LLVM 22.0.0git
AMDGPULibCalls.cpp
Go to the documentation of this file.
1//===- AMDGPULibCalls.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file does AMD library function optimizations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "AMDGPULibFunc.h"
20#include "llvm/IR/Dominators.h"
21#include "llvm/IR/IRBuilder.h"
22#include "llvm/IR/MDBuilder.h"
24#include <cmath>
25
26#define DEBUG_TYPE "amdgpu-simplifylib"
27
28using namespace llvm;
29using namespace llvm::PatternMatch;
30
31static cl::opt<bool> EnablePreLink("amdgpu-prelink",
32 cl::desc("Enable pre-link mode optimizations"),
33 cl::init(false),
35
36static cl::list<std::string> UseNative("amdgpu-use-native",
37 cl::desc("Comma separated list of functions to replace with native, or all"),
40
41#define MATH_PI numbers::pi
42#define MATH_E numbers::e
43#define MATH_SQRT2 numbers::sqrt2
44#define MATH_SQRT1_2 numbers::inv_sqrt2
45
46namespace llvm {
47
49private:
50 const TargetLibraryInfo *TLInfo = nullptr;
51 AssumptionCache *AC = nullptr;
52 DominatorTree *DT = nullptr;
53
55
56 // -fuse-native.
57 bool AllNative = false;
58
59 bool useNativeFunc(const StringRef F) const;
60
61 // Return a pointer (pointer expr) to the function if function definition with
62 // "FuncName" exists. It may create a new function prototype in pre-link mode.
63 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
64
65 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
66
67 bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
68
69 /* Specialized optimizations */
70
71 // pow/powr/pown
72 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
73
74 // rootn
75 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
76
77 // -fuse-native for sincos
78 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
79
80 // evaluate calls if calls' arguments are constants.
81 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1,
82 Constant *copr0, Constant *copr1);
83 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
84
85 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value
86 /// of cos, sincos call).
87 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg,
88 FastMathFlags FMF,
90 FunctionCallee Fsincos);
91
92 // sin/cos
93 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
94
95 // __read_pipe/__write_pipe
96 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
97 const FuncInfo &FInfo);
98
99 // Get a scalar native builtin single argument FP function
100 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
101
102 /// Substitute a call to a known libcall with an intrinsic call. If \p
103 /// AllowMinSize is true, allow the replacement in a minsize function.
104 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
105 bool AllowMinSizeF32 = false,
106 bool AllowF64 = false,
107 bool AllowStrictFP = false);
108 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
109 Intrinsic::ID IntrID);
110
111 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
112 Intrinsic::ID IntrID,
113 bool AllowMinSizeF32 = false,
114 bool AllowF64 = false,
115 bool AllowStrictFP = false);
116
117protected:
118 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const;
119
121
122 static void replaceCall(Instruction *I, Value *With) {
123 I->replaceAllUsesWith(With);
124 I->eraseFromParent();
125 }
126
127 static void replaceCall(FPMathOperator *I, Value *With) {
128 replaceCall(cast<Instruction>(I), With);
129 }
130
131public:
132 AMDGPULibCalls() = default;
133
134 bool fold(CallInst *CI);
135
137 void initNativeFuncs();
138
139 // Replace a normal math function call with that native version
140 bool useNative(CallInst *CI);
141};
142
143} // end namespace llvm
144
145template <typename IRB>
146static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
147 const Twine &Name = "") {
148 CallInst *R = B.CreateCall(Callee, Arg, Name);
149 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
150 R->setCallingConv(F->getCallingConv());
151 return R;
152}
153
154template <typename IRB>
155static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
156 Value *Arg2, const Twine &Name = "") {
157 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
158 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
159 R->setCallingConv(F->getCallingConv());
160 return R;
161}
162
164 Type *PowNExpTy = Type::getInt32Ty(FT->getContext());
165 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType()))
166 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount());
167
168 return FunctionType::get(FT->getReturnType(),
169 {FT->getParamType(0), PowNExpTy}, false);
170}
171
172// Data structures for table-driven optimizations.
173// FuncTbl works for both f32 and f64 functions with 1 input argument
174
176 double result;
177 double input;
178};
179
180/* a list of {result, input} */
181static const TableEntry tbl_acos[] = {
182 {MATH_PI / 2.0, 0.0},
183 {MATH_PI / 2.0, -0.0},
184 {0.0, 1.0},
185 {MATH_PI, -1.0}
186};
187static const TableEntry tbl_acosh[] = {
188 {0.0, 1.0}
189};
190static const TableEntry tbl_acospi[] = {
191 {0.5, 0.0},
192 {0.5, -0.0},
193 {0.0, 1.0},
194 {1.0, -1.0}
195};
196static const TableEntry tbl_asin[] = {
197 {0.0, 0.0},
198 {-0.0, -0.0},
199 {MATH_PI / 2.0, 1.0},
200 {-MATH_PI / 2.0, -1.0}
201};
202static const TableEntry tbl_asinh[] = {
203 {0.0, 0.0},
204 {-0.0, -0.0}
205};
206static const TableEntry tbl_asinpi[] = {
207 {0.0, 0.0},
208 {-0.0, -0.0},
209 {0.5, 1.0},
210 {-0.5, -1.0}
211};
212static const TableEntry tbl_atan[] = {
213 {0.0, 0.0},
214 {-0.0, -0.0},
215 {MATH_PI / 4.0, 1.0},
216 {-MATH_PI / 4.0, -1.0}
217};
218static const TableEntry tbl_atanh[] = {
219 {0.0, 0.0},
220 {-0.0, -0.0}
221};
222static const TableEntry tbl_atanpi[] = {
223 {0.0, 0.0},
224 {-0.0, -0.0},
225 {0.25, 1.0},
226 {-0.25, -1.0}
227};
228static const TableEntry tbl_cbrt[] = {
229 {0.0, 0.0},
230 {-0.0, -0.0},
231 {1.0, 1.0},
232 {-1.0, -1.0},
233};
234static const TableEntry tbl_cos[] = {
235 {1.0, 0.0},
236 {1.0, -0.0}
237};
238static const TableEntry tbl_cosh[] = {
239 {1.0, 0.0},
240 {1.0, -0.0}
241};
242static const TableEntry tbl_cospi[] = {
243 {1.0, 0.0},
244 {1.0, -0.0}
245};
246static const TableEntry tbl_erfc[] = {
247 {1.0, 0.0},
248 {1.0, -0.0}
249};
250static const TableEntry tbl_erf[] = {
251 {0.0, 0.0},
252 {-0.0, -0.0}
253};
254static const TableEntry tbl_exp[] = {
255 {1.0, 0.0},
256 {1.0, -0.0},
257 {MATH_E, 1.0}
258};
259static const TableEntry tbl_exp2[] = {
260 {1.0, 0.0},
261 {1.0, -0.0},
262 {2.0, 1.0}
263};
264static const TableEntry tbl_exp10[] = {
265 {1.0, 0.0},
266 {1.0, -0.0},
267 {10.0, 1.0}
268};
269static const TableEntry tbl_expm1[] = {
270 {0.0, 0.0},
271 {-0.0, -0.0}
272};
273static const TableEntry tbl_log[] = {
274 {0.0, 1.0},
275 {1.0, MATH_E}
276};
277static const TableEntry tbl_log2[] = {
278 {0.0, 1.0},
279 {1.0, 2.0}
280};
281static const TableEntry tbl_log10[] = {
282 {0.0, 1.0},
283 {1.0, 10.0}
284};
285static const TableEntry tbl_rsqrt[] = {
286 {1.0, 1.0},
287 {MATH_SQRT1_2, 2.0}
288};
289static const TableEntry tbl_sin[] = {
290 {0.0, 0.0},
291 {-0.0, -0.0}
292};
293static const TableEntry tbl_sinh[] = {
