LLVM 22.0.0git
DebugInfoMetadata.cpp
Go to the documentation of this file.
1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
16#include "llvm/ADT/SetVector.h"
20#include "llvm/IR/Function.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
26
27#include <numeric>
28#include <optional>
29
30using namespace llvm;
31
32namespace llvm {
33// Use FS-AFDO discriminator.
35 "enable-fs-discriminator", cl::Hidden,
36 cl::desc("Enable adding flow sensitive discriminators"));
37
38// When true, preserves line and column number by picking one of the merged
39// location info in a deterministic manner to assist sample based PGO.
41 "pick-merged-source-locations", cl::init(false), cl::Hidden,
42 cl::desc("Preserve line and column number when merging locations."));
43} // namespace llvm
44
46 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
47}
48
49const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
50 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
51
53 : Variable(DVR->getVariable()),
54 Fragment(DVR->getExpression()->getFragmentInfo()),
55 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
56
60
61DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
62 unsigned Column, uint64_t AtomGroup, uint8_t AtomRank,
63 ArrayRef<Metadata *> MDs, bool ImplicitCode)
64 : MDNode(C, DILocationKind, Storage, MDs), AtomGroup(AtomGroup),
65 AtomRank(AtomRank) {
66 assert(AtomRank <= 7 && "AtomRank number should fit in 3 bits");
67 if (AtomGroup)
68 C.updateDILocationAtomGroupWaterline(AtomGroup + 1);
69
70 assert((MDs.size() == 1 || MDs.size() == 2) &&
71 "Expected a scope and optional inlined-at");
72 // Set line and column.
73 assert(Column < (1u << 16) && "Expected 16-bit column");
74
75 SubclassData32 = Line;
76 SubclassData16 = Column;
77
78 setImplicitCode(ImplicitCode);
79}
80
81static void adjustColumn(unsigned &Column) {
82 // Set to unknown on overflow. We only have 16 bits to play with here.
83 if (Column >= (1u << 16))
84 Column = 0;
85}
86
87DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
88 unsigned Column, Metadata *Scope,
89 Metadata *InlinedAt, bool ImplicitCode,
90 uint64_t AtomGroup, uint8_t AtomRank,
91 StorageType Storage, bool ShouldCreate) {
92 // Fixup column.
94
95 if (Storage == Uniqued) {
96 if (auto *N = getUniqued(Context.pImpl->DILocations,
97 DILocationInfo::KeyTy(Line, Column, Scope,
99 AtomGroup, AtomRank)))
100 return N;
101 if (!ShouldCreate)
102 return nullptr;
103 } else {
104 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
105 }
106
108 Ops.push_back(Scope);
109 if (InlinedAt)
110 Ops.push_back(InlinedAt);
111 return storeImpl(new (Ops.size(), Storage)
112 DILocation(Context, Storage, Line, Column, AtomGroup,
113 AtomRank, Ops, ImplicitCode),
114 Storage, Context.pImpl->DILocations);
115}
116
118 if (Locs.empty())
119 return nullptr;
120 if (Locs.size() == 1)
121 return Locs[0];
122 auto *Merged = Locs[0];
123 for (DILocation *L : llvm::drop_begin(Locs)) {
124 Merged = getMergedLocation(Merged, L);
125 if (Merged == nullptr)
126 break;
127 }
128 return Merged;
129}
130
132 DIScope *NewParent) {
133 TempMDNode ClonedScope = LBB->clone();
134 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(NewParent);
136 MDNode::replaceWithUniqued(std::move(ClonedScope)));
137}
138
139using LineColumn = std::pair<unsigned /* Line */, unsigned /* Column */>;
140
141/// Returns the location of DILocalScope, if present, or a default value.
143 assert(isa<DILocalScope>(S) && "Expected DILocalScope.");
144
146 return Default;
147 if (auto *LB = dyn_cast<DILexicalBlock>(S))
148 return {LB->getLine(), LB->getColumn()};
149 if (auto *SP = dyn_cast<DISubprogram>(S))
150 return {SP->getLine(), 0u};
151
152 llvm_unreachable("Unhandled type of DILocalScope.");
153}
154
155// Returns the nearest matching scope inside a subprogram.
156template <typename MatcherT>
157static std::pair<DIScope *, LineColumn>
159 MatcherT Matcher;
160
161 DIScope *S1 = L1->getScope();
162 DIScope *S2 = L2->getScope();
163
164 LineColumn Loc1(L1->getLine(), L1->getColumn());
165 for (; S1; S1 = S1->getScope()) {
166 Loc1 = getLocalScopeLocationOr(S1, Loc1);
167 Matcher.insert(S1, Loc1);
169 break;
170 }
171
172 LineColumn Loc2(L2->getLine(), L2->getColumn());
173 for (; S2; S2 = S2->getScope()) {
174 Loc2 = getLocalScopeLocationOr(S2, Loc2);
175
176 if (DIScope *S = Matcher.match(S2, Loc2))
177 return std::make_pair(S, Loc2);
178
179 if (isa<DISubprogram>(S2))
180 break;
181 }
182 return std::make_pair(nullptr, LineColumn(L2->getLine(), L2->getColumn()));
183}
184
185// Matches equal scopes.
188
189 void insert(DIScope *S, LineColumn Loc) { Scopes.insert(S); }
190
192 return Scopes.contains(S) ? S : nullptr;
193 }
194};
195
196// Matches scopes with the same location.
199 8>
201
203 Scopes[{S->getFile(), Loc}].insert(S);
204 }
205
207 auto ScopesAtLoc = Scopes.find({S->getFile(), Loc});
208 // No scope found with the given location.
209 if (ScopesAtLoc == Scopes.end())
210 return nullptr;
211
212 // Prefer S over other scopes with the same location.
213 if (ScopesAtLoc->second.contains(S))
214 return S;
215
216 if (!ScopesAtLoc->second.empty())
217 return *ScopesAtLoc->second.begin();
218
219 llvm_unreachable("Scopes must not have empty entries.");
220 }
221};
222
223DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
224 if (LocA == LocB)
225 return LocA;
226
227 // For some use cases (SamplePGO), it is important to retain distinct source
228 // locations. When this flag is set, we choose arbitrarily between A and B,
229 // rather than computing a merged location using line 0, which is typically
230 // not useful for PGO. If one of them is null, then try to return one which is
231 // valid.
233 if (!LocA || !LocB)
234 return LocA ? LocA : LocB;
235
236 auto A = std::make_tuple(LocA->getLine(), LocA->getColumn(),
237 LocA->getDiscriminator(), LocA->getFilename(),
238 LocA->getDirectory());
239 auto B = std::make_tuple(LocB->getLine(), LocB->getColumn(),
240 LocB->getDiscriminator(), LocB->getFilename(),
241 LocB->getDirectory());
242 return A < B ? LocA : LocB;
243 }
244
245 if (!LocA || !LocB)
246 return nullptr;
247
248 LLVMContext &C = LocA->getContext();
249
250 using LocVec = SmallVector<const DILocation *>;
251 LocVec ALocs;
252 LocVec BLocs;
254 4>
255 ALookup;
256
257 // Walk through LocA and its inlined-at locations, populate them in ALocs and
258 // save the index for the subprogram and inlined-at pair, which we use to find
259 // a matching starting location in LocB's chain.
260 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
261 ALocs.push_back(L);
262 auto Res = ALookup.try_emplace(
263 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
264 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
265 (void)Res;
266 }
267
268 LocVec::reverse_iterator ARIt = ALocs.rend();
269 LocVec::reverse_iterator BRIt = BLocs.rend();
270
271 // Populate BLocs and look for a matching starting location, the first
272 // location with the same subprogram and inlined-at location as in LocA's
273 // chain. Since the two locations have the same inlined-at location we do
274 // not need to look at those parts of the chains.
275 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
276 BLocs.push_back(L);
277
278 if (ARIt != ALocs.rend())
279 // We have already found a matching starting location.
280 continue;
281
282 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
283 if (IT == ALookup.end())
284 continue;
285
286 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
287 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
288 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
289
290 // If we have found a matching starting location we do not need to add more
291 // locations to BLocs, since we will only look at location pairs preceding
292 // the matching starting location, and adding more elements to BLocs could
293 // invalidate the iterator that we initialized here.
294 break;
295 }
296
297 // Merge the two locations if possible, using the supplied
298 // inlined-at location for the created location.
299 auto *LocAIA = LocA->getInlinedAt();
300 auto *LocBIA = LocB->getInlinedAt();
301 auto MergeLocPair = [&C, LocAIA,
302 LocBIA](const DILocation *L1, const DILocation *L2,
303 DILocation *InlinedAt) -> DILocation * {
304 if (L1 == L2)
305 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
306 InlinedAt, L1->isImplicitCode(),
307 L1->getAtomGroup(), L1->getAtomRank());
308
309 // If the locations originate from different subprograms we can't produce
310 // a common location.
311 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
312 return nullptr;
313
314 // Find nearest common scope inside subprogram.
316 assert(Scope && "No common scope in the same subprogram?");
317
318 // Try using the nearest scope with common location if files are different.
319 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) {
320 auto [CommonLocScope, CommonLoc] =
322
323 // If CommonLocScope is a DILexicalBlockBase, clone it and locate
324 // a new scope inside the nearest common scope to preserve
325 // lexical blocks structure.
326 if (auto *LBB = dyn_cast<DILexicalBlockBase>(CommonLocScope);
327 LBB && LBB != Scope)
328 CommonLocScope = cloneAndReplaceParentScope(LBB, Scope);
329
330 Scope = CommonLocScope;
331
332 // If files are still different, assume that L1 and L2 were "included"
333 // from CommonLoc. Use it as merged location.
334 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile())
335 return DILocation::get(C, CommonLoc.first, CommonLoc.second,
336 CommonLocScope, InlinedAt);
337 }
338
339 bool SameLine = L1->getLine() == L2->getLine();
340 bool SameCol = L1->getColumn() == L2->getColumn();
341 unsigned Line = SameLine ? L1->getLine() : 0;
342 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
343 bool IsImplicitCode = L1->isImplicitCode() && L2->isImplicitCode();
344
345 // Discard source location atom if the line becomes 0. And there's nothing
346 // further to do if neither location has an atom number.
347 if (!SameLine || !(L1->getAtomGroup() || L2->getAtomGroup()))
348 return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode,
349 /*AtomGroup*/ 0, /*AtomRank*/ 0);
350
351 uint64_t Group = 0;
352 uint64_t Rank = 0;
353 // If we're preserving the same matching inlined-at field we can
354 // preserve the atom.
355 if (LocBIA == LocAIA && InlinedAt == LocBIA) {
356 // Deterministically keep the lowest non-zero ranking atom group
357 // number.
358 // FIXME: It would be nice if we could track that an instruction
359 // belongs to two source atoms.
360 bool UseL1Atom = [L1, L2]() {
361 if (L1->getAtomRank() == L2->getAtomRank()) {
362 // Arbitrarily choose the lowest non-zero group number.
363 if (!L1->getAtomGroup() || !L2->getAtomGroup())
364 return !L2->getAtomGroup();
365 return L1->getAtomGroup() < L2->getAtomGroup();
366 }
367 // Choose the lowest non-zero rank.
368 if (!L1->getAtomRank() || !L2->getAtomRank())
369 return !L2->getAtomRank();
370 return L1->getAtomRank() < L2->getAtomRank();
371 }();
372 Group = UseL1Atom ? L1->getAtomGroup() : L2->getAtomGroup();
373 Rank = UseL1Atom ? L1->getAtomRank() : L2->getAtomRank();
374 } else {
375 // If either instruction is part of a source atom, reassign it a new
376 // atom group. This essentially regresses to non-key-instructions
377 // behaviour (now that it's the only instruction in its group it'll
378 // probably get is_stmt applied).
