LLVM 22.0.0git
InstCombineAddSub.cpp
Go to the documentation of this file.
1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
25#include "llvm/IR/Operator.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
33#include <cassert>
34#include <utility>
35
36using namespace llvm;
37using namespace PatternMatch;
38
39#define DEBUG_TYPE "instcombine"
40
41namespace {
42
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
58
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
64
65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
68 }
69
70 void set(const APFloat& C);
71
72 void negate();
73
74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
76
77 bool isOne() const { return isInt() && IntVal == 1; }
78 bool isTwo() const { return isInt() && IntVal == 2; }
79 bool isMinusOne() const { return isInt() && IntVal == -1; }
80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82 private:
83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86
87 const APFloat *getFpValPtr() const {
88 return reinterpret_cast<const APFloat *>(&FpValBuf);
89 }
90
91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
94 }
95
96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
99 }
100
101 bool isInt() const { return !IsFp; }
102
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
106
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112 bool IsFp = false;
113
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
116
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
122
124 };
125
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
132
133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
136 }
137
138 Value *getSymVal() const { return Val; }
139 const FAddendCoef &getCoef() const { return Coeff; }
140
141 bool isConstant() const { return Val == nullptr; }
142 bool isZero() const { return Coeff.isZero(); }
143
144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
147 }
148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
151 }
152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
155 }
156
157 void negate() { Coeff.negate(); }
158
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167 private:
168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
173 };
174
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
177 ///
178 class FAddCombine {
179 public:
180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
183
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
186
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189 /// Convert given addend to a Value
190 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect& Vect);
194
195 Value *createFSub(Value *Opnd0, Value *Opnd1);
196 Value *createFAdd(Value *Opnd0, Value *Opnd1);
197 Value *createFMul(Value *Opnd0, Value *Opnd1);
198 Value *createFNeg(Value *V);
199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202 // Debugging stuff are clustered here.
203 #ifndef NDEBUG
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
207 #else
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
210 #endif
211
213 Instruction *Instr = nullptr;
214 };
215
216} // end anonymous namespace
217
218//===----------------------------------------------------------------------===//
219//
220// Implementation of
221// {FAddendCoef, FAddend, FAddition, FAddCombine}.
222//
223//===----------------------------------------------------------------------===//
224FAddendCoef::~FAddendCoef() {
225 if (BufHasFpVal)
226 getFpValPtr()->~APFloat();
227}
228
229void FAddendCoef::set(const APFloat& C) {
230 APFloat *P = getFpValPtr();
231
232 if (isInt()) {
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
235 new(P) APFloat(C);
236 } else
237 *P = C;
238
239 IsFp = BufHasFpVal = true;
240}
241
242void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243 if (!isInt())
244 return;
245
246 APFloat *P = getFpValPtr();
247 if (IntVal > 0)
248 new(P) APFloat(Sem, IntVal);
249 else {
250 new(P) APFloat(Sem, 0 - IntVal);
251 P->changeSign();
252 }
253 IsFp = BufHasFpVal = true;
254}
255
256APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257 if (Val >= 0)
258 return APFloat(Sem, Val);
259
260 APFloat T(Sem, 0 - Val);
261 T.changeSign();
262
263 return T;
264}
265
266void FAddendCoef::operator=(const FAddendCoef &That) {
267 if (That.isInt())
268 set(That.IntVal);
269 else
270 set(That.getFpVal());
271}
272
273void FAddendCoef::operator+=(const FAddendCoef &That) {
274 RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275 if (isInt() == That.isInt()) {
276 if (isInt())
277 IntVal += That.IntVal;
278 else
279 getFpVal().add(That.getFpVal(), RndMode);
280 return;
281 }
282
283 if (isInt()) {
284 const APFloat &T = That.getFpVal();
285 convertToFpType(T.getSemantics());
286 getFpVal().add(T, RndMode);
287 return;
288 }
289
290 APFloat &T = getFpVal();
291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292}
293
294void FAddendCoef::operator*=(const FAddendCoef &That) {
295 if (That.isOne())
296 return;
297
298 if (That.isMinusOne()) {
299 negate();
300 return;
301 }
302
303 if (isInt() && That.isInt()) {
304 int Res = IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) && "Insane int value");
306 IntVal = Res;
307 return;
308 }
309
310 const fltSemantics &Semantic =
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313 if (isInt())
314 convertToFpType(Semantic);
315 APFloat &F0 = getFpVal();
316
317 if (That.isInt())
318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
320 else
321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322}
323
324void FAddendCoef::negate() {
325 if (isInt())
326 IntVal = 0 - IntVal;
327 else
328 getFpVal().changeSign();
329}
330
331Value *FAddendCoef::getValue(Type *Ty) const {
332 return isInt() ?