294 {0.0, 0.0},
295 {-0.0, -0.0}
296};
297static const TableEntry tbl_sinpi[] = {
298 {0.0, 0.0},
299 {-0.0, -0.0}
300};
301static const TableEntry tbl_sqrt[] = {
302 {0.0, 0.0},
303 {1.0, 1.0},
304 {MATH_SQRT2, 2.0}
305};
306static const TableEntry tbl_tan[] = {
307 {0.0, 0.0},
308 {-0.0, -0.0}
309};
310static const TableEntry tbl_tanh[] = {
311 {0.0, 0.0},
312 {-0.0, -0.0}
313};
314static const TableEntry tbl_tanpi[] = {
315 {0.0, 0.0},
316 {-0.0, -0.0}
317};
318static const TableEntry tbl_tgamma[] = {
319 {1.0, 1.0},
320 {1.0, 2.0},
321 {2.0, 3.0},
322 {6.0, 4.0}
323};
324
326 switch(id) {
327 case AMDGPULibFunc::EI_DIVIDE:
328 case AMDGPULibFunc::EI_COS:
329 case AMDGPULibFunc::EI_EXP:
330 case AMDGPULibFunc::EI_EXP2:
331 case AMDGPULibFunc::EI_EXP10:
332 case AMDGPULibFunc::EI_LOG:
333 case AMDGPULibFunc::EI_LOG2:
334 case AMDGPULibFunc::EI_LOG10:
335 case AMDGPULibFunc::EI_POWR:
336 case AMDGPULibFunc::EI_RECIP:
337 case AMDGPULibFunc::EI_RSQRT:
338 case AMDGPULibFunc::EI_SIN:
339 case AMDGPULibFunc::EI_SINCOS:
340 case AMDGPULibFunc::EI_SQRT:
341 case AMDGPULibFunc::EI_TAN:
342 return true;
343 default:;
344 }
345 return false;
346}
347
349
351 switch(id) {
352 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
353 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
354 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
355 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
356 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
357 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
358 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
359 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
360 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
361 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
362 case AMDGPULibFunc::EI_NCOS:
363 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
364 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
365 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
366 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
367 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
368 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
369 case AMDGPULibFunc::EI_NEXP2:
370 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
371 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
372 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
373 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
374 case AMDGPULibFunc::EI_NLOG2:
375 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
376 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
377 case AMDGPULibFunc::EI_NRSQRT:
378 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
379 case AMDGPULibFunc::EI_NSIN:
380 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
381 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
382 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
383 case AMDGPULibFunc::EI_NSQRT:
384 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
385 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
386 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
387 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
388 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
389 default:;
390 }
391 return TableRef();
392}
393
394static inline int getVecSize(const AMDGPULibFunc& FInfo) {
395 return FInfo.getLeads()[0].VectorSize;
396}
397
398static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
399 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
400}
401
402FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
403 // If we are doing PreLinkOpt, the function is external. So it is safe to
404 // use getOrInsertFunction() at this stage.
405
407 : AMDGPULibFunc::getFunction(M, fInfo);
408}
409
410bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
411 FuncInfo &FInfo) {
412 return AMDGPULibFunc::parse(FMangledName, FInfo);
413}
414
416 return FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs();
417}
418
420 const FPMathOperator *FPOp) const {
421 // TODO: Refine to approxFunc or contract
422 return FPOp->isFast();
423}
424
429}
430
431bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
432 return AllNative || llvm::is_contained(UseNative, F);
433}
434
436 AllNative = useNativeFunc("all") ||
437 (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
438 UseNative.begin()->empty());
439}
440
441bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
442 bool native_sin = useNativeFunc("sin");
443 bool native_cos = useNativeFunc("cos");
444
445 if (native_sin && native_cos) {
446 Module *M = aCI->getModule();
447 Value *opr0 = aCI->getArgOperand(0);
448
449 AMDGPULibFunc nf;
450 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
451 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
452
455 FunctionCallee sinExpr = getFunction(M, nf);
456
459 FunctionCallee cosExpr = getFunction(M, nf);
460 if (sinExpr && cosExpr) {
461 Value *sinval =
462 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator());
463 Value *cosval =
464 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator());
465 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator());
466
467 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
468 << " with native version of sin/cos");
469
470 replaceCall(aCI, sinval);
471 return true;
472 }
473 }
474 return false;
475}
476
478 Function *Callee = aCI->getCalledFunction();
479 if (!Callee || aCI->isNoBuiltin())
480 return false;
481
482 FuncInfo FInfo;
483 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
484 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
485 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
486 !(AllNative || useNativeFunc(FInfo.getName()))) {
487 return false;
488 }
489
490 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
491 return sincosUseNative(aCI, FInfo);
492
494 FunctionCallee F = getFunction(aCI->getModule(), FInfo);
495 if (!F)
496 return false;
497
498 aCI->setCalledFunction(F);
499 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
500 << " with native version");
501 return true;
502}
503
504// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
505// builtin, with appended type size and alignment arguments, where 2 or 4
506// indicates the original number of arguments. The library has optimized version
507// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
508// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
509// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
510// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
511bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
512 const FuncInfo &FInfo) {
513 auto *Callee = CI->getCalledFunction();
514 if (!Callee->isDeclaration())
515 return false;
516
517 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
518 auto *M = Callee->getParent();
519 std::string Name = std::string(Callee->getName());
520 auto NumArg = CI->arg_size();
521 if (NumArg != 4 && NumArg != 6)
522 return false;
523 ConstantInt *PacketSize =
524 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2));
525 ConstantInt *PacketAlign =
526 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1));
