LLVM 22.0.0git
AArch64PromoteConstant.cpp
Go to the documentation of this file.
1//==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AArch64PromoteConstant pass which promotes constants
10// to global variables when this is likely to be more efficient. Currently only
11// types related to constant vector (i.e., constant vector, array of constant
12// vectors, constant structure with a constant vector field, etc.) are promoted
13// to global variables. Constant vectors are likely to be lowered in target
14// constant pool during instruction selection already; therefore, the access
15// will remain the same (memory load), but the structure types are not split
16// into different constant pool accesses for each field. A bonus side effect is
17// that created globals may be merged by the global merge pass.
18//
19// FIXME: This pass may be useful for other targets too.
20//===----------------------------------------------------------------------===//
21
22#include "AArch64.h"
23#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalValue.h"
33#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/Type.h"
41#include "llvm/Pass.h"
44#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <utility>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "aarch64-promote-const"
52
53// Stress testing mode - disable heuristics.
54static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
55 cl::desc("Promote all vector constants"));
56
57STATISTIC(NumPromoted, "Number of promoted constants");
58STATISTIC(NumPromotedUses, "Number of promoted constants uses");
59
60//===----------------------------------------------------------------------===//
61// AArch64PromoteConstant
62//===----------------------------------------------------------------------===//
63
64namespace {
65
66/// Promotes interesting constant into global variables.
67/// The motivating example is:
68/// static const uint16_t TableA[32] = {
69/// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
70/// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
71/// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
72/// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
73/// };
74///
75/// uint8x16x4_t LoadStatic(void) {
76/// uint8x16x4_t ret;
77/// ret.val[0] = vld1q_u16(TableA + 0);
78/// ret.val[1] = vld1q_u16(TableA + 8);
79/// ret.val[2] = vld1q_u16(TableA + 16);
80/// ret.val[3] = vld1q_u16(TableA + 24);
81/// return ret;
82/// }
83///
84/// The constants in this example are folded into the uses. Thus, 4 different
85/// constants are created.
86///
87/// As their type is vector the cheapest way to create them is to load them
88/// for the memory.
89///
90/// Therefore the final assembly final has 4 different loads. With this pass
91/// enabled, only one load is issued for the constants.
92class AArch64PromoteConstant : public ModulePass {
93public:
94 struct PromotedConstant {
95 bool ShouldConvert = false;
96 GlobalVariable *GV = nullptr;
97 };
99
100 struct UpdateRecord {
101 Constant *C;
103 unsigned Op;
104
105 UpdateRecord(Constant *C, Instruction *User, unsigned Op)
106 : C(C), User(User), Op(Op) {}
107 };
108
109 static char ID;
110
111 AArch64PromoteConstant() : ModulePass(ID) {}
112
113 StringRef getPassName() const override { return "AArch64 Promote Constant"; }
114
115 /// Iterate over the functions and promote the interesting constants into
116 /// global variables with module scope.
117 bool runOnModule(Module &M) override {
118 LLVM_DEBUG(dbgs() << getPassName() << '\n');
119 if (skipModule(M))
120 return false;
121 bool Changed = false;
122 PromotionCacheTy PromotionCache;
123 for (auto &MF : M) {
124 Changed |= runOnFunction(MF, PromotionCache);
125 }
126 return Changed;
127 }
128
129private:
130 /// Look for interesting constants used within the given function.
131 /// Promote them into global variables, load these global variables within
132 /// the related function, so that the number of inserted load is minimal.
133 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
134
135 // This transformation requires dominator info
136 void getAnalysisUsage(AnalysisUsage &AU) const override {
137 AU.setPreservesCFG();
140 }
141
142 /// Type to store a list of Uses.
144 /// Map an insertion point to all the uses it dominates.
145 using InsertionPoints = DenseMap<Instruction *, Uses>;
146
147 /// Find the closest point that dominates the given Use.
148 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
149
150 /// Check if the given insertion point is dominated by an existing
151 /// insertion point.
152 /// If true, the given use is added to the list of dominated uses for
153 /// the related existing point.
