numeric weight, which may be adjustéd during ‘learn-

ing’.

activation’.

(Part of) the current state of each cell consists of a numeric ‘level of

The level of activation of a cell depends upon the levels of activity of the
other cells from which it receives inputs, and upon the weight attached to each
of thesc inputs. A cell’s level of activation may affect othcr cclls through its

outputs. Changcs in activity of some of the cells may thcrcforc have effects

that propagate through the system.
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In a neural network, there are two forms of computation, short-term, and
long-term. The short term computations are the changes in the levels of activa-
tion of the cells that follow a change in the inputs to the net. The long term
computations consist of slow adjustment of the weights to improve the agree-

ment of the short term computations with training examples.

In recent ye;ars, a number of new forms of computation and training
methods for neural nets have been published; a number of these are described
in, for example, Rumelhart and McClelland (1986); a good, concise review of
various types of neural net is in Lippman (1987).. What all of these methods
have in common is that they can all be viewed as devices for approximating
functions; the approximation is achieved by presenting the network with zrain-
ing examples, each of which is an example of an input paired with the desired
corresponding output. In the majority of the current work on ‘neural nctwprks’,
it is assumed that a neural network is a device that ‘learns’ to compute a func-

tion from training examples.

_The point [ want to make here is that it is widely assumed that at the level
above individual neurons, the computational modules of the nervous system are
collections of neurons that learn functional mappings from training examples.
This assumption may be right, half right, or plain wrong—nobody can know
yet. But, in primitive learning, the ba}sic computational . modules .that ‘are
requirea are modules to learn the action value function, or to learn a _valuc\
function and a policy, or a value function alone, from ‘training examples’ that
are extracted from observations of experience. In this rather shallow sense, the
learning methods I have described appear to be fully compatible with current

assumptions about neural computation. -

There is, however, a problem. All methods of representing functions that

require less storage than is required by grids must necessarily also have fewer
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adjustable parameters, for it is the adjustable parametcrs that must be stored.
The effect of this is that each adjustment during learning will affect a whole
region in state-space, and not the value stored for just one point. If an adjust-
ment is made, for example, to a stored estimated value function as a result of
an observation of ‘an action taken from point x, the adjustment will not just
alter the estimate.,d value for point x but also the estimated values for many
other points y. Which other points have their estimated values adjusted, and
how, will depend on the particular approximation and adjustment method used.
In incremental dynamic programming, the overall effect of the adjustments may

be either to speed up or else to hinder or prevent convergence.

So the problem is: what types of parameter estimation and function
representation will work with the types of incremental adjustments that are pro-
vided by the learning methods? And for what classes of Markov decision
processes can each funcﬁon estimation method be used? This is not so much a
single problem as a field of research. I have not attempted to tackle this prob-
lem theoretically, but I have implemented a demonstration using one particular

function approximation method—the ‘CMAC’.

2. Function Representation Using the CMAC -

The CMAC (or ‘Cerebellar Model Articulation Computer’) was proposed
by Albus (1981), partly as a speculative model of the mode of information
storage‘ in the cerebellum, and partly as a practically useful method for the
storage and incremental approxiniation of functions, for use in robot control. I
will consider the CMAC purely as a method for the local approximation of
.functions, for which it is undeniably useful, rather than as a neural model, in
which role its status is questionable. Considered m;ithematicany, it is a method

of approximating scalar or vector functions over a multi-dimensional space
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[

using pre-defined step functions. The advantage of the method is computational
speed and simplicity, rather than accuracy ot' storage economy. | |

A CMAC works as follows The purpose is to maintain and adjust a
representauon of a funcuon on a space: that is, for each pomt x in the space,
the CMAC spemﬁes a scalar or vector value U(x). To store the values, the
space is partitioned into rectangular regions or tiles, A tiling of the space is a‘
covering of the space by non—overlappmg ules, such that cach pomt in the

space is contamcd in exactly one ule The tiles may be dcnoted :1 vy, vt IF ‘

the tiles are chosen to be rectangular, and aligned with the coordinate axes,

then it is very easy tov compute which tile any given point x is in. '
A CMAC for a given spacevconsists of

e 2 number of tilings of the space, so that each point in the space is con-

tained in a number of overlapping tiles.

e an array u[l1], --- , u[n] of scalar or vector values, which are adjusted

incrementally during approximation.
* - a hash function hash which maps each tile to an element of u.

Suppose there are 10 different tilings, which are:
s f2s 03, 000

21,022,083, "

Chotstf102003,

The tilings overlap, so that each point in the space will then be in exactly ten
tiles, one tile from each tiling. The method given by Albus, and the method I
have used, is to choose similar tilings, but to displace them relative to each

other, so that no two tilings have their tile boundaries in the same place. A
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point travelliﬁ'g through the space will, thcrcforc; cross tile boundaries at fre-
quent intervals: in 6ihcr: words, thé space is ﬁncly partitioned into small
regionS, with one region for each combination of ovérlapping tiles.

A finite number of adjustable parameters are uséd to store the function—
théy afe'u[I] y "0 . , u[n] , and their values arc'stored in an array. Now, each
tiling is infinite in extent, so that it is not possible to store a separ_a“tc parameter
for each tile: the solution is that each tile is maﬁpcd to an arbitrarily chosen
clemcﬁt in the array. This mapping is defined usingl a hash function, and it is
fixed when the CMAC is constructed. The effect is that each array element—
each adjustable parameter—is associated with 6né iﬁ n of thé tiles, selected in 2
pseudo-random fashion throughout the space. To visualise this fc;f a two dimen-
sionai space, consider some parameter u(i]; if the tiles mapped to u[i] were
coloured in, then on looking at the space the visual effect would be that a pat-
tern of tiles would be coloured in, approximately one in a tiles being coloured,
" and this pattern would stretch as far as the eye could see. If the tiles mapped to
some other array element were also coloured in, a second such pattern of
coloured tiles would appear, and no tile would be coloured twice, since each
tile is mapped to exactly one array element. Let us represent the mapping from
tiles to array elements as hash. If the tile t; is mapped to the kth element of the

array, then this is denoted by hash(t;) = k.

To compute the function represented by the CMAC at a given point x in
the space, the following steps are carried out. (Assume that the CMAC has

been constructed with 10 tilings.)
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Computing the Function
1. The 10 tles containing x are found.

Let thembe ry; , *** , 0.,

2. . The array elements corresponding to each of the tiles are determined.

Let

kl = hash(tl',-‘)

kg = hash(t1g; )

3. The values of the array elements are then averaged, to yield the

answer. That is,
o 1 ,
UG) = ullal + -+ + ulbie] |

Note once more that the array 4 may store either scalar or vector values. That
is, U(x) is equal to the average of the array values associated with the tiles that
contain x. This method of storing a function is an example of the method of

‘coarse coding’ as described by Sejnowski in Rumelhart and McClel-
land (1986).

The method of adjustment that Albus (1981) recommends, and which I
have used, is the folld;;ving. Suppose that a ‘training example’ is presented,
consisting of a point x and a desired value v. The parameter values of the

CMAC are adjusted as follows.
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Incremental Approximation

1. The value U(x), and the array'indices ky, +** , kg are determined

exactly as in computing the function.

[§S]

If |U(x) -v| <€ ,' where e is a predetérmined small positive constant, then,
no further adjustment is made, otherwise adjust each array element accord-

ing to

ulkyl = ulk] + o (v=-U))

ufkio) = ulky] + a (v—Uk)

where a is a predetermined positive learning factor, less than 1. If the

desired values v are subject to noise, then o should be smalil.

The effect of this adjustment method can be more clearly seen if we consider
the set of tiles that contain a point x, as illustrated overleaf. The values associ-
ated with all these tiles are adjusted by the same amount, so that the values for
points near x and contained in all 10 tiles will change by a(v=U(x)), while fhe

values for points further from x and contained in only one of the tiles contain- .
ing x will change by an amount -%(v—U(x)).
' A Inotat-ion for the adjustment of a CMAC. U, at Aa point X, towards a
desired value v, with a learning factor & is | o |
U’ = adjust( U, x, alpha, v)

This notation is intended to indicate that there is a process of adjustment that
will affect U in a region surrounding x; the CMAC function after the adjust-
ment is U’

How large must the u array be? That is, how many adjustable parameters

are necessary? It will (usually) only be desired to approximate the function
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This diagram shows the collection of CMAC squares that contain P.

Each CMAC square is associated with a stored value.

The value of the function at point P is the average of the values stored
for the squares that contain P.