527 if (!PacketSize || !PacketAlign)
528 return false;
529
530 unsigned Size = PacketSize->getZExtValue();
531 Align Alignment = PacketAlign->getAlignValue();
532 if (Alignment != Size)
533 return false;
534
535 unsigned PtrArgLoc = CI->arg_size() - 3;
536 Value *PtrArg = CI->getArgOperand(PtrArgLoc);
537 Type *PtrTy = PtrArg->getType();
538
540 for (unsigned I = 0; I != PtrArgLoc; ++I)
541 ArgTys.push_back(CI->getArgOperand(I)->getType());
542 ArgTys.push_back(PtrTy);
543
544 Name = Name + "_" + std::to_string(Size);
545 auto *FTy = FunctionType::get(Callee->getReturnType(),
546 ArrayRef<Type *>(ArgTys), false);
547 AMDGPULibFunc NewLibFunc(Name, FTy);
549 if (!F)
550 return false;
551
553 for (unsigned I = 0; I != PtrArgLoc; ++I)
554 Args.push_back(CI->getArgOperand(I));
555 Args.push_back(PtrArg);
556
557 auto *NCI = B.CreateCall(F, Args);
558 NCI->setAttributes(CI->getAttributes());
559 CI->replaceAllUsesWith(NCI);
560 CI->dropAllReferences();
561 CI->eraseFromParent();
562
563 return true;
564}
565
566static bool isKnownIntegral(const Value *V, const DataLayout &DL,
567 FastMathFlags FMF) {
568 if (isa<PoisonValue>(V))
569 return true;
570 if (isa<UndefValue>(V))
571 return false;
572
573 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
574 return CF->getValueAPF().isInteger();
575
576 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
577 const Constant *CV = dyn_cast<Constant>(V);
578 if (VFVTy && CV) {
579 unsigned NumElts = VFVTy->getNumElements();
580 for (unsigned i = 0; i != NumElts; ++i) {
581 Constant *Elt = CV->getAggregateElement(i);
582 if (!Elt)
583 return false;
584 if (isa<PoisonValue>(Elt))
585 continue;
586
587 const ConstantFP *CFP = dyn_cast<ConstantFP>(Elt);
588 if (!CFP || !CFP->getValue().isInteger())
589 return false;
590 }
591
592 return true;
593 }
594
595 const Instruction *I = dyn_cast<Instruction>(V);
596 if (!I)
597 return false;
598
599 switch (I->getOpcode()) {
600 case Instruction::SIToFP:
601 case Instruction::UIToFP:
602 // TODO: Could check nofpclass(inf) on incoming argument
603 if (FMF.noInfs())
604 return true;
605
606 // Need to check int size cannot produce infinity, which computeKnownFPClass
607 // knows how to do already.
609 case Instruction::Call: {
610 const CallInst *CI = cast<CallInst>(I);
611 switch (CI->getIntrinsicID()) {
612 case Intrinsic::trunc:
613 case Intrinsic::floor:
614 case Intrinsic::ceil:
615 case Intrinsic::rint:
616 case Intrinsic::nearbyint:
617 case Intrinsic::round:
618 case Intrinsic::roundeven:
619 return (FMF.noInfs() && FMF.noNaNs()) ||
621 default:
622 break;
623 }
624
625 break;
626 }
627 default:
628 break;
629 }
630
631 return false;
632}
633
634// This function returns false if no change; return true otherwise.
636 Function *Callee = CI->getCalledFunction();
637 // Ignore indirect calls.
638 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin())
639 return false;
640
641 FuncInfo FInfo;
642 if (!parseFunctionName(Callee->getName(), FInfo))
643 return false;
644
645 // Further check the number of arguments to see if they match.
646 // TODO: Check calling convention matches too
647 if (!FInfo.isCompatibleSignature(*Callee->getParent(), CI->getFunctionType()))
648 return false;
649
650 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n');
651
652 if (TDOFold(CI, FInfo))
653 return true;
654
655 IRBuilder<> B(CI);
656 if (CI->isStrictFP())
657 B.setIsFPConstrained(true);
658
659 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) {
660 // Under unsafe-math, evaluate calls if possible.
661 // According to Brian Sumner, we can do this for all f32 function calls
662 // using host's double function calls.
663 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo))
664 return true;
665
666 // Copy fast flags from the original call.
667 FastMathFlags FMF = FPOp->getFastMathFlags();
668 B.setFastMathFlags(FMF);
669
670 // Specialized optimizations for each function call.
671 //
672 // TODO: Handle native functions
673 switch (FInfo.getId()) {
675 if (FMF.none())
676 return false;
677 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp,
678 FMF.approxFunc());
680 if (FMF.none())
681 return false;
682 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2,
683 FMF.approxFunc());
685 if (FMF.none())
686 return false;
687 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log,
688 FMF.approxFunc());
690 if (FMF.none())
691 return false;
692 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2,
693 FMF.approxFunc());
695 if (FMF.none())
696 return false;
697 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10,
698 FMF.approxFunc());
700 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum,
701 true, true);
703 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum,
704 true, true);
706 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true,
707 true);
709 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd,
710 true, true);
712 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true,
713 true, true);
715 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign,
716 true, true, true);
718 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true,
719 true);
721 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true,
722 true);
724 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true,
725 true);
727 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true,
728 true);
730 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true,
731 true);
733 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true))
734 return false;
735
736 Value *Arg1 = CI->getArgOperand(1);
737 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType());
738 VecTy && !isa<VectorType>(Arg1->getType())) {
739 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1);
740 CI->setArgOperand(1, SplatArg1);
741 }
742
744 CI->getModule(), Intrinsic::ldexp,
745 {CI->getType(), CI->getArgOperand(1)->getType()}));
746 return true;
747 }
749 Module *M = Callee->getParent();
750 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo);
751 FunctionCallee PowrFunc = getFunction(M, PowrInfo);
752 CallInst *Call = cast<CallInst>(FPOp);
753
754 // pow(x, y) -> powr(x, y) for x >= -0.0
755 // TODO: Account for flags on current call
756 if (PowrFunc &&
758 FPOp->getOperand(0),
759 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) {
760 Call->setCalledFunction(PowrFunc);
761 return fold_pow(FPOp, B, PowrInfo) || true;
762 }
763
764 // pow(x, y) -> pown(x, y) for known integral y
765 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(),
766 FPOp->getFastMathFlags())) {
767 FunctionType *PownType = getPownType(CI->getFunctionType());
768 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true);
769 FunctionCallee PownFunc = getFunction(M, PownInfo);
770 if (PownFunc) {
771 // TODO: If the incoming integral value is an sitofp/uitofp, it won't
772 // fold out without a known range. We can probably take the source
773 // value directly.
774 Value *CastedArg =
775 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1));
776 // Have to drop any nofpclass attributes on the original call site.
