31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
895 if (!
Ptr->getType()->isPointerTy())
898 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
955 APInt BaseIntVal(
DL.getPointerTypeSizeInBits(
Ptr->getType()), 0);
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
963 if ((
Ptr->isNullValue() || BaseIntVal != 0) &&
964 !
DL.mustNotIntroduceIntToPtr(
Ptr->getType())) {
969 Constant *
C = ConstantInt::get(
Ptr->getContext(), BaseIntVal);
975 bool CanBeNull, CanBeFreed;
977 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_deinterleave2:
1664 case Intrinsic::amdgcn_perm:
1665 case Intrinsic::amdgcn_wave_reduce_umin:
1666 case Intrinsic::amdgcn_wave_reduce_umax:
1667 case Intrinsic::amdgcn_wave_reduce_max:
1668 case Intrinsic::amdgcn_wave_reduce_min:
1669 case Intrinsic::amdgcn_wave_reduce_add:
1670 case Intrinsic::amdgcn_wave_reduce_sub:
1671 case Intrinsic::amdgcn_wave_reduce_and:
1672 case Intrinsic::amdgcn_wave_reduce_or:
1673 case Intrinsic::amdgcn_wave_reduce_xor:
1674 case Intrinsic::amdgcn_s_wqm:
1675 case Intrinsic::amdgcn_s_quadmask:
1676 case Intrinsic::amdgcn_s_bitreplicate:
1677 case Intrinsic::arm_mve_vctp8:
1678 case Intrinsic::arm_mve_vctp16:
1679 case Intrinsic::arm_mve_vctp32:
1680 case Intrinsic::arm_mve_vctp64:
1681 case Intrinsic::aarch64_sve_convert_from_svbool:
1682 case Intrinsic::wasm_alltrue:
1683 case Intrinsic::wasm_anytrue:
1684 case Intrinsic::wasm_dot:
1686 case Intrinsic::wasm_trunc_signed:
1687 case Intrinsic::wasm_trunc_unsigned:
1692 case Intrinsic::minnum:
1693 case Intrinsic::maxnum:
1694 case Intrinsic::minimum:
1695 case Intrinsic::maximum:
1696 case Intrinsic::minimumnum:
1697 case Intrinsic::maximumnum:
1698 case Intrinsic::log:
1699 case Intrinsic::log2:
1700 case Intrinsic::log10:
1701 case Intrinsic::exp:
1702 case Intrinsic::exp2:
1703 case Intrinsic::exp10:
1704 case Intrinsic::sqrt:
1705 case Intrinsic::sin:
1706 case Intrinsic::cos:
1707 case Intrinsic::sincos:
1708 case Intrinsic::sinh:
1709 case Intrinsic::cosh:
1710 case Intrinsic::atan:
1711 case Intrinsic::pow:
1712 case Intrinsic::powi:
1713 case Intrinsic::ldexp:
1714 case Intrinsic::fma:
1715 case Intrinsic::fmuladd:
1716 case Intrinsic::frexp:
1717 case Intrinsic::fptoui_sat:
1718 case Intrinsic::fptosi_sat:
1719 case Intrinsic::convert_from_fp16:
1720 case Intrinsic::convert_to_fp16:
1721 case Intrinsic::amdgcn_cos:
1722 case Intrinsic::amdgcn_cubeid:
1723 case Intrinsic::amdgcn_cubema:
1724 case Intrinsic::amdgcn_cubesc:
1725 case Intrinsic::amdgcn_cubetc:
1726 case Intrinsic::amdgcn_fmul_legacy:
1727 case Intrinsic::amdgcn_fma_legacy:
1728 case Intrinsic::amdgcn_fract:
1729 case Intrinsic::amdgcn_sin:
1731 case Intrinsic::x86_sse_cvtss2si:
1732 case Intrinsic::x86_sse_cvtss2si64:
1733 case Intrinsic::x86_sse_cvttss2si:
1734 case Intrinsic::x86_sse_cvttss2si64:
1735 case Intrinsic::x86_sse2_cvtsd2si:
1736 case Intrinsic::x86_sse2_cvtsd2si64:
1737 case Intrinsic::x86_sse2_cvttsd2si:
1738 case Intrinsic::x86_sse2_cvttsd2si64:
1739 case Intrinsic::x86_avx512_vcvtss2si32:
1740 case Intrinsic::x86_avx512_vcvtss2si64:
1741 case Intrinsic::x86_avx512_cvttss2si:
1742 case Intrinsic::x86_avx512_cvttss2si64:
1743 case Intrinsic::x86_avx512_vcvtsd2si32:
1744 case Intrinsic::x86_avx512_vcvtsd2si64:
1745 case Intrinsic::x86_avx512_cvttsd2si:
1746 case Intrinsic::x86_avx512_cvttsd2si64:
1747 case Intrinsic::x86_avx512_vcvtss2usi32:
1748 case Intrinsic::x86_avx512_vcvtss2usi64:
1749 case Intrinsic::x86_avx512_cvttss2usi:
1750 case Intrinsic::x86_avx512_cvttss2usi64:
1751 case Intrinsic::x86_avx512_vcvtsd2usi32:
1752 case Intrinsic::x86_avx512_vcvtsd2usi64:
1753 case Intrinsic::x86_avx512_cvttsd2usi:
1754 case Intrinsic::x86_avx512_cvttsd2usi64:
1757 case Intrinsic::nvvm_fmax_d:
1758 case Intrinsic::nvvm_fmax_f:
1759 case Intrinsic::nvvm_fmax_ftz_f:
1760 case Intrinsic::nvvm_fmax_ftz_nan_f:
1761 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1763 case Intrinsic::nvvm_fmax_nan_f:
1764 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1768 case Intrinsic::nvvm_fmin_d:
1769 case Intrinsic::nvvm_fmin_f:
1770 case Intrinsic::nvvm_fmin_ftz_f:
1771 case Intrinsic::nvvm_fmin_ftz_nan_f:
1772 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_nan_f:
1775 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1779 case Intrinsic::nvvm_f2i_rm:
1780 case Intrinsic::nvvm_f2i_rn:
1781 case Intrinsic::nvvm_f2i_rp:
1782 case Intrinsic::nvvm_f2i_rz:
1783 case Intrinsic::nvvm_f2i_rm_ftz:
1784 case Intrinsic::nvvm_f2i_rn_ftz:
1785 case Intrinsic::nvvm_f2i_rp_ftz:
1786 case Intrinsic::nvvm_f2i_rz_ftz:
1787 case Intrinsic::nvvm_f2ui_rm:
1788 case Intrinsic::nvvm_f2ui_rn:
1789 case Intrinsic::nvvm_f2ui_rp:
1790 case Intrinsic::nvvm_f2ui_rz:
1791 case Intrinsic::nvvm_f2ui_rm_ftz:
1792 case Intrinsic::nvvm_f2ui_rn_ftz:
1793 case Intrinsic::nvvm_f2ui_rp_ftz:
1794 case Intrinsic::nvvm_f2ui_rz_ftz:
1795 case Intrinsic::nvvm_d2i_rm:
1796 case Intrinsic::nvvm_d2i_rn:
1797 case Intrinsic::nvvm_d2i_rp:
1798 case Intrinsic::nvvm_d2i_rz:
1799 case Intrinsic::nvvm_d2ui_rm:
1800 case Intrinsic::nvvm_d2ui_rn:
1801 case Intrinsic::nvvm_d2ui_rp:
1802 case Intrinsic::nvvm_d2ui_rz:
1805 case Intrinsic::nvvm_f2ll_rm:
1806 case Intrinsic::nvvm_f2ll_rn:
1807 case Intrinsic::nvvm_f2ll_rp:
1808 case Intrinsic::nvvm_f2ll_rz:
1809 case Intrinsic::nvvm_f2ll_rm_ftz:
1810 case Intrinsic::nvvm_f2ll_rn_ftz:
1811 case Intrinsic::nvvm_f2ll_rp_ftz:
1812 case Intrinsic::nvvm_f2ll_rz_ftz:
1813 case Intrinsic::nvvm_f2ull_rm:
1814 case Intrinsic::nvvm_f2ull_rn:
1815 case Intrinsic::nvvm_f2ull_rp:
1816 case Intrinsic::nvvm_f2ull_rz:
1817 case Intrinsic::nvvm_f2ull_rm_ftz:
1818 case Intrinsic::nvvm_f2ull_rn_ftz:
1819 case Intrinsic::nvvm_f2ull_rp_ftz:
1820 case Intrinsic::nvvm_f2ull_rz_ftz:
1821 case Intrinsic::nvvm_d2ll_rm:
1822 case Intrinsic::nvvm_d2ll_rn:
1823 case Intrinsic::nvvm_d2ll_rp:
1824 case Intrinsic::nvvm_d2ll_rz:
1825 case Intrinsic::nvvm_d2ull_rm:
1826 case Intrinsic::nvvm_d2ull_rn:
1827 case Intrinsic::nvvm_d2ull_rp:
1828 case Intrinsic::nvvm_d2ull_rz:
1831 case Intrinsic::nvvm_ceil_d:
1832 case Intrinsic::nvvm_ceil_f:
1833 case Intrinsic::nvvm_ceil_ftz_f:
1835 case Intrinsic::nvvm_fabs:
1836 case Intrinsic::nvvm_fabs_ftz:
1838 case Intrinsic::nvvm_floor_d:
1839 case Intrinsic::nvvm_floor_f:
1840 case Intrinsic::nvvm_floor_ftz_f:
1842 case Intrinsic::nvvm_rcp_rm_d:
1843 case Intrinsic::nvvm_rcp_rm_f:
1844 case Intrinsic::nvvm_rcp_rm_ftz_f:
1845 case Intrinsic::nvvm_rcp_rn_d:
1846 case Intrinsic::nvvm_rcp_rn_f:
1847 case Intrinsic::nvvm_rcp_rn_ftz_f:
1848 case Intrinsic::nvvm_rcp_rp_d:
1849 case Intrinsic::nvvm_rcp_rp_f:
1850 case Intrinsic::nvvm_rcp_rp_ftz_f:
1851 case Intrinsic::nvvm_rcp_rz_d:
1852 case Intrinsic::nvvm_rcp_rz_f:
1853 case Intrinsic::nvvm_rcp_rz_ftz_f:
1855 case Intrinsic::nvvm_round_d:
1856 case Intrinsic::nvvm_round_f:
1857 case Intrinsic::nvvm_round_ftz_f:
1859 case Intrinsic::nvvm_saturate_d:
1860 case Intrinsic::nvvm_saturate_f:
1861 case Intrinsic::nvvm_saturate_ftz_f:
1863 case Intrinsic::nvvm_sqrt_f:
1864 case Intrinsic::nvvm_sqrt_rn_d:
1865 case Intrinsic::nvvm_sqrt_rn_f:
1866 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1867 return !
Call->isStrictFP();
1870 case Intrinsic::nvvm_add_rm_d:
1871 case Intrinsic::nvvm_add_rn_d:
1872 case Intrinsic::nvvm_add_rp_d:
1873 case Intrinsic::nvvm_add_rz_d:
1874 case Intrinsic::nvvm_add_rm_f:
1875 case Intrinsic::nvvm_add_rn_f:
1876 case Intrinsic::nvvm_add_rp_f:
1877 case Intrinsic::nvvm_add_rz_f:
1878 case Intrinsic::nvvm_add_rm_ftz_f:
1879 case Intrinsic::nvvm_add_rn_ftz_f:
1880 case Intrinsic::nvvm_add_rp_ftz_f:
1881 case Intrinsic::nvvm_add_rz_ftz_f:
1884 case Intrinsic::nvvm_div_rm_d:
1885 case Intrinsic::nvvm_div_rn_d:
1886 case Intrinsic::nvvm_div_rp_d:
1887 case Intrinsic::nvvm_div_rz_d:
1888 case Intrinsic::nvvm_div_rm_f:
1889 case Intrinsic::nvvm_div_rn_f:
1890 case Intrinsic::nvvm_div_rp_f:
1891 case Intrinsic::nvvm_div_rz_f:
1892 case Intrinsic::nvvm_div_rm_ftz_f:
1893 case Intrinsic::nvvm_div_rn_ftz_f:
1894 case Intrinsic::nvvm_div_rp_ftz_f:
1895 case Intrinsic::nvvm_div_rz_ftz_f:
1898 case Intrinsic::nvvm_mul_rm_d:
1899 case Intrinsic::nvvm_mul_rn_d:
1900 case Intrinsic::nvvm_mul_rp_d:
1901 case Intrinsic::nvvm_mul_rz_d:
1902 case Intrinsic::nvvm_mul_rm_f:
1903 case Intrinsic::nvvm_mul_rn_f:
1904 case Intrinsic::nvvm_mul_rp_f:
1905 case Intrinsic::nvvm_mul_rz_f:
1906 case Intrinsic::nvvm_mul_rm_ftz_f:
1907 case Intrinsic::nvvm_mul_rn_ftz_f:
1908 case Intrinsic::nvvm_mul_rp_ftz_f:
1909 case Intrinsic::nvvm_mul_rz_ftz_f:
1912 case Intrinsic::nvvm_fma_rm_d:
1913 case Intrinsic::nvvm_fma_rn_d:
1914 case Intrinsic::nvvm_fma_rp_d:
1915 case Intrinsic::nvvm_fma_rz_d:
1916 case Intrinsic::nvvm_fma_rm_f:
1917 case Intrinsic::nvvm_fma_rn_f:
1918 case Intrinsic::nvvm_fma_rp_f:
1919 case Intrinsic::nvvm_fma_rz_f:
1920 case Intrinsic::nvvm_fma_rm_ftz_f:
1921 case Intrinsic::nvvm_fma_rn_ftz_f:
1922 case Intrinsic::nvvm_fma_rp_ftz_f:
1923 case Intrinsic::nvvm_fma_rz_ftz_f:
1927 case Intrinsic::fabs:
1928 case Intrinsic::copysign:
1929 case Intrinsic::is_fpclass:
1932 case Intrinsic::ceil:
1933 case Intrinsic::floor:
1934 case Intrinsic::round:
1935 case Intrinsic::roundeven:
1936 case Intrinsic::trunc:
1937 case Intrinsic::nearbyint:
1938 case Intrinsic::rint:
1939 case Intrinsic::canonicalize:
1943 case Intrinsic::experimental_constrained_fma:
1944 case Intrinsic::experimental_constrained_fmuladd:
1945 case Intrinsic::experimental_constrained_fadd:
1946 case Intrinsic::experimental_constrained_fsub:
1947 case Intrinsic::experimental_constrained_fmul:
1948 case Intrinsic::experimental_constrained_fdiv:
1949 case Intrinsic::experimental_constrained_frem:
1950 case Intrinsic::experimental_constrained_ceil:
1951 case Intrinsic::experimental_constrained_floor:
1952 case Intrinsic::experimental_constrained_round:
1953 case Intrinsic::experimental_constrained_roundeven:
1954 case Intrinsic::experimental_constrained_trunc:
1955 case Intrinsic::experimental_constrained_nearbyint:
1956 case Intrinsic::experimental_constrained_rint:
1957 case Intrinsic::experimental_constrained_fcmp:
1958 case Intrinsic::experimental_constrained_fcmps:
1965 if (!