When the CMAC value is adjusted for point P, the values stored for all
the squares that contain P are adjusted.

The value for point Q, which is contained in only two of the
CMAC squares, will only be slightly affected by the adjustment.
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over a finite region A of the space. The number of array elements needed
depends on the size of the region A, and on the variability of the function in
this region. If the array is too small, then many tiles within A will Be mapped
to each array element, and there may not‘ be enough degrees of freedom to
represent the function accurately over A. If, on the othcrrha-.nd, the arfay is so
large that, on avci'age, fewer than one tile in A is mapped to cz;ch array ele-

ment, then there are (almost) enough degrees of freedom to adjust the value

associated with each tile in A separately.

One practical advantage of the CMAC is that it is not necessary to know
beforehand the region A of the space on which the approximation will be made.
The training examples presented define the region over which the function is

approximated.

Provided that the array u is large enough, the CMAC can be viewed as a
local approximation method, in which a training example for a point x will
affect the values only of other points near x. Ffom a-purcly practical point of
view, the great advantage of using a CMAC is that, unlike most other proposed

‘artificial neural networks’, it works fast and reliably.
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Chapter 11
Two Demonstrations

~ In this chapter; IAwill Iiéséribe -two démonstration hnplemeﬁtaéions of
learning methods. The bbint of the Vdemonstratibns', is first tc:show that the
learning methods do produce improvements in performance in some simple
problems, and second to demonstrate some qualitative characteristics of incre-
mental dynami'c programming. The first demonstration is of a synthetic ‘route- -
finding’ problem, and the second demonstration is analogous to a Skinner box

with various simple reinforcement schedules.

The programs have been written in Pascal, and run on a Sun 3 worksta-
tion. The random number generator used is not the system supplied routine, but

a subtractive generator recommended by Press et al (1986)..

1. A Iiout’e-l'?inding froblérﬁ

Thclcammg nicthod d_cscn'bcd in chapter 7, section 4.3, is that of learning
a value fuﬁciién ahd a policy, with policy improvement by a gradient rﬂcthod at
each state, This method is interesting because the policy representation is

' economical—only one action need be stored for each state, rather than the

storage of a value for each state-action pair.

The aim of the first demonstration is to display the functioning of the

learning method as clearly as éossiblé; it is 'not,intcnded to model any particu-

lar real problem.
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1.1. The State Space

The state space chosen is a square in the Euclidean plane, with sides of
length 2, centred at the origin, .and aﬁgned with the coordinate axes. This
enables the estimated value function and policy to be readily displayed: the
value function is _displaycd as a 3D plot, and the policy is displayed by drawing

the action vectors at each of a grid of points over the state space.

At any time, the current state of the agent is a point in this square.

1.2. Actions and their Effects

At any point in the square, the set of possible actions is.the set of two

Ax . Do :
dimensional vectors [Ay] » where Ax and Ay are arbitrary real numbers. These

are the actions the agent can choose to perform. Broadly, the effect of an action

Ax
' [Ay] taken at a point (x,y) is to move to a point (x + Ax, y + Ay), with the pro-

viso that the agent must always remain inside the square of the state-space.

If the agent makes a move that would take it out of the square, it is

stopped at the edge. Suppose the agent is at state (x,y), and it chooses to make
Ax [

the move Ayl If it were unconstrained, it would ‘land’ at point

(x + Ax, y + Ay); for brevity, sﬁppose this point is (x’,y"). The agent cannot

leave the square: its moves are curtailed by the rule

-1 if x’ < -1
=11 ifx’>1
X otherwise

if y < -1
yi=31 |ify>1
y otherwise
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The effect of this rule can be seen in the diagram overleaf.

1.3. Rewards and Penalties

There are two sources of rewards and penalties. Firs;t, the agcrit is given a
reward or pér'l‘alty‘-whenévér it is in a specified region in the state sp#ce. In the
coming example there is a ‘target'—a small ‘;éctanglc— in the upper right hand
quadrant of the state space; if the agcntrris in the target at time ¢, then it

receives a large reward at time ¢ whatever action it performs.

Second, each move the agent takes has an immediate cost. The cost of a

move is a function of its length. If the length is d, then the cost c(d) is

»

cd)=c d + czd2

where ¢ and ¢, are positive numbers that are kept constant for the duration of

each run of the program. .

The cost is a functiqn of the length of the intended move, rather than of
the actual distance travelled. The reason for this choice is that if an intended
move leads outside the sciuare, then the cost 6f a longer intended move is still
greater than the cost of a shorter move in the same direction, so that the agent
could reduce the cost of its act'ion by reducing tﬁc lengths of its intended
moves, even though the actual moves might all be cut off at the boundary of

the state space, so that the actual distances travelled would be the same.

The cost function was chosen to be 2 combined quadratic and linear func-
tion of the length of the move for the following reasons. The quadratic term
was included to penalise long moves, so that to reach a target a long way away,
the optimal strategy would be to take a sequence of short moves rather than a
single long move. If the cost of a move were simply a multple of the square

of its length, the cost of small moves would be very small, and there would be
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The square represents , -7

the state space. _ -7 Intended Move

Actual Move

“Actual Move

. Intended Move

The agent cannot leave the square: if it attempts to move

outside the square, its move is curtailed, as shown. - -
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no incentive for the agent to reduce the size of small moves on grounds of cost.
To gwe the agent an mcenuve to reduce the size of even small moves, part of

the cost was made propornonal to the length of the move.

2. Demonstration of Action-Gradient Learning

The leai*ning problem is set up as follows. The target is a small rectangle,
placed in the ‘top right hand comer’ of the state spaee, and it is drawn as a
small rectangle in the policy diagrams. If the agent performs any action when it

is in the target,
* the agent receives a large reward, and

* the action the agent takes does not have its normal effect: instead, the
effect is that the agent moves to a randomly chosen position in the state

- space. The landing position is chosen from a uniform distribution over the

whole state space.

The point of re-positioning the agent in a randomly chosen posiiion in the state

- space is to ensure that it gets experience of all parts of the state space.

 2.1. The Learning Algorithm |

Both the policy f and the value fuﬁction U axe. represented using CMACs,
as described in chapter 10, These functions are, therefore, defined at all points
in the state Space. It is not possible to assign new values or actions to states
individually; instead, the CMACs must be adjusted according to the method

described in chapter 10.

All cells in the CMAC initially contain zero for the value function and the
zero vector for the policy, so that the initial policy of the agent is the zero vec-
tor throughout the state space, and the initial estimated value is also everywhere

ZEro.
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" Actions are chosen by calculating the policy action for the current posi-
tion, and then adding a randomly generated deviation vecror. That is, the

action chosen at time ¢ is

3 =fx)+b,

where f,(x,) is the policy action, and b, is a randomly generated vector of uni-
formly distributed direction. The mean length of the deviation vectors b, is
denoted by b. The value of b is supplied to the program at the start of a run.

The lengths of the deviation vectors b, are independent, and exponentially dis-

tributed, so that the probability density for b having length / is —;-e‘b‘ , for

[ > 0. The point of adding the deviation vectors is that in o;'dcr to improve its
policy, the agent must perform actions that are different from those recom-
mended by the policy: this mechanism for adding deviation vectors to policy
actions is just one simple way of achieving this. The exponential distribution
was chosen simply because it is convenient, but I have also implemented the
method with deviation vectors of constant length and random direction, and the
behaviour of the learning system is similar. There is no reason to suppose that
other distributions should not also give qualitatively similar behaviour, provided

that the frequency of large deviations is not too great.

Estimated returns are computed as follows. The value of A, depends upon
the length of b;, which is the random vector added to the policy action. That

is’. N
Ay =exp( -1 [b] )

where 1 is the rejection factor, as described in chapter 7, section 3.1. 1 is kept
constant throughout a learning run. The effect of M is to control the extent to
which large deviations are rejected in estimating returns. If 1 is zero, then A, is

always equal to 1, and all sequences of actions count equally in estimating

152



Chapter 11 — Two Demonstrations

. returns.