777 Call->removeParamAttrs(
779 Call->getParamAttributes(1)));
780 Call->setCalledFunction(PownFunc);
781 Call->setArgOperand(1, CastedArg);
782 return fold_pow(FPOp, B, PownInfo) || true;
783 }
784 }
785
786 return fold_pow(FPOp, B, FInfo);
787 }
790 return fold_pow(FPOp, B, FInfo);
792 return fold_rootn(FPOp, B, FInfo);
794 // TODO: Allow with strictfp + constrained intrinsic
795 return tryReplaceLibcallWithSimpleIntrinsic(
796 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false);
799 return fold_sincos(FPOp, B, FInfo);
800 default:
801 break;
802 }
803 } else {
804 // Specialized optimizations for each function call
805 switch (FInfo.getId()) {
810 return fold_read_write_pipe(CI, B, FInfo);
811 default:
812 break;
813 }
814 }
815
816 return false;
817}
818
819bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
820 // Table-Driven optimization
821 const TableRef tr = getOptTable(FInfo.getId());
822 if (tr.empty())
823 return false;
824
825 int const sz = (int)tr.size();
826 Value *opr0 = CI->getArgOperand(0);
827
828 if (getVecSize(FInfo) > 1) {
829 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
831 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
832 ConstantFP *eltval = dyn_cast<ConstantFP>(
833 CV->getElementAsConstant((unsigned)eltNo));
834 assert(eltval && "Non-FP arguments in math function!");
835 bool found = false;
836 for (int i=0; i < sz; ++i) {
837 if (eltval->isExactlyValue(tr[i].input)) {
838 DVal.push_back(tr[i].result);
839 found = true;
840 break;
841 }
842 }
843 if (!found) {
844 // This vector constants not handled yet.
845 return false;
846 }
847 }
848 LLVMContext &context = CI->getParent()->getParent()->getContext();
849 Constant *nval;
850 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
852 for (double D : DVal)
853 FVal.push_back((float)D);
854 ArrayRef<float> tmp(FVal);
855 nval = ConstantDataVector::get(context, tmp);
856 } else { // F64
857 ArrayRef<double> tmp(DVal);
858 nval = ConstantDataVector::get(context, tmp);
859 }
860 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
861 replaceCall(CI, nval);
862 return true;
863 }
864 } else {
865 // Scalar version
866 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
867 for (int i = 0; i < sz; ++i) {
868 if (CF->isExactlyValue(tr[i].input)) {
869 Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
870 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
871 replaceCall(CI, nval);
872 return true;
873 }
874 }
875 }
876 }
877
878 return false;
879}
880
881namespace llvm {
882static double log2(double V) {
883#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
884 return ::log2(V);
885#else
886 return log(V) / numbers::ln2;
887#endif
888}
889} // namespace llvm
890
891bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B,
892 const FuncInfo &FInfo) {
893 assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
894 FInfo.getId() == AMDGPULibFunc::EI_POWR ||
895 FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
896 "fold_pow: encounter a wrong function call");
897
898 Module *M = B.GetInsertBlock()->getModule();
899 Type *eltType = FPOp->getType()->getScalarType();
900 Value *opr0 = FPOp->getOperand(0);
901 Value *opr1 = FPOp->getOperand(1);
902
903 const APFloat *CF = nullptr;
904 const APInt *CINT = nullptr;
905 if (!match(opr1, m_APFloatAllowPoison(CF)))
906 match(opr1, m_APIntAllowPoison(CINT));
907
908 // 0x1111111 means that we don't do anything for this call.
909 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
910
911 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) {
912 // pow/powr/pown(x, 0) == 1
913 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n");
914 Constant *cnval = ConstantFP::get(eltType, 1.0);
915 if (getVecSize(FInfo) > 1) {
916 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
917 }
918 replaceCall(FPOp, cnval);
919 return true;
920 }
921 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
922 // pow/powr/pown(x, 1.0) = x
923 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n");
924 replaceCall(FPOp, opr0);
925 return true;
926 }
927 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
928 // pow/powr/pown(x, 2.0) = x*x
929 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * "
930 << *opr0 << "\n");
931 Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
932 replaceCall(FPOp, nval);
933 return true;
934 }
935 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
936 // pow/powr/pown(x, -1.0) = 1.0/x
937 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n");
938 Constant *cnval = ConstantFP::get(eltType, 1.0);
939 if (getVecSize(FInfo) > 1) {
940 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
941 }
942 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
943 replaceCall(FPOp, nval);
944 return true;
945 }
946
947 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
948 // pow[r](x, [-]0.5) = sqrt(x)
949 bool issqrt = CF->isExactlyValue(0.5);
950 if (FunctionCallee FPExpr =
951 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
953 FInfo))) {
954 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName()
955 << '(' << *opr0 << ")\n");
956 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
957 : "__pow2rsqrt");
958 replaceCall(FPOp, nval);
959 return true;
960 }
961 }
962
963 if (!isUnsafeFiniteOnlyMath(FPOp))
964 return false;
965
966 // Unsafe Math optimization
967
968 // Remember that ci_opr1 is set if opr1 is integral
969 if (CF) {
970 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
971 ? (double)CF->convertToFloat()
972 : CF->convertToDouble();
973 int ival = (int)dval;
974 if ((double)ival == dval) {
975 ci_opr1 = ival;
976 } else
977 ci_opr1 = 0x11111111;
978 }
979
980 // pow/powr/pown(x, c) = [1/](x*x*..x); where
981 // trunc(c) == c && the number of x == c && |c| <= 12
982 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
983 if (abs_opr1 <= 12) {
984 Constant *cnval;
985 Value *nval;
986 if (abs_opr1 == 0) {
987 cnval = ConstantFP::get(eltType, 1.0);
988 if (getVecSize(FInfo) > 1) {
989 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
990 }
991 nval = cnval;
992 } else {
993 Value *valx2 = nullptr;
994 nval = nullptr;
995 while (abs_opr1 > 0) {
996 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
997 if (abs_opr1 & 1) {
998 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
999 }
1000 abs_opr1 >>= 1;
1001 }
1002 }
1003
1004 if (ci_opr1 < 0) {
1005 cnval = ConstantFP::get(eltType, 1.0);
1006 if (getVecSize(FInfo) > 1) {
1007 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1008 }
1009 nval = B.CreateFDiv(cnval, nval, "__1powprod");
1010 }
1011 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1012 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1013 << ")\n");
1014 replaceCall(FPOp, nval);
1015 return true;
1016 }
1017
1018 // If we should use the generic intrinsic instead of emitting a libcall
1019 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy();
1020
1021 // powr ---> exp2(y * log2(x))
1022 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1023 FunctionCallee ExpExpr;
1024 if (ShouldUseIntrinsic)
1025 ExpExpr = Intrinsic::getOrInsertDeclaration(M, Intrinsic::exp2,
1026 {FPOp->getType()});
1027 else {
1028 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1029 if (!ExpExpr)
1030 return false;
1031 }
1032
1033 bool needlog = false;
1034 bool needabs = false;
1035 bool needcopysign = false;
1036 Constant *cnval = nullptr;
1037 if (getVecSize(FInfo) == 1) {
1038 CF = nullptr;
1039 match(opr0, m_APFloatAllowPoison(CF));
1040
1041 if (CF) {
1042 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1043 ? (double)CF->convertToFloat()
1044 : CF->convertToDouble();
1045
1046 V = log2(std::abs(V));
1047 cnval = ConstantFP::get(eltType, V);
1048 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1049 CF->isNegative();
1050 } else {
1051 needlog = true;
1052 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1053 }
1054 } else {
1055 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1056
1057 if (!CDV) {
1058 needlog = true;
1059 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1060 } else {
1061 assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1062 "Wrong vector size detected");
1063
1065 for (int i=0; i < getVecSize(FInfo); ++i) {
1066 double V = CDV->getElementAsAPFloat(i).convertToDouble();
1067 if (V < 0.0) needcopysign = true;
1068 V = log2(std::abs(V));
1069 DVal.push_back(V);
1070 }
1071 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1073 for (double D : DVal)
1074 FVal.push_back((float)D);
1075 ArrayRef<float> tmp(FVal);
1076 cnval = ConstantDataVector::get(M->getContext(), tmp);
1077 } else {
1078 ArrayRef<double> tmp(DVal);
1079 cnval = ConstantDataVector::get(M->getContext(), tmp);
1080 }
1081 }
1082 }
1083
1084 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1085 // We cannot handle corner cases for a general pow() function, give up
1086 // unless y is a constant integral value. Then proceed as if it were pown.