379 Group = C.incNextDILocationAtomGroup();
380 Rank = 1;
381 }
382 return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode,
383 Group, Rank);
384 };
385
386 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
387
388 // If we have found a common starting location, walk up the inlined-at chains
389 // and try to produce common locations.
390 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
391 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
392
393 if (!Tmp)
394 // We have walked up to a point in the chains where the two locations
395 // are irreconsilable. At this point Result contains the nearest common
396 // location in the inlined-at chains of LocA and LocB, so we break here.
397 break;
398
399 Result = Tmp;
400 }
401
402 if (Result)
403 return Result;
404
405 // We ended up with LocA and LocB as irreconsilable locations. Produce a
406 // location at 0:0 with one of the locations' scope. The function has
407 // historically picked A's scope, and a nullptr inlined-at location, so that
408 // behavior is mimicked here but I am not sure if this is always the correct
409 // way to handle this.
410 // Key Instructions: it's fine to drop atom group and rank here, as line 0
411 // is a nonsensical is_stmt location.
412 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr, false,
413 /*AtomGroup*/ 0, /*AtomRank*/ 0);
414}
415
416std::optional<unsigned>
417DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
418 std::array<unsigned, 3> Components = {BD, DF, CI};
419 uint64_t RemainingWork = 0U;
420 // We use RemainingWork to figure out if we have no remaining components to
421 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
422 // encode anything for the latter 2.
423 // Since any of the input components is at most 32 bits, their sum will be
424 // less than 34 bits, and thus RemainingWork won't overflow.
425 RemainingWork =
426 std::accumulate(Components.begin(), Components.end(), RemainingWork);
427
428 int I = 0;
429 unsigned Ret = 0;
430 unsigned NextBitInsertionIndex = 0;
431 while (RemainingWork > 0) {
432 unsigned C = Components[I++];
433 RemainingWork -= C;
434 unsigned EC = encodeComponent(C);
435 Ret |= (EC << NextBitInsertionIndex);
436 NextBitInsertionIndex += encodingBits(C);
437 }
438
439 // Encoding may be unsuccessful because of overflow. We determine success by
440 // checking equivalence of components before & after encoding. Alternatively,
441 // we could determine Success during encoding, but the current alternative is
442 // simpler.
443 unsigned TBD, TDF, TCI = 0;
444 decodeDiscriminator(Ret, TBD, TDF, TCI);
445 if (TBD == BD && TDF == DF && TCI == CI)
446 return Ret;
447 return std::nullopt;
448}
449
458
460 return StringSwitch<DIFlags>(Flag)
461#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
462#include "llvm/IR/DebugInfoFlags.def"
463 .Default(DINode::FlagZero);
464}
465
467 switch (Flag) {
468#define HANDLE_DI_FLAG(ID, NAME) \
469 case Flag##NAME: \
470 return "DIFlag" #NAME;
471#include "llvm/IR/DebugInfoFlags.def"
472 }
473 return "";
474}
475
477 SmallVectorImpl<DIFlags> &SplitFlags) {
478 // Flags that are packed together need to be specially handled, so
479 // that, for example, we emit "DIFlagPublic" and not
480 // "DIFlagPrivate | DIFlagProtected".
481 if (DIFlags A = Flags & FlagAccessibility) {
482 if (A == FlagPrivate)
483 SplitFlags.push_back(FlagPrivate);
484 else if (A == FlagProtected)
485 SplitFlags.push_back(FlagProtected);
486 else
487 SplitFlags.push_back(FlagPublic);
488 Flags &= ~A;
489 }
490 if (DIFlags R = Flags & FlagPtrToMemberRep) {
491 if (R == FlagSingleInheritance)
492 SplitFlags.push_back(FlagSingleInheritance);
493 else if (R == FlagMultipleInheritance)
494 SplitFlags.push_back(FlagMultipleInheritance);
495 else
496 SplitFlags.push_back(FlagVirtualInheritance);
497 Flags &= ~R;
498 }
499 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
500 Flags &= ~FlagIndirectVirtualBase;
501 SplitFlags.push_back(FlagIndirectVirtualBase);
502 }
503
504#define HANDLE_DI_FLAG(ID, NAME) \
505 if (DIFlags Bit = Flags & Flag##NAME) { \
506 SplitFlags.push_back(Bit); \
507 Flags &= ~Bit; \
508 }
509#include "llvm/IR/DebugInfoFlags.def"
510 return Flags;
511}
512
514 if (auto *T = dyn_cast<DIType>(this))
515 return T->getScope();
516
517 if (auto *SP = dyn_cast<DISubprogram>(this))
518 return SP->getScope();
519
520 if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
521 return LB->getScope();
522
523 if (auto *NS = dyn_cast<DINamespace>(this))
524 return NS->getScope();
525
526 if (auto *CB = dyn_cast<DICommonBlock>(this))
527 return CB->getScope();
528
529 if (auto *M = dyn_cast<DIModule>(this))
530 return M->getScope();
531
532 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
533 "Unhandled type of scope.");
534 return nullptr;
535}
536
538 if (auto *T = dyn_cast<DIType>(this))
539 return T->getName();
540 if (auto *SP = dyn_cast<DISubprogram>(this))
541 return SP->getName();
542 if (auto *NS = dyn_cast<DINamespace>(this))
543 return NS->getName();
544 if (auto *CB = dyn_cast<DICommonBlock>(this))
545 return CB->getName();
546 if (auto *M = dyn_cast<DIModule>(this))
547 return M->getName();
549 isa<DICompileUnit>(this)) &&
550 "Unhandled type of scope.");
551 return "";
552}
553
554#ifndef NDEBUG
555static bool isCanonical(const MDString *S) {
556 return !S || !S->getString().empty();
557}
558#endif
559
561GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
562 MDString *Header,
563 ArrayRef<Metadata *> DwarfOps,
564 StorageType Storage, bool ShouldCreate) {
565 unsigned Hash = 0;
566 if (Storage == Uniqued) {
567 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
568 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
569 return N;
570 if (!ShouldCreate)
571 return nullptr;
572 Hash = Key.getHash();
573 } else {
574 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
575 }
576
577 // Use a nullptr for empty headers.
578 assert(isCanonical(Header) && "Expected canonical MDString");
579 Metadata *PreOps[] = {Header};
580 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
581 Context, Storage, Hash, Tag, PreOps, DwarfOps),
582 Storage, Context.pImpl->GenericDINodes);
583}
584
585void GenericDINode::recalculateHash() {
586 setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
587}
588
589#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
590#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
591#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
592 do { \
593 if (Storage == Uniqued) { \
594 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
595 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
596 return N; \
597 if (!ShouldCreate) \
598 return nullptr; \
599 } else { \
600 assert(ShouldCreate && \
601 "Expected non-uniqued nodes to always be created"); \
602 } \
603 } while (false)
604#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
605 return storeImpl(new (std::size(OPS), Storage) \
606 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
607 Storage, Context.pImpl->CLASS##s)
608#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
609 return storeImpl(new (0u, Storage) \
610 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
611 Storage, Context.pImpl->CLASS##s)
612#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
613 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
614 Storage, Context.pImpl->CLASS##s)
615#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
616 return storeImpl(new (NUM_OPS, Storage) \
617 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
618 Storage, Context.pImpl->CLASS##s)
619
620DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
622 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
623DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
624 StorageType Storage, bool ShouldCreate) {
627 auto *LB = ConstantAsMetadata::get(
629 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
630 ShouldCreate);
631}
632
633DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
634 int64_t Lo, StorageType Storage,
635 bool ShouldCreate) {
636 auto *LB = ConstantAsMetadata::get(
638 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
639 ShouldCreate);
640}
641
642DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
643 Metadata *LB, Metadata *UB, Metadata *Stride,
644 StorageType Storage, bool ShouldCreate) {
645 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
646 Metadata *Ops[] = {CountNode, LB, UB, Stride};
648}
649
650DISubrange::BoundType DISubrange::getCount() const {
651 Metadata *CB = getRawCountNode();
652 if (!CB)
653 return BoundType();
654
656 isa<DIExpression>(CB)) &&
657 "Count must be signed constant or DIVariable or DIExpression");
658
659 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
660 return BoundType(cast<ConstantInt>(MD->getValue()));
661
662 if (auto *MD = dyn_cast<DIVariable>(CB))
663 return BoundType(MD);
664
665 if (auto *MD = dyn_cast<DIExpression>(CB))
666 return BoundType(MD);
667
668 return BoundType();
669}
670
671DISubrange::BoundType DISubrange::getLowerBound() const {
672 Metadata *LB = getRawLowerBound();
673 if (!LB)
674 return BoundType();
675
677 isa<DIExpression>(LB)) &&
678 "LowerBound must be signed constant or DIVariable or DIExpression");
679
680 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
681 return BoundType(cast<ConstantInt>(MD->getValue()));
682
683 if (auto *MD = dyn_cast<DIVariable>(LB))
684 return BoundType(MD);
685
686 if (auto *MD = dyn_cast<DIExpression>(LB))
687 return BoundType(MD);
688
689 return BoundType();
690}
691
692DISubrange::BoundType DISubrange::getUpperBound() const {
693 Metadata *UB = getRawUpperBound();
694 if (!UB)
695 return BoundType();
696
698 isa<DIExpression>(UB)) &&
699 "UpperBound must be signed constant or DIVariable or DIExpression");
700
701 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
702 return BoundType(cast<ConstantInt>(MD->getValue()));
703
704 if (auto *MD = dyn_cast<DIVariable>(UB))
705 return BoundType(MD);
706
707 if (auto *MD = dyn_cast<DIExpression>(UB))
708 return BoundType(MD);
709
710 return BoundType();
711}
712
713DISubrange::BoundType DISubrange::getStride() const {
714 Metadata *ST = getRawStride();
715 if (!ST)
716 return BoundType();
717
719 isa<DIExpression>(ST)) &&
720 "Stride must be signed constant or DIVariable or DIExpression");
721
722 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
723 return BoundType(cast<ConstantInt>(MD->getValue()));
724
725 if (auto *MD = dyn_cast<DIVariable>(ST))
726 return BoundType(MD);
727
728 if (auto *MD = dyn_cast<DIExpression>(ST))
729 return BoundType(MD);
730
731 return BoundType();
732}
733DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
735 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
736 Ops) {}
737
738DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
739 Metadata *CountNode, Metadata *LB,
740 Metadata *UB, Metadata *Stride,
741 StorageType Storage,
742 bool ShouldCreate) {
743 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
744 Metadata *Ops[] = {CountNode, LB, UB, Stride};
746}
747
750 if (!CB)
751 return BoundType();
752
754 "Count must be signed constant or DIVariable or DIExpression");
755
756 if (auto *MD = dyn_cast<DIVariable>(CB))
757 return BoundType(MD);
758
759 if (auto *MD = dyn_cast<DIExpression>(CB))
760 return BoundType(MD);
761
762 return BoundType();
763}
764
767 if (!LB)
768 return BoundType();
769
771 "LowerBound must be signed constant or DIVariable or DIExpression");
772
773 if (auto *MD = dyn_cast<DIVariable>(LB))
774 return BoundType(MD);
775
776 if (auto *MD = dyn_cast<DIExpression>(LB))
777 return BoundType(MD);
778
779 return BoundType();
780}
781
784 if (!UB)
785 return BoundType();
786
788 "UpperBound must be signed constant or DIVariable or DIExpression");
789
790 if (auto *MD = dyn_cast<DIVariable>(UB))
791 return BoundType(MD);
792
793 if (auto *MD = dyn_cast<DIExpression>(UB))
794 return BoundType(MD);
795
796 return BoundType();
797}
798
800 Metadata *ST = getRawStride();
801 if (!ST)
802 return BoundType();
803
805 "Stride must be signed constant or DIVariable or DIExpression");
806
807 if (auto *MD = dyn_cast<DIVariable>(ST))
808 return BoundType(MD);
809
810 if (auto *MD = dyn_cast<DIExpression>(ST))
811 return BoundType(MD);
812
813 return BoundType();
814}
815
816DISubrangeType::DISubrangeType(LLVMContext &C, StorageType Storage,
817 unsigned Line, uint32_t AlignInBits,
818 DIFlags Flags, ArrayRef<Metadata *> Ops)
819 : DIType(C, DISubrangeTypeKind, Storage, dwarf::DW_TAG_subrange_type, Line,
820 AlignInBits, 0, Flags, Ops) {}
821
822DISubrangeType *DISubrangeType::getImpl(
823 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
824 Metadata *Scope, Metadata *SizeInBits, uint32_t AlignInBits, DIFlags Flags,
825 Metadata *BaseType, Metadata *LowerBound, Metadata *UpperBound,
826 Metadata *Stride, Metadata *Bias, StorageType Storage, bool ShouldCreate) {
827 assert(isCanonical(Name) && "Expected canonical MDString");
829 AlignInBits, Flags, BaseType,
831 Metadata *Ops[] = {File, Scope, Name, SizeInBits, nullptr,