333 ConstantFP::get(Ty, float(IntVal)) :
334 ConstantFP::get(Ty->getContext(), getFpVal());
335}
336
337// The definition of <Val> Addends
338// =========================================
339// A + B <1, A>, <1,B>
340// A - B <1, A>, <1,B>
341// 0 - B <-1, B>
342// C * A, <C, A>
343// A + C <1, A> <C, NULL>
344// 0 +/- 0 <0, NULL> (corner case)
345//
346// Legend: A and B are not constant, C is constant
347unsigned FAddend::drillValueDownOneStep
348 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349 Instruction *I = nullptr;
350 if (!Val || !(I = dyn_cast<Instruction>(Val)))
351 return 0;
352
353 unsigned Opcode = I->getOpcode();
354
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356 ConstantFP *C0, *C1;
357 Value *Opnd0 = I->getOperand(0);
358 Value *Opnd1 = I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360 Opnd0 = nullptr;
361
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363 Opnd1 = nullptr;
364
365 if (Opnd0) {
366 if (!C0)
367 Addend0.set(1, Opnd0);
368 else
369 Addend0.set(C0, nullptr);
370 }
371
372 if (Opnd1) {
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374 if (!C1)
375 Addend.set(1, Opnd1);
376 else
377 Addend.set(C1, nullptr);
378 if (Opcode == Instruction::FSub)
379 Addend.negate();
380 }
381
382 if (Opnd0 || Opnd1)
383 return Opnd0 && Opnd1 ? 2 : 1;
384
385 // Both operands are zero. Weird!
386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387 return 1;
388 }
389
390 if (I->getOpcode() == Instruction::FMul) {
391 Value *V0 = I->getOperand(0);
392 Value *V1 = I->getOperand(1);
393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394 Addend0.set(C, V1);
395 return 1;
396 }
397
398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399 Addend0.set(C, V0);
400 return 1;
401 }
402 }
403
404 return 0;
405}
406
407// Try to break *this* addend into two addends. e.g. Suppose this addend is
408// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409// i.e. <2.3, X> and <2.3, Y>.
410unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1) const {
412 if (isConstant())
413 return 0;
414
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
417 return BreakNum;
418
419 Addend0.Scale(Coeff);
420
421 if (BreakNum == 2)
422 Addend1.Scale(Coeff);
423
424 return BreakNum;
425}
426
427Value *FAddCombine::simplify(Instruction *I) {
428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
430
431 // Currently we are not able to handle vector type.
432 if (I->getType()->isVectorTy())
433 return nullptr;
434
435 assert((I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438 // Save the instruction before calling other member-functions.
439 Instr = I;
440
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
448
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
458 AddendVect AllOpnds;
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
465
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota = 0;
468
469 Value *V0 = I->getOperand(0);
470 Value *V1 = I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473
474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475 return R;
476 }
477
478 if (OpndNum != 2) {
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
482 //
483 const FAddendCoef &CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485 }
486
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488 if (Opnd1_ExpNum) {
489 AddendVect AllOpnds;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
494
495 if (Value *R = simplifyFAdd(AllOpnds, 1))
496 return R;
497 }
498
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500 if (Opnd0_ExpNum) {
501 AddendVect AllOpnds;
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
506
507 if (Value *R = simplifyFAdd(AllOpnds, 1))
508 return R;
509 }
510
511 return nullptr;
512}
513
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 && "Too many addends");
517
518 // For saving intermediate results;
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
521
522 // Simplified addends are placed <SimpVect>.
523 AddendVect SimpVect;
524
525 // The outer loop works on one symbolic-value at a time. Suppose the input
526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527 // The symbolic-values will be processed in this order: x, y, z.
528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529
530 const FAddend *ThisAddend = Addends[SymIdx];
531 if (!ThisAddend) {
532 // This addend was processed before.
533 continue;
534 }
535
536 Value *Val = ThisAddend->getSymVal();
537
538 // If the resulting expr has constant-addend, this constant-addend is
539 // desirable to reside at the top of the resulting expression tree. Placing
540 // constant close to super-expr(s) will potentially reveal some
541 // optimization opportunities in super-expr(s). Here we do not implement
542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543 // call later.
544
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
547
548 // The inner loop collects addends sharing same symbolic-value, and these
549 // addends will be later on folded into a single addend. Following above
550 // example, if the symbolic value "y" is being processed, the inner loop
551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552 // be later on folded into "<b1+b2, y>".
553 for (unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *T = Addends[SameSymIdx];
556 if (T && T->getSymVal() == Val) {
557 // Set null such that next iteration of the outer loop will not process
558 // this addend again.
559 Addends[SameSymIdx] = nullptr;
560 SimpVect.push_back(T);
561 }
562 }
563
564 // If multiple addends share same symbolic value, fold them together.
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569 R += *SimpVect[Idx];
570
571 // Pop all addends being folded and push the resulting folded addend.
572 SimpVect.resize(StartIdx);
573 if (!R.isZero()) {
574 SimpVect.push_back(&R);
575 }
576 }
577 }
578
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580
581 Value *Result;
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(SimpVect, InstrQuota);
584 else {
585 // The addition is folded to 0.0.
586 Result = ConstantFP::get(Instr->getType(), 0.0);
587 }
588
589 return Result;
590}
591
592Value *FAddCombine::createNaryFAdd
593 (const AddendVect &Opnds, unsigned InstrQuota) {
594 assert(!Opnds.empty() && "Expect at least one addend");
595
596 // Step 1: Check if the # of instructions needed exceeds the quota.
597
598 unsigned InstrNeeded = calcInstrNumber(Opnds);
599 if (InstrNeeded > InstrQuota)
600 return nullptr;
601
602 initCreateInstNum();
603
604 // step 2: Emit the N-ary addition.