1087 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags()))
1088 return false;
1089 }
1090
1091 Value *nval;
1092 if (needabs) {
1093 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs");
1094 } else {
1095 nval = cnval ? cnval : opr0;
1096 }
1097 if (needlog) {
1098 FunctionCallee LogExpr;
1099 if (ShouldUseIntrinsic) {
1100 LogExpr = Intrinsic::getOrInsertDeclaration(M, Intrinsic::log2,
1101 {FPOp->getType()});
1102 } else {
1103 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1104 if (!LogExpr)
1105 return false;
1106 }
1107
1108 nval = CreateCallEx(B,LogExpr, nval, "__log2");
1109 }
1110
1111 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1112 // convert int(32) to fp(f32 or f64)
1113 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1114 }
1115 nval = B.CreateFMul(opr1, nval, "__ylogx");
1116 nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1117
1118 if (needcopysign) {
1119 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits());
1120 Type *nTy = FPOp->getType()->getWithNewType(nTyS);
1121 unsigned size = nTy->getScalarSizeInBits();
1122 Value *opr_n = FPOp->getOperand(1);
1123 if (opr_n->getType()->getScalarType()->isIntegerTy())
1124 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou");
1125 else
1126 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1127
1128 Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1129 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1130 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1131 nval = B.CreateBitCast(nval, opr0->getType());
1132 }
1133
1134 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1135 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1136 replaceCall(FPOp, nval);
1137
1138 return true;
1139}
1140
1141bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B,
1142 const FuncInfo &FInfo) {
1143 Value *opr0 = FPOp->getOperand(0);
1144 Value *opr1 = FPOp->getOperand(1);
1145
1146 const APInt *CINT = nullptr;
1147 if (!match(opr1, m_APIntAllowPoison(CINT)))
1148 return false;
1149
1150 Function *Parent = B.GetInsertBlock()->getParent();
1151
1152 int ci_opr1 = (int)CINT->getSExtValue();
1153 if (ci_opr1 == 1 && !Parent->hasFnAttribute(Attribute::StrictFP)) {
1154 // rootn(x, 1) = x
1155 //
1156 // TODO: Insert constrained canonicalize for strictfp case.
1157 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << '\n');
1158 replaceCall(FPOp, opr0);
1159 return true;
1160 }
1161
1162 Module *M = B.GetInsertBlock()->getModule();
1163
1164 CallInst *CI = cast<CallInst>(FPOp);
1165 if (ci_opr1 == 2 &&
1166 shouldReplaceLibcallWithIntrinsic(CI,
1167 /*AllowMinSizeF32=*/true,
1168 /*AllowF64=*/true)) {
1169 // rootn(x, 2) = sqrt(x)
1170 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n");
1171
1172 CallInst *NewCall = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1173 NewCall->takeName(CI);
1174
1175 // OpenCL rootn has a looser ulp of 2 requirement than sqrt, so add some
1176 // metadata.
1177 MDBuilder MDHelper(M->getContext());
1178 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1179 NewCall->setMetadata(LLVMContext::MD_fpmath, FPMD);
1180
1181 replaceCall(CI, NewCall);
1182 return true;
1183 }
1184
1185 if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1186 if (FunctionCallee FPExpr =
1187 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1188 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0
1189 << ")\n");
1190 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1191 replaceCall(FPOp, nval);
1192 return true;
1193 }
1194 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1195 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n");
1196 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1197 opr0,
1198 "__rootn2div");
1199 replaceCall(FPOp, nval);
1200 return true;
1201 }
1202
1203 if (ci_opr1 == -2 &&
1204 shouldReplaceLibcallWithIntrinsic(CI,
1205 /*AllowMinSizeF32=*/true,
1206 /*AllowF64=*/true)) {
1207 // rootn(x, -2) = rsqrt(x)
1208
1209 // The original rootn had looser ulp requirements than the resultant sqrt
1210 // and fdiv.
1211 MDBuilder MDHelper(M->getContext());
1212 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1213
1214 // TODO: Could handle strictfp but need to fix strict sqrt emission
1215 FastMathFlags FMF = FPOp->getFastMathFlags();
1216 FMF.setAllowContract(true);
1217
1218 CallInst *Sqrt = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1219 Instruction *RSqrt = cast<Instruction>(
1220 B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), Sqrt));
1221 Sqrt->setFastMathFlags(FMF);
1222 RSqrt->setFastMathFlags(FMF);
1223 RSqrt->setMetadata(LLVMContext::MD_fpmath, FPMD);
1224
1225 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0
1226 << ")\n");
1227 replaceCall(CI, RSqrt);
1228 return true;
1229 }
1230
1231 return false;
1232}
1233
1234// Get a scalar native builtin single argument FP function
1235FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1236 const FuncInfo &FInfo) {
1237 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1238 return nullptr;
1239 FuncInfo nf = FInfo;
1241 return getFunction(M, nf);
1242}
1243
1244// Some library calls are just wrappers around llvm intrinsics, but compiled
1245// conservatively. Preserve the flags from the original call site by
1246// substituting them with direct calls with all the flags.
