35#include "llvm/IR/IntrinsicsAMDGPU.h"
36#include "llvm/IR/IntrinsicsR600.h"
38#define DEBUG_TYPE "amdgpu-legalinfo"
48 "amdgpu-global-isel-new-legality",
49 cl::desc(
"Use GlobalISel desired legality, rather than try to use"
50 "rules compatible with selection patterns"),
65 unsigned Bits = Ty.getSizeInBits();
75 const LLT Ty = Query.Types[TypeIdx];
81 return Ty.getNumElements() % 2 != 0 &&
82 EltSize > 1 && EltSize < 32 &&
83 Ty.getSizeInBits() % 32 != 0;
89 const LLT Ty = Query.Types[TypeIdx];
96 const LLT Ty = Query.Types[TypeIdx];
98 return EltTy.
getSizeInBits() == 16 && Ty.getNumElements() > 2;
104 const LLT Ty = Query.Types[TypeIdx];
106 return std::pair(TypeIdx,
113 const LLT Ty = Query.Types[TypeIdx];
115 unsigned Size = Ty.getSizeInBits();
116 unsigned Pieces = (
Size + 63) / 64;
117 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
127 const LLT Ty = Query.Types[TypeIdx];
130 const int Size = Ty.getSizeInBits();
132 const int NextMul32 = (
Size + 31) / 32;
136 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
144 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
145 return std::make_pair(TypeIdx,
LLT::scalar(MemSize));
152 const LLT Ty = Query.Types[TypeIdx];
154 const unsigned EltSize = Ty.getElementType().getSizeInBits();
157 assert(EltSize == 32 || EltSize == 64);
162 for (NewNumElts = NumElts; NewNumElts < MaxNumElts; ++NewNumElts) {
166 return std::pair(TypeIdx,
181 const unsigned NumElems = Ty.getElementCount().getFixedValue();
186 const unsigned Size = Ty.getSizeInBits();
199 const LLT Ty = Query.Types[TypeIdx];
206 const LLT Ty = Query.Types[TypeIdx];
207 unsigned Size = Ty.getSizeInBits();
216 const LLT QueryTy = Query.Types[TypeIdx];
223 const LLT QueryTy = Query.Types[TypeIdx];
230 const LLT QueryTy = Query.Types[TypeIdx];
236 return ((ST.useRealTrue16Insts() &&
Size == 16) ||
Size % 32 == 0) &&
242 return EltSize == 16 || EltSize % 32 == 0;
246 const int EltSize = Ty.getElementType().getSizeInBits();
247 return EltSize == 32 || EltSize == 64 ||
248 (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
249 EltSize == 128 || EltSize == 256;
278 LLT Ty = Query.Types[TypeIdx];
286 const LLT QueryTy = Query.Types[TypeIdx];
370 if (Ty.isPointerOrPointerVector())
371 Ty = Ty.changeElementType(
LLT::scalar(Ty.getScalarSizeInBits()));
375 (ST.useRealTrue16Insts() && Ty ==
S16) ||
390 const LLT Ty = Query.Types[TypeIdx];
391 return !Ty.
isVector() && Ty.getSizeInBits() > 32 &&
392 Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
400 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
410 bool IsLoad,
bool IsAtomic) {
414 return ST.enableFlatScratch() ? 128 : 32;
416 return ST.useDS128() ? 128 : 64;
427 return IsLoad ? 512 : 128;
432 return ST.hasMultiDwordFlatScratchAddressing() || IsAtomic ? 128 : 32;
441 const bool IsLoad = Query.
Opcode != AMDGPU::G_STORE;
443 unsigned RegSize = Ty.getSizeInBits();
446 unsigned AS = Query.
Types[1].getAddressSpace();
453 if (Ty.isVector() && MemSize !=
RegSize)
460 if (IsLoad && MemSize <
Size)
461 MemSize = std::max(MemSize,
Align);
481 if (!ST.hasDwordx3LoadStores())
494 if (AlignBits < MemSize) {
497 Align(AlignBits / 8)))
527 const unsigned Size = Ty.getSizeInBits();
528 if (Ty.isPointerVector())
538 unsigned EltSize = Ty.getScalarSizeInBits();
539 return EltSize != 32 && EltSize != 64;
553 const unsigned Size = Ty.getSizeInBits();
554 if (
Size != MemSizeInBits)
555 return Size <= 32 && Ty.isVector();
561 return Ty.isVector() && (!MemTy.
isVector() || MemTy == Ty) &&
570 uint64_t AlignInBits,
unsigned AddrSpace,
580 if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
591 if (AlignInBits < RoundedSize)
598 RoundedSize, AddrSpace,
Align(AlignInBits / 8),
610 Query.
Types[1].getAddressSpace(), Opcode);
630 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
633 Register VectorReg =
MRI.createGenericVirtualRegister(VectorTy);
634 std::array<Register, 4> VectorElems;
635 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
636 for (
unsigned I = 0;
I < NumParts; ++
I)
638 B.buildExtractVectorElementConstant(
S32, VectorReg,
I).getReg(0);
639 B.buildMergeValues(MO, VectorElems);
643 Register BitcastReg =
MRI.createGenericVirtualRegister(VectorTy);
644 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
645 auto Scalar =
B.buildBitcast(ScalarTy, BitcastReg);
646 B.buildIntToPtr(MO, Scalar);
666 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
667 auto Unmerged =
B.buildUnmerge(
LLT::scalar(32), Pointer);
668 for (
unsigned I = 0;
I < NumParts; ++
I)
670 return B.buildBuildVector(VectorTy, PointerParts).getReg(0);
672 Register Scalar =
B.buildPtrToInt(ScalarTy, Pointer).getReg(0);
673 return B.buildBitcast(VectorTy, Scalar).getReg(0);
692 auto GetAddrSpacePtr = [&TM](
unsigned AS) {
705 const LLT BufferStridedPtr =
708 const LLT CodePtr = FlatPtr;
710 const std::initializer_list<LLT> AddrSpaces64 = {
711 GlobalPtr, ConstantPtr, FlatPtr
714 const std::initializer_list<LLT> AddrSpaces32 = {
715 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
718 const std::initializer_list<LLT> AddrSpaces128 = {RsrcPtr};
720 const std::initializer_list<LLT> FPTypesBase = {
724 const std::initializer_list<LLT> FPTypes16 = {
728 const std::initializer_list<LLT> FPTypesPK16 = {
732 const LLT MinScalarFPTy = ST.has16BitInsts() ?
S16 :
S32;
753 if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
755 if (ST.hasScalarAddSub64()) {
758 .clampMaxNumElementsStrict(0,
S16, 2)
766 .clampMaxNumElementsStrict(0,
S16, 2)
773 if (ST.hasScalarSMulU64()) {
776 .clampMaxNumElementsStrict(0,
S16, 2)
784 .clampMaxNumElementsStrict(0,
S16, 2)
794 .minScalarOrElt(0,
S16)
799 }
else if (ST.has16BitInsts()) {
833 .widenScalarToNextMultipleOf(0, 32)
843 if (ST.hasMad64_32())
848 if (ST.hasIntClamp()) {
871 {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
881 if (ST.hasVOP3PInsts()) {
883 .clampMaxNumElements(0,
S8, 2)
904 {G_UADDO, G_USUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
916 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
923 .clampScalar(0,
S16,
S64);
956 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE,
957 G_STRICT_FADD, G_STRICT_FMUL, G_STRICT_FMA})
964 if (ST.has16BitInsts()) {
965 if (ST.hasVOP3PInsts())
968 FPOpActions.legalFor({
S16});
970 TrigActions.customFor({
S16});
971 FDIVActions.customFor({
S16});
974 if (ST.hasPackedFP32Ops()) {
975 FPOpActions.legalFor({
V2S32});
976 FPOpActions.clampMaxNumElementsStrict(0,
S32, 2);
980 {G_FMINNUM, G_FMAXNUM, G_FMINIMUMNUM, G_FMAXIMUMNUM, G_FMINNUM_IEEE,
983 if (ST.hasVOP3PInsts()) {
984 MinNumMaxNum.customFor(FPTypesPK16)
986 .clampMaxNumElements(0,
S16, 2)
989 }
else if (ST.has16BitInsts()) {
990 MinNumMaxNum.customFor(FPTypes16)
994 MinNumMaxNum.customFor(FPTypesBase)
999 if (ST.hasVOP3PInsts())
1015 .legalFor(FPTypesPK16)
1020 if (ST.has16BitInsts()) {
1049 if (ST.hasFractBug()) {
1078 if (ST.hasCvtPkF16F32Inst()) {
1080 .clampMaxNumElements(0,
S16, 2);
1084 FPTruncActions.scalarize(0).lower();
1092 if (ST.has16BitInsts()) {
1112 if (ST.hasMadF16() && ST.hasMadMacF32Insts())
1113 FMad.customFor({
S32,
S16});
1114 else if (ST.hasMadMacF32Insts())
1115 FMad.customFor({
S32});
1116 else if (ST.hasMadF16())
1117 FMad.customFor({
S16});
1122 if (ST.has16BitInsts()) {
1125 FRem.minScalar(0,
S32)
1134 .clampMaxNumElements(0,
S16, 2)
1153 if (ST.has16BitInsts())
1164 if (ST.has16BitInsts())
1175 .clampScalar(0,
S16,
S64)
1190 .clampScalar(0,
S16,
S64)
1194 if (ST.has16BitInsts()) {
1196 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1198 .clampScalar(0,
S16,
S64)
1202 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1204 .clampScalar(0,
S32,
S64)
1208 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1211 .clampScalar(0,
S32,
S64)
1223 .scalarSameSizeAs(1, 0)
1239 {
S1}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
1240 .legalForCartesianProduct(
1241 {
S32}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
1242 if (ST.has16BitInsts()) {
1243 CmpBuilder.legalFor({{
S1,
S16}});
1254 {
S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase);
1256 if (ST.hasSALUFloatInsts())
1266 if (ST.has16BitInsts())
1267 ExpOps.customFor({{
S32}, {
S16}});
1269 ExpOps.customFor({
S32});
1270 ExpOps.clampScalar(0, MinScalarFPTy,
S32)
1279 if (ST.has16BitInsts())
1295 .clampScalar(0,
S32,
S32)
1302 if (ST.has16BitInsts())
1305 .widenScalarToNextPow2(1)
1311 .lowerFor({
S1,
S16})
1312 .widenScalarToNextPow2(1)
1339 .clampScalar(0,
S32,
S32)
1349 .clampScalar(0,
S32,
S64)
1353 if (ST.has16BitInsts()) {
1356 .clampMaxNumElementsStrict(0,
S16, 2)
1363 if (ST.hasVOP3PInsts()) {
1366 .clampMaxNumElements(0,
S16, 2)
1371 if (ST.hasIntMinMax64()) {
1374 .clampMaxNumElements(0,
S16, 2)
1382 .clampMaxNumElements(0,
S16, 2)
1391 .widenScalarToNextPow2(0)
1419 .legalForCartesianProduct(AddrSpaces32, {
S32})
1435 .legalForCartesianProduct(AddrSpaces32, {
S32})
1452 const auto needToSplitMemOp = [=](
const LegalityQuery &Query,
1453 bool IsLoad) ->
bool {
1457 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1471 unsigned NumRegs = (MemSize + 31) / 32;
1473 if (!ST.hasDwordx3LoadStores())
1484 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1485 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1486 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1492 for (
unsigned Op : {G_LOAD, G_STORE}) {
1493 const bool IsStore =
Op == G_STORE;
1498 Actions.legalForTypesWithMemDesc({{
S32, GlobalPtr,
S32, GlobalAlign32},
1501 {
S64, GlobalPtr,
S64, GlobalAlign32},
1504 {
S32, GlobalPtr,
S8, GlobalAlign8},
1505 {
S32, GlobalPtr,
S16, GlobalAlign16},
1507 {
S32, LocalPtr,
S32, 32},
1508 {
S64, LocalPtr,
S64, 32},
1510 {
S32, LocalPtr,
S8, 8},
1511 {
S32, LocalPtr,
S16, 16},
1514 {
S32, PrivatePtr,
S32, 32},
1515 {
S32, PrivatePtr,
S8, 8},
1516 {
S32, PrivatePtr,
S16, 16},
1519 {
S32, ConstantPtr,
S32, GlobalAlign32},
1522 {
S64, ConstantPtr,
S64, GlobalAlign32},
1523 {
V2S32, ConstantPtr,
V2S32, GlobalAlign32}});
1532 Actions.unsupportedIf(
1533 typeInSet(1, {BufferFatPtr, BufferStridedPtr, RsrcPtr}));
1547 Actions.customIf(
typeIs(1, Constant32Ptr));
1573 return !Query.
Types[0].isVector() &&
1574 needToSplitMemOp(Query,
Op == G_LOAD);
1576 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1581 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1584 if (DstSize > MemSize)
1590 if (MemSize > MaxSize)
1598 return Query.
Types[0].isVector() &&
1599 needToSplitMemOp(Query,
Op == G_LOAD);
1601 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1615 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1616 if (MemSize > MaxSize) {
1620 if (MaxSize % EltSize == 0) {
1626 unsigned NumPieces = MemSize / MaxSize;
1630 if (NumPieces == 1 || NumPieces >= NumElts ||
1631 NumElts % NumPieces != 0)
1632 return std::pair(0, EltTy);
1640 return std::pair(0, EltTy);
1655 return std::pair(0, EltTy);
1660 .widenScalarToNextPow2(0)
1667 .legalForTypesWithMemDesc({{
S32, GlobalPtr,
S8, 8},
1668 {
S32, GlobalPtr,
S16, 2 * 8},
1669 {
S32, LocalPtr,
S8, 8},
1670 {
S32, LocalPtr,
S16, 16},
1671 {
S32, PrivatePtr,
S8, 8},
1672 {
S32, PrivatePtr,
S16, 16},
1673 {
S32, ConstantPtr,
S8, 8},
1674 {
S32, ConstantPtr,
S16, 2 * 8}})
1680 if (ST.hasFlatAddressSpace()) {
1681 ExtLoads.legalForTypesWithMemDesc(
1682 {{
S32, FlatPtr,
S8, 8}, {
S32, FlatPtr,
S16, 16}});
1697 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1698 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1699 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1700 G_ATOMICRMW_UMIN, G_ATOMICRMW_UINC_WRAP, G_ATOMICRMW_UDEC_WRAP})
1701 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr},
1702 {
S64, GlobalPtr}, {
S64, LocalPtr},
1703 {
S32, RegionPtr}, {
S64, RegionPtr}});
1704 if (ST.hasFlatAddressSpace()) {
1705 Atomics.legalFor({{
S32, FlatPtr}, {
S64, FlatPtr}});
1710 if (ST.hasLDSFPAtomicAddF32()) {
1711 Atomic.legalFor({{
S32, LocalPtr}, {
S32, RegionPtr}});
1712 if (ST.hasLdsAtomicAddF64())
1713 Atomic.legalFor({{
S64, LocalPtr}});
1714 if (ST.hasAtomicDsPkAdd16Insts())
1715 Atomic.legalFor({{
V2F16, LocalPtr}, {
V2BF16, LocalPtr}});
1717 if (ST.hasAtomicFaddInsts())
1718 Atomic.legalFor({{
S32, GlobalPtr}});
1719 if (ST.hasFlatAtomicFaddF32Inst())
1720 Atomic.legalFor({{
S32, FlatPtr}});
1722 if (ST.hasGFX90AInsts() || ST.hasGFX1250Insts()) {
1733 if (ST.hasAtomicBufferGlobalPkAddF16NoRtnInsts() ||
1734 ST.hasAtomicBufferGlobalPkAddF16Insts())
1735 Atomic.legalFor({{
V2F16, GlobalPtr}, {
V2F16, BufferFatPtr}});
1736 if (ST.hasAtomicGlobalPkAddBF16Inst())
1737 Atomic.legalFor({{
V2BF16, GlobalPtr}});
1738 if (ST.hasAtomicFlatPkAdd16Insts())
1739 Atomic.legalFor({{
V2F16, FlatPtr}, {
V2BF16, FlatPtr}});
1744 auto &AtomicFMinFMax =
1746 .legalFor({{
F32, LocalPtr}, {
F64, LocalPtr}});
1748 if (ST.hasAtomicFMinFMaxF32GlobalInsts())
1750 if (ST.hasAtomicFMinFMaxF64GlobalInsts())
1751 AtomicFMinFMax.
legalFor({{
F64, GlobalPtr}, {
F64, BufferFatPtr}});
1752 if (ST.hasAtomicFMinFMaxF32FlatInsts())
1754 if (ST.hasAtomicFMinFMaxF64FlatInsts())
1761 {
S32, FlatPtr}, {
S64, FlatPtr}})
1762 .legalFor({{
S32, LocalPtr}, {
S64, LocalPtr},
1763 {
S32, RegionPtr}, {
S64, RegionPtr}});
1769 LocalPtr, FlatPtr, PrivatePtr,
1773 .clampScalar(0,
S16,
S64)
1788 if (ST.has16BitInsts()) {
1789 if (ST.hasVOP3PInsts()) {
1791 .clampMaxNumElements(0,
S16, 2);
1793 Shifts.legalFor({{
S16,
S16}});
1796 Shifts.widenScalarIf(
1801 const LLT AmountTy = Query.