154 /// \param NewPt the insertion point to be checked
155 /// \param User the user of the constant
156 /// \param OpNo the operand number of the use
157 /// \param InsertPts existing insertion points
158 /// \pre NewPt and all instruction in InsertPts belong to the same function
159 /// \return true if one of the insertion point in InsertPts dominates NewPt,
160 /// false otherwise
161 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
162 InsertionPoints &InsertPts);
163
164 /// Check if the given insertion point can be merged with an existing
165 /// insertion point in a common dominator.
166 /// If true, the given use is added to the list of the created insertion
167 /// point.
168 /// \param NewPt the insertion point to be checked
169 /// \param User the user of the constant
170 /// \param OpNo the operand number of the use
171 /// \param InsertPts existing insertion points
172 /// \pre NewPt and all instruction in InsertPts belong to the same function
173 /// \pre isDominated returns false for the exact same parameters.
174 /// \return true if it exists an insertion point in InsertPts that could
175 /// have been merged with NewPt in a common dominator,
176 /// false otherwise
177 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
178 InsertionPoints &InsertPts);
179
180 /// Compute the minimal insertion points to dominates all the interesting
181 /// uses of value.
182 /// Insertion points are group per function and each insertion point
183 /// contains a list of all the uses it dominates within the related function
184 /// \param User the user of the constant
185 /// \param OpNo the operand number of the constant
186 /// \param[out] InsertPts output storage of the analysis
187 void computeInsertionPoint(Instruction *User, unsigned OpNo,
188 InsertionPoints &InsertPts);
189
190 /// Insert a definition of a new global variable at each point contained in
191 /// InsPtsPerFunc and update the related uses (also contained in
192 /// InsPtsPerFunc).
193 void insertDefinitions(Function &F, GlobalVariable &GV,
194 InsertionPoints &InsertPts);
195
196 /// Do the constant promotion indicated by the Updates records, keeping track
197 /// of globals in PromotionCache.
198 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
199 PromotionCacheTy &PromotionCache);
200
201 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
202 /// Append Use to this list and delete the entry of IPI in InsertPts.
203 static void appendAndTransferDominatedUses(Instruction *NewPt,
204 Instruction *User, unsigned OpNo,
206 InsertionPoints &InsertPts) {
207 // Record the dominated use.
208 IPI->second.emplace_back(User, OpNo);
209 // Transfer the dominated uses of IPI to NewPt
210 // Inserting into the DenseMap may invalidate existing iterator.
211 // Keep a copy of the key to find the iterator to erase. Keep a copy of the
212 // value so that we don't have to dereference IPI->second.
213 Instruction *OldInstr = IPI->first;
214 Uses OldUses = std::move(IPI->second);
215 InsertPts[NewPt] = std::move(OldUses);
216 // Erase IPI.
217 InsertPts.erase(OldInstr);
218 }
219};
220
221} // end anonymous namespace
222
223char AArch64PromoteConstant::ID = 0;
224
225INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
226 "AArch64 Promote Constant Pass", false, false)
228INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
229 "AArch64 Promote Constant Pass", false, false)
230
232 return new AArch64PromoteConstant();
233}
234
235/// Check if the given type uses a vector type.
236static bool isConstantUsingVectorTy(const Type *CstTy) {
237 if (CstTy->isVectorTy())
238 return true;
239 if (CstTy->isStructTy()) {
240 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
241 EltIdx < EndEltIdx; ++EltIdx)
243 return true;
244 } else if (CstTy->isArrayTy())
246 return false;
247}
248
249// Returns true if \p C contains only ConstantData leafs and no global values,
250// block addresses or constant expressions. Traverses ConstantAggregates.
252 if (isa<ConstantData>(C))
253 return true;
254
255 if (isa<GlobalValue>(C) || isa<BlockAddress>(C) || isa<ConstantExpr>(C))
256 return false;
257
258 return all_of(C->operands(), [](const Use &U) {
259 return containsOnlyConstantData(cast<Constant>(&U));
260 });
261}
262
263/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
264/// a load of a global variable initialized with Cst.
265/// A use should be converted if it is legal to do so.
266/// For instance, it is not legal to turn the mask operand of a shuffle vector
267/// into a load of a global variable.
