31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::BitCast)
341 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
350 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
360 Type *SrcTy =
C->getType();
364 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
365 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
377 if (SrcSize == DestSize &&
378 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
384 Cast = Instruction::IntToPtr;
385 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
386 Cast = Instruction::PtrToInt;
394 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
401 if (SrcTy->isStructTy()) {
407 ElemC =
C->getAggregateElement(Elem++);
408 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
414 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
417 C =
C->getAggregateElement(0u);
432 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
433 "Out of range access");
436 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
445 if ((CI->getBitWidth() & 7) != 0)
447 const APInt &Val = CI->getValue();
448 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
450 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
451 unsigned n = ByteOffset;
452 if (!
DL.isLittleEndian())
453 n = IntBytes - n - 1;
461 if (CFP->getType()->isDoubleTy()) {
463 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
465 if (CFP->getType()->isFloatTy()){
467 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
469 if (CFP->getType()->isHalfTy()){
471 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
480 ByteOffset -= CurEltOffset;
485 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487 if (ByteOffset < EltSize &&
488 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
495 if (Index == CS->getType()->getNumElements())
501 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
505 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
506 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 CurEltOffset = NextEltOffset;
518 NumElts = AT->getNumElements();
519 EltTy = AT->getElementType();
520 EltSize =
DL.getTypeAllocSize(EltTy);
526 if (!
DL.typeSizeEqualsStoreSize(EltTy))
529 EltSize =
DL.getTypeStoreSize(EltTy);
531 uint64_t Index = ByteOffset / EltSize;
534 for (; Index != NumElts; ++Index) {
535 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
540 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
541 if (BytesWritten >= BytesLeft)
545 BytesLeft -= BytesWritten;
546 CurPtr += BytesWritten;
552 if (
CE->getOpcode() == Instruction::IntToPtr &&
553 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
554 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
582 DL.getTypeSizeInBits(LoadTy).getFixedValue());
603 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
604 if (BytesLoaded > 32 || BytesLoaded == 0)
608 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
612 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
620 unsigned char RawBytes[32] = {0};
621 unsigned char *CurPtr = RawBytes;
622 unsigned BytesLeft = BytesLoaded;
631 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
634 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
635 if (
DL.isLittleEndian()) {
636 ResultVal = RawBytes[BytesLoaded - 1];
637 for (
unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal |= RawBytes[BytesLoaded - 1 - i];
642 ResultVal = RawBytes[0];
643 for (
unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal |= RawBytes[i];
649 return ConstantInt::get(IntType->getContext(), ResultVal);
669 if (NBytes > UINT16_MAX)
677 unsigned char *CurPtr = RawBytes.
data();
679 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
697 if (!
Offset.isZero() || !Indices[0].isZero())
702 if (Index.isNegative() || Index.getActiveBits() >= 32)
705 C =
C->getAggregateElement(Index.getZExtValue());
731 if (
Offset.getSignificantBits() <= 64)
733 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
780 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
782 if (
C->isNullValue() && !Ty->isX86_AMXTy())
784 if (
C->isAllOnesValue() &&
785 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
804 if (
Opc == Instruction::And) {
807 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
811 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
823 if (
Opc == Instruction::Sub) {
829 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
846 std::optional<ConstantRange>
InRange,
848 Type *IntIdxTy =
DL.getIndexType(ResultTy);
853 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
856 SrcElemTy,
Ops.slice(1, i - 1)))) &&
857 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
860 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
884 Type *SrcElemTy =
GEP->getSourceElementType();
889 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
890 GEP->getInRange(),
DL, TLI))
894 if (!
Ptr->getType()->isPointerTy())
897 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
899 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
903 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
906 DL.getIndexedOffsetInType(
910 std::optional<ConstantRange>
InRange =
GEP->getInRange();
916 bool Overflow =
false;
918 NW &=
GEP->getNoWrapFlags();
923 bool AllConstantInt =
true;
924 for (
Value *NestedOp : NestedOps)
926 AllConstantInt =
false;
933 if (
auto GEPRange =
GEP->getInRange()) {
934 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
936 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
940 SrcElemTy =
GEP->getSourceElementType();
954 APInt BaseIntVal(
DL.getPointerTypeSizeInBits(
Ptr->getType()), 0);
956 if (
CE->getOpcode() == Instruction::IntToPtr) {
958 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
962 if ((
Ptr->isNullValue() || BaseIntVal != 0) &&
963 !
DL.mustNotIntroduceIntToPtr(
Ptr->getType())) {
968 Constant *
C = ConstantInt::get(
Ptr->getContext(), BaseIntVal);
974 bool CanBeNull, CanBeFreed;
976 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
977 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
988 ConstantInt::get(Ctx,
Offset), NW,
997Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1001 bool AllowNonDeterministic) {
1011 case Instruction::FAdd:
1012 case Instruction::FSub:
1013 case Instruction::FMul:
1014 case Instruction::FDiv:
1015 case Instruction::FRem:
1021 AllowNonDeterministic);
1031 Type *SrcElemTy =
GEP->getSourceElementType();
1039 GEP->getNoWrapFlags(),
1044 return CE->getWithOperands(
Ops);
1047 default:
return nullptr;
1048 case Instruction::ICmp:
1049 case Instruction::FCmp: {
1054 case Instruction::Freeze:
1056 case Instruction::Call:
1061 AllowNonDeterministic);
1064 case Instruction::Select:
1066 case Instruction::ExtractElement:
1068 case Instruction::ExtractValue:
1071 case Instruction::InsertElement:
1073 case Instruction::InsertValue:
1076 case Instruction::ShuffleVector:
1079 case Instruction::Load: {
1081 if (LI->isVolatile())
1104 for (
const Use &OldU :
C->operands()) {
1110 auto It = FoldedOps.
find(OldC);
1111 if (It == FoldedOps.
end()) {
1112 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1113 FoldedOps.
insert({OldC, NewC});
1118 Ops.push_back(NewC);
1122 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1123 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1154 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1157 if (CommonValue &&
C != CommonValue)
1168 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1173 for (
const Use &OpU :
I->operands()) {
1176 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1186 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1193 bool AllowNonDeterministic) {
1194 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1195 AllowNonDeterministic);
1214 if (CE0->getOpcode() == Instruction::IntToPtr) {
1215 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1227 if (CE0->getOpcode() == Instruction::PtrToInt) {
1228 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1229 if (CE0->getType() == IntPtrTy) {
1238 if (CE0->getOpcode() == CE1->getOpcode()) {
1239 if (CE0->getOpcode() == Instruction::IntToPtr) {
1240 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1254 if (CE0->getOpcode() == Instruction::PtrToInt) {
1255 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1256 if (CE0->getType() == IntPtrTy &&
1257 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1259 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1271 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1272 APInt Offset0(IndexWidth, 0);
1275 DL, Offset0, IsEqPred,
1278 APInt Offset1(IndexWidth, 0);
1280 DL, Offset1, IsEqPred,
1283 if (Stripped0 == Stripped1)
1322 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1336 return ConstantFP::get(Ty->getContext(), APF);
