LLVM 22.0.0git
HexagonInstrInfo.cpp
Go to the documentation of this file.
1//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Hexagon implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "HexagonInstrInfo.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/StringRef.h"
42#include "llvm/IR/DebugLoc.h"
44#include "llvm/MC/MCAsmInfo.h"
46#include "llvm/MC/MCInstrDesc.h"
50#include "llvm/Support/Debug.h"
55#include <cassert>
56#include <cctype>
57#include <cstdint>
58#include <cstring>
59#include <iterator>
60#include <optional>
61#include <string>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hexagon-instrinfo"
67
68#define GET_INSTRINFO_CTOR_DTOR
69#define GET_INSTRMAP_INFO
71#include "HexagonGenDFAPacketizer.inc"
72#include "HexagonGenInstrInfo.inc"
73
74cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
75 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
76 "packetization boundary."));
77
78static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
79 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
80
82 "disable-hexagon-nv-schedule", cl::Hidden,
83 cl::desc("Disable schedule adjustment for new value stores."));
84
86 "enable-timing-class-latency", cl::Hidden, cl::init(false),
87 cl::desc("Enable timing class latency"));
88
90 "enable-alu-forwarding", cl::Hidden, cl::init(true),
91 cl::desc("Enable vec alu forwarding"));
92
94 "enable-acc-forwarding", cl::Hidden, cl::init(true),
95 cl::desc("Enable vec acc forwarding"));
96
97static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
98 cl::init(true), cl::Hidden,
99 cl::desc("branch relax asm"));
100
101static cl::opt<bool>
102 UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden,
103 cl::desc("Use the DFA based hazard recognizer."));
104
105/// Constants for Hexagon instructions.
106const int Hexagon_MEMW_OFFSET_MAX = 4095;
107const int Hexagon_MEMW_OFFSET_MIN = -4096;
108const int Hexagon_MEMD_OFFSET_MAX = 8191;
109const int Hexagon_MEMD_OFFSET_MIN = -8192;
110const int Hexagon_MEMH_OFFSET_MAX = 2047;
111const int Hexagon_MEMH_OFFSET_MIN = -2048;
112const int Hexagon_MEMB_OFFSET_MAX = 1023;
113const int Hexagon_MEMB_OFFSET_MIN = -1024;
114const int Hexagon_ADDI_OFFSET_MAX = 32767;
115const int Hexagon_ADDI_OFFSET_MIN = -32768;
116
117// Pin the vtable to this file.
118void HexagonInstrInfo::anchor() {}
119
121 : HexagonGenInstrInfo(ST, Hexagon::ADJCALLSTACKDOWN,
122 Hexagon::ADJCALLSTACKUP),
123 Subtarget(ST) {}
124
125namespace llvm {
126namespace HexagonFUnits {
127 bool isSlot0Only(unsigned units);
128}
129}
130
132 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
133 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
134}
135
137 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
138 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
139}
140
141/// Calculate number of instructions excluding the debug instructions.
144 unsigned Count = 0;
145 for (; MIB != MIE; ++MIB) {
146 if (!MIB->isDebugInstr())
147 ++Count;
148 }
149 return Count;
150}
151
152// Check if the A2_tfrsi instruction is cheap or not. If the operand has
153// to be constant-extendend it is not cheap since it occupies two slots
154// in a packet.
156 // Enable the following steps only at Os/Oz
157 if (!(MI.getMF()->getFunction().hasOptSize()))
158 return MI.isAsCheapAsAMove();
159
160 if (MI.getOpcode() == Hexagon::A2_tfrsi) {
161 auto Op = MI.getOperand(1);
162 // If the instruction has a global address as operand, it is not cheap
163 // since the operand will be constant extended.
164 if (Op.isGlobal())
165 return false;
166 // If the instruction has an operand of size > 16bits, its will be
167 // const-extended and hence, it is not cheap.
168 if (Op.isImm()) {
169 int64_t Imm = Op.getImm();
170 if (!isInt<16>(Imm))
171 return false;
172 }
173 }
174 return MI.isAsCheapAsAMove();
175}
176
177// Do not sink floating point instructions that updates USR register.
178// Example:
179// feclearexcept
180// F2_conv_w2sf
181// fetestexcept
182// MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
183// TODO: On some of these floating point instructions, USR is marked as Use.
184// In reality, these instructions also Def the USR. If USR is marked as Def,
185// some of the assumptions in assembler packetization are broken.
187 // Assumption: A floating point instruction that reads the USR will write
188 // the USR as well.
189 if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR))
190 return false;
191 return true;
192}
193
194/// Find the hardware loop instruction used to set-up the specified loop.
195/// On Hexagon, we have two instructions used to set-up the hardware loop
196/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
197/// to indicate the end of a loop.
199 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
201 unsigned LOOPi;
202 unsigned LOOPr;
203 if (EndLoopOp == Hexagon::ENDLOOP0) {
204 LOOPi = Hexagon::J2_loop0i;
205 LOOPr = Hexagon::J2_loop0r;
206 } else { // EndLoopOp == Hexagon::EndLOOP1
207 LOOPi = Hexagon::J2_loop1i;
208 LOOPr = Hexagon::J2_loop1r;
209 }
210
211 // The loop set-up instruction will be in a predecessor block
212 for (MachineBasicBlock *PB : BB->predecessors()) {
213 // If this has been visited, already skip it.
214 if (!Visited.insert(PB).second)
215 continue;
216 if (PB == BB)
217 continue;
218 for (MachineInstr &I : llvm::reverse(PB->instrs())) {
219 unsigned Opc = I.getOpcode();
220 if (Opc == LOOPi || Opc == LOOPr)
221 return &I;
222 // We've reached a different loop, which means the loop01 has been
223 // removed.
224 if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB)
225 return nullptr;
226 }
227 // Check the predecessors for the LOOP instruction.
228 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
229 return Loop;
230 }
231 return nullptr;
232}
233
234/// Gather register def/uses from MI.
235/// This treats possible (predicated) defs as actually happening ones
236/// (conservatively).
237static inline void parseOperands(const MachineInstr &MI,
239 Defs.clear();
240 Uses.clear();
241
242 for (const MachineOperand &MO : MI.operands()) {
243 if (!MO.isReg())
244 continue;
245
246 Register Reg = MO.getReg();
247 if (!Reg)
248 continue;
249
250 if (MO.isUse())
251 Uses.push_back(MO.getReg());
252
253 if (MO.isDef())
254 Defs.push_back(MO.getReg());
255 }
256}
257
258// Position dependent, so check twice for swap.
259static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
260 switch (Ga) {
262 default:
263 return false;
265 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
267 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
268 Gb == HexagonII::HSIG_A);
270 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
273 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
274 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
275 Gb == HexagonII::HSIG_A);
277 return (Gb == HexagonII::HSIG_A);
279 return (Gb == HexagonII::HSIG_Compound);
280 }
281 return false;
282}
283
284/// isLoadFromStackSlot - If the specified machine instruction is a direct
285/// load from a stack slot, return the virtual or physical register number of
286/// the destination along with the FrameIndex of the loaded stack slot. If
287/// not, return 0. This predicate must return 0 if the instruction has
288/// any side effects other than loading from the stack slot.
290 int &FrameIndex) const {
291 switch (MI.getOpcode()) {
292 default:
293 break;
294 case Hexagon::L2_loadri_io:
295 case Hexagon::L2_loadrd_io:
296 case Hexagon::V6_vL32b_ai:
297 case Hexagon::V6_vL32b_nt_ai:
298 case Hexagon::V6_vL32Ub_ai:
299 case Hexagon::LDriw_pred:
300 case Hexagon::LDriw_ctr:
301 case Hexagon::PS_vloadrq_ai:
302 case Hexagon::PS_vloadrw_ai:
303 case Hexagon::PS_vloadrw_nt_ai: {
304 const MachineOperand OpFI = MI.getOperand(1);
305 if (!OpFI.isFI())
306 return 0;
307 const MachineOperand OpOff = MI.getOperand(2);
308 if (!OpOff.isImm() || OpOff.getImm() != 0)
309 return 0;
310 FrameIndex = OpFI.getIndex();
311 return MI.getOperand(0).getReg();
312 }
313
314 case Hexagon::L2_ploadrit_io:
315 case Hexagon::L2_ploadrif_io:
316 case Hexagon::L2_ploadrdt_io:
317 case Hexagon::L2_ploadrdf_io: {
318 const MachineOperand OpFI = MI.getOperand(2);
319 if (!OpFI.isFI())
320 return 0;
321 const MachineOperand OpOff = MI.getOperand(3);
322 if (!OpOff.isImm() || OpOff.getImm() != 0)
323 return 0;
324 FrameIndex = OpFI.getIndex();
325 return MI.getOperand(0).getReg();
326 }
327 }
328
329 return 0;
330}
331
332/// isStoreToStackSlot - If the specified machine instruction is a direct
333/// store to a stack slot, return the virtual or physical register number of
334/// the source reg along with the FrameIndex of the loaded stack slot. If
335/// not, return 0. This predicate must return 0 if the instruction has
336/// any side effects other than storing to the stack slot.
338 int &FrameIndex) const {
339 switch (MI.getOpcode()) {
340 default:
341 break;
342 case Hexagon::S2_storerb_io:
343 case Hexagon::S2_storerh_io:
344 case Hexagon::S2_storeri_io:
345 case Hexagon::S2_storerd_io:
346 case Hexagon::V6_vS32b_ai:
347 case Hexagon::V6_vS32Ub_ai:
348 case Hexagon::STriw_pred:
349 case Hexagon::STriw_ctr:
350 case Hexagon::PS_vstorerq_ai:
351 case Hexagon::PS_vstorerw_ai: {
352 const MachineOperand &OpFI = MI.getOperand(0);
353 if (!OpFI.isFI())
354 return 0;
355 const MachineOperand &OpOff = MI.getOperand(1);
356 if (!OpOff.isImm() || OpOff.getImm() != 0)
357 return 0;
358 FrameIndex = OpFI.getIndex();
359 return MI.getOperand(2).getReg();
360 }
361
362 case Hexagon::S2_pstorerbt_io:
363 case Hexagon::S2_pstorerbf_io:
364 case Hexagon::S2_pstorerht_io:
365 case Hexagon::S2_pstorerhf_io:
366 case Hexagon::S2_pstorerit_io:
367 case Hexagon::S2_pstorerif_io:
368 case Hexagon::S2_pstorerdt_io:
369 case Hexagon::S2_pstorerdf_io: {
370 const MachineOperand &OpFI = MI.getOperand(1);
371 if (!OpFI.isFI())
372 return 0;
373 const MachineOperand &OpOff = MI.getOperand(2);
374 if (!OpOff.isImm() || OpOff.getImm() != 0)
375 return 0;
376 FrameIndex = OpFI.getIndex();
377 return MI.getOperand(3).getReg();
378 }
379 }
380
381 return 0;
382}
383
384/// This function checks if the instruction or bundle of instructions
385/// has load from stack slot and returns frameindex and machine memory
386/// operand of that instruction if true.
388 const MachineInstr &MI,
390 if (MI.isBundle()) {
391 const MachineBasicBlock *MBB = MI.getParent();
393 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
395 return true;
396 return false;
397 }
398
400}
401
402/// This function checks if the instruction or bundle of instructions
403/// has store to stack slot and returns frameindex and machine memory
404/// operand of that instruction if true.
406 const MachineInstr &MI,
408 if (MI.isBundle()) {
409 const MachineBasicBlock *MBB = MI.getParent();
411 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
413 return true;
414 return false;
415 }
416
418}
419
420/// This function can analyze one/two way branching only and should (mostly) be
421/// called by target independent side.
422/// First entry is always the opcode of the branching instruction, except when
423/// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
424/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
425/// e.g. Jump_c p will have
426/// Cond[0] = Jump_c
427/// Cond[1] = p
428/// HW-loop ENDLOOP:
429/// Cond[0] = ENDLOOP
430/// Cond[1] = MBB
431/// New value jump:
432/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
433/// Cond[1] = R
434/// Cond[2] = Imm
437 MachineBasicBlock *&FBB,
439 bool AllowModify) const {
440 TBB = nullptr;
441 FBB = nullptr;
442 Cond.clear();
443
444 // If the block has no terminators, it just falls into the block after it.
446 if (I == MBB.instr_begin())
447 return false;
448
449 // A basic block may looks like this:
450 //
451 // [ insn
452 // EH_LABEL
453 // insn
454 // insn
455 // insn
456 // EH_LABEL
457 // insn ]
458 //
459 // It has two succs but does not have a terminator
460 // Don't know how to handle it.
461 do {
462 --I;
463 if (I->isEHLabel())
464 // Don't analyze EH branches.
465 return true;
466 } while (I != MBB.instr_begin());
467
468 I = MBB.instr_end();
469 --I;
470
471 while (I->isDebugInstr()) {
472 if (I == MBB.instr_begin())
473 return false;
474 --I;
475 }
476
477 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
478 I->getOperand(0).isMBB();
479 // Delete the J2_jump if it's equivalent to a fall-through.
480 if (AllowModify && JumpToBlock &&
481 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
482 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
483 I->eraseFromParent();
484 I = MBB.instr_end();
485 if (I == MBB.instr_begin())
486 return false;
487 --I;
488 }
489 if (!isUnpredicatedTerminator(*I))
490 return false;
491
492 // Get the last instruction in the block.
493 MachineInstr *LastInst = &*I;
494 MachineInstr *SecondLastInst = nullptr;
495 // Find one more terminator if present.
496 while (true) {
497 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
498 if (!SecondLastInst)
499 SecondLastInst = &*I;
500 else
501 // This is a third branch.
502 return true;
503 }
504 if (I == MBB.instr_begin())
505 break;
506 --I;
507 }
508
509 int LastOpcode = LastInst->getOpcode();
510 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
511 // If the branch target is not a basic block, it could be a tail call.
512 // (It is, if the target is a function.)
513 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
514 return true;
515 if (SecLastOpcode == Hexagon::J2_jump &&
516 !SecondLastInst->getOperand(0).isMBB())
517 return true;
518
519 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
520 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
521
522 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
523 return true;
524
525 // If there is only one terminator instruction, process it.
526 if (LastInst && !SecondLastInst) {
527 if (LastOpcode == Hexagon::J2_jump) {
528 TBB = LastInst->getOperand(0).getMBB();
529 return false;
530 }
531 if (isEndLoopN(LastOpcode)) {
532 TBB = LastInst->getOperand(0).getMBB();
533 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
534 Cond.push_back(LastInst->getOperand(0));
535 return false;
536 }
537 if (LastOpcodeHasJMP_c) {
538 TBB = LastInst->getOperand(1).getMBB();
539 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
540 Cond.push_back(LastInst->getOperand(0));
541 return false;
542 }
543 // Only supporting rr/ri versions of new-value jumps.
544 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
545 TBB = LastInst->getOperand(2).getMBB();
546 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
547 Cond.push_back(LastInst->getOperand(0));
548 Cond.push_back(LastInst->getOperand(1));
549 return false;
550 }
551 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
552 << " with one jump\n";);
553 // Otherwise, don't know what this is.
554 return true;
555 }
556
557 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
558 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
559 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
560 if (!SecondLastInst->getOperand(1).isMBB())
561 return true;
562 TBB = SecondLastInst->getOperand(1).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
564 Cond.push_back(SecondLastInst->getOperand(0));
565 FBB = LastInst->getOperand(0).getMBB();
566 return false;
567 }
568
569 // Only supporting rr/ri versions of new-value jumps.
570 if (SecLastOpcodeHasNVJump &&
571 (SecondLastInst->getNumExplicitOperands() == 3) &&
572 (LastOpcode == Hexagon::J2_jump)) {
573 TBB = SecondLastInst->getOperand(2).getMBB();
574 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
575 Cond.push_back(SecondLastInst->getOperand(0));
576 Cond.push_back(SecondLastInst->getOperand(1));
577 FBB = LastInst->getOperand(0).getMBB();
578 return false;
579 }
580
581 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
582 // executed, so remove it.
583 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
584 TBB = SecondLastInst->getOperand(0).getMBB();
585 I = LastInst->getIterator();
586 if (AllowModify)
587 I->eraseFromParent();
588 return false;
589 }
590
591 // If the block ends with an ENDLOOP, and J2_jump, handle it.
592 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
593 TBB = SecondLastInst->getOperand(0).getMBB();
594 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
595 Cond.push_back(SecondLastInst->getOperand(0));
596 FBB = LastInst->getOperand(0).getMBB();
597 return false;
598 }
599 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
600 << " with two jumps";);
601 // Otherwise, can't handle this.
602 return true;
603}
604
606 int *BytesRemoved) const {
607 assert(!BytesRemoved && "code size not handled");
608
609 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
611 unsigned Count = 0;
612 while (I != MBB.begin()) {
613 --I;
614 if (I->isDebugInstr())
615 continue;
616 // Only removing branches from end of MBB.
617 if (!I->isBranch())
618 return Count;
619 if (Count && (I->getOpcode() == Hexagon::J2_jump))
620 llvm_unreachable("Malformed basic block: unconditional branch not last");
621 MBB.erase(&MBB.back());
622 I = MBB.end();
623 ++Count;
624 }
625 return Count;
626}
627
632 const DebugLoc &DL,
633 int *BytesAdded) const {
634 unsigned BOpc = Hexagon::J2_jump;
635 unsigned BccOpc = Hexagon::J2_jumpt;
636 assert(validateBranchCond(Cond) && "Invalid branching condition");
637 assert(TBB && "insertBranch must not be told to insert a fallthrough");
638 assert(!BytesAdded && "code size not handled");
639
640 // Check if reverseBranchCondition has asked to reverse this branch
641 // If we want to reverse the branch an odd number of times, we want
642 // J2_jumpf.
643 if (!Cond.empty() && Cond[0].isImm())
644 BccOpc = Cond[0].getImm();
645
646 if (!FBB) {
647 if (Cond.empty()) {
648 // Due to a bug in TailMerging/CFG Optimization, we need to add a
649 // special case handling of a predicated jump followed by an
650 // unconditional jump. If not, Tail Merging and CFG Optimization go
651 // into an infinite loop.
652 MachineBasicBlock *NewTBB, *NewFBB;
654 auto Term = MBB.getFirstTerminator();
655 if (Term != MBB.end() && isPredicated(*Term) &&
656 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
657 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
660 return insertBranch(MBB, TBB, nullptr, Cond, DL);
661 }
662 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
663 } else if (isEndLoopN(Cond[0].getImm())) {
664 int EndLoopOp = Cond[0].getImm();
665 assert(Cond[1].isMBB());
666 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
667 // Check for it, and change the BB target if needed.
669 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
670 VisitedBBs);
671 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
672 Loop->getOperand(0).setMBB(TBB);
673 // Add the ENDLOOP after the finding the LOOP0.
674 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
675 } else if (isNewValueJump(Cond[0].getImm())) {
676 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
677 // New value jump
678 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
679 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
680 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
681 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
683 if (Cond[2].isReg()) {
684 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
685 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
686 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
687 } else if(Cond[2].isImm()) {
688 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
689 addImm(Cond[2].getImm()).addMBB(TBB);
690 } else
691 llvm_unreachable("Invalid condition for branching");
692 } else {
693 assert((Cond.size() == 2) && "Malformed cond vector");
694 const MachineOperand &RO = Cond[1];
695 unsigned Flags = getUndefRegState(RO.isUndef());
696 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
697 }
698 return 1;
699 }
700 assert((!Cond.empty()) &&
701 "Cond. cannot be empty when multiple branchings are required");
702 assert((!isNewValueJump(Cond[0].getImm())) &&
703 "NV-jump cannot be inserted with another branch");
704 // Special case for hardware loops. The condition is a basic block.
705 if (isEndLoopN(Cond[0].getImm())) {
706 int EndLoopOp = Cond[0].getImm();
707 assert(Cond[1].isMBB());
708 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
709 // Check for it, and change the BB target if needed.
711 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
712 VisitedBBs);
713 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
714 Loop->getOperand(0).setMBB(TBB);
715 // Add the ENDLOOP after the finding the LOOP0.
716 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
717 } else {
718 const MachineOperand &RO = Cond[1];
719 unsigned Flags = getUndefRegState(RO.isUndef());
720 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
721 }
722 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
723
724 return 2;
725}
726
727namespace {
728class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
729 MachineInstr *Loop, *EndLoop;
730 MachineFunction *MF;
731 const HexagonInstrInfo *TII;
732 int64_t TripCount;
733 Register LoopCount;
734 DebugLoc DL;
735
736public:
737 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
738 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
739 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
740 DL(Loop->getDebugLoc()) {
741 // Inspect the Loop instruction up-front, as it may be deleted when we call
742 // createTripCountGreaterCondition.
743 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
744 ? -1
745 : Loop->getOperand(1).getImm();
746 if (TripCount == -1)
747 LoopCount = Loop->getOperand(1).getReg();
748 }
749
750 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
751 // Only ignore the terminator.