Types[1];
1802 return ValTy.isScalar() && ValTy.getSizeInBits() <= 16 &&
1806 Shifts.clampScalar(1,
S32,
S32);
1807 Shifts.widenScalarToNextPow2(0, 16);
1808 Shifts.clampScalar(0,
S16,
S64);
1818 Shifts.clampScalar(1,
S32,
S32);
1819 Shifts.widenScalarToNextPow2(0, 32);
1820 Shifts.clampScalar(0,
S32,
S64);
1829 for (
unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1830 unsigned VecTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1831 unsigned EltTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1832 unsigned IdxTypeIdx = 2;
1836 const LLT EltTy = Query.
Types[EltTypeIdx];
1837 const LLT VecTy = Query.
Types[VecTypeIdx];
1838 const LLT IdxTy = Query.
Types[IdxTypeIdx];
1840 const bool isLegalVecType =
1850 return (EltSize == 32 || EltSize == 64) &&
1866 const LLT EltTy = Query.
Types[EltTypeIdx];
1867 const LLT VecTy = Query.
Types[VecTypeIdx];
1871 const unsigned TargetEltSize =
1872 DstEltSize % 64 == 0 ? 64 : 32;
1873 return std::pair(VecTypeIdx,
1877 .clampScalar(EltTypeIdx,
S32,
S64)
1891 const LLT &EltTy = Query.
Types[1].getElementType();
1892 return Query.
Types[0] != EltTy;
1895 for (
unsigned Op : {G_EXTRACT, G_INSERT}) {
1896 unsigned BigTyIdx =
Op == G_EXTRACT ? 1 : 0;
1897 unsigned LitTyIdx =
Op == G_EXTRACT ? 0 : 1;
1906 const LLT BigTy = Query.
Types[BigTyIdx];
1911 const LLT BigTy = Query.
Types[BigTyIdx];
1912 const LLT LitTy = Query.
Types[LitTyIdx];
1918 const LLT BigTy = Query.
Types[BigTyIdx];
1924 const LLT LitTy = Query.
Types[LitTyIdx];
1943 if (ST.hasScalarPackInsts()) {
1946 .minScalarOrElt(0,
S16)
1953 BuildVector.customFor({
V2S16,
S16});
1954 BuildVector.minScalarOrElt(0,
S32);
1973 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1974 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1975 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
1977 auto notValidElt = [=](
const LegalityQuery &Query,
unsigned TypeIdx) {
1978 const LLT Ty = Query.
Types[TypeIdx];
1979 if (Ty.isVector()) {
1994 const LLT BigTy = Query.
Types[BigTyIdx];
2014 return notValidElt(Query, LitTyIdx);
2019 return notValidElt(Query, BigTyIdx);
2024 if (
Op == G_MERGE_VALUES) {
2025 Builder.widenScalarIf(
2028 const LLT Ty = Query.
Types[LitTyIdx];
2029 return Ty.getSizeInBits() < 32;
2036 const LLT Ty = Query.
Types[BigTyIdx];
2037 return Ty.getSizeInBits() % 16 != 0;
2042 const LLT &Ty = Query.
Types[BigTyIdx];
2043 unsigned NewSizeInBits = 1 <<
Log2_32_Ceil(Ty.getSizeInBits() + 1);
2044 if (NewSizeInBits >= 256) {
2045 unsigned RoundedTo =
alignTo<64>(Ty.getSizeInBits() + 1);
2046 if (RoundedTo < NewSizeInBits)
2047 NewSizeInBits = RoundedTo;
2049 return std::pair(BigTyIdx,
LLT::scalar(NewSizeInBits));
2060 .clampScalar(0,
S32,
S64);
2062 if (ST.hasVOP3PInsts()) {
2063 SextInReg.lowerFor({{
V2S16}})
2067 .clampMaxNumElementsStrict(0,
S16, 2);
2068 }
else if (ST.has16BitInsts()) {
2069 SextInReg.lowerFor({{
S32}, {
S64}, {
S16}});
2073 SextInReg.lowerFor({{
S32}, {
S64}});
2086 FSHRActionDefs.legalFor({{
S32,
S32}})
2087 .clampMaxNumElementsStrict(0,
S16, 2);
2088 if (ST.hasVOP3PInsts())
2090 FSHRActionDefs.scalarize(0).lower();
2092 if (ST.hasVOP3PInsts()) {
2095 .clampMaxNumElementsStrict(0,
S16, 2)
2119 .clampScalar(1,
S32,
S32)
2128 G_ATOMIC_CMPXCHG_WITH_SUCCESS, G_ATOMICRMW_NAND, G_ATOMICRMW_FSUB,
2129 G_READ_REGISTER, G_WRITE_REGISTER,
2134 if (ST.hasIEEEMinimumMaximumInsts()) {
2136 .legalFor(FPTypesPK16)
2150 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
2151 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
2157 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX,
2158 G_VECREDUCE_ADD, G_VECREDUCE_MUL, G_VECREDUCE_FMUL, G_VECREDUCE_FMIN,
2159 G_VECREDUCE_FMAX, G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM,
2160 G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
2166 verify(*ST.getInstrInfo());
2175 switch (
MI.getOpcode()) {
2176 case TargetOpcode::G_ADDRSPACE_CAST:
2178 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2180 case TargetOpcode::G_FCEIL:
2182 case TargetOpcode::G_FREM:
2184 case TargetOpcode::G_INTRINSIC_TRUNC:
2186 case TargetOpcode::G_SITOFP:
2188 case TargetOpcode::G_UITOFP:
2190 case TargetOpcode::G_FPTOSI:
2192 case TargetOpcode::G_FPTOUI:
2194 case TargetOpcode::G_FMINNUM:
2195 case TargetOpcode::G_FMAXNUM:
2196 case TargetOpcode::G_FMINIMUMNUM:
2197 case TargetOpcode::G_FMAXIMUMNUM:
2198 case TargetOpcode::G_FMINNUM_IEEE:
2199 case TargetOpcode::G_FMAXNUM_IEEE:
2201 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2203 case TargetOpcode::G_INSERT_VECTOR_ELT:
2205 case TargetOpcode::G_FSIN:
2206 case TargetOpcode::G_FCOS:
2208 case TargetOpcode::G_GLOBAL_VALUE:
2210 case TargetOpcode::G_LOAD:
2211 case TargetOpcode::G_SEXTLOAD:
2212 case TargetOpcode::G_ZEXTLOAD:
2214 case TargetOpcode::G_STORE:
2216 case TargetOpcode::G_FMAD:
2218 case TargetOpcode::G_FDIV:
2220 case TargetOpcode::G_FFREXP:
2222 case TargetOpcode::G_FSQRT:
2224 case TargetOpcode::G_UDIV:
2225 case TargetOpcode::G_UREM:
2226 case TargetOpcode::G_UDIVREM:
2228 case TargetOpcode::G_SDIV:
2229 case TargetOpcode::G_SREM:
2230 case TargetOpcode::G_SDIVREM:
2232 case TargetOpcode::G_ATOMIC_CMPXCHG:
2234 case TargetOpcode::G_FLOG2:
2236 case TargetOpcode::G_FLOG:
2237 case TargetOpcode::G_FLOG10:
2239 case TargetOpcode::G_FEXP2:
2241 case TargetOpcode::G_FEXP:
2242 case TargetOpcode::G_FEXP10:
2244 case TargetOpcode::G_FPOW:
2246 case TargetOpcode::G_FFLOOR:
2248 case TargetOpcode::G_BUILD_VECTOR:
2249 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
2251 case TargetOpcode::G_MUL:
2253 case TargetOpcode::G_CTLZ:
2254 case TargetOpcode::G_CTTZ:
2256 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2258 case TargetOpcode::G_STACKSAVE:
2260 case TargetOpcode::G_GET_FPENV:
2262 case TargetOpcode::G_SET_FPENV:
2264 case TargetOpcode::G_TRAP:
2266 case TargetOpcode::G_DEBUGTRAP:
2286 if (ST.hasApertureRegs()) {
2291 ? AMDGPU::SRC_SHARED_BASE
2292 : AMDGPU::SRC_PRIVATE_BASE;
2293 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
2294 !ST.hasGloballyAddressableScratch()) &&
2295 "Cannot use src_private_base with globally addressable scratch!");
2304 MRI.setRegClass(Dst, &AMDGPU::SReg_64RegClass);
2305 B.buildInstr(AMDGPU::S_MOV_B64, {Dst}, {
Register(ApertureRegNo)});
2306 return B.buildUnmerge(
S32, Dst).getReg(1);
2311 Register LoadAddr =
MRI.createGenericVirtualRegister(
2321 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
2323 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
2337 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
2340 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2343 Register QueuePtr =
MRI.createGenericVirtualRegister(
2359 B.buildObjectPtrOffset(
2361 B.buildConstant(
LLT::scalar(64), StructOffset).getReg(0));
2362 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2370 switch (Def->getOpcode()) {
2371 case AMDGPU::G_FRAME_INDEX:
2372 case AMDGPU::G_GLOBAL_VALUE:
2373 case AMDGPU::G_BLOCK_ADDR:
2375 case AMDGPU::G_CONSTANT: {
2376 const ConstantInt *CI = Def->getOperand(1).getCImm();
2377 return CI->
getSExtValue() != TM.getNullPointerValue(AddrSpace);
2393 assert(
MI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2395 Intrinsic::amdgcn_addrspacecast_nonnull));
2400 :
MI.getOperand(1).getReg();
2401 LLT DstTy =
MRI.getType(Dst);
2402 LLT SrcTy =
MRI.getType(Src);
2404 unsigned SrcAS = SrcTy.getAddressSpace();
2413 if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
2414 MI.setDesc(
B.getTII().get(TargetOpcode::G_BITCAST));
2421 auto castFlatToLocalOrPrivate = [&](
const DstOp &Dst) ->
Register {
2423 ST.hasGloballyAddressableScratch()) {
2427 Register SrcLo =
B.buildExtract(
S32, Src, 0).getReg(0);
2429 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
2430 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO)})
2432 MRI.setRegClass(FlatScratchBaseLo, &AMDGPU::SReg_32RegClass);
2434 return B.buildIntToPtr(Dst,
Sub).getReg(0);
2438 return B.buildExtract(Dst, Src, 0).getReg(0);
2444 castFlatToLocalOrPrivate(Dst);
2445 MI.eraseFromParent();
2449 unsigned NullVal = TM.getNullPointerValue(DestAS);
2451 auto SegmentNull =
B.buildConstant(DstTy, NullVal);
2452 auto FlatNull =
B.buildConstant(SrcTy, 0);
2455 auto PtrLo32 = castFlatToLocalOrPrivate(DstTy);
2459 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
2461 MI.eraseFromParent();
2468 auto castLocalOrPrivateToFlat = [&](
const DstOp &Dst) ->
Register {
2471 Register SrcAsInt =
B.buildPtrToInt(
S32, Src).getReg(0);
2474 ST.hasGloballyAddressableScratch()) {
2479 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {
S32})
2483 if (ST.isWave64()) {
2484 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {
S32})
2490 B.buildConstant(
S32, 57 - 32 - ST.getWavefrontSizeLog2()).getReg(0);
2491 Register SrcHi =
B.buildShl(
S32, ThreadID, ShAmt).getReg(0);
2493 B.buildMergeLikeInstr(DstTy, {SrcAsInt, SrcHi}).
getReg(0);
2497 B.buildInstr(AMDGPU::S_MOV_B64, {
S64},
2498 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE)})
2500 MRI.setRegClass(FlatScratchBase, &AMDGPU::SReg_64RegClass);
2501 return B.buildPtrAdd(Dst, CvtPtr, FlatScratchBase).getReg(0);
2510 return B.buildMergeLikeInstr(Dst, {SrcAsInt, ApertureReg}).
getReg(0);
2516 castLocalOrPrivateToFlat(Dst);
2517 MI.eraseFromParent();
2521 Register BuildPtr = castLocalOrPrivateToFlat(DstTy);
2523 auto SegmentNull =
B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
2524 auto FlatNull =
B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
2527 SegmentNull.getReg(0));
2529 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
2531 MI.eraseFromParent();
2536 SrcTy.getSizeInBits() == 64) {
2538 B.buildExtract(Dst, Src, 0);
2539 MI.eraseFromParent();
2546 uint32_t AddrHiVal = Info->get32BitAddressHighBits();
2547 auto PtrLo =
B.buildPtrToInt(
S32, Src);
2548 auto HighAddr =
B.buildConstant(
S32, AddrHiVal);
2549 B.buildMergeLikeInstr(Dst, {PtrLo, HighAddr});
2550 MI.eraseFromParent();
2557 MI.eraseFromParent();
2565 LLT Ty =
MRI.getType(Src);
2566 assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2571 auto C1 =
B.buildFConstant(Ty, C1Val);
2572 auto CopySign =
B.buildFCopysign(Ty, C1, Src);
2575 auto Tmp1 =
B.buildFAdd(Ty, Src, CopySign);
2576 auto Tmp2 =
B.buildFSub(Ty, Tmp1, CopySign);
2578 auto C2 =
B.buildFConstant(Ty, C2Val);
2579 auto Fabs =
B.buildFAbs(Ty, Src);
2582 B.buildSelect(
MI.getOperand(0).getReg(),
Cond, Src, Tmp2);
2583 MI.eraseFromParent();
2601 auto Trunc =
B.buildIntrinsicTrunc(
S64, Src);
2603 const auto Zero =
B.buildFConstant(
S64, 0.0);
2604 const auto One =
B.buildFConstant(
S64, 1.0);
2607 auto And =
B.buildAnd(
S1, Lt0, NeTrunc);
2608 auto Add =
B.buildSelect(
S64,
And, One, Zero);
2611 B.buildFAdd(
MI.getOperand(0).getReg(), Trunc,
Add);
2612 MI.eraseFromParent();
2620 Register Src0Reg =
MI.getOperand(1).getReg();
2621 Register Src1Reg =
MI.getOperand(2).getReg();
2622 auto Flags =
MI.getFlags();
2623 LLT Ty =
MRI.getType(DstReg);
2625 auto Div =
B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2626 auto Trunc =
B.buildIntrinsicTrunc(Ty, Div, Flags);
2627 auto Neg =
B.buildFNeg(Ty, Trunc, Flags);
2628 B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2629 MI.eraseFromParent();
2635 const unsigned FractBits = 52;
2636 const unsigned ExpBits = 11;
2639 auto Const0 =
B.buildConstant(
S32, FractBits - 32);
2640 auto Const1 =
B.buildConstant(
S32, ExpBits);
2642 auto ExpPart =
B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {
S32})
2644 .addUse(Const0.getReg(0))
2645 .addUse(Const1.getReg(0));
2647 return B.buildSub(
S32, ExpPart,
B.buildConstant(
S32, 1023));
2661 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2668 const unsigned FractBits = 52;
2671 const auto SignBitMask =
B.buildConstant(
S32, UINT32_C(1) << 31);
2672 auto SignBit =
B.buildAnd(
S32,
Hi, SignBitMask);
2674 const auto FractMask =
B.buildConstant(
S64, (UINT64_C(1) << FractBits) - 1);
2676 const auto Zero32 =
B.buildConstant(
S32, 0);
2679 auto SignBit64 =
B.buildMergeLikeInstr(
S64, {Zero32, SignBit});
2681 auto Shr =
B.buildAShr(
S64, FractMask, Exp);
2682 auto Not =
B.buildNot(
S64, Shr);
2683 auto Tmp0 =
B.buildAnd(
S64, Src, Not);
2684 auto FiftyOne =
B.buildConstant(
S32, FractBits - 1);
2689 auto Tmp1 =
B.buildSelect(
S64, ExpLt0, SignBit64, Tmp0);
2690 B.buildSelect(
MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2691 MI.eraseFromParent();
2707 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2708 auto ThirtyTwo =
B.buildConstant(
S32, 32);
2710 if (
MRI.getType(Dst) ==
S64) {
2711 auto CvtHi =
Signed ?
B.buildSITOFP(
S64, Unmerge.getReg(1))
2712 :
B.buildUITOFP(
S64, Unmerge.getReg(1));
2714 auto CvtLo =
B.buildUITOFP(
S64, Unmerge.getReg(0));
2715 auto LdExp =
B.buildFLdexp(
S64, CvtHi, ThirtyTwo);
2718 B.buildFAdd(Dst, LdExp, CvtLo);
2719 MI.eraseFromParent();
2725 auto One =
B.buildConstant(
S32, 1);
2729 auto ThirtyOne =
B.buildConstant(
S32, 31);
2730 auto X =
B.buildXor(
S32, Unmerge.getReg(0), Unmerge.getReg(1));
2731 auto OppositeSign =
B.buildAShr(
S32,
X, ThirtyOne);
2732 auto MaxShAmt =
B.buildAdd(
S32, ThirtyTwo, OppositeSign);
2733 auto LS =
B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {
S32})
2734 .addUse(Unmerge.getReg(1));
2735 auto LS2 =
B.buildSub(
S32, LS, One);
2736 ShAmt =
B.buildUMin(
S32, LS2, MaxShAmt);
2738 ShAmt =
B.buildCTLZ(
S32, Unmerge.getReg(1));
2739 auto Norm =
B.buildShl(
S64, Src, ShAmt);
2740 auto Unmerge2 =
B.buildUnmerge({
S32,
S32}, Norm);
2741 auto Adjust =
B.buildUMin(
S32, One, Unmerge2.getReg(0));
2742 auto Norm2 =
B.buildOr(
S32, Unmerge2.getReg(1), Adjust);
2743 auto FVal =
Signed ?