605 // Note that at most three instructions are involved in Fadd-InstCombine: the
606 // addition in question, and at most two neighboring instructions.
607 // The resulting optimized addition should have at least one less instruction
608 // than the original addition expression tree. This implies that the resulting
609 // N-ary addition has at most two instructions, and we don't need to worry
610 // about tree-height when constructing the N-ary addition.
611
612 Value *LastVal = nullptr;
613 bool LastValNeedNeg = false;
614
615 // Iterate the addends, creating fadd/fsub using adjacent two addends.
616 for (const FAddend *Opnd : Opnds) {
617 bool NeedNeg;
618 Value *V = createAddendVal(*Opnd, NeedNeg);
619 if (!LastVal) {
620 LastVal = V;
621 LastValNeedNeg = NeedNeg;
622 continue;
623 }
624
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(LastVal, V);
627 continue;
628 }
629
630 if (LastValNeedNeg)
631 LastVal = createFSub(V, LastVal);
632 else
633 LastVal = createFSub(LastVal, V);
634
635 LastValNeedNeg = false;
636 }
637
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(LastVal);
640 }
641
642#ifndef NDEBUG
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
645#endif
646
647 return LastVal;
648}
649
650Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652 if (Instruction *I = dyn_cast<Instruction>(V))
653 createInstPostProc(I);
654 return V;
655}
656
657Value *FAddCombine::createFNeg(Value *V) {
658 Value *NewV = Builder.CreateFNeg(V);
659 if (Instruction *I = dyn_cast<Instruction>(NewV))
660 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661 return NewV;
662}
663
664Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666 if (Instruction *I = dyn_cast<Instruction>(V))
667 createInstPostProc(I);
668 return V;
669}
670
671Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673 if (Instruction *I = dyn_cast<Instruction>(V))
674 createInstPostProc(I);
675 return V;
676}
677
678void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679 NewInstr->setDebugLoc(Instr->getDebugLoc());
680
681 // Keep track of the number of instruction created.
682 if (!NoNumber)
683 incCreateInstNum();
684
685 // Propagate fast-math flags
686 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687}
688
689// Return the number of instruction needed to emit the N-ary addition.
690// NOTE: Keep this function in sync with createAddendVal().
691unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
694
695 // Adjust the number of instructions needed to emit the N-ary add.
696 for (const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
698 continue;
699
700 // The constant check above is really for a few special constant
701 // coefficients.
702 if (isa<UndefValue>(Opnd->getSymVal()))
703 continue;
704
705 const FAddendCoef &CE = Opnd->getCoef();
706 // Let the addend be "c * x". If "c == +/-1", the value of the addend
707 // is immediately available; otherwise, it needs exactly one instruction
708 // to evaluate the value.
709 if (!CE.isMinusOne() && !CE.isOne())
710 InstrNeeded++;
711 }
712 return InstrNeeded;
713}
714
715// Input Addend Value NeedNeg(output)
716// ================================================================
717// Constant C C false
718// <+/-1, V> V coefficient is -1
719// <2/-2, V> "fadd V, V" coefficient is -2
720// <C, V> "fmul V, C" false
721//
722// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
725
726 if (Opnd.isConstant()) {
727 NeedNeg = false;
728 return Coeff.getValue(Instr->getType());
729 }
730
731 Value *OpndVal = Opnd.getSymVal();
732
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
735 return OpndVal;
736 }
737
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(OpndVal, OpndVal);
741 }
742
743 NeedNeg = false;
744 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745}
746
747// Checks if any operand is negative and we can convert add to sub.
748// This function checks for following negative patterns
749// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
753 InstCombiner::BuilderTy &Builder) {
754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755
756 // This function creates 2 instructions to replace ADD, we need at least one
757 // of LHS or RHS to have one use to ensure benefit in transform.
758 if (!LHS->hasOneUse() && !RHS->hasOneUse())
759 return nullptr;
760
761 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762 const APInt *C1 = nullptr, *C2 = nullptr;
763
764 // if ONE is on other side, swap
765 if (match(RHS, m_Add(m_Value(X), m_One())))
766 std::swap(LHS, RHS);
767
768 if (match(LHS, m_Add(m_Value(X), m_One()))) {
769 // if XOR on other side, swap
770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771 std::swap(X, RHS);
772
773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777 Value *NewAnd = Builder.CreateAnd(Z, *C1);
778 return Builder.CreateSub(RHS, NewAnd, "sub");
779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783 return Builder.CreateSub(RHS, NewOr, "sub");
784 }
785 }
786 }
787
788 // Restore LHS and RHS
789 LHS = I.getOperand(0);
790 RHS = I.getOperand(1);
791
792 // if XOR is on other side, swap
793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794 std::swap(LHS, RHS);
795
796 // C2 is ODD
797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800 if (C1->countr_zero() == 0)
801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803 return Builder.CreateSub(RHS, NewOr, "sub");
804 }
805 return nullptr;
806}
807
808/// Wrapping flags may allow combining constants separated by an extend.