268static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
269 unsigned OpIdx) {
270 // shufflevector instruction expects a const for the mask argument, i.e., the
271 // third argument. Do not promote this use in that case.
272 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
273 return false;
274
275 // extractvalue instruction expects a const idx.
276 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
277 return false;
278
279 // extractvalue instruction expects a const idx.
280 if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
281 return false;
282
283 if (isa<const AllocaInst>(Instr) && OpIdx > 0)
284 return false;
285
286 // Alignment argument must be constant.
287 if (isa<const LoadInst>(Instr) && OpIdx > 0)
288 return false;
289
290 // Alignment argument must be constant.
291 if (isa<const StoreInst>(Instr) && OpIdx > 1)
292 return false;
293
294 // Index must be constant.
295 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
296 return false;
297
298 // Personality function and filters must be constant.
299 // Give up on that instruction.
300 if (isa<const LandingPadInst>(Instr))
301 return false;
302
303 // Switch instruction expects constants to compare to.
304 if (isa<const SwitchInst>(Instr))
305 return false;
306
307 // Expected address must be a constant.
308 if (isa<const IndirectBrInst>(Instr))
309 return false;
310
311 // Do not mess with intrinsics.
312 if (isa<const IntrinsicInst>(Instr))
313 return false;
314
315 // Do not mess with inline asm.
316 const CallInst *CI = dyn_cast<const CallInst>(Instr);
317 return !(CI && CI->isInlineAsm());
318}
319
320/// Check if the given Cst should be converted into
321/// a load of a global variable initialized with Cst.
322/// A constant should be converted if it is likely that the materialization of
323/// the constant will be tricky. Thus, we give up on zero or undef values.
324///
325/// \todo Currently, accept only vector related types.
326/// Also we give up on all simple vector type to keep the existing
327/// behavior. Otherwise, we should push here all the check of the lowering of
328/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
329/// constant via global merge and the fact that the same constant is stored
330/// only once with this method (versus, as many function that uses the constant
331/// for the regular approach, even for float).
332/// Again, the simplest solution would be to promote every
333/// constant and rematerialize them when they are actually cheap to create.
334static bool shouldConvertImpl(const Constant *Cst) {
335 if (isa<const UndefValue>(Cst))
336 return false;
337
338 // FIXME: In some cases, it may be interesting to promote in memory
339 // a zero initialized constant.
340 // E.g., when the type of Cst require more instructions than the
341 // adrp/add/load sequence or when this sequence can be shared by several
342 // instances of Cst.
343 // Ideally, we could promote this into a global and rematerialize the constant
344 // when it was a bad idea.
345 if (Cst->isZeroValue())
346 return false;
347
348 // Globals cannot be or contain scalable vectors.
349 if (Cst->getType()->isScalableTy())
350 return false;
351
352 if (Stress)
353 return true;
354
355 // FIXME: see function \todo
356 if (Cst->getType()->isVectorTy())
357 return false;
358 return isConstantUsingVectorTy(Cst->getType());
359}
360
361static bool
364 auto Converted = PromotionCache.insert(
365 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
366 if (Converted.second)
367 Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
368 return Converted.first->second.ShouldConvert;
369}
370
371Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
372 unsigned OpNo) {
373 // If this user is a phi, the insertion point is in the related
374 // incoming basic block.
375 if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
376 return PhiInst->getIncomingBlock(OpNo)->getTerminator();
377
378 return &User;
379}
380
381bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
382 unsigned OpNo,
383 InsertionPoints &InsertPts) {
384 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
385 *NewPt->getParent()->getParent()).getDomTree();
386
387 // Traverse all the existing insertion points and check if one is dominating
388 // NewPt. If it is, remember that.
389 for (auto &IPI : InsertPts) {
390 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
391 // When IPI.first is a terminator instruction, DT may think that
392 // the result is defined on the edge.
393 // Here we are testing the insertion point, not the definition.
394 (IPI.first->getParent() != NewPt->getParent() &&
395 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
396 // No need to insert this point. Just record the dominated use.