1247bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
1248 bool AllowMinSizeF32,
1249 bool AllowF64,
1250 bool AllowStrictFP) {
1251 Type *FltTy = CI->getType()->getScalarType();
1252 const bool IsF32 = FltTy->isFloatTy();
1253
1254 // f64 intrinsics aren't implemented for most operations.
1255 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy()))
1256 return false;
1257
1258 // We're implicitly inlining by replacing the libcall with the intrinsic, so
1259 // don't do it for noinline call sites.
1260 if (CI->isNoInline())
1261 return false;
1262
1263 const Function *ParentF = CI->getFunction();
1264 // TODO: Handle strictfp
1265 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP))
1266 return false;
1267
1268 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize())
1269 return false;
1270 return true;
1271}
1272
1273void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B,
1274 CallInst *CI,
1275 Intrinsic::ID IntrID) {
1276 if (CI->arg_size() == 2) {
1277 Value *Arg0 = CI->getArgOperand(0);
1278 Value *Arg1 = CI->getArgOperand(1);
1279 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType());
1280 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType());
1281 if (Arg0VecTy && !Arg1VecTy) {
1282 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1);
1283 CI->setArgOperand(1, SplatRHS);
1284 } else if (!Arg0VecTy && Arg1VecTy) {
1285 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0);
1286 CI->setArgOperand(0, SplatLHS);
1287 }
1288 }
1289
1291 CI->getModule(), IntrID, {CI->getType()}));
1292}
1293
1294bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic(
1295 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32,
1296 bool AllowF64, bool AllowStrictFP) {
1297 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64,
1298 AllowStrictFP))
1299 return false;
1300 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID);
1301 return true;
1302}
1303
1304std::tuple<Value *, Value *, Value *>
1305AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B,
1306 FunctionCallee Fsincos) {
1307 DebugLoc DL = B.getCurrentDebugLocation();
1308 Function *F = B.GetInsertBlock()->getParent();
1309 B.SetInsertPointPastAllocas(F);
1310
1311 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_");
1312
1313 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1314 // If the argument is an instruction, it must dominate all uses so put our
1315 // sincos call there. Otherwise, right after the allocas works well enough
1316 // if it's an argument or constant.
1317
1318 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1319
1320 // SetInsertPoint unwelcomely always tries to set the debug loc.
1321 B.SetCurrentDebugLocation(DL);
1322 }
1323
1324 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1);
1325
1326 // The allocaInst allocates the memory in private address space. This need
1327 // to be addrspacecasted to point to the address space of cos pointer type.
1328 // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1329 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy);
1330
1331 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc);
1332
1333 // TODO: Is it worth trying to preserve the location for the cos calls for the
1334 // load?
1335
1336 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1337 return {SinCos, LoadCos, SinCos};
1338}
1339
1340// fold sin, cos -> sincos.
1341bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B,
1342 const FuncInfo &fInfo) {
1343 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1344 fInfo.getId() == AMDGPULibFunc::EI_COS);
1345
1346 if ((getArgType(fInfo) != AMDGPULibFunc::F32 &&
1347 getArgType(fInfo) != AMDGPULibFunc::F64) ||
1348 fInfo.getPrefix() != AMDGPULibFunc::NOPFX)
1349 return false;
1350
1351 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1352
1353 Value *CArgVal = FPOp->getOperand(0);
1354
1355 // TODO: Constant fold the call
1356 if (isa<ConstantData>(CArgVal))
1357 return false;
1358
1359 CallInst *CI = cast<CallInst>(FPOp);
1360
1361 Function *F = B.GetInsertBlock()->getParent();
1362 Module *M = F->getParent();
1363
1364 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer
1365 // implementation. Prefer the private form if available.
1366 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo);
1367 SinCosLibFuncPrivate.getLeads()[0].PtrKind =
1369
1370 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo);
1371 SinCosLibFuncGeneric.getLeads()[0].PtrKind =
1373
1374 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate);
1375 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric);
1376 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric;
1377 if (!FSinCos)
1378 return false;
1379
1380 SmallVector<CallInst *> SinCalls;
1381 SmallVector<CallInst *> CosCalls;
1382 SmallVector<CallInst *> SinCosCalls;
1383 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN,
1384 fInfo);
1385 const std::string PairName = PartnerInfo.mangle();
1386
1387 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName;
1388 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName();
1389 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle();
1390 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle();
1391
1392 // Intersect the two sets of flags.
1393 FastMathFlags FMF = FPOp->getFastMathFlags();
1394 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath);
1395
1396 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()};
1397
1398 for (User* U : CArgVal->users()) {
1399 CallInst *XI = dyn_cast<CallInst>(U);
1400 if (!XI || XI->getFunction() != F || XI->isNoBuiltin())
1401 continue;
1402
1403 Function *UCallee = XI->getCalledFunction();
1404 if (!UCallee)
1405 continue;
1406
1407 bool Handled = true;
1408
1409 if (UCallee->getName() == SinName)
1410 SinCalls.push_back(XI);
1411 else if (UCallee->getName() == CosName)
1412 CosCalls.push_back(XI);
1413 else if (UCallee->getName() == SinCosPrivateName ||
1414 UCallee->getName() == SinCosGenericName)
1415 SinCosCalls.push_back(XI);
1416 else
1417 Handled = false;
1418
1419 if (Handled) {
1420 MergeDbgLocs.push_back(XI->getDebugLoc());
1421 auto *OtherOp = cast<FPMathOperator>(XI);
1422 FMF &= OtherOp->getFastMathFlags();
1424 FPMath, XI->getMetadata(LLVMContext::MD_fpmath));
1425 }
1426 }
1427
1428 if (SinCalls.empty() || CosCalls.empty())
1429 return false;
1430
1431 B.setFastMathFlags(FMF);
1432 B.setDefaultFPMathTag(FPMath);
1433 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs);
1434 B.SetCurrentDebugLocation(DbgLoc);
1435
1436 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos);
1437
1438 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) {
1439 for (CallInst *C : Calls)
1440 C->replaceAllUsesWith(Res);
1441
1442 // Leave the other dead instructions to avoid clobbering iterators.
1443 };
1444
1445 replaceTrigInsts(SinCalls, Sin);
1446 replaceTrigInsts(CosCalls, Cos);
1447 replaceTrigInsts(SinCosCalls, SinCos);
1448
1449 // It's safe to delete the original now.
1450 CI->eraseFromParent();
1451 return true;
1452}
1453
1454bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0,
1455 double &Res1, Constant *copr0,
1456 Constant *copr1) {
1457 // By default, opr0/opr1/opr3 holds values of float/double type.
1458 // If they are not float/double, each function has to its
1459 // operand separately.