810 InstCombiner::BuilderTy &Builder) {
811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812 Type *Ty = Add.getType();
813 Constant *Op1C;
814 if (!match(Op1, m_Constant(Op1C)))
815 return nullptr;
816
817 // Try this match first because it results in an add in the narrow type.
818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819 Value *X;
820 const APInt *C1, *C2;
821 if (match(Op1, m_APInt(C1)) &&
822 match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) &&
823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824 APInt NewC = *C2 + C1->trunc(C2->getBitWidth());
825 // If the smaller add will fold to zero, we don't need to check one use.
826 if (NewC.isZero())
827 return new ZExtInst(X, Ty);
828 // Otherwise only do this if the existing zero extend will be removed.
829 if (Op0->hasOneUse())
830 return new ZExtInst(
831 Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty);
832 }
833
834 // More general combining of constants in the wide type.
835 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
836 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
837 Constant *NarrowC;
838 if (match(Op0, m_OneUse(m_SExtLike(
839 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
840 Value *WideC = Builder.CreateSExt(NarrowC, Ty);
841 Value *NewC = Builder.CreateAdd(WideC, Op1C);
842 Value *WideX = Builder.CreateSExt(X, Ty);
843 return BinaryOperator::CreateAdd(WideX, NewC);
844 }
845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
846 if (match(Op0,
848 Value *WideC = Builder.CreateZExt(NarrowC, Ty);
849 Value *NewC = Builder.CreateAdd(WideC, Op1C);
850 Value *WideX = Builder.CreateZExt(X, Ty);
851 return BinaryOperator::CreateAdd(WideX, NewC);
852 }
853 return nullptr;
854}
855
857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
858 Type *Ty = Add.getType();
859 Constant *Op1C;
860 if (!match(Op1, m_ImmConstant(Op1C)))
861 return nullptr;
862
864 return NV;
865
866 Value *X;
867 Constant *Op00C;
868
869 // add (sub C1, X), C2 --> sub (add C1, C2), X
870 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
871 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
872
873 Value *Y;
874
875 // add (sub X, Y), -1 --> add (not Y), X
876 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
877 match(Op1, m_AllOnes()))
878 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
879
880 // zext(bool) + C -> bool ? C + 1 : C
881 if (match(Op0, m_ZExt(m_Value(X))) &&
882 X->getType()->getScalarSizeInBits() == 1)
883 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
884 // sext(bool) + C -> bool ? C - 1 : C
885 if (match(Op0, m_SExt(m_Value(X))) &&
886 X->getType()->getScalarSizeInBits() == 1)
887 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
888
889 // ~X + C --> (C-1) - X
890 if (match(Op0, m_Not(m_Value(X)))) {
891 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
892 auto *COne = ConstantInt::get(Op1C->getType(), 1);
893 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
894 BinaryOperator *Res =
895 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
896 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
897 return Res;
898 }
899
900 // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
901 const APInt *C;
902 unsigned BitWidth = Ty->getScalarSizeInBits();
903 if (match(Op0, m_OneUse(m_AShr(m_Value(X),
905 match(Op1, m_One()))
906 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
907
908 if (!match(Op1, m_APInt(C)))
909 return nullptr;
910
911 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
912 Constant *Op01C;
913 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) {
914 BinaryOperator *NewAdd =
915 BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
916 NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() &&
917 willNotOverflowSignedAdd(Op01C, Op1C, Add));
918 NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap());
919 return NewAdd;
920 }
921
922 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
923 const APInt *C2;
924 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
925 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
926
927 if (C->isSignMask()) {
928 // If wrapping is not allowed, then the addition must set the sign bit:
929 // X + (signmask) --> X | signmask
930 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
931 return BinaryOperator::CreateOr(Op0, Op1);
932
933 // If wrapping is allowed, then the addition flips the sign bit of LHS:
934 // X + (signmask) --> X ^ signmask
935 return BinaryOperator::CreateXor(Op0, Op1);
936 }
937
938 // Is this add the last step in a convoluted sext?
939 // add(zext(xor i16 X, -32768), -32768) --> sext X
940 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
941 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
942 return CastInst::Create(Instruction::SExt, X, Ty);
943
944 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
945 // (X ^ signmask) + C --> (X + (signmask ^ C))
946 if (C2->isSignMask())
947 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
948
949 // If X has no high-bits set above an xor mask:
950 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
951 if (C2->isMask()) {
952 KnownBits LHSKnown = computeKnownBits(X, &Add);
953 if ((*C2 | LHSKnown.Zero).isAllOnes())
954 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
955 }
956
957 // Look for a math+logic pattern that corresponds to sext-in-register of a
958 // value with cleared high bits. Convert that into a pair of shifts:
959 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
960 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
961 if (Op0->hasOneUse() && *C2 == -(*C)) {
962 unsigned BitWidth = Ty->getScalarSizeInBits();
963 unsigned ShAmt = 0;
964 if (C->isPowerOf2())
965 ShAmt = BitWidth - C->logBase2() - 1;
966 else if (C2->isPowerOf2())
967 ShAmt = BitWidth - C2->logBase2() - 1;
968 if (ShAmt &&
970 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
971 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
972 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
973 }
974 }
975 }
976
977 if (C->isOne() && Op0->hasOneUse()) {
978 // add (sext i1 X), 1 --> zext (not X)
979 // TODO: The smallest IR representation is (select X, 0, 1), and that would
980 // not require the one-use check. But we need to remove a transform in
981 // visitSelect and make sure that IR value tracking for select is equal or
982 // better than for these ops.