752 return MI == EndLoop;
753 }
754
755 std::optional<bool> createTripCountGreaterCondition(
756 int TC, MachineBasicBlock &MBB,
757 SmallVectorImpl<MachineOperand> &Cond) override {
758 if (TripCount == -1) {
759 // Check if we're done with the loop.
760 Register Done = TII->createVR(MF, MVT::i1);
761 MachineInstr *NewCmp = BuildMI(&MBB, DL,
762 TII->get(Hexagon::C2_cmpgtui), Done)
763 .addReg(LoopCount)
764 .addImm(TC);
765 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
766 Cond.push_back(NewCmp->getOperand(0));
767 return {};
768 }
769
770 return TripCount > TC;
771 }
772
773 void setPreheader(MachineBasicBlock *NewPreheader) override {
774 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
775 Loop);
776 }
777
778 void adjustTripCount(int TripCountAdjust) override {
779 // If the loop trip count is a compile-time value, then just change the
780 // value.
781 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
782 Loop->getOpcode() == Hexagon::J2_loop1i) {
783 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
784 assert(TripCount > 0 && "Can't create an empty or negative loop!");
785 Loop->getOperand(1).setImm(TripCount);
786 return;
787 }
788
789 // The loop trip count is a run-time value. We generate code to subtract
790 // one from the trip count, and update the loop instruction.
791 Register LoopCount = Loop->getOperand(1).getReg();
792 Register NewLoopCount = TII->createVR(MF, MVT::i32);
793 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
794 TII->get(Hexagon::A2_addi), NewLoopCount)
795 .addReg(LoopCount)
796 .addImm(TripCountAdjust);
797 Loop->getOperand(1).setReg(NewLoopCount);
798 }
799
800 void disposed(LiveIntervals *LIS) override {
801 if (LIS)
802 LIS->RemoveMachineInstrFromMaps(*Loop);
803 Loop->eraseFromParent();
804 }
805};
806} // namespace
807
808std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
810 // We really "analyze" only hardware loops right now.
812
813 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
815 MachineInstr *LoopInst = findLoopInstr(
816 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
817 if (LoopInst)
818 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
819 }
820 return nullptr;
821}
822
824 unsigned NumCycles, unsigned ExtraPredCycles,
825 BranchProbability Probability) const {
826 return nonDbgBBSize(&MBB) <= 3;
827}
828
830 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
831 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
832 const {
833 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
834}
835
837 unsigned NumInstrs, BranchProbability Probability) const {
838 return NumInstrs <= 4;
839}
840
841static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
843 const MachineBasicBlock &B = *MI.getParent();
844 Regs.addLiveIns(B);
845 auto E = MachineBasicBlock::const_iterator(MI.getIterator());
846 for (auto I = B.begin(); I != E; ++I) {
847 Clobbers.clear();
848 Regs.stepForward(*I, Clobbers);
849 }
850}
851
852static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
853 const MachineBasicBlock &B = *MI.getParent();
854 Regs.addLiveOuts(B);
855 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
856 for (auto I = B.rbegin(); I != E; ++I)
857 Regs.stepBackward(*I);
858}
859
862 const DebugLoc &DL, Register DestReg,
863 Register SrcReg, bool KillSrc,
864 bool RenamableDest,
865 bool RenamableSrc) const {
866 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
867 unsigned KillFlag = getKillRegState(KillSrc);
868
869 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
870 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
871 .addReg(SrcReg, KillFlag);
872 return;
873 }
874 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
875 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
876 .addReg(SrcReg, KillFlag);
877 return;
878 }
879 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
880 // Map Pd = Ps to Pd = or(Ps, Ps).
881 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
882 .addReg(SrcReg).addReg(SrcReg, KillFlag);
883 return;
884 }
885 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
886 Hexagon::IntRegsRegClass.contains(SrcReg)) {
887 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
888 .addReg(SrcReg, KillFlag);
889 return;
890 }
891 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
892 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
893 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
894 .addReg(SrcReg, KillFlag);
895 return;
896 }
897 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
898 Hexagon::IntRegsRegClass.contains(SrcReg)) {
899 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
900 .addReg(SrcReg, KillFlag);
901 return;
902 }
903 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
904 Hexagon::IntRegsRegClass.contains(DestReg)) {
905 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
906 .addReg(SrcReg, KillFlag);
907 return;
908 }
909 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
910 Hexagon::PredRegsRegClass.contains(DestReg)) {
911 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
912 .addReg(SrcReg, KillFlag);
913 return;
914 }
915 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
916 Hexagon::IntRegsRegClass.contains(DestReg)) {
917 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
918 .addReg(SrcReg, KillFlag);
919 return;
920 }
921 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
922 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
923 addReg(SrcReg, KillFlag);
924 return;
925 }
926 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
927 LivePhysRegs LiveAtMI(HRI);
928 getLiveInRegsAt(LiveAtMI, *I);
929 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
930 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
931 unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo));
932 unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi));
933 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
934 .addReg(SrcHi, KillFlag | UndefHi)
935 .addReg(SrcLo, KillFlag | UndefLo);
936 return;
937 }
938 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
939 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
940 .addReg(SrcReg)
941 .addReg(SrcReg, KillFlag);
942 return;
943 }
944 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
945 Hexagon::HvxVRRegClass.contains(DestReg)) {
946 llvm_unreachable("Unimplemented pred to vec");
947 return;
948 }
949 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
950 Hexagon::HvxVRRegClass.contains(SrcReg)) {
951 llvm_unreachable("Unimplemented vec to pred");
952 return;
953 }
954
955#ifndef NDEBUG
956 // Show the invalid registers to ease debugging.
957 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
958 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
959#endif
960 llvm_unreachable("Unimplemented");
961}
962
965 Register SrcReg, bool isKill, int FI,
966 const TargetRegisterClass *RC,
967 const TargetRegisterInfo *TRI,
968 Register VReg,
969 MachineInstr::MIFlag Flags) const {
970 DebugLoc DL = MBB.findDebugLoc(I);
971 MachineFunction &MF = *MBB.getParent();
972 MachineFrameInfo &MFI = MF.getFrameInfo();
973 unsigned KillFlag = getKillRegState(isKill);
974
977 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
978
979 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
980 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
981 .addFrameIndex(FI).addImm(0)
982 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
983 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
984 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
985 .addFrameIndex(FI).addImm(0)
986 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
987 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
988 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
989 .addFrameIndex(FI).addImm(0)
990 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
991 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
992 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
993 .addFrameIndex(FI).addImm(0)
994 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
995 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
996 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
997 .addFrameIndex(FI).addImm(0)
998 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
999 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1000 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
1001 .addFrameIndex(FI).addImm(0)
1002 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1003 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1004 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
1005 .addFrameIndex(FI).addImm(0)
1006 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1007 } else {
1008 llvm_unreachable("Unimplemented");
1009 }
1010}
1011
1014 int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
1015 Register VReg, MachineInstr::MIFlag Flags) const {
1016 DebugLoc DL = MBB.findDebugLoc(I);
1017 MachineFunction &MF = *MBB.getParent();
1018 MachineFrameInfo &MFI = MF.getFrameInfo();
1019
1022 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
1023
1024 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
1025 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
1026 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1027 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
1028 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
1029 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1030 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
1031 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
1032 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1033 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
1034 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
1035 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1036 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
1037 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
1038 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1039 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1040 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
1041 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1042 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1043 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
1044 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1045 } else {
1046 llvm_unreachable("Can't store this register to stack slot");
1047 }
1048}
1049
1050/// expandPostRAPseudo - This function is called for all pseudo instructions
1051/// that remain after register allocation. Many pseudo instructions are
1052/// created to help register allocation. This is the place to convert them
1053/// into real instructions. The target can edit MI in place, or it can insert
1054/// new instructions and erase MI. The function should return true if
1055/// anything was changed.
1057 MachineBasicBlock &MBB = *MI.getParent();
1058 MachineFunction &MF = *MBB.getParent();
1060 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1061 LivePhysRegs LiveIn(HRI), LiveOut(HRI);
1062 DebugLoc DL = MI.getDebugLoc();
1063 unsigned Opc = MI.getOpcode();
1064
1065 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1066 Register Mx = MI.getOperand(MxOp).getReg();
1067 Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1068 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1069 .add(MI.getOperand((HasImm ? 5 : 4)));
1070 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1071 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1072 if (HasImm)
1073 MIB.add(MI.getOperand(4));
1074 MIB.addReg(CSx, RegState::Implicit);
1075 MBB.erase(MI);
1076 return true;
1077 };
1078
1079 auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) {
1080 if (MI.memoperands().empty())
1081 return false;
1082 return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) {
1083 return MMO->getAlign() >= NeedAlign;
1084 });
1085 };
1086
1087 switch (Opc) {
1088 case Hexagon::PS_call_instrprof_custom: {
1089 auto Op0 = MI.getOperand(0);
1090 assert(Op0.isGlobal() &&
1091 "First operand must be a global containing handler name.");
1092 const GlobalValue *NameVar = Op0.getGlobal();
1093 const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar);
1094 auto *Arr = cast<ConstantDataArray>(GV->getInitializer());
1095 StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
1096
1097 MachineOperand &Op1 = MI.getOperand(1);
1098 // Set R0 with the imm value to be passed to the custom profiling handler.
1099 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0)
1100 .addImm(Op1.getImm());
1101 // The call to the custom handler is being treated as a special one as the
1102 // callee is responsible for saving and restoring all the registers
1103 // (including caller saved registers) it needs to modify. This is
1104 // done to reduce the impact of instrumentation on the code being
1105 // instrumented/profiled.
1106 // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers
1107 // are in the Def list of the Hexagon::PS_call_instrprof_custom and
1108 // therefore will be handled appropriately duing register allocation.
1109
1110 // TODO: It may be a good idea to add a separate pseudo instruction for
1111 // static relocation which doesn't need to reserve r14, r15 and r28.
1112
1113 auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call))
1115 .addDef(Hexagon::R29, RegState::ImplicitDefine)
1116 .addDef(Hexagon::R30, RegState::ImplicitDefine)
1117 .addDef(Hexagon::R14, RegState::ImplicitDefine)
1118 .addDef(Hexagon::R15, RegState::ImplicitDefine)
1119 .addDef(Hexagon::R28, RegState::ImplicitDefine);
1120 const char *cstr = MF.createExternalSymbolName(NameStr);
1121 MIB.addExternalSymbol(cstr);
1122 MBB.erase(MI);
1123 return true;
1124 }
1125 case TargetOpcode::COPY: {
1126 MachineOperand &MD = MI.getOperand(0);
1127 MachineOperand &MS = MI.getOperand(1);
1128 MachineBasicBlock::iterator MBBI = MI.getIterator();
1129 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1130 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1131 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1132 }
1133 MBB.erase(MBBI);
1134 return true;
1135 }
1136 case Hexagon::PS_aligna:
1137 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1138 .addReg(HRI.getFrameRegister())
1139 .addImm(-MI.getOperand(1).getImm());
1140 MBB.erase(MI);
1141 return true;
1142 case Hexagon::V6_vassignp: {
1143 Register SrcReg = MI.getOperand(1).getReg();
1144 Register DstReg = MI.getOperand(0).getReg();
1145 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1146 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1147 getLiveInRegsAt(LiveIn, MI);
1148 unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo));
1149 unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi));
1150 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1151 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1152 .addReg(SrcHi, UndefHi)
1153 .addReg(SrcLo, Kill | UndefLo);
1154 MBB.erase(MI);
1155 return true;
1156 }
1157 case Hexagon::V6_lo: {
1158 Register SrcReg = MI.getOperand(1).getReg();
1159 Register DstReg = MI.getOperand(0).getReg();
1160 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1161 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1162 MBB.erase(MI);
1163 MRI.clearKillFlags(SrcSubLo);
1164 return true;
1165 }
1166 case Hexagon::V6_hi: {
1167 Register SrcReg = MI.getOperand(1).getReg();
1168 Register DstReg = MI.getOperand(0).getReg();
1169 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1170 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1171 MBB.erase(MI);
1172 MRI.clearKillFlags(SrcSubHi);
1173 return true;
1174 }
1175 case Hexagon::PS_vloadrv_ai: {
1176 Register DstReg = MI.getOperand(0).getReg();
1177 const MachineOperand &BaseOp = MI.getOperand(1);
1178 assert(BaseOp.getSubReg() == 0);
1179 int Offset = MI.getOperand(2).getImm();
1180 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1181 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1182 : Hexagon::V6_vL32Ub_ai;
1183 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1184 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1185 .addImm(Offset)
1186 .cloneMemRefs(MI);
1187 MBB.erase(MI);
1188 return true;
1189 }
1190 case Hexagon::PS_vloadrw_ai: {
1191 Register DstReg = MI.getOperand(0).getReg();
1192 const MachineOperand &BaseOp = MI.getOperand(1);
1193 assert(BaseOp.getSubReg() == 0);
1194 int Offset = MI.getOperand(2).getImm();
1195 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1196 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1197 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1198 : Hexagon::V6_vL32Ub_ai;
1199 BuildMI(MBB, MI, DL, get(NewOpc),
1200 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1201 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1202 .addImm(Offset)
1203 .cloneMemRefs(MI);
1204 BuildMI(MBB, MI, DL, get(NewOpc),
1205 HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1206 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1207 .addImm(Offset + VecOffset)
1208 .cloneMemRefs(MI);
1209 MBB.erase(MI);
1210 return true;
1211 }
1212 case Hexagon::PS_vstorerv_ai: {
1213 const MachineOperand &SrcOp = MI.getOperand(2);
1214 assert(SrcOp.getSubReg() == 0);
1215 const MachineOperand &BaseOp = MI.getOperand(0);
1216 assert(BaseOp.getSubReg() == 0);
1217 int Offset = MI.getOperand(1).getImm();
1218 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1219 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1220 : Hexagon::V6_vS32Ub_ai;
1221 BuildMI(MBB, MI, DL, get(NewOpc))
1222 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1223 .addImm(Offset)
1225 .cloneMemRefs(MI);
1226 MBB.erase(MI);
1227 return true;
1228 }
1229 case Hexagon::PS_vstorerw_ai: {
1230 Register SrcReg = MI.getOperand(2).getReg();
1231 const MachineOperand &BaseOp = MI.getOperand(0);
1232 assert(BaseOp.getSubReg() == 0);
1233 int Offset = MI.getOperand(1).getImm();
1234 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1235 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1236 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1237 : Hexagon::V6_vS32Ub_ai;
1238 BuildMI(MBB, MI, DL, get(NewOpc))
1239 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1240 .addImm(Offset)
1241 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1242 .cloneMemRefs(MI);
1243 BuildMI(MBB, MI, DL, get(NewOpc))
1244 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1245 .addImm(Offset + VecOffset)
1246 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1247 .cloneMemRefs(MI);
1248 MBB.erase(MI);
1249 return true;
1250 }
1251 case Hexagon::PS_true: {
1252 Register Reg = MI.getOperand(0).getReg();
1253 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1254 .addReg(Reg, RegState::Undef)
1255 .addReg(Reg, RegState::Undef);
1256 MBB.erase(MI);
1257 return true;
1258 }
1259 case Hexagon::PS_false: {
1260 Register Reg = MI.getOperand(0).getReg();
1261 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1262 .addReg(Reg, RegState::Undef)
1263 .addReg(Reg, RegState::Undef);
1264 MBB.erase(MI);
1265 return true;
1266 }
1267 case Hexagon::PS_qtrue: {
1268 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1269 .addReg(Hexagon::V0, RegState::Undef)
1270 .addReg(Hexagon::V0, RegState::Undef);
1271 MBB.erase(MI);
1272 return true;
1273 }
1274 case Hexagon::PS_qfalse: {
1275 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1276 .addReg(Hexagon::V0, RegState::Undef)
1277 .addReg(Hexagon::V0, RegState::Undef);
1278 MBB.erase(MI);
1279 return true;
1280 }
1281 case Hexagon::PS_vdd0: {
1282 Register Vd = MI.getOperand(0).getReg();
1283 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1285 .addReg(Vd, RegState::Undef);
1286 MBB.erase(MI);
1287 return true;
1288 }
1289 case Hexagon::PS_vmulw: {
1290 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1291 Register DstReg = MI.getOperand(0).getReg();
1292 Register Src1Reg = MI.getOperand(1).getReg();
1293 Register Src2Reg = MI.getOperand(2).getReg();
1294 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1295 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1296 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1297 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1298 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1299 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1300 .addReg(Src1SubHi)
1301 .addReg(Src2SubHi);
1302 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1303 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1304 .addReg(Src1SubLo)
1305 .addReg(Src2SubLo);
1306 MBB.erase(MI);
1307 MRI.clearKillFlags(Src1SubHi);
1308 MRI.clearKillFlags(Src1SubLo);
1309 MRI.clearKillFlags(Src2SubHi);
1310 MRI.clearKillFlags(Src2SubLo);
1311 return true;
1312 }
1313 case Hexagon::PS_vmulw_acc: {
1314 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1315 Register DstReg = MI.getOperand(0).getReg();
1316 Register Src1Reg = MI.getOperand(1).getReg();
1317 Register Src2Reg = MI.getOperand(2).getReg();
1318 Register Src3Reg = MI.getOperand(3).getReg();
1319 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1320 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1321 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1322 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1323 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1324 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1325 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1326 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1327 .addReg(Src1SubHi)
1328 .addReg(Src2SubHi)
1329 .addReg(Src3SubHi);
1330 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1331 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1332 .addReg(Src1SubLo)
1333 .addReg(Src2SubLo)
1334 .addReg(Src3SubLo);
1335 MBB.erase(MI);
1336 MRI.clearKillFlags(Src1SubHi);
1337 MRI.clearKillFlags(Src1SubLo);
1338 MRI.clearKillFlags(Src2SubHi);
1339 MRI.clearKillFlags(Src2SubLo);
1340 MRI.clearKillFlags(Src3SubHi);
1341 MRI.clearKillFlags(Src3SubLo);
1342 return true;
1343 }
1344 case Hexagon::PS_pselect: {
1345 const MachineOperand &Op0 = MI.getOperand(0);
1346 const MachineOperand &Op1 = MI.getOperand(1);
1347 const MachineOperand &Op2 = MI.getOperand(2);
1348 const MachineOperand &Op3 = MI.getOperand(3);
1349 Register Rd = Op0.getReg();
1350 Register Pu = Op1.getReg();
1351 Register Rs = Op2.getReg();
1352 Register Rt = Op3.getReg();
1353 DebugLoc DL = MI.getDebugLoc();
1354 unsigned K1 = getKillRegState(Op1.isKill());
1355 unsigned K2 = getKillRegState(Op2.isKill());
1356 unsigned K3 = getKillRegState(Op3.isKill());
1357 if (Rd != Rs)
1358 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1359 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1360 .addReg(Rs, K2);
1361 if (Rd != Rt)
1362 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1363 .addReg(Pu, K1)
1364 .addReg(Rt, K3);
1365 MBB.erase(MI);
1366 return true;
1367 }
1368 case Hexagon::PS_vselect: {
1369 const MachineOperand &Op0 = MI.getOperand(0);
1370 const MachineOperand &Op1 = MI.getOperand(1);
1371 const MachineOperand &Op2 = MI.getOperand(2);
1372 const MachineOperand &Op3 = MI.getOperand(3);
1373 getLiveOutRegsAt(LiveOut, MI);
1374 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1375 Register PReg = Op1.getReg();
1376 assert(Op1.getSubReg() == 0);
1377 unsigned PState = getRegState(Op1);
1378
1379 if (Op0.getReg() != Op2.getReg()) {
1380 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1381 : PState;
1382 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1383 .add(Op0)
1384 .addReg(PReg, S)
1385 .add(Op2);
1386 if (IsDestLive)
1387 T.addReg(Op0.getReg(), RegState::Implicit);
1388 IsDestLive = true;
1389 }
1390 if (Op0.getReg() != Op3.getReg()) {
1391 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1392 .add(Op0)
1393 .addReg(PReg, PState)
1394 .add(Op3);
1395 if (IsDestLive)
1396 T.addReg(Op0.getReg(), RegState::Implicit);
1397 }
1398 MBB.erase(MI);
1399 return true;
1400 }
1401 case Hexagon::PS_wselect: {
1402 MachineOperand &Op0 = MI.getOperand(0);
1403 MachineOperand &Op1 = MI.getOperand(1);
1404 MachineOperand &Op2 = MI.getOperand(2);
1405 MachineOperand &Op3 = MI.getOperand(3);
1406 getLiveOutRegsAt(LiveOut, MI);
1407 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1408 Register PReg = Op1.getReg();
1409 assert(Op1.getSubReg() == 0);
1410 unsigned PState = getRegState(Op1);
1411
1412 if (Op0.getReg() != Op2.getReg()) {
1413 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1414 : PState;
1415 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1416 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1417 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1418 .add(Op0)
1419 .addReg(PReg, S)
1420 .addReg(SrcHi)
1421 .addReg(SrcLo);
1422 if (IsDestLive)
1423 T.addReg(Op0.getReg(), RegState::Implicit);
1424 IsDestLive = true;
1425 }
1426 if (Op0.getReg() != Op3.getReg()) {
1427 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1428 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1429 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1430 .add(Op0)
1431 .addReg(PReg, PState)
1432 .addReg(SrcHi)
1433 .addReg(SrcLo);
1434 if (IsDestLive)
1435 T.addReg(Op0.getReg(), RegState::Implicit);
1436 }
1437 MBB.erase(MI);
1438 return true;
1439 }
1440
1441 case Hexagon::PS_crash: {
1442 // Generate a misaligned load that is guaranteed to cause a crash.