1460 double opr0 = 0.0, opr1 = 0.0;
1461 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1462 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1463 if (fpopr0) {
1464 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1465 ? fpopr0->getValueAPF().convertToDouble()
1466 : (double)fpopr0->getValueAPF().convertToFloat();
1467 }
1468
1469 if (fpopr1) {
1470 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1471 ? fpopr1->getValueAPF().convertToDouble()
1472 : (double)fpopr1->getValueAPF().convertToFloat();
1473 }
1474
1475 switch (FInfo.getId()) {
1476 default : return false;
1477
1479 Res0 = acos(opr0);
1480 return true;
1481
1483 // acosh(x) == log(x + sqrt(x*x - 1))
1484 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1485 return true;
1486
1488 Res0 = acos(opr0) / MATH_PI;
1489 return true;
1490
1492 Res0 = asin(opr0);
1493 return true;
1494
1496 // asinh(x) == log(x + sqrt(x*x + 1))
1497 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1498 return true;
1499
1501 Res0 = asin(opr0) / MATH_PI;
1502 return true;
1503
1505 Res0 = atan(opr0);
1506 return true;
1507
1509 // atanh(x) == (log(x+1) - log(x-1))/2;
1510 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1511 return true;
1512
1514 Res0 = atan(opr0) / MATH_PI;
1515 return true;
1516
1518 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1519 return true;
1520
1522 Res0 = cos(opr0);
1523 return true;
1524
1526 Res0 = cosh(opr0);
1527 return true;
1528
1530 Res0 = cos(MATH_PI * opr0);
1531 return true;
1532
1534 Res0 = exp(opr0);
1535 return true;
1536
1538 Res0 = pow(2.0, opr0);
1539 return true;
1540
1542 Res0 = pow(10.0, opr0);
1543 return true;
1544
1546 Res0 = log(opr0);
1547 return true;
1548
1550 Res0 = log(opr0) / log(2.0);
1551 return true;
1552
1554 Res0 = log(opr0) / log(10.0);
1555 return true;
1556
1558 Res0 = 1.0 / sqrt(opr0);
1559 return true;
1560
1562 Res0 = sin(opr0);
1563 return true;
1564
1566 Res0 = sinh(opr0);
1567 return true;
1568
1570 Res0 = sin(MATH_PI * opr0);
1571 return true;
1572
1574 Res0 = tan(opr0);
1575 return true;
1576
1578 Res0 = tanh(opr0);
1579 return true;
1580
1582 Res0 = tan(MATH_PI * opr0);
1583 return true;
1584
1585 // two-arg functions
1588 Res0 = pow(opr0, opr1);
1589 return true;
1590
1592 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1593 double val = (double)iopr1->getSExtValue();
1594 Res0 = pow(opr0, val);
1595 return true;
1596 }
1597 return false;
1598 }
1599
1601 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1602 double val = (double)iopr1->getSExtValue();
1603 Res0 = pow(opr0, 1.0 / val);
1604 return true;
1605 }
1606 return false;
1607 }
1608
1609 // with ptr arg
1611 Res0 = sin(opr0);
1612 Res1 = cos(opr0);
1613 return true;
1614 }
1615
1616 return false;
1617}
1618
1619bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1620 int numArgs = (int)aCI->arg_size();
1621 if (numArgs > 3)
1622 return false;
1623
1624 Constant *copr0 = nullptr;
1625 Constant *copr1 = nullptr;
1626 if (numArgs > 0) {
1627 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1628 return false;
1629 }
1630
1631 if (numArgs > 1) {
1632 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1633 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1634 return false;
1635 }
1636 }
1637
1638 // At this point, all arguments to aCI are constants.
1639
1640 // max vector size is 16, and sincos will generate two results.
1641 double DVal0[16], DVal1[16];
1642 int FuncVecSize = getVecSize(FInfo);
1643 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1644 if (FuncVecSize == 1) {
1645 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) {
1646 return false;
1647 }
1648 } else {
1649 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1650 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1651 for (int i = 0; i < FuncVecSize; ++i) {
1652 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1653 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1654 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) {
1655 return false;
1656 }
1657 }
1658 }
1659
1660 LLVMContext &context = aCI->getContext();
1661 Constant *nval0, *nval1;
1662 if (FuncVecSize == 1) {
1663 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]);
1664 if (hasTwoResults)
1665 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]);
1666 } else {
1667 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1668 SmallVector <float, 0> FVal0, FVal1;
1669 for (int i = 0; i < FuncVecSize; ++i)
1670 FVal0.push_back((float)DVal0[i]);
1671 ArrayRef<float> tmp0(FVal0);
1672 nval0 = ConstantDataVector::get(context, tmp0);
1673 if (hasTwoResults) {
1674 for (int i = 0; i < FuncVecSize; ++i)
1675 FVal1.push_back((float)DVal1[i]);
1676 ArrayRef<float> tmp1(FVal1);
1677 nval1 = ConstantDataVector::get(context, tmp1);
1678 }
1679 } else {
1680 ArrayRef<double> tmp0(DVal0);
1681 nval0 = ConstantDataVector::get(context, tmp0);
1682 if (hasTwoResults) {
1683 ArrayRef<double> tmp1(DVal1);
1684 nval1 = ConstantDataVector::get(context, tmp1);
1685 }
1686 }
1687 }
1688
1689 if (hasTwoResults) {
1690 // sincos
1691 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1692 "math function with ptr arg not supported yet");
1693 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator());
1694 }
1695
1696 replaceCall(aCI, nval0);
1697 return true;
1698}
1699
1702 AMDGPULibCalls Simplifier;
1703 Simplifier.initNativeFuncs();
1704 Simplifier.initFunction(F, AM);
1705
1706 bool Changed = false;
1707
1708 LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1709 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1710
1711 for (auto &BB : F) {
1712 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1713 // Ignore non-calls.
1714 CallInst *CI = dyn_cast<CallInst>(I);
1715 ++I;
1716
1717 if (CI) {
1718 if (Simplifier.fold(CI))
1719 Changed = true;
1720 }
1721 }
1722 }
1723 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1724}
1725
1728 if (UseNative.empty())
1729 return PreservedAnalyses::all();
1730
1731 AMDGPULibCalls Simplifier;
1732 Simplifier.initNativeFuncs();
1733 Simplifier.initFunction(F, AM);
1734
1735 bool Changed = false;
1736 for (auto &BB : F) {
1737 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1738 // Ignore non-calls.