983 if (match(Op0, m_SExt(m_Value(X))) &&
984 X->getType()->getScalarSizeInBits() == 1)
985 return new ZExtInst(Builder.CreateNot(X), Ty);
986
987 // Shifts and add used to flip and mask off the low bit:
988 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
989 const APInt *C3;
990 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
991 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
992 Value *NotX = Builder.CreateNot(X);
993 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
994 }
995 }
996
997 // umax(X, C) + -C --> usub.sat(X, C)
998 if (match(Op0, m_OneUse(m_UMax(m_Value(X), m_SpecificInt(-*C)))))
999 return replaceInstUsesWith(
1001 Intrinsic::usub_sat, X, ConstantInt::get(Add.getType(), -*C)));
1002
1003 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
1004 // TODO: There's a general form for any constant on the outer add.
1005 if (C->isOne()) {
1006 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
1008 if (llvm::isKnownNonZero(X, Q))
1009 return new ZExtInst(X, Ty);
1010 }
1011 }
1012
1013 return nullptr;
1014}
1015
1016// match variations of a^2 + 2*a*b + b^2
1017//
1018// to reuse the code between the FP and Int versions, the instruction OpCodes
1019// and constant types have been turned into template parameters.
1020//
1021// Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1022// should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1023// (we're matching `X<<1` instead of `X*2` for Int)
1024template <bool FP, typename Mul2Rhs>
1025static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1026 Value *&B) {
1027 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1028 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1029 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1030
1031 // (a * a) + (((a * 2) + b) * b)
1032 if (match(&I, m_c_BinOp(
1033 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1035 MulOp,
1036 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
1037 m_Value(B)),
1038 m_Deferred(B))))))
1039 return true;
1040
1041 // ((a * b) * 2) or ((a * 2) * b)
1042 // +
1043 // (a * a + b * b) or (b * b + a * a)
1044 return match(
1045 &I, m_c_BinOp(
1046 AddOp,
1049 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1050 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
1051 m_Value(B)))),
1052 m_OneUse(
1053 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
1054 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
1055}
1056
1057// Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1059 Value *A, *B;
1060 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) {
1061 Value *AB = Builder.CreateAdd(A, B);
1062 return BinaryOperator::CreateMul(AB, AB);
1063 }
1064 return nullptr;
1065}
1066
1067// Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1068// Requires `nsz` and `reassoc`.
1070 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1071 Value *A, *B;
1072 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) {
1073 Value *AB = Builder.CreateFAddFMF(A, B, &I);
1074 return BinaryOperator::CreateFMulFMF(AB, AB, &I);
1075 }
1076 return nullptr;
1077}
1078
1079// Matches multiplication expression Op * C where C is a constant. Returns the
1080// constant value in C and the other operand in Op. Returns true if such a
1081// match is found.
1082static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1083 const APInt *AI;
1084 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1085 C = *AI;
1086 return true;
1087 }
1088 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1089 C = APInt(AI->getBitWidth(), 1);
1090 C <<= *AI;
1091 return true;
1092 }
1093 return false;
1094}
1095
1096// Matches remainder expression Op % C where C is a constant. Returns the
1097// constant value in C and the other operand in Op. Returns the signedness of
1098// the remainder operation in IsSigned. Returns true if such a match is
1099// found.
1100static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1101 const APInt *AI;
1102 IsSigned = false;
1103 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1104 IsSigned = true;
1105 C = *AI;
1106 return true;
1107 }
1108 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1109 C = *AI;
1110 return true;
1111 }
1112 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1113 C = *AI + 1;
1114 return true;
1115 }
1116 return false;
1117}
1118
1119// Matches division expression Op / C with the given signedness as indicated
1120// by IsSigned, where C is a constant. Returns the constant value in C and the
1121// other operand in Op. Returns true if such a match is found.
1122static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1123 const APInt *AI;
1124 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1125 C = *AI;
1126 return true;
1127 }
1128 if (!IsSigned) {
1129 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1130 C = *AI;
1131 return true;
1132 }
1133 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1134 C = APInt(AI->getBitWidth(), 1);
1135 C <<= *AI;
1136 return true;
1137 }
1138 }
1139 return false;
1140}
1141
1142// Returns whether C0 * C1 with the given signedness overflows.
1143static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1144 bool overflow;
1145 if (IsSigned)
1146 (void)C0.smul_ov(C1, overflow);
1147 else
1148 (void)C0.umul_ov(C1, overflow);
1149 return overflow;
1150}
1151
1152// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1153// does not overflow.