F->hasName() ||
Call->isStrictFP())
1976 return Name ==
"acos" || Name ==
"acosf" ||
1977 Name ==
"asin" || Name ==
"asinf" ||
1978 Name ==
"atan" || Name ==
"atanf" ||
1979 Name ==
"atan2" || Name ==
"atan2f";
1981 return Name ==
"ceil" || Name ==
"ceilf" ||
1982 Name ==
"cos" || Name ==
"cosf" ||
1983 Name ==
"cosh" || Name ==
"coshf";
1985 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1986 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1988 return Name ==
"fabs" || Name ==
"fabsf" ||
1989 Name ==
"floor" || Name ==
"floorf" ||
1990 Name ==
"fmod" || Name ==
"fmodf";
1992 return Name ==
"ilogb" || Name ==
"ilogbf";
1994 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
1995 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
1996 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
1997 Name ==
"log1p" || Name ==
"log1pf";
1999 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2001 return Name ==
"pow" || Name ==
"powf";
2003 return Name ==
"remainder" || Name ==
"remainderf" ||
2004 Name ==
"rint" || Name ==
"rintf" ||
2005 Name ==
"round" || Name ==
"roundf";
2007 return Name ==
"sin" || Name ==
"sinf" ||
2008 Name ==
"sinh" || Name ==
"sinhf" ||
2009 Name ==
"sqrt" || Name ==
"sqrtf";
2011 return Name ==
"tan" || Name ==
"tanf" ||
2012 Name ==
"tanh" || Name ==
"tanhf" ||
2013 Name ==
"trunc" || Name ==
"truncf";
2021 if (Name.size() < 12 || Name[1] !=
'_')
2027 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2028 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2029 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2031 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2033 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2034 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2036 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2037 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2039 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2041 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2049 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2053 return ConstantFP::get(Ty->getContext(), APF);
2055 if (Ty->isDoubleTy())
2056 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2060#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2061Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2062 if (Ty->isFP128Ty())
2063 return ConstantFP::get(Ty, V);
2069inline void llvm_fenv_clearexcept() {
2070#if HAVE_DECL_FE_ALL_EXCEPT
2071 feclearexcept(FE_ALL_EXCEPT);
2077inline bool llvm_fenv_testexcept() {
2078 int errno_val = errno;
2079 if (errno_val == ERANGE || errno_val == EDOM)
2081#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2082 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2104 switch (DenormKind) {
2108 return FTZPreserveSign(V);
2110 return FlushToPositiveZero(V);
2118 if (!DenormMode.isValid() ||
2123 llvm_fenv_clearexcept();
2124 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2125 double Result = NativeFP(
Input.convertToDouble());
2126 if (llvm_fenv_testexcept()) {
2127 llvm_fenv_clearexcept();
2131 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2134 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2135 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2136 return ConstantFP::get(Ty->getContext(), Res);
2139#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2140Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2142 llvm_fenv_clearexcept();
2143 float128
Result = NativeFP(V.convertToQuad());
2144 if (llvm_fenv_testexcept()) {
2145 llvm_fenv_clearexcept();
2149 return GetConstantFoldFPValue128(Result, Ty);
2153Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2155 llvm_fenv_clearexcept();
2156 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2157 if (llvm_fenv_testexcept()) {
2158 llvm_fenv_clearexcept();
2162 return GetConstantFoldFPValue(Result, Ty);
2187 APInt Acc = EltC->getValue();
2191 const APInt &
X = EltC->getValue();
2193 case Intrinsic::vector_reduce_add:
2196 case Intrinsic::vector_reduce_mul:
2199 case Intrinsic::vector_reduce_and:
2202 case Intrinsic::vector_reduce_or:
2205 case Intrinsic::vector_reduce_xor:
2208 case Intrinsic::vector_reduce_smin:
2211 case Intrinsic::vector_reduce_smax:
2214 case Intrinsic::vector_reduce_umin:
2217 case Intrinsic::vector_reduce_umax:
2223 return ConstantInt::get(
Op->getContext(), Acc);
2233Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2234 Type *Ty,
bool IsSigned) {
2236 unsigned ResultWidth = Ty->getIntegerBitWidth();
2237 assert(ResultWidth <= 64 &&
2238 "Can only constant fold conversions to 64 and 32 bit ints");
2241 bool isExact =
false;
2246 IsSigned,
mode, &isExact);
2250 return ConstantInt::get(Ty, UIntVal, IsSigned);
2254 Type *Ty =
Op->getType();
2256 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2257 return Op->getValueAPF().convertToDouble();
2267 C = &CI->getValue();
2326 return ConstantFP::get(
2331 if (!Ty->isIEEELikeFPTy())
2338 if (Src.isNormal() || Src.isInfinity())
2339 return ConstantFP::get(CI->
getContext(), Src);
2346 return ConstantFP::get(CI->
getContext(), Src);
2378 if (IntrinsicID == Intrinsic::is_constant) {
2382 if (
Operands[0]->isManifestConstant())
2391 if (IntrinsicID == Intrinsic::cos ||
2392 IntrinsicID == Intrinsic::ctpop ||
2393 IntrinsicID == Intrinsic::fptoui_sat ||
2394 IntrinsicID == Intrinsic::fptosi_sat ||
2395 IntrinsicID == Intrinsic::canonicalize)
2397 if (IntrinsicID == Intrinsic::bswap ||
2398 IntrinsicID == Intrinsic::bitreverse ||
2399 IntrinsicID == Intrinsic::launder_invariant_group ||
2400 IntrinsicID == Intrinsic::strip_invariant_group)
2406 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2407 IntrinsicID == Intrinsic::strip_invariant_group) {