1338 return ConstantFP::get(
1342 return ConstantFP::get(Ty->getContext(),
1368 IsOutput ?
Mode.Output :
Mode.Input);
1397 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1419 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1420 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1422 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1442 bool AllowNonDeterministic) {
1455 if (!AllowNonDeterministic)
1457 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1458 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1472 if (!AllowNonDeterministic &&
C->isNaN())
1491 C->getType(), DestTy, &
DL))
1497 case Instruction::PtrToAddr:
1500 case Instruction::PtrToInt:
1505 if (CE->getOpcode() == Instruction::IntToPtr) {
1508 DL.getIntPtrType(CE->getType()),
1514 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1517 DL, BaseOffset,
true));
1518 if (
Base->isNullValue()) {
1519 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1522 if (
GEP->getNumIndices() == 1 &&
1523 GEP->getSourceElementType()->isIntegerTy(8)) {
1526 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1527 if (
Sub &&
Sub->getType() == IntIdxTy &&
1528 Sub->getOpcode() == Instruction::Sub &&
1529 Sub->getOperand(0)->isNullValue())
1542 case Instruction::IntToPtr:
1548 if (CE->getOpcode() == Instruction::PtrToInt) {
1549 Constant *SrcPtr = CE->getOperand(0);
1550 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1551 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1553 if (MidIntSize >= SrcPtrSize) {
1561 case Instruction::Trunc:
1562 case Instruction::ZExt:
1563 case Instruction::SExt:
1564 case Instruction::FPTrunc:
1565 case Instruction::FPExt:
1566 case Instruction::UIToFP:
1567 case Instruction::SIToFP:
1568 case Instruction::FPToUI:
1569 case Instruction::FPToSI:
1570 case Instruction::AddrSpaceCast:
1572 case Instruction::BitCast:
1583 Type *SrcTy =
C->getType();
1584 if (SrcTy == DestTy)
1598 if (
Call->isNoBuiltin())
1600 if (
Call->getFunctionType() !=
F->getFunctionType())
1609 return Arg.getType()->isFloatingPointTy();
1613 switch (
F->getIntrinsicID()) {
1616 case Intrinsic::bswap:
1617 case Intrinsic::ctpop:
1618 case Intrinsic::ctlz:
1619 case Intrinsic::cttz:
1620 case Intrinsic::fshl:
1621 case Intrinsic::fshr:
1622 case Intrinsic::launder_invariant_group:
1623 case Intrinsic::strip_invariant_group:
1624 case Intrinsic::masked_load:
1625 case Intrinsic::get_active_lane_mask:
1626 case Intrinsic::abs:
1627 case Intrinsic::smax:
1628 case Intrinsic::smin:
1629 case Intrinsic::umax:
1630 case Intrinsic::umin:
1631 case Intrinsic::scmp:
1632 case Intrinsic::ucmp:
1633 case Intrinsic::sadd_with_overflow:
1634 case Intrinsic::uadd_with_overflow:
1635 case Intrinsic::ssub_with_overflow:
1636 case Intrinsic::usub_with_overflow:
1637 case Intrinsic::smul_with_overflow:
1638 case Intrinsic::umul_with_overflow:
1639 case Intrinsic::sadd_sat:
1640 case Intrinsic::uadd_sat:
1641 case Intrinsic::ssub_sat:
1642 case Intrinsic::usub_sat:
1643 case Intrinsic::smul_fix:
1644 case Intrinsic::smul_fix_sat:
1645 case Intrinsic::bitreverse:
1646 case Intrinsic::is_constant:
1647 case Intrinsic::vector_reduce_add:
1648 case Intrinsic::vector_reduce_mul:
1649 case Intrinsic::vector_reduce_and:
1650 case Intrinsic::vector_reduce_or:
1651 case Intrinsic::vector_reduce_xor:
1652 case Intrinsic::vector_reduce_smin:
1653 case Intrinsic::vector_reduce_smax:
1654 case Intrinsic::vector_reduce_umin:
1655 case Intrinsic::vector_reduce_umax:
1656 case Intrinsic::vector_extract:
1657 case Intrinsic::vector_insert:
1658 case Intrinsic::vector_interleave2:
1659 case Intrinsic::vector_deinterleave2:
1661 case Intrinsic::amdgcn_perm:
1662 case Intrinsic::amdgcn_wave_reduce_umin:
1663 case Intrinsic::amdgcn_wave_reduce_umax:
1664 case Intrinsic::amdgcn_wave_reduce_max:
1665 case Intrinsic::amdgcn_wave_reduce_min:
1666 case Intrinsic::amdgcn_wave_reduce_add:
1667 case Intrinsic::amdgcn_wave_reduce_sub:
1668 case Intrinsic::amdgcn_wave_reduce_and:
1669 case Intrinsic::amdgcn_wave_reduce_or:
1670 case Intrinsic::amdgcn_wave_reduce_xor:
1671 case Intrinsic::amdgcn_s_wqm:
1672 case Intrinsic::amdgcn_s_quadmask:
1673 case Intrinsic::amdgcn_s_bitreplicate:
1674 case Intrinsic::arm_mve_vctp8:
1675 case Intrinsic::arm_mve_vctp16:
1676 case Intrinsic::arm_mve_vctp32:
1677 case Intrinsic::arm_mve_vctp64:
1678 case Intrinsic::aarch64_sve_convert_from_svbool:
1679 case Intrinsic::wasm_alltrue:
1680 case Intrinsic::wasm_anytrue:
1681 case Intrinsic::wasm_dot:
1683 case Intrinsic::wasm_trunc_signed:
1684 case Intrinsic::wasm_trunc_unsigned:
1689 case Intrinsic::minnum:
1690 case Intrinsic::maxnum:
1691 case Intrinsic::minimum:
1692 case Intrinsic::maximum:
1693 case Intrinsic::minimumnum:
1694 case Intrinsic::maximumnum:
1695 case Intrinsic::log:
1696 case Intrinsic::log2:
1697 case Intrinsic::log10:
1698 case Intrinsic::exp:
1699 case Intrinsic::exp2:
1700 case Intrinsic::exp10:
1701 case Intrinsic::sqrt:
1702 case Intrinsic::sin:
1703 case Intrinsic::cos:
1704 case Intrinsic::sincos:
1705 case Intrinsic::sinh:
1706 case Intrinsic::cosh:
1707 case Intrinsic::atan:
1708 case Intrinsic::pow:
1709 case Intrinsic::powi:
1710 case Intrinsic::ldexp:
1711 case Intrinsic::fma:
1712 case Intrinsic::fmuladd:
1713 case Intrinsic::frexp:
1714 case Intrinsic::fptoui_sat:
1715 case Intrinsic::fptosi_sat:
1716 case Intrinsic::convert_from_fp16:
1717 case Intrinsic::convert_to_fp16:
1718 case Intrinsic::amdgcn_cos:
1719 case Intrinsic::amdgcn_cubeid:
1720 case Intrinsic::amdgcn_cubema:
1721 case Intrinsic::amdgcn_cubesc:
1722 case Intrinsic::amdgcn_cubetc:
1723 case Intrinsic::amdgcn_fmul_legacy:
1724 case Intrinsic::amdgcn_fma_legacy:
1725 case Intrinsic::amdgcn_fract:
1726 case Intrinsic::amdgcn_sin:
1728 case Intrinsic::x86_sse_cvtss2si:
1729 case Intrinsic::x86_sse_cvtss2si64:
1730 case Intrinsic::x86_sse_cvttss2si:
1731 case Intrinsic::x86_sse_cvttss2si64:
1732 case Intrinsic::x86_sse2_cvtsd2si:
1733 case Intrinsic::x86_sse2_cvtsd2si64:
1734 case Intrinsic::x86_sse2_cvttsd2si:
1735 case Intrinsic::x86_sse2_cvttsd2si64:
1736 case Intrinsic::x86_avx512_vcvtss2si32:
1737 case Intrinsic::x86_avx512_vcvtss2si64:
1738 case Intrinsic::x86_avx512_cvttss2si:
1739 case Intrinsic::x86_avx512_cvttss2si64:
1740 case Intrinsic::x86_avx512_vcvtsd2si32:
1741 case Intrinsic::x86_avx512_vcvtsd2si64:
1742 case Intrinsic::x86_avx512_cvttsd2si:
1743 case Intrinsic::x86_avx512_cvttsd2si64:
1744 case Intrinsic::x86_avx512_vcvtss2usi32:
1745 case Intrinsic::x86_avx512_vcvtss2usi64:
1746 case Intrinsic::x86_avx512_cvttss2usi:
1747 case Intrinsic::x86_avx512_cvttss2usi64:
1748 case Intrinsic::x86_avx512_vcvtsd2usi32:
1749 case Intrinsic::x86_avx512_vcvtsd2usi64:
1750 case Intrinsic::x86_avx512_cvttsd2usi:
1751 case Intrinsic::x86_avx512_cvttsd2usi64:
1754 case Intrinsic::nvvm_fmax_d:
1755 case Intrinsic::nvvm_fmax_f:
1756 case Intrinsic::nvvm_fmax_ftz_f:
1757 case Intrinsic::nvvm_fmax_ftz_nan_f:
1758 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1759 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1760 case Intrinsic::nvvm_fmax_nan_f:
1761 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmin_d:
1766 case Intrinsic::nvvm_fmin_f:
1767 case Intrinsic::nvvm_fmin_ftz_f:
1768 case Intrinsic::nvvm_fmin_ftz_nan_f:
1769 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1770 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1771 case Intrinsic::nvvm_fmin_nan_f:
1772 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1776 case Intrinsic::nvvm_f2i_rm:
1777 case Intrinsic::nvvm_f2i_rn:
1778 case Intrinsic::nvvm_f2i_rp:
1779 case Intrinsic::nvvm_f2i_rz:
1780 case Intrinsic::nvvm_f2i_rm_ftz:
1781 case Intrinsic::nvvm_f2i_rn_ftz:
1782 case Intrinsic::nvvm_f2i_rp_ftz:
1783 case Intrinsic::nvvm_f2i_rz_ftz:
1784 case Intrinsic::nvvm_f2ui_rm:
1785 case Intrinsic::nvvm_f2ui_rn:
1786 case Intrinsic::nvvm_f2ui_rp:
1787 case Intrinsic::nvvm_f2ui_rz:
1788 case Intrinsic::nvvm_f2ui_rm_ftz:
1789 case Intrinsic::nvvm_f2ui_rn_ftz:
1790 case Intrinsic::nvvm_f2ui_rp_ftz:
1791 case Intrinsic::nvvm_f2ui_rz_ftz:
1792 case Intrinsic::nvvm_d2i_rm:
1793 case Intrinsic::nvvm_d2i_rn:
1794 case Intrinsic::nvvm_d2i_rp:
1795 case Intrinsic::nvvm_d2i_rz:
1796 case Intrinsic::nvvm_d2ui_rm:
1797 case Intrinsic::nvvm_d2ui_rn:
1798 case Intrinsic::nvvm_d2ui_rp:
1799 case Intrinsic::nvvm_d2ui_rz:
1802 case Intrinsic::nvvm_f2ll_rm:
1803 case Intrinsic::nvvm_f2ll_rn:
1804 case Intrinsic::nvvm_f2ll_rp:
1805 case Intrinsic::nvvm_f2ll_rz:
1806 case Intrinsic::nvvm_f2ll_rm_ftz:
1807 case Intrinsic::nvvm_f2ll_rn_ftz:
1808 case Intrinsic::nvvm_f2ll_rp_ftz:
1809 case Intrinsic::nvvm_f2ll_rz_ftz:
1810 case Intrinsic::nvvm_f2ull_rm:
1811 case Intrinsic::nvvm_f2ull_rn:
1812 case Intrinsic::nvvm_f2ull_rp:
1813 case Intrinsic::nvvm_f2ull_rz:
1814 case Intrinsic::nvvm_f2ull_rm_ftz:
1815 case Intrinsic::nvvm_f2ull_rn_ftz:
1816 case Intrinsic::nvvm_f2ull_rp_ftz:
1817 case Intrinsic::nvvm_f2ull_rz_ftz:
1818 case Intrinsic::nvvm_d2ll_rm:
1819 case Intrinsic::nvvm_d2ll_rn:
1820 case Intrinsic::nvvm_d2ll_rp:
1821 case Intrinsic::nvvm_d2ll_rz:
1822 case Intrinsic::nvvm_d2ull_rm:
1823 case Intrinsic::nvvm_d2ull_rn:
1824 case Intrinsic::nvvm_d2ull_rp:
1825 case Intrinsic::nvvm_d2ull_rz:
1828 case Intrinsic::nvvm_ceil_d:
1829 case Intrinsic::nvvm_ceil_f:
1830 case Intrinsic::nvvm_ceil_ftz_f:
1832 case Intrinsic::nvvm_fabs:
1833 case Intrinsic::nvvm_fabs_ftz:
1835 case Intrinsic::nvvm_floor_d:
1836 case Intrinsic::nvvm_floor_f:
1837 case Intrinsic::nvvm_floor_ftz_f:
1839 case Intrinsic::nvvm_rcp_rm_d:
1840 case Intrinsic::nvvm_rcp_rm_f:
1841 case Intrinsic::nvvm_rcp_rm_ftz_f:
1842 case Intrinsic::nvvm_rcp_rn_d:
1843 case Intrinsic::nvvm_rcp_rn_f:
1844 case Intrinsic::nvvm_rcp_rn_ftz_f:
1845 case Intrinsic::nvvm_rcp_rp_d:
1846 case Intrinsic::nvvm_rcp_rp_f:
1847 case Intrinsic::nvvm_rcp_rp_ftz_f:
1848 case Intrinsic::nvvm_rcp_rz_d:
1849 case Intrinsic::nvvm_rcp_rz_f:
1850 case Intrinsic::nvvm_rcp_rz_ftz_f:
1852 case Intrinsic::nvvm_round_d:
1853 case Intrinsic::nvvm_round_f:
1854 case Intrinsic::nvvm_round_ftz_f:
1856 case Intrinsic::nvvm_saturate_d:
1857 case Intrinsic::nvvm_saturate_f:
1858 case Intrinsic::nvvm_saturate_ftz_f:
1860 case Intrinsic::nvvm_sqrt_f:
1861 case Intrinsic::nvvm_sqrt_rn_d:
1862 case Intrinsic::nvvm_sqrt_rn_f:
1863 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1864 return !
Call->isStrictFP();
1867 case Intrinsic::nvvm_add_rm_d:
1868 case Intrinsic::nvvm_add_rn_d:
1869 case Intrinsic::nvvm_add_rp_d:
1870 case Intrinsic::nvvm_add_rz_d:
1871 case Intrinsic::nvvm_add_rm_f:
1872 case Intrinsic::nvvm_add_rn_f:
1873 case Intrinsic::nvvm_add_rp_f:
1874 case Intrinsic::nvvm_add_rz_f:
1875 case Intrinsic::nvvm_add_rm_ftz_f:
1876 case Intrinsic::nvvm_add_rn_ftz_f:
1877 case Intrinsic::nvvm_add_rp_ftz_f:
1878 case Intrinsic::nvvm_add_rz_ftz_f:
1881 case Intrinsic::nvvm_div_rm_d:
1882 case Intrinsic::nvvm_div_rn_d:
1883 case Intrinsic::nvvm_div_rp_d:
1884 case Intrinsic::nvvm_div_rz_d:
1885 case Intrinsic::nvvm_div_rm_f:
1886 case Intrinsic::nvvm_div_rn_f:
1887 case Intrinsic::nvvm_div_rp_f:
1888 case Intrinsic::nvvm_div_rz_f:
1889 case Intrinsic::nvvm_div_rm_ftz_f:
1890 case Intrinsic::nvvm_div_rn_ftz_f:
1891 case Intrinsic::nvvm_div_rp_ftz_f:
1892 case Intrinsic::nvvm_div_rz_ftz_f:
1895 case Intrinsic::nvvm_mul_rm_d:
1896 case Intrinsic::nvvm_mul_rn_d:
1897 case Intrinsic::nvvm_mul_rp_d:
1898 case Intrinsic::nvvm_mul_rz_d:
1899 case Intrinsic::nvvm_mul_rm_f:
1900 case Intrinsic::nvvm_mul_rn_f:
1901 case Intrinsic::nvvm_mul_rp_f:
1902 case Intrinsic::nvvm_mul_rz_f:
1903 case Intrinsic::nvvm_mul_rm_ftz_f:
1904 case Intrinsic::nvvm_mul_rn_ftz_f:
1905 case Intrinsic::nvvm_mul_rp_ftz_f:
1906 case Intrinsic::nvvm_mul_rz_ftz_f:
1909 case Intrinsic::nvvm_fma_rm_d:
1910 case Intrinsic::nvvm_fma_rn_d:
1911 case Intrinsic::nvvm_fma_rp_d:
1912 case Intrinsic::nvvm_fma_rz_d:
1913 case Intrinsic::nvvm_fma_rm_f:
1914 case Intrinsic::nvvm_fma_rn_f:
1915 case Intrinsic::nvvm_fma_rp_f:
1916 case Intrinsic::nvvm_fma_rz_f:
1917 case Intrinsic::nvvm_fma_rm_ftz_f:
1918 case Intrinsic::nvvm_fma_rn_ftz_f:
1919 case Intrinsic::nvvm_fma_rp_ftz_f:
1920 case Intrinsic::nvvm_fma_rz_ftz_f:
1924 case Intrinsic::fabs:
1925 case Intrinsic::copysign:
1926 case Intrinsic::is_fpclass:
1929 case Intrinsic::ceil:
1930 case Intrinsic::floor:
1931 case Intrinsic::round:
1932 case Intrinsic::roundeven:
1933 case Intrinsic::trunc:
1934 case Intrinsic::nearbyint:
1935 case Intrinsic::rint:
1936 case Intrinsic::canonicalize:
1940 case Intrinsic::experimental_constrained_fma:
1941 case Intrinsic::experimental_constrained_fmuladd:
1942 case Intrinsic::experimental_constrained_fadd:
1943 case Intrinsic::experimental_constrained_fsub:
1944 case Intrinsic::experimental_constrained_fmul:
1945 case Intrinsic::experimental_constrained_fdiv:
1946 case Intrinsic::experimental_constrained_frem:
1947 case Intrinsic::experimental_constrained_ceil:
1948 case Intrinsic::experimental_constrained_floor:
1949 case Intrinsic::experimental_constrained_round:
1950 case Intrinsic::experimental_constrained_roundeven:
1951 case Intrinsic::experimental_constrained_trunc:
1952 case Intrinsic::experimental_constrained_nearbyint:
1953 case Intrinsic::experimental_constrained_rint:
1954 case Intrinsic::experimental_constrained_fcmp:
1955 case Intrinsic::experimental_constrained_fcmps:
1962 if (!
