22#include "llvm/IR/IntrinsicsHexagon.h"
27#define DEBUG_TYPE "hexagon-isel"
28#define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection"
33 cl::desc(
"Rebalance address calculation trees to improve "
34 "instruction selection"));
41 cl::desc(
"Rebalance address tree only if this allows optimizations"));
46 cl::init(
false),
cl::desc(
"Rebalance address tree only if it is imbalanced"));
55#define GET_DAGISEL_BODY HexagonDAGToDAGISel
56#include "HexagonGenDAGISel.inc"
81 EVT LoadedVT = LD->getMemoryVT();
88 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
94 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
96 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
100 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
102 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
108 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
115 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
125 if (isAlignedMemNode(LD)) {
126 if (LD->isNonTemporal())
127 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
129 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
131 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
138 SDValue IncV =
CurDAG->getSignedTargetConstant(Inc, dl, MVT::i32);
145 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
149 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
158 EVT ValueVT = LD->getValueType(0);
168 MVT::i32, MVT::Other,
Base,
174 if (LD->getValueType(0) == MVT::i64)
187 if (LD->getValueType(0) == MVT::i64)
192 CurDAG->RemoveDeadNode(LD);
202 static std::map<unsigned,unsigned> LoadPciMap = {
203 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
204 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
205 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
206 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
207 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
208 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
210 auto FLC = LoadPciMap.find(IntNo);
211 if (FLC != LoadPciMap.end()) {
212 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
213 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
217 CurDAG->getSignedTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
219 { IntN->getOperand(2), I, IntN->getOperand(4),
220 IntN->getOperand(0) });
235 unsigned Size = 1U << (SizeBits-1);
293 switch (
C->getConstantOperandVal(1)) {
294 case Intrinsic::hexagon_circ_ldub:
295 case Intrinsic::hexagon_circ_lduh:
298 case Intrinsic::hexagon_circ_ldw:
299 case Intrinsic::hexagon_circ_ldd:
306 if (
N->getExtensionType() != IntExt)
311 if (
C->getNumOperands() < 4 ||
Loc.getNode() !=
C->getOperand(3).getNode())
333 const SDLoc &dl(IntN);
336 static const std::map<unsigned, unsigned> LoadBrevMap = {
337 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
338 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
339 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
340 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
341 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
342 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
344 auto FLI = LoadBrevMap.find(IntNo);
345 if (FLI != LoadBrevMap.end()) {
347 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
348 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
353 FLI->second, dl, RTys,
354 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
362 CurDAG->RemoveDeadNode(IntN);
378 static std::map<unsigned,unsigned> LoadNPcMap = {
379 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
380 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
381 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
382 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
383 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
384 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
385 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
386 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
387 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
388 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
389 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
390 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
392 auto FLI = LoadNPcMap.find (IntNo);
393 if (FLI != LoadNPcMap.end()) {
394 EVT ValTy = MVT::i32;
395 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
396 IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
398 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
415 CurDAG->RemoveDeadNode(IntN);
419 static std::map<unsigned,unsigned> StoreNPcMap = {
420 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
421 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
422 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
423 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
424 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
425 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
426 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
427 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
428 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
429 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
431 auto FSI = StoreNPcMap.find (IntNo);
432 if (FSI != StoreNPcMap.end()) {
433 EVT RTys[] = { MVT::i32, MVT::Other };
449 CurDAG->RemoveDeadNode(IntN);
475 SDValue Chain = ST->getChain();
481 EVT StoredVT = ST->getMemoryVT();
484 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
490 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
493 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
499 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
506 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
516 if (isAlignedMemNode(ST)) {
517 if (ST->isNonTemporal())
518 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
520 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
522 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
529 if (ST->isTruncatingStore() && ValueVT.