B.buildSITOFP(
S32, Norm2) :
B.buildUITOFP(
S32, Norm2);
2744 auto Scale =
B.buildSub(
S32, ThirtyTwo, ShAmt);
2745 B.buildFLdexp(Dst, FVal, Scale);
2746 MI.eraseFromParent();
2763 const LLT SrcLT =
MRI.getType(Src);
2766 unsigned Flags =
MI.getFlags();
2777 auto Trunc =
B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2785 Sign =
B.buildAShr(
S32, Src,
B.buildConstant(
S32, 31));
2786 Trunc =
B.buildFAbs(
S32, Trunc, Flags);
2790 K0 =
B.buildFConstant(
2792 K1 =
B.buildFConstant(
2795 K0 =
B.buildFConstant(
2797 K1 =
B.buildFConstant(
2801 auto Mul =
B.buildFMul(SrcLT, Trunc, K0, Flags);
2802 auto FloorMul =
B.buildFFloor(SrcLT,
Mul, Flags);
2803 auto Fma =
B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2806 :
B.buildFPTOUI(
S32, FloorMul);
2807 auto Lo =
B.buildFPTOUI(
S32, Fma);
2811 Sign =
B.buildMergeLikeInstr(
S64, {Sign, Sign});
2813 B.buildSub(Dst,
B.buildXor(
S64,
B.buildMergeLikeInstr(
S64, {Lo, Hi}), Sign),
2816 B.buildMergeLikeInstr(Dst, {
Lo,
Hi});
2817 MI.eraseFromParent();
2827 const bool IsIEEEOp =
MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
2828 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
2836 if (
MI.getOpcode() == AMDGPU::G_FMINIMUMNUM ||
2837 MI.getOpcode() == AMDGPU::G_FMAXIMUMNUM)
2859 LLT VecTy =
MRI.getType(Vec);
2872 auto IntVec =
B.buildPtrToInt(IntVecTy, Vec);
2873 auto IntElt =
B.buildExtractVectorElement(IntTy, IntVec,
MI.getOperand(2));
2874 B.buildIntToPtr(Dst, IntElt);
2876 MI.eraseFromParent();
2883 std::optional<ValueAndVReg> MaybeIdxVal =
2887 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2890 auto Unmerge =
B.buildUnmerge(EltTy, Vec);
2891 B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2896 MI.eraseFromParent();
2911 LLT VecTy =
MRI.getType(Vec);
2925 auto IntVecSource =
B.buildPtrToInt(IntVecTy, Vec);
2926 auto IntIns =
B.buildPtrToInt(IntTy, Ins);
2927 auto IntVecDest =
B.buildInsertVectorElement(IntVecTy, IntVecSource, IntIns,
2929 B.buildIntToPtr(Dst, IntVecDest);
2930 MI.eraseFromParent();
2937 std::optional<ValueAndVReg> MaybeIdxVal =
2942 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2945 if (IdxVal < NumElts) {
2947 for (
unsigned i = 0; i < NumElts; ++i)
2948 SrcRegs.
push_back(
MRI.createGenericVirtualRegister(EltTy));
2949 B.buildUnmerge(SrcRegs, Vec);
2951 SrcRegs[IdxVal] =
MI.getOperand(2).getReg();
2952 B.buildMergeLikeInstr(Dst, SrcRegs);
2957 MI.eraseFromParent();
2967 LLT Ty =
MRI.getType(DstReg);
2968 unsigned Flags =
MI.getFlags();
2972 if (ST.hasTrigReducedRange()) {
2973 auto MulVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2974 TrigVal =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty})
2975 .addUse(MulVal.getReg(0))
2979 TrigVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2982 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
2986 MI.eraseFromParent();
2994 unsigned GAFlags)
const {
3023 B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
3025 if (ST.has64BitLiterals()) {
3029 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET64).addDef(PCReg);
3033 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET).addDef(PCReg);
3042 if (!
B.getMRI()->getRegClassOrNull(PCReg))
3043 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
3046 B.buildExtract(DstReg, PCReg, 0);
3056 if (RequiresHighHalf && ST.has64BitLiterals()) {
3057 if (!
MRI.getRegClassOrNull(DstReg))
3058 MRI.setRegClass(DstReg, &AMDGPU::SReg_64RegClass);
3059 B.buildInstr(AMDGPU::S_MOV_B64)
3069 Register AddrLo = !RequiresHighHalf && !
MRI.getRegClassOrNull(DstReg)
3071 :
MRI.createGenericVirtualRegister(
S32);
3073 if (!
MRI.getRegClassOrNull(AddrLo))
3074 MRI.setRegClass(AddrLo, &AMDGPU::SReg_32RegClass);
3077 B.buildInstr(AMDGPU::S_MOV_B32)
3082 if (RequiresHighHalf) {
3084 "Must provide a 64-bit pointer type!");
3087 MRI.setRegClass(AddrHi, &AMDGPU::SReg_32RegClass);
3089 B.buildInstr(AMDGPU::S_MOV_B32)
3099 if (!
MRI.getRegClassOrNull(AddrDst))
3100 MRI.setRegClass(AddrDst, &AMDGPU::SReg_64RegClass);
3102 B.buildMergeValues(AddrDst, {AddrLo, AddrHi});
3106 if (AddrDst != DstReg)
3107 B.buildCast(DstReg, AddrDst);
3108 }
else if (AddrLo != DstReg) {
3111 B.buildCast(DstReg, AddrLo);
3119 LLT Ty =
MRI.getType(DstReg);
3120 unsigned AS = Ty.getAddressSpace();
3128 GV->
getName() !=
"llvm.amdgcn.module.lds" &&
3132 Fn,
"local memory global used by non-kernel function",
3141 B.buildUndef(DstReg);
3142 MI.eraseFromParent();
3162 if (
B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
3166 auto Sz =
B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {
S32});
3167 B.buildIntToPtr(DstReg, Sz);
3168 MI.eraseFromParent();
3175 MI.eraseFromParent();
3179 if (ST.isAmdPalOS() || ST.isMesa3DOS()) {
3181 MI.eraseFromParent();
3189 MI.eraseFromParent();
3195 MI.eraseFromParent();
3200 Register GOTAddr =
MRI.createGenericVirtualRegister(PtrTy);
3211 if (Ty.getSizeInBits() == 32) {
3213 auto Load =
B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
3214 B.buildExtract(DstReg, Load, 0);
3216 B.buildLoad(DstReg, GOTAddr, *GOTMMO);
3218 MI.eraseFromParent();
3236 LLT PtrTy =
MRI.getType(PtrReg);
3241 auto Cast =
B.buildAddrSpaceCast(ConstPtr, PtrReg);
3243 MI.getOperand(1).setReg(Cast.getReg(0));
3248 if (
MI.getOpcode() != AMDGPU::G_LOAD)
3252 LLT ValTy =
MRI.getType(ValReg);
3262 const unsigned ValSize = ValTy.getSizeInBits();
3274 if (WideMemSize == ValSize) {
3280 MI.setMemRefs(MF, {WideMMO});
3286 if (ValSize > WideMemSize)
3293 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3294 B.buildTrunc(ValReg, WideLoad).getReg(0);
3301 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3302 B.buildExtract(ValReg, WideLoad, 0);
3306 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3307 B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
3311 MI.eraseFromParent();
3324 Register DataReg =
MI.getOperand(0).getReg();
3325 LLT DataTy =
MRI.getType(DataReg);
3339 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
3368 "this should not have been custom lowered");
3370 LLT ValTy =
MRI.getType(CmpVal);
3373 Register PackedVal =
B.buildBuildVector(VecTy, { NewVal, CmpVal }).
getReg(0);
3375 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
3379 .setMemRefs(
MI.memoperands());
3381 MI.eraseFromParent();
3389 switch (
DefMI->getOpcode()) {
3390 case TargetOpcode::G_INTRINSIC: {
3392 case Intrinsic::amdgcn_frexp_mant:
3400 case TargetOpcode::G_FFREXP: {
3401 if (
DefMI->getOperand(0).getReg() == Src)
3405 case TargetOpcode::G_FPEXT: {
3426std::pair<Register, Register>
3428 unsigned Flags)
const {
3433 auto SmallestNormal =
B.buildFConstant(
3435 auto IsLtSmallestNormal =
3438 auto Scale32 =
B.buildFConstant(
F32, 0x1.0p+32);
3439 auto One =
B.buildFConstant(
F32, 1.0);
3441 B.buildSelect(
F32, IsLtSmallestNormal, Scale32, One, Flags);
3442 auto ScaledInput =
B.buildFMul(
F32, Src, ScaleFactor, Flags);
3444 return {ScaledInput.getReg(0), IsLtSmallestNormal.getReg(0)};
3457 LLT Ty =
B.getMRI()->getType(Dst);
3458 unsigned Flags =
MI.getFlags();
3463 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3464 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {
F32})
3465 .addUse(Ext.getReg(0))
3467 B.buildFPTrunc(Dst,
Log2, Flags);
3468 MI.eraseFromParent();
3476 B.buildIntrinsic(Intrinsic::amdgcn_log, {
MI.getOperand(0)})
3479 MI.eraseFromParent();
3483 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3484 .addUse(ScaledInput)
3487 auto ThirtyTwo =
B.buildFConstant(Ty, 32.0);
3488 auto Zero =
B.buildFConstant(Ty, 0.0);
3490 B.buildSelect(Ty, IsLtSmallestNormal, ThirtyTwo, Zero, Flags);
3491 B.buildFSub(Dst,
Log2, ResultOffset, Flags);
3493 MI.eraseFromParent();
3499 auto FMul =
B.buildFMul(Ty,
X,
Y, Flags);
3500 return B.buildFAdd(Ty,
FMul, Z, Flags).getReg(0);
3505 const bool IsLog10 =
MI.getOpcode() == TargetOpcode::G_FLOG10;
3506 assert(IsLog10 ||
MI.getOpcode() == TargetOpcode::G_FLOG);
3511 unsigned Flags =
MI.getFlags();
3512 const LLT Ty =
MRI.getType(
X);
3522 if (Ty == F16 && !ST.has16BitInsts()) {
3524 auto PromoteSrc =
B.buildFPExt(
F32,
X);
3526 B.buildFPTrunc(Dst, LogVal);
3531 MI.eraseFromParent();
3540 B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty}).addUse(
X).setMIFlags(Flags);
3543 if (ST.hasFastFMAF32()) {
3545 const float c_log10 = 0x1.344134p-2f;
3546 const float cc_log10 = 0x1.09f79ep-26f;
3549 const float c_log = 0x1.62e42ep-1f;
3550 const float cc_log = 0x1.efa39ep-25f;
3552 auto C =
B.buildFConstant(Ty, IsLog10 ? c_log10 : c_log);
3553 auto CC =
B.buildFConstant(Ty, IsLog10 ? cc_log10 : cc_log);
3555 R =
B.buildFMul(Ty,
Y,
C, Flags).getReg(0);
3556 auto NegR =
B.buildFNeg(Ty, R, Flags);
3557 auto FMA0 =
B.buildFMA(Ty,
Y,
C, NegR, Flags);
3558 auto FMA1 =
B.buildFMA(Ty,
Y, CC, FMA0, Flags);
3559 R =
B.buildFAdd(Ty, R, FMA1, Flags).getReg(0);
3562 const float ch_log10 = 0x1.344000p-2f;
3563 const float ct_log10 = 0x1.3509f6p-18f;
3566 const float ch_log = 0x1.62e000p-1f;
3567 const float ct_log = 0x1.0bfbe8p-15f;
3569 auto CH =
B.buildFConstant(Ty, IsLog10 ? ch_log10 : ch_log);
3570 auto CT =
B.buildFConstant(Ty, IsLog10 ? ct_log10 : ct_log);
3572 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3573 auto YH =
B.buildAnd(Ty,
Y, MaskConst);
3574 auto YT =
B.buildFSub(Ty,
Y, YH, Flags);
3575 auto YTCT =
B.buildFMul(Ty, YT, CT, Flags);
3578 getMad(
B, Ty, YH.getReg(0), CT.getReg(0), YTCT.getReg(0), Flags);
3580 R =
getMad(
B, Ty, YH.getReg(0),
CH.getReg(0), Mad1, Flags);
3583 const bool IsFiniteOnly =
3587 if (!IsFiniteOnly) {
3590 auto Fabs =
B.buildFAbs(Ty,
Y);
3593 R =
B.buildSelect(Ty, IsFinite, R,
Y, Flags).getReg(0);
3597 auto Zero =
B.buildFConstant(Ty, 0.0);
3599 B.buildFConstant(Ty, IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f);
3600 auto Shift =
B.buildSelect(Ty, IsScaled, ShiftK, Zero, Flags);
3601 B.buildFSub(Dst, R, Shift, Flags);
3603 B.buildCopy(Dst, R);
3606 MI.eraseFromParent();
3612 unsigned Flags)
const {
3613 const double Log2BaseInverted =
3616 LLT Ty =
B.getMRI()->getType(Dst);
3621 auto LogSrc =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3624 auto ScaledResultOffset =
B.buildFConstant(Ty, -32.0 * Log2BaseInverted);
3625 auto Zero =
B.buildFConstant(Ty, 0.0);
3627 B.buildSelect(Ty, IsScaled, ScaledResultOffset, Zero, Flags);
3628 auto Log2Inv =
B.buildFConstant(Ty, Log2BaseInverted);
3630 if (ST.hasFastFMAF32())
3631 B.buildFMA(Dst, LogSrc, Log2Inv, ResultOffset, Flags);
3633 auto Mul =
B.buildFMul(Ty, LogSrc, Log2Inv, Flags);
3634 B.buildFAdd(Dst,
Mul, ResultOffset, Flags);
3642 ?