397 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
398 LLVM_DEBUG(IPI.first->print(dbgs()));
399 LLVM_DEBUG(dbgs() << '\n');
400 IPI.second.emplace_back(User, OpNo);
401 return true;
402 }
403 }
404 return false;
405}
406
407bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
408 unsigned OpNo,
409 InsertionPoints &InsertPts) {
410 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
411 *NewPt->getParent()->getParent()).getDomTree();
412 BasicBlock *NewBB = NewPt->getParent();
413
414 // Traverse all the existing insertion point and check if one is dominated by
415 // NewPt and thus useless or can be combined with NewPt into a common
416 // dominator.
417 for (InsertionPoints::iterator IPI = InsertPts.begin(),
418 EndIPI = InsertPts.end();
419 IPI != EndIPI; ++IPI) {
420 BasicBlock *CurBB = IPI->first->getParent();
421 if (NewBB == CurBB) {
422 // Instructions are in the same block.
423 // By construction, NewPt is dominating the other.
424 // Indeed, isDominated returned false with the exact same arguments.
425 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
426 LLVM_DEBUG(IPI->first->print(dbgs()));
427 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
428 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
429 return true;
430 }
431
432 // Look for a common dominator
433 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
434 // If none exists, we cannot merge these two points.
435 if (!CommonDominator)
436 continue;
437
438 if (CommonDominator != NewBB) {
439 // By construction, the CommonDominator cannot be CurBB.
440 assert(CommonDominator != CurBB &&
441 "Instruction has not been rejected during isDominated check!");
442 // Take the last instruction of the CommonDominator as insertion point
443 NewPt = CommonDominator->getTerminator();
444 }
445 // else, CommonDominator is the block of NewBB, hence NewBB is the last
446 // possible insertion point in that block.
447 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
448 LLVM_DEBUG(IPI->first->print(dbgs()));
449 LLVM_DEBUG(dbgs() << '\n');
450 LLVM_DEBUG(NewPt->print(dbgs()));
451 LLVM_DEBUG(dbgs() << '\n');
452 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
453 return true;
454 }
455 return false;
456}
457
458void AArch64PromoteConstant::computeInsertionPoint(
459 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
460 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
462 LLVM_DEBUG(dbgs() << '\n');
463
464 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
465
466 LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
467 LLVM_DEBUG(InsertionPoint->print(dbgs()));
468 LLVM_DEBUG(dbgs() << '\n');
469
470 if (isDominated(InsertionPoint, User, OpNo, InsertPts))
471 return;
472 // This insertion point is useful, check if we can merge some insertion
473 // point in a common dominator or if NewPt dominates an existing one.
474 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
475 return;
476
477 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
478
479 // It is definitely useful by its own
480 InsertPts[InsertionPoint].emplace_back(User, OpNo);
481}
482
484 AArch64PromoteConstant::PromotedConstant &PC) {
485 assert(PC.ShouldConvert &&
486 "Expected that we should convert this to a global");
487 if (PC.GV)
488 return;
489 PC.GV = new GlobalVariable(
490 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
491 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
492 PC.GV->setInitializer(&C);
493 LLVM_DEBUG(dbgs() << "Global replacement: ");
494 LLVM_DEBUG(PC.GV->print(dbgs()));
495 LLVM_DEBUG(dbgs() << '\n');
496 ++NumPromoted;
497}
498
499void AArch64PromoteConstant::insertDefinitions(Function &F,
500 GlobalVariable &PromotedGV,
501 InsertionPoints &InsertPts) {
502#ifndef NDEBUG
503 // Do more checking for debug purposes.
504 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
505#endif
506 assert(!InsertPts.empty() && "Empty uses does not need a definition");
507
508 for (const auto &IPI : InsertPts) {
509 // Create the load of the global variable.
510 IRBuilder<> Builder(IPI.first);
511 LoadInst *LoadedCst =
512 Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV);
513 LLVM_DEBUG(dbgs() << "**********\n");
514 LLVM_DEBUG(dbgs() << "New def: ");
515 LLVM_DEBUG(LoadedCst->print(dbgs()));
516 LLVM_DEBUG(dbgs() << '\n');
517
518 // Update the dominated uses.