1443 class CrashPseudoSourceValue : public PseudoSourceValue {
1444 public:
1445 CrashPseudoSourceValue(const TargetMachine &TM)
1446 : PseudoSourceValue(TargetCustom, TM) {}
1447
1448 bool isConstant(const MachineFrameInfo *) const override {
1449 return false;
1450 }
1451 bool isAliased(const MachineFrameInfo *) const override {
1452 return false;
1453 }
1454 bool mayAlias(const MachineFrameInfo *) const override {
1455 return false;
1456 }
1457 void printCustom(raw_ostream &OS) const override {
1458 OS << "MisalignedCrash";
1459 }
1460 };
1461
1462 static const CrashPseudoSourceValue CrashPSV(MF.getTarget());
1464 MachinePointerInfo(&CrashPSV),
1466 Align(1));
1467 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1468 .addImm(0xBADC0FEE) // Misaligned load.
1469 .addMemOperand(MMO);
1470 MBB.erase(MI);
1471 return true;
1472 }
1473
1474 case Hexagon::PS_tailcall_i:
1475 MI.setDesc(get(Hexagon::J2_jump));
1476 return true;
1477 case Hexagon::PS_tailcall_r:
1478 case Hexagon::PS_jmpret:
1479 MI.setDesc(get(Hexagon::J2_jumpr));
1480 return true;
1481 case Hexagon::PS_jmprett:
1482 MI.setDesc(get(Hexagon::J2_jumprt));
1483 return true;
1484 case Hexagon::PS_jmpretf:
1485 MI.setDesc(get(Hexagon::J2_jumprf));
1486 return true;
1487 case Hexagon::PS_jmprettnewpt:
1488 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1489 return true;
1490 case Hexagon::PS_jmpretfnewpt:
1491 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1492 return true;
1493 case Hexagon::PS_jmprettnew:
1494 MI.setDesc(get(Hexagon::J2_jumprtnew));
1495 return true;
1496 case Hexagon::PS_jmpretfnew:
1497 MI.setDesc(get(Hexagon::J2_jumprfnew));
1498 return true;
1499
1500 case Hexagon::PS_loadrub_pci:
1501 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1502 case Hexagon::PS_loadrb_pci:
1503 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1504 case Hexagon::PS_loadruh_pci:
1505 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1506 case Hexagon::PS_loadrh_pci:
1507 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1508 case Hexagon::PS_loadri_pci:
1509 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1510 case Hexagon::PS_loadrd_pci:
1511 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1512 case Hexagon::PS_loadrub_pcr:
1513 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1514 case Hexagon::PS_loadrb_pcr:
1515 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1516 case Hexagon::PS_loadruh_pcr:
1517 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1518 case Hexagon::PS_loadrh_pcr:
1519 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1520 case Hexagon::PS_loadri_pcr:
1521 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1522 case Hexagon::PS_loadrd_pcr:
1523 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1524 case Hexagon::PS_storerb_pci:
1525 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1526 case Hexagon::PS_storerh_pci:
1527 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1528 case Hexagon::PS_storerf_pci:
1529 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1530 case Hexagon::PS_storeri_pci:
1531 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1532 case Hexagon::PS_storerd_pci:
1533 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1534 case Hexagon::PS_storerb_pcr:
1535 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1536 case Hexagon::PS_storerh_pcr:
1537 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1538 case Hexagon::PS_storerf_pcr:
1539 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1540 case Hexagon::PS_storeri_pcr:
1541 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1542 case Hexagon::PS_storerd_pcr:
1543 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1544 }
1545
1546 return false;
1547}
1548
1551 MachineBasicBlock &MBB = *MI.getParent();
1552 const DebugLoc &DL = MI.getDebugLoc();
1553 unsigned Opc = MI.getOpcode();
1555
1556 switch (Opc) {
1557 case Hexagon::V6_vgathermh_pseudo:
1558 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1559 .add(MI.getOperand(2))
1560 .add(MI.getOperand(3))
1561 .add(MI.getOperand(4));
1562 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1563 .add(MI.getOperand(0))
1564 .addImm(MI.getOperand(1).getImm())
1565 .addReg(Hexagon::VTMP);
1566 MBB.erase(MI);
1567 return First.getInstrIterator();
1568
1569 case Hexagon::V6_vgathermw_pseudo:
1570 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1571 .add(MI.getOperand(2))
1572 .add(MI.getOperand(3))
1573 .add(MI.getOperand(4));
1574 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1575 .add(MI.getOperand(0))
1576 .addImm(MI.getOperand(1).getImm())
1577 .addReg(Hexagon::VTMP);
1578 MBB.erase(MI);
1579 return First.getInstrIterator();
1580
1581 case Hexagon::V6_vgathermhw_pseudo:
1582 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1583 .add(MI.getOperand(2))
1584 .add(MI.getOperand(3))
1585 .add(MI.getOperand(4));
1586 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1587 .add(MI.getOperand(0))
1588 .addImm(MI.getOperand(1).getImm())
1589 .addReg(Hexagon::VTMP);
1590 MBB.erase(MI);
1591 return First.getInstrIterator();
1592
1593 case Hexagon::V6_vgathermhq_pseudo:
1594 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1595 .add(MI.getOperand(2))
1596 .add(MI.getOperand(3))
1597 .add(MI.getOperand(4))
1598 .add(MI.getOperand(5));
1599 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1600 .add(MI.getOperand(0))
1601 .addImm(MI.getOperand(1).getImm())
1602 .addReg(Hexagon::VTMP);
1603 MBB.erase(MI);
1604 return First.getInstrIterator();
1605
1606 case Hexagon::V6_vgathermwq_pseudo:
1607 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1608 .add(MI.getOperand(2))
1609 .add(MI.getOperand(3))
1610 .add(MI.getOperand(4))
1611 .add(MI.getOperand(5));
1612 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1613 .add(MI.getOperand(0))
1614 .addImm(MI.getOperand(1).getImm())
1615 .addReg(Hexagon::VTMP);
1616 MBB.erase(MI);
1617 return First.getInstrIterator();
1618
1619 case Hexagon::V6_vgathermhwq_pseudo:
1620 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1621 .add(MI.getOperand(2))
1622 .add(MI.getOperand(3))
1623 .add(MI.getOperand(4))
1624 .add(MI.getOperand(5));
1625 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1626 .add(MI.getOperand(0))
1627 .addImm(MI.getOperand(1).getImm())
1628 .addReg(Hexagon::VTMP);
1629 MBB.erase(MI);
1630 return First.getInstrIterator();
1631 }
1632
1633 return MI.getIterator();
1634}
1635
1636// We indicate that we want to reverse the branch by
1637// inserting the reversed branching opcode.
1640 if (Cond.empty())
1641 return true;
1642 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1643 unsigned opcode = Cond[0].getImm();
1644 //unsigned temp;
1645 assert(get(opcode).isBranch() && "Should be a branching condition.");
1646 if (isEndLoopN(opcode))
1647 return true;
1648 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1649 Cond[0].setImm(NewOpcode);
1650 return false;
1651}
1652
1658
1662
1663// Returns true if an instruction is predicated irrespective of the predicate
1664// sense. For example, all of the following will return true.
1665// if (p0) R1 = add(R2, R3)
1666// if (!p0) R1 = add(R2, R3)
1667// if (p0.new) R1 = add(R2, R3)
1668// if (!p0.new) R1 = add(R2, R3)
1669// Note: New-value stores are not included here as in the current
1670// implementation, we don't need to check their predicate sense.
1672 const uint64_t F = MI.getDesc().TSFlags;
1674}
1675
1678 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1679 isEndLoopN(Cond[0].getImm())) {
1680 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1681 return false;
1682 }
1683 int Opc = MI.getOpcode();
1684 assert (isPredicable(MI) && "Expected predicable instruction");
1685 bool invertJump = predOpcodeHasNot(Cond);
1686
1687 // We have to predicate MI "in place", i.e. after this function returns,
1688 // MI will need to be transformed into a predicated form. To avoid com-
1689 // plicated manipulations with the operands (handling tied operands,
1690 // etc.), build a new temporary instruction, then overwrite MI with it.
1691
1692 MachineBasicBlock &B = *MI.getParent();
1693 DebugLoc DL = MI.getDebugLoc();
1694 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1695 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1696 unsigned NOp = 0, NumOps = MI.getNumOperands();
1697 while (NOp < NumOps) {
1698 MachineOperand &Op = MI.getOperand(NOp);
1699 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1700 break;
1701 T.add(Op);
1702 NOp++;
1703 }
1704
1705 Register PredReg;
1706 unsigned PredRegPos, PredRegFlags;
1707 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1708 (void)GotPredReg;
1709 assert(GotPredReg);
1710 T.addReg(PredReg, PredRegFlags);
1711 while (NOp < NumOps)
1712 T.add(MI.getOperand(NOp++));
1713
1714 MI.setDesc(get(PredOpc));
1715 while (unsigned n = MI.getNumOperands())
1716 MI.removeOperand(n-1);
1717 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1718 MI.addOperand(T->getOperand(i));
1719
1720 MachineBasicBlock::instr_iterator TI = T->getIterator();
1721 B.erase(TI);
1722
1723 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1724 MRI.clearKillFlags(PredReg);
1725 return true;
1726}
1727
1729 ArrayRef<MachineOperand> Pred2) const {
1730 // TODO: Fix this
1731 return false;
1732}
1733
1735 std::vector<MachineOperand> &Pred,
1736 bool SkipDead) const {
1737 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1738
1739 for (const MachineOperand &MO : MI.operands()) {
1740 if (MO.isReg()) {
1741 if (!MO.isDef())
1742 continue;
1743 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1744 if (RC == &Hexagon::PredRegsRegClass) {
1745 Pred.push_back(MO);
1746 return true;
1747 }
1748 continue;
1749 } else if (MO.isRegMask()) {
1750 for (Register PR : Hexagon::PredRegsRegClass) {
1751 if (!MI.modifiesRegister(PR, &HRI))
1752 continue;
1753 Pred.push_back(MO);
1754 return true;
1755 }
1756 }
1757 }
1758 return false;
1759}
1760
1762 if (!MI.getDesc().isPredicable())
1763 return false;
1764
1765 if (MI.isCall() || isTailCall(MI)) {
1766 if (!Subtarget.usePredicatedCalls())
1767 return false;
1768 }
1769
1770 // HVX loads are not predicable on v60, but are on v62.
1771 if (!Subtarget.hasV62Ops()) {
1772 switch (MI.getOpcode()) {
1773 case Hexagon::V6_vL32b_ai:
1774 case Hexagon::V6_vL32b_pi:
1775 case Hexagon::V6_vL32b_ppu:
1776 case Hexagon::V6_vL32b_cur_ai:
1777 case Hexagon::V6_vL32b_cur_pi:
1778 case Hexagon::V6_vL32b_cur_ppu:
1779 case Hexagon::V6_vL32b_nt_ai:
1780 case Hexagon::V6_vL32b_nt_pi:
1781 case Hexagon::V6_vL32b_nt_ppu:
1782 case Hexagon::V6_vL32b_tmp_ai:
1783 case Hexagon::V6_vL32b_tmp_pi:
1784 case Hexagon::V6_vL32b_tmp_ppu:
1785 case Hexagon::V6_vL32b_nt_cur_ai:
1786 case Hexagon::V6_vL32b_nt_cur_pi:
1787 case Hexagon::V6_vL32b_nt_cur_ppu:
1788 case Hexagon::V6_vL32b_nt_tmp_ai:
1789 case Hexagon::V6_vL32b_nt_tmp_pi:
1790 case Hexagon::V6_vL32b_nt_tmp_ppu:
1791 return false;
1792 }
1793 }
1794 return true;
1795}
1796
1798 const MachineBasicBlock *MBB,
1799 const MachineFunction &MF) const {
1800 // Debug info is never a scheduling boundary. It's necessary to be explicit
1801 // due to the special treatment of IT instructions below, otherwise a
1802 // dbg_value followed by an IT will result in the IT instruction being
1803 // considered a scheduling hazard, which is wrong. It should be the actual
1804 // instruction preceding the dbg_value instruction(s), just like it is
1805 // when debug info is not present.
1806 if (MI.isDebugInstr())
1807 return false;
1808
1809 // Throwing call is a boundary.
1810 if (MI.isCall()) {
1811 // Don't mess around with no return calls.
1812 if (doesNotReturn(MI))
1813 return true;
1814 // If any of the block's successors is a landing pad, this could be a
1815 // throwing call.
1816 for (auto *I : MBB->successors())
1817 if (I->isEHPad())
1818 return true;
1819 }
1820
1821 // Terminators and labels can't be scheduled around.
1822 if (MI.getDesc().isTerminator() || MI.isPosition())
1823 return true;
1824
1825 // INLINEASM_BR can jump to another block
1826 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1827 return true;
1828
1829 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1830 return true;
1831
1832 return false;
1833}
1834
1835/// Measure the specified inline asm to determine an approximation of its
1836/// length.
1837/// Comments (which run till the next SeparatorString or newline) do not
1838/// count as an instruction.
1839/// Any other non-whitespace text is considered an instruction, with
1840/// multiple instructions separated by SeparatorString or newlines.
1841/// Variable-length instructions are not handled here; this function
1842/// may be overloaded in the target code to do that.
1843/// Hexagon counts the number of ##'s and adjust for that many
1844/// constant exenders.
1846 const MCAsmInfo &MAI,
1847 const TargetSubtargetInfo *STI) const {
1848 StringRef AStr(Str);
1849 // Count the number of instructions in the asm.
1850 bool atInsnStart = true;
1851 unsigned Length = 0;
1852 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1853 for (; *Str; ++Str) {
1854 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1855 strlen(MAI.getSeparatorString())) == 0)
1856 atInsnStart = true;
1857 if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
1858 Length += MaxInstLength;
1859 atInsnStart = false;
1860 }
1861 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1862 MAI.getCommentString().size()) == 0)
1863 atInsnStart = false;
1864 }
1865
1866 // Add to size number of constant extenders seen * 4.
1867 StringRef Occ("##");
1868 Length += AStr.count(Occ)*4;
1869 return Length;
1870}
1871
1879
1880/// For a comparison instruction, return the source registers in
1881/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1882/// compares against in CmpValue. Return true if the comparison instruction
1883/// can be analyzed.
1885 Register &SrcReg2, int64_t &Mask,
1886 int64_t &Value) const {
1887 unsigned Opc = MI.getOpcode();
1888
1889 // Set mask and the first source register.
1890 switch (Opc) {
1891 case Hexagon::C2_cmpeq:
1892 case Hexagon::C2_cmpeqp:
1893 case Hexagon::C2_cmpgt:
1894 case Hexagon::C2_cmpgtp:
1895 case Hexagon::C2_cmpgtu:
1896 case Hexagon::C2_cmpgtup:
1897 case Hexagon::C4_cmpneq:
1898 case Hexagon::C4_cmplte:
1899 case Hexagon::C4_cmplteu:
1900 case Hexagon::C2_cmpeqi:
1901 case Hexagon::C2_cmpgti:
1902 case Hexagon::C2_cmpgtui:
1903 case Hexagon::C4_cmpneqi:
1904 case Hexagon::C4_cmplteui:
1905 case Hexagon::C4_cmpltei:
1906 SrcReg = MI.getOperand(1).getReg();
1907 Mask = ~0;
1908 break;
1909 case Hexagon::A4_cmpbeq:
1910 case Hexagon::A4_cmpbgt:
1911 case Hexagon::A4_cmpbgtu:
1912 case Hexagon::A4_cmpbeqi:
1913 case Hexagon::A4_cmpbgti:
1914 case Hexagon::A4_cmpbgtui:
1915 SrcReg = MI.getOperand(1).getReg();
1916 Mask = 0xFF;
1917 break;
1918 case Hexagon::A4_cmpheq:
1919 case Hexagon::A4_cmphgt:
1920 case Hexagon::A4_cmphgtu:
1921 case Hexagon::A4_cmpheqi:
1922 case Hexagon::A4_cmphgti:
1923 case Hexagon::A4_cmphgtui:
1924 SrcReg = MI.getOperand(1).getReg();
1925 Mask = 0xFFFF;
1926 break;
1927 }
1928
1929 // Set the value/second source register.
1930 switch (Opc) {
1931 case Hexagon::C2_cmpeq:
1932 case Hexagon::C2_cmpeqp:
1933 case Hexagon::C2_cmpgt:
1934 case Hexagon::C2_cmpgtp:
1935 case Hexagon::C2_cmpgtu:
1936 case Hexagon::C2_cmpgtup:
1937 case Hexagon::A4_cmpbeq:
1938 case Hexagon::A4_cmpbgt:
1939 case Hexagon::A4_cmpbgtu:
1940 case Hexagon::A4_cmpheq:
1941 case Hexagon::A4_cmphgt:
1942 case Hexagon::A4_cmphgtu:
1943 case Hexagon::C4_cmpneq:
1944 case Hexagon::C4_cmplte:
1945 case Hexagon::C4_cmplteu:
1946 SrcReg2 = MI.getOperand(2).getReg();
1947 Value = 0;
1948 return true;
1949
1950 case Hexagon::C2_cmpeqi:
1951 case Hexagon::C2_cmpgtui:
1952 case Hexagon::C2_cmpgti:
1953 case Hexagon::C4_cmpneqi:
1954 case Hexagon::C4_cmplteui:
1955 case Hexagon::C4_cmpltei:
1956 case Hexagon::A4_cmpbeqi:
1957 case Hexagon::A4_cmpbgti:
1958 case Hexagon::A4_cmpbgtui:
1959 case Hexagon::A4_cmpheqi:
1960 case Hexagon::A4_cmphgti:
1961 case Hexagon::A4_cmphgtui: {
1962 SrcReg2 = 0;
1963 const MachineOperand &Op2 = MI.getOperand(2);
1964 if (!Op2.isImm())
1965 return false;
1966 Value = MI.getOperand(2).getImm();
1967 return true;
1968 }
1969 }
1970
1971 return false;
1972}
1973
1975 const MachineInstr &MI,
1976 unsigned *PredCost) const {
1977 return getInstrTimingClassLatency(ItinData, MI);
1978}
1979
1981 const TargetSubtargetInfo &STI) const {
1983 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1984}
1985
1986// Inspired by this pair:
1987// %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1988// S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1989// Currently AA considers the addresses in these instructions to be aliasing.
1991 const MachineInstr &MIa, const MachineInstr &MIb) const {
1994 return false;
1995
1996 // Instructions that are pure loads, not loads and stores like memops are not
1997 // dependent.
1998 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1999 return true;
2000
2001 // Get the base register in MIa.
2002 unsigned BasePosA, OffsetPosA;
2003 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
2004 return false;
2005 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
2006 Register BaseRegA = BaseA.getReg();
2007 unsigned BaseSubA = BaseA.getSubReg();
2008
2009 // Get the base register in MIb.
2010 unsigned BasePosB, OffsetPosB;
2011 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
2012 return false;
2013 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
2014 Register BaseRegB = BaseB.getReg();
2015 unsigned BaseSubB = BaseB.getSubReg();
2016
2017 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
2018 return false;
2019
2020 // Get the access sizes.
2021 unsigned SizeA = getMemAccessSize(MIa);
2022 unsigned SizeB = getMemAccessSize(MIb);
2023
2024 // Get the offsets. Handle immediates only for now.
2025 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
2026 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
2027 if (!MIa.getOperand(OffsetPosA).isImm() ||
2028 !MIb.getOperand(OffsetPosB).isImm())
2029 return false;
2030 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
2031 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
2032
2033 // This is a mem access with the same base register and known offsets from it.
2034 // Reason about it.
2035 if (OffsetA > OffsetB) {
2036 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
2037 return SizeB <= OffDiff;
2038 }
2039 if (OffsetA < OffsetB) {
2040 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
2041 return SizeA <= OffDiff;
2042 }
2043
2044 return false;
2045}
2046
2047/// If the instruction is an increment of a constant value, return the amount.
