37using namespace PatternMatch;
39#define DEBUG_TYPE "instcombine"
56 FAddendCoef() =
default;
61 void operator=(
const FAddendCoef &
A);
66 assert(!insaneIntVal(
C) &&
"Insane coefficient");
67 IsFp =
false; IntVal =
C;
74 bool isZero()
const {
return isInt() ? !IntVal : getFpVal().isZero(); }
77 bool isOne()
const {
return isInt() && IntVal == 1; }
78 bool isTwo()
const {
return isInt() && IntVal == 2; }
79 bool isMinusOne()
const {
return isInt() && IntVal == -1; }
80 bool isMinusTwo()
const {
return isInt() && IntVal == -2; }
83 bool insaneIntVal(
int V) {
return V > 4 || V < -4; }
85 APFloat *getFpValPtr() {
return reinterpret_cast<APFloat *
>(&FpValBuf); }
87 const APFloat *getFpValPtr()
const {
88 return reinterpret_cast<const APFloat *
>(&FpValBuf);
91 const APFloat &getFpVal()
const {
92 assert(IsFp && BufHasFpVal &&
"Incorret state");
93 return *getFpValPtr();
97 assert(IsFp && BufHasFpVal &&
"Incorret state");
98 return *getFpValPtr();
101 bool isInt()
const {
return !IsFp; }
115 bool BufHasFpVal =
false;
134 assert((Val ==
T.Val) &&
"Symbolic-values disagree");
138 Value *getSymVal()
const {
return Val; }
139 const FAddendCoef &getCoef()
const {
return Coeff; }
141 bool isConstant()
const {
return Val ==
nullptr; }
142 bool isZero()
const {
return Coeff.isZero(); }
144 void set(
short Coefficient,
Value *V) {
145 Coeff.set(Coefficient);
149 Coeff.set(Coefficient);
153 Coeff.set(Coefficient->getValueAPF());
157 void negate() { Coeff.negate(); }
161 static unsigned drillValueDownOneStep(
Value* V, FAddend &A0, FAddend &A1);
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1)
const;
168 void Scale(
const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
171 Value *Val =
nullptr;
187 Value *simplifyFAdd(AddendVect& V,
unsigned InstrQuota);
190 Value *createAddendVal(
const FAddend &
A,
bool& NeedNeg);
193 unsigned calcInstrNumber(
const AddendVect& Vect);
199 Value *createNaryFAdd(
const AddendVect& Opnds,
unsigned InstrQuota);
200 void createInstPostProc(
Instruction *NewInst,
bool NoNumber =
false);
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
224FAddendCoef::~FAddendCoef() {
226 getFpValPtr()->~APFloat();
229void FAddendCoef::set(
const APFloat&
C) {
239 IsFp = BufHasFpVal =
true;
242void FAddendCoef::convertToFpType(
const fltSemantics &Sem) {
253 IsFp = BufHasFpVal =
true;
266void FAddendCoef::operator=(
const FAddendCoef &That) {
270 set(That.getFpVal());
273void FAddendCoef::operator+=(
const FAddendCoef &That) {
275 if (
isInt() == That.isInt()) {
279 getFpVal().add(That.getFpVal(), RndMode);
285 convertToFpType(
T.getSemantics());
286 getFpVal().add(
T, RndMode);
291 T.add(createAPFloatFromInt(
T.getSemantics(), That.IntVal), RndMode);
294void FAddendCoef::operator*=(
const FAddendCoef &That) {
298 if (That.isMinusOne()) {
303 if (
isInt() && That.isInt()) {
304 int Res =
IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) &&
"Insane int value");
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
314 convertToFpType(Semantic);