The estimate of return used in policy-adaptation is r(f), and thc. estimate of
return used in vaiue-adaptation is u(#). r(r) and u(r) are defined in a way that is
similar, but not identical, to r® and u®. r(s) is an estimate of the acton value
of x, , a, and u(¢) is an estimate of the value of x,. The difference between
them is that 1f a, deviates greatly from the policy action, A, will be close to
zero, and u(s) will be close to the existing cstima_.!tcd value of x;, , so it will not

cause any change in the estimated value function U. The definitions are:
r(@) =r + (1-An1) ¥ Upposr)
+ M1 ¥ Pt + Mt (I )P U (i) + -
+.7"x+1 Rt P rpge * Mt " " Mesti ¥ UreggCinsr)
and. th¢. dc;.ﬁniti_on of,u(z) is | | ”
S u() = (1-A U px) +
M+ WA W) +
| + Mhert Tt + At (1D )P Ui i) +
. et Meanet¥ T+ R R YV Uv(Ei)

where M is the ‘leaming period’ for r and N is the ‘learning period’ for u. The
point of these ‘leamning periods’ is that they put an upper limit on the number
of previous states it is necessary for the agent to store. The estimates r(r) and
u(r) can be computed at times z+M and 7+N respectively. A second difference
bctwcen these estimators and the estimators r? and u} dcscnbcd in chapter 7 is
that r(¢) and u(t) use Uy and U,y respectively throughout. This difference
between the two methods of calculauon was caused by an oversxght in the cod-
ing of the program. 1 do not believe that this dlffercncc in the mcthod of calcu-

lation makes a significant difference to the results.
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The learning rules are, in the notation of chapter 10, page 144:
Uit = adjust( Uy, x, , o, u(r))

and

frmel = adjust( freM » %t s B(r(t)—U,_,,M(x, N .a)
- where B = B*if r(t) 2 U, p(x; ), and B = B~ if r(t) < Uppglxy).

The values of 1, o, B, M, and N, and of all the other parameters men-

tioned below, may be supplied to the program at the start of each run.’

3. Results

The behaviour of the program is consistent and reliable over a wide range
of parameter 'valuesr. I will show results from one run, and comment on them in
some detail; results obtained using other parameter values and o.ther'rvandom
seeds are qualitatively similar. In informal experimentation with this and other
leaming problems, I have found that the changes in the parameters have the

following qualitative effects, if the other parai'ncters are kept the same:

. If the size of the CMAC patches is incrcaécd, léaming is faster, but the

. final result becomes worse, since the representation is coarser.

e If the discount factor is made too close to 1, the policy "may become

unstable.

e Using a low policy leaming factor for negative prediction' differences

improves the final policy.

e If the learning factors for the policy are made too large, the policy

" becomes unstable.

e T seems to have surprisingly liitle effect in this problem.
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The parameter values used in the run for which results are presented were

as follows:

Learning Parameters

' Discount Factor N 0.9

Leamning Factors

o 0.5
gpr - . 0.1
B~ 0.025 -

Learning Periods
for value function V) =~ 2 time steps

for actions (M) 1 time step

Other Parameters
Rejection Factor | 5.0

Mean_ Action Perturbation b ‘ 0.1

' CMAC Parametefs

Size of CMAC squares 0.2 N
- Initial value o 0 everywhere

Initial action : 0 everywhere - . .
Size of CMAC table 40,000

Note that the retumns used for adjusting actions are computed over only one

time step: the reason for this is that the adjustment of the actions is a gradient

descent process for ﬁnding a maximum, whereas the adjustment of the values is
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a process of finding a mean value. The adjustment of actions, therefore, is more

sensitive to noise in the estimated returns than is the value adjustment.

The run for which results are presented was selected arbitrarily, and the
learning method will work over a wide range of parameter values. The main
limitation is that if the leamning factor for actiorns‘is too large, or if the discount

factor is chosen to be too close to 1, the process becomes unstable.

The CMAC table may appeér large for such a simple problem: in fact, the
table may be reduced to little more than 1% of that size without undue degra-

dation of the results.

The costs and rewards arrcras follows

Costs and Rewards

Reward on landing in target - . 100

Move cost as a function of length  -0.3/ - 3/2

At the start, the pélicy is to stay still e?erywherc, and the estimated value
function is everywheré 0. The agent’s initial berfofmance, therefore, takes the
form of a random walk in the state space, each step being just the deviation
vector b,, The program displays the path of the agent in the state space with
animated graphics. A printout of the scrccr‘xlshowing an example of the early
random performance is overleaf, It is followed by"plots of the policy and value
function after 3, 10, 100, and 1000 successes, a ‘succéss’ being what happens
when the agent lands in the target. In the screen 'priﬁtout', the stippled rectangle
in the top right hand corner of the graphics area is the target; the black disc is
the starting position of the agent « x that trial, and the sequence of jumps that

the agent has made is shown as a line. Note that the agent may jump over the

~ target without landing in it.
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The course of learning may be described as follows. Since experimental
actions are imperfectly separated from policy actions—that is, the rejection fac-
tor is not equal to infinity—the agent’s estimation policy is in effect stochastic.
It therefore finds that it accumulates costs during its initial random walk, and in
those parts of t_hc state space that it has visited during its random walk, the
value function is reduced below zero, and slight modifications may be made to
the policy.

Eventually, the agent lands in the target. On the next move, it experiences
a large reward, and it lands in a randomly chosen point in the state space. The
initial effect is that a peak in U devélops over the target. The first actions that
receive rewards are those taken in the.térget, but because all actions in the tar-
get have the same effect, thcsc acuons arc rcmforccd cqually in all directions
(on average). However, once a peak in U has dcvclopcd over the target,
actions that lead thc agent to chmb the 51dcs of this peak will be reinforced,
so that the actions now turn in the dxrecnon of the gradient of U The U
‘mountain’ gradually spreads across the state- space, and the pohcy adjustments |

shift the arrows to point up xts slopes

After 100 successes (a ‘succcss’ bsing what 6ccurs when the agent lands
in the target), the hill of U has spread across most of the state space. An
interesting phcnomcnon is v151ble at this ’stagc The estimated value funcnon as -
it spreads is not a symmetrical cone with its peak over the target; instead, it is
shaped more like a mountain, with spurs radiating out from it. This is no
accident of the particular run, but it is something that occurs consistently in
every run, often to a more marked extent than is visible in the results shown.
The reason that it happens can be seen from the diagram showing the policy

after 100 successes: this shows that there are ‘well wom paths’ leading into the

target. These are ‘paths’ in the state space along with the policy leads the agent
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. to the target relatively efficiently; because the policy is relatively efficient on
the paths, the value of U on the paths is relatively high. The policy adjustment
,;nethod tends to direct the policy arrows towards regions of state space with
: relatively‘ high esu’mated value. The result is that the policy tends to change so
_asto divrect; the agent towards the existinAg well-worn paths: the effect of this is
to cause the a'gent‘ to travel along the well worn paths still more often, so that
the policy on the well worn paths becomes yet more efficient.

- After 1000 successes, the policy is to move towards the target from all
parts of the state space. I then introduced an ‘obstacle’ into the problem. The
obstacle consisted of a rectangle in the middle of the state space, with the pro-
perty that if the agent was in the obstacle, then the lengths of its moves were
reduced by a faetor of 10, but the cost of a move remained the same. _’I'hat is, if
the agent was in, the Vobsta‘ele and chose to perform an aetion that w_ould nor-
mally cause it to travel a distance of 1 unit, then it would pay the cost of trav-
elhng 1 unit, whlle in fact travelhng only 0.1 units, ThlS penalty applies only to
‘moves that stan when the agent is in the obstacle: the agent can jump over the
oobstacle with no penalty The obstacle has two effects on the problem ﬁrst it
vcosts the agent more to travel through the obstacle because each move msxde
'the obstacle carnes a cost penalty, and second if the agent enters the obstacle,
it may need more time steps to reach the target, SO that the target rewa.rd is
discounted more. Once the obstacle has been mtroduced, therefore, the agent
should alter its policy so as to either travel round it or else to jump over it.

Note that the agent cannot ‘sense’ that it is in an obstacle: all it knon is
its position in the state space. Nor does the agent notice that it travels a shorter

distance than before when it is in the obstacle. All it notices is the difference in

the estimated return from actions.
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Plots of the policy and value function 500 and 5000 successes after the

introduction of the obstacle are overleaf,

500 successes after the introduction of the obstacle, the value function in
the region of the obstacle is greatly reduced, but the policy is not yet much
changed. Fer instance, note that if the égent starts to the left of the obstacle, it
still travels straight into it. The estimated value functon for states to the left of
the obstacle is, as a result, negative. The value function for the extreme bottom
left hand comner still appears high, possibly because it has not yet been visited

often enough to be reduced to a level appropriate to the changed problem.'

But 5000 steps after the introduction of the obstacle, the estimated value
of states at the bottom left has recovered somewhat, as the poticy now leads the
agent around or over the obstacle from virtué.lly all points in the state-space
outside the obstacle. Within the obstacle itself, hdwever;' the value is still low

" because of the time taken and cost paid in escaping.