2412 Call->getParent() ?
Call->getCaller() :
nullptr;
2423 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2434 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2435 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2436 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2441 unsigned Width = Ty->getIntegerBitWidth();
2443 bool IsExact =
false;
2448 return ConstantInt::get(Ty,
Int);
2453 if (IntrinsicID == Intrinsic::fptoui_sat ||
2454 IntrinsicID == Intrinsic::fptosi_sat) {
2457 IntrinsicID == Intrinsic::fptoui_sat);
2460 return ConstantInt::get(Ty,
Int);
2463 if (IntrinsicID == Intrinsic::canonicalize)
2464 return constantFoldCanonicalize(Ty,
Call, U);
2466#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2467 if (Ty->isFP128Ty()) {
2468 if (IntrinsicID == Intrinsic::log) {
2469 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2470 return GetConstantFoldFPValue128(Result, Ty);
2474 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2475 Fp128Func == LibFunc_logl)
2476 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2480 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2486 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2488 return ConstantFP::get(Ty->getContext(), U);
2491 if (IntrinsicID == Intrinsic::round) {
2493 return ConstantFP::get(Ty->getContext(), U);
2496 if (IntrinsicID == Intrinsic::roundeven) {
2498 return ConstantFP::get(Ty->getContext(), U);
2501 if (IntrinsicID == Intrinsic::ceil) {
2503 return ConstantFP::get(Ty->getContext(), U);
2506 if (IntrinsicID == Intrinsic::floor) {
2508 return ConstantFP::get(Ty->getContext(), U);
2511 if (IntrinsicID == Intrinsic::trunc) {
2513 return ConstantFP::get(Ty->getContext(), U);
2516 if (IntrinsicID == Intrinsic::fabs) {
2518 return ConstantFP::get(Ty->getContext(), U);
2521 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2529 APFloat AlmostOne(U.getSemantics(), 1);
2530 AlmostOne.next(
true);
2531 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2537 std::optional<APFloat::roundingMode>
RM;
2538 switch (IntrinsicID) {
2541 case Intrinsic::experimental_constrained_nearbyint:
2542 case Intrinsic::experimental_constrained_rint: {
2544 RM = CI->getRoundingMode();
2549 case Intrinsic::experimental_constrained_round:
2552 case Intrinsic::experimental_constrained_ceil:
2555 case Intrinsic::experimental_constrained_floor:
2558 case Intrinsic::experimental_constrained_trunc:
2566 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2568 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2572 }
else if (U.isSignaling()) {
2573 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2578 return ConstantFP::get(Ty->getContext(), U);
2582 switch (IntrinsicID) {
2584 case Intrinsic::nvvm_f2i_rm:
2585 case Intrinsic::nvvm_f2i_rn:
2586 case Intrinsic::nvvm_f2i_rp:
2587 case Intrinsic::nvvm_f2i_rz:
2588 case Intrinsic::nvvm_f2i_rm_ftz:
2589 case Intrinsic::nvvm_f2i_rn_ftz:
2590 case Intrinsic::nvvm_f2i_rp_ftz:
2591 case Intrinsic::nvvm_f2i_rz_ftz:
2593 case Intrinsic::nvvm_f2ui_rm:
2594 case Intrinsic::nvvm_f2ui_rn:
2595 case Intrinsic::nvvm_f2ui_rp:
2596 case Intrinsic::nvvm_f2ui_rz:
2597 case Intrinsic::nvvm_f2ui_rm_ftz:
2598 case Intrinsic::nvvm_f2ui_rn_ftz:
2599 case Intrinsic::nvvm_f2ui_rp_ftz:
2600 case Intrinsic::nvvm_f2ui_rz_ftz:
2602 case Intrinsic::nvvm_d2i_rm:
2603 case Intrinsic::nvvm_d2i_rn:
2604 case Intrinsic::nvvm_d2i_rp:
2605 case Intrinsic::nvvm_d2i_rz:
2607 case Intrinsic::nvvm_d2ui_rm:
2608 case Intrinsic::nvvm_d2ui_rn:
2609 case Intrinsic::nvvm_d2ui_rp:
2610 case Intrinsic::nvvm_d2ui_rz:
2612 case Intrinsic::nvvm_f2ll_rm:
2613 case Intrinsic::nvvm_f2ll_rn:
2614 case Intrinsic::nvvm_f2ll_rp:
2615 case Intrinsic::nvvm_f2ll_rz:
2616 case Intrinsic::nvvm_f2ll_rm_ftz:
2617 case Intrinsic::nvvm_f2ll_rn_ftz:
2618 case Intrinsic::nvvm_f2ll_rp_ftz:
2619 case Intrinsic::nvvm_f2ll_rz_ftz:
2621 case Intrinsic::nvvm_f2ull_rm:
2622 case Intrinsic::nvvm_f2ull_rn:
2623 case Intrinsic::nvvm_f2ull_rp:
2624 case Intrinsic::nvvm_f2ull_rz:
2625 case Intrinsic::nvvm_f2ull_rm_ftz:
2626 case Intrinsic::nvvm_f2ull_rn_ftz:
2627 case Intrinsic::nvvm_f2ull_rp_ftz:
2628 case Intrinsic::nvvm_f2ull_rz_ftz:
2630 case Intrinsic::nvvm_d2ll_rm:
2631 case Intrinsic::nvvm_d2ll_rn:
2632 case Intrinsic::nvvm_d2ll_rp:
2633 case Intrinsic::nvvm_d2ll_rz:
2635 case Intrinsic::nvvm_d2ull_rm:
2636 case Intrinsic::nvvm_d2ull_rn:
2637 case Intrinsic::nvvm_d2ull_rp:
2638 case Intrinsic::nvvm_d2ull_rz: {
2644 return ConstantInt::get(Ty, 0);
2647 unsigned BitWidth = Ty->getIntegerBitWidth();
2657 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2658 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2662 bool IsExact =
false;
2663 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2664 return ConstantInt::get(Ty, ResInt);
2680 switch (IntrinsicID) {
2682 case Intrinsic::log:
2683 return ConstantFoldFP(log, APF, Ty);
2684 case Intrinsic::log2:
2686 return ConstantFoldFP(
log2, APF, Ty);
2687 case Intrinsic::log10:
2689 return ConstantFoldFP(log10, APF, Ty);
2690 case Intrinsic::exp:
2691 return ConstantFoldFP(exp, APF, Ty);
2692 case Intrinsic::exp2:
2694 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2695 case Intrinsic::exp10:
2697 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2698 case Intrinsic::sin:
2699 return ConstantFoldFP(sin, APF, Ty);
2700 case Intrinsic::cos:
2701 return ConstantFoldFP(cos, APF, Ty);
2702 case Intrinsic::sinh:
2703 return ConstantFoldFP(sinh, APF, Ty);
2704 case Intrinsic::cosh:
2705 return ConstantFoldFP(cosh, APF, Ty);
2706 case Intrinsic::atan:
2709 return ConstantFP::get(Ty->getContext(), U);
2710 return ConstantFoldFP(atan, APF, Ty);
2711 case Intrinsic::sqrt:
2712 return ConstantFoldFP(sqrt, APF, Ty);
2715 case Intrinsic::nvvm_ceil_ftz_f:
2716 case Intrinsic::nvvm_ceil_f:
2717 case Intrinsic::nvvm_ceil_d:
2718 return ConstantFoldFP(
2723 case Intrinsic::nvvm_fabs_ftz:
2724 case Intrinsic::nvvm_fabs:
2725 return ConstantFoldFP(
2730 case Intrinsic::nvvm_floor_ftz_f:
2731 case Intrinsic::nvvm_floor_f:
2732 case Intrinsic::nvvm_floor_d:
2733 return ConstantFoldFP(
2738 case Intrinsic::nvvm_rcp_rm_ftz_f:
2739 case Intrinsic::nvvm_rcp_rn_ftz_f:
2740 case Intrinsic::nvvm_rcp_rp_ftz_f:
2741 case Intrinsic::nvvm_rcp_rz_ftz_f:
2742 case Intrinsic::nvvm_rcp_rm_d:
2743 case Intrinsic::nvvm_rcp_rm_f:
2744 case Intrinsic::nvvm_rcp_rn_d:
2745 case Intrinsic::nvvm_rcp_rn_f:
2746 case Intrinsic::nvvm_rcp_rp_d:
2747 case Intrinsic::nvvm_rcp_rp_f:
2748 case Intrinsic::nvvm_rcp_rz_d:
2749 case Intrinsic::nvvm_rcp_rz_f: {
2753 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2759 Res = FTZPreserveSign(Res);
2760 return ConstantFP::get(Ty->getContext(), Res);
2765 case Intrinsic::nvvm_round_ftz_f:
2766 case Intrinsic::nvvm_round_f:
2767 case Intrinsic::nvvm_round_d: {
2772 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2774 return ConstantFP::get(Ty->getContext(), V);
2777 case Intrinsic::nvvm_saturate_ftz_f:
2778 case Intrinsic::nvvm_saturate_d:
2779 case Intrinsic::nvvm_saturate_f: {
2781 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2782 if (V.isNegative() || V.isZero() || V.isNaN())
2786 return ConstantFP::get(Ty->getContext(), One);
2787 return ConstantFP::get(Ty->getContext(), APF);
2790 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2791 case Intrinsic::nvvm_sqrt_f:
2792 case Intrinsic::nvvm_sqrt_rn_d:
2793 case Intrinsic::nvvm_sqrt_rn_f:
2796 return ConstantFoldFP(
2802 case Intrinsic::amdgcn_cos:
2803 case Intrinsic::amdgcn_sin: {
2804 double V = getValueAsDouble(
Op);
2805 if (V < -256.0 || V > 256.0)
2810 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2811 double V4 = V * 4.0;
2812 if (V4 == floor(V4)) {
2814 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2815 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2822 return GetConstantFoldFPValue(V, Ty);
2838 case LibFunc_acos_finite:
2839 case LibFunc_acosf_finite:
2841 return ConstantFoldFP(acos, APF, Ty);
2845 case LibFunc_asin_finite:
2846 case LibFunc_asinf_finite:
2848 return ConstantFoldFP(asin, APF, Ty);
2854 return ConstantFP::get(Ty->getContext(), U);
2856 return ConstantFoldFP(atan, APF, Ty);
2860 if (TLI->
has(Func)) {
2862 return ConstantFP::get(Ty->getContext(), U);
2868 return ConstantFoldFP(cos, APF, Ty);
2872 case LibFunc_cosh_finite:
2873 case LibFunc_coshf_finite:
2875 return ConstantFoldFP(cosh, APF, Ty);
2879 case LibFunc_exp_finite:
2880 case LibFunc_expf_finite:
2882 return ConstantFoldFP(exp, APF, Ty);
2886 case LibFunc_exp2_finite:
2887 case LibFunc_exp2f_finite:
2890 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2894 if (TLI->
has(Func)) {
2896 return ConstantFP::get(Ty->getContext(), U);
2900 case LibFunc_floorf:
2901 if (TLI->
has(Func)) {
2903 return ConstantFP::get(Ty->getContext(), U);
2908 case LibFunc_log_finite:
2909 case LibFunc_logf_finite:
2911 return ConstantFoldFP(log, APF, Ty);
2915 case LibFunc_log2_finite:
2916 case LibFunc_log2f_finite:
2919 return ConstantFoldFP(
log2, APF, Ty);
2922 case LibFunc_log10f:
2923 case LibFunc_log10_finite:
2924 case LibFunc_log10f_finite:
2927 return ConstantFoldFP(log10, APF, Ty);
2930 case LibFunc_ilogbf:
2932 return ConstantInt::get(Ty,
ilogb(APF),
true);
2937 return ConstantFoldFP(logb, APF, Ty);
2940 case LibFunc_log1pf:
2943 return ConstantFP::get(Ty->getContext(), U);
2945 return ConstantFoldFP(log1p, APF, Ty);
2952 return ConstantFoldFP(erf, APF, Ty);
2954 case LibFunc_nearbyint:
2955 case LibFunc_nearbyintf:
2958 if (TLI->
has(Func)) {
2960 return ConstantFP::get(Ty->getContext(), U);
2964 case LibFunc_roundf:
2965 if (TLI->
has(Func)) {
2967 return ConstantFP::get(Ty->getContext(), U);
2973 return ConstantFoldFP(sin, APF, Ty);
2977 case LibFunc_sinh_finite:
2978 case LibFunc_sinhf_finite:
2980 return ConstantFoldFP(sinh, APF, Ty);
2985 return ConstantFoldFP(sqrt, APF, Ty);
2990 return ConstantFoldFP(tan, APF, Ty);
2995 return ConstantFoldFP(tanh, APF, Ty);
2998 case LibFunc_truncf:
2999 if (TLI->
has(Func)) {
3001 return ConstantFP::get(Ty->getContext(), U);
3009 switch (IntrinsicID) {
3010 case Intrinsic::bswap:
3011 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3012 case Intrinsic::ctpop:
3013 return ConstantInt::get(Ty,
Op->getValue().popcount());
3014 case Intrinsic::bitreverse:
3015 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3016 case Intrinsic::convert_from_fp16: {
3026 "Precision lost during fp16 constfolding");
3028 return ConstantFP::get(Ty->getContext(), Val);
3031 case Intrinsic::amdgcn_s_wqm: {
3033 Val |= (Val & 0x5555555555555555ULL) << 1 |
3034 ((Val >> 1) & 0x5555555555555555ULL);
3035 Val |= (Val & 0x3333333333333333ULL) << 2 |
3036 ((Val >> 2) & 0x3333333333333333ULL);
3037 return ConstantInt::get(Ty, Val);
3040 case Intrinsic::amdgcn_s_quadmask: {
3043 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3047 QuadMask |= (1ULL <<
I);
3049 return ConstantInt::get(Ty, QuadMask);
3052 case Intrinsic::amdgcn_s_bitreplicate: {
3054 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3055 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3056 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3057 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3058 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3059 Val = Val | Val << 1;
3060 return ConstantInt::get(Ty, Val);
3068 switch (IntrinsicID) {
3070 case Intrinsic::vector_reduce_add:
3071 case Intrinsic::vector_reduce_mul:
3072 case Intrinsic::vector_reduce_and:
3073 case Intrinsic::vector_reduce_or:
3074 case Intrinsic::vector_reduce_xor:
3075 case Intrinsic::vector_reduce_smin:
3076 case Intrinsic::vector_reduce_smax:
3077 case Intrinsic::vector_reduce_umin:
3078 case Intrinsic::vector_reduce_umax:
3089 switch (IntrinsicID) {
3091 case Intrinsic::x86_sse_cvtss2si:
3092 case Intrinsic::x86_sse_cvtss2si64:
3093 case Intrinsic::x86_sse2_cvtsd2si:
3094 case Intrinsic::x86_sse2_cvtsd2si64:
3097 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3101 case Intrinsic::x86_sse_cvttss2si:
3102 case Intrinsic::x86_sse_cvttss2si64:
3103 case Intrinsic::x86_sse2_cvttsd2si:
3104 case Intrinsic::x86_sse2_cvttsd2si64:
3107 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3112 case Intrinsic::wasm_anytrue:
3113 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3116 case Intrinsic::wasm_alltrue:
3119 for (
unsigned I = 0;
I !=
E; ++
I)
3121 if (Elt->isZeroValue())
3122 return ConstantInt::get(Ty, 0);
3124 return ConstantInt::get(Ty, 1);
3136 if (FCmp->isSignaling()) {
3145 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3167 const APFloat &Op1V = Op1->getValueAPF();
3168 const APFloat &Op2V = Op2->getValueAPF();
3175 case LibFunc_pow_finite:
3176 case LibFunc_powf_finite:
3178 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3182 if (TLI->
has(Func)) {
3183 APFloat V = Op1->getValueAPF();
3185 return ConstantFP::get(Ty->getContext(), V);
3188 case LibFunc_remainder:
3189 case LibFunc_remainderf:
3190 if (TLI->
has(Func)) {
3191 APFloat V = Op1->getValueAPF();
3193 return ConstantFP::get(Ty->getContext(), V);
3197 case LibFunc_atan2f:
3203 case LibFunc_atan2_finite:
3204 case LibFunc_atan2f_finite:
3206 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3218 if (Ty->isFloatingPointTy()) {
3223 switch (IntrinsicID) {
3224 case Intrinsic::maxnum:
3225 case Intrinsic::minnum:
3226 case Intrinsic::maximum:
3227 case Intrinsic::minimum:
3228 case Intrinsic::maximumnum:
3229 case Intrinsic::minimumnum:
3230 case Intrinsic::nvvm_fmax_d:
3231 case Intrinsic::nvvm_fmin_d:
3239 case Intrinsic::nvvm_fmax_f:
3240 case Intrinsic::nvvm_fmax_ftz_f:
3241 case Intrinsic::nvvm_fmax_ftz_nan_f:
3242 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3243 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3244 case Intrinsic::nvvm_fmax_nan_f:
3245 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3246 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3248 case Intrinsic::nvvm_fmin_f:
3249 case Intrinsic::nvvm_fmin_ftz_f:
3250 case Intrinsic::nvvm_fmin_ftz_nan_f:
3251 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3252 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3253 case Intrinsic::nvvm_fmin_nan_f:
3254 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3255 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3259 if (!IsOp0Undef && !IsOp1Undef)
3263 APInt NVCanonicalNaN(32, 0x7fffffff);
3264 return ConstantFP::get(
3265 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3268 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3277 const APFloat &Op1V = Op1->getValueAPF();
3280 if (Op2->getType() != Op1->getType())
3282 const APFloat &Op2V = Op2->getValueAPF();
3284 if (
const auto *ConstrIntr =
3289 switch (IntrinsicID) {
3292 case Intrinsic::experimental_constrained_fadd:
3293 St = Res.
add(Op2V, RM);
3295 case Intrinsic::experimental_constrained_fsub:
3298 case Intrinsic::experimental_constrained_fmul:
3301 case Intrinsic::experimental_constrained_fdiv:
3302 St = Res.
divide(Op2V, RM);
3304 case Intrinsic::experimental_constrained_frem:
3307 case Intrinsic::experimental_constrained_fcmp:
3308 case Intrinsic::experimental_constrained_fcmps:
3309 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3313 return ConstantFP::get(Ty->getContext(), Res);
3317 switch (IntrinsicID) {
3320 case Intrinsic::copysign:
3322 case Intrinsic::minnum:
3323 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3324 case Intrinsic::maxnum:
3325 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3326 case Intrinsic::minimum:
3327 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3328 case Intrinsic::maximum:
3329 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3330 case Intrinsic::minimumnum:
3331 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3332 case Intrinsic::maximumnum:
3333 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3335 case Intrinsic::nvvm_fmax_d:
3336 case Intrinsic::nvvm_fmax_f:
3337 case Intrinsic::nvvm_fmax_ftz_f:
3338 case Intrinsic::nvvm_fmax_ftz_nan_f:
3339 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3340 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3341 case Intrinsic::nvvm_fmax_nan_f:
3342 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3343 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3345 case Intrinsic::nvvm_fmin_d:
3346 case Intrinsic::nvvm_fmin_f:
3347 case Intrinsic::nvvm_fmin_ftz_f:
3348 case Intrinsic::nvvm_fmin_ftz_nan_f:
3349 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3350 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3351 case Intrinsic::nvvm_fmin_nan_f:
3352 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3353 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3355 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3356 IntrinsicID == Intrinsic::nvvm_fmin_d);
3361 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3362 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3364 bool XorSign =
false;
3366 XorSign =
A.isNegative() ^
B.isNegative();
3371 bool IsFMax =
false;
3372 switch (IntrinsicID) {
3373 case Intrinsic::nvvm_fmax_d:
3374 case Intrinsic::nvvm_fmax_f:
3375 case Intrinsic::nvvm_fmax_ftz_f:
3376 case Intrinsic::nvvm_fmax_ftz_nan_f:
3377 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3378 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3379 case Intrinsic::nvvm_fmax_nan_f:
3380 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3381 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3387 if (ShouldCanonicalizeNaNs) {
3389 if (
A.isNaN() &&
B.isNaN())
3390 return ConstantFP::get(Ty, NVCanonicalNaN);
3391 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3392 return ConstantFP::get(Ty, NVCanonicalNaN);
3395 if (
A.isNaN() &&
B.isNaN())
3405 return ConstantFP::get(Ty->getContext(), Res);
3408 case Intrinsic::nvvm_add_rm_f:
3409 case Intrinsic::nvvm_add_rn_f:
3410 case Intrinsic::nvvm_add_rp_f:
3411 case Intrinsic::nvvm_add_rz_f:
3412 case Intrinsic::nvvm_add_rm_d:
3413 case Intrinsic::nvvm_add_rn_d:
3414 case Intrinsic::nvvm_add_rp_d:
3415 case Intrinsic::nvvm_add_rz_d:
3416 case Intrinsic::nvvm_add_rm_ftz_f:
3417 case Intrinsic::nvvm_add_rn_ftz_f:
3418 case Intrinsic::nvvm_add_rp_ftz_f:
3419 case Intrinsic::nvvm_add_rz_ftz_f: {
3422 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3423 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3433 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3434 return ConstantFP::get(Ty->getContext(), Res);
3439 case Intrinsic::nvvm_mul_rm_f:
3440 case Intrinsic::nvvm_mul_rn_f:
3441 case Intrinsic::nvvm_mul_rp_f:
3442 case Intrinsic::nvvm_mul_rz_f:
3443 case Intrinsic::nvvm_mul_rm_d:
3444 case Intrinsic::nvvm_mul_rn_d:
3445 case Intrinsic::nvvm_mul_rp_d:
3446 case Intrinsic::nvvm_mul_rz_d:
3447 case Intrinsic::nvvm_mul_rm_ftz_f:
3448 case Intrinsic::nvvm_mul_rn_ftz_f:
3449 case Intrinsic::nvvm_mul_rp_ftz_f:
3450 case Intrinsic::nvvm_mul_rz_ftz_f: {
3453 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3454 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3464 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3465 return ConstantFP::get(Ty->getContext(), Res);
3470 case Intrinsic::nvvm_div_rm_f:
3471 case Intrinsic::nvvm_div_rn_f:
3472 case Intrinsic::nvvm_div_rp_f:
3473 case Intrinsic::nvvm_div_rz_f:
3474 case Intrinsic::nvvm_div_rm_d:
3475 case Intrinsic::nvvm_div_rn_d:
3476 case Intrinsic::nvvm_div_rp_d:
3477 case Intrinsic::nvvm_div_rz_d:
3478 case Intrinsic::nvvm_div_rm_ftz_f:
3479 case Intrinsic::nvvm_div_rn_ftz_f:
3480 case Intrinsic::nvvm_div_rp_ftz_f:
3481 case Intrinsic::nvvm_div_rz_ftz_f: {
3483 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3484 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3492 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3493 return ConstantFP::get(Ty->getContext(), Res);
3499 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3502 switch (IntrinsicID) {
3505 case Intrinsic::pow:
3506 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3507 case Intrinsic::amdgcn_fmul_legacy:
3512 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3516 switch (IntrinsicID) {
3517 case Intrinsic::ldexp: {
3518 return ConstantFP::get(
3522 case Intrinsic::is_fpclass: {
3535 return ConstantInt::get(Ty, Result);
3537 case Intrinsic::powi: {
3538 int Exp =
static_cast<int>(Op2C->getSExtValue());
3539 switch (Ty->getTypeID()) {
3543 if (Ty->isHalfTy()) {
3548 return ConstantFP::get(Ty->getContext(), Res);
3565 const APInt *C0, *C1;
3566 if (!getConstIntOrUndef(
Operands[0], C0) ||
3567 !getConstIntOrUndef(
Operands[1], C1))
3570 switch (IntrinsicID) {
3572 case Intrinsic::smax:
3573 case Intrinsic::smin:
3574 case Intrinsic::umax:
3575 case Intrinsic::umin:
3580 return ConstantInt::get(
3586 case Intrinsic::scmp:
3587 case Intrinsic::ucmp:
3589 return ConstantInt::get(Ty, 0);
3592 if (IntrinsicID == Intrinsic::scmp)
3593 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3595 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3596 return ConstantInt::get(Ty, Res,