318 F0.
multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
321 F0.
multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
324void FAddendCoef::negate() {
328 getFpVal().changeSign();
331Value *FAddendCoef::getValue(
Type *Ty)
const {
333 ConstantFP::get(Ty,
float(IntVal)) :
347unsigned FAddend::drillValueDownOneStep
348 (
Value *Val, FAddend &Addend0, FAddend &Addend1) {
350 if (!Val || !(
I = dyn_cast<Instruction>(Val)))
353 unsigned Opcode =
I->getOpcode();
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
357 Value *Opnd0 =
I->getOperand(0);
358 Value *Opnd1 =
I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->
isZero())
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->
isZero())
367 Addend0.set(1, Opnd0);
369 Addend0.set(C0,
nullptr);
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
375 Addend.set(1, Opnd1);
377 Addend.set(C1,
nullptr);
378 if (Opcode == Instruction::FSub)
383 return Opnd0 && Opnd1 ? 2 : 1;
390 if (
I->getOpcode() == Instruction::FMul) {
391 Value *V0 =
I->getOperand(0);
392 Value *V1 =
I->getOperand(1);
410unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1)
const {
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
419 Addend0.Scale(Coeff);
422 Addend1.Scale(Coeff);
428 assert(
I->hasAllowReassoc() &&
I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
432 if (
I->getType()->isVectorTy())
435 assert((
I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) &&
"Expect add/sub");
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
443 unsigned OpndNum = FAddend::drillValueDownOneStep(
I, Opnd0, Opnd1);
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
467 unsigned InstQuota = 0;
469 Value *V0 =
I->getOperand(0);
470 Value *V1 =
I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->
hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->
hasOneUse())) ? 2 : 1;
474 if (
Value *R = simplifyFAdd(AllOpnds, InstQuota))
483 const FAddendCoef &
CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() :
nullptr;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
495 if (
Value *R = simplifyFAdd(AllOpnds, 1))
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
507 if (
Value *R = simplifyFAdd(AllOpnds, 1))
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends,
unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 &&
"Too many addends");
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
528 for (
unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
530 const FAddend *ThisAddend = Addends[SymIdx];
536 Value *Val = ThisAddend->getSymVal();
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
553 for (
unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *
T = Addends[SameSymIdx];
556 if (
T &&
T->getSymVal() == Val) {
559 Addends[SameSymIdx] =
nullptr;
560 SimpVect.push_back(
T);
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &
R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (
unsigned Idx = StartIdx + 1;
Idx < SimpVect.size();
Idx++)
572 SimpVect.resize(StartIdx);
574 SimpVect.push_back(&R);
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) &&
"out-of-bound access");
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(SimpVect, InstrQuota);
592Value *FAddCombine::createNaryFAdd
593 (
const AddendVect &Opnds,
unsigned InstrQuota) {
594 assert(!Opnds.empty() &&
"Expect at least one addend");
598 unsigned InstrNeeded = calcInstrNumber(Opnds);
599 if (InstrNeeded > InstrQuota)
612 Value *LastVal =
nullptr;
613 bool LastValNeedNeg =
false;
616 for (
const FAddend *Opnd : Opnds) {
618 Value *
V = createAddendVal(*Opnd, NeedNeg);
621 LastValNeedNeg = NeedNeg;
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(LastVal, V);
631 LastVal = createFSub(V, LastVal);
633 LastVal = createFSub(LastVal, V);
635 LastValNeedNeg =
false;
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(LastVal);
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
651 Value *
V = Builder.CreateFSub(Opnd0, Opnd1);
653 createInstPostProc(
I);
658 Value *NewV = Builder.CreateFNeg(V);
660 createInstPostProc(
I,
true);
665 Value *
V = Builder.CreateFAdd(Opnd0, Opnd1);
667 createInstPostProc(
I);
672 Value *
V = Builder.CreateFMul(Opnd0, Opnd1);
674 createInstPostProc(
I);
678void FAddCombine::createInstPostProc(
Instruction *NewInstr,
bool NoNumber) {
691unsigned FAddCombine::calcInstrNumber(
const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
696 for (
const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
702 if (isa<UndefValue>(Opnd->getSymVal()))
705 const FAddendCoef &
CE = Opnd->getCoef();
709 if (!
CE.isMinusOne() && !