getSizeInBits() == 64) {
531 Value =
CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
532 dl, MVT::i32,
Value);
535 SDValue IncV =
CurDAG->getSignedTargetConstant(Inc, dl, MVT::i32);
562 CurDAG->RemoveDeadNode(ST);
584 auto Default = [
this,
N] () ->
void { SelectCode(
N); };
597 int32_t ValConst =
C->getSExtValue() << ShlConst;
599 SDValue Val =
CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
600 SDNode *Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
601 MVT::i32, Mul_0, Val);
618 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
621 CurDAG->getSignedTargetConstant(-ValConst, dl, MVT::i32);
622 SDNode *Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
623 MVT::i32, Shl2_0, Val);
651 unsigned IntNo =
N->getConstantOperandVal(1);
652 if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
653 IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
654 IntNo == Intrinsic::hexagon_V6_vgathermh ||
655 IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
656 IntNo == Intrinsic::hexagon_V6_vgathermhw ||
657 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
661 if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
662 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
663 IntNo == Intrinsic::hexagon_V6_vgathermhq ||
664 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
665 IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
666 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
675 unsigned IID =
N->getConstantOperandVal(0);
678 case Intrinsic::hexagon_S2_vsplatrb:
681 case Intrinsic::hexagon_S2_vsplatrh:
684 case Intrinsic::hexagon_V6_vaddcarry:
685 case Intrinsic::hexagon_V6_vaddcarry_128B:
686 case Intrinsic::hexagon_V6_vsubcarry:
687 case Intrinsic::hexagon_V6_vsubcarry_128B:
698 if (keepsLowBits(V, Bits, U)) {
700 N->getOperand(0), U);
702 SelectCode(R.getNode());
710 MVT ResTy =
N->getValueType(0).getSimpleVT();
711 unsigned Idx =
N->getConstantOperandVal(1);
718 assert(Idx == 0 || Idx == ResLen);
720 unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
732 APInt A = CN->getValueAPF().bitcastToAPInt();
733 if (
N->getValueType(0) == MVT::f32) {
734 SDValue V =
CurDAG->getTargetConstant(
A.getZExtValue(), dl, MVT::i32);
738 if (
N->getValueType(0) == MVT::f64) {
739 SDValue V =
CurDAG->getTargetConstant(
A.getZExtValue(), dl, MVT::i64);
751 if (
N->getValueType(0) == MVT::i1) {
752 assert(!(
N->getAsZExtVal() >> 1));
780 R =
CurDAG->getMachineNode(Hexagon::PS_fi,
DL, MVT::i32, FI, Zero);
783 Register AR = HMFI.getStackAlignBaseReg();
786 R =
CurDAG->getMachineNode(Hexagon::PS_fia,
DL, MVT::i32,
Ops);
794 : Hexagon::A4_subp_c;
796 { N->getOperand(0), N->getOperand(1),
802 MVT ResTy =
N->getValueType(0).getSimpleVT();
803 if (HST->isHVXVectorType(ResTy,
true))
804 return SelectHvxVAlign(
N);
810 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
812 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
814 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
816 SDNode *R =
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
823 if (HST->useCompound()) {
824 C =
CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
825 M0,
N->getOperand(2),
M1);
827 SDNode *
T =
CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
828 N->getOperand(2),
M1);
829 C =
CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
832 SDNode *S =
CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
834 SDValue E =
CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
839 SDNode *Pu =
CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
841 SDNode *VA =
CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
842 N->getOperand(0),
N->getOperand(1),
855 SDNode *
AA =
CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
856 N->getOperand(0), M);
865 MVT OpTy =
Op.getValueType().getSimpleVT();
867 CurDAG->getVTList(OpTy), {Op});
872 MVT ResTy =
N->getValueType(0).getSimpleVT();
880 MVT ResTy =
N->getValueType(0).getSimpleVT();
882 SDNode *
T =
CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
883 N->getOperand(0), Zero);
889 MVT ResTy =
N->getValueType(0).getSimpleVT();
891 MVT OpTy =