B.buildFLog2(Ty, Src, Flags)
3643 :
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3646 auto Log2BaseInvertedOperand =
B.buildFConstant(Ty, Log2BaseInverted);
3647 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
3658 unsigned Flags =
MI.getFlags();
3659 LLT Ty =
B.getMRI()->getType(Dst);
3665 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3666 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {
F32})
3667 .addUse(Ext.getReg(0))
3669 B.buildFPTrunc(Dst,
Log2, Flags);
3670 MI.eraseFromParent();
3680 MI.eraseFromParent();
3688 auto RangeCheckConst =
B.buildFConstant(Ty, -0x1.f80000p+6f);
3690 RangeCheckConst, Flags);
3692 auto SixtyFour =
B.buildFConstant(Ty, 0x1.0p+6f);
3693 auto Zero =
B.buildFConstant(Ty, 0.0);
3694 auto AddOffset =
B.buildSelect(
F32, NeedsScaling, SixtyFour, Zero, Flags);
3695 auto AddInput =
B.buildFAdd(
F32, Src, AddOffset, Flags);
3697 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3698 .addUse(AddInput.getReg(0))
3701 auto TwoExpNeg64 =
B.buildFConstant(Ty, 0x1.0p-64f);
3702 auto One =
B.buildFConstant(Ty, 1.0);
3703 auto ResultScale =
B.buildSelect(
F32, NeedsScaling, TwoExpNeg64, One, Flags);
3704 B.buildFMul(Dst, Exp2, ResultScale, Flags);
3705 MI.eraseFromParent();
3711 LLT Ty =
B.getMRI()->getType(Dst);
3716 auto Mul =
B.buildFMul(Ty,
X, Log2E, Flags);
3720 .addUse(
Mul.getReg(0))
3723 B.buildFExp2(Dst,
Mul.getReg(0), Flags);
3729 auto Threshold =
B.buildFConstant(Ty, -0x1.5d58a0p+6f);
3732 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+6f);
3733 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3734 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X, Flags);
3737 auto ExpInput =
B.buildFMul(Ty, AdjustedX, Log2E, Flags);
3739 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3740 .addUse(ExpInput.getReg(0))
3743 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.969d48p-93f);
3744 auto AdjustedResult =
B.buildFMul(Ty, Exp2, ResultScaleFactor, Flags);
3745 B.buildSelect(Dst, NeedsScaling, AdjustedResult, Exp2, Flags);
3753 const unsigned Flags =
MI.getFlags();
3756 LLT Ty =
MRI.getType(Dst);
3759 const bool IsExp10 =
MI.getOpcode() == TargetOpcode::G_FEXP10;
3766 MI.eraseFromParent();
3774 auto Ext =
B.buildFPExt(
F32,
X, Flags);
3777 B.buildFPTrunc(Dst, Lowered, Flags);
3778 MI.eraseFromParent();
3788 MI.eraseFromParent();
3816 const unsigned FlagsNoContract = Flags &
~MachineInstr::FmContract;
3819 if (ST.hasFastFMAF32()) {
3821 const float cc_exp = 0x1.4ae0bep-26f;
3822 const float c_exp10 = 0x1.a934f0p+1f;
3823 const float cc_exp10 = 0x1.2f346ep-24f;
3825 auto C =
B.buildFConstant(Ty, IsExp10 ? c_exp10 : c_exp);
3826 PH =
B.buildFMul(Ty,
X,
C, Flags).getReg(0);
3827 auto NegPH =
B.buildFNeg(Ty, PH, Flags);
3828 auto FMA0 =
B.buildFMA(Ty,
X,
C, NegPH, Flags);
3830 auto CC =
B.buildFConstant(Ty, IsExp10 ? cc_exp10 : cc_exp);
3831 PL =
B.buildFMA(Ty,
X, CC, FMA0, Flags).getReg(0);
3833 const float ch_exp = 0x1.714000p+0f;
3834 const float cl_exp = 0x1.47652ap-12f;
3836 const float ch_exp10 = 0x1.a92000p+1f;
3837 const float cl_exp10 = 0x1.4f0978p-11f;
3839 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3840 auto XH =
B.buildAnd(Ty,
X, MaskConst);
3841 auto XL =
B.buildFSub(Ty,
X, XH, Flags);
3843 auto CH =
B.buildFConstant(Ty, IsExp10 ? ch_exp10 : ch_exp);
3844 PH =
B.buildFMul(Ty, XH,
CH, Flags).getReg(0);
3846 auto CL =
B.buildFConstant(Ty, IsExp10 ? cl_exp10 : cl_exp);
3847 auto XLCL =
B.buildFMul(Ty, XL, CL, Flags);
3850 getMad(
B, Ty, XL.getReg(0),
CH.getReg(0), XLCL.getReg(0), Flags);
3851 PL =
getMad(
B, Ty, XH.getReg(0), CL.getReg(0), Mad0, Flags);
3854 auto E =
B.buildIntrinsicRoundeven(Ty, PH, Flags);
3857 auto PHSubE =
B.buildFSub(Ty, PH, E, FlagsNoContract);
3858 auto A =
B.buildFAdd(Ty, PHSubE, PL, Flags);
3861 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3862 .addUse(
A.getReg(0))
3864 auto R =
B.buildFLdexp(Ty, Exp2, IntE, Flags);
3866 auto UnderflowCheckConst =
3867 B.buildFConstant(Ty, IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f);
3868 auto Zero =
B.buildFConstant(Ty, 0.0);
3872 R =
B.buildSelect(Ty, Underflow, Zero, R);
3877 auto OverflowCheckConst =
3878 B.buildFConstant(Ty, IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f);
3883 R =
B.buildSelect(Ty, Overflow, Inf, R, Flags);
3886 B.buildCopy(Dst, R);
3887 MI.eraseFromParent();
3896 unsigned Flags =
MI.getFlags();
3897 LLT Ty =
B.getMRI()->getType(Dst);
3902 auto Log =
B.buildFLog2(
F32, Src0, Flags);
3903 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3904 .addUse(Log.getReg(0))
3907 B.buildFExp2(Dst,
Mul, Flags);
3908 }
else if (Ty == F16) {
3910 auto Log =
B.buildFLog2(F16, Src0, Flags);
3911 auto Ext0 =
B.buildFPExt(
F32, Log, Flags);
3912 auto Ext1 =
B.buildFPExt(
F32, Src1, Flags);
3913 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3914 .addUse(Ext0.getReg(0))
3915 .addUse(Ext1.getReg(0))
3917 B.buildFExp2(Dst,
B.buildFPTrunc(F16,
Mul), Flags);
3921 MI.eraseFromParent();
3929 ModSrc = SrcFNeg->getOperand(1).getReg();
3931 ModSrc = SrcFAbs->getOperand(1).getReg();
3933 ModSrc = SrcFAbs->getOperand(1).getReg();
3944 Register OrigSrc =
MI.getOperand(1).getReg();
3945 unsigned Flags =
MI.getFlags();
3947 "this should not have been custom lowered");
3957 auto Fract =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {
F64})
3977 B.buildFMinNumIEEE(Min, Fract, Const, Flags);
3979 B.buildFMinNum(Min, Fract, Const, Flags);
3984 CorrectedFract =
B.buildSelect(
F64, IsNan, ModSrc, Min, Flags).getReg(0);
3987 auto NegFract =
B.buildFNeg(
F64, CorrectedFract, Flags);
3988 B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
3990 MI.eraseFromParent();
4006 if (
MI.getOpcode() == AMDGPU::G_BUILD_VECTOR_TRUNC) {
4008 Src0 =
B.buildTrunc(
S16,
MI.getOperand(1).getReg()).getReg(0);
4009 Src1 =
B.buildTrunc(
S16,
MI.getOperand(2).getReg()).getReg(0);
4012 auto Merge =
B.buildMergeLikeInstr(
S32, {Src0, Src1});
4013 B.buildBitcast(Dst,
Merge);
4015 MI.eraseFromParent();
4032 bool UsePartialMad64_32,
4033 bool SeparateOddAlignedProducts)
const {
4048 auto getZero32 = [&]() ->
Register {
4050 Zero32 =
B.buildConstant(
S32, 0).getReg(0);
4053 auto getZero64 = [&]() ->
Register {
4055 Zero64 =
B.buildConstant(
S64, 0).getReg(0);
4060 for (
unsigned i = 0; i < Src0.
size(); ++i) {
4071 if (CarryIn.empty())
4074 bool HaveCarryOut =
true;
4076 if (CarryIn.size() == 1) {
4078 LocalAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4082 CarryAccum = getZero32();
4084 CarryAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4085 for (
unsigned i = 1; i + 1 < CarryIn.size(); ++i) {
4087 B.buildUAdde(
S32,
S1, CarryAccum, getZero32(), CarryIn[i])
4092 LocalAccum = getZero32();
4093 HaveCarryOut =
false;
4098 B.buildUAdde(
S32,
S1, CarryAccum, LocalAccum, CarryIn.back());
4099 LocalAccum =
Add.getReg(0);
4113 auto buildMadChain =
4116 assert((DstIndex + 1 < Accum.
size() && LocalAccum.size() == 2) ||
4117 (DstIndex + 1 >= Accum.
size() && LocalAccum.size() == 1));
4124 if (LocalAccum.size() == 1 &&
4125 (!UsePartialMad64_32 || !CarryIn.empty())) {
4128 unsigned j1 = DstIndex - j0;
4129 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4133 auto Mul =
B.buildMul(
S32, Src0[j0], Src1[j1]);
4135 LocalAccum[0] =
Mul.getReg(0);
4137 if (CarryIn.empty()) {
4138 LocalAccum[0] =
B.buildAdd(
S32, LocalAccum[0],
Mul).getReg(0);
4141 B.buildUAdde(
S32,
S1, LocalAccum[0],
Mul, CarryIn.back())
4147 }
while (j0 <= DstIndex && (!UsePartialMad64_32 || !CarryIn.empty()));
4151 if (j0 <= DstIndex) {
4152 bool HaveSmallAccum =
false;
4155 if (LocalAccum[0]) {
4156 if (LocalAccum.size() == 1) {
4157 Tmp =
B.buildAnyExt(
S64, LocalAccum[0]).getReg(0);
4158 HaveSmallAccum =
true;
4159 }
else if (LocalAccum[1]) {
4160 Tmp =
B.buildMergeLikeInstr(
S64, LocalAccum).getReg(0);
4161 HaveSmallAccum =
false;
4163 Tmp =
B.buildZExt(
S64, LocalAccum[0]).getReg(0);
4164 HaveSmallAccum =
true;
4167 assert(LocalAccum.size() == 1 || !LocalAccum[1]);
4169 HaveSmallAccum =
true;
4173 unsigned j1 = DstIndex - j0;
4174 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4178 auto Mad =
B.buildInstr(AMDGPU::G_AMDGPU_MAD_U64_U32, {
S64,
S1},
4179 {Src0[j0], Src1[j1], Tmp});
4180 Tmp = Mad.getReg(0);
4181 if (!HaveSmallAccum)
4182 CarryOut.push_back(Mad.getReg(1));
4183 HaveSmallAccum =
false;
4186 }
while (j0 <= DstIndex);
4188 auto Unmerge =
B.buildUnmerge(
S32, Tmp);
4189 LocalAccum[0] = Unmerge.getReg(0);
4190 if (LocalAccum.size() > 1)
4191 LocalAccum[1] = Unmerge.getReg(1);
4218 for (
unsigned i = 0; i <= Accum.
size() / 2; ++i) {
4219 Carry OddCarryIn = std::move(OddCarry);
4220 Carry EvenCarryIn = std::move(EvenCarry);
4225 if (2 * i < Accum.
size()) {
4226 auto LocalAccum = Accum.
drop_front(2 * i).take_front(2);
4227 EvenCarry = buildMadChain(LocalAccum, 2 * i, EvenCarryIn);
4232 if (!SeparateOddAlignedProducts) {
4233 auto LocalAccum = Accum.
drop_front(2 * i - 1).take_front(2);
4234 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4236 bool IsHighest = 2 * i >= Accum.
size();
4239 .take_front(IsHighest ? 1 : 2);
4240 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4246 Lo =
B.buildUAddo(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0]);
4248 Lo =
B.buildAdd(
S32, Accum[2 * i - 1], SeparateOddOut[0]);
4250 Lo =
B.buildUAdde(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0],
4253 Accum[2 * i - 1] =
Lo->getOperand(0).getReg();
4256 auto Hi =
B.buildUAdde(
S32,
S1, Accum[2 * i], SeparateOddOut[1],
4257 Lo->getOperand(1).getReg());
4258 Accum[2 * i] =
Hi.getReg(0);
4259 SeparateOddCarry =
Hi.getReg(1);
4266 if (
Register CarryOut = mergeCarry(Accum[2 * i - 1], OddCarryIn))
4267 EvenCarryIn.push_back(CarryOut);
4269 if (2 * i < Accum.
size()) {
4270 if (
Register CarryOut = mergeCarry(Accum[2 * i], EvenCarryIn))
4271 OddCarry.push_back(CarryOut);
4283 assert(ST.hasMad64_32());
4284 assert(
MI.getOpcode() == TargetOpcode::G_MUL);
4293 LLT Ty =
MRI.getType(DstReg);
4296 unsigned Size = Ty.getSizeInBits();
4297 if (ST.hasVectorMulU64() &&
Size == 64)
4300 unsigned NumParts =
Size / 32;
4312 const bool SeparateOddAlignedProducts = ST.hasFullRate64Ops();
4316 for (
unsigned i = 0; i < NumParts; ++i) {
4320 B.buildUnmerge(Src0Parts, Src0);
4321 B.buildUnmerge(Src1Parts, Src1);
4324 buildMultiply(Helper, AccumRegs, Src0Parts, Src1Parts, UsePartialMad64_32,
4325 SeparateOddAlignedProducts);
4327 B.buildMergeLikeInstr(DstReg, AccumRegs);
4328 MI.eraseFromParent();
4340 LLT DstTy =
MRI.getType(Dst);
4341 LLT SrcTy =
MRI.getType(Src);
4343 unsigned NewOpc =
MI.getOpcode() == AMDGPU::G_CTLZ
4344 ? AMDGPU::G_AMDGPU_FFBH_U32
4345 : AMDGPU::G_AMDGPU_FFBL_B32;
4346 auto Tmp =
B.buildInstr(NewOpc, {DstTy}, {Src});
4349 MI.eraseFromParent();
4358 LLT SrcTy =
MRI.getType(Src);
4359 TypeSize NumBits = SrcTy.getSizeInBits();
4363 auto ShiftAmt =
B.buildConstant(
S32, 32u - NumBits);
4364 auto Extend =
B.buildAnyExt(
S32, {Src}).
getReg(0u);
4365 auto Shift =
B.buildShl(
S32, Extend, ShiftAmt);
4366 auto Ctlz =
B.buildInstr(AMDGPU::G_AMDGPU_FFBH_U32, {
S32}, {Shift});
4367 B.buildTrunc(Dst, Ctlz);
4368 MI.eraseFromParent();
4374 if (
MI.getOpcode() != TargetOpcode::G_XOR)
4377 return ConstVal == -1;
4384 Register CondDef =
MI.getOperand(0).getReg();
4385 if (!
MRI.hasOneNonDBGUse(CondDef))
4393 if (!
MRI.hasOneNonDBGUse(NegatedCond))
4399 UseMI = &*
MRI.use_instr_nodbg_begin(NegatedCond);
4403 if (
UseMI->getParent() != Parent ||
UseMI->getOpcode() != AMDGPU::G_BRCOND)
4412 UncondBrTarget = &*NextMBB;
4414 if (
Next->getOpcode() != AMDGPU::G_BR)
4433 *ArgRC,
B.getDebugLoc(), ArgTy);
4437 const unsigned Mask = Arg->
getMask();
4445 auto ShiftAmt =
B.buildConstant(
S32, Shift);
4446 AndMaskSrc =
B.buildLShr(
S32, LiveIn, ShiftAmt).getReg(0);
4449 B.buildAnd(DstReg, AndMaskSrc,
B.buildConstant(
S32, Mask >> Shift));
4451 B.buildCopy(DstReg, LiveIn);
4474 if (ST.hasArchitectedSGPRs() &&
4478 Arg = &WorkGroupIDX;
4479 ArgRC = &AMDGPU::SReg_32RegClass;
4483 Arg = &WorkGroupIDY;
4484 ArgRC = &AMDGPU::SReg_32RegClass;
4488 Arg = &WorkGroupIDZ;
4489 ArgRC = &AMDGPU::SReg_32RegClass;
4504 B.buildConstant(DstReg, 0);
4510 B.buildUndef(DstReg);
4514 if (!Arg->isRegister() || !Arg->getRegister().isValid())
4526 MI.eraseFromParent();
4532 B.buildConstant(
MI.getOperand(0).getReg(),
C);
4533 MI.eraseFromParent();
4540 unsigned MaxID = ST.getMaxWorkitemID(
B.getMF().getFunction(), Dim);
4554 B.buildUndef(DstReg);
4555 MI.eraseFromParent();
4559 if (Arg->isMasked()) {
4573 MI.eraseFromParent();
4580 Register KernArgReg =
B.getMRI()->createGenericVirtualRegister(PtrTy);
4589 return B.buildObjectPtrOffset(PtrTy, KernArgReg, COffset).getReg(0);
4597 Align Alignment)
const {
4601 "unexpected kernarg parameter type");
4605 B.buildLoad(DstReg,
Ptr, PtrInfo,
Align(4),
4608 MI.eraseFromParent();
4616 LLT DstTy =
MRI.getType(Dst);
4643 auto FloatY =
B.buildUITOFP(
S32,
Y);
4644 auto RcpIFlag =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {FloatY});
4646 auto ScaledY =
B.buildFMul(
S32, RcpIFlag, Scale);
4647 auto Z =
B.buildFPTOUI(
S32, ScaledY);
4650 auto NegY =
B.buildSub(
S32,
B.buildConstant(
S32, 0),
Y);
4651 auto NegYZ =
B.buildMul(
S32, NegY, Z);
4652 Z =
B.buildAdd(
S32, Z,
B.buildUMulH(
S32, Z, NegYZ));
4655 auto Q =
B.buildUMulH(
S32,
X, Z);
4656 auto R =
B.buildSub(
S32,
X,
B.buildMul(
S32, Q,
Y));
4659 auto One =
B.buildConstant(
S32, 1);
4662 Q =
B.buildSelect(
S32,
Cond,
B.buildAdd(
S32, Q, One), Q);
4668 B.buildSelect(DstDivReg,
Cond,
B.buildAdd(
S32, Q, One), Q);
4671 B.buildSelect(DstRemReg,
Cond,
B.buildSub(
S32, R,
Y), R);
4690 auto Unmerge =
B.buildUnmerge(
S32, Val);
4692 auto CvtLo =
B.buildUITOFP(
S32, Unmerge.getReg(0));
4693 auto CvtHi =
B.buildUITOFP(
S32, Unmerge.getReg(1));
4695 auto Mad =
B.buildFMAD(
4699 auto Rcp =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {Mad});
4700 auto Mul1 =
B.buildFMul(
4704 auto Mul2 =
B.buildFMul(
4706 auto Trunc =
B.buildIntrinsicTrunc(
S32, Mul2);
4709 auto Mad2 =
B.buildFMAD(
4713 auto ResultLo =
B.buildFPTOUI(
S32, Mad2);
4714 auto ResultHi =
B.buildFPTOUI(
S32, Trunc);
4716 return {ResultLo.getReg(0), ResultHi.getReg(0)};
4731 auto Rcp =
B.buildMergeLikeInstr(
S64, {RcpLo, RcpHi});
4733 auto Zero64 =
B.buildConstant(
S64, 0);
4734 auto NegDenom =
B.buildSub(
S64, Zero64, Denom);
4736 auto MulLo1 =
B.buildMul(
S64, NegDenom, Rcp);
4737 auto MulHi1 =
B.buildUMulH(
S64, Rcp, MulLo1);
4739 auto UnmergeMulHi1 =
B.buildUnmerge(
S32, MulHi1);
4740 Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
4741 Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
4743 auto Add1_Lo =
B.buildUAddo(
S32,
S1, RcpLo, MulHi1_Lo);
4744 auto Add1_Hi =
B.buildUAdde(
S32,
S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
4745 auto Add1 =
B.buildMergeLikeInstr(
S64, {Add1_Lo, Add1_Hi});
4747 auto MulLo2 =
B.buildMul(
S64, NegDenom, Add1);
4748 auto MulHi2 =
B.buildUMulH(
S64, Add1, MulLo2);
4749 auto UnmergeMulHi2 =
B.buildUnmerge(
S32, MulHi2);
4750 Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
4751 Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