One reason that leaining proceeds s0 smoothl)t in this demonstration is
that the agent 1s repeatedly placed in randomly and uniformly chosen positions
in the state spacc The agent will, therefore, gain expcnence of a11 parts of the

state space eventually It will, of course, visit those parts of the state space near
r to the target more often than it visits the edges of the state SpaCC because the

agent travels to the v1cm1ty of the target on every trial.
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~ 4. A Learning Problem Analogous to Conditioning

- The second computational demonstration is analogous to a simple form of
- conditioning. . The problem chosen is that at each time step an agent may
choose either to perform or not to perform a certain action (such as ‘pressing a
lever’ or ‘pecking a key’). If the agent performs the action, there is a small
cost; if the agcnt does not perform it, the cost is zero. This is a reasonable
assumption, since performing a rcﬁponsc such as a lever press or a peck will
cost an animal more energy than sitting still. I will call the action ‘pecking’.
Occasionally, the agent may receive # large reward, analogous to the delivery

of food to a hungryl animal in a Skinner box.

To dctermme Lhe opnmal pohcy ina Skmncr box wnh no pnor knowledge
of the remforcement schedule is not a tnwal problem. This demonstration
shows the opcratlon of a Q- lcammg algonthm faccd with a range of different

reinforcement schcdules. The following schcdulcs of reinforcement are imple-

mented.

Fixed Interval (FI)

At any time the reward is ‘either avazlable or unavailable. When the
~reward is available, the agent receives the reward only if it pecks, and
when the reward is unavailablq, the agent does not receive a reward

whether it pecks or not. If a reward is made available at the rth time step,

the agent will receive it if it pecks at time ¢.

The fixed interval schedule may be described as follows: for the n~1
steps following cach reward the agent receives, the reward is unavailable.
On the nth step, the reward is made available again, and the reward
remains available until the agent pecks, and so receives it; the cycle then

begins again. The agent may, therefore, receive a reward on at most one in
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n time steps.

" In this and subsequent schedules, the agent cannot perceive whether
- the reward is available or not, and there is no perceptible change other

than the passage of time to show that a reward has become available.

Variable Interval (VI)

If the agent receives a reward at time ¢, the reward becomes unavail-

able. On each subsequent step, from time r+1 onwards, if the reward is

still unavailable, then it is made available with probability -—1-; if the
S n

reward has already become available, then it srayslavailable until the agent

pchs'and receives it. The effecf of this schedule is that the lengths of the

times during which the rewards are unavailable are exponentially distri-

buted, and if the agent pecked on évcry time step, the mean interval

between rewards would be n.

Classical Fixed Interval (CFI)

The agent receives a reward on every nth step, whatever it does.
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Classical Variable Interval (CVI)

On each step, the agent receives a reward with probability % what-

ever it does, and indcpéndemly of what happcnéd on previous steps.

Fixed Ratio (FR)

The agent receives a reward on every nth peck, regardless of how

much time has passed.

These are the objective problems that the agent may face. What remains to be

done is to define the agent’s subjective problem.

What I am going to do is to construct a silmplc and straightforward imple-
mentation of Q-learning for conditioning. I do not want to claim that the imple-
mentation that follows is a realistic model of animal learning in conditioning
, expen'ment;; animal learning is likely to be considerably more sophisticated

than the algorithm presénted here.

| _ __-The‘ Subjective Sta‘teVSpéce

It is reasonable to suppose that, since rewards come at infrequent intervals,
receiving a reward is a salient event for the agent. One dimension of the
agent’s state space, therefore, is a measure of the elapsed time since the last
reward. The only other information the agent has is tﬁe history of its pecks, and

the second dimension of the state-space is a measure of the number of pecks

~ since the last reward.

- An intuitively reasonable restriction is that the region of state space the
agent may .‘visit’ is bounded, since one would not expect an agent to distin-

“guish an infinite range of states.
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Let the agent’s measure of elapsed time since the last reward be m. At
time ¢, the value of m is m, . If the agent receives a reward at time ¢, then on
the time step ++1 immediately following, m,,, is zero. On each subsequent time

step until the next reward, m is increased, but it never gets larger than 1:
mgy=1-0950-m).

if the agent does not receive the reward at time ¢ That is, the difference
between m and 1 is reduced by a factor of 0.95 at each time step, until the

agent receives a reward, in which case m is reset to zero.

Let p be the measure of the amount of pecking since the last reward. pis
calculated in a similar way to m: :

1-0.95(1-p,) if the agent pecks at time ¢
Py = p; otherwise '

" Hence the agent’s 'subjcctivc state space can be represented as a triangle,
with vertices at (0,0), (1,0), and (1,1); the time axis is horizontal, and the peck
axis is vertical. Each time the agent receives a reward, it returns to the origin,
5o that if a reward is received at time 1, (0,0) is the state at time s+1. If the last
reward was at time ¢, and the time is now r+i, and the agent has performed j

pecks since the last reward, then the state is
my; = 1—(-).95‘.'? '
Dui = 1;0:95j
In the program, I have also provided that the state changes may be subject
to small random perturbations. On each state transition, both m and of p may
have small random quantities added to them: the random quantities are drawn

independently from uniform distributions of zero mean, and the widths of the

uniform distributions may be set as required for m and for p separately. The
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_effect of this that m and p accumulate random error, and this reduces the
amount of information the agent retains about the past, since the agent’s
‘memory’ is its current position in the state space. Adding small random per-
turbations ensures that the accuracy of this mchxdry declines gradually with
time. ;

For this ﬁroblem, I have used the method of léaming aétion va.ldcs; both
to demonstrate it, and because the considerations in appendix 1 suggest that
one-step Q-learning should be reliable. For each action, the action-value func-
tion Q is approximated over the state space using a CMAC, just as the value

function was approximated in the previous demonstration. :

5. The L.ea_r‘ri.ing Method
The method of one-step Q-leamning was used, as described in section 4 of

chapter 7. The updating rule is
Qt+1 = ad.iUSt( Q:)«: * at>’ a, rg + Y U?(x“_l, a,) )

" where <x, , a> is the state-action pair for which Q, is adjusted. and a is a
- Icaming'factor. Only the action values are represented, and the estimated value |

of a state is taken to be the maximum of the estimated action values That is,

U9(x) = max { Q(x,a) }

where UQ(x) is the estimated value of the state x. Taking the maximum of esti-
mates as an estimate of the maximum is dubious statistical practice, but the
argument in Appendix 1 shows that this method of estimating the value can be
used in a convergent learning algorithm, although it is likely that a less biased

estimator of the maxnnum of the action values would give better performance.

But in this problem t'hcrc'aré'only two possible écﬁons., so the bias is minimal.
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In addition, results are presented for two demonstrations in which the

learning rule is

Qa1 = adjust( Qrpg» X, , &, 1(2))

with r(s) defined as in the previous demonstration, and with the leamning period

M equal to 3. In calculating r(z), A, was calculated according to .
A, = exp[ -ﬂ(U}Q(Xg Q% 5a) ) ]

where M is the rejection factor, as before.

6. Behavioural Policy and Occupanéy

The agent chooses its actions as follows. At cachr timc't, the agent com-
putes the estimated action values of pecking and of not peckmg Vthe‘:n with pro-
bability 1-m, it chooses the action with higher estimated value, and with proba-
bility r, ii ‘experiments’, and chooses the action with lower estimated value.
The probability of experimenting—n,—depends on the number of times that the
agent has previously visited the current region of state space. If the agent has
visitéd the; current rcgion many times, the probability of experimenting will be
low; if the region near x, is relatively unexplored, the ﬁrobability of experiment

will be high.

The program keeps track of the.number of visits to each part of the state
space with a CMAC function Y—the occupancy—which is incremented by a
fixed amount at the current state on each time step. That is, Y is initially zero

everywhere, and at each time step it is adjusted
Y1 = adjust(Y,,x , 1, Y,(x)+c)

where ¢ is an amount kept constant during each run. That is, ¢ is added to the

value of Y stored for each CMAC patch containing x, , so that the value of

Y,(x) will be proportional to the number of visits to points in state space near x
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prior to time r.

The occupancy Y is used to control both the probability of experiment =,
and the learning factor c,. Infuidvely, it is reaeonable to ai'range that both ©
and @ should be larger if the currentv state is in‘e litﬂe-ekplored part of the state
space, in lwell-'explored parts of state-space, m and o should be small. In the
program, lthis is arranged by calculating ® and « at each time step according to

T

" Trr ) O

and
T
o =
T %

where no and ao are parameters that set the initial values of L and o, and Tisa
posmve number called the rare parameter which determines how rapidly w and

a decline W1th mcreasmg occupancy If T is small, & and a will decline rapidly
with increasing occupancy, if T is large, they will decline more slowly. T, mg,

and oy are parameters that are passed to the program at the start of a run.