N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
895 SDNode *R =
CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
C);
896 SDNode *
T =
CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
903 MVT ResTy =
N->getValueType(0).getSimpleVT();
908 SDNode *R =
CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
C);
909 SDNode *
T =
CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
918 Ops = {
N->getOperand(0),
N->getOperand(1)};
920 VTs =
CurDAG->getVTList(MVT::f32, MVT::f32);
921 SDNode *ResScale =
CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs,
Ops);
922 SDNode *
D =
CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32,
Ops);
926 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32,
C);
928 SDNode *n =
CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32,
Ops);
929 SDNode *Err =
CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
932 SDNode *NewRec =
CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
935 SDNode *newErr =
CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
939 Hexagon::A2_andir, dl, MVT::f32,
SDValue(n, 0),
940 CurDAG->getTargetConstant(0x80000000, dl, MVT::i32));
942 CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
SDValue(q, 0),
945 Hexagon::F2_sffma_lib, dl, MVT::f32,
SDValue(NewRec, 0),
948 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
SDValue(n, 0),
950 SDNode *NNewQ =
CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
955 CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
SDValue(n, 0),
957 std::array<SDValue, 4> temp1 = {
SDValue(NNewQ, 0),
SDValue(NqErr, 0),
961 CurDAG->getMachineNode(Hexagon::F2_sffma_sc, dl, MVT::f32, OpValue1);
969 Ops = {
N->getOperand(0),
N->getOperand(1)};
971 VTs =
CurDAG->getVTList(MVT::f32, MVT::f32);
972 SDNode *ResScale =
CurDAG->getMachineNode(Hexagon::F2_sfrecipa, dl, VTs,
Ops);
973 SDNode *
D =
CurDAG->getMachineNode(Hexagon::F2_sffixupd, dl, MVT::f32,
Ops);
977 CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32,
C);
979 SDNode *n =
CurDAG->getMachineNode(Hexagon::F2_sffixupn, dl, MVT::f32,
Ops);
980 SDNode *Err =
CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
983 SDNode *NewRec =
CurDAG->getMachineNode(Hexagon::F2_sffma_lib, dl, MVT::f32,
986 SDNode *newErr =
CurDAG->getMachineNode(Hexagon::F2_sffms_lib, dl, MVT::f32,
991 Hexagon::F2_sffma_lib, dl, MVT::f32,
SDValue(NewRec, 0),
994 Hexagon::F2_sfmpy, dl, MVT::f32,
SDValue(NNewRec, 0),
SDValue(n, 0));
999 if (
N->getFlags().hasAllowReassociation())
1006 if (
N->isMachineOpcode())
1007 return N->setNodeId(-1);
1009 auto isHvxOp = [
this](
SDNode *
N) {
1010 for (
unsigned i = 0, e =
N->getNumValues(); i != e; ++i) {
1011 if (HST->isHVXVectorType(
N->getValueType(i),
true))
1015 if (HST->isHVXVectorType(
I.getValueType(),
true))
1021 if (HST->useHVXOps() && isHvxOp(
N)) {
1022 switch (
N->getOpcode()) {
1030 switch (
N->getOpcode()) {
1059 std::vector<SDValue> &OutOps) {
1062 switch (ConstraintID) {
1069 OutOps.push_back(Res);
1071 OutOps.push_back(Inp);
1075 OutOps.push_back(
CurDAG->getTargetConstant(0,
SDLoc(
Op), MVT::i32));
1084 if (!U->hasOneUse())
1086 unsigned Opc = U->getOpcode();
1109 SDNode *SYNode = SY.getNode();
1113 if (LDBasePtr == STBasePtr)
1122void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
1123 SelectionDAG &DAG = *
CurDAG;
1125 for (
auto *
I : Nodes) {
1129 auto IsSelect0 = [](
const SDValue &
Op) ->
bool {
1136 SDValue N0 =
I->getOperand(0), N1 =
I->getOperand(1);
1137 EVT VT =
I->getValueType(0);
1138 bool SelN0 = IsSelect0(N0);
1139 SDValue SOp = SelN0 ? N0 : N1;
1140 SDValue VOp = SelN0 ? N1 : N0;
1166void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1167 SelectionDAG &DAG = *
CurDAG;
1169 for (
auto *
I : Nodes) {
1170 if (
I->getOpcode() != ISD::STORE)
1201 if (EV % (1 << CV) != 0)
1203 unsigned DV = EV / (1 << CV);
1206 SDLoc
DL = SDLoc(
I);
1230void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1231 SelectionDAG &DAG = *
CurDAG;
1233 for (SDNode *
N : Nodes) {
1234 unsigned Opc =
N->getOpcode();
1235 if (
Opc != ISD::LOAD &&
Opc != ISD::STORE)
1237 SDValue Addr =
Opc == ISD::LOAD ?