833 DEFINE_GETIMPL_STORE(DISubrangeType, (Line, AlignInBits, Flags), Ops);
834}
835
837DISubrangeType::convertRawToBound(Metadata *IN) const {
838 if (!IN)
839 return BoundType();
840
843
844 if (auto *MD = dyn_cast<ConstantAsMetadata>(IN))
845 return BoundType(cast<ConstantInt>(MD->getValue()));
846
847 if (auto *MD = dyn_cast<DIVariable>(IN))
848 return BoundType(MD);
849
850 if (auto *MD = dyn_cast<DIExpression>(IN))
851 return BoundType(MD);
852
853 return BoundType();
854}
855
856DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
857 const APInt &Value, bool IsUnsigned,
859 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
860 Value(Value) {
861 SubclassData32 = IsUnsigned;
862}
863DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
864 bool IsUnsigned, MDString *Name,
865 StorageType Storage, bool ShouldCreate) {
866 assert(isCanonical(Name) && "Expected canonical MDString");
867 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
868 Metadata *Ops[] = {Name};
869 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
870}
871
874 uint32_t AlignInBits, unsigned Encoding,
876 StorageType Storage, bool ShouldCreate) {
877 assert(isCanonical(Name) && "Expected canonical MDString");
879 Encoding, NumExtraInhabitants, Flags));
880 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
883 Ops);
884}
885
886std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
887 switch (getEncoding()) {
888 case dwarf::DW_ATE_signed:
889 case dwarf::DW_ATE_signed_char:
890 case dwarf::DW_ATE_signed_fixed:
891 return Signedness::Signed;
892 case dwarf::DW_ATE_unsigned:
893 case dwarf::DW_ATE_unsigned_char:
894 case dwarf::DW_ATE_unsigned_fixed:
896 default:
897 return std::nullopt;
898 }
899}
900
902DIFixedPointType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
903 Metadata *SizeInBits, uint32_t AlignInBits,
904 unsigned Encoding, DIFlags Flags, unsigned Kind,
905 int Factor, APInt Numerator, APInt Denominator,
906 StorageType Storage, bool ShouldCreate) {
909 Kind, Factor, Numerator, Denominator));
910 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
913 (Tag, AlignInBits, Encoding, Flags, Kind, Factor, Numerator, Denominator),
914 Ops);
915}
916
918 return getEncoding() == dwarf::DW_ATE_signed_fixed;
919}
920
921std::optional<DIFixedPointType::FixedPointKind>
924 .Case("Binary", FixedPointBinary)
925 .Case("Decimal", FixedPointDecimal)
926 .Case("Rational", FixedPointRational)
927 .Default(std::nullopt);
928}
929
931 switch (V) {
932 case FixedPointBinary:
933 return "Binary";
935 return "Decimal";
937 return "Rational";
938 }
939 return nullptr;
940}
941
942DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
943 MDString *Name, Metadata *StringLength,
944 Metadata *StringLengthExp,
945 Metadata *StringLocationExp,
946 Metadata *SizeInBits, uint32_t AlignInBits,
947 unsigned Encoding, StorageType Storage,
948 bool ShouldCreate) {
949 assert(isCanonical(Name) && "Expected canonical MDString");
953 Metadata *Ops[] = {nullptr, nullptr, Name,
954 SizeInBits, nullptr, StringLength,
957}
959 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
961}
963 assert(getTag() == dwarf::DW_TAG_inheritance);
965 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
966 return static_cast<uint32_t>(CI->getZExtValue());
967 return 0;
968}
970 assert(getTag() == dwarf::DW_TAG_member && isBitField());
972 return C->getValue();
973 return nullptr;
974}
975
977 assert((getTag() == dwarf::DW_TAG_member ||
978 getTag() == dwarf::DW_TAG_variable) &&
981 return C->getValue();
982 return nullptr;
983}
985 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
987 return C->getValue();
988 return nullptr;
989}
990
991DIDerivedType *DIDerivedType::getImpl(
992 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
993 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
994 uint32_t AlignInBits, Metadata *OffsetInBits,
995 std::optional<unsigned> DWARFAddressSpace,
996 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
997 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
998 assert(isCanonical(Name) && "Expected canonical MDString");
1000 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1002 PtrAuthData, Flags, ExtraData, Annotations));
1003 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1004 OffsetInBits, BaseType, ExtraData, Annotations};
1007 (Tag, Line, AlignInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops);
1008}
1009
1010std::optional<DIDerivedType::PtrAuthData>
1011DIDerivedType::getPtrAuthData() const {
1012 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
1013 ? std::make_optional<PtrAuthData>(SubclassData32)
1014 : std::nullopt;
1015}
1016
1017DICompositeType *DICompositeType::getImpl(
1018 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1019 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1020 uint32_t AlignInBits, Metadata *OffsetInBits, DIFlags Flags,
1021 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1022 Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier,
1023 Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated,
1024 Metadata *Allocated, Metadata *Rank, Metadata *Annotations,
1025 Metadata *Specification, uint32_t NumExtraInhabitants, Metadata *BitStride,
1026 StorageType Storage, bool ShouldCreate) {
1027 assert(isCanonical(Name) && "Expected canonical MDString");
1028
1029 // Keep this in sync with buildODRType.
1031 DICompositeType,
1041 DEFINE_GETIMPL_STORE(DICompositeType,
1042 (Tag, Line, RuntimeLang, AlignInBits,
1043 NumExtraInhabitants, EnumKind, Flags),
1044 Ops);
1045}
1046
1048 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1052 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1056 assert(!Identifier.getString().empty() && "Expected valid identifier");
1057 if (!Context.isODRUniquingDebugTypes())
1058 return nullptr;
1059 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1060 if (!CT)
1061 return CT = DICompositeType::getDistinct(
1062 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1063 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
1067 if (CT->getTag() != Tag)
1068 return nullptr;
1069
1070 // Only mutate CT if it's a forward declaration and the new operands aren't.
1071 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
1072 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
1073 return CT;
1074
1075 // Mutate CT in place. Keep this in sync with getImpl.
1076 CT->mutate(Tag, Line, RuntimeLang, AlignInBits, NumExtraInhabitants, EnumKind,
1077 Flags);
1083 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
1084 "Mismatched number of operands");
1085 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
1086 if (Ops[I] != CT->getOperand(I))
1087 CT->setOperand(I, Ops[I]);
1088 return CT;
1089}
1090
1091DICompositeType *DICompositeType::getODRType(
1092 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1093 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1094 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1095 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1096 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1097 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1098 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1099 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1100 assert(!Identifier.getString().empty() && "Expected valid identifier");
1101 if (!Context.isODRUniquingDebugTypes())
1102 return nullptr;
1103 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1104 if (!CT) {
1106 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1111 } else {
1112 if (CT->getTag() != Tag)
1113 return nullptr;
1114 }
1115 return CT;
1116}
1117
1120 assert(!Identifier.getString().empty() && "Expected valid identifier");
1121 if (!Context.isODRUniquingDebugTypes())
1122 return nullptr;
1123 return Context.pImpl->DITypeMap->lookup(&Identifier);
1124}
1125DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
1126 DIFlags Flags, uint8_t CC,
1128 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
1129 0, 0, Flags, Ops),
1130 CC(CC) {}
1131
1132DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
1133 uint8_t CC, Metadata *TypeArray,
1134 StorageType Storage,
1135 bool ShouldCreate) {
1137 Metadata *Ops[] = {nullptr, nullptr, nullptr, nullptr, nullptr, TypeArray};
1138 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
1139}
1140
1141DIFile::DIFile(LLVMContext &C, StorageType Storage,
1142 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
1144 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
1145 Checksum(CS), Source(Src) {}
1146
1147// FIXME: Implement this string-enum correspondence with a .def file and macros,
1148// so that the association is explicit rather than implied.
1149static const char *ChecksumKindName[DIFile::CSK_Last] = {
1150 "CSK_MD5",
1151 "CSK_SHA1",
1152 "CSK_SHA256",
1153};
1154
1155StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
1156 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
1157 // The first space was originally the CSK_None variant, which is now
1158 // obsolete, but the space is still reserved in ChecksumKind, so we account
1159 // for it here.
1160 return ChecksumKindName[CSKind - 1];
1161}
1162
1163std::optional<DIFile::ChecksumKind>
1166 .Case("CSK_MD5", DIFile::CSK_MD5)
1167 .Case("CSK_SHA1", DIFile::CSK_SHA1)
1168 .Case("CSK_SHA256", DIFile::CSK_SHA256)
1169 .Default(std::nullopt);
1170}
1171
1172DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
1173 MDString *Directory,
1174 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
1175 MDString *Source, StorageType Storage,
1176 bool ShouldCreate) {
1177 assert(isCanonical(Filename) && "Expected canonical MDString");
1178 assert(isCanonical(Directory) && "Expected canonical MDString");
1179 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
1180 // We do *NOT* expect Source to be a canonical MDString because nullptr
1181 // means none, so we need something to represent the empty file.
1183 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
1185}
1186DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
1187 unsigned SourceLanguage, bool IsOptimized,
1188 unsigned RuntimeVersion, unsigned EmissionKind,
1189 uint64_t DWOId, bool SplitDebugInlining,
1190 bool DebugInfoForProfiling, unsigned NameTableKind,
1191 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
1192 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
1193 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
1195 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
1196 DebugInfoForProfiling(DebugInfoForProfiling),
1197 RangesBaseAddress(RangesBaseAddress) {
1199}
1200
1201DICompileUnit *DICompileUnit::getImpl(
1202 LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
1203 MDString *Producer, bool IsOptimized, MDString *Flags,
1204 unsigned RuntimeVersion, MDString *SplitDebugFilename,
1205 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
1206 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
1207 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
1208 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
1209 MDString *SDK, StorageType Storage, bool ShouldCreate) {
1210 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
1211 assert(isCanonical(Producer) && "Expected canonical MDString");
1212 assert(isCanonical(Flags) && "Expected canonical MDString");
1213 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
1214
1215 Metadata *Ops[] = {File,
1216 Producer,
1217 Flags,
1219 EnumTypes,
1223 Macros,
1224 SysRoot,
1225 SDK};
1226 return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
1227 Context, Storage, SourceLanguage, IsOptimized,
1228 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
1229 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
1230 Ops),
1231 Storage);
1232}
1233
1234std::optional<DICompileUnit::DebugEmissionKind>
1237 .Case("NoDebug", NoDebug)
1238 .Case("FullDebug", FullDebug)
1239 .Case("LineTablesOnly", LineTablesOnly)
1240 .Case("DebugDirectivesOnly", DebugDirectivesOnly)
1241 .Default(std::nullopt);
1242}
1243
1244std::optional<DICompileUnit::DebugNameTableKind>
1253
1255 switch (EK) {
1256 case NoDebug:
1257 return "NoDebug";
1258 case FullDebug:
1259 return "FullDebug";
1260 case LineTablesOnly:
1261 return "LineTablesOnly";
1263 return "DebugDirectivesOnly";
1264 }
1265 return nullptr;
1266}
1267
1269 switch (NTK) {
1271 return nullptr;
1273 return "GNU";
1275 return "Apple";
1277 return "None";
1278 }
1279 return nullptr;
1280}
1281DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1282 unsigned ScopeLine, unsigned VirtualIndex,
1283 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1284 bool UsesKeyInstructions, ArrayRef<Metadata *> Ops)
1285 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1286 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1287 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1288 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1289 SubclassData1 = UsesKeyInstructions;
1290}
1292DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1293 unsigned Virtuality, bool IsMainSubprogram) {
1294 // We're assuming virtuality is the low-order field.