2049 int &Value) const {
2050 if (isPostIncrement(MI)) {
2051 unsigned BasePos = 0, OffsetPos = 0;
2052 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
2053 return false;
2054 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
2055 if (OffsetOp.isImm()) {
2056 Value = OffsetOp.getImm();
2057 return true;
2058 }
2059 } else if (MI.getOpcode() == Hexagon::A2_addi) {
2060 const MachineOperand &AddOp = MI.getOperand(2);
2061 if (AddOp.isImm()) {
2062 Value = AddOp.getImm();
2063 return true;
2064 }
2065 }
2066
2067 return false;
2068}
2069
2070std::pair<unsigned, unsigned>
2072 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
2074}
2075
2078 using namespace HexagonII;
2079
2080 static const std::pair<unsigned, const char*> Flags[] = {
2081 {MO_PCREL, "hexagon-pcrel"},
2082 {MO_GOT, "hexagon-got"},
2083 {MO_LO16, "hexagon-lo16"},
2084 {MO_HI16, "hexagon-hi16"},
2085 {MO_GPREL, "hexagon-gprel"},
2086 {MO_GDGOT, "hexagon-gdgot"},
2087 {MO_GDPLT, "hexagon-gdplt"},
2088 {MO_IE, "hexagon-ie"},
2089 {MO_IEGOT, "hexagon-iegot"},
2090 {MO_TPREL, "hexagon-tprel"}
2091 };
2092 return ArrayRef(Flags);
2093}
2094
2097 using namespace HexagonII;
2098
2099 static const std::pair<unsigned, const char*> Flags[] = {
2100 {HMOTF_ConstExtended, "hexagon-ext"}
2101 };
2102 return ArrayRef(Flags);
2103}
2104
2107 const TargetRegisterClass *TRC;
2108 if (VT == MVT::i1) {
2109 TRC = &Hexagon::PredRegsRegClass;
2110 } else if (VT == MVT::i32 || VT == MVT::f32) {
2111 TRC = &Hexagon::IntRegsRegClass;
2112 } else if (VT == MVT::i64 || VT == MVT::f64) {
2113 TRC = &Hexagon::DoubleRegsRegClass;
2114 } else {
2115 llvm_unreachable("Cannot handle this register class");
2116 }
2117
2118 Register NewReg = MRI.createVirtualRegister(TRC);
2119 return NewReg;
2120}
2121
2125
2127 const uint64_t F = MI.getDesc().TSFlags;
2129}
2130
2134
2136 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2137 !MI.getDesc().mayStore() &&
2138 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2139 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2140 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2141}
2142
2143// Return true if the instruction is a compound branch instruction.
2145 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2146}
2147
2148// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2149// isFPImm and later getFPImm as well.
2151 const uint64_t F = MI.getDesc().TSFlags;
2153 if (isExtended) // Instruction must be extended.
2154 return true;
2155
2156 unsigned isExtendable =
2158 if (!isExtendable)
2159 return false;
2160
2161 if (MI.isCall())
2162 return false;
2163
2164 short ExtOpNum = getCExtOpNum(MI);
2165 const MachineOperand &MO = MI.getOperand(ExtOpNum);
2166 // Use MO operand flags to determine if MO
2167 // has the HMOTF_ConstExtended flag set.
2169 return true;
2170 // If this is a Machine BB address we are talking about, and it is
2171 // not marked as extended, say so.
2172 if (MO.isMBB())
2173 return false;
2174
2175 // We could be using an instruction with an extendable immediate and shoehorn
2176 // a global address into it. If it is a global address it will be constant
2177 // extended. We do this for COMBINE.
2178 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2179 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2180 return true;
2181
2182 // If the extendable operand is not 'Immediate' type, the instruction should
2183 // have 'isExtended' flag set.
2184 assert(MO.isImm() && "Extendable operand must be Immediate type");
2185
2186 int64_t Value = MO.getImm();
2188 int32_t SValue = Value;
2189 int32_t MinValue = getMinValue(MI);
2190 int32_t MaxValue = getMaxValue(MI);
2191 return SValue < MinValue || SValue > MaxValue;
2192 }
2193 uint32_t UValue = Value;
2194 uint32_t MinValue = getMinValue(MI);
2195 uint32_t MaxValue = getMaxValue(MI);
2196 return UValue < MinValue || UValue > MaxValue;
2197}
2198
2200 switch (MI.getOpcode()) {
2201 case Hexagon::L4_return:
2202 case Hexagon::L4_return_t:
2203 case Hexagon::L4_return_f:
2204 case Hexagon::L4_return_tnew_pnt:
2205 case Hexagon::L4_return_fnew_pnt:
2206 case Hexagon::L4_return_tnew_pt:
2207 case Hexagon::L4_return_fnew_pt:
2208 return true;
2209 }
2210 return false;
2211}
2212
2213// Return true when ConsMI uses a register defined by ProdMI.
2215 const MachineInstr &ConsMI) const {
2216 if (!ProdMI.getDesc().getNumDefs())
2217 return false;
2218 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2219
2224
2225 parseOperands(ProdMI, DefsA, UsesA);
2226 parseOperands(ConsMI, DefsB, UsesB);
2227
2228 for (auto &RegA : DefsA)
2229 for (auto &RegB : UsesB) {
2230 // True data dependency.
2231 if (RegA == RegB)
2232 return true;
2233
2234 if (RegA.isPhysical() && llvm::is_contained(HRI.subregs(RegA), RegB))
2235 return true;
2236
2237 if (RegB.isPhysical() && llvm::is_contained(HRI.subregs(RegB), RegA))
2238 return true;
2239 }
2240
2241 return false;
2242}
2243
2244// Returns true if the instruction is already a .cur.
2246 switch (MI.getOpcode()) {
2247 case Hexagon::V6_vL32b_cur_pi:
2248 case Hexagon::V6_vL32b_cur_ai:
2249 return true;
2250 }
2251 return false;
2252}
2253
2254// Returns true, if any one of the operands is a dot new
2255// insn, whether it is predicated dot new or register dot new.
2258 return true;
2259
2260 return false;
2261}
2262
2263/// Symmetrical. See if these two instructions are fit for duplex pair.
2265 const MachineInstr &MIb) const {
2268 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2269}
2270
2271bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2272 return (Opcode == Hexagon::ENDLOOP0 ||
2273 Opcode == Hexagon::ENDLOOP1);
2274}
2275
2276bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2277 switch(OpType) {
2284 return true;
2285 default:
2286 return false;
2287 }
2288}
2289
2291 const MCInstrDesc &MID = MI.getDesc();
2292 const uint64_t F = MID.TSFlags;
2294 return true;
2295
2296 // TODO: This is largely obsolete now. Will need to be removed
2297 // in consecutive patches.
2298 switch (MI.getOpcode()) {
2299 // PS_fi and PS_fia remain special cases.
2300 case Hexagon::PS_fi:
2301 case Hexagon::PS_fia:
2302 return true;
2303 default:
2304 return false;
2305 }
2306 return false;
2307}
2308
2309// This returns true in two cases:
2310// - The OP code itself indicates that this is an extended instruction.
2311// - One of MOs has been marked with HMOTF_ConstExtended flag.
2313 // First check if this is permanently extended op code.
2314 const uint64_t F = MI.getDesc().TSFlags;
2316 return true;
2317 // Use MO operand flags to determine if one of MI's operands
2318 // has HMOTF_ConstExtended flag set.
2319 for (const MachineOperand &MO : MI.operands())
2320 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2321 return true;
2322 return false;
2323}
2324
2326 unsigned Opcode = MI.getOpcode();
2327 const uint64_t F = get(Opcode).TSFlags;
2328 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2329}
2330
2331// No V60 HVX VMEM with A_INDIRECT.
2333 const MachineInstr &J) const {
2334 if (!isHVXVec(I))
2335 return false;
2336 if (!I.mayLoad() && !I.mayStore())
2337 return false;
2338 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2339}
2340
2342 switch (MI.getOpcode()) {
2343 case Hexagon::J2_callr:
2344 case Hexagon::J2_callrf:
2345 case Hexagon::J2_callrt:
2346 case Hexagon::PS_call_nr:
2347 return true;
2348 }
2349 return false;
2350}
2351
2353 switch (MI.getOpcode()) {
2354 case Hexagon::L4_return:
2355 case Hexagon::L4_return_t:
2356 case Hexagon::L4_return_f:
2357 case Hexagon::L4_return_fnew_pnt:
2358 case Hexagon::L4_return_fnew_pt:
2359 case Hexagon::L4_return_tnew_pnt:
2360 case Hexagon::L4_return_tnew_pt:
2361 return true;
2362 }
2363 return false;
2364}
2365
2367 switch (MI.getOpcode()) {
2368 case Hexagon::J2_jumpr:
2369 case Hexagon::J2_jumprt:
2370 case Hexagon::J2_jumprf:
2371 case Hexagon::J2_jumprtnewpt:
2372 case Hexagon::J2_jumprfnewpt:
2373 case Hexagon::J2_jumprtnew:
2374 case Hexagon::J2_jumprfnew:
2375 return true;
2376 }
2377 return false;
2378}
2379
2380// Return true if a given MI can accommodate given offset.
2381// Use abs estimate as oppose to the exact number.
2382// TODO: This will need to be changed to use MC level
2383// definition of instruction extendable field size.
2385 unsigned offset) const {
2386 // This selection of jump instructions matches to that what
2387 // analyzeBranch can parse, plus NVJ.
2388 if (isNewValueJump(MI)) // r9:2
2389 return isInt<11>(offset);
2390
2391 switch (MI.getOpcode()) {
2392 // Still missing Jump to address condition on register value.
2393 default:
2394 return false;
2395 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2396 case Hexagon::J2_call:
2397 case Hexagon::PS_call_nr:
2398 return isInt<24>(offset);
2399 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2400 case Hexagon::J2_jumpf:
2401 case Hexagon::J2_jumptnew:
2402 case Hexagon::J2_jumptnewpt:
2403 case Hexagon::J2_jumpfnew:
2404 case Hexagon::J2_jumpfnewpt:
2405 case Hexagon::J2_callt:
2406 case Hexagon::J2_callf:
2407 return isInt<17>(offset);
2408 case Hexagon::J2_loop0i:
2409 case Hexagon::J2_loop0iext:
2410 case Hexagon::J2_loop0r:
2411 case Hexagon::J2_loop0rext:
2412 case Hexagon::J2_loop1i:
2413 case Hexagon::J2_loop1iext:
2414 case Hexagon::J2_loop1r:
2415 case Hexagon::J2_loop1rext:
2416 return isInt<9>(offset);
2417 // TODO: Add all the compound branches here. Can we do this in Relation model?
2418 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2419 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2420 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2421 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2422 return isInt<11>(offset);
2423 }
2424}
2425
2427 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2428 // resource, but all operands can be received late like an ALU instruction.
2430}
2431
2433 unsigned Opcode = MI.getOpcode();
2434 return Opcode == Hexagon::J2_loop0i ||
2435 Opcode == Hexagon::J2_loop0r ||
2436 Opcode == Hexagon::J2_loop0iext ||
2437 Opcode == Hexagon::J2_loop0rext ||
2438 Opcode == Hexagon::J2_loop1i ||
2439 Opcode == Hexagon::J2_loop1r ||
2440 Opcode == Hexagon::J2_loop1iext ||
2441 Opcode == Hexagon::J2_loop1rext;
2442}
2443
2445 switch (MI.getOpcode()) {
2446 default: return false;
2447 case Hexagon::L4_iadd_memopw_io:
2448 case Hexagon::L4_isub_memopw_io:
2449 case Hexagon::L4_add_memopw_io:
2450 case Hexagon::L4_sub_memopw_io:
2451 case Hexagon::L4_and_memopw_io:
2452 case Hexagon::L4_or_memopw_io:
2453 case Hexagon::L4_iadd_memoph_io:
2454 case Hexagon::L4_isub_memoph_io:
2455 case Hexagon::L4_add_memoph_io:
2456 case Hexagon::L4_sub_memoph_io:
2457 case Hexagon::L4_and_memoph_io:
2458 case Hexagon::L4_or_memoph_io:
2459 case Hexagon::L4_iadd_memopb_io:
2460 case Hexagon::L4_isub_memopb_io:
2461 case Hexagon::L4_add_memopb_io:
2462 case Hexagon::L4_sub_memopb_io:
2463 case Hexagon::L4_and_memopb_io:
2464 case Hexagon::L4_or_memopb_io:
2465 case Hexagon::L4_ior_memopb_io:
2466 case Hexagon::L4_ior_memoph_io:
2467 case Hexagon::L4_ior_memopw_io:
2468 case Hexagon::L4_iand_memopb_io:
2469 case Hexagon::L4_iand_memoph_io:
2470 case Hexagon::L4_iand_memopw_io:
2471 return true;
2472 }
2473 return false;
2474}
2475
2477 const uint64_t F = MI.getDesc().TSFlags;
2479}
2480
2481bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2482 const uint64_t F = get(Opcode).TSFlags;
2484}
2485
2489
2491 return isNewValue(MI) && MI.isBranch();
2492}
2493
2494bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2495 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2496}
2497
2499 const uint64_t F = MI.getDesc().TSFlags;
2501}
2502
2503bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2504 const uint64_t F = get(Opcode).TSFlags;
2506}
2507
2508// Returns true if a particular operand is extendable for an instruction.
2510 unsigned OperandNum) const {
2511 const uint64_t F = MI.getDesc().TSFlags;
2513 == OperandNum;
2514}
2515
2517 const uint64_t F = MI.getDesc().TSFlags;
2520}
2521
2522bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2523 const uint64_t F = get(Opcode).TSFlags;
2524 assert(isPredicated(Opcode));
2526}
2527
2529 const uint64_t F = MI.getDesc().TSFlags;
2530 return !((F >> HexagonII::PredicatedFalsePos) &
2532}
2533
2534bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2535 const uint64_t F = get(Opcode).TSFlags;
2536 // Make sure that the instruction is predicated.
2538 return !((F >> HexagonII::PredicatedFalsePos) &
2540}
2541
2542bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2543 const uint64_t F = get(Opcode).TSFlags;
2545}
2546
2547bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2548 const uint64_t F = get(Opcode).TSFlags;
2550}
2551
2552bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2553 const uint64_t F = get(Opcode).TSFlags;
2554 assert(get(Opcode).isBranch() &&
2555 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2557}
2558
2560 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2561 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2562 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2563 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2564}
2565
2567 switch (MI.getOpcode()) {
2568 // Byte
2569 case Hexagon::L2_loadrb_io:
2570 case Hexagon::L4_loadrb_ur:
2571 case Hexagon::L4_loadrb_ap:
2572 case Hexagon::L2_loadrb_pr:
2573 case Hexagon::L2_loadrb_pbr:
2574 case Hexagon::L2_loadrb_pi:
2575 case Hexagon::L2_loadrb_pci:
2576 case Hexagon::L2_loadrb_pcr:
2577 case Hexagon::L2_loadbsw2_io:
2578 case Hexagon::L4_loadbsw2_ur:
2579 case Hexagon::L4_loadbsw2_ap:
2580 case Hexagon::L2_loadbsw2_pr:
2581 case Hexagon::L2_loadbsw2_pbr:
2582 case Hexagon::L2_loadbsw2_pi:
2583 case Hexagon::L2_loadbsw2_pci:
2584 case Hexagon::L2_loadbsw2_pcr:
2585 case Hexagon::L2_loadbsw4_io:
2586 case Hexagon::L4_loadbsw4_ur:
2587 case Hexagon::L4_loadbsw4_ap:
2588 case Hexagon::L2_loadbsw4_pr:
2589 case Hexagon::L2_loadbsw4_pbr:
2590 case Hexagon::L2_loadbsw4_pi:
2591 case Hexagon::L2_loadbsw4_pci:
2592 case Hexagon::L2_loadbsw4_pcr:
2593 case Hexagon::L4_loadrb_rr:
2594 case Hexagon::L2_ploadrbt_io:
2595 case Hexagon::L2_ploadrbt_pi:
2596 case Hexagon::L2_ploadrbf_io:
2597 case Hexagon::L2_ploadrbf_pi:
2598 case Hexagon::L2_ploadrbtnew_io:
2599 case Hexagon::L2_ploadrbfnew_io:
2600 case Hexagon::L4_ploadrbt_rr:
2601 case Hexagon::L4_ploadrbf_rr:
2602 case Hexagon::L4_ploadrbtnew_rr:
2603 case Hexagon::L4_ploadrbfnew_rr:
2604 case Hexagon::L2_ploadrbtnew_pi:
2605 case Hexagon::L2_ploadrbfnew_pi:
2606 case Hexagon::L4_ploadrbt_abs:
2607 case Hexagon::L4_ploadrbf_abs:
2608 case Hexagon::L4_ploadrbtnew_abs:
2609 case Hexagon::L4_ploadrbfnew_abs:
2610 case Hexagon::L2_loadrbgp:
2611 // Half
2612 case Hexagon::L2_loadrh_io:
2613 case Hexagon::L4_loadrh_ur:
2614 case Hexagon::L4_loadrh_ap:
2615 case Hexagon::L2_loadrh_pr:
2616 case Hexagon::L2_loadrh_pbr:
2617 case Hexagon::L2_loadrh_pi:
2618 case Hexagon::L2_loadrh_pci:
2619 case Hexagon::L2_loadrh_pcr:
2620 case Hexagon::L4_loadrh_rr:
2621 case Hexagon::L2_ploadrht_io:
2622 case Hexagon::L2_ploadrht_pi:
2623 case Hexagon::L2_ploadrhf_io:
2624 case Hexagon::L2_ploadrhf_pi:
2625 case Hexagon::L2_ploadrhtnew_io:
2626 case Hexagon::L2_ploadrhfnew_io:
2627 case Hexagon::L4_ploadrht_rr:
2628 case Hexagon::L4_ploadrhf_rr:
2629 case Hexagon::L4_ploadrhtnew_rr:
2630 case Hexagon::L4_ploadrhfnew_rr:
2631 case Hexagon::L2_ploadrhtnew_pi:
2632 case Hexagon::L2_ploadrhfnew_pi:
2633 case Hexagon::L4_ploadrht_abs:
2634 case Hexagon::L4_ploadrhf_abs:
2635 case Hexagon::L4_ploadrhtnew_abs:
2636 case Hexagon::L4_ploadrhfnew_abs:
2637 case Hexagon::L2_loadrhgp:
2638 return true;
2639 default:
2640 return false;
2641 }
2642}
2643
2645 const uint64_t F = MI.getDesc().TSFlags;
2647}
2648
2650 switch (MI.getOpcode()) {
2651 case Hexagon::STriw_pred:
2652 case Hexagon::LDriw_pred:
2653 return true;
2654 default:
2655 return false;
2656 }
2657}
2658
2660 if (!MI.isBranch())
2661 return false;
2662
2663 for (auto &Op : MI.operands())
2664 if (Op.isGlobal() || Op.isSymbol())
2665 return true;
2666 return false;
2667}
2668
2669// Returns true when SU has a timing class TC1.
2671 unsigned SchedClass = MI.getDesc().getSchedClass();
2672 return is_TC1(SchedClass);
2673}
2674
2676 unsigned SchedClass = MI.getDesc().getSchedClass();
2677 return is_TC2(SchedClass);
2678}
2679
2681 unsigned SchedClass = MI.getDesc().getSchedClass();
2682 return is_TC2early(SchedClass);
2683}
2684
2686 unsigned SchedClass = MI.getDesc().getSchedClass();
2687 return is_TC4x(SchedClass);
2688}
2689
2690// Schedule this ASAP.
2692 const MachineInstr &MI2) const {
2693 if (mayBeCurLoad(MI1)) {
2694 // if (result of SU is used in Next) return true;
2695 Register DstReg = MI1.getOperand(0).getReg();
2696 int N = MI2.getNumOperands();
2697 for (int I = 0; I < N; I++)
2698 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2699 return true;
2700 }
2701 if (mayBeNewStore(MI2))
2702 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2703 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2704 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2705 return true;
2706 return false;
2707}
2708
2710 const uint64_t V = getType(MI);
2712}
2713
2714// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2716 int Size = VT.getSizeInBits() / 8;
2717 if (Offset % Size != 0)
2718 return false;
2719 int Count = Offset / Size;
2720
2721 switch (VT.getSimpleVT().SimpleTy) {
2722 // For scalars the auto-inc is s4
2723 case MVT::i8:
2724 case MVT::i16:
2725 case MVT::i32:
2726 case MVT::i64:
2727 case MVT::f32:
2728 case MVT::f64:
2729 case MVT::v2i16:
2730 case MVT::v2i32:
2731 case MVT::v4i8:
2732 case MVT::v4i16:
2733 case MVT::v8i8:
2734 return isInt<4>(Count);
2735 // For HVX vectors the auto-inc is s3
2736 case MVT::v64i8:
2737 case MVT::v32i16:
2738 case MVT::v16i32:
2739 case MVT::v8i64:
2740 case MVT::v128i8:
2741 case MVT::v64i16:
2742 case MVT::v32i32:
2743 case MVT::v16i64:
2744 return isInt<3>(Count);
2745 default:
2746 break;
2747 }
2748
2749 llvm_unreachable("Not an valid type!");
2750}
2751
2752bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2753 const TargetRegisterInfo *TRI, bool Extend) const {
2754 // This function is to check whether the "Offset" is in the correct range of
2755 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2756 // inserted to calculate the final address. Due to this reason, the function
2757 // assumes that the "Offset" has correct alignment.