519 for (auto Use : IPI.second) {
520#ifndef NDEBUG
521 assert(DT.dominates(LoadedCst,
522 findInsertionPoint(*Use.first, Use.second)) &&
523 "Inserted definition does not dominate all its uses!");
524#endif
525 LLVM_DEBUG({
526 dbgs() << "Use to update " << Use.second << ":";
527 Use.first->print(dbgs());
528 dbgs() << '\n';
529 });
530 Use.first->setOperand(Use.second, LoadedCst);
531 ++NumPromotedUses;
532 }
533 }
534}
535
536void AArch64PromoteConstant::promoteConstants(
538 PromotionCacheTy &PromotionCache) {
539 // Promote the constants.
540 for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
541 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
542 auto First = U;
543 Constant *C = First->C;
544 InsertionPoints InsertPts;
545 do {
546 computeInsertionPoint(U->User, U->Op, InsertPts);
547 } while (++U != E && U->C == C);
548
549 auto &Promotion = PromotionCache[C];
550 ensurePromotedGV(F, *C, Promotion);
551 insertDefinitions(F, *Promotion.GV, InsertPts);
552 }
553}
554
555bool AArch64PromoteConstant::runOnFunction(Function &F,
556 PromotionCacheTy &PromotionCache) {
557 // Look for instructions using constant vector. Promote that constant to a
558 // global variable. Create as few loads of this variable as possible and
559 // update the uses accordingly.
561 for (Instruction &I : instructions(&F)) {
562 // Traverse the operand, looking for constant vectors. Replace them by a
563 // load of a global variable of constant vector type.
564 for (Use &U : I.operands()) {
565 Constant *Cst = dyn_cast<Constant>(U);
566 // There is no point in promoting global values as they are already
567 // global. Do not promote constants containing constant expression, global
568 // values or blockaddresses either, as they may require some code
569 // expansion.
570 if (!Cst || isa<GlobalValue>(Cst) || !containsOnlyConstantData(Cst))
571 continue;
572
573 // Check if this constant is worth promoting.
574 if (!shouldConvert(*Cst, PromotionCache))
575 continue;
576
577 // Check if this use should be promoted.
578 unsigned OpNo = &U - I.op_begin();
579 if (!shouldConvertUse(Cst, &I, OpNo))
580 continue;
581
582 Updates.emplace_back(Cst, &I, OpNo);
583 }
584 }
585
586 if (Updates.empty())
587 return false;
588
589 promoteConstants(F, Updates, PromotionCache);
590 return true;
591}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstantUsingVectorTy(const Type *CstTy)
Check if the given type uses a vector type.
aarch64 promote const
static bool containsOnlyConstantData(const Constant *C)
static void ensurePromotedGV(Function &F, Constant &C, AArch64PromoteConstant::PromotedConstant &PC)
static bool shouldConvert(Constant &C, AArch64PromoteConstant::PromotionCacheTy &PromotionCache)
static cl::opt< bool > Stress("aarch64-stress-promote-const", cl::Hidden, cl::desc("Promote all vector constants"))
static bool shouldConvertImpl(const Constant *Cst)
Check if the given Cst should be converted into a load of a global variable initialized with Cst.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, unsigned OpIdx)
Check if the given use (Instruction + OpIdx) of Cst should be converted into a load of a global varia...
Expand Atomic instructions
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
Remove Loads Into Fake Uses
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:270
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
bool isInlineAsm() const
Check if this call is an inline asm statement.
Definition: InstrTypes.h:1415
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:43
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition: Constants.cpp:76
This class represents an Operation in the Expression.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition: DenseMap.h:74
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:230
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:357
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:60
Type * getValueType() const
Definition: GlobalValue.h:298
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
An instruction for reading from memory.
Definition: Instructions.h:180
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:255
bool skipModule(const Module &M) const
Optional passes call this function to check whether the pass should be skipped.
Definition: Pass.cpp:63
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:99
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:112
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
bool empty() const
Definition: SmallVector.h:82
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:273
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:264
Type * getArrayElementType() const
Definition: Type.h:408
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:261
LLVM_ABI Type * getStructElementType(unsigned N) const
LLVM_ABI unsigned getStructNumElements() const
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:5222
const ParentTy * getParent() const
Definition: ilist_node.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
ModulePass * createAArch64PromoteConstantPass()