27 OS <<
"IsSigned=" << IsSigned <<
", ";
28 OS <<
"HasUnsignedPadding=" << HasUnsignedPadding <<
", ";
29 OS <<
"IsSaturated=" << IsSaturated;
33 return llvm::bit_cast<uint32_t>(*
this);
38 std::memcpy(&
F, &
I,
sizeof(
F));
43 bool *Overflow)
const {
49 if (RelativeUpscale > 0)
87 bool OtherSigned = OtherVal.
isSigned();
91 unsigned CommonWidth = CommonMsb - CommonLsb + 1;
97 OtherVal = OtherVal.
shl(
Other.getLsbWeight() - CommonLsb);
99 if (ThisSigned && OtherSigned) {
100 if (ThisVal.
sgt(OtherVal))
102 else if (ThisVal.
slt(OtherVal))
104 }
else if (!ThisSigned && !OtherSigned) {
105 if (ThisVal.
ugt(OtherVal))
107 else if (ThisVal.
ult(OtherVal))
109 }
else if (ThisSigned && !OtherSigned) {
112 else if (ThisVal.
ugt(OtherVal))
114 else if (ThisVal.
ult(OtherVal))
120 else if (ThisVal.
ugt(OtherVal))
122 else if (ThisVal.
ult(OtherVal))
175 Other.getMsbWeight() -
Other.hasSignOrPaddingBit());
176 unsigned CommonWidth = CommonMSb - CommonLsb + 1;
180 bool ResultHasUnsignedPadding =
false;
181 if (!ResultIsSigned) {
184 Other.hasUnsignedPadding() && !ResultIsSaturated;
190 if (ResultIsSigned || ResultHasUnsignedPadding)
194 ResultIsSaturated, ResultHasUnsignedPadding);
198 bool *Overflow)
const {
204 bool Overflowed =
false;
207 if (CommonFXSema.isSaturated()) {
208 Result = CommonFXSema.isSigned() ? ThisVal.
sadd_sat(OtherVal)
212 : ThisVal.
uadd_ov(OtherVal, Overflowed);
216 *Overflow = Overflowed;
222 bool *Overflow)
const {
228 bool Overflowed =
false;
231 if (CommonFXSema.isSaturated()) {
232 Result = CommonFXSema.isSigned() ? ThisVal.
ssub_sat(OtherVal)
236 : ThisVal.
usub_ov(OtherVal, Overflowed);
240 *Overflow = Overflowed;
246 bool *Overflow)
const {
252 bool Overflowed =
false;
255 unsigned Wide = CommonFXSema.getWidth() * 2;
256 if (CommonFXSema.isSigned()) {
257 ThisVal = ThisVal.
sext(Wide);
258 OtherVal = OtherVal.
sext(Wide);
260 ThisVal = ThisVal.
zext(Wide);
261 OtherVal = OtherVal.
zext(Wide);
272 if (CommonFXSema.isSigned())
273 Result = ThisVal.
smul_ov(OtherVal, Overflowed)
276 Result = ThisVal.
umul_ov(OtherVal, Overflowed)
278 assert(!Overflowed &&
"Full multiplication cannot overflow!");
279 Result.setIsSigned(CommonFXSema.isSigned());
287 if (CommonFXSema.isSaturated()) {
290 else if (Result > Max)
293 Overflowed = Result < Min || Result > Max;
297 *Overflow = Overflowed;
299 return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
304 bool *Overflow)
const {
310 bool Overflowed =
false;
316 CommonFXSema.getWidth() * 2 + std::max(-CommonFXSema.getMsbWeight(), 0);
317 if (CommonFXSema.isSigned()) {
318 ThisVal = ThisVal.
sext(Wide);
319 OtherVal = OtherVal.
sext(Wide);
321 ThisVal = ThisVal.
zext(Wide);
322 OtherVal = OtherVal.
zext(Wide);
327 if (CommonFXSema.getLsbWeight() < 0)
328 ThisVal = ThisVal.
shl(-CommonFXSema.getLsbWeight());
329 else if (CommonFXSema.getLsbWeight() > 0)
330 OtherVal = OtherVal.
shl(CommonFXSema.getLsbWeight());
332 if (CommonFXSema.isSigned()) {
340 Result = ThisVal.
udiv(OtherVal);
342 Result.setIsSigned(CommonFXSema.isSigned());
350 if (CommonFXSema.isSaturated()) {
353 else if (Result > Max)
356 Overflowed = Result < Min || Result > Max;
360 *Overflow = Overflowed;
362 return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
368 bool Overflowed =
false;
371 unsigned Wide = Sema.
getWidth() * 2;
373 ThisVal = ThisVal.
sext(Wide);
375 ThisVal = ThisVal.
zext(Wide);
379 APSInt Result = ThisVal << Amt;
380 Result.setIsSigned(Sema.
isSigned());
389 else if (Result > Max)
392 Overflowed = Result < Min || Result > Max;
396 *Overflow = Overflowed;
426 unsigned Width = std::max(OrigWidth, Scale) + 4;
434 (FractPart * RadixInt)
437 FractPart = (FractPart * RadixInt) & FractPartMask;
438 }
while (FractPart != 0);
447#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
470 bool *Overflow)
const {
477 if (SrcWidth < DstWidth) {
478 Result = Result.extend(DstWidth);
479 }
else if (SrcWidth > DstWidth) {
480 DstMin = DstMin.
extend(SrcWidth);