2758 // We used to assert if the offset was not properly aligned, however,
2759 // there are cases where a misaligned pointer recast can cause this
2760 // problem, and we need to allow for it. The front end warns of such
2761 // misaligns with respect to load size.
2762 switch (Opcode) {
2763 case Hexagon::PS_vstorerq_ai:
2764 case Hexagon::PS_vstorerv_ai:
2765 case Hexagon::PS_vstorerw_ai:
2766 case Hexagon::PS_vstorerw_nt_ai:
2767 case Hexagon::PS_vloadrq_ai:
2768 case Hexagon::PS_vloadrv_ai:
2769 case Hexagon::PS_vloadrw_ai:
2770 case Hexagon::PS_vloadrw_nt_ai:
2771 case Hexagon::V6_vL32b_ai:
2772 case Hexagon::V6_vS32b_ai:
2773 case Hexagon::V6_vS32b_pred_ai:
2774 case Hexagon::V6_vS32b_npred_ai:
2775 case Hexagon::V6_vS32b_qpred_ai:
2776 case Hexagon::V6_vS32b_nqpred_ai:
2777 case Hexagon::V6_vS32b_new_ai:
2778 case Hexagon::V6_vS32b_new_pred_ai:
2779 case Hexagon::V6_vS32b_new_npred_ai:
2780 case Hexagon::V6_vS32b_nt_pred_ai:
2781 case Hexagon::V6_vS32b_nt_npred_ai:
2782 case Hexagon::V6_vS32b_nt_new_ai:
2783 case Hexagon::V6_vS32b_nt_new_pred_ai:
2784 case Hexagon::V6_vS32b_nt_new_npred_ai:
2785 case Hexagon::V6_vS32b_nt_qpred_ai:
2786 case Hexagon::V6_vS32b_nt_nqpred_ai:
2787 case Hexagon::V6_vL32b_nt_ai:
2788 case Hexagon::V6_vS32b_nt_ai:
2789 case Hexagon::V6_vL32Ub_ai:
2790 case Hexagon::V6_vS32Ub_ai:
2791 case Hexagon::V6_vL32b_cur_ai:
2792 case Hexagon::V6_vL32b_tmp_ai:
2793 case Hexagon::V6_vL32b_pred_ai:
2794 case Hexagon::V6_vL32b_npred_ai:
2795 case Hexagon::V6_vL32b_cur_pred_ai:
2796 case Hexagon::V6_vL32b_cur_npred_ai:
2797 case Hexagon::V6_vL32b_tmp_pred_ai:
2798 case Hexagon::V6_vL32b_tmp_npred_ai:
2799 case Hexagon::V6_vL32b_nt_cur_ai:
2800 case Hexagon::V6_vL32b_nt_tmp_ai:
2801 case Hexagon::V6_vL32b_nt_pred_ai:
2802 case Hexagon::V6_vL32b_nt_npred_ai:
2803 case Hexagon::V6_vL32b_nt_cur_pred_ai:
2804 case Hexagon::V6_vL32b_nt_cur_npred_ai:
2805 case Hexagon::V6_vL32b_nt_tmp_pred_ai:
2806 case Hexagon::V6_vL32b_nt_tmp_npred_ai:
2807 case Hexagon::V6_vgathermh_pseudo:
2808 case Hexagon::V6_vgathermw_pseudo:
2809 case Hexagon::V6_vgathermhw_pseudo:
2810 case Hexagon::V6_vgathermhq_pseudo:
2811 case Hexagon::V6_vgathermwq_pseudo:
2812 case Hexagon::V6_vgathermhwq_pseudo: {
2813 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2814 assert(isPowerOf2_32(VectorSize));
2815 if (Offset & (VectorSize-1))
2816 return false;
2817 return isInt<4>(Offset >> Log2_32(VectorSize));
2818 }
2819
2820 case Hexagon::J2_loop0i:
2821 case Hexagon::J2_loop1i:
2822 return isUInt<10>(Offset);
2823
2824 case Hexagon::S4_storeirb_io:
2825 case Hexagon::S4_storeirbt_io:
2826 case Hexagon::S4_storeirbf_io:
2827 return isUInt<6>(Offset);
2828
2829 case Hexagon::S4_storeirh_io:
2830 case Hexagon::S4_storeirht_io:
2831 case Hexagon::S4_storeirhf_io:
2832 return isShiftedUInt<6,1>(Offset);
2833
2834 case Hexagon::S4_storeiri_io:
2835 case Hexagon::S4_storeirit_io:
2836 case Hexagon::S4_storeirif_io:
2837 return isShiftedUInt<6,2>(Offset);
2838 // Handle these two compare instructions that are not extendable.
2839 case Hexagon::A4_cmpbeqi:
2840 return isUInt<8>(Offset);
2841 case Hexagon::A4_cmpbgti:
2842 return isInt<8>(Offset);
2843 }
2844
2845 if (Extend)
2846 return true;
2847
2848 switch (Opcode) {
2849 case Hexagon::L2_loadri_io:
2850 case Hexagon::S2_storeri_io:
2851 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2853
2854 case Hexagon::L2_loadrd_io:
2855 case Hexagon::S2_storerd_io:
2856 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2858
2859 case Hexagon::L2_loadrh_io:
2860 case Hexagon::L2_loadruh_io:
2861 case Hexagon::S2_storerh_io:
2862 case Hexagon::S2_storerf_io:
2863 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2865
2866 case Hexagon::L2_loadrb_io:
2867 case Hexagon::L2_loadrub_io:
2868 case Hexagon::S2_storerb_io:
2869 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2871
2872 case Hexagon::A2_addi:
2873 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2875
2876 case Hexagon::L4_iadd_memopw_io:
2877 case Hexagon::L4_isub_memopw_io:
2878 case Hexagon::L4_add_memopw_io:
2879 case Hexagon::L4_sub_memopw_io:
2880 case Hexagon::L4_iand_memopw_io:
2881 case Hexagon::L4_ior_memopw_io:
2882 case Hexagon::L4_and_memopw_io:
2883 case Hexagon::L4_or_memopw_io:
2884 return (0 <= Offset && Offset <= 255);
2885
2886 case Hexagon::L4_iadd_memoph_io:
2887 case Hexagon::L4_isub_memoph_io:
2888 case Hexagon::L4_add_memoph_io:
2889 case Hexagon::L4_sub_memoph_io:
2890 case Hexagon::L4_iand_memoph_io:
2891 case Hexagon::L4_ior_memoph_io:
2892 case Hexagon::L4_and_memoph_io:
2893 case Hexagon::L4_or_memoph_io:
2894 return (0 <= Offset && Offset <= 127);
2895
2896 case Hexagon::L4_iadd_memopb_io:
2897 case Hexagon::L4_isub_memopb_io:
2898 case Hexagon::L4_add_memopb_io:
2899 case Hexagon::L4_sub_memopb_io:
2900 case Hexagon::L4_iand_memopb_io:
2901 case Hexagon::L4_ior_memopb_io:
2902 case Hexagon::L4_and_memopb_io:
2903 case Hexagon::L4_or_memopb_io:
2904 return (0 <= Offset && Offset <= 63);
2905
2906 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2907 // any size. Later pass knows how to handle it.
2908 case Hexagon::STriw_pred:
2909 case Hexagon::LDriw_pred:
2910 case Hexagon::STriw_ctr:
2911 case Hexagon::LDriw_ctr:
2912 return true;
2913
2914 case Hexagon::PS_fi:
2915 case Hexagon::PS_fia:
2916 case Hexagon::INLINEASM:
2917 return true;
2918
2919 case Hexagon::L2_ploadrbt_io:
2920 case Hexagon::L2_ploadrbf_io:
2921 case Hexagon::L2_ploadrubt_io:
2922 case Hexagon::L2_ploadrubf_io:
2923 case Hexagon::S2_pstorerbt_io:
2924 case Hexagon::S2_pstorerbf_io:
2925 return isUInt<6>(Offset);
2926
2927 case Hexagon::L2_ploadrht_io:
2928 case Hexagon::L2_ploadrhf_io:
2929 case Hexagon::L2_ploadruht_io:
2930 case Hexagon::L2_ploadruhf_io:
2931 case Hexagon::S2_pstorerht_io:
2932 case Hexagon::S2_pstorerhf_io:
2933 return isShiftedUInt<6,1>(Offset);
2934
2935 case Hexagon::L2_ploadrit_io:
2936 case Hexagon::L2_ploadrif_io:
2937 case Hexagon::S2_pstorerit_io:
2938 case Hexagon::S2_pstorerif_io:
2939 return isShiftedUInt<6,2>(Offset);
2940
2941 case Hexagon::L2_ploadrdt_io:
2942 case Hexagon::L2_ploadrdf_io:
2943 case Hexagon::S2_pstorerdt_io:
2944 case Hexagon::S2_pstorerdf_io:
2945 return isShiftedUInt<6,3>(Offset);
2946
2947 case Hexagon::L2_loadbsw2_io:
2948 case Hexagon::L2_loadbzw2_io:
2949 return isShiftedInt<11,1>(Offset);
2950
2951 case Hexagon::L2_loadbsw4_io:
2952 case Hexagon::L2_loadbzw4_io:
2953 return isShiftedInt<11,2>(Offset);
2954 } // switch
2955
2956 dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode)
2957 << ")\n";
2958 llvm_unreachable("No offset range is defined for this opcode. "
2959 "Please define it in the above switch statement!");
2960}
2961
2963 return isHVXVec(MI) && isAccumulator(MI);
2964}
2965
2967 const uint64_t F = get(MI.getOpcode()).TSFlags;
2969 return
2970 V == HexagonII::TypeCVI_VA ||
2972}
2973
2975 const MachineInstr &ConsMI) const {
2976 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2977 return true;
2978
2979 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2980 return true;
2981
2982 if (mayBeNewStore(ConsMI))
2983 return true;
2984
2985 return false;
2986}
2987
2989 switch (MI.getOpcode()) {
2990 // Byte
2991 case Hexagon::L2_loadrub_io:
2992 case Hexagon::L4_loadrub_ur:
2993 case Hexagon::L4_loadrub_ap:
2994 case Hexagon::L2_loadrub_pr:
2995 case Hexagon::L2_loadrub_pbr:
2996 case Hexagon::L2_loadrub_pi:
2997 case Hexagon::L2_loadrub_pci:
2998 case Hexagon::L2_loadrub_pcr:
2999 case Hexagon::L2_loadbzw2_io:
3000 case Hexagon::L4_loadbzw2_ur:
3001 case Hexagon::L4_loadbzw2_ap:
3002 case Hexagon::L2_loadbzw2_pr:
3003 case Hexagon::L2_loadbzw2_pbr:
3004 case Hexagon::L2_loadbzw2_pi:
3005 case Hexagon::L2_loadbzw2_pci:
3006 case Hexagon::L2_loadbzw2_pcr:
3007 case Hexagon::L2_loadbzw4_io:
3008 case Hexagon::L4_loadbzw4_ur:
3009 case Hexagon::L4_loadbzw4_ap:
3010 case Hexagon::L2_loadbzw4_pr:
3011 case Hexagon::L2_loadbzw4_pbr:
3012 case Hexagon::L2_loadbzw4_pi:
3013 case Hexagon::L2_loadbzw4_pci:
3014 case Hexagon::L2_loadbzw4_pcr:
3015 case Hexagon::L4_loadrub_rr:
3016 case Hexagon::L2_ploadrubt_io:
3017 case Hexagon::L2_ploadrubt_pi:
3018 case Hexagon::L2_ploadrubf_io:
3019 case Hexagon::L2_ploadrubf_pi:
3020 case Hexagon::L2_ploadrubtnew_io:
3021 case Hexagon::L2_ploadrubfnew_io:
3022 case Hexagon::L4_ploadrubt_rr:
3023 case Hexagon::L4_ploadrubf_rr:
3024 case Hexagon::L4_ploadrubtnew_rr:
3025 case Hexagon::L4_ploadrubfnew_rr:
3026 case Hexagon::L2_ploadrubtnew_pi:
3027 case Hexagon::L2_ploadrubfnew_pi:
3028 case Hexagon::L4_ploadrubt_abs:
3029 case Hexagon::L4_ploadrubf_abs:
3030 case Hexagon::L4_ploadrubtnew_abs:
3031 case Hexagon::L4_ploadrubfnew_abs:
3032 case Hexagon::L2_loadrubgp:
3033 // Half
3034 case Hexagon::L2_loadruh_io:
3035 case Hexagon::L4_loadruh_ur:
3036 case Hexagon::L4_loadruh_ap:
3037 case Hexagon::L2_loadruh_pr:
3038 case Hexagon::L2_loadruh_pbr:
3039 case Hexagon::L2_loadruh_pi:
3040 case Hexagon::L2_loadruh_pci:
3041 case Hexagon::L2_loadruh_pcr:
3042 case Hexagon::L4_loadruh_rr:
3043 case Hexagon::L2_ploadruht_io:
3044 case Hexagon::L2_ploadruht_pi:
3045 case Hexagon::L2_ploadruhf_io:
3046 case Hexagon::L2_ploadruhf_pi:
3047 case Hexagon::L2_ploadruhtnew_io:
3048 case Hexagon::L2_ploadruhfnew_io:
3049 case Hexagon::L4_ploadruht_rr:
3050 case Hexagon::L4_ploadruhf_rr:
3051 case Hexagon::L4_ploadruhtnew_rr:
3052 case Hexagon::L4_ploadruhfnew_rr:
3053 case Hexagon::L2_ploadruhtnew_pi:
3054 case Hexagon::L2_ploadruhfnew_pi:
3055 case Hexagon::L4_ploadruht_abs:
3056 case Hexagon::L4_ploadruhf_abs:
3057 case Hexagon::L4_ploadruhtnew_abs:
3058 case Hexagon::L4_ploadruhfnew_abs:
3059 case Hexagon::L2_loadruhgp:
3060 return true;
3061 default:
3062 return false;
3063 }
3064}
3065
3066// Add latency to instruction.
3068 const MachineInstr &MI2) const {
3069 if (isHVXVec(MI1) && isHVXVec(MI2))
3070 if (!isVecUsableNextPacket(MI1, MI2))
3071 return true;
3072 return false;
3073}
3074
3075/// Get the base register and byte offset of a load/store instr.
3078 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
3079 const TargetRegisterInfo *TRI) const {
3080 OffsetIsScalable = false;
3081 const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width);
3082 if (!BaseOp || !BaseOp->isReg())
3083 return false;
3084 BaseOps.push_back(BaseOp);
3085 return true;
3086}
3087
3088/// Can these instructions execute at the same time in a bundle.
3090 const MachineInstr &Second) const {
3091 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
3092 const MachineOperand &Op = Second.getOperand(0);
3093 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
3094 return true;
3095 }
3097 return false;
3098 if (mayBeNewStore(Second)) {
3099 // Make sure the definition of the first instruction is the value being
3100 // stored.
3101 const MachineOperand &Stored =
3102 Second.getOperand(Second.getNumOperands() - 1);
3103 if (!Stored.isReg())
3104 return false;
3105 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
3106 const MachineOperand &Op = First.getOperand(i);
3107 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
3108 return true;
3109 }
3110 }
3111 return false;
3112}
3113
3115 unsigned Opc = CallMI.getOpcode();
3116 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
3117}
3118
3120 for (auto &I : *B)
3121 if (I.isEHLabel())
3122 return true;
3123 return false;
3124}
3125
3126// Returns true if an instruction can be converted into a non-extended
3127// equivalent instruction.
3129 short NonExtOpcode;
3130 // Check if the instruction has a register form that uses register in place
3131 // of the extended operand, if so return that as the non-extended form.
3132 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
3133 return true;
3134
3135 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
3136 // Check addressing mode and retrieve non-ext equivalent instruction.
3137
3138 switch (getAddrMode(MI)) {
3140 // Load/store with absolute addressing mode can be converted into
3141 // base+offset mode.
3142 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3143 break;
3145 // Load/store with base+offset addressing mode can be converted into
3146 // base+register offset addressing mode. However left shift operand should
3147 // be set to 0.
3148 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3149 break;
3151 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3152 break;
3153 default:
3154 return false;
3155 }
3156 if (NonExtOpcode < 0)
3157 return false;
3158 return true;
3159 }
3160 return false;
3161}
3162
3164 return Hexagon::getRealHWInstr(MI.getOpcode(),
3165 Hexagon::InstrType_Pseudo) >= 0;
3166}
3167
3169 const {
3170 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3171 while (I != E) {
3172 if (I->isBarrier())
3173 return true;
3174 ++I;
3175 }
3176 return false;
3177}
3178
3179// Returns true, if a LD insn can be promoted to a cur load.
3181 const uint64_t F = MI.getDesc().TSFlags;
3183 Subtarget.hasV60Ops();
3184}
3185
3186// Returns true, if a ST insn can be promoted to a new-value store.
3188 if (MI.mayStore() && !Subtarget.useNewValueStores())
3189 return false;
3190
3191 const uint64_t F = MI.getDesc().TSFlags;
3193}
3194
3196 const MachineInstr &ConsMI) const {
3197 // There is no stall when ProdMI is not a V60 vector.
3198 if (!isHVXVec(ProdMI))
3199 return false;
3200
3201 // There is no stall when ProdMI and ConsMI are not dependent.
3202 if (!isDependent(ProdMI, ConsMI))
3203 return false;
3204
3205 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3206 // are scheduled in consecutive packets.
3207 if (isVecUsableNextPacket(ProdMI, ConsMI))
3208 return false;
3209
3210 return true;
3211}
3212
3215 // There is no stall when I is not a V60 vector.
3216 if (!isHVXVec(MI))
3217 return false;
3218
3220 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3221
3222 if (!MII->isBundle())
3223 return producesStall(*MII, MI);
3224
3225 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3226 const MachineInstr &J = *MII;
3227 if (producesStall(J, MI))
3228 return true;
3229 }
3230 return false;
3231}
3232
3234 Register PredReg) const {
3235 for (const MachineOperand &MO : MI.operands()) {
3236 // Predicate register must be explicitly defined.
3237 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3238 return false;
3239 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3240 return false;
3241 }
3242
3243 // Instruction that produce late predicate cannot be used as sources of
3244 // dot-new.
3245 switch (MI.getOpcode()) {
3246 case Hexagon::A4_addp_c:
3247 case Hexagon::A4_subp_c:
3248 case Hexagon::A4_tlbmatch:
3249 case Hexagon::A5_ACS:
3250 case Hexagon::F2_sfinvsqrta:
3251 case Hexagon::F2_sfrecipa:
3252 case Hexagon::J2_endloop0:
3253 case Hexagon::J2_endloop01:
3254 case Hexagon::J2_ploop1si:
3255 case Hexagon::J2_ploop1sr:
3256 case Hexagon::J2_ploop2si:
3257 case Hexagon::J2_ploop2sr:
3258 case Hexagon::J2_ploop3si:
3259 case Hexagon::J2_ploop3sr:
3260 case Hexagon::S2_cabacdecbin:
3261 case Hexagon::S2_storew_locked:
3262 case Hexagon::S4_stored_locked:
3263 return false;
3264 }
3265 return true;
3266}
3267
3268bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3269 return Opcode == Hexagon::J2_jumpt ||
3270 Opcode == Hexagon::J2_jumptpt ||
3271 Opcode == Hexagon::J2_jumpf ||
3272 Opcode == Hexagon::J2_jumpfpt ||
3273 Opcode == Hexagon::J2_jumptnew ||
3274 Opcode == Hexagon::J2_jumpfnew ||
3275 Opcode == Hexagon::J2_jumptnewpt ||
3276 Opcode == Hexagon::J2_jumpfnewpt;
3277}
3278
3280 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3281 return false;
3282 return !isPredicatedTrue(Cond[0].getImm());
3283}
3284
3286 const uint64_t F = MI.getDesc().TSFlags;
3288}
3289
3290// Returns the base register in a memory access (load/store). The offset is
3291// returned in Offset and the access size is returned in AccessSize.
3292// If the base operand has a subregister or the offset field does not contain
3293// an immediate value, return nullptr.
3296 LocationSize &AccessSize) const {
3297 // Return if it is not a base+offset type instruction or a MemOp.
3301 return nullptr;
3302
3304
3305 unsigned BasePos = 0, OffsetPos = 0;
3306 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3307 return nullptr;
3308
3309 // Post increment updates its EA after the mem access,
3310 // so we need to treat its offset as zero.