1295 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1296 int(SPFlagPureVirtual) ==
1297 int(dwarf::DW_VIRTUALITY_pure_virtual),
1298 "Virtuality constant mismatch");
1299 return static_cast<DISPFlags>(
1300 (Virtuality & SPFlagVirtuality) |
1301 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1302 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1303 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1304 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1305}
1306
1308 if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1309 return Block->getScope()->getSubprogram();
1310 return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1311}
1312
1314 if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1315 return File->getScope()->getNonLexicalBlockFileScope();
1316 return const_cast<DILocalScope *>(this);
1317}
1318
1320 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1322 SmallVector<DIScope *> ScopeChain;
1323 DIScope *CachedResult = nullptr;
1324
1325 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1326 Scope = Scope->getScope()) {
1327 if (auto It = Cache.find(Scope); It != Cache.end()) {
1328 CachedResult = cast<DIScope>(It->second);
1329 break;
1330 }
1331 ScopeChain.push_back(Scope);
1332 }
1333
1334 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1335 // cached result).
1336 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1337 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1338 UpdatedScope = cloneAndReplaceParentScope(
1339 cast<DILexicalBlockBase>(ScopeToUpdate), UpdatedScope);
1340 Cache[ScopeToUpdate] = UpdatedScope;
1341 }
1342
1343 return cast<DILocalScope>(UpdatedScope);
1344}
1345
1347 return StringSwitch<DISPFlags>(Flag)
1348#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1349#include "llvm/IR/DebugInfoFlags.def"
1350 .Default(SPFlagZero);
1351}
1352
1354 switch (Flag) {
1355 // Appease a warning.
1356 case SPFlagVirtuality:
1357 return "";
1358#define HANDLE_DISP_FLAG(ID, NAME) \
1359 case SPFlag##NAME: \
1360 return "DISPFlag" #NAME;
1361#include "llvm/IR/DebugInfoFlags.def"
1362 }
1363 return "";
1364}
1365
1368 SmallVectorImpl<DISPFlags> &SplitFlags) {
1369 // Multi-bit fields can require special handling. In our case, however, the
1370 // only multi-bit field is virtuality, and all its values happen to be
1371 // single-bit values, so the right behavior just falls out.
1372#define HANDLE_DISP_FLAG(ID, NAME) \
1373 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1374 SplitFlags.push_back(Bit); \
1375 Flags &= ~Bit; \
1376 }
1377#include "llvm/IR/DebugInfoFlags.def"
1378 return Flags;
1379}
1380
1381DISubprogram *DISubprogram::getImpl(
1382 LLVMContext &Context, Metadata *Scope, MDString *Name,
1383 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1384 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1385 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1386 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1387 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1388 bool UsesKeyInstructions, StorageType Storage, bool ShouldCreate) {
1389 assert(isCanonical(Name) && "Expected canonical MDString");
1390 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1391 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1393 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1399 File, Scope, Name, LinkageName,
1403 if (!TargetFuncName) {
1404 Ops.pop_back();
1405 if (!Annotations) {
1406 Ops.pop_back();
1407 if (!ThrownTypes) {
1408 Ops.pop_back();
1409 if (!TemplateParams) {
1410 Ops.pop_back();
1411 if (!ContainingType)
1412 Ops.pop_back();
1413 }
1414 }
1415 }
1416 }
1417 DEFINE_GETIMPL_STORE_N(DISubprogram,
1418 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags,
1419 SPFlags, UsesKeyInstructions),
1420 Ops, Ops.size());
1421}
1422
1423bool DISubprogram::describes(const Function *F) const {
1424 assert(F && "Invalid function");
1425 return F->getSubprogram() == this;
1426}
1431
1432DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1433 Metadata *File, unsigned Line,
1434 unsigned Column, StorageType Storage,
1435 bool ShouldCreate) {
1436 // Fixup column.
1438
1439 assert(Scope && "Expected scope");
1441 Metadata *Ops[] = {File, Scope};
1443}
1444
1445DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1446 Metadata *Scope, Metadata *File,
1447 unsigned Discriminator,
1448 StorageType Storage,
1449 bool ShouldCreate) {
1450 assert(Scope && "Expected scope");
1451 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1452 Metadata *Ops[] = {File, Scope};
1453 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1454}
1455
1456DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1457 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1458 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1459 SubclassData1 = ExportSymbols;
1460}
1461DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1462 MDString *Name, bool ExportSymbols,
1463 StorageType Storage, bool ShouldCreate) {
1464 assert(isCanonical(Name) && "Expected canonical MDString");
1466 // The nullptr is for DIScope's File operand. This should be refactored.
1467 Metadata *Ops[] = {nullptr, Scope, Name};
1468 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1469}
1470
1471DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1472 unsigned LineNo, ArrayRef<Metadata *> Ops)
1473 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1474 Ops) {
1475 SubclassData32 = LineNo;
1476}
1477DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1478 Metadata *Decl, MDString *Name,
1479 Metadata *File, unsigned LineNo,
1480 StorageType Storage, bool ShouldCreate) {
1481 assert(isCanonical(Name) && "Expected canonical MDString");
1482 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1483 // The nullptr is for DIScope's File operand. This should be refactored.
1484 Metadata *Ops[] = {Scope, Decl, Name, File};
1485 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1486}
1487
1488DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1489 bool IsDecl, ArrayRef<Metadata *> Ops)
1490 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1491 SubclassData1 = IsDecl;
1492 SubclassData32 = LineNo;
1493}
1494DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1495 Metadata *Scope, MDString *Name,
1496 MDString *ConfigurationMacros,
1497 MDString *IncludePath, MDString *APINotesFile,
1498 unsigned LineNo, bool IsDecl, StorageType Storage,
1499 bool ShouldCreate) {
1500 assert(isCanonical(Name) && "Expected canonical MDString");
1502 IncludePath, APINotesFile, LineNo, IsDecl));
1505 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1506}
1507DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1508 StorageType Storage,
1509 bool IsDefault,
1511 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1512 dwarf::DW_TAG_template_type_parameter, IsDefault,
1513 Ops) {}
1514
1516DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1517 Metadata *Type, bool isDefault,
1518 StorageType Storage, bool ShouldCreate) {
1519 assert(isCanonical(Name) && "Expected canonical MDString");
1520 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1521 Metadata *Ops[] = {Name, Type};
1522 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1523}
1524
1525DITemplateValueParameter *DITemplateValueParameter::getImpl(
1526 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1527 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1528 assert(isCanonical(Name) && "Expected canonical MDString");
1529 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1530 (Tag, Name, Type, isDefault, Value));
1531 Metadata *Ops[] = {Name, Type, Value};
1532 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1533}
1534
1536DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1537 MDString *LinkageName, Metadata *File, unsigned Line,
1538 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1539 Metadata *StaticDataMemberDeclaration,
1540 Metadata *TemplateParams, uint32_t AlignInBits,
1541 Metadata *Annotations, StorageType Storage,
1542 bool ShouldCreate) {
1543 assert(isCanonical(Name) && "Expected canonical MDString");
1544 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1546 DIGlobalVariable,
1547 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1549 Metadata *Ops[] = {Scope,
1550 Name,
1551 File,
1552 Type,
1553 Name,
1557 Annotations};
1558 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1559 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1560}
1561
1563DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1564 Metadata *File, unsigned Line, Metadata *Type,
1565 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1566 Metadata *Annotations, StorageType Storage,
1567 bool ShouldCreate) {
1568 // 64K ought to be enough for any frontend.
1569 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1570
1571 assert(Scope && "Expected scope");
1572 assert(isCanonical(Name) && "Expected canonical MDString");
1573 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1574 Flags, AlignInBits, Annotations));
1576 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1577}
1578
1580 signed Line, ArrayRef<Metadata *> Ops,
1581 uint32_t AlignInBits)
1582 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1583 SubclassData32 = AlignInBits;
1584}
1585std::optional<uint64_t> DIVariable::getSizeInBits() const {
1586 // This is used by the Verifier so be mindful of broken types.
1587 const Metadata *RawType = getRawType();
1588 while (RawType) {
1589 // Try to get the size directly.
1590 if (auto *T = dyn_cast<DIType>(RawType))
1591 if (uint64_t Size = T->getSizeInBits())
1592 return Size;
1593
1594 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1595 // Look at the base type.
1596 RawType = DT->getRawBaseType();
1597 continue;
1598 }
1599
1600 // Missing type or size.
1601 break;
1602 }
1603
1604 // Fail gracefully.
1605 return std::nullopt;
1606}
1607
1608DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1609 unsigned Column, bool IsArtificial,
1610 std::optional<unsigned> CoroSuspendIdx,
1612 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1613 this->SubclassData32 = Line;
1614 this->Column = Column;
1615 this->IsArtificial = IsArtificial;
1616 this->CoroSuspendIdx = CoroSuspendIdx;
1617}
1618DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1619 Metadata *File, unsigned Line, unsigned Column,
1620 bool IsArtificial,
1621 std::optional<unsigned> CoroSuspendIdx,
1622 StorageType Storage, bool ShouldCreate) {
1623 assert(Scope && "Expected scope");
1624 assert(isCanonical(Name) && "Expected canonical MDString");
1626 DILabel, (Scope, Name, File, Line, Column, IsArtificial, CoroSuspendIdx));
1627 Metadata *Ops[] = {Scope, Name, File};
1628 DEFINE_GETIMPL_STORE(DILabel, (Line, Column, IsArtificial, CoroSuspendIdx),
1629 Ops);
1630}
1631
1632DIExpression *DIExpression::getImpl(LLVMContext &Context,
1633 ArrayRef<uint64_t> Elements,
1634 StorageType Storage, bool ShouldCreate) {
1635 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1636 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1637}
1639 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1640 return singleLocElts->size() > 0 &&
1641 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1642 }
1643 return false;
1644}
1646 if (auto singleLocElts = getSingleLocationExpressionElements())
1647 return singleLocElts->size() > 0 &&
1648 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1649 return false;
1650}
1652 if (auto singleLocElts = getSingleLocationExpressionElements())
1653 return singleLocElts->size() == 1 &&
1654 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1655 return false;
1656}
1657
1658DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1659 bool ShouldCreate) {
1660 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1661 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1662 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1663}
1664
1666 uint64_t Op = getOp();
1667
1668 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1669 return 2;
1670
1671 switch (Op) {
1676 case dwarf::DW_OP_bregx:
1677 return 3;
1678 case dwarf::DW_OP_constu:
1679 case dwarf::DW_OP_consts:
1680 case dwarf::DW_OP_deref_size:
1681 case dwarf::DW_OP_plus_uconst:
1685 case dwarf::DW_OP_regx:
1686 return 2;
1687 default:
1688 return 1;
1689 }
1690}
1691
1693 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1694 // Check that there's space for the operand.
1695 if (I->get() + I->getSize() > E->get())
1696 return false;
1697
1698 uint64_t Op = I->getOp();
1699 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1700 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1701 return true;
1702
1703 // Check that the operand is valid.
1704 switch (Op) {
1705 default:
1706 return false;
1708 // A fragment operator must appear at the end.