1154// Simplifies (X / C0) * C1 + (X % C0) * C2 to
1155// (X / C0) * (C1 - C2 * C0) + X * C2
1157 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1158 Value *X, *MulOpV;
1159 APInt C0, MulOpC;
1160 bool IsSigned;
1161 // Match I = X % C0 + MulOpV * C0
1162 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1163 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1164 C0 == MulOpC) {
1165 Value *RemOpV;
1166 APInt C1;
1167 bool Rem2IsSigned;
1168 // Match MulOpC = RemOpV % C1
1169 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1170 IsSigned == Rem2IsSigned) {
1171 Value *DivOpV;
1172 APInt DivOpC;
1173 // Match RemOpV = X / C0
1174 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1175 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1176 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1177 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1178 : Builder.CreateURem(X, NewDivisor, "urem");
1179 }
1180 }
1181 }
1182
1183 // Match I = (X / C0) * C1 + (X % C0) * C2
1184 Value *Div, *Rem;
1185 APInt C1, C2;
1186 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1))
1187 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1188 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2))
1189 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1190 if (match(Div, m_IRem(m_Value(), m_Value()))) {
1191 std::swap(Div, Rem);
1192 std::swap(C1, C2);
1193 }
1194 Value *DivOpV;
1195 APInt DivOpC;
1196 if (MatchRem(Rem, X, C0, IsSigned) &&
1197 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC &&
1198 // Avoid unprofitable replacement of and with mul.
1199 !(C1.isOne() && !IsSigned && DivOpC.isPowerOf2() && DivOpC != 2)) {
1200 APInt NewC = C1 - C2 * C0;
1201 if (!NewC.isZero() && !Rem->hasOneUse())
1202 return nullptr;
1203 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT))
1204 return nullptr;
1205 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2));
1206 if (NewC.isZero())
1207 return MulXC2;
1208 return Builder.CreateAdd(
1209 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2);
1210 }
1211
1212 return nullptr;
1213}
1214
1215/// Fold
1216/// (1 << NBits) - 1
1217/// Into:
1218/// ~(-(1 << NBits))
1219/// Because a 'not' is better for bit-tracking analysis and other transforms
1220/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1222 InstCombiner::BuilderTy &Builder) {
1223 Value *NBits;
1224 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1225 return nullptr;
1226
1227 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1228 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1229 // Be wary of constant folding.
1230 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1231 // Always NSW. But NUW propagates from `add`.
1232 BOp->setHasNoSignedWrap();
1233 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1234 }
1235
1236 return BinaryOperator::CreateNot(NotMask, I.getName());
1237}
1238
1240 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1241 Type *Ty = I.getType();
1242 auto getUAddSat = [&]() {
1243 return Intrinsic::getOrInsertDeclaration(I.getModule(), Intrinsic::uadd_sat,
1244 Ty);
1245 };
1246
1247 // add (umin X, ~Y), Y --> uaddsat X, Y
1248 Value *X, *Y;
1250 m_Deferred(Y))))
1251 return CallInst::Create(getUAddSat(), { X, Y });
1252
1253 // add (umin X, ~C), C --> uaddsat X, C
1254 const APInt *C, *NotC;
1255 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1256 *C == ~*NotC)
1257 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1258
1259 return nullptr;
1260}
1261
1262// Transform:
1263// (add A, (shl (neg B), Y))
1264// -> (sub A, (shl B, Y))
1266 const BinaryOperator &I) {
1267 Value *A, *B, *Cnt;
1268 if (match(&I,
1270 m_Value(A)))) {
1271 Value *NewShl = Builder.CreateShl(B, Cnt);
1272 return BinaryOperator::CreateSub(A, NewShl);
1273 }
1274 return nullptr;
1275}
1276
1277/// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1279 // Division must be by power-of-2, but not the minimum signed value.
1280 Value *X;
1281 const APInt *DivC;
1282 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1283 DivC->isNegative())
1284 return nullptr;
1285
1286 // Rounding is done by adding -1 if the dividend (X) is negative and has any
1287 // low bits set. It recognizes two canonical patterns:
1288 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1289 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1290 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1291 // Note that, by the time we end up here, if possible, ugt has been
1292 // canonicalized into eq.
1293 const APInt *MaskC, *MaskCCmp;
1294 CmpPredicate Pred;
1295 if (!match(Add.getOperand(1),
1296 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1297 m_APInt(MaskCCmp)))))
1298 return nullptr;
1299
1300 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1301 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1302 return nullptr;
1303
1304 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1305 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1306 ? (*MaskC == (SMin | (*DivC - 1)))
1307 : (*DivC == 2 && *MaskC == SMin + 1);
1308 if (!IsMaskValid)
1309 return nullptr;
1310
1311 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1312 return BinaryOperator::CreateAShr(
1313 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1314}
1315
1317 bool NSW, bool NUW) {
1318 Value *A, *B, *C;
1319 if (match(LHS, m_Sub(m_Value(A), m_Value(B))) &&
1321 Instruction *R = BinaryOperator::CreateSub(C, B);
1322 bool NSWOut = NSW && match(LHS, m_NSWSub(m_Value(), m_Value())) &&
1324
1325 bool NUWOut = match(LHS, m_NUWSub(m_Value(), m_Value())) &&
1327 R->setHasNoSignedWrap(NSWOut);
1328 R->setHasNoUnsignedWrap(NUWOut);
1329 return R;
1330 }
1331
1332 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1333 const APInt *C1, *C2;
1334 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1335 APInt One(C2->getBitWidth(), 1);
1336 APInt MinusC1 = -(*C1);
1337 if (MinusC1 == (One << *C2)) {
1338 Constant *NewRHS = ConstantInt::get(RHS->getType(), MinusC1);
1339 return BinaryOperator::CreateSRem(RHS, NewRHS);
1340 }
1341 }
1342
1343 return nullptr;
1344}
1345
1348 BinaryOperator &I) {
1349 assert((I.getOpcode() == Instruction::Add ||
1350 I.getOpcode() == Instruction::Or ||
1351 I.getOpcode() == Instruction::Sub) &&
1352 "Expecting add/or/sub instruction");
1353
1354 // We have a subtraction/addition between a (potentially truncated) *logical*
1355 // right-shift of X and a "select".