3311 if (isPostIncrement(MI)) {
3312 Offset = 0;
3313 } else {
3314 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3315 if (!OffsetOp.isImm())
3316 return nullptr;
3317 Offset = OffsetOp.getImm();
3318 }
3319
3320 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3321 if (BaseOp.getSubReg() != 0)
3322 return nullptr;
3323 return &const_cast<MachineOperand&>(BaseOp);
3324}
3325
3326/// Return the position of the base and offset operands for this instruction.
3328 unsigned &BasePos, unsigned &OffsetPos) const {
3330 return false;
3331
3332 // Deal with memops first.
3333 if (isMemOp(MI)) {
3334 BasePos = 0;
3335 OffsetPos = 1;
3336 } else if (MI.mayStore()) {
3337 BasePos = 0;
3338 OffsetPos = 1;
3339 } else if (MI.mayLoad()) {
3340 BasePos = 1;
3341 OffsetPos = 2;
3342 } else
3343 return false;
3344
3345 if (isPredicated(MI)) {
3346 BasePos++;
3347 OffsetPos++;
3348 }
3349 if (isPostIncrement(MI)) {
3350 BasePos++;
3351 OffsetPos++;
3352 }
3353
3354 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3355 return false;
3356
3357 return true;
3358}
3359
3360// Inserts branching instructions in reverse order of their occurrence.
3361// e.g. jump_t t1 (i1)
3362// jump t2 (i2)
3363// Jumpers = {i2, i1}
3365 MachineBasicBlock& MBB) const {
3367 // If the block has no terminators, it just falls into the block after it.
3369 if (I == MBB.instr_begin())
3370 return Jumpers;
3371
3372 // A basic block may looks like this:
3373 //
3374 // [ insn
3375 // EH_LABEL
3376 // insn
3377 // insn
3378 // insn
3379 // EH_LABEL
3380 // insn ]
3381 //
3382 // It has two succs but does not have a terminator
3383 // Don't know how to handle it.
3384 do {
3385 --I;
3386 if (I->isEHLabel())
3387 return Jumpers;
3388 } while (I != MBB.instr_begin());
3389
3390 I = MBB.instr_end();
3391 --I;
3392
3393 while (I->isDebugInstr()) {
3394 if (I == MBB.instr_begin())
3395 return Jumpers;
3396 --I;
3397 }
3398 if (!isUnpredicatedTerminator(*I))
3399 return Jumpers;
3400
3401 // Get the last instruction in the block.
3402 MachineInstr *LastInst = &*I;
3403 Jumpers.push_back(LastInst);
3404 MachineInstr *SecondLastInst = nullptr;
3405 // Find one more terminator if present.
3406 do {
3407 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3408 if (!SecondLastInst) {
3409 SecondLastInst = &*I;
3410 Jumpers.push_back(SecondLastInst);
3411 } else // This is a third branch.
3412 return Jumpers;
3413 }
3414 if (I == MBB.instr_begin())
3415 break;
3416 --I;
3417 } while (true);
3418 return Jumpers;
3419}
3420
3421// Returns Operand Index for the constant extended instruction.
3423 const uint64_t F = MI.getDesc().TSFlags;
3425}
3426
3427// See if instruction could potentially be a duplex candidate.
3428// If so, return its group. Zero otherwise.
3430 const MachineInstr &MI) const {
3431 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3432
3433 switch (MI.getOpcode()) {
3434 default:
3435 return HexagonII::HCG_None;
3436 //
3437 // Compound pairs.
3438 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3439 // "Rd16=#U6 ; jump #r9:2"
3440 // "Rd16=Rs16 ; jump #r9:2"
3441 //
3442 case Hexagon::C2_cmpeq:
3443 case Hexagon::C2_cmpgt:
3444 case Hexagon::C2_cmpgtu:
3445 DstReg = MI.getOperand(0).getReg();
3446 Src1Reg = MI.getOperand(1).getReg();
3447 Src2Reg = MI.getOperand(2).getReg();
3448 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3449 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3450 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3451 return HexagonII::HCG_A;
3452 break;
3453 case Hexagon::C2_cmpeqi:
3454 case Hexagon::C2_cmpgti:
3455 case Hexagon::C2_cmpgtui:
3456 // P0 = cmp.eq(Rs,#u2)
3457 DstReg = MI.getOperand(0).getReg();
3458 SrcReg = MI.getOperand(1).getReg();
3459 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3460 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3461 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3462 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3463 (MI.getOperand(2).getImm() == -1)))
3464 return HexagonII::HCG_A;
3465 break;
3466 case Hexagon::A2_tfr:
3467 // Rd = Rs
3468 DstReg = MI.getOperand(0).getReg();
3469 SrcReg = MI.getOperand(1).getReg();
3470 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3471 return HexagonII::HCG_A;
3472 break;
3473 case Hexagon::A2_tfrsi:
3474 // Rd = #u6
3475 // Do not test for #u6 size since the const is getting extended
3476 // regardless and compound could be formed.
3477 DstReg = MI.getOperand(0).getReg();
3478 if (isIntRegForSubInst(DstReg))
3479 return HexagonII::HCG_A;
3480 break;
3481 case Hexagon::S2_tstbit_i:
3482 DstReg = MI.getOperand(0).getReg();
3483 Src1Reg = MI.getOperand(1).getReg();
3484 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3485 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3486 MI.getOperand(2).isImm() &&
3487 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3488 return HexagonII::HCG_A;
3489 break;
3490 // The fact that .new form is used pretty much guarantees
3491 // that predicate register will match. Nevertheless,
3492 // there could be some false positives without additional
3493 // checking.
3494 case Hexagon::J2_jumptnew:
3495 case Hexagon::J2_jumpfnew:
3496 case Hexagon::J2_jumptnewpt:
3497 case Hexagon::J2_jumpfnewpt:
3498 Src1Reg = MI.getOperand(0).getReg();
3499 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3500 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3501 return HexagonII::HCG_B;
3502 break;
3503 // Transfer and jump:
3504 // Rd=#U6 ; jump #r9:2
3505 // Rd=Rs ; jump #r9:2
3506 // Do not test for jump range here.
3507 case Hexagon::J2_jump:
3508 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3509 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3510 return HexagonII::HCG_C;
3511 }
3512
3513 return HexagonII::HCG_None;
3514}
3515
3516// Returns -1 when there is no opcode found.
3518 const MachineInstr &GB) const {
3521 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3522 (GB.getOpcode() != Hexagon::J2_jumptnew))
3523 return -1u;
3524 Register DestReg = GA.getOperand(0).getReg();
3525 if (!GB.readsRegister(DestReg, /*TRI=*/nullptr))
3526 return -1u;
3527 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3528 return -1u;
3529 // The value compared against must be either u5 or -1.
3530 const MachineOperand &CmpOp = GA.getOperand(2);
3531 if (!CmpOp.isImm())
3532 return -1u;
3533 int V = CmpOp.getImm();
3534 if (V == -1)
3535 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3536 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3537 if (!isUInt<5>(V))
3538 return -1u;
3539 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3540 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3541}
3542
3543// Returns -1 if there is no opcode found.
3545 bool ForBigCore) const {
3546 // Static table to switch the opcodes across Tiny Core and Big Core.
3547 // dup_ opcodes are Big core opcodes.
3548 // NOTE: There are special instructions that need to handled later.
3549 // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3550 // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3551 // The compiler need to base the root instruction to L6_return_map_to_raw
3552 // which can go any slot.
3553 static const std::map<unsigned, unsigned> DupMap = {
3554 {Hexagon::A2_add, Hexagon::dup_A2_add},
3555 {Hexagon::A2_addi, Hexagon::dup_A2_addi},
3556 {Hexagon::A2_andir, Hexagon::dup_A2_andir},
3557 {Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
3558 {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
3559 {Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
3560 {Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
3561 {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
3562 {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
3563 {Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
3564 {Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
3565 {Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
3566 {Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
3567 {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
3568 {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
3569 {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
3570 {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
3571 {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
3572 {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
3573 {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
3574 {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
3575 {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
3576 {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
3577 {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
3578 {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
3579 {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
3580 {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
3581 {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
3582 {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
3583 {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
3584 {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
3585 {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
3586 };
3587 unsigned OpNum = MI.getOpcode();
3588 // Conversion to Big core.
3589 if (ForBigCore) {
3590 auto Iter = DupMap.find(OpNum);
3591 if (Iter != DupMap.end())
3592 return Iter->second;
3593 } else { // Conversion to Tiny core.
3594 for (const auto &Iter : DupMap)
3595 if (Iter.second == OpNum)
3596 return Iter.first;
3597 }
3598 return -1;
3599}
3600
3601int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3602 enum Hexagon::PredSense inPredSense;
3603 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3604 Hexagon::PredSense_true;
3605 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3606 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3607 return CondOpcode;
3608
3609 llvm_unreachable("Unexpected predicable instruction");
3610}
3611
3612// Return the cur value instruction for a given store.
3614 switch (MI.getOpcode()) {
3615 default: llvm_unreachable("Unknown .cur type");
3616 case Hexagon::V6_vL32b_pi:
3617 return Hexagon::V6_vL32b_cur_pi;
3618 case Hexagon::V6_vL32b_ai:
3619 return Hexagon::V6_vL32b_cur_ai;
3620 case Hexagon::V6_vL32b_nt_pi:
3621 return Hexagon::V6_vL32b_nt_cur_pi;
3622 case Hexagon::V6_vL32b_nt_ai:
3623 return Hexagon::V6_vL32b_nt_cur_ai;
3624 case Hexagon::V6_vL32b_ppu:
3625 return Hexagon::V6_vL32b_cur_ppu;
3626 case Hexagon::V6_vL32b_nt_ppu:
3627 return Hexagon::V6_vL32b_nt_cur_ppu;
3628 }
3629 return 0;
3630}
3631
3632// Return the regular version of the .cur instruction.
3634 switch (MI.getOpcode()) {
3635 default: llvm_unreachable("Unknown .cur type");
3636 case Hexagon::V6_vL32b_cur_pi:
3637 return Hexagon::V6_vL32b_pi;
3638 case Hexagon::V6_vL32b_cur_ai:
3639 return Hexagon::V6_vL32b_ai;
3640 case Hexagon::V6_vL32b_nt_cur_pi:
3641 return Hexagon::V6_vL32b_nt_pi;
3642 case Hexagon::V6_vL32b_nt_cur_ai:
3643 return Hexagon::V6_vL32b_nt_ai;
3644 case Hexagon::V6_vL32b_cur_ppu:
3645 return Hexagon::V6_vL32b_ppu;
3646 case Hexagon::V6_vL32b_nt_cur_ppu:
3647 return Hexagon::V6_vL32b_nt_ppu;
3648 }
3649 return 0;
3650}
3651
3652// The diagram below shows the steps involved in the conversion of a predicated
3653// store instruction to its .new predicated new-value form.
3654//
3655// Note: It doesn't include conditional new-value stores as they can't be
3656// converted to .new predicate.
3657//
3658// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3659// ^ ^
3660// / \ (not OK. it will cause new-value store to be
3661// / X conditional on p0.new while R2 producer is
3662// / \ on p0)
3663// / \.
3664// p.new store p.old NV store
3665// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3666// ^ ^
3667// \ /
3668// \ /
3669// \ /
3670// p.old store
3671// [if (p0)memw(R0+#0)=R2]
3672//
3673// The following set of instructions further explains the scenario where
3674// conditional new-value store becomes invalid when promoted to .new predicate
3675// form.
3676//
3677// { 1) if (p0) r0 = add(r1, r2)
3678// 2) p0 = cmp.eq(r3, #0) }
3679//
3680// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3681// the first two instructions because in instr 1, r0 is conditional on old value
3682// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3683// is not valid for new-value stores.
3684// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3685// from the "Conditional Store" list. Because a predicated new value store
3686// would NOT be promoted to a double dot new store. See diagram below:
3687// This function returns yes for those stores that are predicated but not
3688// yet promoted to predicate dot new instructions.
3689//
3690// +---------------------+
3691// /-----| if (p0) memw(..)=r0 |---------\~
3692// || +---------------------+ ||
3693// promote || /\ /\ || promote
3694// || /||\ /||\ ||
3695// \||/ demote || \||/
3696// \/ || || \/
3697// +-------------------------+ || +-------------------------+
3698// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3699// +-------------------------+ || +-------------------------+
3700// || || ||
3701// || demote \||/
3702// promote || \/ NOT possible
3703// || || /\~
3704// \||/ || /||\~
3705// \/ || ||
3706// +-----------------------------+
3707// | if (p0.new) memw(..)=r0.new |
3708// +-----------------------------+
3709// Double Dot New Store
3710//
3711// Returns the most basic instruction for the .new predicated instructions and
3712// new-value stores.
3713// For example, all of the following instructions will be converted back to the
3714// same instruction:
3715// 1) if (p0.new) memw(R0+#0) = R1.new --->
3716// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3717// 3) if (p0.new) memw(R0+#0) = R1 --->
3718//
3719// To understand the translation of instruction 1 to its original form, consider
3720// a packet with 3 instructions.
3721// { p0 = cmp.eq(R0,R1)
3722// if (p0.new) R2 = add(R3, R4)
3723// R5 = add (R3, R1)
3724// }
3725// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3726//
3727// This instruction can be part of the previous packet only if both p0 and R2
3728// are promoted to .new values. This promotion happens in steps, first
3729// predicate register is promoted to .new and in the next iteration R2 is
3730// promoted. Therefore, in case of dependence check failure (due to R5) during
3731// next iteration, it should be converted back to its most basic form.
3732
3733// Return the new value instruction for a given store.
3735 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3736 if (NVOpcode >= 0) // Valid new-value store instruction.
3737 return NVOpcode;
3738
3739 switch (MI.getOpcode()) {
3740 default:
3741 report_fatal_error(Twine("Unknown .new type: ") +
3742 std::to_string(MI.getOpcode()));
3743 case Hexagon::S4_storerb_ur:
3744 return Hexagon::S4_storerbnew_ur;
3745
3746 case Hexagon::S2_storerb_pci:
3747 return Hexagon::S2_storerb_pci;
3748
3749 case Hexagon::S2_storeri_pci:
3750 return Hexagon::S2_storeri_pci;
3751
3752 case Hexagon::S2_storerh_pci:
3753 return Hexagon::S2_storerh_pci;
3754
3755 case Hexagon::S2_storerd_pci:
3756 return Hexagon::S2_storerd_pci;
3757
3758 case Hexagon::S2_storerf_pci:
3759 return Hexagon::S2_storerf_pci;
3760
3761 case Hexagon::V6_vS32b_ai:
3762 return Hexagon::V6_vS32b_new_ai;
3763
3764 case Hexagon::V6_vS32b_pi:
3765 return Hexagon::V6_vS32b_new_pi;
3766 }
3767 return 0;
3768}
3769
3770// Returns the opcode to use when converting MI, which is a conditional jump,
3771// into a conditional instruction which uses the .new value of the predicate.
3772// We also use branch probabilities to add a hint to the jump.
3773// If MBPI is null, all edges will be treated as equally likely for the
3774// purposes of establishing a predication hint.
3776 const MachineBranchProbabilityInfo *MBPI) const {
3777 // We assume that block can have at most two successors.
3778 const MachineBasicBlock *Src = MI.getParent();
3779 const MachineOperand &BrTarget = MI.getOperand(1);
3780 bool Taken = false;
3781 const BranchProbability OneHalf(1, 2);
3782
3783 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3784 const MachineBasicBlock *Dst) {
3785 if (MBPI)
3786 return MBPI->getEdgeProbability(Src, Dst);
3787 return BranchProbability(1, Src->succ_size());
3788 };
3789
3790 if (BrTarget.isMBB()) {
3791 const MachineBasicBlock *Dst = BrTarget.getMBB();
3792 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3793 } else {
3794 // The branch target is not a basic block (most likely a function).
3795 // Since BPI only gives probabilities for targets that are basic blocks,
3796 // try to identify another target of this branch (potentially a fall-
3797 // -through) and check the probability of that target.
3798 //
3799 // The only handled branch combinations are:
3800 // - one conditional branch,
3801 // - one conditional branch followed by one unconditional branch.
3802 // Otherwise, assume not-taken.
3803 assert(MI.isConditionalBranch());
3804 const MachineBasicBlock &B = *MI.getParent();
3805 bool SawCond = false, Bad = false;
3806 for (const MachineInstr &I : B) {
3807 if (!I.isBranch())
3808 continue;
3809 if (I.isConditionalBranch()) {
3810 SawCond = true;
3811 if (&I != &MI) {
3812 Bad = true;
3813 break;
3814 }
3815 }
3816 if (I.isUnconditionalBranch() && !SawCond) {
3817 Bad = true;
3818 break;
3819 }
3820 }
3821 if (!Bad) {
3823 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3824 if (NextIt == B.instr_end()) {
3825 // If this branch is the last, look for the fall-through block.
3826 for (const MachineBasicBlock *SB : B.successors()) {
3827 if (!B.isLayoutSuccessor(SB))
3828 continue;
3829 Taken = getEdgeProbability(Src, SB) < OneHalf;
3830 break;
3831 }
3832 } else {
3833 assert(NextIt->isUnconditionalBranch());
3834 // Find the first MBB operand and assume it's the target.
3835 const MachineBasicBlock *BT = nullptr;
3836 for (const MachineOperand &Op : NextIt->operands()) {
3837 if (!Op.isMBB())
3838 continue;
3839 BT = Op.getMBB();
3840 break;
3841 }
3842 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3843 }
3844 } // if (!Bad)
3845 }
3846
3847 // The Taken flag should be set to something reasonable by this point.
3848
3849 switch (MI.getOpcode()) {
3850 case Hexagon::J2_jumpt:
3851 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3852 case Hexagon::J2_jumpf:
3853 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3854
3855 default:
3856 llvm_unreachable("Unexpected jump instruction.");
3857 }
3858}
3859
3860// Return .new predicate version for an instruction.
3862 const MachineBranchProbabilityInfo *MBPI) const {
3863 switch (MI.getOpcode()) {
3864 // Conditional Jumps
3865 case Hexagon::J2_jumpt:
3866 case Hexagon::J2_jumpf:
3867 return getDotNewPredJumpOp(MI, MBPI);
3868 }
3869
3870 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3871 if (NewOpcode >= 0)
3872 return NewOpcode;
3873 return 0;
3874}
3875
3877 int NewOp = MI.getOpcode();
3878 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3879 NewOp = Hexagon::getPredOldOpcode(NewOp);
3880 // All Hexagon architectures have prediction bits on dot-new branches,
3881 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3882 // to pick the right opcode when converting back to dot-old.
3883 if (!Subtarget.hasFeature(Hexagon::ArchV60)) {
3884 switch (NewOp) {
3885 case Hexagon::J2_jumptpt:
3886 NewOp = Hexagon::J2_jumpt;
3887 break;
3888 case Hexagon::J2_jumpfpt:
3889 NewOp = Hexagon::J2_jumpf;
3890 break;
3891 case Hexagon::J2_jumprtpt:
3892 NewOp = Hexagon::J2_jumprt;
3893 break;
3894 case Hexagon::J2_jumprfpt:
3895 NewOp = Hexagon::J2_jumprf;
3896 break;
3897 }
3898 }
3899 assert(NewOp >= 0 &&
3900 "Couldn't change predicate new instruction to its old form.");
3901 }
3902
3903 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3904 NewOp = Hexagon::getNonNVStore(NewOp);
3905 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3906 }
3907
3908 if (Subtarget.hasV60Ops())
3909 return NewOp;
3910
3911 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3912 switch (NewOp) {
3913 case Hexagon::J2_jumpfpt:
3914 return Hexagon::J2_jumpf;
3915 case Hexagon::J2_jumptpt:
3916 return Hexagon::J2_jumpt;
3917 case Hexagon::J2_jumprfpt:
3918 return Hexagon::J2_jumprf;
3919 case Hexagon::J2_jumprtpt:
3920 return Hexagon::J2_jumprt;
3921 }
3922 return NewOp;
3923}
3924
3925// See if instruction could potentially be a duplex candidate.
3926// If so, return its group. Zero otherwise.
3928 const MachineInstr &MI) const {
3929 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3930 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3931
3932 switch (MI.getOpcode()) {
3933 default:
3934 return HexagonII::HSIG_None;
3935 //
3936 // Group L1:
3937 //
3938 // Rd = memw(Rs+#u4:2)
3939 // Rd = memub(Rs+#u4:0)
3940 case Hexagon::L2_loadri_io:
3941 case Hexagon::dup_L2_loadri_io:
3942 DstReg = MI.getOperand(0).getReg();
3943 SrcReg = MI.getOperand(1).getReg();
3944 // Special case this one from Group L2.