481 DstMax = DstMax.
extend(SrcWidth);
485 if (Result.isSigned() && !DstSign) {
486 *Overflow = Result.isNegative() || Result.ugt(DstMax);
487 }
else if (Result.isUnsigned() && DstSign) {
488 *Overflow = Result.ugt(DstMax);
490 *Overflow = Result < DstMin || Result > DstMax;
494 Result.setIsSigned(DstSign);
495 return Result.extOrTrunc(DstWidth);
537 ScaleFactor.
convert(*OpSema, LosslessRM, &Ignored);
538 Flt.multiply(ScaleFactor, LosslessRM);
540 if (OpSema != &FloatSema)
541 Flt.convert(FloatSema, RM, &Ignored);
583 if (&FloatSema != OpSema)
584 Val.
convert(*OpSema, LosslessRM, &Ignored);
591 ScaleFactor.
convert(*OpSema, LosslessRM, &Ignored);
592 Val.
multiply(ScaleFactor, LosslessRM);
605 ScaleFactor.
convert(*OpSema, LosslessRM, &Ignored);
607 Val.
multiply(ScaleFactor, LosslessRM);
613 bool Overflowed =
false;
617 else if (Val < FloatMin)
620 Overflowed = Val > FloatMax || Val < FloatMin;
624 *Overflow = Overflowed;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Defines the fixed point number interface.
This file declares a class to represent arbitrary precision floating point values and provide a varie...
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
The APFixedPoint class works similarly to APInt/APSInt in that it is a functional replacement for a s...
LLVM_ABI APFixedPoint convert(const FixedPointSemantics &DstSema, bool *Overflow=nullptr) const
static LLVM_ABI APFixedPoint getMin(const FixedPointSemantics &Sema)
LLVM_ABI int compare(const APFixedPoint &Other) const
LLVM_ABI APSInt convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow=nullptr) const
Return the integral part of this fixed point number, rounded towards zero.
static LLVM_ABI APFixedPoint getFromFloatValue(const APFloat &Value, const FixedPointSemantics &DstFXSema, bool *Overflow=nullptr)
Create an APFixedPoint with a value equal to that of the provided floating point value,...
LLVM_ABI APFixedPoint sub(const APFixedPoint &Other, bool *Overflow=nullptr) const
LLVM_ABI APFloat convertToFloat(const fltSemantics &FloatSema) const
Convert this fixed point number to a floating point value with the provided semantics.
LLVM_DUMP_METHOD void dump() const
static LLVM_ABI APFixedPoint getFromIntValue(const APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow=nullptr)
Create an APFixedPoint with a value equal to that of the provided integer, and in the same semantics ...
std::string toString() const
LLVM_ABI void print(raw_ostream &) const
unsigned getWidth() const
LLVM_ABI APFixedPoint negate(bool *Overflow=nullptr) const
Perform a unary negation (-X) on this fixed point type, taking into account saturation if applicable.
LLVM_ABI APFixedPoint shl(unsigned Amt, bool *Overflow=nullptr) const
static LLVM_ABI APFixedPoint getEpsilon(const FixedPointSemantics &Sema)
static LLVM_ABI const fltSemantics * promoteFloatSemantics(const fltSemantics *S)
Given a floating point semantic, return the next floating point semantic with a larger exponent and l...
LLVM_ABI APFixedPoint div(const APFixedPoint &Other, bool *Overflow=nullptr) const
LLVM_ABI APFixedPoint mul(const APFixedPoint &Other, bool *Overflow=nullptr) const
APSInt getIntPart() const
Return the integral part of this fixed point number, rounded towards zero.
LLVM_ABI APFixedPoint add(const APFixedPoint &Other, bool *Overflow=nullptr) const
static LLVM_ABI APFixedPoint getMax(const FixedPointSemantics &Sema)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus roundToIntegral(roundingMode RM)
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt relativeLShl(int RelativeShift) const
relative logical shift left
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
APSInt extOrTrunc(uint32_t width) const
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
static APSInt get(int64_t X)
bool isNegative() const
Determine sign of this APSInt.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
void setIsSigned(bool Val)
APSInt relativeShl(unsigned Amt) const
void setIsUnsigned(bool Val)
APSInt extend(uint32_t width) const
The fixed point semantics work similarly to fltSemantics.
static LLVM_ABI FixedPointSemantics getFromOpaqueInt(uint32_t)
Create a FixedPointSemantics object from an integer created via toOpaqueInt().
unsigned getWidth() const
bool hasUnsignedPadding() const
unsigned getScale() const
unsigned getIntegralBits() const
Return the number of integral bits represented by these semantics.
LLVM_ABI FixedPointSemantics getCommonSemantics(const FixedPointSemantics &Other) const
Return the FixedPointSemantics that allows for calculating the full precision semantic that can preci...
LLVM_ABI void print(llvm::raw_ostream &OS) const
Print semantics for debug purposes.
LLVM_ABI bool fitsInFloatSemantics(const fltSemantics &FloatSema) const
Returns true if this fixed-point semantic with its value bits interpreted as an integer can fit in th...
bool hasSignOrPaddingBit() const
return true if the first bit doesn't have a strictly positive weight
LLVM_ABI uint32_t toOpaqueInt() const
Convert the semantics to a 32-bit unsigned integer.
bool isValidLegacySema() const
Check if the Semantic follow the requirements of an older more limited version of this class.
static FixedPointSemantics GetIntegerSemantics(unsigned Width, bool IsSigned)
Return the FixedPointSemantics for an integer type.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
LLVM Value Representation.
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
RoundingMode
Rounding mode.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToAway
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
opStatus
IEEE-754R 7: Default exception handling.
Used to differentiate between constructors with Width and Lsb from the default Width and scale.