4753 auto Zero32 =
B.buildConstant(
S32, 0);
4754 auto Add2_Lo =
B.buildUAddo(
S32,
S1, Add1_Lo, MulHi2_Lo);
4755 auto Add2_Hi =
B.buildUAdde(
S32,
S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
4756 auto Add2 =
B.buildMergeLikeInstr(
S64, {Add2_Lo, Add2_Hi});
4758 auto UnmergeNumer =
B.buildUnmerge(
S32, Numer);
4759 Register NumerLo = UnmergeNumer.getReg(0);
4760 Register NumerHi = UnmergeNumer.getReg(1);
4762 auto MulHi3 =
B.buildUMulH(
S64, Numer, Add2);
4763 auto Mul3 =
B.buildMul(
S64, Denom, MulHi3);
4764 auto UnmergeMul3 =
B.buildUnmerge(
S32, Mul3);
4765 Register Mul3_Lo = UnmergeMul3.getReg(0);
4766 Register Mul3_Hi = UnmergeMul3.getReg(1);
4767 auto Sub1_Lo =
B.buildUSubo(
S32,
S1, NumerLo, Mul3_Lo);
4768 auto Sub1_Hi =
B.buildUSube(
S32,
S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
4769 auto Sub1_Mi =
B.buildSub(
S32, NumerHi, Mul3_Hi);
4770 auto Sub1 =
B.buildMergeLikeInstr(
S64, {Sub1_Lo, Sub1_Hi});
4772 auto UnmergeDenom =
B.buildUnmerge(
S32, Denom);
4773 Register DenomLo = UnmergeDenom.getReg(0);
4774 Register DenomHi = UnmergeDenom.getReg(1);
4777 auto C1 =
B.buildSExt(
S32, CmpHi);
4780 auto C2 =
B.buildSExt(
S32, CmpLo);
4783 auto C3 =
B.buildSelect(
S32, CmpEq, C2, C1);
4790 auto Sub2_Lo =
B.buildUSubo(
S32,
S1, Sub1_Lo, DenomLo);
4791 auto Sub2_Mi =
B.buildUSube(
S32,
S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
4792 auto Sub2_Hi =
B.buildUSube(
S32,
S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
4793 auto Sub2 =
B.buildMergeLikeInstr(
S64, {Sub2_Lo, Sub2_Hi});
4795 auto One64 =
B.buildConstant(
S64, 1);
4796 auto Add3 =
B.buildAdd(
S64, MulHi3, One64);
4802 auto C6 =
B.buildSelect(
4806 auto Add4 =
B.buildAdd(
S64, Add3, One64);
4807 auto Sub3_Lo =
B.buildUSubo(
S32,
S1, Sub2_Lo, DenomLo);
4809 auto Sub3_Mi =
B.buildUSube(
S32,
S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
4810 auto Sub3_Hi =
B.buildUSube(
S32,
S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
4811 auto Sub3 =
B.buildMergeLikeInstr(
S64, {Sub3_Lo, Sub3_Hi});
4817 auto Sel1 =
B.buildSelect(
4824 auto Sel2 =
B.buildSelect(
4835 switch (
MI.getOpcode()) {
4838 case AMDGPU::G_UDIV: {
4839 DstDivReg =
MI.getOperand(0).getReg();
4842 case AMDGPU::G_UREM: {
4843 DstRemReg =
MI.getOperand(0).getReg();
4846 case AMDGPU::G_UDIVREM: {
4847 DstDivReg =
MI.getOperand(0).getReg();
4848 DstRemReg =
MI.getOperand(1).getReg();
4855 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
4856 Register Num =
MI.getOperand(FirstSrcOpIdx).getReg();
4857 Register Den =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
4858 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
4867 MI.eraseFromParent();
4877 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
4878 if (Ty !=
S32 && Ty !=
S64)
4881 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
4882 Register LHS =
MI.getOperand(FirstSrcOpIdx).getReg();
4883 Register RHS =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
4885 auto SignBitOffset =
B.buildConstant(
S32, Ty.getSizeInBits() - 1);
4886 auto LHSign =
B.buildAShr(Ty, LHS, SignBitOffset);
4887 auto RHSign =
B.buildAShr(Ty, RHS, SignBitOffset);
4889 LHS =
B.buildAdd(Ty, LHS, LHSign).getReg(0);
4890 RHS =
B.buildAdd(Ty, RHS, RHSign).getReg(0);
4892 LHS =
B.buildXor(Ty, LHS, LHSign).getReg(0);
4893 RHS =
B.buildXor(Ty, RHS, RHSign).getReg(0);
4895 Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
4896 switch (
MI.getOpcode()) {
4899 case AMDGPU::G_SDIV: {
4900 DstDivReg =
MI.getOperand(0).getReg();
4901 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
4904 case AMDGPU::G_SREM: {
4905 DstRemReg =
MI.getOperand(0).getReg();
4906 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
4909 case AMDGPU::G_SDIVREM: {
4910 DstDivReg =
MI.getOperand(0).getReg();
4911 DstRemReg =
MI.getOperand(1).getReg();
4912 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
4913 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
4924 auto Sign =
B.buildXor(Ty, LHSign, RHSign).getReg(0);
4925 auto SignXor =
B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
4926 B.buildSub(DstDivReg, SignXor, Sign);
4930 auto Sign = LHSign.getReg(0);
4931 auto SignXor =
B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
4932 B.buildSub(DstRemReg, SignXor, Sign);
4935 MI.eraseFromParent();
4946 LLT ResTy =
MRI.getType(Res);
4951 if (!AllowInaccurateRcp && ResTy !=
LLT::scalar(16))
4962 if (CLHS->isExactlyValue(1.0)) {
4963 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
4967 MI.eraseFromParent();
4972 if (CLHS->isExactlyValue(-1.0)) {
4973 auto FNeg =
B.buildFNeg(ResTy, RHS, Flags);
4974 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
4975 .addUse(FNeg.getReg(0))
4978 MI.eraseFromParent();
4985 if (!AllowInaccurateRcp && (ResTy !=
LLT::scalar(16) ||
4990 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
4993 B.buildFMul(Res, LHS, RCP, Flags);
4995 MI.eraseFromParent();
5006 LLT ResTy =
MRI.getType(Res);
5010 if (!AllowInaccurateRcp)
5013 auto NegY =
B.buildFNeg(ResTy,
Y);
5014 auto One =
B.buildFConstant(ResTy, 1.0);
5016 auto R =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5020 auto Tmp0 =
B.buildFMA(ResTy, NegY, R, One);
5021 R =
B.buildFMA(ResTy, Tmp0, R, R);
5023 auto Tmp1 =
B.buildFMA(ResTy, NegY, R, One);
5024 R =
B.buildFMA(ResTy, Tmp1, R, R);
5026 auto Ret =
B.buildFMul(ResTy,
X, R);
5027 auto Tmp2 =
B.buildFMA(ResTy, NegY, Ret,
X);
5029 B.buildFMA(Res, Tmp2, R, Ret);
5030 MI.eraseFromParent();
5062 auto LHSExt =
B.buildFPExt(
S32, LHS, Flags);
5063 auto RHSExt =
B.buildFPExt(
S32, RHS, Flags);
5064 auto NegRHSExt =
B.buildFNeg(
S32, RHSExt);
5065 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5066 .addUse(RHSExt.getReg(0))
5068 auto Quot =
B.buildFMul(
S32, LHSExt, Rcp, Flags);
5070 if (ST.hasMadMacF32Insts()) {
5071 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5072 Quot =
B.buildFMAD(
S32, Err, Rcp, Quot, Flags);
5073 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5075 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5076 Quot =
B.buildFMA(
S32, Err, Rcp, Quot, Flags);
5077 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5079 auto Tmp =
B.buildFMul(
S32, Err, Rcp, Flags);
5080 Tmp =
B.buildAnd(
S32, Tmp,
B.buildConstant(
S32, 0xff800000));
5081 Quot =
B.buildFAdd(
S32, Tmp, Quot, Flags);
5082 auto RDst =
B.buildFPTrunc(
S16, Quot, Flags);
5083 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5084 .addUse(RDst.getReg(0))
5089 MI.eraseFromParent();
5102 unsigned SPDenormMode =
5105 if (ST.hasDenormModeInst()) {
5107 uint32_t DPDenormModeDefault =
Mode.fpDenormModeDPValue();
5109 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
5110 B.buildInstr(AMDGPU::S_DENORM_MODE)
5111 .addImm(NewDenormModeValue);
5114 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
5115 .addImm(SPDenormMode)
5137 auto One =
B.buildFConstant(
S32, 1.0f);
5139 auto DenominatorScaled =
5140 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5145 auto NumeratorScaled =
5146 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5152 auto ApproxRcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5153 .addUse(DenominatorScaled.getReg(0))
5155 auto NegDivScale0 =
B.buildFNeg(
S32, DenominatorScaled, Flags);
5158 const bool HasDynamicDenormals =
5163 if (!PreservesDenormals) {
5164 if (HasDynamicDenormals) {
5165 SavedSPDenormMode =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5166 B.buildInstr(AMDGPU::S_GETREG_B32)
5167 .addDef(SavedSPDenormMode)
5173 auto Fma0 =
B.buildFMA(
S32, NegDivScale0, ApproxRcp, One, Flags);
5174 auto Fma1 =
B.buildFMA(
S32, Fma0, ApproxRcp, ApproxRcp, Flags);
5175 auto Mul =
B.buildFMul(
S32, NumeratorScaled, Fma1, Flags);
5176 auto Fma2 =
B.buildFMA(
S32, NegDivScale0,
Mul, NumeratorScaled, Flags);
5177 auto Fma3 =
B.buildFMA(
S32, Fma2, Fma1,
Mul, Flags);
5178 auto Fma4 =
B.buildFMA(
S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
5180 if (!PreservesDenormals) {
5181 if (HasDynamicDenormals) {
5182 assert(SavedSPDenormMode);
5183 B.buildInstr(AMDGPU::S_SETREG_B32)
5184 .addReg(SavedSPDenormMode)
5190 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S32})
5191 .addUse(Fma4.getReg(0))
5192 .addUse(Fma1.getReg(0))
5193 .addUse(Fma3.getReg(0))
5194 .addUse(NumeratorScaled.getReg(1))
5197 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5198 .addUse(Fmas.getReg(0))
5203 MI.eraseFromParent();
5222 auto One =
B.buildFConstant(
S64, 1.0);
5224 auto DivScale0 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5230 auto NegDivScale0 =
B.buildFNeg(
S64, DivScale0.getReg(0), Flags);
5232 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S64})
5233 .addUse(DivScale0.getReg(0))
5236 auto Fma0 =
B.buildFMA(
S64, NegDivScale0, Rcp, One, Flags);
5237 auto Fma1 =
B.buildFMA(
S64, Rcp, Fma0, Rcp, Flags);
5238 auto Fma2 =
B.buildFMA(
S64, NegDivScale0, Fma1, One, Flags);
5240 auto DivScale1 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5246 auto Fma3 =
B.buildFMA(
S64, Fma1, Fma2, Fma1, Flags);
5247 auto Mul =
B.buildFMul(
S64, DivScale1.getReg(0), Fma3, Flags);
5248 auto Fma4 =
B.buildFMA(
S64, NegDivScale0,
Mul, DivScale1.getReg(0), Flags);
5251 if (!ST.hasUsableDivScaleConditionOutput()) {
5257 auto NumUnmerge =
B.buildUnmerge(
S32, LHS);
5258 auto DenUnmerge =
B.buildUnmerge(
S32, RHS);
5259 auto Scale0Unmerge =
B.buildUnmerge(
S32, DivScale0);
5260 auto Scale1Unmerge =
B.buildUnmerge(
S32, DivScale1);
5263 Scale1Unmerge.getReg(1));
5265 Scale0Unmerge.getReg(1));
5266 Scale =
B.buildXor(
S1, CmpNum, CmpDen).getReg(0);
5268 Scale = DivScale1.getReg(1);
5271 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S64})
5272 .addUse(Fma4.getReg(0))
5273 .addUse(Fma3.getReg(0))
5274 .addUse(
Mul.getReg(0))
5278 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup,
ArrayRef(Res))
5279 .addUse(Fmas.getReg(0))
5284 MI.eraseFromParent();
5296 LLT Ty =
MRI.getType(Res0);
5299 auto Mant =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_mant, {Ty})
5302 auto Exp =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_exp, {InstrExpTy})
5306 if (ST.hasFractBug()) {
5307 auto Fabs =
B.buildFAbs(Ty, Val);
5311 auto Zero =
B.buildConstant(InstrExpTy, 0);
5312 Exp =
B.buildSelect(InstrExpTy, IsFinite, Exp, Zero);
5313 Mant =
B.buildSelect(Ty, IsFinite, Mant, Val);
5316 B.buildCopy(Res0, Mant);
5317 B.buildSExtOrTrunc(Res1, Exp);
5319 MI.eraseFromParent();
5334 auto Abs =
B.buildFAbs(
S32, RHS, Flags);
5337 auto C0 =
B.buildFConstant(
S32, 0x1p+96f);
5338 auto C1 =
B.buildFConstant(
S32, 0x1p-32f);
5339 auto C2 =
B.buildFConstant(
S32, 1.0f);
5342 auto Sel =
B.buildSelect(
S32, CmpRes, C1, C2, Flags);
5344 auto Mul0 =
B.buildFMul(
S32, RHS, Sel, Flags);
5346 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5347 .addUse(Mul0.getReg(0))
5350 auto Mul1 =
B.buildFMul(
S32, LHS, RCP, Flags);
5352 B.buildFMul(Res, Sel, Mul1, Flags);
5354 MI.eraseFromParent();
5363 unsigned Flags =
MI.getFlags();
5364 assert(!ST.has16BitInsts());
5366 auto Ext =
B.buildFPExt(
F32,
MI.getOperand(1), Flags);
5367 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_sqrt, {
F32})
5368 .addUse(Ext.getReg(0))
5370 B.buildFPTrunc(
MI.getOperand(0),
Log2, Flags);
5371 MI.eraseFromParent();
5381 const unsigned Flags =
MI.getFlags();
5390 MI.eraseFromParent();
5394 auto ScaleThreshold =
B.buildFConstant(
F32, 0x1.0p-96f);
5396 auto ScaleUpFactor =
B.buildFConstant(
F32, 0x1.0p+32f);
5397 auto ScaledX =
B.buildFMul(
F32,
X, ScaleUpFactor, Flags);
5398 auto SqrtX =
B.buildSelect(
F32, NeedScale, ScaledX,
X, Flags);
5403 .addUse(SqrtX.getReg(0))
5406 auto NegOne =
B.buildConstant(I32, -1);
5407 auto SqrtSNextDown =
B.buildAdd(I32, SqrtS, NegOne);
5409 auto NegSqrtSNextDown =
B.buildFNeg(
F32, SqrtSNextDown, Flags);
5410 auto SqrtVP =
B.buildFMA(
F32, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
5412 auto PosOne =
B.buildConstant(I32, 1);
5413 auto SqrtSNextUp =
B.buildAdd(I32, SqrtS, PosOne);
5415 auto NegSqrtSNextUp =
B.buildFNeg(
F32, SqrtSNextUp, Flags);
5416 auto SqrtVS =
B.buildFMA(
F32, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
5418 auto Zero =
B.buildFConstant(
F32, 0.0f);
5422 B.buildSelect(
F32, SqrtVPLE0, SqrtSNextDown, SqrtS, Flags).getReg(0);
5426 B.buildSelect(
F32, SqrtVPVSGT0, SqrtSNextUp, SqrtS, Flags).getReg(0);
5429 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F32}).addReg(SqrtX.getReg(0));
5430 B.buildFMul(SqrtS, SqrtX, SqrtR, Flags);
5432 auto Half =
B.buildFConstant(
F32, 0.5f);
5433 auto SqrtH =
B.buildFMul(
F32, SqrtR, Half, Flags);
5434 auto NegSqrtH =
B.buildFNeg(
F32, SqrtH, Flags);
5435 auto SqrtE =
B.buildFMA(
F32, NegSqrtH, SqrtS, Half, Flags);
5436 SqrtH =
B.buildFMA(
F32, SqrtH, SqrtE, SqrtH, Flags);
5437 SqrtS =
B.buildFMA(
F32, SqrtS, SqrtE, SqrtS, Flags).getReg(0);
5438 auto NegSqrtS =
B.buildFNeg(
F32, SqrtS, Flags);
5439 auto SqrtD =
B.buildFMA(
F32, NegSqrtS, SqrtS, SqrtX, Flags);
5440 SqrtS =
B.buildFMA(
F32, SqrtD, SqrtH, SqrtS, Flags).getReg(0);
5443 auto ScaleDownFactor =
B.buildFConstant(
F32, 0x1.0p-16f);
5445 auto ScaledDown =
B.buildFMul(
F32, SqrtS, ScaleDownFactor, Flags);
5447 SqrtS =
B.buildSelect(
F32, NeedScale, ScaledDown, SqrtS, Flags).getReg(0);
5450 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtS, Flags);
5452 MI.eraseFromParent();
5484 assert(
MRI.getType(Dst) ==
F64 &&
"only expect to lower f64 sqrt");
5487 unsigned Flags =
MI.getFlags();
5489 auto ScaleConstant =
B.buildFConstant(
F64, 0x1.0p-767);
5491 auto ZeroInt =
B.buildConstant(
S32, 0);
5495 auto ScaleUpFactor =
B.buildConstant(
S32, 256);
5496 auto ScaleUp =
B.buildSelect(
S32, Scaling, ScaleUpFactor, ZeroInt);
5497 auto SqrtX =
B.buildFLdexp(
F64,
X, ScaleUp, Flags);
5500 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F64}).addReg(SqrtX.getReg(0));
5502 auto Half =
B.buildFConstant(
F64, 0.5);
5503 auto SqrtH0 =
B.buildFMul(
F64, SqrtY, Half);
5504 auto SqrtS0 =
B.buildFMul(
F64, SqrtX, SqrtY);
5506 auto NegSqrtH0 =
B.buildFNeg(
F64, SqrtH0);
5507 auto SqrtR0 =
B.buildFMA(
F64, NegSqrtH0, SqrtS0, Half);
5509 auto SqrtS1 =
B.buildFMA(
F64, SqrtS0, SqrtR0, SqrtS0);
5510 auto SqrtH1 =
B.buildFMA(
F64, SqrtH0, SqrtR0, SqrtH0);
5512 auto NegSqrtS1 =
B.buildFNeg(
F64, SqrtS1);
5513 auto SqrtD0 =
B.buildFMA(
F64, NegSqrtS1, SqrtS1, SqrtX);
5515 auto SqrtS2 =
B.buildFMA(
F64, SqrtD0, SqrtH1, SqrtS1);
5517 auto NegSqrtS2 =
B.buildFNeg(
F64, SqrtS2);
5518 auto SqrtD1 =
B.buildFMA(
F64, NegSqrtS2, SqrtS2, SqrtX);
5520 auto SqrtRet =
B.buildFMA(
F64, SqrtD1, SqrtH1, SqrtS2);
5523 auto ScaleDownFactor =
B.buildConstant(
S32, -128);
5524 auto ScaleDown =
B.buildSelect(
S32, Scaling, ScaleDownFactor, ZeroInt);
5525 SqrtRet =
B.buildFLdexp(
F64, SqrtRet, ScaleDown, Flags);
5534 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtRet, Flags);
5536 MI.eraseFromParent();
5543 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5567 auto Flags =
MI.getFlags();
5569 LLT Ty =
MRI.getType(Dst);
5579 auto Rsq =
B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty})
5589 auto ClampMax = UseIEEE ?