F->hasName() ||
Call->isStrictFP())
1973 return Name ==
"acos" || Name ==
"acosf" ||
1974 Name ==
"asin" || Name ==
"asinf" ||
1975 Name ==
"atan" || Name ==
"atanf" ||
1976 Name ==
"atan2" || Name ==
"atan2f";
1978 return Name ==
"ceil" || Name ==
"ceilf" ||
1979 Name ==
"cos" || Name ==
"cosf" ||
1980 Name ==
"cosh" || Name ==
"coshf";
1982 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1983 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1985 return Name ==
"fabs" || Name ==
"fabsf" ||
1986 Name ==
"floor" || Name ==
"floorf" ||
1987 Name ==
"fmod" || Name ==
"fmodf";
1989 return Name ==
"ilogb" || Name ==
"ilogbf";
1991 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
1992 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
1993 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
1994 Name ==
"log1p" || Name ==
"log1pf";
1996 return Name ==
"nearbyint" || Name ==
"nearbyintf";
1998 return Name ==
"pow" || Name ==
"powf";
2000 return Name ==
"remainder" || Name ==
"remainderf" ||
2001 Name ==
"rint" || Name ==
"rintf" ||
2002 Name ==
"round" || Name ==
"roundf";
2004 return Name ==
"sin" || Name ==
"sinf" ||
2005 Name ==
"sinh" || Name ==
"sinhf" ||
2006 Name ==
"sqrt" || Name ==
"sqrtf";
2008 return Name ==
"tan" || Name ==
"tanf" ||
2009 Name ==
"tanh" || Name ==
"tanhf" ||
2010 Name ==
"trunc" || Name ==
"truncf";
2018 if (Name.size() < 12 || Name[1] !=
'_')
2024 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2025 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2026 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2028 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2030 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2031 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2033 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2034 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2036 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2038 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2046 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2050 return ConstantFP::get(Ty->getContext(), APF);
2052 if (Ty->isDoubleTy())
2053 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2057#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2058Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2059 if (Ty->isFP128Ty())
2060 return ConstantFP::get(Ty, V);
2066inline void llvm_fenv_clearexcept() {
2067#if HAVE_DECL_FE_ALL_EXCEPT
2068 feclearexcept(FE_ALL_EXCEPT);
2074inline bool llvm_fenv_testexcept() {
2075 int errno_val = errno;
2076 if (errno_val == ERANGE || errno_val == EDOM)
2078#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2079 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2101 switch (DenormKind) {
2105 return FTZPreserveSign(V);
2107 return FlushToPositiveZero(V);
2115 if (!DenormMode.isValid() ||
2120 llvm_fenv_clearexcept();
2121 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2122 double Result = NativeFP(
Input.convertToDouble());
2123 if (llvm_fenv_testexcept()) {
2124 llvm_fenv_clearexcept();
2128 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2131 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2132 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2133 return ConstantFP::get(Ty->getContext(), Res);
2136#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2137Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2139 llvm_fenv_clearexcept();
2140 float128
Result = NativeFP(V.convertToQuad());
2141 if (llvm_fenv_testexcept()) {
2142 llvm_fenv_clearexcept();
2146 return GetConstantFoldFPValue128(Result, Ty);
2150Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2152 llvm_fenv_clearexcept();
2153 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2154 if (llvm_fenv_testexcept()) {
2155 llvm_fenv_clearexcept();
2159 return GetConstantFoldFPValue(Result, Ty);
2184 APInt Acc = EltC->getValue();
2188 const APInt &
X = EltC->getValue();
2190 case Intrinsic::vector_reduce_add:
2193 case Intrinsic::vector_reduce_mul:
2196 case Intrinsic::vector_reduce_and:
2199 case Intrinsic::vector_reduce_or:
2202 case Intrinsic::vector_reduce_xor:
2205 case Intrinsic::vector_reduce_smin:
2208 case Intrinsic::vector_reduce_smax:
2211 case Intrinsic::vector_reduce_umin:
2214 case Intrinsic::vector_reduce_umax:
2220 return ConstantInt::get(
Op->getContext(), Acc);
2230Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2231 Type *Ty,
bool IsSigned) {
2233 unsigned ResultWidth = Ty->getIntegerBitWidth();
2234 assert(ResultWidth <= 64 &&
2235 "Can only constant fold conversions to 64 and 32 bit ints");
2238 bool isExact =
false;
2243 IsSigned,
mode, &isExact);
2247 return ConstantInt::get(Ty, UIntVal, IsSigned);
2251 Type *Ty =
Op->getType();
2253 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2254 return Op->getValueAPF().convertToDouble();
2264 C = &CI->getValue();
2323 return ConstantFP::get(
2328 if (!Ty->isIEEELikeFPTy())
2335 if (Src.isNormal() || Src.isInfinity())
2336 return ConstantFP::get(CI->
getContext(), Src);
2343 return ConstantFP::get(CI->
getContext(), Src);
2375 if (IntrinsicID == Intrinsic::is_constant) {
2379 if (
Operands[0]->isManifestConstant())
2388 if (IntrinsicID == Intrinsic::cos ||
2389 IntrinsicID == Intrinsic::ctpop ||
2390 IntrinsicID == Intrinsic::fptoui_sat ||
2391 IntrinsicID == Intrinsic::fptosi_sat ||
2392 IntrinsicID == Intrinsic::canonicalize)
2394 if (IntrinsicID == Intrinsic::bswap ||
2395 IntrinsicID == Intrinsic::bitreverse ||
2396 IntrinsicID == Intrinsic::launder_invariant_group ||
2397 IntrinsicID == Intrinsic::strip_invariant_group)
2403 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2404 IntrinsicID == Intrinsic::strip_invariant_group) {
2409 Call->getParent() ?
Call->getCaller() :
nullptr;
2420 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2431 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2432 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2433 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2438 unsigned Width = Ty->getIntegerBitWidth();
2440 bool IsExact =
false;
2445 return ConstantInt::get(Ty,
Int);
2450 if (IntrinsicID == Intrinsic::fptoui_sat ||
2451 IntrinsicID == Intrinsic::fptosi_sat) {
2454 IntrinsicID == Intrinsic::fptoui_sat);
2457 return ConstantInt::get(Ty,
Int);
2460 if (IntrinsicID == Intrinsic::canonicalize)
2461 return constantFoldCanonicalize(Ty,
Call, U);
2463#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2464 if (Ty->isFP128Ty()) {
2465 if (IntrinsicID == Intrinsic::log) {
2466 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2467 return GetConstantFoldFPValue128(Result, Ty);
2471 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2472 Fp128Func == LibFunc_logl)
2473 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2477 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2483 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2485 return ConstantFP::get(Ty->getContext(), U);