N->getOperand(1) :
N->getOperand(2);
1271 if (TZ +
M1 + LZ != 32)
1295void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1296 SelectionDAG &DAG = *
CurDAG;
1298 for (SDNode *
N : Nodes) {
1299 unsigned Opc =
N->getOpcode();
1306 for (SDUse &Use :
N->uses()) {
1307 SDNode *
U =
Use.getUser();
1308 if (
U->getNumValues() != 1)
1310 EVT UVT =
U->getValueType(0);
1320 unsigned I1N =
Use.getOperandNo();
1322 for (
unsigned i = 0, n =
U->getNumOperands(); i != n; ++i)
1323 Ops[i] =
U->getOperand(i);
1324 EVT BVT =
Ops[I1N].getValueType();
1332 unsigned UseOpc =
U->getMachineOpcode();
1338 unsigned UseOpc =
U->getOpcode();
1360 auto getNodes = [
this]() -> std::vector<SDNode *> {
1361 std::vector<SDNode *>
T;
1362 T.reserve(
CurDAG->allnodes_size());
1368 if (HST->useHVXOps())
1369 PreprocessHvxISelDAG();
1373 ppSimplifyOrSelect0(getNodes());
1381 ppAddrReorderAddShl(getNodes());
1396 ppAddrRewriteAndSrl(getNodes());
1400 ppHoistZextI1(getNodes());
1403 dbgs() <<
"Preprocessed (Hexagon) selection DAG:";
1408 rebalanceAddressTrees();
1411 dbgs() <<
"Address tree balanced selection DAG:";
1420 if (!HFI.needsAligna(*
MF))
1429 auto &HRI = *HST.getRegisterInfo();
1431 for (
const MCPhysReg *R = HRI.getCalleeSavedRegs(
MF); *R; ++R) {
1437 assert(AP.
isValid() &&
"Couldn't reserve stack align register");
1443void HexagonDAGToDAGISel::updateAligna() {
1445 if (!HFI.needsAligna(*
MF))
1447 auto *AlignaI =
const_cast<MachineInstr*
>(HFI.getAlignaInstr(*
MF));
1448 assert(AlignaI !=
nullptr);
1450 if (AlignaI->getOperand(1).getImm() < MaxA)
1451 AlignaI->getOperand(1).setImm(MaxA);
1458 auto &HFI = *HST->getFrameLowering();
1463 R =
CurDAG->getTargetFrameIndex(FX, MVT::i32);
1493 EVT T =
N.getValueType();
1497 R =
CurDAG->getTargetConstant(V,
SDLoc(
N),
N.getValueType());
1503 switch (
N.getOpcode()) {
1505 if (
N.getValueType() != MVT::i32)
1510 R =
CurDAG->getTargetConstant(V,
SDLoc(
N),
N.getValueType());
1516 if (Alignment >
Align(8))
1518 R =
N.getOperand(0);
1522 if (Alignment >
Align(1))
1528 if (Alignment >
Align(4) ||
1543 bool UseGP,
Align Alignment) {
1544 switch (
N.getOpcode()) {
1554 if (!
isAligned(Alignment, Const->getZExtValue()))
1560 R =
CurDAG->getTargetGlobalAddress(GA->getGlobal(),
SDLoc(Const),
1561 N.getValueType(), NewOff);
1574 R =
N.getOperand(0);
1578 R =
N.getOperand(0);
1606 if (
N.getValueType() != MVT::i64)
1608 unsigned Opc =
N.getOpcode();
1614 ?
N.getOperand(0).getValueType()
1616 unsigned SW =
T.getSizeInBits();
1618 R =
N.getOperand(0);
1631 if (L->getMemoryVT().getSizeInBits() > 32)
1638 if (!S || S->getZExtValue() != 32)
1645 if (
T.getSizeInBits() == 32)
1646 R =
N.getOperand(0);
1655 EVT RT = R.getValueType();
1663 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1664 R,
CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1665 R,
CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1667 SDNode *
T =
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1673bool HexagonDAGToDAGISel::keepsLowBits(
const SDValue &Val,
unsigned NumBits,
1682 if (
T.isInteger() &&
T.getSizeInBits() == NumBits) {
1693 if (
T->getVT().getSizeInBits() == NumBits) {