CE.isOne())
723Value *FAddCombine::createAddendVal(
const FAddend &Opnd,
bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
726 if (Opnd.isConstant()) {
728 return Coeff.getValue(
Instr->getType());
731 Value *OpndVal = Opnd.getSymVal();
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(OpndVal, OpndVal);
744 return createFMul(OpndVal, Coeff.getValue(
Instr->getType()));
761 Value *
X =
nullptr, *
Y =
nullptr, *Z =
nullptr;
762 const APInt *C1 =
nullptr, *C2 =
nullptr;
789 LHS =
I.getOperand(0);
790 RHS =
I.getOperand(1);
811 Value *Op0 =
Add.getOperand(0), *Op1 =
Add.getOperand(1);
820 const APInt *C1, *C2;
831 Builder.
CreateNUWAdd(
X, ConstantInt::get(
X->getType(), NewC)), Ty);
843 return BinaryOperator::CreateAdd(WideX, NewC);
851 return BinaryOperator::CreateAdd(WideX, NewC);
857 Value *Op0 =
Add.getOperand(0), *Op1 =
Add.getOperand(1);
882 X->getType()->getScalarSizeInBits() == 1)
886 X->getType()->getScalarSizeInBits() == 1)
892 auto *COne = ConstantInt::get(Op1C->
getType(), 1);
893 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne,
Add);
917 willNotOverflowSignedAdd(Op01C, Op1C,
Add));
925 return BinaryOperator::CreateXor(Op0, ConstantInt::get(
Add.getType(), *C2));
927 if (
C->isSignMask()) {
930 if (
Add.hasNoSignedWrap() ||
Add.hasNoUnsignedWrap())
931 return BinaryOperator::CreateOr(Op0, Op1);
935 return BinaryOperator::CreateXor(Op0, Op1);
947 return BinaryOperator::CreateAdd(
X, ConstantInt::get(Ty, *C2 ^ *
C));
953 if ((*C2 | LHSKnown.
Zero).isAllOnes())
954 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *
C),
X);
970 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
972 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
984 X->getType()->getScalarSizeInBits() == 1)
993 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1001 Intrinsic::usub_sat,
X, ConstantInt::get(
Add.getType(), -*
C)));
1024template <
bool FP,
typename Mul2Rhs>
1027 constexpr unsigned MulOp =
FP ? Instruction::FMul : Instruction::Mul;
1028 constexpr unsigned AddOp =
FP ? Instruction::FAdd : Instruction::Add;
1029 constexpr unsigned Mul2Op =
FP ? Instruction::FMul : Instruction::Shl;
1062 return BinaryOperator::CreateMul(AB, AB);
1070 assert(
I.hasAllowReassoc() &&
I.hasNoSignedZeros() &&
"Assumption mismatch");
1146 (void)C0.
smul_ov(C1, overflow);
1148 (
void)C0.
umul_ov(C1, overflow);
1169 if (
MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1170 IsSigned == Rem2IsSigned) {
1174 if (
MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) &&
X == DivOpV &&
1176 Value *NewDivisor = ConstantInt::get(
X->getType(), C0 * C1);
1187 Div =
LHS, C1 =
APInt(
I.getType()->getScalarSizeInBits(), 1);
1189 Rem =
RHS, C2 =
APInt(
I.getType()->getScalarSizeInBits(), 1);
1197 MatchDiv(Div, DivOpV, DivOpC, IsSigned) &&
X == DivOpV && C0 == DivOpC &&
1200 APInt NewC = C1 - C2 * C0;
1230 if (
auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1232 BOp->setHasNoSignedWrap();
1233 BOp->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap());
1240 assert(
I.getOpcode() == Instruction::Add &&
"Expecting add instruction");
1241 Type *Ty =
I.getType();
1242 auto getUAddSat = [&]() {
1272 return BinaryOperator::CreateSub(
A, NewShl);
1293 const APInt *MaskC, *MaskCCmp;
1306 ? (*MaskC == (
SMin | (*DivC - 1)))
1307 : (*DivC == 2 && *MaskC ==
SMin + 1);
1312 return BinaryOperator::CreateAShr(
1317 bool NSW,
bool NUW) {
1327 R->setHasNoSignedWrap(NSWOut);
1328 R->setHasNoUnsignedWrap(NUWOut);
1333 const APInt *C1, *C2;
1336 APInt MinusC1 = -(*C1);
1337 if (MinusC1 == (One << *C2)) {
1339 return BinaryOperator::CreateSRem(
RHS, NewRHS);
1349 assert((
I.getOpcode() == Instruction::Add ||
1350 I.getOpcode() == Instruction::Or ||
1351 I.getOpcode() == Instruction::Sub) &&
1352 "Expecting add/or/sub instruction");
1365 if (
I.getOpcode() == Instruction::Sub &&
I.getOperand(1) !=
Select)
1368 Type *XTy =
X->getType();
1369 bool HadTrunc =
I.getType() != XTy;
1381 if (!