Note that the probability of experiment does not depend on the difference
between the estimated action values for the current state. Better methods of

setting T might take into account both the current occupancy and the difference

in action values.

7. Choice of Parameters

In the demonstrations, I have selected the following parameter values as
the ‘default’ values; these are the values the parameters have unless it is

specifically stated otherwise.

The rewards and costs are:
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Rewards and Costs

Cost of a peck in FI, CFI, VI, CVI schedules -0.5
Cost of a peck in FR schedule . -0.25
Cost of doing nothing o 0
Réward | o 10.0
Max. rewafd frequency : lin 10

That is, rewards are once every 10 time steps in the FI schedule; the reward is
set with probability 0.1 in the VI schedule; rewards are given every 10 time
steps in the CFI schedule; the chance of receiving a reward is 1 in 10 in the
CVT schedule; and 10 pecks are needed to obtain a reward in the FR schedule.
It is reasonable for the default pcck cost to b; less in the FR schedule because
10 pecks are rcquircd to obtain a reward in this séhedule, whereas in all the
other sched'ullcs a reward caxi be had for just one peck, or for no peck$ at all.
Unless otherwise stated, the pararhé:t:r values used for the lea1;ning method

are
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Learning Parameters

Yy 1 0.95
o2} 0.5
. 05"
T 100
c 0.25

M 1

" The values of c, and of the CMAC patch size (below), and of the parameters
‘detem{ining state transitions are arranged so that the highcst lcvcls of occu-

pancy (near the ongm) are approximately cqual to the number. of tnals

The parameter values for the state space are:

State-Space Parameters

Time Measure Factor 0;95
© Peck Mcasurc Factor ‘ 0.95
Span of Added Nmsc +0.025

'I'he CMAC paramctcrs are:

- CMAC Parameters

Side of a CMAC Patch 02
Number of Patches

- Containing each Point .10
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8. Results

All the results presented were obtained by performing 50 runs with the
same parameter values but starting with a different random seed in each run.
Each run consisted of a number of rrials: a trial is a sequence of actions start-
ing from the state (0,0), and ending either when the agent receives a reward, or .
else after 100 time steps, whichever comes soonest. The number of trials on
which leamning took place in each run was 20T, so that when T=100, each run
had 2000 learning trials. The number of learning trials was made proportional
fo T in thi§ way so that values of & and & would réach “si'milar» levels by the

end of runs with different values of the rate parameter T.

In éach run, after the 20T learning trials, the expérin;ent and ‘leaming
pa-:ameters Ty and 0 were set to zero, so that no'morc léaming or experimen-
tation took place. Then the state transitions for each of twenty ‘test trials’ were
recorded. The point of this .is that in these test trials, the agent followed the
estimate of the optimal policy that it had constructed during the learning trials;

the agent adopts its ‘subjectively optimal’ strategy.

The records of pefformance in .thc tesf trials for each set of parameter
_values used are presented as graphs of the average cumulative number of pecks
plotted against the elapsed time since the previous reward. The average cumula-
tive number of pecks was obtained by-averaging the records of all 20 test trials
for all 50 runs for each combinatidﬁ of pammctcr'valucs. The average cumula-
tive number of pecks after n time-steps was calculated by averaging the cumu-
lative number of pecks in all trials that had ﬁot yet ended after n time steps; tri-
als that ended before n time steps did not contribute to the average at n time

steps.

The value function U2(x) and the difference between the estimated action

values of pecking and of not pecking Q(x, peck) — Q(x, no peck) were also
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. recorded for a grid of points over the state space at the end of the leaming tri-
als in each run. These data are presented as contour plots over the state space.
Each contour plot depicts the average of 50 surfaces, one from each run with

the same parameters.

The contour plots of the differences in estimated action values enable one
to see trends fn the policies found: if the value is negative, then not pecking is
the preferred action, whereas if the value is positive, then pecking is preferred.
Contour lines for negative values are dotted; those for positive values are solid;
this enables areas of state space in which different actions are preferred to be

casily distinguished.
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Summary of Plots

Plot Numbgr | Schedules Parameters Plot Type
1 All All default Performance
2 - All No noise - Performance
3 All M=3 n=0 Performance
4 All M=3 n=20 Performance
5 FI T =30, 100, 300 Performance
6 FI All default Value Function
7 FI All default Q Difference
8 CFI T= 30, 100, 300 " Performance
9 CFI All default Value Function
10 CFl1 All default Q Difference
11 \%! Not applicable Expected Return
12 VI T =30, 100, 300 Pcrformance.
13 VI Peck Cost = -0.125, -0.5, -2 Performance
14 VI All default Value Function
15 V1 All default Q Difference
16 VI ‘Peck Cost = -2 Value Function
17 V1 Peck Cost = -2 Q Difference
18 cvI T = 30, 100, 300 Performance
19 CVI All default Value Function
20 CVvI All default Q Difference
21 FR T = 30, 100, 300 Performance
22 FR All default Value Function
23 FR All default Q Difference
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Performance n Each Schedule
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‘Performance tn Each SchedulLe
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Performance tn Each Schedule
Learnting Pertod set at 3
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Fiuxed Interval Schedule
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Averaged Performance
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Variable Interval Schedule
Theoretical Expected Returns
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Vartable Interval Schedule
‘Averaged Performance
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Variable Interval Schedule
Averaged Performance
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Vartable - Interval Schedule
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Variable Interval Schedule
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Varlable Interval Schedule
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.VoPLobLé Interval Schedule
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Classical Variable Interval Schedule
. Averaged Performance
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- Fixed Ratio Scheduls
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8.1. General Comparisons

Plots 1 to 4 each show the averaged performance for all five schedules
under different conditions. Plot 1 shoWs'performancc with the ‘default parame-
ters’. Plot.,_ 2 sﬁo@s perforrhancc with the default parameters except that no
noise is adde‘d' to state transitions. Plot 3 shows performance with the default
parameters (and with noisy state transitions) except that the learning period M
is set to 3, and the rejection factor M is set to zero. The parameters for plot 4

are the same as those for plot 3, except that the rejection factor 1 is set to 20.

With the default parémeters, performance is not optimal under any

schedule, but there is some adaptation to each.

Plot 2 shows sbme striking differences from the first plot. The increased
anguleirify of the curves is because there is now no variation in performance
between ‘trials, since state transitions are deterministic. The most notable
phenomenon is the very consistent learning in the fixed interval and classical
fixed interval schéc‘lulcs:Ain each of thcsc schedules, all 50 runs resulted in
identical final performance. In both the FI and the CFI schedules, the agent
always pecked on the first step, which is sub-optimal: I am at a loss to explain

this. After the first step, the performance was c;ptinia.l under both schedules.

Plot 3, with the learning period M = 3, show; better performénce than plot
1 in all Schedulcs except the classical variable intcrval;\ The most striking
imﬁrovcmcnt in performance is in the Iﬁx;zd }rat~io schcdulc; where now the
optimal policy is followed in the majoﬁty of trials: the mean number of pecks
after 10 time steps is over 9, so that in most trials the agent pecks continuously
until it receives a reward, which is the optimal policy with these parameters
(see plot 11). In the VI schedule, the agent makes on average approximately S
pecks in 15 time steps, which is the optimal policy (I will discuss the optimal
VI policy below). In both the FI and CFI schedules, there is a small
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improvement over plot 1, in that there fewer pecks on the first time step. Only

with the CVI schedule is performance approximately the same as in plot 1.

A plausible explanation for the superiority of the condition M=3 is that
under this condition values may be propagated back through the state space fas-
ter than is possible with M=1. That is, the transfer of information about state

values in one-step Q is slower than in three-step Q-learning.