2488 if (IntrinsicID == Intrinsic::round) {
2490 return ConstantFP::get(Ty->getContext(), U);
2493 if (IntrinsicID == Intrinsic::roundeven) {
2495 return ConstantFP::get(Ty->getContext(), U);
2498 if (IntrinsicID == Intrinsic::ceil) {
2500 return ConstantFP::get(Ty->getContext(), U);
2503 if (IntrinsicID == Intrinsic::floor) {
2505 return ConstantFP::get(Ty->getContext(), U);
2508 if (IntrinsicID == Intrinsic::trunc) {
2510 return ConstantFP::get(Ty->getContext(), U);
2513 if (IntrinsicID == Intrinsic::fabs) {
2515 return ConstantFP::get(Ty->getContext(), U);
2518 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2526 APFloat AlmostOne(U.getSemantics(), 1);
2527 AlmostOne.next(
true);
2528 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2534 std::optional<APFloat::roundingMode>
RM;
2535 switch (IntrinsicID) {
2538 case Intrinsic::experimental_constrained_nearbyint:
2539 case Intrinsic::experimental_constrained_rint: {
2541 RM = CI->getRoundingMode();
2546 case Intrinsic::experimental_constrained_round:
2549 case Intrinsic::experimental_constrained_ceil:
2552 case Intrinsic::experimental_constrained_floor:
2555 case Intrinsic::experimental_constrained_trunc:
2563 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2565 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2569 }
else if (U.isSignaling()) {
2570 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2575 return ConstantFP::get(Ty->getContext(), U);
2579 switch (IntrinsicID) {
2581 case Intrinsic::nvvm_f2i_rm:
2582 case Intrinsic::nvvm_f2i_rn:
2583 case Intrinsic::nvvm_f2i_rp:
2584 case Intrinsic::nvvm_f2i_rz:
2585 case Intrinsic::nvvm_f2i_rm_ftz:
2586 case Intrinsic::nvvm_f2i_rn_ftz:
2587 case Intrinsic::nvvm_f2i_rp_ftz:
2588 case Intrinsic::nvvm_f2i_rz_ftz:
2590 case Intrinsic::nvvm_f2ui_rm:
2591 case Intrinsic::nvvm_f2ui_rn:
2592 case Intrinsic::nvvm_f2ui_rp:
2593 case Intrinsic::nvvm_f2ui_rz:
2594 case Intrinsic::nvvm_f2ui_rm_ftz:
2595 case Intrinsic::nvvm_f2ui_rn_ftz:
2596 case Intrinsic::nvvm_f2ui_rp_ftz:
2597 case Intrinsic::nvvm_f2ui_rz_ftz:
2599 case Intrinsic::nvvm_d2i_rm:
2600 case Intrinsic::nvvm_d2i_rn:
2601 case Intrinsic::nvvm_d2i_rp:
2602 case Intrinsic::nvvm_d2i_rz:
2604 case Intrinsic::nvvm_d2ui_rm:
2605 case Intrinsic::nvvm_d2ui_rn:
2606 case Intrinsic::nvvm_d2ui_rp:
2607 case Intrinsic::nvvm_d2ui_rz:
2609 case Intrinsic::nvvm_f2ll_rm:
2610 case Intrinsic::nvvm_f2ll_rn:
2611 case Intrinsic::nvvm_f2ll_rp:
2612 case Intrinsic::nvvm_f2ll_rz:
2613 case Intrinsic::nvvm_f2ll_rm_ftz:
2614 case Intrinsic::nvvm_f2ll_rn_ftz:
2615 case Intrinsic::nvvm_f2ll_rp_ftz:
2616 case Intrinsic::nvvm_f2ll_rz_ftz:
2618 case Intrinsic::nvvm_f2ull_rm:
2619 case Intrinsic::nvvm_f2ull_rn:
2620 case Intrinsic::nvvm_f2ull_rp:
2621 case Intrinsic::nvvm_f2ull_rz:
2622 case Intrinsic::nvvm_f2ull_rm_ftz:
2623 case Intrinsic::nvvm_f2ull_rn_ftz:
2624 case Intrinsic::nvvm_f2ull_rp_ftz:
2625 case Intrinsic::nvvm_f2ull_rz_ftz:
2627 case Intrinsic::nvvm_d2ll_rm:
2628 case Intrinsic::nvvm_d2ll_rn:
2629 case Intrinsic::nvvm_d2ll_rp:
2630 case Intrinsic::nvvm_d2ll_rz:
2632 case Intrinsic::nvvm_d2ull_rm:
2633 case Intrinsic::nvvm_d2ull_rn:
2634 case Intrinsic::nvvm_d2ull_rp:
2635 case Intrinsic::nvvm_d2ull_rz: {
2641 return ConstantInt::get(Ty, 0);
2644 unsigned BitWidth = Ty->getIntegerBitWidth();
2654 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2655 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2659 bool IsExact =
false;
2660 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2661 return ConstantInt::get(Ty, ResInt);
2677 switch (IntrinsicID) {
2679 case Intrinsic::log:
2680 return ConstantFoldFP(log, APF, Ty);
2681 case Intrinsic::log2:
2683 return ConstantFoldFP(
log2, APF, Ty);
2684 case Intrinsic::log10:
2686 return ConstantFoldFP(log10, APF, Ty);
2687 case Intrinsic::exp:
2688 return ConstantFoldFP(exp, APF, Ty);
2689 case Intrinsic::exp2:
2691 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2692 case Intrinsic::exp10:
2694 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2695 case Intrinsic::sin:
2696 return ConstantFoldFP(sin, APF, Ty);
2697 case Intrinsic::cos:
2698 return ConstantFoldFP(cos, APF, Ty);
2699 case Intrinsic::sinh:
2700 return ConstantFoldFP(sinh, APF, Ty);
2701 case Intrinsic::cosh:
2702 return ConstantFoldFP(cosh, APF, Ty);
2703 case Intrinsic::atan:
2706 return ConstantFP::get(Ty->getContext(), U);
2707 return ConstantFoldFP(atan, APF, Ty);
2708 case Intrinsic::sqrt:
2709 return ConstantFoldFP(sqrt, APF, Ty);
2712 case Intrinsic::nvvm_ceil_ftz_f:
2713 case Intrinsic::nvvm_ceil_f:
2714 case Intrinsic::nvvm_ceil_d:
2715 return ConstantFoldFP(
2720 case Intrinsic::nvvm_fabs_ftz:
2721 case Intrinsic::nvvm_fabs:
2722 return ConstantFoldFP(
2727 case Intrinsic::nvvm_floor_ftz_f:
2728 case Intrinsic::nvvm_floor_f:
2729 case Intrinsic::nvvm_floor_d:
2730 return ConstantFoldFP(
2735 case Intrinsic::nvvm_rcp_rm_ftz_f:
2736 case Intrinsic::nvvm_rcp_rn_ftz_f:
2737 case Intrinsic::nvvm_rcp_rp_ftz_f:
2738 case Intrinsic::nvvm_rcp_rz_ftz_f:
2739 case Intrinsic::nvvm_rcp_rm_d:
2740 case Intrinsic::nvvm_rcp_rm_f:
2741 case Intrinsic::nvvm_rcp_rn_d:
2742 case Intrinsic::nvvm_rcp_rn_f:
2743 case Intrinsic::nvvm_rcp_rp_d:
2744 case Intrinsic::nvvm_rcp_rp_f:
2745 case Intrinsic::nvvm_rcp_rz_d:
2746 case Intrinsic::nvvm_rcp_rz_f: {
2750 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2756 Res = FTZPreserveSign(Res);
2757 return ConstantFP::get(Ty->getContext(), Res);
2762 case Intrinsic::nvvm_round_ftz_f:
2763 case Intrinsic::nvvm_round_f:
2764 case Intrinsic::nvvm_round_d: {
2769 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2771 return ConstantFP::get(Ty->getContext(), V);
2774 case Intrinsic::nvvm_saturate_ftz_f:
2775 case Intrinsic::nvvm_saturate_d:
2776 case Intrinsic::nvvm_saturate_f: {
2778 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2779 if (V.isNegative() || V.isZero() || V.isNaN())
2783 return ConstantFP::get(Ty->getContext(), One);
2784 return ConstantFP::get(Ty->getContext(), APF);
2787 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2788 case Intrinsic::nvvm_sqrt_f:
2789 case Intrinsic::nvvm_sqrt_rn_d:
2790 case Intrinsic::nvvm_sqrt_rn_f:
2793 return ConstantFoldFP(
2799 case Intrinsic::amdgcn_cos:
2800 case Intrinsic::amdgcn_sin: {
2801 double V = getValueAsDouble(
Op);
2802 if (V < -256.0 || V > 256.0)
2807 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2808 double V4 = V * 4.0;
2809 if (V4 == floor(V4)) {
2811 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2812 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2819 return GetConstantFoldFPValue(V, Ty);
2835 case LibFunc_acos_finite:
2836 case LibFunc_acosf_finite:
2838 return ConstantFoldFP(acos, APF, Ty);
2842 case LibFunc_asin_finite:
2843 case LibFunc_asinf_finite:
2845 return ConstantFoldFP(asin, APF, Ty);