true);
3598 case Intrinsic::usub_with_overflow:
3599 case Intrinsic::ssub_with_overflow:
3605 case Intrinsic::uadd_with_overflow:
3606 case Intrinsic::sadd_with_overflow:
3616 case Intrinsic::smul_with_overflow:
3617 case Intrinsic::umul_with_overflow: {
3625 switch (IntrinsicID) {
3627 case Intrinsic::sadd_with_overflow:
3628 Res = C0->
sadd_ov(*C1, Overflow);
3630 case Intrinsic::uadd_with_overflow:
3631 Res = C0->
uadd_ov(*C1, Overflow);
3633 case Intrinsic::ssub_with_overflow:
3634 Res = C0->
ssub_ov(*C1, Overflow);
3636 case Intrinsic::usub_with_overflow:
3637 Res = C0->
usub_ov(*C1, Overflow);
3639 case Intrinsic::smul_with_overflow:
3640 Res = C0->
smul_ov(*C1, Overflow);
3642 case Intrinsic::umul_with_overflow:
3643 Res = C0->
umul_ov(*C1, Overflow);
3647 ConstantInt::get(Ty->getContext(), Res),
3652 case Intrinsic::uadd_sat:
3653 case Intrinsic::sadd_sat:
3658 if (IntrinsicID == Intrinsic::uadd_sat)
3659 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3661 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3662 case Intrinsic::usub_sat:
3663 case Intrinsic::ssub_sat:
3668 if (IntrinsicID == Intrinsic::usub_sat)
3669 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3671 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3672 case Intrinsic::cttz:
3673 case Intrinsic::ctlz:
3674 assert(C1 &&
"Must be constant int");
3681 if (IntrinsicID == Intrinsic::cttz)
3686 case Intrinsic::abs:
3687 assert(C1 &&
"Must be constant int");
3698 return ConstantInt::get(Ty, C0->
abs());
3699 case Intrinsic::amdgcn_wave_reduce_umin:
3700 case Intrinsic::amdgcn_wave_reduce_umax:
3701 case Intrinsic::amdgcn_wave_reduce_max:
3702 case Intrinsic::amdgcn_wave_reduce_min:
3703 case Intrinsic::amdgcn_wave_reduce_add:
3704 case Intrinsic::amdgcn_wave_reduce_sub:
3705 case Intrinsic::amdgcn_wave_reduce_and:
3706 case Intrinsic::amdgcn_wave_reduce_or:
3707 case Intrinsic::amdgcn_wave_reduce_xor:
3722 switch (IntrinsicID) {
3724 case Intrinsic::x86_avx512_vcvtss2si32:
3725 case Intrinsic::x86_avx512_vcvtss2si64:
3726 case Intrinsic::x86_avx512_vcvtsd2si32:
3727 case Intrinsic::x86_avx512_vcvtsd2si64:
3730 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3734 case Intrinsic::x86_avx512_vcvtss2usi32:
3735 case Intrinsic::x86_avx512_vcvtss2usi64:
3736 case Intrinsic::x86_avx512_vcvtsd2usi32:
3737 case Intrinsic::x86_avx512_vcvtsd2usi64:
3740 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3744 case Intrinsic::x86_avx512_cvttss2si:
3745 case Intrinsic::x86_avx512_cvttss2si64:
3746 case Intrinsic::x86_avx512_cvttsd2si:
3747 case Intrinsic::x86_avx512_cvttsd2si64:
3750 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3754 case Intrinsic::x86_avx512_cvttss2usi:
3755 case Intrinsic::x86_avx512_cvttss2usi64:
3756 case Intrinsic::x86_avx512_cvttsd2usi:
3757 case Intrinsic::x86_avx512_cvttsd2usi64:
3760 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3775 APFloat MA(Sem), SC(Sem), TC(Sem);
3788 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3810 switch (IntrinsicID) {
3813 case Intrinsic::amdgcn_cubeid:
3815 case Intrinsic::amdgcn_cubema:
3817 case Intrinsic::amdgcn_cubesc:
3819 case Intrinsic::amdgcn_cubetc:
3826 const APInt *C0, *C1, *C2;
3827 if (!getConstIntOrUndef(
Operands[0], C0) ||
3828 !getConstIntOrUndef(
Operands[1], C1) ||
3829 !getConstIntOrUndef(
Operands[2], C2))
3836 unsigned NumUndefBytes = 0;
3837 for (
unsigned I = 0;
I < 32;
I += 8) {
3846 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3850 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3852 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3855 Val.insertBits(
B,
I, 8);
3858 if (NumUndefBytes == 4)
3861 return ConstantInt::get(Ty, Val);
3875 const APFloat &C1 = Op1->getValueAPF();
3876 const APFloat &C2 = Op2->getValueAPF();
3877 const APFloat &C3 = Op3->getValueAPF();
3883 switch (IntrinsicID) {
3886 case Intrinsic::experimental_constrained_fma:
3887 case Intrinsic::experimental_constrained_fmuladd:
3891 if (mayFoldConstrained(
3893 return ConstantFP::get(Ty->getContext(), Res);
3897 switch (IntrinsicID) {
3899 case Intrinsic::amdgcn_fma_legacy: {
3905 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3909 case Intrinsic::fma:
3910 case Intrinsic::fmuladd: {
3913 return ConstantFP::get(Ty->getContext(), V);
3916 case Intrinsic::nvvm_fma_rm_f:
3917 case Intrinsic::nvvm_fma_rn_f:
3918 case Intrinsic::nvvm_fma_rp_f:
3919 case Intrinsic::nvvm_fma_rz_f:
3920 case Intrinsic::nvvm_fma_rm_d:
3921 case Intrinsic::nvvm_fma_rn_d:
3922 case Intrinsic::nvvm_fma_rp_d:
3923 case Intrinsic::nvvm_fma_rz_d:
3924 case Intrinsic::nvvm_fma_rm_ftz_f:
3925 case Intrinsic::nvvm_fma_rn_ftz_f:
3926 case Intrinsic::nvvm_fma_rp_ftz_f:
3927 case Intrinsic::nvvm_fma_rz_ftz_f: {
3929 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3930 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3931 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3941 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3942 return ConstantFP::get(Ty->getContext(), Res);
3947 case Intrinsic::amdgcn_cubeid:
3948 case Intrinsic::amdgcn_cubema:
3949 case Intrinsic::amdgcn_cubesc:
3950 case Intrinsic::amdgcn_cubetc: {
3951 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3952 return ConstantFP::get(Ty->getContext(), V);
3959 if (IntrinsicID == Intrinsic::smul_fix ||
3960 IntrinsicID == Intrinsic::smul_fix_sat) {
3961 const APInt *C0, *C1;
3962 if (!getConstIntOrUndef(
Operands[0], C0) ||
3963 !getConstIntOrUndef(
Operands[1], C1))
3979 assert(Scale < Width &&
"Illegal scale.");
3980 unsigned ExtendedWidth = Width * 2;
3982 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
3983 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3989 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
3992 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3993 const APInt *C0, *C1, *C2;
3994 if (!getConstIntOrUndef(
Operands[0], C0) ||
3995 !getConstIntOrUndef(
Operands[1], C1) ||
3996 !getConstIntOrUndef(
Operands[2], C2))
3999 bool IsRight = IntrinsicID == Intrinsic::fshr;