match(LowBitsToSkip,
1388 auto SkipExtInMagic = [&
I](
Value *&V) {
1389 if (
I.getOpcode() == Instruction::Sub)
1401 Value *SignExtendingValue, *Zero;
1421 SkipExtInMagic(SignExtendingValue);
1422 Constant *SignExtendingValueBaseConstant;
1423 if (!
match(SignExtendingValue,
1428 if (
I.getOpcode() == Instruction::Sub
1429 ? !
match(SignExtendingValueBaseConstant,
m_One())
1433 auto *NewAShr = BinaryOperator::CreateAShr(
X, LowBitsToSkip,
1434 Extract->
getName() +
".sext");
1435 NewAShr->copyIRFlags(Extract);
1449 assert((
I.getOpcode() == Instruction::Add ||
1450 I.getOpcode() == Instruction::Sub) &&
1451 "Expected add/sub");
1452 auto *Op0 = dyn_cast<BinaryOperator>(
I.getOperand(0));
1453 auto *Op1 = dyn_cast<BinaryOperator>(
I.getOperand(1));
1454 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1463 bool HasNSW =
I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1464 Op1->hasNoSignedWrap();
1465 bool HasNUW =
I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1466 Op1->hasNoUnsignedWrap();
1470 if (
auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1471 NewI->setHasNoSignedWrap(HasNSW);
1472 NewI->setHasNoUnsignedWrap(HasNUW);
1474 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1475 NewShl->setHasNoSignedWrap(HasNSW);
1476 NewShl->setHasNoUnsignedWrap(HasNUW);
1483 unsigned BitWidth =
I.getType()->getScalarSizeInBits();
1516 return BinaryOperator::CreateMul(
X,
Y);
1523 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(),
1560 I.hasNoUnsignedWrap()))
1563 I.hasNoUnsignedWrap()))
1565 Type *Ty =
I.getType();
1567 return BinaryOperator::CreateXor(
LHS,
RHS);
1571 auto *Shl = BinaryOperator::CreateShl(
LHS, ConstantInt::get(Ty, 1));
1572 Shl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1573 Shl->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap());
1584 auto *
Sub = BinaryOperator::CreateSub(
RHS,
A);
1585 auto *OB0 = cast<OverflowingBinaryOperator>(
LHS);
1586 Sub->setHasNoSignedWrap(
I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1593 auto *
Sub = BinaryOperator::CreateSub(
LHS,
B);
1594 auto *OBO = cast<OverflowingBinaryOperator>(
RHS);
1595 Sub->setHasNoSignedWrap(
I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1608 return BinaryOperator::CreateSub(
A,
B);
1633 return BinaryOperator::CreateAdd(
Sub, C1);
1645 return BinaryOperator::CreateAnd(
A, NewMask);
1657 A->getType()->isIntOrIntVectorTy(1))
1665 A->getType()->isIntOrIntVectorTy()) {
1683 return BinaryOperator::CreateDisjointOr(
LHS,
RHS);
1692 return BinaryOperator::CreateOr(
A,
B);
1712 I.hasNoUnsignedWrap(),
I.hasNoSignedWrap());
1713 return BinaryOperator::CreateAnd(
Add,
A);
1724 return BinaryOperator::CreateAnd(Dec, Not);
1735 Type *Ty =
I.getType();
1736 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1742 const APInt *NegPow2C;
1747 return BinaryOperator::CreateSub(
B, Shl);
1758 return BinaryOperator::CreateOr(
LHS, Zext);
1783 Value *OneConst = ConstantInt::get(
A->getType(), 1);
1796 const APInt *ShiftAmt, *Mask;
1806 Mask->popcount() == *ShiftAmt) {
1809 Constant *MaskC = ConstantInt::get(
X->getType(), *Mask);
1810 if (willNotOverflowUnsignedAdd(
X, MaskC,
I)) {
1813 return BinaryOperator::CreateLShr(
1814 Add, ConstantInt::get(
X->getType(), *ShiftAmt));
1823 bool ConsumesLHS, ConsumesRHS;
1828 assert(NotLHS !=
nullptr && NotRHS !=
nullptr &&
1829 "isFreeToInvert desynced with getFreelyInverted");
1831 return BinaryOperator::CreateSub(
1842 bool Changed =
false;
1843 if (!