- Plots 3 and 4 are very similar: the rejection factor 1| appears to have little
effect on learning under any of the reinforcement schedules. One reason for this
apparent lack of effect is that the performance is nearly optimal on all except
for the clﬁssical variable interval schedule, so that there is perhaps little scope

for any effects of M on performance to emerge. However, performance in the

CVI schedule is similar for all four conditions;

8.2. The FI and CFI Schedules

The pronounced FI ‘scallop’ is apparently the result of state transition
noise making it difficult foxf the agent to judge the passage of time; under these
circumstances, the agent may mis-judgc when to peck for the reward. In
optimal performance, ihcreforc, the agent will sometimes peck too soon and
sometimes too iate. With tﬁe parameter valués used, the cost of pecking one
Step too sbon is less than the cost of pecking one step too late, so we may
expect the agent to start pecking earlier than later, and this is what apparently
happens. This' gxplanaﬁon is supported by the fact that there is no ‘scallop’ in
the classical fixed in‘tcrval schcdulé—_scc plot 8. “ | |

For the fixed interval and classiczﬁ fixed interval schedules, the rate of
learning had little effect. One reason for this may be that excépt for the initiai
pcck, the performance achiequ may have been the best possible given the state

space and the level of state transition noise. No differences will be observed if
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near-optimal performance is reached under all conditions.

8.3. The VI Schedule -

The VI schedule deserves a special discussion for two reasons: first, the
determination of .the optimal policy is more complex than for the other
schedules; and second, the state space used in the experiinents is not adequate

for the VI schedule, yet nevertheless passable performance has been achieved,

First, what is the optimal policy under the VI reinforcement schedule? It
is easy to show that the form of the optimal policy is to peck periodically, with
some constant interval between pccks; An adequate state space for the VI
schedule is a measure of how much time has elapsed since the last .pcck'. This
information, however, is not carried in the state space used by the leamiﬁg
algorithm. The learning algorithm cannot, therefore, necessarily be expected to
find the optimal policy. -

The optimal interval between pecks will depcnd on the probability thét the
reward is set during each time step, the cost of a peck, and the value of a
reward. Let the reward be r, the cost of a peck be ¢, the probability of the
reward being sét on each time sfcp be p, and let the expected return on the first
step after a pcck for a pohcy of pcckmg on evcry nth step, be r. Thcn

T% [ (pye + (=ClopYr ]
Plot 11 shows the theoretical values of r calculated accordmg to this equatmn
are plotted against n for r=10, p=0.1, ¥=0.95, and for various values of c. For
the default parameters, with peck-cost equal to -0.5, the optimal inter-peck
interval is 3 time steps, with an interval of 2 time steps bcihg very nearly
optimal. Thc expected retum from a policy of pecking on cvery step is over
25% below the expected return from the optimal policy.
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- Plot 12 shows the effect of different values of learning rate T: slower
learning, with T=300, has the effect of leading the agent to peck on almost

every turn. Final performance appears to get worse with increasing T.

- Plot 13 shows the average performance with three different values of the
cost of a peck, ar;d the rest of the parameters at their default values. Although
optimal performance is not achieved in any condition, in each case performance
is in the region of 25% below optimal; this is encouraging, considering that the

state-space is not adequate.

 Plot 17—the difference in action values obtained when the peck cost is set
to -2—shows how this behaviour was achieved. The agent ‘tracks’ the zero
contour; if it is on the left hand side of the zero contour, not pecking is pre-
fen'ed; and the state-transitions take the agent horizontally to the right at each
time step. When the agent crosses the zero contour, pecking is the preferfed
action, and the state transition takes the agent upwards and to the right, so that -
"it may find itself on the left hand side of the zero-contour again, The result is
that the agent will tend to peck intcrmittchtly. How can the agent deﬁelop such
a policy, when the state-space does not make the necessary distinctions? The
answer, I believe, is that when the experiment-choice parameter has become
small, the agent does not take just any route to a given point in state .spacc:'thc '
agent has a habitual path in the state space, so that its position on the path indi-
cates not only the information carried by the state itself, but also the fact that -

the agent followed its current policy to get where it is.

8.4. The CVI Schedule

In the classical variable interval schedule, the agent should optimally not
peck at all, and it should merely accept the rewards that are intermittently given

to it. Why, then, does the agent in these experiments keep on pecking, albeit at
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a lower rate than in the operant variable interval schedule? A plausiblc
explanation—and one which is confirmed by examining the contour plots of the
value function and the difference of action values below—is that the optimal
policy is extreme: not to peck at all. In the early stages of learning, the agent
will experiment by pecking on about half of all steps; the states in which it
receives the rewards will be states in which it has already pecked several times.
It is in these areas of state space that the value function will at first increase;
and it is to these areas of state space that the agent will tend to return. When
the agent experiments by pecking less, it enters regions of state space where the
estimated value function is still low; when this happens, the one-step ahead
estimate of eventual return is low, so that not pecking appca'rs to be a bad
choice. Once a ‘path habit’ in state space has formed, the associated ridge in
the va}uc function will move only slowly. The initial adventitious correlation of
past pecking with rewards will thus cause the agent to develop a ‘superstition’
(Skinner 1948)_ that the pecking leads to the rewards. Superstitions of this type
are difficult for an agént to get rid of if it is restricted to making short term

estimates of retumns.

8.5. The FR Schedule

The appearance of the performance for the FR schedule in plot 21 is
deceptive because of the averaging: the FR curve is the result of averaging
many curves that start off with few pecks and finish with a peck on every time
step. The initial periods of procrastination under the FR schedule are of

different lengths, so that the average of the curves has a sigmoid shape.

The optimal policy in the FR schedule is either not to peck at all, or else
to peck at every opportunity. .So why should the agent procrastinate in this

way? A plausible explanation is that the agent starts off pecking in 50% of the
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timc.stcps, so that it collects its reward after 10 pecks and, on average, 20 time
steps. A peak in the value function starts to develop in this area of state
Spacc—-this pcak is visiblc in plot 22 A ‘mountain’ of the value function will
spread across the state space the ‘well worn path’ on which a ‘spur’ of the
mountam wxll develop w111 consxst of procrastmanng for a time, and then of
pecking contmuously The ﬁrst path that consistently leads to rewards tends to
persist. With M=1, it takes a considerable time for the good news that after 10
pecks there will be a large reward to percolate back to the states corresponding
to one or two pecks. In these states, pecks appear to be costly, so that in the
initial stages of learning, the agent leams not to peck at early times, and to
peck continuously at a later time in the trial. This can be seen by examining
the zero contour in plot 23—the shape of the zero contour is similar to that for

the FI schedule.

9. Discussion

The Q-learning algorithm is capable of acquiring near-optimal policies
under a variety of reinforcement schedules. The most significant findings are
first that a longer learning period (M=3) gives a considerable improvement in
performance. Second, even though the state space is inadequate for the VI rein-
forcement schedule, the average performancc is not grossly sub-optimal, and it
varies with peck-cost appropriately.

But, I believe, the main message of these results is that the course of
learning is strongly affected by adventitious correlations and by the initial pol-
icy and value function. The state-action combinations that happen to precede
rewards will tend to be repeated, whether the actions caused the reward or not.
Because there is no way for the agent to find out which actions are necessary

and which are unnecessary other than by systematic trial and error, some of the
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agent’s actions will appear ‘superstitious’ to a more knowledgeable observer,
but the agent cannot avoid this during the early stages of learning. |

The learning method'might be impfovéd by making A, depend on Y; A
should be close to 1 for small ‘Y, and A should be smaller at states with large Y.
Setting l'adaptivcl.y' in this way might combine the best features of one-step

and many-step Q-learning.
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Conclusion

1. What has been Achieved?

A family of simple algorithms for associative learning has been described
systematically; these algorithms may be implemented as computer programs, |
and they can be applied to models of problems that have been given to animals.
The algorithms themselves have been developed by an argument-from first prin-
ciples, and not with the intention of explaining particular experimental results. |
They can be motivated, and in one case justified, as forms 6f incremental
dynamic programming, and they can be viewed as methods for'optimising'short
to medium term averages of rewards and costs that result from action. The
algorithms can also be viewed as direct implementations of associative learning
according to the law of effect. They can be applied to a wide range of simple
tasks, and not just to the tasks that have been used in the study of animal learn-
ing. ‘

The value of the incremental dynamic programming approach is that it
provides a framework according to which a variety of learning algorithms'rhay |
be described in common terms. The framework makes clear both the potential

scope and also the limitations of the learning methods.
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2. Further Work

The first area in which further work is needed is in enabling autonomous
agents to tune the values of the parameters for their learning algorithms. If, for
example, an agent chooses a learning factor that is too small, then it will make
insufficient use of its experience; but if the leaming factor is too large, the pol-
icy learning may become unstable. An autonomous learning agent needs to

have some method of choosing its suitable values for its learning parameters

itself.

A second area that requires further work is that of methods of representa-
tion and approximation of functions. I have used only one method—the
CMAC—which is crude and simple. An important question is that of what
other representations may be used in conjunction with these learning methods. |
In pardcular, are there connectionist methods of learning functional mappings

that could be used as component modules of strategy learning mechanisms?