1709 return I->get() + I->getSize() == E->get();
1710 case dwarf::DW_OP_stack_value: {
1711 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1712 if (I->get() + I->getSize() == E->get())
1713 break;
1714 auto J = I;
1715 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1716 return false;
1717 break;
1718 }
1719 case dwarf::DW_OP_swap: {
1720 // Must be more than one implicit element on the stack.
1721
1722 // FIXME: A better way to implement this would be to add a local variable
1723 // that keeps track of the stack depth and introduce something like a
1724 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1725 // DIExpression is attached to, or else pass the number of implicit stack
1726 // elements into isValid.
1727 if (getNumElements() == 1)
1728 return false;
1729 break;
1730 }
1732 // An entry value operator must appear at the beginning or immediately
1733 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1734 // currently only be 1, because we support only entry values of a simple
1735 // register location. One reason for this is that we currently can't
1736 // calculate the size of the resulting DWARF block for other expressions.
1737 auto FirstOp = expr_op_begin();
1738 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1739 ++FirstOp;
1740 return I->get() == FirstOp->get() && I->getArg(0) == 1;
1741 }
1748 case dwarf::DW_OP_constu:
1749 case dwarf::DW_OP_plus_uconst:
1750 case dwarf::DW_OP_plus:
1751 case dwarf::DW_OP_minus:
1752 case dwarf::DW_OP_mul:
1753 case dwarf::DW_OP_div:
1754 case dwarf::DW_OP_mod:
1755 case dwarf::DW_OP_or:
1756 case dwarf::DW_OP_and:
1757 case dwarf::DW_OP_xor:
1758 case dwarf::DW_OP_shl:
1759 case dwarf::DW_OP_shr:
1760 case dwarf::DW_OP_shra:
1761 case dwarf::DW_OP_deref:
1762 case dwarf::DW_OP_deref_size:
1763 case dwarf::DW_OP_xderef:
1764 case dwarf::DW_OP_lit0:
1765 case dwarf::DW_OP_not:
1766 case dwarf::DW_OP_dup:
1767 case dwarf::DW_OP_regx:
1768 case dwarf::DW_OP_bregx:
1769 case dwarf::DW_OP_push_object_address:
1770 case dwarf::DW_OP_over:
1771 case dwarf::DW_OP_consts:
1772 case dwarf::DW_OP_eq:
1773 case dwarf::DW_OP_ne:
1774 case dwarf::DW_OP_gt:
1775 case dwarf::DW_OP_ge:
1776 case dwarf::DW_OP_lt:
1777 case dwarf::DW_OP_le:
1778 break;
1779 }
1780 }
1781 return true;
1782}
1783
1785 if (!isValid())
1786 return false;
1787
1788 if (getNumElements() == 0)
1789 return false;
1790
1791 for (const auto &It : expr_ops()) {
1792 switch (It.getOp()) {
1793 default:
1794 break;
1795 case dwarf::DW_OP_stack_value:
1796 return true;
1797 }
1798 }
1799
1800 return false;
1801}
1802
1804 if (!isValid())
1805 return false;
1806
1807 if (getNumElements() == 0)
1808 return false;
1809
1810 // If there are any elements other than fragment or tag_offset, then some
1811 // kind of complex computation occurs.
1812 for (const auto &It : expr_ops()) {
1813 switch (It.getOp()) {
1817 continue;
1818 default:
1819 return true;
1820 }
1821 }
1822
1823 return false;
1824}
1825
1827 if (!isValid())
1828 return false;
1829
1830 if (getNumElements() == 0)
1831 return true;
1832
1833 auto ExprOpBegin = expr_ops().begin();
1834 auto ExprOpEnd = expr_ops().end();
1835 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1836 if (ExprOpBegin->getArg(0) != 0)
1837 return false;
1838 ++ExprOpBegin;
1839 }
1840
1841 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1842 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1843 });
1844}
1845
1846std::optional<ArrayRef<uint64_t>>
1848 // Check for `isValid` covered by `isSingleLocationExpression`.
1850 return std::nullopt;
1851
1852 // An empty expression is already non-variadic.
1853 if (!getNumElements())
1854 return ArrayRef<uint64_t>();
1855
1856 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1857 // anything.
1859 return getElements().drop_front(2);
1860 return getElements();
1861}
1862
1863const DIExpression *
1865 SmallVector<uint64_t, 3> UndefOps;
1866 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1867 UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1868 FragmentInfo->SizeInBits});
1869 }
1870 return DIExpression::get(Expr->getContext(), UndefOps);
1871}
1872
1873const DIExpression *
1875 if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1876 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1877 }))
1878 return Expr;
1879 SmallVector<uint64_t> NewOps;
1880 NewOps.reserve(Expr->getNumElements() + 2);
1881 NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1882 NewOps.append(Expr->elements_begin(), Expr->elements_end());
1883 return DIExpression::get(Expr->getContext(), NewOps);
1884}
1885
1886std::optional<const DIExpression *>
1888 if (!Expr)
1889 return std::nullopt;
1890
1891 if (auto Elts = Expr->getSingleLocationExpressionElements())
1892 return DIExpression::get(Expr->getContext(), *Elts);
1893
1894 return std::nullopt;
1895}
1896
1898 const DIExpression *Expr,
1899 bool IsIndirect) {
1900 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1901 // to the existing expression ops.
1902 if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1903 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1904 }))
1905 Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1906 // If Expr is not indirect, we only need to insert the expression elements and
1907 // we're done.
1908 if (!IsIndirect) {
1909 Ops.append(Expr->elements_begin(), Expr->elements_end());
1910 return;
1911 }
1912 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1913 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1914 // present.
1915 for (auto Op : Expr->expr_ops()) {
1916 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1917 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1918 Ops.push_back(dwarf::DW_OP_deref);
1919 IsIndirect = false;
1920 }
1921 Op.appendToVector(Ops);
1922 }
1923 if (IsIndirect)
1924 Ops.push_back(dwarf::DW_OP_deref);
1925}
1926
1927bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1928 bool FirstIndirect,
1929 const DIExpression *SecondExpr,
1930 bool SecondIndirect) {
1931 SmallVector<uint64_t> FirstOps;
1932 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1933 SmallVector<uint64_t> SecondOps;
1934 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1935 SecondIndirect);
1936 return FirstOps == SecondOps;
1937}
1938
1939std::optional<DIExpression::FragmentInfo>
1941 for (auto I = Start; I != End; ++I)
1942 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1943 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1944 return Info;
1945 }
1946 return std::nullopt;
1947}
1948
1949std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1950 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1951 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1952 for (auto Op : expr_ops()) {
1953 switch (Op.getOp()) {
1954 default:
1955 // We assume the worst case for anything we don't currently handle and
1956 // revert to the initial active bits.
1957 ActiveBits = InitialActiveBits;
1958 break;
1961 // We can't handle an extract whose sign doesn't match that of the
1962 // variable.
1963 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1964 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1965 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1966 if (!VarSign || VarSigned != OpSigned) {
1967 ActiveBits = InitialActiveBits;
1968 break;
1969 }
1970 [[fallthrough]];
1971 }
1973 // Extract or fragment narrows the active bits
1974 if (ActiveBits)
1975 ActiveBits = std::min(*ActiveBits, Op.getArg(1));
1976 else
1977 ActiveBits = Op.getArg(1);
1978 break;
1979 }
1980 }
1981 return ActiveBits;
1982}
1983
1985 int64_t Offset) {
1986 if (Offset > 0) {
1987 Ops.push_back(dwarf::DW_OP_plus_uconst);
1988 Ops.push_back(Offset);
1989 } else if (Offset < 0) {
1990 Ops.push_back(dwarf::DW_OP_constu);
1991 // Avoid UB when encountering LLONG_MIN, because in 2's complement
1992 // abs(LLONG_MIN) is LLONG_MAX+1.
1993 uint64_t AbsMinusOne = -(Offset+1);
1994 Ops.push_back(AbsMinusOne + 1);
1995 Ops.push_back(dwarf::DW_OP_minus);
1996 }
1997}
1998
2000 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2001 if (!SingleLocEltsOpt)
2002 return false;
2003 auto SingleLocElts = *SingleLocEltsOpt;
2004
2005 if (SingleLocElts.size() == 0) {
2006 Offset = 0;
2007 return true;
2008 }
2009
2010 if (SingleLocElts.size() == 2 &&
2011 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
2012 Offset = SingleLocElts[1];
2013 return true;
2014 }
2015
2016 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
2017 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
2018 Offset = SingleLocElts[1];
2019 return true;
2020 }
2021 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
2022 Offset = -SingleLocElts[1];
2023 return true;
2024 }
2025 }
2026
2027 return false;
2028}
2029
2031 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
2032 OffsetInBytes = 0;
2033 RemainingOps.clear();
2034
2035 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2036 if (!SingleLocEltsOpt)
2037 return false;
2038
2039 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
2040 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
2041 while (ExprOpIt != ExprOpEnd) {
2042 uint64_t Op = ExprOpIt->getOp();
2043 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
2044 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
2047 break;
2048 } else if (Op == dwarf::DW_OP_plus_uconst) {
2049 OffsetInBytes += ExprOpIt->getArg(0);
2050 } else if (Op == dwarf::DW_OP_constu) {
2051 uint64_t Value = ExprOpIt->getArg(0);
2052 ++ExprOpIt;
2053 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
2054 OffsetInBytes += Value;
2055 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
2056 OffsetInBytes -= Value;
2057 else
2058 return false;
2059 } else {
2060 // Not a const plus/minus operation or deref.
2061 return false;
2062 }
2063 ++ExprOpIt;
2064 }
2065 RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase());
2066 return true;
2067}
2068
2071 for (auto ExprOp : expr_ops())
2072 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2073 SeenOps.insert(ExprOp.getArg(0));
2074 for (uint64_t Idx = 0; Idx < N; ++Idx)
2075 if (!SeenOps.contains(Idx))
2076 return false;
2077 return true;
2078}
2079
2080const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
2081 unsigned &AddrClass) {
2082 // FIXME: This seems fragile. Nothing that verifies that these elements
2083 // actually map to ops and not operands.
2084 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
2085 if (!SingleLocEltsOpt)
2086 return nullptr;
2087 auto SingleLocElts = *SingleLocEltsOpt;
2088
2089 const unsigned PatternSize = 4;
2090 if (SingleLocElts.size() >= PatternSize &&
2091 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
2092 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
2093 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
2094 AddrClass = SingleLocElts[PatternSize - 3];
2095
2096 if (SingleLocElts.size() == PatternSize)
2097 return nullptr;
2098 return DIExpression::get(
2099 Expr->getContext(),
2100 ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
2101 }
2102 return Expr;
2103}
2104
2105DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
2106 int64_t Offset) {
2108 if (Flags & DIExpression::DerefBefore)
2109 Ops.push_back(dwarf::DW_OP_deref);
2110
2112 if (Flags & DIExpression::DerefAfter)
2113 Ops.push_back(dwarf::DW_OP_deref);
2114
2115 bool StackValue = Flags & DIExpression::StackValue;
2116 bool EntryValue = Flags & DIExpression::EntryValue;
2117
2118 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
2119}
2120
2121DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
2123 unsigned ArgNo, bool StackValue) {
2124 assert(Expr && "Can't add ops to this expression");
2125
2126 // Handle non-variadic intrinsics by prepending the opcodes.
2127 if (!any_of(Expr->expr_ops(),
2128 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
2129 assert(ArgNo == 0 &&
2130 "Location Index must be 0 for a non-variadic expression.");
2132 return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
2133 }
2134
2136 for (auto Op : Expr->expr_ops()) {
2137 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2138 if (StackValue) {
2139 if (Op.getOp() == dwarf::DW_OP_stack_value)
2140 StackValue = false;
2141 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2142 NewOps.push_back(dwarf::DW_OP_stack_value);
2143 StackValue = false;
2144 }
2145 }
2146 Op.appendToVector(NewOps);
2147 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
2148 llvm::append_range(NewOps, Ops);
2149 }
2150 if (StackValue)
2151 NewOps.push_back(dwarf::DW_OP_stack_value);
2152
2153 return DIExpression::get(Expr->getContext(), NewOps);
2154}
2155
2156DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
2157 uint64_t OldArg, uint64_t NewArg) {
2158 assert(Expr && "Can't replace args in this expression");
2159
2161
2162 for (auto Op : Expr->expr_ops()) {
2163 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
2164 Op.appendToVector(NewOps);
2165 continue;
2166 }
2168 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
2169 // OldArg has been deleted from the Op list, so decrement all indices
2170 // greater than it.