1701 uint64_t
Mask = (1ULL << NumBits) - 1;
1703 if (
C->getZExtValue() == Mask) {
1709 if (
C->getZExtValue() == Mask) {
1719 uint64_t
Mask = (1ULL << NumBits) - 1;
1721 if ((
C->getZExtValue() & Mask) == 0) {
1727 if ((
C->getZExtValue() & Mask) == 0) {
1740bool HexagonDAGToDAGISel::isAlignedMemNode(
const MemSDNode *
N)
const {
1741 return N->getAlign().value() >=
N->getMemoryVT().getStoreSize();
1744bool HexagonDAGToDAGISel::isSmallStackStore(
const StoreSDNode *
N)
const {
1745 unsigned StackSize =
MF->getFrameInfo().estimateStackSize(*
MF);
1746 switch (
N->getMemoryVT().getStoreSize()) {
1748 return StackSize <= 56;
1750 return StackSize <= 120;
1752 return StackSize <= 248;
1759bool HexagonDAGToDAGISel::isPositiveHalfWord(
const SDNode *
N)
const {
1771bool HexagonDAGToDAGISel::hasOneUse(
const SDNode *
N)
const {
1779 switch (
N->getOpcode()) {
1793int HexagonDAGToDAGISel::getWeight(
SDNode *
N) {
1796 assert(RootWeights.count(
N) &&
"Cannot get weight of unseen root!");
1797 assert(RootWeights[
N] != -1 &&
"Cannot get weight of unvisited root!");
1798 assert(RootWeights[
N] != -2 &&
"Cannot get weight of RAWU'd root!");
1799 return RootWeights[
N];
1802int HexagonDAGToDAGISel::getHeight(
SDNode *
N) {
1805 assert(RootWeights.count(
N) && RootWeights[
N] >= 0 &&
1806 "Cannot query height of unvisited/RAUW'd node!");
1807 return RootHeights[
N];
1811struct WeightedLeaf {
1818 WeightedLeaf(
SDValue Value,
int Weight,
int InsertionOrder) :
1819 Value(
Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1820 assert(Weight >= 0 &&
"Weight must be >= 0");
1823 static bool Compare(
const WeightedLeaf &
A,
const WeightedLeaf &
B) {
1824 assert(
A.Value.getNode() &&
B.Value.getNode());
1825 return A.Weight ==
B.Weight ?
1826 (
A.InsertionOrder >
B.InsertionOrder) :
1827 (
A.Weight >
B.Weight);
1834class LeafPrioQueue {
1837 WeightedLeaf ConstElt;
1842 return (!HaveConst && Q.
empty());
1846 return Q.
size() + HaveConst;
1853 const WeightedLeaf &top() {
1859 WeightedLeaf pop() {
1864 std::pop_heap(Q.
begin(), Q.
end(), WeightedLeaf::Compare);
1868 void push(WeightedLeaf L,
bool SeparateConst=
true) {
1881 std::push_heap(Q.
begin(), Q.
end(), WeightedLeaf::Compare);
1887 void pushToBottom(WeightedLeaf L) {
1894 WeightedLeaf findSHL(uint64_t MaxAmount);
1896 WeightedLeaf findMULbyConst();
1898 LeafPrioQueue(
unsigned Opcode) :
1899 HaveConst(
false), Opcode(Opcode) { }
1903WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1907 for (
int Pos = 0, End = Q.
size(); Pos != End; ++Pos) {
1908 const WeightedLeaf &
L = Q[Pos];
1915 (
Result.Weight ==
L.Weight &&
Result.InsertionOrder >
L.InsertionOrder))
1922 if (
Result.Value.getNode()) {
1923 Q.
erase(&Q[ResultPos]);
1924 std::make_heap(Q.
begin(), Q.
end(), WeightedLeaf::Compare);
1930WeightedLeaf LeafPrioQueue::findMULbyConst() {
1934 for (
int Pos = 0, End = Q.
size(); Pos != End; ++Pos) {
1935 const WeightedLeaf &
L = Q[Pos];
1942 (
Result.Weight ==
L.Weight &&
Result.InsertionOrder >
L.InsertionOrder))
1949 if (
Result.Value.getNode()) {
1950 Q.
erase(&Q[ResultPos]);
1951 std::make_heap(Q.
begin(), Q.