1356 Value *X, *Select;
1357 Instruction *LowBitsToSkip, *Extract;
1359 Extract, m_LShr(m_Value(X),
1360 m_Instruction(LowBitsToSkip)))),
1361 m_Value(Select))))
1362 return nullptr;
1363
1364 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1365 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1366 return nullptr;
1367
1368 Type *XTy = X->getType();
1369 bool HadTrunc = I.getType() != XTy;
1370
1371 // If there was a truncation of extracted value, then we'll need to produce
1372 // one extra instruction, so we need to ensure one instruction will go away.
1373 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1374 return nullptr;
1375
1376 // Extraction should extract high NBits bits, with shift amount calculated as:
1377 // low bits to skip = shift bitwidth - high bits to extract
1378 // The shift amount itself may be extended, and we need to look past zero-ext
1379 // when matching NBits, that will matter for matching later.
1380 Value *NBits;
1381 if (!match(LowBitsToSkip,
1383 m_ZExtOrSelf(m_Value(NBits))))))
1384 return nullptr;
1385
1386 // Sign-extending value can be zero-extended if we `sub`tract it,
1387 // or sign-extended otherwise.
1388 auto SkipExtInMagic = [&I](Value *&V) {
1389 if (I.getOpcode() == Instruction::Sub)
1390 match(V, m_ZExtOrSelf(m_Value(V)));
1391 else
1392 match(V, m_SExtOrSelf(m_Value(V)));
1393 };
1394
1395 // Now, finally validate the sign-extending magic.
1396 // `select` itself may be appropriately extended, look past that.
1397 SkipExtInMagic(Select);
1398
1399 CmpPredicate Pred;
1400 const APInt *Thr;
1401 Value *SignExtendingValue, *Zero;
1402 bool ShouldSignext;
1403 // It must be a select between two values we will later establish to be a
1404 // sign-extending value and a zero constant. The condition guarding the
1405 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1406 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1407 m_Value(SignExtendingValue), m_Value(Zero))) ||
1408 !isSignBitCheck(Pred, *Thr, ShouldSignext))
1409 return nullptr;
1410
1411 // icmp-select pair is commutative.
1412 if (!ShouldSignext)
1413 std::swap(SignExtendingValue, Zero);
1414
1415 // If we should not perform sign-extension then we must add/or/subtract zero.
1416 if (!match(Zero, m_Zero()))
1417 return nullptr;
1418 // Otherwise, it should be some constant, left-shifted by the same NBits we
1419 // had in `lshr`. Said left-shift can also be appropriately extended.
1420 // Again, we must look past zero-ext when looking for NBits.
1421 SkipExtInMagic(SignExtendingValue);
1422 Constant *SignExtendingValueBaseConstant;
1423 if (!match(SignExtendingValue,
1424 m_Shl(m_Constant(SignExtendingValueBaseConstant),
1425 m_ZExtOrSelf(m_Specific(NBits)))))
1426 return nullptr;
1427 // If we `sub`, then the constant should be one, else it should be all-ones.
1428 if (I.getOpcode() == Instruction::Sub
1429 ? !match(SignExtendingValueBaseConstant, m_One())
1430 : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1431 return nullptr;
1432
1433 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1434 Extract->getName() + ".sext");
1435 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1436 if (!HadTrunc)
1437 return NewAShr;
1438
1439 Builder.Insert(NewAShr);
1440 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1441}
1442
1443/// This is a specialization of a more general transform from
1444/// foldUsingDistributiveLaws. If that code can be made to work optimally
1445/// for multi-use cases or propagating nsw/nuw, then we would not need this.
1447 InstCombiner::BuilderTy &Builder) {
1448 // TODO: Also handle mul by doubling the shift amount?
1449 assert((I.getOpcode() == Instruction::Add ||
1450 I.getOpcode() == Instruction::Sub) &&
1451 "Expected add/sub");
1452 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1453 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1454 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1455 return nullptr;
1456
1457 Value *X, *Y, *ShAmt;
1458 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1459 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1460 return nullptr;
1461
1462 // No-wrap propagates only when all ops have no-wrap.
1463 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1464 Op1->hasNoSignedWrap();
1465 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1466 Op1->hasNoUnsignedWrap();
1467
1468 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1469 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1470 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1471 NewI->setHasNoSignedWrap(HasNSW);
1472 NewI->setHasNoUnsignedWrap(HasNUW);
1473 }
1474 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1475 NewShl->setHasNoSignedWrap(HasNSW);
1476 NewShl->setHasNoUnsignedWrap(HasNUW);
1477 return NewShl;
1478}
1479
1480/// Reduce a sequence of masked half-width multiplies to a single multiply.