Third, the life of even a simple animal cannot be trcatcd' as a single Mar-
kov decision problem, because the learning problem becomes too complex. I
feel that the most interesting possibility for further work is that of linking Mar-
kov decision problems together, into hierarchies and other configurations, in
such a way that the control of each decision process can be learned individu-
ally. One attraction of this approach is that there are likely to be mathematical
methods for studying the interactions between linked decision problems.

Although I have not yet implemented any such program, the approach appears -

most promising.
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3. Computational Theories of Intelligence

As I said at the beginning of the introduction, the fields of cognitive sci-
ence and artificial intelligence have been concerned mainly with analysing and
modelling the, abilities of humans, rather than those of animals. Many exam-
ples of human pérfonnancc in performing various cognitive tasks have been
analysed, and computer programs have been constructed that can solve some of
the same problems that people can solve, in apparently similar ways. Has this

led us much closer to an understanding of human intelligence?

I do not think so, because there is an insidious methodological problem
with this approach. The problem is that when researchers set out to study
people’s higher thought processes, they set their subjects tasks £o perform, and
then study their subjects’ performance on those rasks. The result of the work is
a computational theory of how people perform those tasks. The computational
. theory consists of a dcscn'pt;'on of hypothetical ‘cognitive operations’ that peo-
ple pcrform in accomplishing the tasks; ideally, this description should take the
form qf a con}p_u_tér program, in which certain blocks of code or defined pro-
cedures correspond to and perform the same role as the cognitive operations _
tha‘t the subjects perform. In other words, the computer program serves as a

description of an algorithm that the subjects follow in performing the task.

The methodological problem is that what has been achieved is to describe
the algorithm that the subjects have chosen to use: what has not been done is to
explain how the subjects decided what mental algorithm to use. The mental

algorighm is merely a product of the subjects’ intelligence.

A classic example is also one of the clearest: after reading Newell and .
Simon’s (1972) study of cryptarithmetic, one feels one has learned some useful
tips on how to solve cryptarithmetic problems, but very little about people. |

Newell and Simon devised an elegant notation to describe what people do in
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solving DONALD + GERALD = ROBERT, in terms of formulating goals and
subgoals, and searching, more or less systematically, for assignments of digits
to letters that are consistent with the sum given. This is an excellent descrip-
tion of what people do while they are tackling a cryptarithmetic problem, and -
the computational model can no doubt be used to predict which cryptarithmetic
problems should be easy and which should be difficult, what errors people usu-
ally make, how long people should take to find solutions on different problems,
and so on. But the computational theory has absolutely nothing to say about
why people choose to proceed in that way, or why they believe that the pro-
cedure they use should lead to a solution if one exists. Newell and Simon
describe what their subjects did, but they do not describe how or.why their sub-
jects approached the problem in that way, which is a much more interesting

question.

In later work, such as that of Laird, Rosenbloom, and Newell (1986), there
is an attempt to construct a system that is able to foi'mulatc. problem descrip-
tions of this type by solving a higher level problem of the same form. This is
perhaps the only significant attempt so far in the field of Al to give a general
theory of intelligence, but I do not think that the attempi comes clbsc to suc-"
cess because, as far as I can see, the 'probleni formulations that the program

finds have to be built into the program beforehand in a rather specific way. .

The basic problem in the computer modelling of human thought is that the
researcher faces a dilemma: the model he or she constructs needs to be simple
enough to be supported by the experimental evidence that cax; be collected, and
yet a model can only be plausible as an explanation if it can be presented as a

part of, or as a product of, some vastly more complex and unknown system.

But animal cognition is likely to be simpler, and that of very simple

animals is much simpler. In this thesis I have set out systematically a range of
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ways in which simple agents might control their behaviour, and a range of
learning algorithms that such agents might use to optimise their behaviour
according to certain plausible criteria. It should be feasible to construct com-
puter simulations of autonomous agents that learn to fend for themselves in
simulated environrnents. Indeed, Wilson (1987) has already attempted to do
this. Although considerable work would be needed, it seems by no means an
impossible objective to construct a relatively simple, autonomous, learning pro-
gram that shows, in simulation, a similar range of associative learning abilities
to those that have been demonsn-ate:d in the rat.

A pfonﬁsing’épprqaich fo tﬁe stﬁdy of intelligence is to staﬁ off by consid-
ering What simplc;intcl]jgc.nccs arc The a.irh should be to give general abstract
dcﬁ_r_iitions of simple forms of intelligence, a.nd“to construct such intelligences

in their entirety.
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Appendix 1
Convergence of One-Step Q-Learning

The agent learns using an initial estimate of Q, and data from experience,

which consists of observations of the form

[x a r y]

which are respectively the state, the action taken at the state,' the immediate
reward feceivéd, and the subseqﬁent' state reached. Let us assume that the
agent’s data consists of a.n infinite sequencé of | obscrvatiohs, numbered
1,2,3, .+ which are used su'cc’:eséively to update Q. Let the nth observation in
the listbe [x, a, 7, ¥, 1 |

The observations are assumed to be independent observations of state-
transitions and rewards in a Markov process. There is no assumption that the
observations come from a connected sequence of actions—x,,; does not have
to be the same as y,. The observations, therefore, can be collected from short
disconnected sequences of behaviour, and the choices of actions at states may
be arbitrary. The only constraint on the sequence of observations is that there

must be sufficient observations of each action at each state: this will be made

precise below.

To show that the learning method converges, I will first show how to con-
struct a notional Markov decision process from the data: this notional decision
process is a kind of ‘action replay’ of the data. Next, I will show that the Q
values produced by the one-step Q-learning method after n training examples
have been used are the exact optimal action values for the start of the action-

replay process for n training examples. Finally, I will show that, as more data
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is used, the optimal action-value function at the start of the ‘action replay’ pro-
cess converges to the optimal action-value function of the real process. For

brevity, I will refer to the action-replay process as ARP and to the real process

és RP.

1. Using the Observations to Adjust Q During Q-Learning

B Recall that the oné-step Q-learning method is as follows. The initial values
of Q, before any adjustments have been made, are Qy(x,a) for each state x and
action a. After the nth observation has been used to update Q, the values of Q

| are wrirtén Q.. The cst;'matcd vafue of a state x at the nth stage is
| U = max { 0,(2) )
"The r;th 6bscr§ation, forn=1, 2; 3, - ‘s
[x,; a, n _5',.]
and it is used to calculate Q, from Q,,; by

(I-G,J Qn_l(x,aj | + 0'-,,‘[ r, + Y (‘J,?_l(yn)] if.f =x, and a=a,
’ Qn(xra)= Q : : S .

w1 (%,0) - otherwise

-. The learning factor a, may depend on x, and a,. I will discuss the require-

ments that the learning factors must satisfy later.

"~ 2. The ‘Action-Replay’ Markov Decision Process

The action replay process is a purely notional Markov decision process,
" which is used as a proof device. This process is constructed progressively from
- the sequence of observations. The ARP consists of layers of states, numbered
0,1,2--+, n,+--. In each layer—in the kth layer, say—there is a state

<x,k> in the ARP corresponding to each state x in the RP. That is, the state in
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. the kth layer>of the ARP Corresponding to state x in the RP is <xk>. The kt

layer of states of the ARP is constructed when the kth observation is processed.

At the state <x,k>, the same actions are possible as at state x in the RP but

their effects are different.

Actions in the ARP are deﬁned in the following way. ’I’hc essential idea is
that an acuon in the ARP is a ‘replay’ of an observauon The ARP is a
‘model’ of the RP in which perfom'ung an action a in state x is s1mu1ated by
recalling an observation [xary] of perforrmng a in x, and then using thc

observed r and y as the simulated reward and new state respectively.