2171 if (Arg > OldArg)
2172 --Arg;
2173 NewOps.push_back(Arg);
2174 }
2175 return DIExpression::get(Expr->getContext(), NewOps);
2176}
2177
2178DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
2180 bool StackValue, bool EntryValue) {
2181 assert(Expr && "Can't prepend ops to this expression");
2182
2183 if (EntryValue) {
2185 // Use a block size of 1 for the target register operand. The
2186 // DWARF backend currently cannot emit entry values with a block
2187 // size > 1.
2188 Ops.push_back(1);
2189 }
2190
2191 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
2192 if (Ops.empty())
2193 StackValue = false;
2194 for (auto Op : Expr->expr_ops()) {
2195 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2196 if (StackValue) {
2197 if (Op.getOp() == dwarf::DW_OP_stack_value)
2198 StackValue = false;
2199 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2200 Ops.push_back(dwarf::DW_OP_stack_value);
2201 StackValue = false;
2202 }
2203 }
2204 Op.appendToVector(Ops);
2205 }
2206 if (StackValue)
2207 Ops.push_back(dwarf::DW_OP_stack_value);
2208 return DIExpression::get(Expr->getContext(), Ops);
2209}
2210
2211DIExpression *DIExpression::append(const DIExpression *Expr,
2213 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2214
2215 // Copy Expr's current op list.
2217 for (auto Op : Expr->expr_ops()) {
2218 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
2219 if (Op.getOp() == dwarf::DW_OP_stack_value ||
2220 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2221 NewOps.append(Ops.begin(), Ops.end());
2222
2223 // Ensure that the new opcodes are only appended once.
2224 Ops = {};
2225 }
2226 Op.appendToVector(NewOps);
2227 }
2228 NewOps.append(Ops.begin(), Ops.end());
2229 auto *result =
2230 DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath();
2231 assert(result->isValid() && "concatenated expression is not valid");
2232 return result;
2233}
2234
2235DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
2237 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2238 assert(std::none_of(expr_op_iterator(Ops.begin()),
2239 expr_op_iterator(Ops.end()),
2240 [](auto Op) {
2241 return Op.getOp() == dwarf::DW_OP_stack_value ||
2242 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
2243 }) &&
2244 "Can't append this op");
2245
2246 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
2247 // has no DW_OP_stack_value.
2248 //
2249 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
2250 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
2251 unsigned DropUntilStackValue = FI ? 3 : 0;
2252 ArrayRef<uint64_t> ExprOpsBeforeFragment =
2253 Expr->getElements().drop_back(DropUntilStackValue);
2254 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
2255 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
2256 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
2257
2258 // Append a DW_OP_deref after Expr's current op list if needed, then append
2259 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
2261 if (NeedsDeref)
2262 NewOps.push_back(dwarf::DW_OP_deref);
2263 NewOps.append(Ops.begin(), Ops.end());
2264 if (NeedsStackValue)
2265 NewOps.push_back(dwarf::DW_OP_stack_value);
2266 return DIExpression::append(Expr, NewOps);
2267}
2268
2269std::optional<DIExpression *> DIExpression::createFragmentExpression(
2270 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2272 // Track whether it's safe to split the value at the top of the DWARF stack,
2273 // assuming that it'll be used as an implicit location value.
2274 bool CanSplitValue = true;
2275 // Track whether we need to add a fragment expression to the end of Expr.
2276 bool EmitFragment = true;
2277 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2278 if (Expr) {
2279 for (auto Op : Expr->expr_ops()) {
2280 switch (Op.getOp()) {
2281 default:
2282 break;
2283 case dwarf::DW_OP_shr:
2284 case dwarf::DW_OP_shra:
2285 case dwarf::DW_OP_shl:
2286 case dwarf::DW_OP_plus:
2287 case dwarf::DW_OP_plus_uconst:
2288 case dwarf::DW_OP_minus:
2289 // We can't safely split arithmetic or shift operations into multiple
2290 // fragments because we can't express carry-over between fragments.
2291 //
2292 // FIXME: We *could* preserve the lowest fragment of a constant offset
2293 // operation if the offset fits into SizeInBits.
2294 CanSplitValue = false;
2295 break;
2296 case dwarf::DW_OP_deref:
2297 case dwarf::DW_OP_deref_size:
2298 case dwarf::DW_OP_deref_type:
2299 case dwarf::DW_OP_xderef:
2300 case dwarf::DW_OP_xderef_size:
2301 case dwarf::DW_OP_xderef_type:
2302 // Preceeding arithmetic operations have been applied to compute an
2303 // address. It's okay to split the value loaded from that address.
2304 CanSplitValue = true;
2305 break;
2306 case dwarf::DW_OP_stack_value:
2307 // Bail if this expression computes a value that cannot be split.
2308 if (!CanSplitValue)
2309 return std::nullopt;
2310 break;
2312 // If we've decided we don't need a fragment then give up if we see that
2313 // there's already a fragment expression.
2314 // FIXME: We could probably do better here
2315 if (!EmitFragment)
2316 return std::nullopt;
2317 // Make the new offset point into the existing fragment.
2318 uint64_t FragmentOffsetInBits = Op.getArg(0);
2319 uint64_t FragmentSizeInBits = Op.getArg(1);
2320 (void)FragmentSizeInBits;
2321 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2322 "new fragment outside of original fragment");
2323 OffsetInBits += FragmentOffsetInBits;
2324 continue;
2325 }
2328 // If we're extracting bits from inside of the fragment that we're
2329 // creating then we don't have a fragment after all, and just need to
2330 // adjust the offset that we're extracting from.
2331 uint64_t ExtractOffsetInBits = Op.getArg(0);
2332 uint64_t ExtractSizeInBits = Op.getArg(1);
2333 if (ExtractOffsetInBits >= OffsetInBits &&
2334 ExtractOffsetInBits + ExtractSizeInBits <=
2335 OffsetInBits + SizeInBits) {
2336 Ops.push_back(Op.getOp());
2337 Ops.push_back(ExtractOffsetInBits - OffsetInBits);
2338 Ops.push_back(ExtractSizeInBits);
2339 EmitFragment = false;
2340 continue;
2341 }
2342 // If the extracted bits aren't fully contained within the fragment then
2343 // give up.
2344 // FIXME: We could probably do better here
2345 return std::nullopt;
2346 }
2347 }
2348 Op.appendToVector(Ops);
2349 }
2350 }
2351 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2352 assert(Expr && "Unknown DIExpression");
2353 if (EmitFragment) {
2355 Ops.push_back(OffsetInBits);
2356 Ops.push_back(SizeInBits);
2357 }
2358 return DIExpression::get(Expr->getContext(), Ops);
2359}
2360
2361/// See declaration for more info.
2363 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2364 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2365 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2366 std::optional<DIExpression::FragmentInfo> &Result,
2367 int64_t &OffsetFromLocationInBits) {
2368
2369 if (VarFrag.SizeInBits == 0)
2370 return false; // Variable size is unknown.
2371
2372 // Difference between mem slice start and the dbg location start.
2373 // 0 4 8 12 16 ...
2374 // | |
2375 // dbg location start
2376 // |
2377 // mem slice start
2378 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2379 int64_t MemStartRelToDbgStartInBits;
2380 {
2381 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL);
2382 if (!MemOffsetFromDbgInBytes)
2383 return false; // Can't calculate difference in addresses.
2384 // Difference between the pointers.
2385 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2386 // Add the difference of the offsets.
2387 MemStartRelToDbgStartInBits +=
2388 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2389 }
2390
2391 // Out-param. Invert offset to get offset from debug location.
2392 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2393
2394 // Check if the variable fragment sits outside (before) this memory slice.
2395 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2396 if (MemEndRelToDbgStart < 0) {
2397 Result = {0, 0}; // Out-param.
2398 return true;
2399 }
2400
2401 // Work towards creating SliceOfVariable which is the bits of the variable
2402 // that the memory region covers.
2403 // 0 4 8 12 16 ...
2404 // | |
2405 // dbg location start with VarFrag offset=32
2406 // |
2407 // mem slice start: SliceOfVariable offset=40
2408 int64_t MemStartRelToVarInBits =
2409 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2410 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2411 // If the memory region starts before the debug location the fragment
2412 // offset would be negative, which we can't encode. Limit those to 0. This
2413 // is fine because those bits necessarily don't overlap with the existing
2414 // variable fragment.
2415 int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits);
2416 int64_t MemFragSize =
2417 std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart);
2418 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2419
2420 // Intersect the memory region fragment with the variable location fragment.
2421 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2422 DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag);
2423 if (TrimmedSliceOfVariable == VarFrag)
2424 Result = std::nullopt; // Out-param.
2425 else
2426 Result = TrimmedSliceOfVariable; // Out-param.
2427 return true;
2428}
2429
2430std::pair<DIExpression *, const ConstantInt *>
2432 // Copy the APInt so we can modify it.
2433 APInt NewInt = CI->getValue();
2435
2436 // Fold operators only at the beginning of the expression.
2437 bool First = true;
2438 bool Changed = false;
2439 for (auto Op : expr_ops()) {
2440 switch (Op.getOp()) {
2441 default:
2442 // We fold only the leading part of the expression; if we get to a part
2443 // that we're going to copy unchanged, and haven't done any folding,
2444 // then the entire expression is unchanged and we can return early.
2445 if (!Changed)
2446 return {this, CI};
2447 First = false;
2448 break;
2450 if (!First)
2451 break;
2452 Changed = true;
2453 if (Op.getArg(1) == dwarf::DW_ATE_signed)
2454 NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2455 else {
2456 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2457 NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2458 }
2459 continue;
2460 }
2461 Op.appendToVector(Ops);
2462 }
2463 if (!Changed)
2464 return {this, CI};
2465 return {DIExpression::get(getContext(), Ops),
2466 ConstantInt::get(getContext(), NewInt)};
2467}
2468
2470 uint64_t Result = 0;
2471 for (auto ExprOp : expr_ops())
2472 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2473 Result = std::max(Result, ExprOp.getArg(0) + 1);
2474 assert(hasAllLocationOps(Result) &&
2475 "Expression is missing one or more location operands.");
2476 return Result;
2477}
2478
2479std::optional<DIExpression::SignedOrUnsignedConstant>
2481
2482 // Recognize signed and unsigned constants.
2483 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2484 // (DW_OP_LLVM_fragment of Len).