end(), WeightedLeaf::Compare);
1959 return CurDAG->getConstant(MulFactor, SDLoc(
N),
1960 N->getOperand(1).getValueType());
1966 unsigned MaxFactor = 0;
1967 for (
int i = 0; i < 2; ++i) {
1971 const APInt &CInt =
C->getAPIntValue();
1989 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1990 for (
int i = 0; i < 2; ++i)
1992 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1993 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1994 return (NewConst == 1);
1996 }
else if (V.getOpcode() ==
ISD::SHL) {
1997 return (Amount == V.getConstantOperandVal(1));
2003SDValue HexagonDAGToDAGISel::factorOutPowerOf2(
SDValue V,
unsigned Power) {
2006 for (
int i=0; i < 2; ++i) {
2008 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
2009 uint64_t NewConst =
V.getConstantOperandVal(i) >> Power;
2013 SDLoc(V),
V.getValueType());
2018 uint64_t ShiftAmount =
V.getConstantOperandVal(1);
2019 if (ShiftAmount == Power)
2021 Ops[1] =
CurDAG->getConstant(ShiftAmount - Power,
2022 SDLoc(V),
V.getValueType());
2025 return CurDAG->getNode(
V.getOpcode(), SDLoc(V),
V.getValueType(),
Ops);
2033unsigned HexagonDAGToDAGISel::getUsesInFunction(
const Value *V) {
2034 auto [It,
Inserted] = GAUsesInFunction.try_emplace(V);
2039 const Function &CurF =
CurDAG->getMachineFunction().getFunction();
2040 for (
const User *U :
V->users()) {
2056SDValue HexagonDAGToDAGISel::balanceSubTree(
SDNode *
N,
bool TopLevel) {
2057 assert(RootWeights.count(
N) &&
"Cannot balance non-root node.");
2058 assert(RootWeights[
N] != -2 &&
"This node was RAUW'd!");
2062 if (RootWeights[
N] != -1)
2076 Weight = getWeight(balanceSubTree(Op0N).
getNode());
2079 Weight = getWeight(Op0N);
2081 SDNode *Op1N =
N->getOperand(1).getNode();
2083 Weight += getWeight(balanceSubTree(Op1N).
getNode());
2086 Weight += getWeight(Op1N);
2088 RootWeights[
N] = Weight;
2089 RootHeights[
N] = std::max(getHeight(
N->getOperand(0).getNode()),
2090 getHeight(
N->getOperand(1).getNode())) + 1;
2092 LLVM_DEBUG(
dbgs() <<
"--> No need to balance root (Weight=" << Weight
2093 <<
" Height=" << RootHeights[
N] <<
"): ");
2102 unsigned NOpcode =
N->getOpcode();
2104 LeafPrioQueue Leaves(NOpcode);
2112 bool CanFactorize =
false;
2113 WeightedLeaf Mul1, Mul2;
2114 unsigned MaxPowerOf2 = 0;
2119 bool HaveTopLevelShift =
false;
2125 HaveTopLevelShift =
true;
2129 int InsertionOrder = 0;
2130 SmallDenseMap<SDValue, int> NodeHeights;
2131 bool Imbalanced =
false;
2132 int CurrentWeight = 0;
2133 while (!Worklist.
empty()) {
2139 int Weight = RootWeights[Child.
getNode()];
2141 Child = balanceSubTree(Child.
getNode());
2143 Weight = getWeight(Child.
getNode());
2144 }
else if (Weight == -2) {
2149 return balanceSubTree(
N, TopLevel);
2152 NodeHeights[Child] = 1;
2153 CurrentWeight += Weight;
2156 if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
2163 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2164 MaxPowerOf2 = PowerOf2;
2166 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2167 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2170 if (MaxPowerOf2 > 3)
2173 CanFactorize =
true;
2176 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2179 int Weight = getWeight(Child.
getNode());
2181 NodeHeights[Child] = getHeight(Child.
getNode());
2182 CurrentWeight += Weight;
2185 GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2187 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2191 unsigned ChildOpcode = Child.
getOpcode();
2192 assert(ChildOpcode == NOpcode ||
2198 Op1 = getMultiplierForSHL(Child.
getNode());
2203 assert(!NodeHeights.
count(Child) &&
"Parent visited before children?");
2210 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->
getOperand(0)]) > 1)
2213 NodeHeights[Child] = std::max(NodeHeights[Op1],
2220 <<
" weight=" << CurrentWeight
2221 <<
" imbalanced=" << Imbalanced <<
"\n");
2227 LLVM_DEBUG(
dbgs() <<
"--> Found common factor for two MUL children!\n");
2228 int Weight = Mul1.Weight + Mul2.Weight;
2229 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2230 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2231 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2233 Mul1Factored, Mul2Factored);
2238 NodeHeights[
New] = Height;
2239 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2240 }
else if (Mul1.Value.