I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache,
I)) {
1845 I.setHasNoSignedWrap(
true);
1847 if (!
I.hasNoUnsignedWrap() &&
1848 willNotOverflowUnsignedAdd(LHSCache, RHSCache,
I)) {
1850 I.setHasNoUnsignedWrap(
true);
1877 {Builder.CreateOr(A, B)}));
1894 *XorC ==
A->getType()->getScalarSizeInBits() - 1) {
1899 ConstantInt::get(
A->getType(),
A->getType()->getScalarSizeInBits()),
1900 Ctlz,
"",
true,
true);
1917 Value *Start, *Step;
1922 return Changed ? &
I :
nullptr;
1944 assert((
I.getOpcode() == Instruction::FAdd ||
1945 I.getOpcode() == Instruction::FSub) &&
"Expecting fadd/fsub");
1946 assert(
I.hasAllowReassoc() &&
I.hasNoSignedZeros() &&
1947 "FP factorization requires FMF");
1952 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1953 if (!Op0->
hasOneUse() || !Op1->hasOneUse())
1973 bool IsFAdd =
I.getOpcode() == Instruction::FAdd;
1989 I.getFastMathFlags(),
2038 if (
I.hasAllowReassoc() &&
I.hasNoSignedZeros()) {
2052 {X->getType()}, {Y, X}, &
I));
2059 Constant *NewStartC = ConstantFP::get(
I.getType(), *
C + *StartC);
2062 {X->getType()}, {NewStartC, X}, &
I));
2070 Instruction::FAdd, MulC, ConstantFP::get(
I.getType(), 1.0),
DL))
2092 if (!Result->hasNoNaNs())
2093 Result->setHasNoInfs(
false);
2111 if (
auto *
GEP = dyn_cast<GEPOperator>(
Ptr))
2112 Ptr =
GEP->getPointerOperand();
2124 if (
auto *
GEP = dyn_cast<GEPOperator>(
RHS)) {
2126 Base.RHSNW &=
GEP->getNoWrapFlags();
2127 RHS =
GEP->getPointerOperand();
2139 auto *
GEP = cast<GEPOperator>(
LHS);
2141 Base.LHSNW &=
GEP->getNoWrapFlags();
2142 LHS =
GEP->getPointerOperand();
2149 unsigned NumGEPs = 0;
2151 bool SeenMultiUse =
false;
2156 if (!
GEP->hasOneUse()) {
2159 SeenMultiUse =
true;
2172 Type *Ty,
bool IsNUW) {
2174 if (!
Base.Ptr ||
Base.isExpensive())
2180 bool RewriteGEPs = !
Base.LHSGEPs.empty() && !
Base.RHSGEPs.empty();
2183 Value *Result = EmitGEPOffsets(
Base.LHSGEPs,
Base.LHSNW, IdxTy, RewriteGEPs);
2184 Value *Offset2 = EmitGEPOffsets(
Base.RHSGEPs,
Base.RHSNW, IdxTy, RewriteGEPs);
2188 if (
auto *
I = dyn_cast<OverflowingBinaryOperator>(Result))
2190 (
I->use_empty() ||
I->hasOneUse()) &&
I->hasNoSignedWrap() &&
2191 !