2485 // An unsigned constant can be represented as
2486 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2487
2488 if ((getNumElements() != 2 && getNumElements() != 3 &&
2489 getNumElements() != 6) ||
2490 (getElement(0) != dwarf::DW_OP_consts &&
2491 getElement(0) != dwarf::DW_OP_constu))
2492 return std::nullopt;
2493
2494 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2496
2497 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2498 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2500 return std::nullopt;
2501 return getElement(0) == dwarf::DW_OP_constu
2504}
2505
2506DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2507 bool Signed) {
2508 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2510 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2511 return Ops;
2512}
2513
2514DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2515 unsigned FromSize, unsigned ToSize,
2516 bool Signed) {
2517 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2518}
2519
2521DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2523 bool ShouldCreate) {
2525 Metadata *Ops[] = {Variable, Expression};
2527}
2528DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2529 unsigned Line, unsigned Attributes,
2531 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2533
2534DIObjCProperty *DIObjCProperty::getImpl(
2535 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2536 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2537 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2538 assert(isCanonical(Name) && "Expected canonical MDString");
2539 assert(isCanonical(GetterName) && "Expected canonical MDString");
2540 assert(isCanonical(SetterName) && "Expected canonical MDString");
2541 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2542 SetterName, Attributes, Type));
2544 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2545}
2546
2547DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2548 Metadata *Scope, Metadata *Entity,
2549 Metadata *File, unsigned Line,
2550 MDString *Name, Metadata *Elements,
2551 StorageType Storage,
2552 bool ShouldCreate) {
2553 assert(isCanonical(Name) && "Expected canonical MDString");
2554 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2555 (Tag, Scope, Entity, File, Line, Name, Elements));
2557 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2558}
2559
2560DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2561 MDString *Name, MDString *Value, StorageType Storage,
2562 bool ShouldCreate) {
2563 assert(isCanonical(Name) && "Expected canonical MDString");
2565 Metadata *Ops[] = {Name, Value};
2566 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2567}
2568
2569DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2570 unsigned Line, Metadata *File,
2571 Metadata *Elements, StorageType Storage,
2572 bool ShouldCreate) {
2573 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2574 Metadata *Ops[] = {File, Elements};
2575 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2576}
2577
2578DIArgList *DIArgList::get(LLVMContext &Context,
2580 auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2581 if (ExistingIt != Context.pImpl->DIArgLists.end())
2582 return *ExistingIt;
2583 DIArgList *NewArgList = new DIArgList(Context, Args);
2584 Context.pImpl->DIArgLists.insert(NewArgList);
2585 return NewArgList;
2586}
2587
2589 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2590 assert((!New || isa<ValueAsMetadata>(New)) &&
2591 "DIArgList must be passed a ValueAsMetadata");
2592 untrack();
2593 // We need to update the set storage once the Args are updated since they
2594 // form the key to the DIArgLists store.
2595 getContext().pImpl->DIArgLists.erase(this);
2597 for (ValueAsMetadata *&VM : Args) {
2598 if (&VM == OldVMPtr) {
2599 if (NewVM)
2600 VM = NewVM;
2601 else
2602 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2603 }
2604 }
2605 // We've changed the contents of this DIArgList, and the set storage may
2606 // already contain a DIArgList with our new set of args; if it does, then we
2607 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2608 // back into the set storage.
2609 DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2610 if (ExistingArgList) {
2611 replaceAllUsesWith(ExistingArgList);
2612 // Clear this here so we don't try to untrack in the destructor.
2613 Args.clear();
2614 delete this;
2615 return;
2616 }
2617 getContext().pImpl->DIArgLists.insert(this);
2618 track();
2619}
2620void DIArgList::track() {
2621 for (ValueAsMetadata *&VAM : Args)
2622 if (VAM)
2623 MetadataTracking::track(&VAM, *VAM, *this);
2624}
2625void DIArgList::untrack() {
2626 for (ValueAsMetadata *&VAM : Args)
2627 if (VAM)
2628 MetadataTracking::untrack(&VAM, *VAM);
2629}
2630void DIArgList::dropAllReferences(bool Untrack) {
2631 if (Untrack)
2632 untrack();
2633 Args.clear();
2634 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2635}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
AMDGPU Kernel Attributes
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
static const char * ChecksumKindName[DIFile::CSK_Last]
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)
static void adjustColumn(unsigned &Column)
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)
static std::pair< DIScope *, LineColumn > getNearestMatchingScope(const DILocation *L1, const DILocation *L2)
static LineColumn getLocalScopeLocationOr(DIScope *S, LineColumn Default)
Returns the location of DILocalScope, if present, or a default value.
std::pair< unsigned, unsigned > LineColumn
static bool isCanonical(const MDString *S)
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)
static DILexicalBlockBase * cloneAndReplaceParentScope(DILexicalBlockBase *LBB, DIScope *NewParent)
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
static unsigned encodingBits(unsigned C)
static unsigned encodeComponent(unsigned C)
static unsigned getNextComponentInDiscriminator(unsigned D)
Returns the next component stored in discriminator.
static unsigned getUnsignedFromPrefixEncoding(unsigned U)
Reverse transformation as getPrefixEncodingFromUnsigned.
@ Default
This file contains constants used for implementing Dwarf debug support.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
#define T
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file implements a set that has insertion order iteration characteristics.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
Annotations lets you mark points and ranges inside source code, for tests:
Definition Annotations.h:53
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
const T & back() const
back - Get the last element.
Definition ArrayRef.h:156
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:200
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition ArrayRef.h:206
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:535
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI void handleChangedOperand(void *Ref, Metadata *New)
static LLVM_ABI DIArgList * get(LLVMContext &Context, ArrayRef< ValueAsMetadata * > Args)
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags
DIBasicType(LLVMContext &C, StorageType Storage, unsigned Tag, uint32_t AlignInBits, unsigned Encoding, uint32_t NumExtraInhabitants, DIFlags Flags, ArrayRef< Metadata * > Ops)
static DIBasicType * getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, uint32_t NumExtraInhabitants, DIFlags Flags, StorageType Storage, bool ShouldCreate=true)
unsigned StringRef uint64_t SizeInBits
LLVM_ABI std::optional< Signedness > getSignedness() const
Return the signedness of this type, or std::nullopt if this type is neither signed nor unsigned.
unsigned getEncoding() const
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags unsigned StringRef uint64_t uint32_t unsigned uint32_t NumExtraInhabitants
unsigned StringRef Name
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t AlignInBits
Debug common block.
Metadata Metadata * Decl
Metadata Metadata MDString Metadata unsigned LineNo
Metadata Metadata MDString * Name
Metadata Metadata MDString Metadata * File
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
DebugEmissionKind getEmissionKind() const
unsigned Metadata * File
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata * Macros
unsigned Metadata MDString bool MDString * Flags
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata * EnumTypes
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata * RetainedTypes
DebugNameTableKind getNameTableKind() const
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata * GlobalVariables
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString MDString * SDK
unsigned Metadata MDString * Producer
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString * SysRoot
unsigned Metadata MDString bool MDString unsigned MDString * SplitDebugFilename
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata * ImportedEntities
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > EnumKind
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata * DataLocation
static LLVM_ABI DICompositeType * buildODRType(LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, std::optional< uint32_t > EnumKind, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations, Metadata *BitStride)
Build a DICompositeType with the given ODR identifier.
unsigned MDString Metadata unsigned Line
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata * Elements
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned RuntimeLang
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata * Annotations
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString * Identifier
static LLVM_ABI DICompositeType * getODRTypeIfExists(LLVMContext &Context, MDString &Identifier)
unsigned MDString * Name
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata * Discriminator
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata * TemplateParams
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t OffsetInBits
unsigned MDString Metadata unsigned Metadata * Scope
unsigned MDString Metadata * File
unsigned MDString Metadata unsigned Metadata Metadata * BaseType
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Flags
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata * Allocated
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata * Specification
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata * VTableHolder
unsigned MDString Metadata unsigned Metadata Metadata uint64_t SizeInBits
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata * Associated
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata uint32_t NumExtraInhabitants
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata * Rank
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata uint32_t Metadata * BitStride
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata * OffsetInBits
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t AlignInBits
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata std::optional< unsigned > std::optional< PtrAuthData > PtrAuthData
Metadata * getExtraData() const
Get extra data associated with this derived type.
unsigned StringRef DIFile * File
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata std::optional< unsigned > DWARFAddressSpace
LLVM_ABI DIType * getClassType() const
Get casted version of extra data.
LLVM_ABI Constant * getConstant() const
unsigned StringRef DIFile unsigned DIScope DIType Metadata * SizeInBits
LLVM_ABI Constant * getStorageOffsetInBits() const
LLVM_ABI Constant * getDiscriminantValue() const
unsigned StringRef Name
LLVM_ABI uint32_t getVBPtrOffset() const
Enumeration value.
int64_t bool MDString * Name
LLVM_ABI unsigned getSize() const
Return the size of the operand.
uint64_t getOp() const
Get the operand code.
An iterator for expression operands.
DWARF expression.
element_iterator elements_end() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
iterator_range< expr_op_iterator > expr_ops() const
static LLVM_ABI DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
std::array< uint64_t, 6 > ExtOps
unsigned getNumElements() const
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
expr_op_iterator expr_op_begin() const
Visit the elements via ExprOperand wrappers.
LLVM_ABI bool extractIfOffset(int64_t &Offset) const
If this is a constant offset, extract it.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
DbgVariableFragmentInfo FragmentInfo
LLVM_ABI bool startsWithDeref() const
Return whether the first element a DW_OP_deref.
static LLVM_ABI bool isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect)
Determines whether two debug values should produce equivalent DWARF expressions, using their DIExpres...
expr_op_iterator expr_op_end() const
LLVM_ABI bool isImplicit() const
Return whether this is an implicit location description.
static LLVM_ABI bool calculateFragmentIntersect(const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, std::optional< DIExpression::FragmentInfo > &Result, int64_t &OffsetFromLocationInBits)
Computes a fragment, bit-extract operation if needed, and new constant offset to describe a part of a...
element_iterator elements_begin() const
LLVM_ABI bool hasAllLocationOps(unsigned N) const
Returns true iff this DIExpression contains at least one instance of DW_OP_LLVM_arg,...
std::optional< FragmentInfo > getFragmentInfo() const
Retrieve the details of this fragment expression.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
LLVM_ABI bool isComplex() const
Return whether the location is computed on the expression stack, meaning it cannot be a simple regist...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
static LLVM_ABI std::optional< const DIExpression * > convertToNonVariadicExpression(const DIExpression *Expr)
If Expr is a valid single-location expression, i.e.
LLVM_ABI std::pair< DIExpression *, const ConstantInt * > constantFold(const ConstantInt *CI)
Try to shorten an expression with an initial constant operand.
LLVM_ABI bool isDeref() const
Return whether there is exactly one operator and it is a DW_OP_deref;.
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
ArrayRef< uint64_t > getElements() const
static LLVM_ABI DIExpression * replaceArg(const DIExpression *Expr, uint64_t OldArg, uint64_t NewArg)
Create a copy of Expr with each instance of DW_OP_LLVM_arg, \p OldArg replaced with DW_OP_LLVM_arg,...
LLVM_ABI std::optional< uint64_t > getActiveBits(DIVariable *Var)
Return the number of bits that have an active value, i.e.
static LLVM_ABI void canonicalizeExpressionOps(SmallVectorImpl< uint64_t > &Ops, const DIExpression *Expr, bool IsIndirect)
Inserts the elements of Expr into Ops modified to a canonical form, which uses DW_OP_LLVM_arg (i....
uint64_t getElement(unsigned I) const
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * appendToStack(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Convert DIExpr into a stack value if it isn't one already by appending DW_OP_deref if needed,...
static LLVM_ABI DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
LLVM_ABI std::optional< ArrayRef< uint64_t > > getSingleLocationExpressionElements() const
Returns a reference to the elements contained in this expression, skipping past the leading DW_OP_LLV...
LLVM_ABI bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
LLVM_ABI bool extractLeadingOffset(int64_t &OffsetInBytes, SmallVectorImpl< uint64_t > &RemainingOps) const
Assuming that the expression operates on an address, extract a constant offset and the successive ops...
LLVM_ABI std::optional< SignedOrUnsignedConstant > isConstant() const
Determine whether this represents a constant value, if so.
LLVM_ABI bool isValid() const
static LLVM_ABI const DIExpression * extractAddressClass(const DIExpression *Expr, unsigned &AddrClass)
Checks if the last 4 elements of the expression are DW_OP_constu <DWARFAddress Space> DW_OP_swap DW_O...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
MDString MDString * Directory
MDString MDString std::optional< ChecksumInfo< MDString * > > MDString * Source
MDString * Filename
static LLVM_ABI std::optional< ChecksumKind > getChecksumKind(StringRef CSKindStr)
MDString MDString std::optional< ChecksumInfo< MDString * > > CS
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int Factor
static LLVM_ABI std::optional< FixedPointKind > getFixedPointKind(StringRef Str)
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
unsigned StringRef uint64_t uint32_t unsigned Encoding
unsigned StringRef uint64_t uint32_t AlignInBits
LLVM_ABI bool isSigned() const
@ FixedPointBinary
Scale factor 2^Factor.