To make th1s more precxse, supposc that one is at state g,k> in the ARP,
and one wishes to perform action a. To do this, .onc must find one of the first &
observations to ‘replay’; an observation is» eligible for replaying if it was
ob.served before observation k& and if it is of the form [ x a .. ], where the x
and the a correspond to the state {x,k> one is at and the action one wishes to
perform respectively. If the /th observation, which is (xaryl is cl'igiblc,
and is selected for replay, the_ reward obtained is r;,, and the next state in the
ARP reached is <y;, I=1>. At this ncw statcv<y,, [-1>, one may répcat the pro-
cess: one may choose an action to perform— b, say—and then one may look
for a suitable observation to replay. This ﬁmc, however, only the first [ obser-
vations are eligible. With each action taken in the ARP, the list of observations
that are eligible for replay becomes shorter, until finally there is no observation
eligible for replay. When there is no eligible action left, as must eventually
happen, a final payoff is given, which is Qy(z,c), where z and ¢ are the state
one is at and the action one is trying to perform when one runs out of actions
to replay. Starting at any state in the ARP, it is, therefore, only possible to per-

form a finite number of actions before running out of observations to replay.
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I have not yet explained exactly how observations are selected for replay.
this is done according to the following (randofrxiscd). algorithm, Which I will
first describe iﬁ words, and which I will then give in ‘pseudocode’. To perform
a in <x, k>, one first checks whether the kth observation is eligible. If not, one
examines tinc k-1th observation, then the k-2th, and so on, until one finds a an
eligible observation—number I, sa)".- Let o; be the learning factor that was
used when Q was adjusted when observation / was processed. Then, one takes
a random choice: with probability o; one ‘replays’ obs;:rvaiion /, in that one
goes to <y, I-1> and one takes an immediate reward r;. If the random decision
goes the other way, one continues to scﬁn.back along the list of observations
until >af‘xothcr .éi.igibl.c observation is found, and then one repeats the random
choice. If one reaches the beginning of the list of observations, and then one
takes the immediate reward .Qov(é,a'),‘a‘nd no further actions are possible, so that

the ARP terminates.

To put this another way, let the current state be <x,k> and let the action to
be performed be a, and let the eligible observations be numbered ny , 1, ...,
n; , where

. fl1<712<_'_'.' <niSk., o
Then the probability of replaying observation n; is o ; the probability of
replaying observation n;_, is (1-a)c;_; , and so on. The probability of not
replaying any of the eligible actions is * .

(I=a)(1=0pyp) - -0 (1-0y)

If no eligible action is selected for replay, the ARP terminates, with a final

payoff of Qy(x,a).

Procedural instructions for performing action a@ in state <x,k> may be

given recursively as
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To perform a in <x,0>; o »
terminate the ARP with an immediatcv reward of Qq(x,a),

and halt,

To pcrféxm a in <x,k>, ’for k. >0,
ifx=x,anda=a; o
‘then |
~ begin
" either (with probability o)
goto <y5 k-1> with an immediate rev.v-ard of r,
and halt, | .
| or (with probvability‘ 1 -0y
~ perform atin <x,‘k—1> |
end
else

perform a’in <x, k=1>.

The ARP is a decision process: if performing a in <x,k> leads to the state
<yk~m>, then one may choose to i:erform any of the actions possible in the RP
at y in <y,k-m>. It is not possible to perform an infinite sequence of actions in
the ARP—no ma&cr what actions are chosen, if one starts at level k, each

action will lead to a new state at a lower level, until finally one reaches level O

and the process terminates.

The return of a sequence of replays of observations ky , k3 , ..., ks (

suchthatky >k, > -+ >k, ) is

T Yt Y, Y1 Qo Vi, 5 @)

where a is the action chosen in the last state <y, , k,,—i> reached before the
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_ ARP terminates.

It is straightforward to show that Q, defines the optimal action values for
ARP at stage n Let O*arp be the optimal action-value function for the ARP;
that is Q* \pp(<x,n>,a) is the optimal action value for action a at state <x,n> of

the ARP, and let U* ,pp be the optimal value function of the ARP.

~ The ‘Action-Reblaj" ;I"‘heorem:
o For ﬁll x, a,.Qn('x,a)' is the Optim‘;ﬂ action valuc at stage n of the

ARP. That is, | -

0ulsa) = Q¥ qp(<rmod)

for all x, a, and for all n 2 0. -

Proof: |

By induction. From the lconstfuction of the ARP, ‘Qo(x,a) is the
- optimal—indeed the only possible—action value of <x,0>, a."So

Qo(x;a) = Q*ARP'(Q’OXG)V
Hence the thebrerh holds forr;z = O - | _ _
Suppose that tﬁc values of Qn-1» as produced ‘by £hc one-step Q-

~ leamning rule, are the optimal action valucs f‘or the ARP at stage n-1, that

is R - | | |

- Qn_l(x',a) = Q*ARP(Q,n—b,a)

for all x, a. This implies that Up-1(x) are the optimal values at the n—1th

stage, that is

U* psrp(<x,n=1>) = max Qp1(x,a)
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Recall that Q,, is calculated from Q,_; in the following way. Except
for the value for the state-action pair x,, a, , at stage #, Q is unaltered by
the learning procedure, so that Q,(x,a) = Q,,,(x,a) for all x, a not equal to
X, ,a,.And

Qn(xn; an) = an(rn + YUn—I(Yn)) + (l_an) Qn—l(xm an)
Now, consider the nth stage of the ARP. For all x, a not equal to x,, a, ,
performing a in <x,n> in the ARP gives exactly the same results as per-
forming a in '<x,n-i>; therefore,
Q*ARP(vava) = Q*ARP(Q,H—1>,G)
for x, a not equal to JE,,, a,. Hence
Q*ARP(Q,"),G) = Qn(xva)
- for all x, a not equal to x,, a, respectively.

- Now, consider the optimal action value of <x,,n>, a, in the ARP.

Performing a, in <x,,n> has the effect of

e  with probability «,, yielding immediate reward r,, and new state

<y,,n—-1>, or
«  with probability 10, the same effect as performing a, in <xy, n-1>.
Hence the bpdmal aétion value in the A.RP of <x,, a,> is |
Q*ARp(Xp11>,8,) =y (ry + Y U*gjp(<ynn—1>))
t (1-0)Q* sgp(xpon=1>, a,)

= &, (ry + YUn-l(yn)) + (l_an)Qﬂ-l(xﬁ’ a,)

On(*n,3,)

Hence, by induction,
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- 0a(x, @) = Q% spp(<x,n>,0)

for all x, @, and n 2 0, which was to be proved.

3. Convergence of Q*,pp to O*

Under wnat conditions will the optimal action values for the action replay
process at the nth stage converge to the optimal action values for the real pro-
cess as n —» oo ?

Sufficient conditions are that for each state-action pairx,a:

*  There is an infinite number of observations of the form [x a 7, y, ]

*  The leaming factors o, forobservations of the form [ x a r, y, ] are posi-

tive, decrease monotonically with increasing n, and tend to zero as n — oo

*  The sum of the learning factors a, for observations of the form [x a r, y,
] is infinite.
Note that it is required that the learmng factors decrease monotonically for

observanons of the form [xa. ] for each x, a—the Iearrung factors need not

decrease monotomcally in along the sequence of observations.

To demonstrate that these conditions are sufﬁcrent the method is to show -
" that if oné starts from the nth layer of the replay process, then the replay pro-
cess will approxunate the real process to any grven degree of accuracy for any
| grven ﬁmte number of stages prov1ded that n is chosen to be large enough.
" The replay process approxrmates the real process in the sense that, for any k,
| the state <x,k> in the replay process corresponds to the state x in the real pro-
cess; and actions and rewards in the replay process correspond directly with

actions and rewards in the real process.
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Let the depth of a state-action pair d(<x,k>, a) in the replay process be the
sum of the learning factors for all observations of the form [ x a r; y; ] with
| S k. If one follows the procedure for performing a in <x,k> in the replay pro-
cess, the probability of reaching <x,0> becomes arbitrarily small as d(<x,k>, a)

becomes large. '

There are a finite number of state-action pairs, and ac'cording to the third
assumption above, the d(<x,n>, a) tends to infinity as n tends to infinity. For

any given D, and any given &, it is possible to choose n such that
max { @, } <€
m>n
Given any such n, it is thtlah'possible to choos;: n’ such that
- @n { d<tn’>a) - d(<x;n$,a) }>D

“For any € and any D, it is possible to choose a sequence of values
ny,ny,ny, * - such that the depths of all state-action pairs increase by D

bctwccn each valu; of n in the sequence. It is, therefore, possible to choose an
| n so large that the minimum ﬁossible number of ‘replayed’ observations is
Ala-u'ger than any chosen & witﬁ a probability as close to one as desired, and such
that the maximum lea;'ningr factor o is so small that the transition probabilities
and reward rr;cans of the ARP are, with a probability as close to 1 as desired,
| uniforml}"'as close as ‘desired to the tfansiﬁon prdbabilities and rewardA rheans of
the RP. Hencc it is p0551blc to choose an n so largc that Q*ARP at thc nth level
of the ARP is, with a probabnhty as close to 1 as dcsued umformly as close as

desired to the corrcspondmg optunal action valucs of thc RP; and thxs is what

| needed to be shown.
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