I->hasNoUnsignedWrap() &&
2192 ((
I->getOpcode() == Instruction::Mul &&
2194 I->getOpcode() == Instruction::Shl))
2195 cast<Instruction>(
I)->setHasNoUnsignedWrap();
2203 IsNUW &&
Base.LHSNW.hasNoUnsignedWrap() &&
2204 Base.RHSNW.hasNoUnsignedWrap(),
2205 Base.LHSNW.isInBounds() &&
Base.RHSNW.isInBounds());
2213 Value *Op0 =
I.getOperand(0);
2214 Value *Op1 =
I.getOperand(1);
2215 Type *Ty =
I.getType();
2216 auto *
MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2237 return BinaryOperator::CreateAdd(
X, USub);
2241 return BinaryOperator::CreateAdd(
X, USub);
2259 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(),
2269 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2273 if (
Value *V = dyn_castNegVal(Op1)) {
2276 if (
const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2277 assert(BO->getOpcode() == Instruction::Sub &&
2278 "Expected a subtraction operator!");
2279 if (BO->hasNoSignedWrap() &&
I.hasNoSignedWrap())
2282 if (cast<Constant>(Op1)->isNotMinSignedValue() &&
I.hasNoSignedWrap())
2302 bool WillNotSOV = willNotOverflowSignedSub(
C, C2,
I);
2305 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2309 OBO1->hasNoUnsignedWrap());
2314 auto TryToNarrowDeduceFlags = [
this, &
I, &Op0, &Op1]() ->
Instruction * {
2318 bool Changed =
false;
2319 if (!
I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1,
I)) {
2321 I.setHasNoSignedWrap(
true);
2323 if (!
I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1,
I)) {
2325 I.setHasNoUnsignedWrap(
true);
2328 return Changed ? &
I :
nullptr;
2335 if (!IsNegation ||
none_of(
I.users(), [&
I, Op1](
const User *U) {
2336 const Instruction *UI = dyn_cast<Instruction>(U);
2339 return match(UI, m_c_Select(m_Specific(Op1), m_Specific(&I)));
2342 I.hasNoSignedWrap(),
2344 return BinaryOperator::CreateAdd(NegOp1, Op0);
2347 return TryToNarrowDeduceFlags();
2353 if (
I.getType()->isIntOrIntVectorTy(1))
2354 return BinaryOperator::CreateXor(Op0, Op1);
2371 return BinaryOperator::CreateAnd(
2383 return BinaryOperator::CreateSub(XZ, YW);
2394 Sub->setHasNoUnsignedWrap(HasNUW);
2395 Sub->setHasNoSignedWrap(HasNSW);
2406 return BinaryOperator::CreateSub(
X,
Y);
2414 return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2424 R = BinaryOperator::CreateSub(
X, Z);
2426 R = BinaryOperator::CreateSub(
X,
Y);
2428 R = BinaryOperator::CreateSub(W, Z);
2430 R = BinaryOperator::CreateSub(W,
Y);
2432 bool NSW =
I.hasNoSignedWrap() &&
2436 bool NUW =
I.hasNoUnsignedWrap() &&
2438 R->setHasNoSignedWrap(NSW);
2439 R->setHasNoUnsignedWrap(NUW);
2449 bool ConsumesOp0, ConsumesOp1;
2452 (ConsumesOp0 || ConsumesOp1)) {
2455 assert(NotOp0 !=
nullptr && NotOp1 !=
nullptr &&
2456 "isFreeToInvert desynced with getFreelyInverted");
2457 return BinaryOperator::CreateSub(NotOp1, NotOp0);
2461 auto m_AddRdx = [](
Value *&Vec) {
2462 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(
m_Value(Vec)));
2465 if (
match(Op0, m_AddRdx(V0)) &&
match(Op1, m_AddRdx(V1)) &&
2471 {
Sub->getType()}, {
Sub});
2475 if (
Constant *
C = dyn_cast<Constant>(Op0)) {
2489 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
2494 if (
PHINode *PN = dyn_cast<PHINode>(Op1))
2513 if ((*Op0C | RHSKnown.