getNode()) {
2246 CanFactorize =
false;
2252 bool CombinedGA =
false;
2255 GlobalAddressSDNode *GANode =
2259 if (getUsesInFunction(GANode->
getGlobal()) == 1 &&
Offset->hasOneUse() &&
2262 <<
Offset->getSExtValue() <<
"): ");
2271 GA.Weight += Leaves.top().Weight;
2273 NodeHeights[GA.Value] = getHeight(GA.Value.
getNode());
2282 RootWeights[
N] = CurrentWeight;
2283 RootHeights[
N] = NodeHeights[
SDValue(
N, 0)];
2290 WeightedLeaf
SHL = Leaves.findSHL(31);
2291 if (
SHL.Value.getNode()) {
2292 int Height = std::max(NodeHeights[GA.Value], NodeHeights[
SHL.Value]) + 1;
2295 GA.Value,
SHL.Value);
2296 GA.Weight =
SHL.Weight;
2297 NodeHeights[GA.Value] = Height;
2306 if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2308 Leaves.pushToBottom(Leaves.pop());
2311 const DataLayout &
DL =
CurDAG->getDataLayout();
2315 while (Leaves.size() > 1) {
2316 WeightedLeaf L0 = Leaves.pop();
2320 WeightedLeaf L1 = Leaves.findMULbyConst();
2324 assert(L0.Weight <= L1.Weight &&
"Priority queue is broken!");
2327 int V0Weight = L0.Weight;
2329 int V1Weight = L1.Weight;
2332 if ((RootWeights.count(V0.
getNode()) && RootWeights[V0.
getNode()] == -2) ||
2333 (RootWeights.count(V1.
getNode()) && RootWeights[V1.
getNode()] == -2)) {
2335 return balanceSubTree(
N, TopLevel);
2340 EVT VT =
N->getValueType(0);
2350 "Children must have been visited before re-combining them!");
2351 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2355 NewNode =
CurDAG->getNode(
2361 NewNode =
CurDAG->getNode(NOpcode, SDLoc(
N), VT, V0, V1);
2363 NodeHeights[NewNode] = Height;
2365 int Weight = V0Weight + V1Weight;
2366 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2369 <<
",Height=" << Height <<
"):\n");
2373 assert(Leaves.size() == 1);
2374 SDValue NewRoot = Leaves.top().Value;
2377 int Height = NodeHeights[NewRoot];
2385 NewRoot =
CurDAG->getNode(
2400 RootWeights[
N] = -2;
2405 RootWeights[NewRoot.
getNode()] = Leaves.top().Weight;
2406 RootHeights[NewRoot.
getNode()] = Height;
2411void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2414 if (
N->getOpcode() != ISD::LOAD &&
N->getOpcode() != ISD::STORE)
2422 if (RootWeights.count(
BasePtr.getNode()))
2425 LLVM_DEBUG(
dbgs() <<
"** Rebalancing address calculation in node: ");
2434 while (!Worklist.
empty()) {
2436 unsigned Opcode =
N->getOpcode();
2441 Worklist.
push_back(
N->getOperand(0).getNode());
2442 Worklist.
push_back(
N->getOperand(1).getNode());
2445 if (
N->hasOneUse() && Opcode ==
N->user_begin()->getOpcode())
2449 RootWeights.try_emplace(
N, -1);
2453 RootWeights[
BasePtr.getNode()] = -1;
2456 if (
N->getOpcode() == ISD::LOAD)
2457 N =
CurDAG->UpdateNodeOperands(
N,
N->getOperand(0),
2458 NewBasePtr,
N->getOperand(2));
2460 N =
CurDAG->UpdateNodeOperands(
N,
N->getOperand(0),
N->getOperand(1),
2461 NewBasePtr,
N->getOperand(3));
2467 CurDAG->RemoveDeadNodes();
2468 GAUsesInFunction.clear();
2469 RootHeights.clear();
2470 RootWeights.clear();
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis false
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool willShiftRightEliminate(SDValue V, unsigned Amount)
static cl::opt< bool > RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"))
static unsigned getPowerOf2Factor(SDValue Val)
static cl::opt< bool > CheckSingleUse("hexagon-isel-su", cl::Hidden, cl::init(true), cl::desc("Enable checking of SDNode's single-use status"))
static cl::opt< bool > EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), cl::desc("Rebalance address calculation trees to improve " "instruction selection"))
static bool isMemOPCandidate(SDNode *I, SDNode *U)
static bool isTargetConstant(const SDValue &V)
static bool isOpcodeHandled(const SDNode *N)
static cl::opt< bool > RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), cl::desc("Rebalance address tree only if this allows optimizations"))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
Class for arbitrary precision integers.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned logBase2() const
bool getBoolValue() const
Convert APInt to a boolean value.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
int64_t getSExtValue() const
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
FunctionPass class - This class is used to implement most global optimizations.