1739 CallInst *CI = dyn_cast<CallInst>(I);
1740 ++I;
1741 if (CI && Simplifier.useNative(CI))
1742 Changed = true;
1743 }
1744 }
1745 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1746}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isKnownIntegral(const Value *V, const DataLayout &DL, FastMathFlags FMF)
static const TableEntry tbl_log[]
static const TableEntry tbl_tgamma[]
static AMDGPULibFunc::EType getArgType(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_expm1[]
static const TableEntry tbl_asinpi[]
static const TableEntry tbl_cos[]
#define MATH_SQRT2
static const TableEntry tbl_exp10[]
static CallInst * CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name="")
static CallInst * CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
static const TableEntry tbl_rsqrt[]
static const TableEntry tbl_atanh[]
static const TableEntry tbl_cosh[]
static const TableEntry tbl_asin[]
static const TableEntry tbl_sinh[]
static const TableEntry tbl_acos[]
static const TableEntry tbl_tan[]
static const TableEntry tbl_cospi[]
static const TableEntry tbl_tanpi[]
static cl::opt< bool > EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden)
static bool HasNative(AMDGPULibFunc::EFuncId id)
ArrayRef< TableEntry > TableRef
static int getVecSize(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_sin[]
static const TableEntry tbl_atan[]
static const TableEntry tbl_log2[]
static const TableEntry tbl_acospi[]
static const TableEntry tbl_sqrt[]
static const TableEntry tbl_asinh[]
#define MATH_E
static TableRef getOptTable(AMDGPULibFunc::EFuncId id)
static const TableEntry tbl_acosh[]
static const TableEntry tbl_exp[]
static const TableEntry tbl_cbrt[]
static const TableEntry tbl_sinpi[]
static const TableEntry tbl_atanpi[]
#define MATH_PI
static FunctionType * getPownType(FunctionType *FT)
static const TableEntry tbl_erf[]
static const TableEntry tbl_log10[]
#define MATH_SQRT1_2
static const TableEntry tbl_erfc[]
static cl::list< std::string > UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden)
static const TableEntry tbl_tanh[]
static const TableEntry tbl_exp2[]
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
std::string Name
uint64_t Size
loop term fold
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionAnalysisManager FAM
#define LLVM_DEBUG(...)
Definition: Debug.h:119
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:77
static void replaceCall(FPMathOperator *I, Value *With)
bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const
bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const
bool fold(CallInst *CI)
static void replaceCall(Instruction *I, Value *With)
bool useNative(CallInst *CI)
void initFunction(Function &F, FunctionAnalysisManager &FAM)
AMDGPULibCalls()=default
static unsigned getEPtrKindFromAddrSpace(unsigned AS)
Wrapper class for AMDGPULIbFuncImpl.
static bool parse(StringRef MangledName, AMDGPULibFunc &Ptr)
std::string getName() const
Get unmangled name for mangled library function and name for unmangled library function.
static FunctionCallee getOrInsertFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
void setPrefix(ENamePrefix PFX)
bool isCompatibleSignature(const Module &M, const FunctionType *FuncTy) const
EFuncId getId() const
bool isMangled() const
Param * getLeads()
Get leading parameters for mangled lib functions.
void setId(EFuncId Id)
ENamePrefix getPrefix() const
bool isNegative() const
Definition: APFloat.h:1449
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition: APFloat.cpp:6115
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1432
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition: APFloat.cpp:6143
bool isZero() const
Definition: APFloat.h:1445
bool isInteger() const
Definition: APFloat.h:1466
Class for arbitrary precision integers.
Definition: APInt.h:78
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1562
an instruction to allocate memory on the stack
Definition: Instructions.h:64
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:431
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1905
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1348
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Definition: InstrTypes.h:1911
bool isNoInline() const
Return true if the call should not be inlined.
Definition: InstrTypes.h:1914
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1292
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1297
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1205
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
unsigned arg_size() const
Definition: InstrTypes.h:1290
AttributeList getAttributes() const
Return the attributes for this call.
Definition: InstrTypes.h:1424
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1387
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI APFloat getElementAsAPFloat(uint64_t i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
Definition: Constants.cpp:3160
LLVM_ABI Constant * getElementAsConstant(uint64_t i) const
Return a Constant for a specified index's element.
Definition: Constants.cpp:3197
LLVM_ABI uint64_t getNumElements() const
Return the number of elements in the array or vector.
Definition: Constants.cpp:2860
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:776
static LLVM_ABI Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:3066
static LLVM_ABI Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:3005
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:277
const APFloat & getValue() const
Definition: Constants.h:321
const APFloat & getValueAPF() const
Definition: Constants.h:320
LLVM_ABI bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:1121
This is the shared class of boolean and integer constants.
Definition: Constants.h:87
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:163
Align getAlignValue() const
Return the constant as an llvm::Align, interpreting 0 as Align(1).
Definition: Constants.h:181
This is an important base class in LLVM.
Definition: Constant.h:43
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
Debug location.
static LLVM_ABI DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:124
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:284
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:200
bool isFast() const
Test if this operation allows all non-strict floating-point transforms.
Definition: Operator.h:286
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition: Operator.h:302
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:333
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition: Operator.h:307
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:328
LLVM_ABI float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:22
void setAllowContract(bool B=true)
Definition: FMF.h:90
bool noInfs() const
Definition: FMF.h:66
bool none() const
Definition: FMF.h:57
bool approxFunc() const
Definition: FMF.h:70
bool noNaNs() const
Definition: FMF.h:65
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:170
FunctionType * getFunctionType()
Definition: DerivedTypes.h:187
Class to represent function types.
Definition: DerivedTypes.h:105
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:137
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:703
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:727
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:513
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:78
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:82
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:428
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1718
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
An instruction for reading from memory.
Definition: Instructions.h:180
Metadata node.
Definition: Metadata.h:1077
static LLVM_ABI MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1174
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
bool empty() const
Definition: SmallVector.h:82
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
An instruction for storing to memory.
Definition: Instructions.h:296
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:142
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:352
LLVM_ABI Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
void dropAllReferences()
Drop all references to operands.
Definition: User.h:349
Value * getOperand(unsigned i) const
Definition: User.h:232
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
iterator_range< user_iterator > users()
Definition: Value.h:426
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1098
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
Base class of all SIMD vector types.
Definition: DerivedTypes.h:430
const ParentTy * getParent() const
Definition: ilist_node.h:34
self_iterator getIterator()
Definition: ilist_node.h:134
@ FLAT_ADDRESS
Address space for flat memory.
@ PRIVATE_ADDRESS
Address space for private memory.
LLVM_ABI APInt pow(const APInt &X, int64_t N)
Compute X^N for N>=0.
Definition: APInt.cpp:3155
LLVM_ABI AttributeMask typeIncompatible(Type *Ty, AttributeSet AS, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:751
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
@ ValueOptional
Definition: CommandLine.h:131
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
@ CommaSeparated
Definition: CommandLine.h:164
constexpr double ln2
Definition: MathExtras.h:49
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static double log2(double V)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1702
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39