3945 // Rd = memw(r29+#u5:2)
3946 if (isIntRegForSubInst(DstReg)) {
3947 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3948 HRI.getStackRegister() == SrcReg &&
3949 MI.getOperand(2).isImm() &&
3950 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3951 return HexagonII::HSIG_L2;
3952 // Rd = memw(Rs+#u4:2)
3953 if (isIntRegForSubInst(SrcReg) &&
3954 (MI.getOperand(2).isImm() &&
3955 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3956 return HexagonII::HSIG_L1;
3957 }
3958 break;
3959 case Hexagon::L2_loadrub_io:
3960 case Hexagon::dup_L2_loadrub_io:
3961 // Rd = memub(Rs+#u4:0)
3962 DstReg = MI.getOperand(0).getReg();
3963 SrcReg = MI.getOperand(1).getReg();
3964 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3965 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3966 return HexagonII::HSIG_L1;
3967 break;
3968 //
3969 // Group L2:
3970 //
3971 // Rd = memh/memuh(Rs+#u3:1)
3972 // Rd = memb(Rs+#u3:0)
3973 // Rd = memw(r29+#u5:2) - Handled above.
3974 // Rdd = memd(r29+#u5:3)
3975 // deallocframe
3976 // [if ([!]p0[.new])] dealloc_return
3977 // [if ([!]p0[.new])] jumpr r31
3978 case Hexagon::L2_loadrh_io:
3979 case Hexagon::L2_loadruh_io:
3980 case Hexagon::dup_L2_loadrh_io:
3981 case Hexagon::dup_L2_loadruh_io:
3982 // Rd = memh/memuh(Rs+#u3:1)
3983 DstReg = MI.getOperand(0).getReg();
3984 SrcReg = MI.getOperand(1).getReg();
3985 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3986 MI.getOperand(2).isImm() &&
3987 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3988 return HexagonII::HSIG_L2;
3989 break;
3990 case Hexagon::L2_loadrb_io:
3991 case Hexagon::dup_L2_loadrb_io:
3992 // Rd = memb(Rs+#u3:0)
3993 DstReg = MI.getOperand(0).getReg();
3994 SrcReg = MI.getOperand(1).getReg();
3995 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3996 MI.getOperand(2).isImm() &&
3997 isUInt<3>(MI.getOperand(2).getImm()))
3998 return HexagonII::HSIG_L2;
3999 break;
4000 case Hexagon::L2_loadrd_io:
4001 case Hexagon::dup_L2_loadrd_io:
4002 // Rdd = memd(r29+#u5:3)
4003 DstReg = MI.getOperand(0).getReg();
4004 SrcReg = MI.getOperand(1).getReg();
4005 if (isDblRegForSubInst(DstReg, HRI) &&
4006 Hexagon::IntRegsRegClass.contains(SrcReg) &&
4007 HRI.getStackRegister() == SrcReg &&
4008 MI.getOperand(2).isImm() &&
4009 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4010 return HexagonII::HSIG_L2;
4011 break;
4012 // dealloc_return is not documented in Hexagon Manual, but marked
4013 // with A_SUBINSN attribute in iset_v4classic.py.
4014 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
4015 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
4016 case Hexagon::L4_return:
4017 case Hexagon::L2_deallocframe:
4018 case Hexagon::dup_L2_deallocframe:
4019 return HexagonII::HSIG_L2;
4020 case Hexagon::EH_RETURN_JMPR:
4021 case Hexagon::PS_jmpret:
4022 case Hexagon::SL2_jumpr31:
4023 // jumpr r31
4024 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
4025 DstReg = MI.getOperand(0).getReg();
4026 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
4027 return HexagonII::HSIG_L2;
4028 break;
4029 case Hexagon::PS_jmprett:
4030 case Hexagon::PS_jmpretf:
4031 case Hexagon::PS_jmprettnewpt:
4032 case Hexagon::PS_jmpretfnewpt:
4033 case Hexagon::PS_jmprettnew:
4034 case Hexagon::PS_jmpretfnew:
4035 case Hexagon::SL2_jumpr31_t:
4036 case Hexagon::SL2_jumpr31_f:
4037 case Hexagon::SL2_jumpr31_tnew:
4038 case Hexagon::SL2_jumpr31_fnew:
4039 DstReg = MI.getOperand(1).getReg();
4040 SrcReg = MI.getOperand(0).getReg();
4041 // [if ([!]p0[.new])] jumpr r31
4042 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
4043 (Hexagon::P0 == SrcReg)) &&
4044 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
4045 return HexagonII::HSIG_L2;
4046 break;
4047 case Hexagon::L4_return_t:
4048 case Hexagon::L4_return_f:
4049 case Hexagon::L4_return_tnew_pnt:
4050 case Hexagon::L4_return_fnew_pnt:
4051 case Hexagon::L4_return_tnew_pt:
4052 case Hexagon::L4_return_fnew_pt:
4053 // [if ([!]p0[.new])] dealloc_return
4054 SrcReg = MI.getOperand(0).getReg();
4055 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
4056 return HexagonII::HSIG_L2;
4057 break;
4058 //
4059 // Group S1:
4060 //
4061 // memw(Rs+#u4:2) = Rt
4062 // memb(Rs+#u4:0) = Rt
4063 case Hexagon::S2_storeri_io:
4064 case Hexagon::dup_S2_storeri_io:
4065 // Special case this one from Group S2.
4066 // memw(r29+#u5:2) = Rt
4067 Src1Reg = MI.getOperand(0).getReg();
4068 Src2Reg = MI.getOperand(2).getReg();
4069 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4070 isIntRegForSubInst(Src2Reg) &&
4071 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4072 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
4073 return HexagonII::HSIG_S2;
4074 // memw(Rs+#u4:2) = Rt
4075 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4076 MI.getOperand(1).isImm() &&
4077 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
4078 return HexagonII::HSIG_S1;
4079 break;
4080 case Hexagon::S2_storerb_io:
4081 case Hexagon::dup_S2_storerb_io:
4082 // memb(Rs+#u4:0) = Rt
4083 Src1Reg = MI.getOperand(0).getReg();
4084 Src2Reg = MI.getOperand(2).getReg();
4085 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4086 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
4087 return HexagonII::HSIG_S1;
4088 break;
4089 //
4090 // Group S2:
4091 //
4092 // memh(Rs+#u3:1) = Rt
4093 // memw(r29+#u5:2) = Rt
4094 // memd(r29+#s6:3) = Rtt
4095 // memw(Rs+#u4:2) = #U1
4096 // memb(Rs+#u4) = #U1
4097 // allocframe(#u5:3)
4098 case Hexagon::S2_storerh_io:
4099 case Hexagon::dup_S2_storerh_io:
4100 // memh(Rs+#u3:1) = Rt
4101 Src1Reg = MI.getOperand(0).getReg();
4102 Src2Reg = MI.getOperand(2).getReg();
4103 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4104 MI.getOperand(1).isImm() &&
4105 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
4106 return HexagonII::HSIG_S1;
4107 break;
4108 case Hexagon::S2_storerd_io:
4109 case Hexagon::dup_S2_storerd_io:
4110 // memd(r29+#s6:3) = Rtt
4111 Src1Reg = MI.getOperand(0).getReg();
4112 Src2Reg = MI.getOperand(2).getReg();
4113 if (isDblRegForSubInst(Src2Reg, HRI) &&
4114 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4115 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4116 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
4117 return HexagonII::HSIG_S2;
4118 break;
4119 case Hexagon::S4_storeiri_io:
4120 case Hexagon::dup_S4_storeiri_io:
4121 // memw(Rs+#u4:2) = #U1
4122 Src1Reg = MI.getOperand(0).getReg();
4123 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
4124 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
4125 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4126 return HexagonII::HSIG_S2;
4127 break;
4128 case Hexagon::S4_storeirb_io:
4129 case Hexagon::dup_S4_storeirb_io:
4130 // memb(Rs+#u4) = #U1
4131 Src1Reg = MI.getOperand(0).getReg();
4132 if (isIntRegForSubInst(Src1Reg) &&
4133 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
4134 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4135 return HexagonII::HSIG_S2;
4136 break;
4137 case Hexagon::S2_allocframe:
4138 case Hexagon::dup_S2_allocframe:
4139 if (MI.getOperand(2).isImm() &&
4140 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4141 return HexagonII::HSIG_S1;
4142 break;
4143 //
4144 // Group A:
4145 //
4146 // Rx = add(Rx,#s7)
4147 // Rd = Rs
4148 // Rd = #u6
4149 // Rd = #-1
4150 // if ([!]P0[.new]) Rd = #0
4151 // Rd = add(r29,#u6:2)
4152 // Rx = add(Rx,Rs)
4153 // P0 = cmp.eq(Rs,#u2)
4154 // Rdd = combine(#0,Rs)
4155 // Rdd = combine(Rs,#0)
4156 // Rdd = combine(#u2,#U2)
4157 // Rd = add(Rs,#1)
4158 // Rd = add(Rs,#-1)
4159 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4160 // Rd = and(Rs,#1)
4161 case Hexagon::A2_addi:
4162 case Hexagon::dup_A2_addi:
4163 DstReg = MI.getOperand(0).getReg();
4164 SrcReg = MI.getOperand(1).getReg();
4165 if (isIntRegForSubInst(DstReg)) {
4166 // Rd = add(r29,#u6:2)
4167 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
4168 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
4169 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
4170 return HexagonII::HSIG_A;
4171 // Rx = add(Rx,#s7)
4172 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
4173 isInt<7>(MI.getOperand(2).getImm()))
4174 return HexagonII::HSIG_A;
4175 // Rd = add(Rs,#1)
4176 // Rd = add(Rs,#-1)
4177 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
4178 ((MI.getOperand(2).getImm() == 1) ||
4179 (MI.getOperand(2).getImm() == -1)))
4180 return HexagonII::HSIG_A;
4181 }
4182 break;
4183 case Hexagon::A2_add:
4184 case Hexagon::dup_A2_add:
4185 // Rx = add(Rx,Rs)
4186 DstReg = MI.getOperand(0).getReg();
4187 Src1Reg = MI.getOperand(1).getReg();
4188 Src2Reg = MI.getOperand(2).getReg();
4189 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
4190 isIntRegForSubInst(Src2Reg))
4191 return HexagonII::HSIG_A;
4192 break;
4193 case Hexagon::A2_andir:
4194 case Hexagon::dup_A2_andir:
4195 // Same as zxtb.
4196 // Rd16=and(Rs16,#255)
4197 // Rd16=and(Rs16,#1)
4198 DstReg = MI.getOperand(0).getReg();
4199 SrcReg = MI.getOperand(1).getReg();
4200 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4201 MI.getOperand(2).isImm() &&
4202 ((MI.getOperand(2).getImm() == 1) ||
4203 (MI.getOperand(2).getImm() == 255)))
4204 return HexagonII::HSIG_A;
4205 break;
4206 case Hexagon::A2_tfr:
4207 case Hexagon::dup_A2_tfr:
4208 // Rd = Rs
4209 DstReg = MI.getOperand(0).getReg();
4210 SrcReg = MI.getOperand(1).getReg();
4211 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4212 return HexagonII::HSIG_A;
4213 break;
4214 case Hexagon::A2_tfrsi:
4215 case Hexagon::dup_A2_tfrsi:
4216 // Rd = #u6
4217 // Do not test for #u6 size since the const is getting extended
4218 // regardless and compound could be formed.
4219 // Rd = #-1
4220 DstReg = MI.getOperand(0).getReg();
4221 if (isIntRegForSubInst(DstReg))
4222 return HexagonII::HSIG_A;
4223 break;
4224 case Hexagon::C2_cmoveit:
4225 case Hexagon::C2_cmovenewit:
4226 case Hexagon::C2_cmoveif:
4227 case Hexagon::C2_cmovenewif:
4228 case Hexagon::dup_C2_cmoveit:
4229 case Hexagon::dup_C2_cmovenewit:
4230 case Hexagon::dup_C2_cmoveif:
4231 case Hexagon::dup_C2_cmovenewif:
4232 // if ([!]P0[.new]) Rd = #0
4233 // Actual form:
4234 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4235 DstReg = MI.getOperand(0).getReg();
4236 SrcReg = MI.getOperand(1).getReg();
4237 if (isIntRegForSubInst(DstReg) &&
4238 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4239 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4240 return HexagonII::HSIG_A;
4241 break;
4242 case Hexagon::C2_cmpeqi:
4243 case Hexagon::dup_C2_cmpeqi:
4244 // P0 = cmp.eq(Rs,#u2)
4245 DstReg = MI.getOperand(0).getReg();
4246 SrcReg = MI.getOperand(1).getReg();
4247 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4248 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4249 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4250 return HexagonII::HSIG_A;
4251 break;
4252 case Hexagon::A2_combineii:
4253 case Hexagon::A4_combineii:
4254 case Hexagon::dup_A2_combineii:
4255 case Hexagon::dup_A4_combineii:
4256 // Rdd = combine(#u2,#U2)
4257 DstReg = MI.getOperand(0).getReg();
4258 if (isDblRegForSubInst(DstReg, HRI) &&
4259 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4260 (MI.getOperand(1).isGlobal() &&
4261 isUInt<2>(MI.getOperand(1).getOffset()))) &&
4262 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4263 (MI.getOperand(2).isGlobal() &&
4264 isUInt<2>(MI.getOperand(2).getOffset()))))
4265 return HexagonII::HSIG_A;
4266 break;
4267 case Hexagon::A4_combineri:
4268 case Hexagon::dup_A4_combineri:
4269 // Rdd = combine(Rs,#0)
4270 // Rdd = combine(Rs,#0)
4271 DstReg = MI.getOperand(0).getReg();
4272 SrcReg = MI.getOperand(1).getReg();
4273 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4274 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4275 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4276 return HexagonII::HSIG_A;
4277 break;
4278 case Hexagon::A4_combineir:
4279 case Hexagon::dup_A4_combineir:
4280 // Rdd = combine(#0,Rs)
4281 DstReg = MI.getOperand(0).getReg();
4282 SrcReg = MI.getOperand(2).getReg();
4283 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4284 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4285 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4286 return HexagonII::HSIG_A;
4287 break;
4288 case Hexagon::A2_sxtb:
4289 case Hexagon::A2_sxth:
4290 case Hexagon::A2_zxtb:
4291 case Hexagon::A2_zxth:
4292 case Hexagon::dup_A2_sxtb:
4293 case Hexagon::dup_A2_sxth:
4294 case Hexagon::dup_A2_zxtb:
4295 case Hexagon::dup_A2_zxth:
4296 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4297 DstReg = MI.getOperand(0).getReg();
4298 SrcReg = MI.getOperand(1).getReg();
4299 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4300 return HexagonII::HSIG_A;
4301 break;
4302 }
4303
4304 return HexagonII::HSIG_None;
4305}
4306
4308 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4309}
4310
4312 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4313 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4314 // still have a MinLatency property, which getStageLatency checks.
4315 if (!ItinData)
4316 return getInstrLatency(ItinData, MI);
4317
4318 if (MI.isTransient())
4319 return 0;
4320 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4321}
4322
4323/// getOperandLatency - Compute and return the use operand latency of a given
4324/// pair of def and use.
4325/// In most cases, the static scheduling itinerary was enough to determine the
4326/// operand latency. But it may not be possible for instructions with variable
4327/// number of defs / uses.
4328///
4329/// This is a raw interface to the itinerary that may be directly overridden by
4330/// a target. Use computeOperandLatency to get the best estimate of latency.
4332 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4333 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4334 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4335
4336 // Get DefIdx and UseIdx for super registers.
4337 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4338
4339 if (DefMO.isReg() && DefMO.getReg().isPhysical()) {
4340 if (DefMO.isImplicit()) {
4341 for (MCPhysReg SR : HRI.superregs(DefMO.getReg())) {
4342 int Idx = DefMI.findRegisterDefOperandIdx(SR, &HRI, false, false);
4343 if (Idx != -1) {
4344 DefIdx = Idx;
4345 break;
4346 }
4347 }
4348 }
4349
4350 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4351 if (UseMO.isImplicit()) {
4352 for (MCPhysReg SR : HRI.superregs(UseMO.getReg())) {
4353 int Idx = UseMI.findRegisterUseOperandIdx(SR, &HRI, false);
4354 if (Idx != -1) {
4355 UseIdx = Idx;
4356 break;
4357 }
4358 }
4359 }
4360 }
4361
4362 std::optional<unsigned> Latency = TargetInstrInfo::getOperandLatency(
4363 ItinData, DefMI, DefIdx, UseMI, UseIdx);
4364 if (Latency == 0)
4365 // We should never have 0 cycle latency between two instructions unless
4366 // they can be packetized together. However, this decision can't be made
4367 // here.
4368 Latency = 1;
4369 return Latency;
4370}
4371
4372// inverts the predication logic.
4373// p -> NotP
4374// NotP -> P
4377 if (Cond.empty())
4378 return false;
4379 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4380 Cond[0].setImm(Opc);
4381 return true;
4382}
4383
4385 int InvPredOpcode;
4386 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4387 : Hexagon::getTruePredOpcode(Opc);
4388 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4389 return InvPredOpcode;
4390
4391 llvm_unreachable("Unexpected predicated instruction");
4392}
4393
4394// Returns the max value that doesn't need to be extended.
4396 const uint64_t F = MI.getDesc().TSFlags;
4397 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4399 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4401
4402 if (isSigned) // if value is signed
4403 return ~(-1U << (bits - 1));
4404 else
4405 return ~(-1U << bits);
4406}
4407
4408
4410 switch (MI.getOpcode()) {
4411 case Hexagon::L2_loadrbgp:
4412 case Hexagon::L2_loadrdgp:
4413 case Hexagon::L2_loadrhgp:
4414 case Hexagon::L2_loadrigp:
4415 case Hexagon::L2_loadrubgp:
4416 case Hexagon::L2_loadruhgp:
4417 case Hexagon::S2_storerbgp:
4418 case Hexagon::S2_storerbnewgp:
4419 case Hexagon::S2_storerhgp:
4420 case Hexagon::S2_storerhnewgp:
4421 case Hexagon::S2_storerigp:
4422 case Hexagon::S2_storerinewgp:
4423 case Hexagon::S2_storerdgp:
4424 case Hexagon::S2_storerfgp:
4425 return true;
4426 }
4427 const uint64_t F = MI.getDesc().TSFlags;
4428 unsigned addrMode =
4430 // Disallow any base+offset instruction. The assembler does not yet reorder
4431 // based up any zero offset instruction.
4432 return (addrMode == HexagonII::BaseRegOffset ||
4433 addrMode == HexagonII::BaseImmOffset ||
4434 addrMode == HexagonII::BaseLongOffset);
4435}
4436
4438 // Workaround for the Global Scheduler. Sometimes, it creates
4439 // A4_ext as a Pseudo instruction and calls this function to see if
4440 // it can be added to an existing bundle. Since the instruction doesn't
4441 // belong to any BB yet, we can't use getUnits API.
4442 if (MI.getOpcode() == Hexagon::A4_ext)
4443 return false;
4444
4445 unsigned FuncUnits = getUnits(MI);
4446 return HexagonFUnits::isSlot0Only(FuncUnits);
4447}
4448
4450 const uint64_t F = MI.getDesc().TSFlags;
4453}
4454
4456 bool ToBigInstrs) const {
4457 int Opcode = -1;
4458 if (ToBigInstrs) { // To BigCore Instr.
4459 // Check if the instruction can form a Duplex.
4460 if (getDuplexCandidateGroup(*MII))
4461 // Get the opcode marked "dup_*" tag.
4462 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4463 } else // To TinyCore Instr.
4464 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4465
4466 // Change the opcode of the instruction.
4467 if (Opcode >= 0)
4468 MII->setDesc(get(Opcode));
4469}
4470
4471// This function is used to translate instructions to facilitate generating
4472// Duplexes on TinyCore.
4474 bool ToBigInstrs) const {
4475 for (auto &MB : MF)
4476 for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
4477 End = MB.instr_end();
4478 Instr != End; ++Instr)
4479 changeDuplexOpcode(Instr, ToBigInstrs);
4480}
4481
4482// This is a specialized form of above function.
4484 MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
4485 MachineBasicBlock *MBB = MII->getParent();
4486 while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
4487 changeDuplexOpcode(MII, ToBigInstrs);
4488 ++MII;
4489 }
4490}
4491
4493 using namespace HexagonII;
4494
4495 const uint64_t F = MI.getDesc().TSFlags;
4496 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4497 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4498 if (Size != 0)
4499 return Size;
4500 // Y2_dcfetchbo is special
4501 if (MI.getOpcode() == Hexagon::Y2_dcfetchbo)
4503
4504 // Handle vector access sizes.
4505 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4506 switch (S) {
4508 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4509 default:
4510 llvm_unreachable("Unexpected instruction");
4511 }
4512}
4513
4514// Returns the min value that doesn't need to be extended.
4516 const uint64_t F = MI.getDesc().TSFlags;
4517 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4519 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4521
4522 if (isSigned) // if value is signed
4523 return -1U << (bits - 1);
4524 else
4525 return 0;
4526}
4527
4528// Returns opcode of the non-extended equivalent instruction.