B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
5590 B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
5595 B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
5597 B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
5598 MI.eraseFromParent();
5610 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
5611 IID == Intrinsic::amdgcn_permlanex16;
5612 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
5613 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
5617 auto LaneOp =
B.buildIntrinsic(IID, {VT}).addUse(Src0);
5619 case Intrinsic::amdgcn_readfirstlane:
5620 case Intrinsic::amdgcn_permlane64:
5621 return LaneOp.getReg(0);
5622 case Intrinsic::amdgcn_readlane:
5623 case Intrinsic::amdgcn_set_inactive:
5624 case Intrinsic::amdgcn_set_inactive_chain_arg:
5625 return LaneOp.addUse(Src1).getReg(0);
5626 case Intrinsic::amdgcn_writelane:
5627 return LaneOp.addUse(Src1).addUse(Src2).getReg(0);
5628 case Intrinsic::amdgcn_permlane16:
5629 case Intrinsic::amdgcn_permlanex16: {
5631 int64_t Src4 =
MI.getOperand(6).getImm();
5632 int64_t Src5 =
MI.getOperand(7).getImm();
5633 return LaneOp.addUse(Src1)
5640 case Intrinsic::amdgcn_mov_dpp8:
5641 return LaneOp.addImm(
MI.getOperand(3).getImm()).getReg(0);
5642 case Intrinsic::amdgcn_update_dpp:
5643 return LaneOp.addUse(Src1)
5644 .addImm(
MI.getOperand(4).getImm())
5645 .addImm(
MI.getOperand(5).getImm())
5646 .addImm(
MI.getOperand(6).getImm())
5647 .addImm(
MI.getOperand(7).getImm())
5657 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
5658 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
5659 Src1 =
MI.getOperand(3).getReg();
5660 if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) {
5661 Src2 =
MI.getOperand(4).getReg();
5665 LLT Ty =
MRI.getType(DstReg);
5666 unsigned Size = Ty.getSizeInBits();
5668 unsigned SplitSize = 32;
5669 if (IID == Intrinsic::amdgcn_update_dpp && (
Size % 64 == 0) &&
5670 ST.hasDPALU_DPP() &&
5674 if (
Size == SplitSize) {
5680 Src0 =
B.buildAnyExt(
S32, Src0).getReg(0);
5682 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5685 if (IID == Intrinsic::amdgcn_writelane)
5688 Register LaneOpDst = createLaneOp(Src0, Src1, Src2,
S32);
5689 B.buildTrunc(DstReg, LaneOpDst);
5690 MI.eraseFromParent();
5694 if (
Size % SplitSize != 0)
5698 bool NeedsBitcast =
false;
5699 if (Ty.isVector()) {
5702 if (EltSize == SplitSize) {
5703 PartialResTy = EltTy;
5704 }
else if (EltSize == 16 || EltSize == 32) {
5705 unsigned NElem = SplitSize / EltSize;
5709 NeedsBitcast =
true;
5714 unsigned NumParts =
Size / SplitSize;
5718 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5719 Src1Parts =
B.buildUnmerge(PartialResTy, Src1);
5721 if (IID == Intrinsic::amdgcn_writelane)
5722 Src2Parts =
B.buildUnmerge(PartialResTy, Src2);
5724 for (
unsigned i = 0; i < NumParts; ++i) {
5725 Src0 = Src0Parts.
getReg(i);
5727 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5728 Src1 = Src1Parts.
getReg(i);
5730 if (IID == Intrinsic::amdgcn_writelane)
5731 Src2 = Src2Parts.
getReg(i);
5733 PartialRes.
push_back(createLaneOp(Src0, Src1, Src2, PartialResTy));
5737 B.buildBitcast(DstReg,
B.buildMergeLikeInstr(
5740 B.buildMergeLikeInstr(DstReg, PartialRes);
5742 MI.eraseFromParent();
5750 ST.getTargetLowering()->getImplicitParameterOffset(
5752 LLT DstTy =
MRI.getType(DstReg);
5755 Register KernargPtrReg =
MRI.createGenericVirtualRegister(DstTy);
5760 B.buildObjectPtrOffset(DstReg, KernargPtrReg,
5761 B.buildConstant(IdxTy,
Offset).getReg(0));
5772 Register Pointer =
MI.getOperand(2).getReg();
5774 Register NumRecords =
MI.getOperand(4).getReg();
5779 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
5780 auto Unmerge =
B.buildUnmerge(
S32, Pointer);
5781 Register LowHalf = Unmerge.getReg(0);
5782 Register HighHalf = Unmerge.getReg(1);
5784 auto AndMask =
B.buildConstant(
S32, 0x0000ffff);
5785 auto Masked =
B.buildAnd(
S32, HighHalf, AndMask);
5788 std::optional<ValueAndVReg> StrideConst =
5790 if (!StrideConst || !StrideConst->Value.isZero()) {
5793 uint32_t StrideVal = StrideConst->Value.getZExtValue();
5794 uint32_t ShiftedStrideVal = StrideVal << 16;
5795 ShiftedStride =
B.buildConstant(
S32, ShiftedStrideVal);
5797 auto ExtStride =
B.buildAnyExt(
S32, Stride);
5798 auto ShiftConst =
B.buildConstant(
S32, 16);
5799 ShiftedStride =
B.buildShl(
S32, ExtStride, ShiftConst);
5801 NewHighHalf =
B.buildOr(
S32,
Masked, ShiftedStride);
5804 B.buildMergeValues(Result, {LowHalf, NewHighHalfReg, NumRecords, Flags});
5805 MI.eraseFromParent();
5822 MI.eraseFromParent();
5830 std::optional<uint32_t> KnownSize =
5832 if (KnownSize.has_value())
5833 B.buildConstant(DstReg, *KnownSize);
5851 MI.eraseFromParent();
5858 unsigned AddrSpace)
const {
5860 auto Unmerge =
B.buildUnmerge(
S32,
MI.getOperand(2).getReg());
5864 ST.hasGloballyAddressableScratch()) {
5866 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
5867 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI)})
5869 MRI.setRegClass(FlatScratchBaseHi, &AMDGPU::SReg_32RegClass);
5871 Register XOR =
B.buildXor(
S32, Hi32, FlatScratchBaseHi).getReg(0);
5873 B.buildConstant(
S32, 1u << 26));
5878 MI.eraseFromParent();
5888std::pair<Register, unsigned>
5902 MRI, OrigOffset,
nullptr, CheckNUW);
5905 if (
MRI.getType(BaseReg).isPointer())
5906 BaseReg =
B.buildPtrToInt(
MRI.getType(OrigOffset), BaseReg).getReg(0);
5916 unsigned Overflow = ImmOffset & ~MaxImm;
5917 ImmOffset -= Overflow;
5918 if ((int32_t)Overflow < 0) {
5919 Overflow += ImmOffset;
5923 if (Overflow != 0) {
5925 BaseReg =
B.buildConstant(
S32, Overflow).getReg(0);
5927 auto OverflowVal =
B.buildConstant(
S32, Overflow);
5928 BaseReg =
B.buildAdd(
S32, BaseReg, OverflowVal).getReg(0);
5933 BaseReg =
B.buildConstant(
S32, 0).getReg(0);
5935 return std::pair(BaseReg, ImmOffset);
5942 bool ImageStore)
const {
5945 LLT StoreVT =
MRI.getType(Reg);
5948 if (ST.hasUnpackedD16VMem()) {
5949 auto Unmerge =
B.buildUnmerge(
S16, Reg);
5952 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
5953 WideRegs.
push_back(
B.buildAnyExt(
S32, Unmerge.getReg(
I)).getReg(0));
5961 if (ImageStore && ST.hasImageStoreD16Bug()) {
5964 Reg =
B.buildBitcast(
S32, Reg).getReg(0);
5966 PackedRegs.
resize(2,
B.buildUndef(
S32).getReg(0));
5973 auto Unmerge =
B.buildUnmerge(
S16, Reg);
5974 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
5976 PackedRegs.
resize(6,
B.buildUndef(
S16).getReg(0));
5984 auto Unmerge =
B.buildUnmerge(
S32, Reg);
5985 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
5987 PackedRegs.
resize(4,
B.buildUndef(
S32).getReg(0));
6004 bool IsFormat)
const {
6006 LLT Ty =
MRI->getType(VData);
6016 VData =
B.buildBitcast(Ty, VData).getReg(0);
6024 if (Ty.isVector()) {
6025 if (Ty.getElementType() ==
S16 && Ty.getNumElements() <= 4) {
6037 bool IsFormat)
const {
6042 LLT Ty =
MRI.getType(VData);
6044 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6059 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6062 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6066 VIndex =
MI.getOperand(3).getReg();
6069 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6072 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6073 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6077 Format =
MI.getOperand(5 + OpOffset).getImm();
6081 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6087 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
6088 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
6089 }
else if (IsFormat) {
6090 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
6091 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
6095 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
6098 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
6101 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
6106 auto MIB =
B.buildInstr(
Opc)
6117 MIB.addImm(AuxiliaryData)
6118 .addImm(HasVIndex ? -1 : 0)
6119 .addMemOperand(MMO);
6121 MI.eraseFromParent();
6127 unsigned ImmOffset,
unsigned Format,
6130 auto MIB =
B.buildInstr(
Opc)
6141 MIB.addImm(AuxiliaryData)
6142 .addImm(HasVIndex ? -1 : 0)
6143 .addMemOperand(MMO);
6149 bool IsTyped)
const {
6163 assert(
MI.getNumExplicitDefs() == 1 ||
MI.getNumExplicitDefs() == 2);
6164 bool IsTFE =
MI.getNumExplicitDefs() == 2;
6166 StatusDst =
MI.getOperand(1).getReg();
6171 Register RSrc =
MI.getOperand(2 + OpOffset).getReg();
6174 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6177 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps + OpOffset;
6180 VIndex =
MI.getOperand(3 + OpOffset).getReg();
6183 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6186 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6187 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6191 Format =
MI.getOperand(5 + OpOffset).getImm();
6195 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6198 LLT Ty =
MRI.getType(Dst);
6205 Dst =
MI.getOperand(0).getReg();
6206 B.setInsertPt(
B.getMBB(),
MI);
6213 Dst =
MI.getOperand(0).getReg();
6214 B.setInsertPt(
B.getMBB(),
MI);
6218 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6219 const bool Unpacked = ST.hasUnpackedD16VMem();
6229 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
6230 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
6231 }
else if (IsFormat) {
6235 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16;
6237 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_TFE
6238 : AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
6243 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE_TFE
6244 : AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
6247 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT_TFE
6248 : AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
6251 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_TFE
6252 : AMDGPU::G_AMDGPU_BUFFER_LOAD;
6258 unsigned NumValueDWords =
divideCeil(Ty.getSizeInBits(), 32);
6259 unsigned NumLoadDWords = NumValueDWords + 1;
6261 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(LoadTy);
6263 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6265 Register ExtDst =
B.getMRI()->createGenericVirtualRegister(
S32);
6266 B.buildUnmerge({ExtDst, StatusDst}, LoadDstReg);
6267 B.buildTrunc(Dst, ExtDst);
6268 }
else if (NumValueDWords == 1) {
6269 B.buildUnmerge({Dst, StatusDst}, LoadDstReg);
6272 for (
unsigned I = 0;
I != NumValueDWords; ++
I)
6273 LoadElts.
push_back(
B.getMRI()->createGenericVirtualRegister(
S32));
6275 B.buildUnmerge(LoadElts, LoadDstReg);
6277 B.buildMergeLikeInstr(Dst, LoadElts);
6280 (IsD16 && !Ty.isVector())) {
6281 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(
S32);
6283 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6284 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6285 B.buildTrunc(Dst, LoadDstReg);
6286 }
else if (Unpacked && IsD16 && Ty.isVector()) {
6288 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(UnpackedTy);
6290 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6291 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6293 auto Unmerge =
B.buildUnmerge(
S32, LoadDstReg);
6295 for (
unsigned I = 0,
N = Unmerge->getNumOperands() - 1;
I !=
N; ++
I)
6296 Repack.
push_back(
B.buildTrunc(EltTy, Unmerge.getReg(
I)).getReg(0));
6297 B.buildMergeLikeInstr(Dst, Repack);
6300 AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6303 MI.eraseFromParent();
6309 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6310 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
6311 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6312 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
6313 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
6314 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6315 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
6316 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6317 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
6318 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
6319 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6320 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
6321 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6322 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
6323 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
6324 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6325 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
6326 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6327 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
6328 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
6329 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6330 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
6331 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6332 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
6333 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
6334 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6335 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
6336 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6337 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
6338 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
6339 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6340 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
6341 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6342 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
6343 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
6344 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6345 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
6346 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6347 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
6348 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
6349 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6350 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
6351 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6352 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
6353 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
6354 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6355 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
6356 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6357 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
6358 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
6359 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6360 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
6361 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6362 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
6363 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
6364 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6365 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
6366 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6367 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
6368 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
6369 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
6370 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
6371 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
6372 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
6373 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
6374 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
6375 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
6376 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
6377 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
6378 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
6379 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
6380 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
6381 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
6382 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
6383 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
6384 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
6385 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
6386 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
6387 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
6388 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
6389 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
6390 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
6391 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32;
6400 const bool IsCmpSwap =
6401 IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
6402 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap ||
6403 IID == Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap ||
6404 IID == Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap;
6415 CmpVal =
MI.getOperand(3).getReg();
6420 Register RSrc =
MI.getOperand(3 + OpOffset).getReg();
6421 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8;
6424 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6427 VIndex =
MI.getOperand(4 + OpOffset).getReg();
6430 VIndex =
B.buildConstant(
LLT::scalar(32), 0).getReg(0);
6433 Register VOffset =
MI.getOperand(4 + OpOffset).getReg();
6434 Register SOffset =
MI.getOperand(5 + OpOffset).getReg();
6435 unsigned AuxiliaryData =
MI.getOperand(6 + OpOffset).getImm();
6454 .addImm(AuxiliaryData)
6455 .addImm(HasVIndex ? -1 : 0)
6456 .addMemOperand(MMO);
6458 MI.eraseFromParent();
6468 bool IsA16,
bool IsG16) {
6484 (
B.getMRI()->getType(AddrReg) ==
S16)) {
6489 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6493 "Bias needs to be converted to 16 bit in A16 mode");
6495 AddrReg =
B.buildBitcast(
V2S16, AddrReg).getReg(0);
6501 if (((
I + 1) >= EndIdx) ||
6508 !