int64_t getOffset() const
const GlobalValue * getGlobal() const
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
HexagonDAGToDAGISelLegacy(HexagonTargetMachine &tm, CodeGenOptLevel OptLevel)
void SelectAddSubCarry(SDNode *N)
void SelectConstant(SDNode *N)
void SelectIntrinsicWOChain(SDNode *N)
void Select(SDNode *N) override
Main hook for targets to transform nodes into machine nodes.
bool SelectNewCircIntrinsic(SDNode *IntN)
Generate a machine instruction node for the new circular buffer intrinsics.
bool tryLoadOfLoadIntrinsic(LoadSDNode *N)
void SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl)
void SelectExtractSubvector(SDNode *N)
void SelectVAlign(SDNode *N)
MachineSDNode * LoadInstrForLoadIntrinsic(SDNode *IntN)
bool SelectAnyImm2(SDValue &N, SDValue &R)
bool SelectAnyImm(SDValue &N, SDValue &R)
void SelectV65GatherPred(SDNode *N)
bool SelectAnyImm0(SDValue &N, SDValue &R)
void SelectSHL(SDNode *N)
void SelectIntrinsicWChain(SDNode *N)
void SelectV2Q(SDNode *N)
bool SelectAnyImm1(SDValue &N, SDValue &R)
void SelectConstantFP(SDNode *N)
bool DetectUseSxtw(SDValue &N, SDValue &R)
bool SelectBrevLdIntrinsic(SDNode *IntN)
void emitFunctionEntryCode() override
bool SelectAddrFI(SDValue &N, SDValue &R)
SDNode * StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, SDNode *IntN)
bool SelectAddrGP(SDValue &N, SDValue &R)
bool SelectAnyImmediate(SDValue &N, SDValue &R, Align Alignment)
bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP, Align Alignment)
void SelectFrameIndex(SDNode *N)
bool SelectAnyImm3(SDValue &N, SDValue &R)
void SelectFDiv(SDNode *N)
void SelectStore(SDNode *N)
void SelectLoad(SDNode *N)
HexagonDAGToDAGISel()=delete
bool SelectAnyInt(SDValue &N, SDValue &R)
bool SelectAddrGA(SDValue &N, SDValue &R)
void PreprocessISelDAG() override
PreprocessISelDAG - This hook allows targets to hack on the graph before instruction selection starts...
void SelectTypecast(SDNode *N)
void SelectD2P(SDNode *N)
void SelectVAlignAddr(SDNode *N)
void SelectP2D(SDNode *N)
bool SelectInlineAsmMemoryOperand(const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, std::vector< SDValue > &OutOps) override
SelectInlineAsmMemoryOperand - Implement addressing mode selection for inline asm expressions.
void SelectV65Gather(SDNode *N)
void SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl)
void SelectHVXDualOutput(SDNode *N)
void SelectQ2V(SDNode *N)
Hexagon target-specific information for each MachineFunction.
const HexagonFrameLowering * getFrameLowering() const override
This class is used to represent ISD::LOAD nodes.
unsigned getVectorNumElements() const
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
Align getMaxAlign() const
Return the alignment in bytes that this function must be aligned to, which is greater than the defaul...
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
Representation of each machine instruction.
A description of a memory reference used in the backend.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This is an abstract virtual class for memory operations.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
SelectionDAGISelLegacy(char &ID, std::unique_ptr< SelectionDAGISel > S)
const TargetLowering * TLI
void ReplaceUses(SDValue F, SDValue T)
ReplaceUses - replace all uses of the old node F with the use of the new node T.
void ReplaceNode(SDNode *F, SDNode *T)
Replace all uses of F with T, then remove F from the DAG.
const TargetLowering * getTargetLowering() const
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
iterator erase(const_iterator CI)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
LLVM Value Representation.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SIGN_EXTEND
Conversion operators.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
initializer< Ty > init(const Ty &Val)
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
unsigned M1(unsigned Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
CodeGenOptLevel
Code generation optimization level.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionPass * createHexagonISelDag(HexagonTargetMachine &TM, CodeGenOptLevel OptLevel)
createHexagonISelDag - This pass converts a legalized DAG into a Hexagon-specific DAG,...
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
@ Default
The result values are uniform if and only if all operands are uniform.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool isVector() const
Return true if this is a vector value type.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This class contains a discriminated union of information about pointers in memory operands,...
This represents a list of ValueType's that has been intern'd by a SelectionDAG.