4530 // Check if the instruction has a register form that uses register in place
4531 // of the extended operand, if so return that as the non-extended form.
4532 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4533 if (NonExtOpcode >= 0)
4534 return NonExtOpcode;
4535
4536 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4537 // Check addressing mode and retrieve non-ext equivalent instruction.
4538 switch (getAddrMode(MI)) {
4540 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4542 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4544 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4545
4546 default:
4547 return -1;
4548 }
4549 }
4550 return -1;
4551}
4552
4554 Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4555 if (Cond.empty())
4556 return false;
4557 assert(Cond.size() == 2);
4558 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4559 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4560 return false;
4561 }
4562 PredReg = Cond[1].getReg();
4563 PredRegPos = 1;
4564 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4565 PredRegFlags = 0;
4566 if (Cond[1].isImplicit())
4567 PredRegFlags = RegState::Implicit;
4568 if (Cond[1].isUndef())
4569 PredRegFlags |= RegState::Undef;
4570 return true;
4571}
4572
4574 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4575}
4576
4578 return Hexagon::getRegForm(MI.getOpcode());
4579}
4580
4581// Return the number of bytes required to encode the instruction.
4582// Hexagon instructions are fixed length, 4 bytes, unless they
4583// use a constant extender, which requires another 4 bytes.
4584// For debug instructions and prolog labels, return 0.
4586 if (MI.isDebugInstr() || MI.isPosition())
4587 return 0;
4588
4589 unsigned Size = MI.getDesc().getSize();
4590 if (!Size)
4591 // Assume the default insn size in case it cannot be determined
4592 // for whatever reason.
4594
4597
4598 // Try and compute number of instructions in asm.
4599 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4600 const MachineBasicBlock &MBB = *MI.getParent();
4601 const MachineFunction *MF = MBB.getParent();
4602 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4603
4604 // Count the number of register definitions to find the asm string.
4605 unsigned NumDefs = 0;
4606 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4607 ++NumDefs)
4608 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4609
4610 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4611 // Disassemble the AsmStr and approximate number of instructions.
4612 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4613 Size = getInlineAsmLength(AsmStr, *MAI);
4614 }
4615
4616 return Size;
4617}
4618
4620 const uint64_t F = MI.getDesc().TSFlags;
4622}
4623
4625 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4626 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4627
4628 return IS.getUnits();
4629}
4630
4631// Calculate size of the basic block without debug instructions.
4633 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4634}
4635
4637 MachineBasicBlock::const_iterator BundleHead) const {
4638 assert(BundleHead->isBundle() && "Not a bundle header");
4639 auto MII = BundleHead.getInstrIterator();
4640 // Skip the bundle header.
4641 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4642}
4643
4644/// immediateExtend - Changes the instruction in place to one using an immediate
4645/// extender.
4648 "Instruction must be extendable");
4649 // Find which operand is extendable.
4650 short ExtOpNum = getCExtOpNum(MI);
4651 MachineOperand &MO = MI.getOperand(ExtOpNum);
4652 // This needs to be something we understand.
4653 assert((MO.isMBB() || MO.isImm()) &&
4654 "Branch with unknown extendable field type");
4655 // Mark given operand as extended.
4657}
4658
4660 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4661 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4662 << printMBBReference(*NewTarget);
4663 MI.dump(););
4664 assert(MI.isBranch());
4665 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4666 int TargetPos = MI.getNumOperands() - 1;
4667 // In general branch target is the last operand,
4668 // but some implicit defs added at the end might change it.
4669 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4670 --TargetPos;
4671 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4672 MI.getOperand(TargetPos).setMBB(NewTarget);
4674 NewOpcode = reversePrediction(NewOpcode);
4675 }
4676 MI.setDesc(get(NewOpcode));
4677 return true;
4678}
4679
4681 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4683 MachineBasicBlock &B = *A;
4685 DebugLoc DL = I->getDebugLoc();
4686 MachineInstr *NewMI;
4687
4688 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4689 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4690 NewMI = BuildMI(B, I, DL, get(insn));
4691 LLVM_DEBUG(dbgs() << "\n"
4692 << getName(NewMI->getOpcode())
4693 << " Class: " << NewMI->getDesc().getSchedClass());
4694 NewMI->eraseFromParent();
4695 }
4696 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4697}
4698
4699// inverts the predication logic.
4700// p -> NotP
4701// NotP -> P
4703 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4704 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4705 return true;
4706}
4707
4708// Reverse the branch prediction.
4709unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4710 int PredRevOpcode = -1;
4711 if (isPredictedTaken(Opcode))
4712 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4713 else
4714 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4715 assert(PredRevOpcode > 0);
4716 return PredRevOpcode;
4717}
4718
4719// TODO: Add more rigorous validation.
4721 const {
4722 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4723}
4724
4727 assert(MIB->isBundle());
4728 MachineOperand &Operand = MIB->getOperand(0);
4729 if (Operand.isImm())
4730 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4731 else
4732 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4733}
4734
4736 assert(MIB.isBundle());
4737 const MachineOperand &Operand = MIB.getOperand(0);
4738 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4739}
4740
4741// Addressing mode relations.
4743 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4744}
4745
4747 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4748}
4749
4751 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4752}
4753
4755 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4756}
4757
4759 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4760}
4761
4763 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4764}
4765
4767 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4768}
4769
4771 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4772}
4773
4775 static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop);
4776
4777 return MCInstBuilder(Hexagon::BUNDLE)
4778 .addImm(0)
4779 .addInst(&Nop);
4780}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static const Function * getParent(const Value *V)
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DXIL Forward Handle Accesses
static bool isSigned(unsigned int Opcode)
const HexagonInstrInfo * TII
static cl::opt< bool > DisableNVSchedule("disable-hexagon-nv-schedule", cl::Hidden, cl::desc("Disable schedule adjustment for new value stores."))
const int Hexagon_MEMH_OFFSET_MAX
const int Hexagon_MEMB_OFFSET_MAX
const int Hexagon_MEMH_OFFSET_MIN
const int Hexagon_MEMD_OFFSET_MAX
static cl::opt< bool > EnableTimingClassLatency("enable-timing-class-latency", cl::Hidden, cl::init(false), cl::desc("Enable timing class latency"))
const int Hexagon_MEMD_OFFSET_MIN
const int Hexagon_ADDI_OFFSET_MAX
static cl::opt< bool > EnableACCForwarding("enable-acc-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec acc forwarding"))
static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
const int Hexagon_MEMW_OFFSET_MAX
Constants for Hexagon instructions.
const int Hexagon_MEMW_OFFSET_MIN
cl::opt< bool > ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" "packetization boundary."))
const int Hexagon_ADDI_OFFSET_MIN
static cl::opt< bool > BranchRelaxAsmLarge("branch-relax-asm-large", cl::init(true), cl::Hidden, cl::desc("branch relax asm"))
static void parseOperands(const MachineInstr &MI, SmallVectorImpl< Register > &Defs, SmallVectorImpl< Register > &Uses)
Gather register def/uses from MI.
static cl::opt< bool > EnableALUForwarding("enable-alu-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec alu forwarding"))
const int Hexagon_MEMB_OFFSET_MIN
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, MachineBasicBlock::const_instr_iterator MIE)
Calculate number of instructions excluding the debug instructions.
static cl::opt< bool > EnableBranchPrediction("hexagon-enable-branch-prediction", cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"))
static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI)
static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
static cl::opt< bool > UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden, cl::desc("Use the DFA based hazard recognizer."))
static bool isIntRegForSubInst(Register Reg)
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb)
#define HEXAGON_INSTR_SIZE
IRTranslator LLVM IR MI
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isReg(const MCInst &MI, unsigned OpNo)
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
static StringRef getName(Value *V)
static bool isBranch(unsigned Opcode)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:119
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
A debug info location.
Definition DebugLoc.h:124
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
short getEquivalentHWInstr(const MachineInstr &MI) const
int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore=true) const
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
Remove the branching code at the end of the specific MBB.
bool isPredicated(const MachineInstr &MI) const override
Returns true if the instruction is already predicated.
bool isHVXMemWithAIndirect(const MachineInstr &I, const MachineInstr &J) const
short changeAddrMode_abs_io(short Opc) const
bool isRestrictNoSlot1Store(const MachineInstr &MI) const
short getRegForm(const MachineInstr &MI) const
bool isVecALU(const MachineInstr &MI) const
bool isCompoundBranchInstr(const MachineInstr &MI) const
bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const
Symmetrical. See if these two instructions are fit for duplex pair.
bool isJumpR(const MachineInstr &MI) const
ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
bool producesStall(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
bool invertAndChangeJumpTarget(MachineInstr &MI, MachineBasicBlock *NewTarget) const
bool isPredictedTaken(unsigned Opcode) const
bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
TargetInstrInfo overrides.
unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const
int getDotNewPredOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const override
If the specified instruction defines any predicate or condition code register(s) used for predication...
unsigned getInvertedPredicatedOpcode(const int Opc) const
bool isPureSlot0(const MachineInstr &MI) const
bool doesNotReturn(const MachineInstr &CallMI) const
HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) const
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
bool getPredReg(ArrayRef< MachineOperand > Cond, Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const
bool isPredicatedNew(const MachineInstr &MI) const
bool isSignExtendingLoad(const MachineInstr &MI) const
bool isVecAcc(const MachineInstr &MI) const
bool reversePredSense(MachineInstr &MI) const
unsigned getAddrMode(const MachineInstr &MI) const
MCInst getNop() const override
bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const
bool mayBeNewStore(const MachineInstr &MI) const
bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const
bool canExecuteInBundle(const MachineInstr &First, const MachineInstr &Second) const
Can these instructions execute at the same time in a bundle.
std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
getOperandLatency - Compute and return the use operand latency of a given pair of def and use.
bool isAddrModeWithOffset(const MachineInstr &MI) const
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
Get the base register and byte offset of a load/store instr.
bool isValidOffset(unsigned Opcode, int Offset, const TargetRegisterInfo *TRI, bool Extend=true) const
bool isBaseImmOffset(const MachineInstr &MI) const
bool isAbsoluteSet(const MachineInstr &MI) const
short changeAddrMode_io_pi(short Opc) const
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
Emit instructions to copy a pair of physical registers.
short changeAddrMode_pi_io(short Opc) const
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
Reverses the branch condition of the specified condition list, returning false on success and true if...
std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
bool isLoopN(const MachineInstr &MI) const
bool isSpillPredRegOp(const MachineInstr &MI) const
bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has store to stack slots.
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Return an array that contains the direct target flag values and their names.
bool isIndirectCall(const MachineInstr &MI) const
short changeAddrMode_ur_rr(short Opc) const
bool isValidAutoIncImm(const EVT VT, const int Offset) const
bool hasNonExtEquivalent(const MachineInstr &MI) const
bool isConstExtended(const MachineInstr &MI) const
bool getIncrementValue(const MachineInstr &MI, int &Value) const override
If the instruction is an increment of a constant value, return the amount.
int getCondOpcode(int Opc, bool sense) const
MachineInstr * findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, MachineBasicBlock *TargetBB, SmallPtrSet< MachineBasicBlock *, 8 > &Visited) const
Find the hardware loop instruction used to set-up the specified loop.
unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, const MachineInstr &MI) const
bool isAccumulator(const MachineInstr &MI) const
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
Insert branch code into the end of the specified MachineBasicBlock.
unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const override
Compute the instruction latency of a given instruction.
bool PredOpcodeHasJMP_c(unsigned Opcode) const
bool isNewValue(const MachineInstr &MI) const
Register createVR(MachineFunction *MF, MVT VT) const
HexagonInstrInfo specifics.
bool isDotCurInst(const MachineInstr &MI) const
bool validateBranchCond(const ArrayRef< MachineOperand > &Cond) const
bool isExtended(const MachineInstr &MI) const
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
bool isAsCheapAsAMove(const MachineInstr &MI) const override
int getMaxValue(const MachineInstr &MI) const
bool isPredicateLate(unsigned Opcode) const
short changeAddrMode_rr_ur(short Opc) const
bool hasPseudoInstrPair(const MachineInstr &MI) const
bool isNewValueInst(const MachineInstr &MI) const
unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const override
Measure the specified inline asm to determine an approximation of its length.
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
int getNonDotCurOp(const MachineInstr &MI) const
bool isIndirectL4Return(const MachineInstr &MI) const
unsigned reversePrediction(unsigned Opcode) const
ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const override
Return an array that contains the bitmask target flag values and their names.
InstrStage::FuncUnits getUnits(const MachineInstr &MI) const
unsigned getMemAccessSize(const MachineInstr &MI) const
bool predOpcodeHasNot(ArrayRef< MachineOperand > Cond) const
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Store the specified register of the given register class to the specified stack frame index.
bool isComplex(const MachineInstr &MI) const
bool isPostIncrement(const MachineInstr &MI) const override
Return true for post-incremented instructions.
void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const
MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const
int getDotNewOp(const MachineInstr &MI) const
void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const
bool isMemOp(const MachineInstr &MI) const
int getDotOldOp(const MachineInstr &MI) const
short getPseudoInstrPair(const MachineInstr &MI) const
bool hasUncondBranch(const MachineBasicBlock *B) const
short getNonExtOpcode(const MachineInstr &MI) const
bool isTailCall(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
Insert a noop into the instruction stream at the specified point.
bool isDeallocRet(const MachineInstr &MI) const
HexagonInstrInfo(const HexagonSubtarget &ST)
unsigned getCExtOpNum(const MachineInstr &MI) const
bool isSolo(const MachineInstr &MI) const
DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override
Create machine specific model for scheduling.
bool isLateSourceInstr(const MachineInstr &MI) const
bool isDotNewInst(const MachineInstr &MI) const
void translateInstrsForDup(MachineFunction &MF, bool ToBigInstrs=true) const
bool isTC1(const MachineInstr &MI) const
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Test if the given instruction should be considered a scheduling boundary.
bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const
unsigned getSize(const MachineInstr &MI) const
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
short changeAddrMode_io_abs(short Opc) const
int getDotCurOp(const MachineInstr &MI) const
bool expandPostRAPseudo(MachineInstr &MI) const override
This function is called for all pseudo instructions that remain after register allocation.
bool isExpr(unsigned OpType) const
void genAllInsnTimingClasses(MachineFunction &MF) const
bool isTC2Early(const MachineInstr &MI) const
bool hasEHLabel(const MachineBasicBlock *B) const
bool shouldSink(const MachineInstr &MI) const override
bool isZeroExtendingLoad(const MachineInstr &MI) const
short changeAddrMode_rr_io(short Opc) const
bool isHVXVec(const MachineInstr &MI) const
bool isDependent(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
short changeAddrMode_io_rr(short Opc) const
bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const override
Returns true if the first specified predicate subsumes the second, e.g.
bool mayBeCurLoad(const MachineInstr &MI) const
bool getBundleNoShuf(const MachineInstr &MIB) const
bool isNewValueJump(const MachineInstr &MI) const
bool isTC4x(const MachineInstr &MI) const
bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Cond) const override
Convert the instruction into a predicated instruction.
bool isFloat(const MachineInstr &MI) const
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Load the specified register of the given register class from the specified stack frame index.
bool isToBeScheduledASAP(const MachineInstr &MI1, const MachineInstr &MI2) const
MachineOperand * getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, LocationSize &AccessSize) const
bool getInvertedPredSense(SmallVectorImpl< MachineOperand > &Cond) const
unsigned nonDbgBBSize(const MachineBasicBlock *BB) const
getInstrTimingClassLatency - Compute the instruction latency of a given instruction using Timing Clas...
uint64_t getType(const MachineInstr &MI) const
bool isEndLoopN(unsigned Opcode) const
bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const override
For instructions with a base and offset, return the position of the base register and offset operands...
bool isPredicable(const MachineInstr &MI) const override
Return true if the specified instruction can be predicated.
bool isExtendable(const MachineInstr &MI) const
void immediateExtend(MachineInstr &MI) const
immediateExtend - Changes the instruction in place to one using an immediate extender.
HexagonII::CompoundGroup getCompoundCandidateGroup(const MachineInstr &MI) const
bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has load from stack slots.
SmallVector< MachineInstr *, 2 > getBranchingInstrs(MachineBasicBlock &MBB) const
bool isPredicatedTrue(const MachineInstr &MI) const
bool isNewValueStore(const MachineInstr &MI) const
int getMinValue(const MachineInstr &MI) const
bool isVecUsableNextPacket(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
unsigned getCompoundOpcode(const MachineInstr &GA, const MachineInstr &GB) const
bool addLatencyToSchedule(const MachineInstr &MI1, const MachineInstr &MI2) const
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int getDotNewPredJumpOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool isTC2(const MachineInstr &MI) const
Register getFrameRegister(const MachineFunction &MF) const override
Itinerary data supplied by a subtarget to be used by a target.
unsigned getStageLatency(unsigned ItinClassIndx) const
Return the total stage latency of the given class.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
void stepForward(const MachineInstr &MI, SmallVectorImpl< std::pair< MCPhysReg, const MachineOperand * > > &Clobbers)
Simulates liveness when stepping forward over an instruction(bundle).
void stepBackward(const MachineInstr &MI)
Simulates liveness when stepping backwards over an instruction(bundle).
void addLiveIns(const MachineBasicBlock &MBB)
Adds all live-in registers of basic block MBB.
bool available(const MachineRegisterInfo &MRI, MCRegister Reg) const
Returns true if register Reg and no aliasing register is in the set.
void addLiveOuts(const MachineBasicBlock &MBB)
Adds all live-out registers of basic block MBB.
bool contains(MCRegister Reg) const
Returns true if register Reg is contained in the set.
static LocationSize precise(uint64_t Value)
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
virtual unsigned getMaxInstLength(const MCSubtargetInfo *STI=nullptr) const
Returns the maximum possible encoded instruction size in bytes.
Definition MCAsmInfo.h:527
StringRef getCommentString() const
Definition MCAsmInfo.h:538
const char * getSeparatorString() const
Definition MCAsmInfo.h:533
MCInstBuilder & addInst(const MCInst *Val)
Add a new MCInst operand.
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
Describe properties that are true of each instruction in the target description file.
unsigned getSchedClass() const
Return the scheduling class for this instruction.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Machine Value Type.
SimpleValueType SimpleTy
MachineInstrBundleIterator< const MachineInstr > const_iterator
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
Instructions::iterator instr_iterator
Instructions::const_iterator const_instr_iterator
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
BasicBlockListType::iterator iterator
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool isBundle() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
LLVM_ABI bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
LLVM_ABI bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
bool isIndirectBranch(QueryType Type=AnyInBundle) const
Return true if this is an indirect branch, such as a branch through a register.
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
unsigned getTargetFlags() const
static MachineOperand CreateImm(int64_t Val)
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isBlockAddress() const
isBlockAddress - Tests if this is a MO_BlockAddress operand.
Register getReg() const
getReg - Returns the register number.
void addTargetFlag(unsigned F)
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_BlockAddress
Address of a basic block.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
bool isFPImm() const
isFPImm - Tests if this is a MO_FPImmediate operand.
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Special value supplied for machine level alias analysis.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getReg() const
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:154
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:148
size_t count(char C) const
Return the number of occurrences of C in the string.
Definition StringRef.h:461
Object returned by analyzeLoopForPipelining.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
Primary interface to the complete machine description for the target machine.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const InstrItineraryData * getInstrItineraryData() const
getInstrItineraryData - Returns instruction itinerary data for the target or specific subtarget.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM Value Representation.
Definition Value.h:75
self_iterator getIterator()
Definition ilist_node.h:134
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isSlot0Only(unsigned units)
HexagonII - This namespace holds all of the target specific flags that instruction info tracks.
unsigned const TypeCVI_LAST
unsigned const TypeCVI_FIRST
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ InternalRead
Register reads a value that is defined inside the same instruction or bundle.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1727
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
@ Done
Definition Threading.h:60
bool is_TC1(unsigned SchedClass)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:336
auto reverse(ContainerTy &&C)
Definition STLExtras.h:420
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
MachineBasicBlock::instr_iterator getBundleEnd(MachineBasicBlock::instr_iterator I)
Returns an iterator pointing beyond the bundle containing I.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
bool is_TC2(unsigned SchedClass)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
bool is_TC2early(unsigned SchedClass)
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
Definition MathExtras.h:191
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1899
bool isSpace(char C)
Checks whether character C is whitespace in the "C" locale.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
constexpr bool isShiftedUInt(uint64_t x)
Checks if a unsigned integer is an N bit number shifted left by S.
Definition MathExtras.h:207
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
bool is_TC4x(unsigned SchedClass)
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:368
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:311
These values represent a non-pipelined step in the execution of an instruction.
uint64_t FuncUnits
Bitmask representing a set of functional units.
FuncUnits getUnits() const
Returns the choice of FUs.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.