@ FixedPointDecimal
Scale factor 10^Factor.
@ FixedPointRational
Arbitrary rational scale factor.
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int APInt Numerator
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int APInt APInt Denominator
unsigned StringRef uint64_t SizeInBits
Metadata * getRawLowerBound() const
Metadata * getRawCountNode() const
Metadata * getRawStride() const
LLVM_ABI BoundType getLowerBound() const
Metadata * getRawUpperBound() const
LLVM_ABI BoundType getCount() const
LLVM_ABI BoundType getUpperBound() const
PointerUnion< DIVariable *, DIExpression * > BoundType
LLVM_ABI BoundType getStride() const
A pair of DIGlobalVariable and DIExpression.
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Line
Metadata MDString MDString Metadata unsigned Metadata * Type
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata uint32_t Metadata * Annotations
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata * StaticDataMemberDeclaration
Metadata MDString MDString * LinkageName
Metadata MDString MDString Metadata * File
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata uint32_t AlignInBits
An imported module (C++ using directive or similar).
unsigned Metadata Metadata * Entity
unsigned Metadata Metadata Metadata unsigned Line
unsigned Metadata Metadata Metadata unsigned MDString * Name
unsigned Metadata Metadata Metadata * File
unsigned Metadata * Scope
Metadata MDString Metadata unsigned unsigned bool std::optional< unsigned > CoroSuspendIdx
Metadata MDString Metadata unsigned unsigned Column
Metadata MDString Metadata unsigned unsigned bool IsArtificial
Metadata MDString Metadata unsigned Line
Metadata MDString * Name
Metadata MDString Metadata * File
LLVM_ABI DILexicalBlockBase(LLVMContext &C, unsigned ID, StorageType Storage, ArrayRef< Metadata * > Ops)
Metadata Metadata unsigned Discriminator
Debug lexical block.
Metadata Metadata unsigned unsigned Column
Metadata Metadata * File
A scope for locals.
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
LLVM_ABI DILocalScope * getNonLexicalBlockFileScope() const
Get the first non DILexicalBlockFile scope of this scope.
DILocalScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops)
static LLVM_ABI DILocalScope * cloneScopeForSubprogram(DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap< const MDNode *, MDNode * > &Cache)
Traverses the scope chain rooted at RootScope until it hits a Subprogram, recreating the chain with "...
Metadata MDString Metadata unsigned Metadata * Type
Metadata MDString Metadata * File
Metadata MDString * Name
Metadata MDString Metadata unsigned Line
Metadata MDString Metadata unsigned Metadata unsigned DIFlags uint32_t Metadata * Annotations
Metadata MDString Metadata unsigned Metadata unsigned DIFlags uint32_t AlignInBits
unsigned unsigned DILocalScope * Scope
static LLVM_ABI DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
static LLVM_ABI std::optional< unsigned > encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI)
Raw encoding of the discriminator.
unsigned unsigned DILocalScope DILocation bool ImplicitCode
static LLVM_ABI void decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, unsigned &CI)
Raw decoder for values in an encoded discriminator D.
static LLVM_ABI DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
Attempts to merge LocA and LocB into a single location; see DebugLoc::getMergedLocation for more deta...
unsigned unsigned Column
unsigned unsigned DILocalScope DILocation * InlinedAt
unsigned unsigned Metadata * File
unsigned unsigned Line
unsigned unsigned Metadata Metadata * Elements
unsigned unsigned MDString MDString * Value
unsigned unsigned MDString * Name
unsigned unsigned Line
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Metadata Metadata * Scope
Metadata Metadata MDString * Name
Metadata Metadata MDString MDString MDString MDString * APINotesFile
Metadata Metadata MDString MDString MDString * IncludePath
Metadata Metadata MDString MDString * ConfigurationMacros
Metadata Metadata MDString MDString MDString MDString unsigned LineNo
Debug lexical block.
Metadata MDString bool ExportSymbols
Metadata MDString * Name
Tagged DWARF-like metadata node.
LLVM_ABI dwarf::Tag getTag() const
static LLVM_ABI DIFlags getFlag(StringRef Flag)
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
DINode(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops1, ArrayRef< Metadata * > Ops2={})
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
DIFlags
Debug info flags.
MDString Metadata * File
MDString Metadata unsigned MDString MDString unsigned Metadata * Type
MDString Metadata unsigned MDString * GetterName
MDString Metadata unsigned MDString MDString * SetterName
Base class for scope-like contexts.
LLVM_ABI StringRef getName() const
DIFile * getFile() const
LLVM_ABI DIScope * getScope() const
DIScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops)
String type, Fortran CHARACTER(n)
unsigned MDString * Name
unsigned MDString Metadata Metadata Metadata uint64_t SizeInBits
unsigned MDString Metadata Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata Metadata Metadata * StringLocationExp
unsigned MDString Metadata Metadata * StringLengthExp
unsigned MDString Metadata Metadata Metadata uint64_t uint32_t unsigned Encoding
unsigned MDString Metadata * StringLength
Subprogram description. Uses SubclassData1.
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata MDString bool UsesKeyInstructions
Metadata MDString MDString Metadata unsigned Metadata unsigned ScopeLine
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags SPFlags
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata * ContainingType
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata * Declaration
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata MDString * TargetFuncName
static LLVM_ABI DISPFlags toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, unsigned Virtuality=SPFlagNonvirtual, bool IsMainSubprogram=false)
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata * ThrownTypes
static LLVM_ABI DISPFlags getFlag(StringRef Flag)
Metadata MDString MDString Metadata * File
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned VirtualIndex
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata * RetainedNodes
DISPFlags
Debug info subprogram flags.
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int ThisAdjustment
StringRef DIFile unsigned Line
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata * UpperBound
PointerUnion< ConstantInt *, DIVariable *, DIExpression * > BoundType
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata Metadata Metadata * Bias
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata Metadata * Stride
StringRef DIFile unsigned DIScope uint64_t SizeInBits
StringRef DIFile * File
StringRef DIFile unsigned DIScope uint64_t uint32_t AlignInBits
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata * LowerBound
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags Flags
Array subrange.
LLVM_ABI BoundType getUpperBound() const
LLVM_ABI BoundType getStride() const
LLVM_ABI BoundType getLowerBound() const
LLVM_ABI BoundType getCount() const
Type array for a subprogram.
DIFlags uint8_t Metadata * TypeArray
Base class for template parameters.
unsigned MDString Metadata * Type
unsigned MDString Metadata bool Metadata * Value
Base class for types.
bool isBitField() const
bool isStaticMember() const
DIType(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, unsigned Line, uint32_t AlignInBits, uint32_t NumExtraInhabitants, DIFlags Flags, ArrayRef< Metadata * > Ops)
LLVM_ABI uint32_t getAlignInBits() const
Base class for variables.
std::optional< DIBasicType::Signedness > getSignedness() const
Return the signedness of this variable's type, or std::nullopt if this type is neither signed nor uns...
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
Metadata * getRawType() const
LLVM_ABI DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, signed Line, ArrayRef< Metadata * > Ops, uint32_t AlignInBits=0)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI DebugVariableAggregate(const DbgVariableRecord *DVR)
const DILocation * getInlinedAt() const
const DILocalVariable * getVariable() const
LLVM_ABI DebugVariable(const DbgVariableRecord *DVR)
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:165
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
iterator end()
Definition DenseMap.h:81
Class representing an expression and its matching format.
Generic tagged DWARF-like metadata node.
LLVM_ABI dwarf::Tag getTag() const
unsigned MDString * Header
unsigned MDString ArrayRef< Metadata * > DwarfOps
DenseSet< DIArgList *, DIArgListInfo > DIArgLists
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVMContextImpl *const pImpl
Definition LLVMContext.h:70
Metadata node.
Definition Metadata.h:1077
friend class DIAssignID
Definition Metadata.h:1080
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1573
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1565
LLVM_ABI TempMDNode clone() const
Create a (temporary) clone of this.
Definition Metadata.cpp:668
static T * storeImpl(T *N, StorageType Storage, StoreT &Store)
LLVMContext & getContext() const
Definition Metadata.h:1241
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition Metadata.h:1316
A single uniqued string.
Definition Metadata.h:720
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:617
static void untrack(Metadata *&MD)
Stop tracking a reference to metadata.
Definition Metadata.h:356
static bool track(Metadata *&MD)
Track the reference to metadata.
Definition Metadata.h:322
Root of the metadata hierarchy.
Definition Metadata.h:63
StorageType
Active type of storage.
Definition Metadata.h:71
unsigned short SubclassData16
Definition Metadata.h:77
unsigned SubclassData32
Definition Metadata.h:78
unsigned char Storage
Storage flag for non-uniqued, otherwise unowned, metadata.
Definition Metadata.h:74
unsigned char SubclassData1
Definition Metadata.h:76
Metadata(unsigned ID, StorageType Storage)
Definition Metadata.h:87
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
LLVM_ABI void replaceAllUsesWith(Metadata *MD)
Replace all uses of this with MD.
Definition Metadata.cpp:368
LLVMContext & getContext() const
Definition Metadata.h:407
LLVM_ABI void resolveAllUses(bool ResolveUsers=true)
Resolve all uses of this.
Definition Metadata.cpp:421
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:281
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:151
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
Value wrapper in the Metadata hierarchy.
Definition Metadata.h:457
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition Metadata.cpp:502
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition Value.cpp:1054
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Calculates the starting offsets for various sections within the .debug_names section.
Definition Dwarf.h:35
@ DW_OP_LLVM_entry_value
Only used in LLVM metadata.
Definition Dwarf.h:147
@ DW_OP_LLVM_implicit_pointer
Only used in LLVM metadata.
Definition Dwarf.h:148
@ DW_OP_LLVM_extract_bits_zext
Only used in LLVM metadata.
Definition Dwarf.h:151
@ DW_OP_LLVM_tag_offset
Only used in LLVM metadata.
Definition Dwarf.h:146
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition Dwarf.h:144
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Definition Dwarf.h:145
@ DW_OP_LLVM_extract_bits_sext
Only used in LLVM metadata.
Definition Dwarf.h:150
@ DW_VIRTUALITY_max
Definition Dwarf.h:200
@ NameTableKind
Definition LLToken.h:500
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:311
@ Offset
Definition DWP.cpp:477
static T * getUniqued(DenseSet< T *, InfoT > &Store, const typename InfoT::KeyTy &Key)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2125
auto cast_or_null(const Y &Val)
Definition Casting.h:720
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
LLVM_ABI cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
auto reverse(ContainerTy &&C)
Definition STLExtras.h:401
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1728
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI cl::opt< bool > PickMergedSourceLocations("pick-merged-source-locations", cl::init(false), cl::Hidden, cl::desc("Preserve line and column number when merging locations."))
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:851
#define N
SmallPtrSet< DIScope *, 8 > Scopes
void insert(DIScope *S, LineColumn Loc)
DIScope * match(DIScope *S, LineColumn Loc)
void insert(DIScope *S, LineColumn Loc)
DIScope * match(DIScope *S, LineColumn Loc)
SmallMapVector< std::pair< DIFile *, LineColumn >, SmallSetVector< DIScope *, 8 >, 8 > Scopes
A single checksum, represented by a Kind and a Value (a string).
static DbgVariableFragmentInfo intersect(DbgVariableFragmentInfo A, DbgVariableFragmentInfo B)
Returns a zero-sized fragment if A and B don't intersect.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:249