4013 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4014 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4016 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4018 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4019 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4022 if (IntrinsicID == Intrinsic::amdgcn_perm)
4023 return ConstantFoldAMDGCNPermIntrinsic(
Operands, Ty);
4040 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4044 ConstantFoldLibCall2(Name, Ty,
Operands, TLI)) {
4045 return FoldedLibCall;
4047 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty,
Operands,
Call);
4051 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4056static Constant *ConstantFoldFixedVectorCall(
4064 switch (IntrinsicID) {
4065 case Intrinsic::masked_load: {
4074 auto *MaskElt =
Mask->getAggregateElement(
I);
4077 auto *PassthruElt = Passthru->getAggregateElement(
I);
4087 if (MaskElt->isNullValue()) {
4091 }
else if (MaskElt->isOneValue()) {
4103 case Intrinsic::arm_mve_vctp8:
4104 case Intrinsic::arm_mve_vctp16:
4105 case Intrinsic::arm_mve_vctp32:
4106 case Intrinsic::arm_mve_vctp64: {
4112 for (
unsigned i = 0; i < Lanes; i++) {
4122 case Intrinsic::get_active_lane_mask: {
4128 uint64_t Limit = Op1->getZExtValue();
4131 for (
unsigned i = 0; i < Lanes; i++) {
4132 if (
Base + i < Limit)
4141 case Intrinsic::vector_extract: {
4148 unsigned VecNumElements =
4150 unsigned StartingIndex = Idx->getZExtValue();
4153 if (NumElements == VecNumElements && StartingIndex == 0)
4156 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4161 Result[
I - StartingIndex] = Elt;
4166 case Intrinsic::vector_insert: {
4173 unsigned SubVecNumElements =
4175 unsigned VecNumElements =
4177 unsigned IdxN = Idx->getZExtValue();
4179 if (SubVecNumElements == VecNumElements && IdxN == 0)
4182 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4184 if (
I < IdxN + SubVecNumElements)
4194 case Intrinsic::vector_interleave2: {
4195 unsigned NumElements =
4197 for (
unsigned I = 0;
I < NumElements; ++
I) {
4207 case Intrinsic::wasm_dot: {
4208 unsigned NumElements =
4212 "wasm dot takes i16x8 and produces i32x4");
4213 assert(Ty->isIntegerTy());
4214 int32_t MulVector[8];
4216 for (
unsigned I = 0;
I < NumElements; ++
I) {
4224 for (
unsigned I = 0;
I <
Result.size();
I++) {
4225 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4226 Result[
I] = ConstantInt::get(Ty, IAdd);
4237 for (
unsigned J = 0, JE =
Operands.size(); J != JE; ++J) {
4253 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4262static Constant *ConstantFoldScalableVectorCall(
4266 switch (IntrinsicID) {
4267 case Intrinsic::aarch64_sve_convert_from_svbool: {
4269 if (!Src || !Src->isNullValue())
4274 case Intrinsic::get_active_lane_mask: {
4277 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4303 Constant *Folded = ConstantFoldScalarCall(
4310static std::pair<Constant *, Constant *>
4319 const APFloat &U = ConstFP->getValueAPF();
4322 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4329 return {Result0, Result1};
4339 switch (IntrinsicID) {
4340 case Intrinsic::frexp: {
4348 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4350 std::tie(Results0[
I], Results1[
I]) =
4351 ConstantFoldScalarFrexpCall(Lane, Ty1);
4360 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(
Operands[0], Ty1);
4365 case Intrinsic::sincos: {
4369 auto ConstantFoldScalarSincosCall =
4370 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4372 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4374 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4375 return std::make_pair(SinResult, CosResult);
4384 std::tie(SinResults[
I], CosResults[
I]) =
4385 ConstantFoldScalarSincosCall(Lane);
4386 if (!SinResults[
I] || !CosResults[
I])
4394 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(
Operands[0]);
4395 if (!SinResult || !CosResult)
4399 case Intrinsic::vector_deinterleave2: {
4412 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4414 for (
unsigned I = 0;
I < NumElements; ++
I) {
4428 return ConstantFoldScalarCall(Name, IntrinsicID, StTy,
Operands, TLI,
Call);
4444 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4450 bool AllowNonDeterministic) {
4451 if (
Call->isNoBuiltin())
4468 Type *Ty =
F->getReturnType();
4469 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4474 return ConstantFoldFixedVectorCall(
4478 return ConstantFoldScalableVectorCall(
4482 return ConstantFoldStructCall(Name, IID, StTy,
Operands,
4483 F->getDataLayout(), TLI,
Call);
4488 return ConstantFoldScalarCall(Name, IID, Ty,
Operands, TLI,
Call);
4495 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4505 if (
Call->arg_size() == 1) {
4515 case LibFunc_log10l:
4517 case LibFunc_log10f:
4518 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4521 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4527 if (OpC->getType()->isDoubleTy())
4529 if (OpC->getType()->isFloatTy())
4537 if (OpC->getType()->isDoubleTy())
4539 if (OpC->getType()->isFloatTy())
4549 return !
Op.isInfinity();
4553 case LibFunc_tanf: {
4556 Type *Ty = OpC->getType();
4557 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4558 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4584 if (OpC->getType()->isDoubleTy())
4586 if (OpC->getType()->isFloatTy())
4593 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4603 if (
Call->arg_size() == 2) {
4613 case LibFunc_powf: {
4617 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4619 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4627 case LibFunc_remainderl:
4628 case LibFunc_remainder:
4629 case LibFunc_remainderf:
4634 case LibFunc_atan2f:
4635 case LibFunc_atan2l:
4655 case Instruction::BitCast:
4658 case Instruction::Trunc: {
4666 Flags->NSW = ZExtC == SExtC;
4670 case Instruction::SExt:
4671 case Instruction::ZExt: {
4675 if (!CastInvC || CastInvC !=
C)
4677 if (Flags && CastOp == Instruction::ZExt) {
4681 Flags->NNeg = CastInvC == SExtInvC;
4702void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
mir Rename Register Operands
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
static constexpr roundingMode rmNearestTiesToAway
static constexpr roundingMode rmTowardNegative
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
opStatus
IEEE-754R 7: Default exception handling.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.