Zero).isAllOnes())
2514 return BinaryOperator::CreateXor(Op1, Op0);
2521 const APInt *C2, *C3;
2526 APInt C2AndC3 = *C2 & *C3;
2527 APInt C2AndC3Minus1 = C2AndC3 - 1;
2528 APInt C2AddC3 = *C2 + *C3;
2529 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2532 return BinaryOperator::CreateAdd(
2533 And, ConstantInt::get(
I.getType(), *Op0C - C2AndC3));
2554 return BinaryOperator::CreateXor(
A,
B);
2562 return BinaryOperator::CreateAnd(
A,
B);
2570 return BinaryOperator::CreateOr(
A,
B);
2587 return BinaryOperator::CreateAnd(
A,
B);
2603 return BinaryOperator::CreateAnd(
2633 (
C->getType()->getScalarSizeInBits() == 1);
2635 if (m_SubXorCmp(Op0, Op1))
2637 if (m_SubXorCmp(Op1, Op0))
2658 auto SinkSubIntoSelect =
2665 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2670 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2671 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2675 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2698 (Op1->hasOneUse() || isa<Constant>(
Y)))
2699 return BinaryOperator::CreateAnd(
2713 return BinaryOperator::CreateSub(Not,
X);
2719 return BinaryOperator::CreateSub(
X, Not);
2724 Value *LHSOp, *RHSOp;
2728 I.hasNoUnsignedWrap()))
2740 if (
auto *
GEP = dyn_cast<GEPOperator>(LHSOp)) {
2741 if (
GEP->getPointerOperand() == RHSOp) {
2742 if (
GEP->hasNoUnsignedWrap() ||
GEP->hasNoUnsignedSignedWrap()) {
2744 Value *Res =
GEP->hasNoUnsignedWrap()
2747 GEP->hasNoUnsignedSignedWrap())
2762 Type *Ty =
I.getType();
2765 Op1->hasNUses(2) && *ShAmt ==
BitWidth - 1 &&
2772 Value *NegA =
I.hasNoUnsignedWrap()
2782 const APInt *AddC, *AndC;
2787 if ((HighMask & *AndC).
isZero())
2788 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2830 {Builder.CreateNot(X)}));
2836 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2837 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2838 bool PropagateNSW =
I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2839 OBO1->hasNoSignedWrap() &&
BitWidth > 2;
2840 bool PropagateNUW =
I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2841 OBO1->hasNoUnsignedWrap() &&
BitWidth > 1;
2851 if (
I.hasNoUnsignedWrap() ||
I.hasNoSignedWrap()) {
2873 Value *Z, *Add0, *Add1;
2880 unsigned NumOfNewInstrs = 0;
2882 NumOfNewInstrs += !isa<Constant>(
Y) ? 1 : 0;
2883 NumOfNewInstrs += !isa<Constant>(Z) ? 1 : 0;
2885 unsigned NumOfDeadInstrs = 0;
2891 NumOfDeadInstrs += Add0->
hasOneUse() ? 1 : 0;
2893 if (Op1->hasOneUse()) {
2895 NumOfDeadInstrs += Add1->
hasOneUse() ? 1 : 0;
2897 if (NumOfDeadInstrs >= NumOfNewInstrs) {
2902 I.hasNoSignedWrap());
2908 return TryToNarrowDeduceFlags();
2979 if (
II->getIntrinsicID() == Intrinsic::ldexp) {
2983 {Builder.CreateFNegFMF(II->getArgOperand(0), FMF),
2984 II->getArgOperand(1)});
2985 New->setFastMathFlags(FMF);
2986 New->copyMetadata(*
II);
3007 if (
I.hasNoSignedZeros() &&
3015 if (
Instruction *R = hoistFNegAboveFMulFDiv(OneUse,
I))
3024 auto propagateSelectFMF = [&](
SelectInst *S,
bool CommonOperand) {
3026 if (
auto *OldSel = dyn_cast<SelectInst>(
Op)) {
3027 FastMathFlags FMF =
I.getFastMathFlags() | OldSel->getFastMathFlags();
3029 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
3039 propagateSelectFMF(NewSel,
P ==
Y);
3046 propagateSelectFMF(NewSel,
P ==
X);
3056 propagateSelectFMF(NewSel,
true);
3066 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
3088 I.getFastMathFlags(),
3118 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
3125 if (
I.hasNoSignedZeros() ||
3134 if (
I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
3140 if (isa<Constant>(Op0))
3141 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
3158 Type *Ty =
I.getType();
3185 if (
I.hasAllowReassoc() &&
I.hasNoSignedZeros()) {
3198 Instruction::FSub,
C, ConstantFP::get(Ty, 1.0),
DL))
3204 Instruction::FSub, ConstantFP::get(Ty, 1.0),
C,
DL))
3219 auto m_FaddRdx = [](
Value *&Sum,
Value *&Vec) {
3220 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
m_Value(Sum),
3223 Value *A0, *A1, *V0, *V1;
3224 if (
match(Op0, m_FaddRdx(A0, V0)) &&
match(Op1, m_FaddRdx(A1, V1)) &&
3230 {
Sub->getType()}, {A0,
Sub}, &
I);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static Instruction * factorizeFAddFSub(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction * foldAddToAshr(BinaryOperator &Add)
Try to reduce signed division by power-of-2 to an arithmetic shift right.