MI.getOperand(ArgOffset +
I + 1).isReg()) {
6510 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6515 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
6526 int DimIdx,
int NumVAddrs) {
6530 for (
int I = 0;
I != NumVAddrs; ++
I) {
6532 if (
SrcOp.isReg()) {
6538 int NumAddrRegs = AddrRegs.
size();
6539 if (NumAddrRegs != 1) {
6542 MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
6545 for (
int I = 1;
I != NumVAddrs; ++
I) {
6548 MI.getOperand(DimIdx +
I).setReg(AMDGPU::NoRegister);
6570 const unsigned NumDefs =
MI.getNumExplicitDefs();
6571 const unsigned ArgOffset = NumDefs + 1;
6572 bool IsTFE = NumDefs == 2;
6590 VData =
MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
6591 Ty =
MRI->getType(VData);
6594 const bool IsAtomicPacked16Bit =
6595 (BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
6596 BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
6604 ST.hasG16() ? (BaseOpcode->
Gradients && GradTy ==
S16) : GradTy ==
S16;
6605 const bool IsA16 = AddrTy ==
S16;
6606 const bool IsD16 = !IsAtomicPacked16Bit && Ty.getScalarType() ==
S16;
6609 if (!BaseOpcode->
Atomic) {
6610 DMask =
MI.getOperand(ArgOffset + Intr->
DMaskIndex).getImm();
6613 }
else if (DMask != 0) {
6615 }
else if (!IsTFE && !BaseOpcode->
Store) {
6617 B.buildUndef(
MI.getOperand(0));
6618 MI.eraseFromParent();
6626 const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
6627 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
6628 const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
6629 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
6630 unsigned NewOpcode = LoadOpcode;
6631 if (BaseOpcode->
Store)
6632 NewOpcode = StoreOpcode;
6634 NewOpcode = AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_NORET;
6637 MI.setDesc(
B.getTII().get(NewOpcode));
6641 if (IsTFE && DMask == 0) {
6644 MI.getOperand(ArgOffset + Intr->
DMaskIndex).setImm(DMask);
6647 if (BaseOpcode->
Atomic) {
6649 LLT Ty =
MRI->getType(VData0);
6652 if (Ty.isVector() && !IsAtomicPacked16Bit)
6659 auto Concat =
B.buildBuildVector(PackedTy, {VData0, VData1});
6660 MI.getOperand(2).setReg(
Concat.getReg(0));
6661 MI.getOperand(3).setReg(AMDGPU::NoRegister);
6665 unsigned CorrectedNumVAddrs = Intr->
NumVAddrs;
6668 if (BaseOpcode->
Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
6674 if (IsA16 && !ST.hasA16()) {
6679 const unsigned NSAMaxSize = ST.getNSAMaxSize(BaseOpcode->
Sampler);
6680 const unsigned HasPartialNSA = ST.hasPartialNSAEncoding();
6682 if (IsA16 || IsG16) {
6690 const bool UseNSA = ST.hasNSAEncoding() &&
6691 PackedRegs.
size() >= ST.getNSAThreshold(MF) &&
6692 (PackedRegs.
size() <= NSAMaxSize || HasPartialNSA);
6693 const bool UsePartialNSA =
6694 UseNSA && HasPartialNSA && PackedRegs.
size() > NSAMaxSize;
6696 if (UsePartialNSA) {
6700 auto Concat =
B.buildConcatVectors(
6701 PackedAddrTy,
ArrayRef(PackedRegs).slice(NSAMaxSize - 1));
6702 PackedRegs[NSAMaxSize - 1] =
Concat.getReg(0);
6703 PackedRegs.
resize(NSAMaxSize);
6704 }
else if (!UseNSA && PackedRegs.
size() > 1) {
6706 auto Concat =
B.buildConcatVectors(PackedAddrTy, PackedRegs);
6707 PackedRegs[0] =
Concat.getReg(0);
6711 const unsigned NumPacked = PackedRegs.
size();
6714 if (!
SrcOp.isReg()) {
6724 SrcOp.setReg(AMDGPU::NoRegister);
6741 const bool UseNSA = ST.hasNSAEncoding() &&
6742 CorrectedNumVAddrs >= ST.getNSAThreshold(MF) &&
6743 (CorrectedNumVAddrs <= NSAMaxSize || HasPartialNSA);
6744 const bool UsePartialNSA =
6745 UseNSA && HasPartialNSA && CorrectedNumVAddrs > NSAMaxSize;
6747 if (UsePartialNSA) {
6749 ArgOffset + Intr->
VAddrStart + NSAMaxSize - 1,
6751 }
else if (!UseNSA && Intr->
NumVAddrs > 1) {
6766 if (!Ty.isVector() || !IsD16)
6770 if (RepackedReg != VData) {
6771 MI.getOperand(1).setReg(RepackedReg);
6779 const int NumElts = Ty.
isVector() ? Ty.getNumElements() : 1;
6782 if (NumElts < DMaskLanes)
6785 if (NumElts > 4 || DMaskLanes > 4)
6795 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
6796 const LLT AdjustedTy =
6812 if (IsD16 && ST.hasUnpackedD16VMem()) {
6819 unsigned RoundedElts = (AdjustedTy.
getSizeInBits() + 31) / 32;
6820 unsigned RoundedSize = 32 * RoundedElts;
6824 RegTy = !IsTFE && EltSize == 16 ?
V2S16 :
S32;
6829 if (!IsTFE && (RoundedTy == Ty || !Ty.
isVector()))
6835 B.setInsertPt(*
MI.getParent(), ++
MI.getIterator());
6839 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
6840 const int ResultNumRegs = LoadResultTy.
getSizeInBits() / 32;
6842 Register NewResultReg =
MRI->createGenericVirtualRegister(LoadResultTy);
6844 MI.getOperand(0).setReg(NewResultReg);
6852 Dst1Reg =
MI.getOperand(1).getReg();
6853 if (
MRI->getType(Dst1Reg) !=
S32)
6857 MI.removeOperand(1);
6861 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
6870 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs;
6872 if (ResultNumRegs == 1) {
6874 ResultRegs[0] = NewResultReg;
6877 for (
int I = 0;
I != NumDataRegs; ++
I)
6878 ResultRegs[
I] =
MRI->createGenericVirtualRegister(RegTy);
6879 B.buildUnmerge(ResultRegs, NewResultReg);
6884 ResultRegs.
resize(NumDataRegs);
6889 if (IsD16 && !Ty.isVector()) {
6890 B.buildTrunc(DstReg, ResultRegs[0]);
6895 if (Ty ==
V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
6896 B.buildBitcast(DstReg, ResultRegs[0]);
6908 if (RegTy !=
V2S16 && !ST.hasUnpackedD16VMem()) {
6910 Reg =
B.buildBitcast(
V2S16, Reg).getReg(0);
6911 }
else if (ST.hasUnpackedD16VMem()) {
6913 Reg =
B.buildTrunc(
S16, Reg).getReg(0);
6917 auto padWithUndef = [&](
LLT Ty,
int NumElts) {
6920 Register Undef =
B.buildUndef(Ty).getReg(0);
6921 for (
int I = 0;
I != NumElts; ++
I)
6926 LLT ResTy =
MRI->getType(ResultRegs[0]);
6928 padWithUndef(ResTy, NumElts - ResultRegs.
size());
6929 B.buildBuildVector(DstReg, ResultRegs);
6933 assert(!ST.hasUnpackedD16VMem() && ResTy ==
V2S16);
6934 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
6940 if (ResultRegs.
size() == 1) {
6941 NewResultReg = ResultRegs[0];
6942 }
else if (ResultRegs.
size() == 2) {
6944 NewResultReg =
B.buildConcatVectors(
V4S16, ResultRegs).getReg(0);
6950 if (
MRI->getType(DstReg).getNumElements() <
6951 MRI->getType(NewResultReg).getNumElements()) {
6952 B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
6954 B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
6959 padWithUndef(ResTy, RegsToCover - ResultRegs.
size());
6960 B.buildConcatVectors(DstReg, ResultRegs);
6969 Register OrigDst =
MI.getOperand(0).getReg();
6971 LLT Ty =
B.getMRI()->getType(OrigDst);
6972 unsigned Size = Ty.getSizeInBits();
6975 if (
Size < 32 && ST.hasScalarSubwordLoads()) {
6977 Opc =
Size == 8 ? AMDGPU::G_AMDGPU_S_BUFFER_LOAD_UBYTE
6978 : AMDGPU::G_AMDGPU_S_BUFFER_LOAD_USHORT;
6981 Dst =
B.getMRI()->createGenericVirtualRegister(
LLT::scalar(32));
6983 Opc = AMDGPU::G_AMDGPU_S_BUFFER_LOAD;
6992 B.setInsertPt(
B.getMBB(),
MI);
6997 B.setInsertPt(
B.getMBB(),
MI);
7003 MI.setDesc(
B.getTII().get(
Opc));
7004 MI.removeOperand(1);
7007 const unsigned MemSize = (
Size + 7) / 8;
7008 const Align MemAlign =
B.getDataLayout().getABITypeAlign(
7015 MI.addMemOperand(MF, MMO);
7016 if (Dst != OrigDst) {
7017 MI.getOperand(0).setReg(Dst);
7018 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
7019 B.buildTrunc(OrigDst, Dst);
7041 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_PREFETCH));
7042 MI.removeOperand(0);
7052 if (!ST.isTrapHandlerEnabled() ||
7056 return ST.supportsGetDoorbellID() ?
7069 MI.eraseFromParent();
7079 BuildMI(*TrapBB, TrapBB->
end(),
DL,
B.getTII().get(AMDGPU::S_ENDPGM))
7081 BuildMI(BB, &
MI,
DL,
B.getTII().get(AMDGPU::S_CBRANCH_EXECNZ))
7085 MI.eraseFromParent();
7094 Register SGPR01(AMDGPU::SGPR0_SGPR1);
7101 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
7103 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
7119 Register LoadAddr =
MRI.createGenericVirtualRegister(
7121 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
7124 Register Temp =
B.buildLoad(
S64, LoadAddr, *MMO).getReg(0);
7125 B.buildCopy(SGPR01, Temp);
7126 B.buildInstr(AMDGPU::S_TRAP)
7129 MI.eraseFromParent();
7140 B.buildCopy(SGPR01, LiveIn);
7141 B.buildInstr(AMDGPU::S_TRAP)
7145 MI.eraseFromParent();
7154 if (ST.hasPrivEnabledTrap2NopBug()) {
7155 ST.getInstrInfo()->insertSimulatedTrap(
MRI,
B.getMBB(),
MI,
7157 MI.eraseFromParent();
7161 B.buildInstr(AMDGPU::S_TRAP)
7163 MI.eraseFromParent();
7172 if (!ST.isTrapHandlerEnabled() ||
7176 Fn,
"debugtrap handler not supported",
MI.getDebugLoc(),
DS_Warning));
7179 B.buildInstr(AMDGPU::S_TRAP)
7183 MI.eraseFromParent();
7196 Register NodePtr =
MI.getOperand(2).getReg();
7197 Register RayExtent =
MI.getOperand(3).getReg();
7198 Register RayOrigin =
MI.getOperand(4).getReg();
7200 Register RayInvDir =
MI.getOperand(6).getReg();
7203 if (!ST.hasGFX10_AEncoding()) {
7206 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7213 const bool IsA16 =
MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
7214 const bool Is64 =
MRI.getType(NodePtr).getSizeInBits() == 64;
7215 const unsigned NumVDataDwords = 4;
7216 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7217 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7219 IsGFX12Plus || (ST.hasNSAEncoding() && NumVAddrs <= ST.getNSAMaxSize());
7221 const unsigned BaseOpcodes[2][2] = {
7222 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7223 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7224 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7228 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
7229 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
7230 : AMDGPU::MIMGEncGfx10NSA,
7231 NumVDataDwords, NumVAddrDwords);
7235 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
7236 : AMDGPU::MIMGEncGfx10Default,
7237 NumVDataDwords, NumVAddrDwords);
7242 if (UseNSA && IsGFX11Plus) {
7244 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7245 auto Merged =
B.buildMergeLikeInstr(
7246 V3S32, {Unmerge.getReg(0), Unmerge.getReg(1), Unmerge.getReg(2)});
7247 Ops.push_back(Merged.getReg(0));
7250 Ops.push_back(NodePtr);
7251 Ops.push_back(RayExtent);
7252 packLanes(RayOrigin);
7255 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7256 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7257 auto MergedDir =
B.buildMergeLikeInstr(
7260 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(0),
7261 UnmergeRayDir.getReg(0)}))
7264 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(1),
7265 UnmergeRayDir.getReg(1)}))
7268 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(2),
7269 UnmergeRayDir.getReg(2)}))
7271 Ops.push_back(MergedDir.getReg(0));
7274 packLanes(RayInvDir);
7278 auto Unmerge =
B.buildUnmerge({
S32,
S32}, NodePtr);
7279 Ops.push_back(Unmerge.getReg(0));
7280 Ops.push_back(Unmerge.getReg(1));
7282 Ops.push_back(NodePtr);
7284 Ops.push_back(RayExtent);
7287 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7288 Ops.push_back(Unmerge.getReg(0));
7289 Ops.push_back(Unmerge.getReg(1));
7290 Ops.push_back(Unmerge.getReg(2));
7293 packLanes(RayOrigin);
7295 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7296 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7300 B.buildMergeLikeInstr(R1,
7301 {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
7302 B.buildMergeLikeInstr(
7303 R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
7304 B.buildMergeLikeInstr(
7305 R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
7311 packLanes(RayInvDir);
7318 Register MergedOps =
B.buildMergeLikeInstr(OpTy,
Ops).getReg(0);
7320 Ops.push_back(MergedOps);
7323 auto MIB =
B.buildInstr(AMDGPU::G_AMDGPU_BVH_INTERSECT_RAY)
7332 .addImm(IsA16 ? 1 : 0)
7335 MI.eraseFromParent();
7345 Register DstOrigin =
MI.getOperand(1).getReg();
7347 Register NodePtr =
MI.getOperand(4).getReg();
7348 Register RayExtent =
MI.getOperand(5).getReg();
7349 Register InstanceMask =
MI.getOperand(6).getReg();
7350 Register RayOrigin =
MI.getOperand(7).getReg();
7352 Register Offsets =
MI.getOperand(9).getReg();
7353 Register TDescr =
MI.getOperand(10).getReg();
7355 if (!ST.hasBVHDualAndBVH8Insts()) {
7358 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7363 Intrinsic::amdgcn_image_bvh8_intersect_ray;
7364 const unsigned NumVDataDwords = 10;
7365 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
7367 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
7368 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
7369 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
7372 auto RayExtentInstanceMaskVec =
B.buildMergeLikeInstr(
7373 V2S32, {RayExtent,
B.buildAnyExt(
S32, InstanceMask)});
7375 B.buildInstr(IsBVH8 ? AMDGPU::G_AMDGPU_BVH8_INTERSECT_RAY
7376 : AMDGPU::G_AMDGPU_BVH_DUAL_INTERSECT_RAY)
7382 .addUse(RayExtentInstanceMaskVec.getReg(0))
7389 MI.eraseFromParent();
7398 B.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {DstReg}, {StackPtr});
7399 MI.eraseFromParent();
7406 if (!ST.hasArchitectedSGPRs())
7410 auto TTMP8 =
B.buildCopy(
S32,
Register(AMDGPU::TTMP8));
7411 auto LSB =
B.buildConstant(
S32, 25);
7412 auto Width =
B.buildConstant(
S32, 5);
7413 B.buildUbfx(DstReg, TTMP8, LSB, Width);
7414 MI.eraseFromParent();
7428 if (
MRI.getType(Src) !=
S64)
7432 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7436 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7439 B.buildMergeLikeInstr(Src, {ModeReg, TrapReg});
7440 MI.eraseFromParent();
7448 if (
MRI.getType(Src) !=
S64)
7451 auto Unmerge =
B.buildUnmerge({
S32,
S32},
MI.getOperand(0));
7455 .addReg(Unmerge.getReg(0));
7459 .addReg(Unmerge.getReg(1));
7460 MI.eraseFromParent();
7472 case Intrinsic::amdgcn_if:
7473 case Intrinsic::amdgcn_else: {
7476 bool Negated =
false;
7488 std::swap(CondBrTarget, UncondBrTarget);
7490 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7491 if (IntrID == Intrinsic::amdgcn_if) {
7492 B.buildInstr(AMDGPU::SI_IF)
7495 .addMBB(UncondBrTarget);
7497 B.buildInstr(AMDGPU::SI_ELSE)
7500 .addMBB(UncondBrTarget);
7509 B.buildBr(*CondBrTarget);
7512 MRI.setRegClass(Def,
TRI->getWaveMaskRegClass());
7513 MRI.setRegClass(
Use,
TRI->getWaveMaskRegClass());
7514 MI.eraseFromParent();
7515 BrCond->eraseFromParent();
7521 case Intrinsic::amdgcn_loop: {
7524 bool Negated =
false;
7534 std::swap(CondBrTarget, UncondBrTarget);
7536 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7537 B.buildInstr(AMDGPU::SI_LOOP)
7539 .addMBB(UncondBrTarget);
7544 B.buildBr(*CondBrTarget);
7546 MI.eraseFromParent();
7547 BrCond->eraseFromParent();
7548 MRI.setRegClass(Reg,
TRI->getWaveMaskRegClass());
7554 case Intrinsic::amdgcn_addrspacecast_nonnull:
7556 case Intrinsic::amdgcn_make_buffer_rsrc:
7558 case Intrinsic::amdgcn_kernarg_segment_ptr:
7561 B.buildConstant(
MI.getOperand(0).getReg(), 0);
7562 MI.eraseFromParent();
7568 case Intrinsic::amdgcn_implicitarg_ptr:
7570 case Intrinsic::amdgcn_workitem_id_x:
7573 case Intrinsic::amdgcn_workitem_id_y:
7576 case Intrinsic::amdgcn_workitem_id_z:
7579 case Intrinsic::amdgcn_workgroup_id_x:
7582 case Intrinsic::amdgcn_workgroup_id_y:
7585 case Intrinsic::amdgcn_workgroup_id_z:
7588 case Intrinsic::amdgcn_wave_id:
7590 case Intrinsic::amdgcn_lds_kernel_id:
7593 case Intrinsic::amdgcn_dispatch_ptr:
7596 case Intrinsic::amdgcn_queue_ptr:
7599 case Intrinsic::amdgcn_implicit_buffer_ptr:
7602 case Intrinsic::amdgcn_dispatch_id:
7605 case Intrinsic::r600_read_ngroups_x:
7609 case Intrinsic::r600_read_ngroups_y:
7612 case Intrinsic::r600_read_ngroups_z:
7615 case Intrinsic::r600_read_local_size_x:
7618 case Intrinsic::r600_read_local_size_y:
7622 case Intrinsic::r600_read_local_size_z:
7625 case Intrinsic::amdgcn_fdiv_fast:
7627 case Intrinsic::amdgcn_is_shared:
7629 case Intrinsic::amdgcn_is_private:
7631 case Intrinsic::amdgcn_wavefrontsize: {
7632 B.buildConstant(
MI.getOperand(0), ST.getWavefrontSize());
7633 MI.eraseFromParent();
7636 case Intrinsic::amdgcn_s_buffer_load:
7638 case Intrinsic::amdgcn_raw_buffer_store:
7639 case Intrinsic::amdgcn_raw_ptr_buffer_store:
7640 case Intrinsic::amdgcn_struct_buffer_store:
7641 case Intrinsic::amdgcn_struct_ptr_buffer_store:
7643 case Intrinsic::amdgcn_raw_buffer_store_format:
7644 case Intrinsic::amdgcn_raw_ptr_buffer_store_format:
7645 case Intrinsic::amdgcn_struct_buffer_store_format:
7646 case Intrinsic::amdgcn_struct_ptr_buffer_store_format:
7648 case Intrinsic::amdgcn_raw_tbuffer_store:
7649 case Intrinsic::amdgcn_raw_ptr_tbuffer_store:
7650 case Intrinsic::amdgcn_struct_tbuffer_store:
7651 case Intrinsic::amdgcn_struct_ptr_tbuffer_store:
7653 case Intrinsic::amdgcn_raw_buffer_load:
7654 case Intrinsic::amdgcn_raw_ptr_buffer_load:
7655 case Intrinsic::amdgcn_raw_atomic_buffer_load:
7656 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
7657 case Intrinsic::amdgcn_struct_buffer_load:
7658 case Intrinsic::amdgcn_struct_ptr_buffer_load:
7659 case Intrinsic::amdgcn_struct_atomic_buffer_load:
7660 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load:
7662 case Intrinsic::amdgcn_raw_buffer_load_format:
7663 case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
7664 case Intrinsic::amdgcn_struct_buffer_load_format:
7665 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
7667 case Intrinsic::amdgcn_raw_tbuffer_load:
7668 case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
7669 case Intrinsic::amdgcn_struct_tbuffer_load:
7670 case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
7672 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7673 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
7674 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7675 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
7676 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7677 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
7678 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7679 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
7680 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7681 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
7682 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7683 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
7684 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7685 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
7686 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7687 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
7688 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7689 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
7690 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7691 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
7692 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7693 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
7694 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7695 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
7696 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7697 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
7698 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7699 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
7700 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7701 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
7702 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7703 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
7704 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7705 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
7706 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7707 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
7708 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7709 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
7710 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7711 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
7712 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7713 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
7714 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7715 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
7716 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7717 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
7718 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7719 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
7720 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
7721 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