2851 return ConstantFP::get(Ty->getContext(), U);
2853 return ConstantFoldFP(atan, APF, Ty);
2857 if (TLI->
has(Func)) {
2859 return ConstantFP::get(Ty->getContext(), U);
2865 return ConstantFoldFP(cos, APF, Ty);
2869 case LibFunc_cosh_finite:
2870 case LibFunc_coshf_finite:
2872 return ConstantFoldFP(cosh, APF, Ty);
2876 case LibFunc_exp_finite:
2877 case LibFunc_expf_finite:
2879 return ConstantFoldFP(exp, APF, Ty);
2883 case LibFunc_exp2_finite:
2884 case LibFunc_exp2f_finite:
2887 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2891 if (TLI->
has(Func)) {
2893 return ConstantFP::get(Ty->getContext(), U);
2897 case LibFunc_floorf:
2898 if (TLI->
has(Func)) {
2900 return ConstantFP::get(Ty->getContext(), U);
2905 case LibFunc_log_finite:
2906 case LibFunc_logf_finite:
2908 return ConstantFoldFP(log, APF, Ty);
2912 case LibFunc_log2_finite:
2913 case LibFunc_log2f_finite:
2916 return ConstantFoldFP(
log2, APF, Ty);
2919 case LibFunc_log10f:
2920 case LibFunc_log10_finite:
2921 case LibFunc_log10f_finite:
2924 return ConstantFoldFP(log10, APF, Ty);
2927 case LibFunc_ilogbf:
2929 return ConstantInt::get(Ty,
ilogb(APF),
true);
2934 return ConstantFoldFP(logb, APF, Ty);
2937 case LibFunc_log1pf:
2940 return ConstantFP::get(Ty->getContext(), U);
2942 return ConstantFoldFP(log1p, APF, Ty);
2949 return ConstantFoldFP(erf, APF, Ty);
2951 case LibFunc_nearbyint:
2952 case LibFunc_nearbyintf:
2955 if (TLI->
has(Func)) {
2957 return ConstantFP::get(Ty->getContext(), U);
2961 case LibFunc_roundf:
2962 if (TLI->
has(Func)) {
2964 return ConstantFP::get(Ty->getContext(), U);
2970 return ConstantFoldFP(sin, APF, Ty);
2974 case LibFunc_sinh_finite:
2975 case LibFunc_sinhf_finite:
2977 return ConstantFoldFP(sinh, APF, Ty);
2982 return ConstantFoldFP(sqrt, APF, Ty);
2987 return ConstantFoldFP(tan, APF, Ty);
2992 return ConstantFoldFP(tanh, APF, Ty);
2995 case LibFunc_truncf:
2996 if (TLI->
has(Func)) {
2998 return ConstantFP::get(Ty->getContext(), U);
3006 switch (IntrinsicID) {
3007 case Intrinsic::bswap:
3008 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3009 case Intrinsic::ctpop:
3010 return ConstantInt::get(Ty,
Op->getValue().popcount());
3011 case Intrinsic::bitreverse:
3012 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3013 case Intrinsic::convert_from_fp16: {
3023 "Precision lost during fp16 constfolding");
3025 return ConstantFP::get(Ty->getContext(), Val);
3028 case Intrinsic::amdgcn_s_wqm: {
3030 Val |= (Val & 0x5555555555555555ULL) << 1 |
3031 ((Val >> 1) & 0x5555555555555555ULL);
3032 Val |= (Val & 0x3333333333333333ULL) << 2 |
3033 ((Val >> 2) & 0x3333333333333333ULL);
3034 return ConstantInt::get(Ty, Val);
3037 case Intrinsic::amdgcn_s_quadmask: {
3040 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3044 QuadMask |= (1ULL <<
I);
3046 return ConstantInt::get(Ty, QuadMask);
3049 case Intrinsic::amdgcn_s_bitreplicate: {
3051 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3052 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3053 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3054 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3055 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3056 Val = Val | Val << 1;
3057 return ConstantInt::get(Ty, Val);
3065 switch (IntrinsicID) {
3067 case Intrinsic::vector_reduce_add:
3068 case Intrinsic::vector_reduce_mul:
3069 case Intrinsic::vector_reduce_and:
3070 case Intrinsic::vector_reduce_or:
3071 case Intrinsic::vector_reduce_xor:
3072 case Intrinsic::vector_reduce_smin:
3073 case Intrinsic::vector_reduce_smax:
3074 case Intrinsic::vector_reduce_umin:
3075 case Intrinsic::vector_reduce_umax:
3086 switch (IntrinsicID) {
3088 case Intrinsic::x86_sse_cvtss2si:
3089 case Intrinsic::x86_sse_cvtss2si64:
3090 case Intrinsic::x86_sse2_cvtsd2si:
3091 case Intrinsic::x86_sse2_cvtsd2si64:
3094 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3098 case Intrinsic::x86_sse_cvttss2si:
3099 case Intrinsic::x86_sse_cvttss2si64:
3100 case Intrinsic::x86_sse2_cvttsd2si:
3101 case Intrinsic::x86_sse2_cvttsd2si64:
3104 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3109 case Intrinsic::wasm_anytrue:
3110 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3113 case Intrinsic::wasm_alltrue:
3116 for (
unsigned I = 0;
I !=
E; ++
I)
3118 if (Elt->isZeroValue())
3119 return ConstantInt::get(Ty, 0);
3121 return ConstantInt::get(Ty, 1);
3133 if (FCmp->isSignaling()) {
3142 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3164 const APFloat &Op1V = Op1->getValueAPF();
3165 const APFloat &Op2V = Op2->getValueAPF();
3172 case LibFunc_pow_finite:
3173 case LibFunc_powf_finite:
3175 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3179 if (TLI->
has(Func)) {
3180 APFloat V = Op1->getValueAPF();
3182 return ConstantFP::get(Ty->getContext(), V);
3185 case LibFunc_remainder:
3186 case LibFunc_remainderf:
3187 if (TLI->
has(Func)) {
3188 APFloat V = Op1->getValueAPF();
3190 return ConstantFP::get(Ty->getContext(), V);
3194 case LibFunc_atan2f:
3200 case LibFunc_atan2_finite:
3201 case LibFunc_atan2f_finite:
3203 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3215 if (Ty->isFloatingPointTy()) {
3220 switch (IntrinsicID) {
3221 case Intrinsic::maxnum:
3222 case Intrinsic::minnum:
3223 case Intrinsic::maximum:
3224 case Intrinsic::minimum:
3225 case Intrinsic::maximumnum:
3226 case Intrinsic::minimumnum:
3227 case Intrinsic::nvvm_fmax_d:
3228 case Intrinsic::nvvm_fmin_d:
3236 case Intrinsic::nvvm_fmax_f:
3237 case Intrinsic::nvvm_fmax_ftz_f:
3238 case Intrinsic::nvvm_fmax_ftz_nan_f:
3239 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3240 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3241 case Intrinsic::nvvm_fmax_nan_f:
3242 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3243 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3245 case Intrinsic::nvvm_fmin_f:
3246 case Intrinsic::nvvm_fmin_ftz_f:
3247 case Intrinsic::nvvm_fmin_ftz_nan_f:
3248 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3249 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3250 case Intrinsic::nvvm_fmin_nan_f:
3251 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3252 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3256 if (!IsOp0Undef && !IsOp1Undef)
3260 APInt NVCanonicalNaN(32, 0x7fffffff);
3261 return ConstantFP::get(
3262 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3265 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3274 const APFloat &Op1V = Op1->getValueAPF();
3277 if (Op2->getType() != Op1->getType())
3279 const APFloat &Op2V = Op2->getValueAPF();
3281 if (
const auto *ConstrIntr =
3286 switch (IntrinsicID) {
3289 case Intrinsic::experimental_constrained_fadd:
3290 St = Res.
add(Op2V, RM);
3292 case Intrinsic::experimental_constrained_fsub:
3295 case Intrinsic::experimental_constrained_fmul:
3298 case Intrinsic::experimental_constrained_fdiv:
3299 St = Res.
divide(Op2V, RM);
3301 case Intrinsic::experimental_constrained_frem:
3304 case Intrinsic::experimental_constrained_fcmp:
3305 case Intrinsic::experimental_constrained_fcmps:
3306 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3310 return ConstantFP::get(Ty->getContext(), Res);
3314 switch (IntrinsicID) {
3317 case Intrinsic::copysign:
3319 case Intrinsic::minnum:
3320 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3321 case Intrinsic::maxnum:
3322 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3323 case Intrinsic::minimum:
3324 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3325 case Intrinsic::maximum:
3326 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3327 case Intrinsic::minimumnum:
3328 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3329 case Intrinsic::maximumnum:
3330 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3332 case Intrinsic::nvvm_fmax_d:
3333 case Intrinsic::nvvm_fmax_f:
3334 case Intrinsic::nvvm_fmax_ftz_f:
3335 case Intrinsic::nvvm_fmax_ftz_nan_f:
3336 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3337 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3338 case Intrinsic::nvvm_fmax_nan_f:
3339 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3340 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3342 case Intrinsic::nvvm_fmin_d:
3343 case Intrinsic::nvvm_fmin_f:
3344 case Intrinsic::nvvm_fmin_ftz_f:
3345 case Intrinsic::nvvm_fmin_ftz_nan_f:
3346 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3347 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3348 case Intrinsic::nvvm_fmin_nan_f:
3349 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3350 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3352 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3353 IntrinsicID == Intrinsic::nvvm_fmin_d);
3358 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3359 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3361 bool XorSign =
false;
3363 XorSign =
A.isNegative() ^
B.isNegative();
3368 bool IsFMax =
false;
3369 switch (IntrinsicID) {
3370 case Intrinsic::nvvm_fmax_d:
3371 case Intrinsic::nvvm_fmax_f:
3372 case Intrinsic::nvvm_fmax_ftz_f:
3373 case Intrinsic::nvvm_fmax_ftz_nan_f:
3374 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3375 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3376 case Intrinsic::nvvm_fmax_nan_f:
3377 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3378 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3384 if (ShouldCanonicalizeNaNs) {
3386 if (
A.isNaN() &&
B.isNaN())
3387 return ConstantFP::get(Ty, NVCanonicalNaN);
3388 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3389 return ConstantFP::get(Ty, NVCanonicalNaN);
3392 if (
A.isNaN() &&
B.isNaN())
3402 return ConstantFP::get(Ty->getContext(), Res);
3405 case Intrinsic::nvvm_add_rm_f:
3406 case Intrinsic::nvvm_add_rn_f:
3407 case Intrinsic::nvvm_add_rp_f:
3408 case Intrinsic::nvvm_add_rz_f:
3409 case Intrinsic::nvvm_add_rm_d:
3410 case Intrinsic::nvvm_add_rn_d:
3411 case Intrinsic::nvvm_add_rp_d:
3412 case Intrinsic::nvvm_add_rz_d:
3413 case Intrinsic::nvvm_add_rm_ftz_f:
3414 case Intrinsic::nvvm_add_rn_ftz_f:
3415 case Intrinsic::nvvm_add_rp_ftz_f:
3416 case Intrinsic::nvvm_add_rz_ftz_f: {
3419 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3420 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3430 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3431 return ConstantFP::get(Ty->getContext(), Res);
3436 case Intrinsic::nvvm_mul_rm_f:
3437 case Intrinsic::nvvm_mul_rn_f:
3438 case Intrinsic::nvvm_mul_rp_f:
3439 case Intrinsic::nvvm_mul_rz_f:
3440 case Intrinsic::nvvm_mul_rm_d:
3441 case Intrinsic::nvvm_mul_rn_d:
3442 case Intrinsic::nvvm_mul_rp_d:
3443 case Intrinsic::nvvm_mul_rz_d:
3444 case Intrinsic::nvvm_mul_rm_ftz_f:
3445 case Intrinsic::nvvm_mul_rn_ftz_f:
3446 case Intrinsic::nvvm_mul_rp_ftz_f:
3447 case Intrinsic::nvvm_mul_rz_ftz_f: {
3450 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3451 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3461 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3462 return ConstantFP::get(Ty->getContext(), Res);
3467 case Intrinsic::nvvm_div_rm_f:
3468 case Intrinsic::nvvm_div_rn_f:
3469 case Intrinsic::nvvm_div_rp_f:
3470 case Intrinsic::nvvm_div_rz_f:
3471 case Intrinsic::nvvm_div_rm_d:
3472 case Intrinsic::nvvm_div_rn_d:
3473 case Intrinsic::nvvm_div_rp_d:
3474 case Intrinsic::nvvm_div_rz_d:
3475 case Intrinsic::nvvm_div_rm_ftz_f:
3476 case Intrinsic::nvvm_div_rn_ftz_f:
3477 case Intrinsic::nvvm_div_rp_ftz_f:
3478 case Intrinsic::nvvm_div_rz_ftz_f: {
3480 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3481 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3489 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3490 return ConstantFP::get(Ty->getContext(), Res);
3496 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3499 switch (IntrinsicID) {
3502 case Intrinsic::pow:
3503 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3504 case Intrinsic::amdgcn_fmul_legacy:
3509 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3513 switch (IntrinsicID) {
3514 case Intrinsic::ldexp: {
3515 return ConstantFP::get(
3519 case Intrinsic::is_fpclass: {
3532 return ConstantInt::get(Ty, Result);
3534 case Intrinsic::powi: {
3535 int Exp =
static_cast<int>(Op2C->getSExtValue());
3536 switch (Ty->getTypeID()) {
3540 if (Ty->isHalfTy()) {
3545 return ConstantFP::get(Ty->getContext(), Res);
3562 const APInt *C0, *C1;
3563 if (!getConstIntOrUndef(
Operands[0], C0) ||
3564 !getConstIntOrUndef(
Operands[1], C1))
3567 switch (IntrinsicID) {
3569 case Intrinsic::smax:
3570 case Intrinsic::smin:
3571 case Intrinsic::umax:
3572 case Intrinsic::umin:
3577 return ConstantInt::get(
3583 case Intrinsic::scmp:
3584 case Intrinsic::ucmp:
3586 return ConstantInt::get(Ty, 0);
3589 if (IntrinsicID == Intrinsic::scmp)
3590 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3592 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3593 return ConstantInt::get(Ty, Res,
true);
3595 case Intrinsic::usub_with_overflow:
3596 case Intrinsic::ssub_with_overflow:
3602 case Intrinsic::uadd_with_overflow:
3603 case Intrinsic::sadd_with_overflow:
3613 case Intrinsic::smul_with_overflow:
3614 case Intrinsic::umul_with_overflow: {
3622 switch (IntrinsicID) {
3624 case Intrinsic::sadd_with_overflow:
3625 Res = C0->
sadd_ov(*C1, Overflow);
3627 case Intrinsic::uadd_with_overflow:
3628 Res = C0->
uadd_ov(*C1, Overflow);
3630 case Intrinsic::ssub_with_overflow:
3631 Res = C0->
ssub_ov(*C1, Overflow);
3633 case Intrinsic::usub_with_overflow:
3634 Res = C0->
usub_ov(*C1, Overflow);
3636 case Intrinsic::smul_with_overflow:
3637 Res = C0->
smul_ov(*C1, Overflow);
3639 case Intrinsic::umul_with_overflow:
3640 Res = C0->
umul_ov(*C1, Overflow);
3644 ConstantInt::get(Ty->getContext(), Res),
3649 case Intrinsic::uadd_sat:
3650 case Intrinsic::sadd_sat:
3655 if (IntrinsicID == Intrinsic::uadd_sat)
3656 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3658 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3659 case Intrinsic::usub_sat:
3660 case Intrinsic::ssub_sat:
3665 if (IntrinsicID == Intrinsic::usub_sat)
3666 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3668 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3669 case Intrinsic::cttz:
3670 case Intrinsic::ctlz:
3671 assert(C1 &&
"Must be constant int");
3678 if (IntrinsicID == Intrinsic::cttz)
3683 case Intrinsic::abs:
3684 assert(C1 &&
"Must be constant int");
3695 return ConstantInt::get(Ty, C0->
abs());
3696 case Intrinsic::amdgcn_wave_reduce_umin:
3697 case Intrinsic::amdgcn_wave_reduce_umax:
3698 case Intrinsic::amdgcn_wave_reduce_max:
3699 case Intrinsic::amdgcn_wave_reduce_min:
3700 case Intrinsic::amdgcn_wave_reduce_add:
3701 case Intrinsic::amdgcn_wave_reduce_sub:
3702 case Intrinsic::amdgcn_wave_reduce_and:
3703 case Intrinsic::amdgcn_wave_reduce_or:
3704 case Intrinsic::amdgcn_wave_reduce_xor:
3719 switch (IntrinsicID) {
3721 case Intrinsic::x86_avx512_vcvtss2si32:
3722 case Intrinsic::x86_avx512_vcvtss2si64:
3723 case Intrinsic::x86_avx512_vcvtsd2si32:
3724 case Intrinsic::x86_avx512_vcvtsd2si64:
3727 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3731 case Intrinsic::x86_avx512_vcvtss2usi32:
3732 case Intrinsic::x86_avx512_vcvtss2usi64:
3733 case Intrinsic::x86_avx512_vcvtsd2usi32:
3734 case Intrinsic::x86_avx512_vcvtsd2usi64:
3737 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3741 case Intrinsic::x86_avx512_cvttss2si:
3742 case Intrinsic::x86_avx512_cvttss2si64:
3743 case Intrinsic::x86_avx512_cvttsd2si:
3744 case Intrinsic::x86_avx512_cvttsd2si64:
3747 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3751 case Intrinsic::x86_avx512_cvttss2usi:
3752 case Intrinsic::x86_avx512_cvttss2usi64:
3753 case Intrinsic::x86_avx512_cvttsd2usi:
3754 case Intrinsic::x86_avx512_cvttsd2usi64:
3757 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3772 APFloat MA(Sem), SC(Sem), TC(Sem);
3785 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3807 switch (IntrinsicID) {
3810 case Intrinsic::amdgcn_cubeid:
3812 case Intrinsic::amdgcn_cubema:
3814 case Intrinsic::amdgcn_cubesc:
3816 case Intrinsic::amdgcn_cubetc:
3823 const APInt *C0, *C1, *C2;
3824 if (!getConstIntOrUndef(
Operands[0], C0) ||
3825 !getConstIntOrUndef(
Operands[1], C1) ||
3826 !getConstIntOrUndef(
Operands[2], C2))
3833 unsigned NumUndefBytes = 0;
3834 for (
unsigned I = 0;
I < 32;
I += 8) {
3843 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3847 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3849 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3852 Val.insertBits(
B,
I, 8);
3855 if (NumUndefBytes == 4)
3858 return ConstantInt::get(Ty, Val);
3872 const APFloat &C1 = Op1->getValueAPF();
3873 const APFloat &C2 = Op2->getValueAPF();
3874 const APFloat &C3 = Op3->getValueAPF();
3880 switch (IntrinsicID) {
3883 case Intrinsic::experimental_constrained_fma:
3884 case Intrinsic::experimental_constrained_fmuladd:
3888 if (mayFoldConstrained(
3890 return ConstantFP::get(Ty->getContext(), Res);
3894 switch (IntrinsicID) {
3896 case Intrinsic::amdgcn_fma_legacy: {
3902 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3906 case Intrinsic::fma:
3907 case Intrinsic::fmuladd: {
3910 return ConstantFP::get(Ty->getContext(), V);
3913 case Intrinsic::nvvm_fma_rm_f:
3914 case Intrinsic::nvvm_fma_rn_f:
3915 case Intrinsic::nvvm_fma_rp_f:
3916 case Intrinsic::nvvm_fma_rz_f:
3917 case Intrinsic::nvvm_fma_rm_d:
3918 case Intrinsic::nvvm_fma_rn_d:
3919 case Intrinsic::nvvm_fma_rp_d:
3920 case Intrinsic::nvvm_fma_rz_d:
3921 case Intrinsic::nvvm_fma_rm_ftz_f:
3922 case Intrinsic::nvvm_fma_rn_ftz_f:
3923 case Intrinsic::nvvm_fma_rp_ftz_f:
3924 case Intrinsic::nvvm_fma_rz_ftz_f: {
3926 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3927 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3928 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3938 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3939 return ConstantFP::get(Ty->getContext(), Res);
3944 case Intrinsic::amdgcn_cubeid:
3945 case Intrinsic::amdgcn_cubema:
3946 case Intrinsic::amdgcn_cubesc:
3947 case Intrinsic::amdgcn_cubetc: {
3948 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3949 return ConstantFP::get(Ty->getContext(), V);
3956 if (IntrinsicID == Intrinsic::smul_fix ||
3957 IntrinsicID == Intrinsic::smul_fix_sat) {
3958 const APInt *C0, *C1;
3959 if (!getConstIntOrUndef(
Operands[0], C0) ||
3960 !getConstIntOrUndef(
Operands[1], C1))
3976 assert(Scale < Width &&
"Illegal scale.");
3977 unsigned ExtendedWidth = Width * 2;
3979 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
3980 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3986 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
3989 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3990 const APInt *C0, *C1, *C2;
3991 if (!getConstIntOrUndef(
Operands[0], C0) ||
3992 !getConstIntOrUndef(
Operands[1], C1) ||
3993 !getConstIntOrUndef(
Operands[2], C2))
3996 bool IsRight = IntrinsicID == Intrinsic::fshr;
4010 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4011 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4013 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4015 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4016 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4019 if (IntrinsicID == Intrinsic::amdgcn_perm)
4020 return ConstantFoldAMDGCNPermIntrinsic(
Operands, Ty);
4037 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4041 ConstantFoldLibCall2(Name, Ty,
Operands, TLI)) {
4042 return FoldedLibCall;
4044 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty,
Operands,
Call);
4048 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4053static Constant *ConstantFoldFixedVectorCall(
4061 switch (IntrinsicID) {
4062 case Intrinsic::masked_load: {
4071 auto *MaskElt =
Mask->getAggregateElement(
I);
4074 auto *PassthruElt = Passthru->getAggregateElement(
I);
4084 if (MaskElt->isNullValue()) {
4088 }
else if (MaskElt->isOneValue()) {
4100 case Intrinsic::arm_mve_vctp8:
4101 case Intrinsic::arm_mve_vctp16:
4102 case Intrinsic::arm_mve_vctp32:
4103 case Intrinsic::arm_mve_vctp64: {
4109 for (
unsigned i = 0; i < Lanes; i++) {
4119 case Intrinsic::get_active_lane_mask: {
4125 uint64_t Limit = Op1->getZExtValue();
4128 for (
unsigned i = 0; i < Lanes; i++) {
4129 if (
Base + i < Limit)
4138 case Intrinsic::vector_extract: {
4145 unsigned VecNumElements =
4147 unsigned StartingIndex = Idx->getZExtValue();
4150 if (NumElements == VecNumElements && StartingIndex == 0)
4153 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4158 Result[
I - StartingIndex] = Elt;
4163 case Intrinsic::vector_insert: {
4170 unsigned SubVecNumElements =
4172 unsigned VecNumElements =
4174 unsigned IdxN = Idx->getZExtValue();
4176 if (SubVecNumElements == VecNumElements && IdxN == 0)
4179 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4181 if (
I < IdxN + SubVecNumElements)
4191 case Intrinsic::vector_interleave2: {
4192 unsigned NumElements =
4194 for (
unsigned I = 0;
I < NumElements; ++
I) {
4204 case Intrinsic::wasm_dot: {
4205 unsigned NumElements =
4209 "wasm dot takes i16x8 and produces i32x4");
4210 assert(Ty->isIntegerTy());
4211 int32_t MulVector[8];
4213 for (
unsigned I = 0;
I < NumElements; ++
I) {
4221 for (
unsigned I = 0;
I <
Result.size();
I++) {
4222 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4223 Result[
I] = ConstantInt::get(Ty, IAdd);
4234 for (
unsigned J = 0, JE =
Operands.size(); J != JE; ++J) {
4250 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4259static Constant *ConstantFoldScalableVectorCall(
4263 switch (IntrinsicID) {
4264 case Intrinsic::aarch64_sve_convert_from_svbool: {
4266 if (!Src || !Src->isNullValue())
4271 case Intrinsic::get_active_lane_mask: {
4274 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4300 Constant *Folded = ConstantFoldScalarCall(
4307static std::pair<Constant *, Constant *>
4316 const APFloat &U = ConstFP->getValueAPF();
4319 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4326 return {Result0, Result1};
4336 switch (IntrinsicID) {
4337 case Intrinsic::frexp: {
4345 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4347 std::tie(Results0[
I], Results1[
I]) =
4348 ConstantFoldScalarFrexpCall(Lane, Ty1);
4357 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(
Operands[0], Ty1);
4362 case Intrinsic::sincos: {
4366 auto ConstantFoldScalarSincosCall =
4367 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4369 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4371 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4372 return std::make_pair(SinResult, CosResult);
4381 std::tie(SinResults[
I], CosResults[
I]) =
4382 ConstantFoldScalarSincosCall(Lane);
4383 if (!SinResults[
I] || !CosResults[
I])
4391 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(
Operands[0]);
4392 if (!SinResult || !CosResult)
4396 case Intrinsic::vector_deinterleave2: {
4409 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4411 for (
unsigned I = 0;
I < NumElements; ++
I) {
4425 return ConstantFoldScalarCall(Name, IntrinsicID, StTy,
Operands, TLI,
Call);
4441 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4447 bool AllowNonDeterministic) {
4448 if (
Call->isNoBuiltin())
4465 Type *Ty =
F->getReturnType();
4466 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4471 return ConstantFoldFixedVectorCall(
4475 return ConstantFoldScalableVectorCall(
4479 return ConstantFoldStructCall(Name, IID, StTy,
Operands,
4480 F->getDataLayout(), TLI,
Call);
4485 return ConstantFoldScalarCall(Name, IID, Ty,
Operands, TLI,
Call);
4492 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4502 if (
Call->arg_size() == 1) {
4512 case LibFunc_log10l:
4514 case LibFunc_log10f:
4515 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4518 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4524 if (OpC->getType()->isDoubleTy())
4526 if (OpC->getType()->isFloatTy())
4534 if (OpC->getType()->isDoubleTy())
4536 if (OpC->getType()->isFloatTy())
4546 return !
Op.isInfinity();
4550 case LibFunc_tanf: {
4553 Type *Ty = OpC->getType();
4554 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4555 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4581 if (OpC->getType()->isDoubleTy())
4583 if (OpC->getType()->isFloatTy())
4590 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4600 if (
Call->arg_size() == 2) {
4610 case LibFunc_powf: {
4614 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4616 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4624 case LibFunc_remainderl:
4625 case LibFunc_remainder:
4626 case LibFunc_remainderf:
4631 case LibFunc_atan2f:
4632 case LibFunc_atan2l:
4652 case Instruction::BitCast:
4655 case Instruction::Trunc: {
4663 Flags->NSW = ZExtC == SExtC;
4667 case Instruction::SExt:
4668 case Instruction::ZExt: {
4672 if (!CastInvC || CastInvC !=
C)
4674 if (Flags && CastOp == Instruction::ZExt) {
4678 Flags->NNeg = CastInvC == SExtInvC;
4699void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
mir Rename Register Operands
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
static constexpr roundingMode rmNearestTiesToAway
static constexpr roundingMode rmTowardNegative
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
opStatus
IEEE-754R 7: Default exception handling.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.