static bool MatchMul(Value *E, Value *&Op, APInt &C)
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned)
static Instruction * foldFNegIntoConstant(Instruction &I, const DataLayout &DL)
This eliminates floating-point negation in either 'fneg(X)' or 'fsub(-0.0, X)' form by combining into...
static Instruction * combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, const BinaryOperator &I)
static Instruction * factorizeLerp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction * foldSubOfMinMax(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * foldBoxMultiply(BinaryOperator &I)
Reduce a sequence of masked half-width multiplies to a single multiply.
static Value * checkForNegativeOperand(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned)
static Instruction * foldNoWrapAdd(BinaryOperator &Add, InstCombiner::BuilderTy &Builder)
Wrapping flags may allow combining constants separated by an extend.
static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, Value *&B)
static Instruction * factorizeMathWithShlOps(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This is a specialization of a more general transform from foldUsingDistributiveLaws.
static Instruction * canonicalizeLowbitMask(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Fold (1 << NBits) - 1 Into: ~(-(1 << NBits)) Because a 'not' is better for bit-tracking analysis and ...
static Instruction * foldToUnsignedSaturatedAdd(BinaryOperator &I)
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
const fltSemantics & getSemantics() const
opStatus multiply(const APFloat &RHS, roundingMode RM)
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool isNegative() const
Determine sign of this APInt.
int32_t exactLogBase2() const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned logBase2() const
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isMask(unsigned numBits) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
bool isZero() const
Return true if the value is positive or negative zero.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
This provides a helper for copying FMF from an instruction or setting specified flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoInfs(bool B=true)
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Value * CreateFSubFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Value * CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateNot(Value *V, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateCopySign(Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create call to the copysign intrinsic.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Value * CreateFAddFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateFPExt(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateFDivFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFMulFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * visitAdd(BinaryOperator &I)
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * foldSquareSumInt(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldSquareSumFP(BinaryOperator &I)
Instruction * visitSub(BinaryOperator &I)
Value * OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty, bool isNUW)
Optimize pointer differences into the same array into a size.
Instruction * visitFAdd(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * foldAddWithConstant(BinaryOperator &Add)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * visitFNeg(UnaryOperator &I)
Instruction * visitFSub(BinaryOperator &I)
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
A wrapper class for inspecting calls to intrinsic functions.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
This class represents zero extension of integer types.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap, true > m_c_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ CE
Windows NT (Windows on ARM)
NodeAddr< InstrNode * > Instr
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ Mul
Product of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A suitably aligned and sized character array member which can hold elements of any type.
Value * Ptr
Common base pointer.
SmallVector< GEPOperator * > RHSGEPs
RHS GEPs until common base.
SmallVector< GEPOperator * > LHSGEPs
LHS GEPs until common base.
bool isExpensive() const
Whether expanding the GEP chains is expensive.
static CommonPointerBase compute(Value *LHS, Value *RHS)
SimplifyQuery getWithInstruction(const Instruction *I) const
SimplifyQuery getWithoutDomCondCache() const