7722 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
7723 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
7724 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7725 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
7726 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7727 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
7728 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7729 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
7730 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7731 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
7732 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7733 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
7734 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7735 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
7737 case Intrinsic::amdgcn_rsq_clamp:
7739 case Intrinsic::amdgcn_image_bvh_intersect_ray:
7741 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
7742 case Intrinsic::amdgcn_image_bvh8_intersect_ray:
7744 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
7745 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
7746 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
7747 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
7748 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
7749 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
7750 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
7751 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
7754 if (
MRI.getType(Index) !=
S64)
7755 MI.getOperand(5).setReg(
B.buildAnyExt(
S64, Index).getReg(0));
7758 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
7759 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
7760 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
7761 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
7762 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
7763 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
7764 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
7765 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
7768 if (
MRI.getType(Index) !=
S32)
7769 MI.getOperand(5).setReg(
B.buildAnyExt(
S32, Index).getReg(0));
7772 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
7773 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
7774 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
7775 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
7776 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
7777 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8:
7778 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
7779 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
7780 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
7782 LLT IdxTy = IntrID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
7785 if (
MRI.getType(Index) != IdxTy)
7786 MI.getOperand(7).setReg(
B.buildAnyExt(IdxTy, Index).getReg(0));
7790 case Intrinsic::amdgcn_fmed3: {
7796 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_FMED3));
7797 MI.removeOperand(1);
7801 case Intrinsic::amdgcn_readlane:
7802 case Intrinsic::amdgcn_writelane:
7803 case Intrinsic::amdgcn_readfirstlane:
7804 case Intrinsic::amdgcn_permlane16:
7805 case Intrinsic::amdgcn_permlanex16:
7806 case Intrinsic::amdgcn_permlane64:
7807 case Intrinsic::amdgcn_set_inactive:
7808 case Intrinsic::amdgcn_set_inactive_chain_arg:
7809 case Intrinsic::amdgcn_mov_dpp8:
7810 case Intrinsic::amdgcn_update_dpp:
7812 case Intrinsic::amdgcn_s_buffer_prefetch_data:
7814 case Intrinsic::amdgcn_dead: {
7818 MI.eraseFromParent();
7821 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
7822 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
7823 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
7824 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
7825 B.buildLoad(
MI.getOperand(0),
MI.getOperand(2), **
MI.memoperands_begin());
7826 MI.eraseFromParent();
7828 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
7829 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
7830 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
7831 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
7832 B.buildStore(
MI.getOperand(2),
MI.getOperand(1), **
MI.memoperands_begin());
7833 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG)
static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, SDValue Y, SDValue C, SDNodeFlags Flags=SDNodeFlags())
static bool valueIsKnownNeverF32Denorm(SDValue Src)
Return true if it's known that Src can never be an f32 denormal value.
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID)
static LLT getBufferRsrcScalarType(const LLT Ty)
static LegalityPredicate isIllegalRegisterType(const GCNSubtarget &ST, unsigned TypeIdx)
static cl::opt< bool > EnableNewLegality("amdgpu-global-isel-new-legality", cl::desc("Use GlobalISel desired legality, rather than try to use" "rules compatible with selection patterns"), cl::init(false), cl::ReallyHidden)
static bool needsDenormHandlingF32(const MachineFunction &MF, Register Src, unsigned Flags)
constexpr std::initializer_list< LLT > AllVectors
static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx)
static LegalityPredicate isSmallOddVector(unsigned TypeIdx)
static LegalizeMutation oneMoreElement(unsigned TypeIdx)
static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size)
static bool allowApproxFunc(const MachineFunction &MF, unsigned Flags)
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty, const LLT MemTy)
Return true if a load or store of the type should be lowered with a bitcast to a different type.
static constexpr unsigned FPEnvModeBitField
static LegalizeMutation getScalarTypeFromMemDesc(unsigned TypeIdx)
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size)
static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy, uint64_t AlignInBits, unsigned AddrSpace, unsigned Opcode)
Return true if we should legalize a load by widening an odd sized memory access up to the alignment.
static bool isRegisterVectorElementType(LLT EltTy)
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx)
static LegalityPredicate isWideVec16(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllScalarTypes
static LegalityPredicate isTruncStoreToSizePowerOf2(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS32Vectors
static LegalizeMutation moreElementsToNextExistingRegClass(unsigned TypeIdx)
static Register castBufferRsrcToV4I32(Register Pointer, MachineIRBuilder &B)
Cast a buffer resource (an address space 8 pointer) into a 4xi32, which is the form in which the valu...
static bool isRegisterClassType(const GCNSubtarget &ST, LLT Ty)
static std::pair< Register, Register > emitReciprocalU64(MachineIRBuilder &B, Register Val)
static LLT getBitcastRegisterType(const LLT Ty)
static LLT getBufferRsrcRegisterType(const LLT Ty)
static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx)
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI)
static LLT castBufferRsrcFromV4I32(MachineInstr &MI, MachineIRBuilder &B, MachineRegisterInfo &MRI, unsigned Idx)
Mutates IR (typicaly a load instruction) to use a <4 x s32> as the initial type of the operand idx an...
static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C)
static constexpr unsigned SPDenormModeBitField
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, bool IsLoad, bool IsAtomic)
static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static MachineInstr * verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br, MachineBasicBlock *&UncondBrTarget, bool &Negated)
static LegalityPredicate numElementsNotEven(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS64Vectors
static void castBufferRsrcArgToV4I32(MachineInstr &MI, MachineIRBuilder &B, unsigned Idx)
static constexpr unsigned FPEnvTrapBitField
static constexpr unsigned MaxRegisterSize
static bool isRegisterSize(const GCNSubtarget &ST, unsigned Size)
static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx)
static bool hasBufferRsrcWorkaround(const LLT Ty)
static void toggleSPDenormMode(bool Enable, MachineIRBuilder &B, const GCNSubtarget &ST, SIModeRegisterDefaults Mode)
constexpr std::initializer_list< LLT > AllS16Vectors
static bool loadStoreBitcastWorkaround(const LLT Ty)
static LLT widenToNextPowerOf2(LLT Ty)
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, int DimIdx, int NumVAddrs)
Convert from separate vaddr components to a single vector address register, and replace the remaining...
static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx)
static LLT getPow2VectorType(LLT Ty)
static void buildBufferLoad(unsigned Opc, Register LoadDstReg, Register RSrc, Register VIndex, Register VOffset, Register SOffset, unsigned ImmOffset, unsigned Format, unsigned AuxiliaryData, MachineMemOperand *MMO, bool IsTyped, bool HasVIndex, MachineIRBuilder &B)
static LLT getPow2ScalarType(LLT Ty)
static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx)
static bool isRegisterVectorType(LLT Ty)
static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx)
static bool isRegisterType(const GCNSubtarget &ST, LLT Ty)
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
This file declares the targeting of the Machinelegalizer class for AMDGPU.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
#define FP_DENORM_FLUSH_NONE
Interface definition for SIInstrInfo.
Interface definition for SIRegisterInfo.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
void buildMultiply(LegalizerHelper &Helper, MutableArrayRef< Register > Accum, ArrayRef< Register > Src0, ArrayRef< Register > Src1, bool UsePartialMad64_32, bool SeparateOddAlignedProducts) const
bool legalizeGlobalValue(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeIntrinsicTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, unsigned > splitBufferOffsets(MachineIRBuilder &B, Register OrigOffset) const
bool legalizeBVHIntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIsAddrSpace(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned AddrSpace) const
bool legalizeUnsignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeAtomicCmpXChg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeTrapHsa(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferStore(MachineInstr &MI, LegalizerHelper &Helper, bool IsTyped, bool IsFormat) const
bool legalizeMul(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFFREXP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getSegmentAperture(unsigned AddrSpace, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePointerAsRsrcIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
To create a buffer resource from a 64-bit pointer, mask off the upper 32 bits of the pointer and repl...
bool legalizeFlogCommon(MachineInstr &MI, MachineIRBuilder &B) const
bool getLDSKernelId(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExp2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferAtomic(MachineInstr &MI, MachineIRBuilder &B, Intrinsic::ID IID) const
void legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
Register handleD16VData(MachineIRBuilder &B, MachineRegisterInfo &MRI, Register Reg, bool ImageStore=false) const
Handle register layout difference for f16 images for some subtargets.
bool legalizeCTLZ_CTTZ(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBuildVector(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFFloor(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM)
bool legalizeFDIV32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFMad(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSBufferPrefetch(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFExp(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
bool legalizeFrem(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePreloadedArgIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeStore(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, int64_t Offset, unsigned GAFlags=SIInstrInfo::MO_NONE) const
bool legalizeFDIV16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeRsqClampIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, Register > getScaledLogInput(MachineIRBuilder &B, Register Src, unsigned Flags) const
bool legalizeFDIVFastIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool loadInputValue(Register DstReg, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeBVHDualOrBVH8IntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeInsertVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeAddrSpaceCast(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferLoad(MachineInstr &MI, LegalizerHelper &Helper, bool IsFormat, bool IsTyped) const
bool legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeMinNumMaxNum(LegalizerHelper &Helper, MachineInstr &MI) const
void legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
bool legalizeDebugTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSinCos(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWaveID(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFroundeven(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLDSKernelId(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeITOFP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeFPow(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFPTOI(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeStackSave(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFlogUnsafe(MachineIRBuilder &B, Register Dst, Register Src, bool IsLog10, unsigned Flags) const
bool legalizeKernargMemParameter(MachineInstr &MI, MachineIRBuilder &B, uint64_t Offset, Align Alignment=Align(4)) const
Legalize a value that's loaded from kernel arguments.
bool legalizeImageIntrinsic(MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer, const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const
Rewrite image intrinsics to use register layouts expected by the subtarget.
void buildAbsGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, MachineRegisterInfo &MRI) const
bool legalizeGetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool getImplicitArgPtr(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRT(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getKernargParameterPtr(MachineIRBuilder &B, int64_t Offset) const
bool legalizeSBufferLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFceil(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeExtractVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCTLZ_ZERO_UNDEF(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register fixStoreSourceType(MachineIRBuilder &B, Register VData, LLT MemTy, bool IsFormat) const
bool legalizeLaneOp(LegalizerHelper &Helper, MachineInstr &MI, Intrinsic::ID IID) const
bool legalizeSetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkitemIDIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned Dim, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
void buildLoadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg, const TargetRegisterClass *ArgRC, LLT ArgTy) const
bool legalizeTrapHsaQueuePtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFlog2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrapEndpgm(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
unsigned allocateLDSGlobal(const DataLayout &DL, const GlobalVariable &GV)
bool isEntryFunction() const
bool isModuleEntryFunction() const
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Diagnostic information for unsupported feature in backend.
static constexpr ElementCount getFixed(ScalarTy MinVal)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
Simple wrapper observer that takes several observers, and calls each one for each event.
KnownBits getKnownBits(Register R)
bool hasExternalLinkage() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
static constexpr LLT float64()
Get a 64-bit IEEE double value.
constexpr unsigned getScalarSizeInBits() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
static constexpr LLT float16()
Get a 16-bit IEEE half value.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
static constexpr LLT float32()
Get a 32-bit IEEE float value.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
LLVM_ABI LegalizeResult lowerFMinNumMaxNum(MachineInstr &MI)
LLVM_ABI void moreElementsVectorDst(MachineInstr &MI, LLT MoreTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a Def by performing it with addition...
GISelValueTracking * getValueTracking() const
@ Legalized
Instruction has been legalized and the MachineFunction changed.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI void bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a def by inserting a G_BITCAST from ...
LLVM_ABI LegalizeResult lowerFMad(MachineInstr &MI)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LLVM_ABI void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx=0, unsigned TruncOpcode=TargetOpcode::G_TRUNC)
Legalize a single operand OpIdx of the machine instruction MI as a Def by extending the operand's typ...
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
TypeSize getValue() const
Wrapper class representing physical registers. Should be passed by value.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineFunction & getMF()
Getter for the function we currently build.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
LLT getMemoryType() const
Return the memory type of the memory reference.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setMBB(MachineBasicBlock *MBB)
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
MutableArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool hasWorkGroupIDZ() const
SIModeRegisterDefaults getMode() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
bool shouldEmitFixup(const GlobalValue *GV) const
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool shouldEmitPCReloc(const GlobalValue *GV) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
The instances of the Type class are immutable: once they are created, they are never changed.
A Use represents the edge between a Value definition and its users.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool isFlatGlobalAddrSpace(unsigned AS)
bool isGFX12Plus(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
TargetExtType * isNamedBarrier(const GlobalVariable &GV)
bool isGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX1250(const MCSubtargetInfo &STI)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
std::pair< Register, unsigned > getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg, GISelValueTracking *ValueTracking=nullptr, bool CheckNUW=false)
Returns base register and constant offset.
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
Invariant opcodes: All instruction sets have these as their low opcodes.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy=LLT())
Return a virtual register corresponding to the incoming argument register PhysReg.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI Type * getTypeForLLT(LLT Ty, LLVMContext &C)
Get the type back from LLT.
LLVM_ABI MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI const ConstantFP * getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
LLVM_ABI std::optional< int64_t > getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT fits in int64_t returns it.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool has_single_bit(T Value) noexcept
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
unsigned Log2(Align A)
Returns the log2 of the alignment.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr uint64_t encode(Fields... Values)
MIMGBaseOpcode BaseOpcode
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
MCRegister getRegister() const
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
bool isZero() const
Returns true if value is all zero.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
DenormalMode FP64FP16Denormals
If this is set, neither input or output denormals are flushed for both f64 and f16/v2f16 instructions...
bool IEEE
Floating point opcodes that support exception flag gathering quiet and propagate signaling NaN inputs...
DenormalMode FP32Denormals
If this is set, neither input or output denormals are flushed for most f32 instructions.