1481/// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1483 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1484 // Skip the odd bitwidth types.
1485 if ((BitWidth & 0x1))
1486 return nullptr;
1487
1488 unsigned HalfBits = BitWidth >> 1;
1489 APInt HalfMask = APInt::getMaxValue(HalfBits);
1490
1491 // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1492 Value *XLo, *YLo;
1493 Value *CrossSum;
1494 // Require one-use on the multiply to avoid increasing the number of
1495 // multiplications.
1496 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1497 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1498 return nullptr;
1499
1500 // XLo = X & HalfMask
1501 // YLo = Y & HalfMask
1502 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1503 // to enhance robustness
1504 Value *X, *Y;
1505 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1506 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1507 return nullptr;
1508
1509 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1510 // X' can be either X or XLo in the pattern (and the same for Y')
1511 if (match(CrossSum,
1516 return BinaryOperator::CreateMul(X, Y);
1517
1518 return nullptr;
1519}
1520
1522 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1523 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1525 return replaceInstUsesWith(I, V);
1526
1528 return &I;
1529
1531 return X;
1532
1534 return Phi;
1535
1536 // (A*B)+(A*C) -> A*(B+C) etc
1538 return replaceInstUsesWith(I, V);
1539
1540 if (Instruction *R = foldBoxMultiply(I))
1541 return R;
1542
1544 return R;
1545
1547 return X;
1548
1550 return X;
1551
1553 return R;
1554
1556 return R;
1557
1558 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1559 if (Instruction *R = foldAddLikeCommutative(LHS, RHS, I.hasNoSignedWrap(),
1560 I.hasNoUnsignedWrap()))
1561 return R;
1562 if (Instruction *R = foldAddLikeCommutative(RHS, LHS, I.hasNoSignedWrap(),
1563 I.hasNoUnsignedWrap()))
1564 return R;
1565 Type *Ty = I.getType();
1566 if (Ty->isIntOrIntVectorTy(1))
1567 return BinaryOperator::CreateXor(LHS, RHS);
1568
1569 // X + X --> X << 1
1570 if (LHS == RHS) {
1571 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1572 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1573 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1574 return Shl;
1575 }
1576
1577 Value *A, *B;
1578 if (match(LHS, m_Neg(m_Value(A)))) {
1579 // -A + -B --> -(A + B)
1580 if (match(RHS, m_Neg(m_Value(B))))
1582
1583 // -A + B --> B - A
1584 auto *Sub = BinaryOperator::CreateSub(RHS, A);
1585 auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
1586 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1587
1588 return Sub;
1589 }
1590
1591 // A + -B --> A - B
1592 if (match(RHS, m_Neg(m_Value(B)))) {
1593 auto *Sub = BinaryOperator::CreateSub(LHS, B);
1594 auto *OBO = cast<OverflowingBinaryOperator>(RHS);
1595 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1596 return Sub;
1597 }
1598
1600 return replaceInstUsesWith(I, V);
1601
1602 // (A + 1) + ~B --> A - B
1603 // ~B + (A + 1) --> A - B
1604 // (~B + A) + 1 --> A - B
1605 // (A + ~B) + 1 --> A - B
1606 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1608 return BinaryOperator::CreateSub(A, B);
1609
1610 // (A + RHS) + RHS --> A + (RHS << 1)
1612 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1613
1614 // LHS + (A + LHS) --> A + (LHS << 1)
1616 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1617
1618 {
1619 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1620 Constant *C1, *C2;
1621 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1622 m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1623 (LHS->hasOneUse() || RHS->hasOneUse())) {
1625 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1626 }
1627
1628 // Canonicalize a constant sub operand as an add operand for better folding:
1629 // (C1 - A) + B --> (B - A) + C1
1631 m_Value(B)))) {
1632 Value *Sub = Builder.CreateSub(B, A, "reass.sub");
1633 return BinaryOperator::CreateAdd(Sub, C1);
1634 }
1635 }
1636
1637 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1639
1640 const APInt *C1;
1641 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1642 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1643 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
1644 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1645 return BinaryOperator::CreateAnd(A, NewMask);
1646 }
1647
1648 // ZExt (B - A) + ZExt(A) --> ZExt(B)
1649 if ((match(RHS, m_ZExt(m_Value(A))) &&
1651 (match(LHS, m_ZExt(m_Value(A))) &&
1653 return new ZExtInst(B, LHS->getType());
1654
1655 // zext(A) + sext(A) --> 0 if A is i1
1657 A->getType()->isIntOrIntVectorTy(1))
1658 return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1659
1660 // sext(A < B) + zext(A > B) => ucmp/scmp(A, B)
1661 CmpPredicate LTPred, GTPred;
1662 if (match(&I,
1663 m_c_Add(m_SExt(m_c_ICmp(LTPred, m_Value(A), m_Value(B))),
1664 m_ZExt(m_c_ICmp(GTPred, m_Deferred(A), m_Deferred(B))))) &&
1665 A->getType()->isIntOrIntVectorTy()) {
1666 if (ICmpInst::isGT(LTPred)) {
1667 std::swap(LTPred, GTPred);
1668 std::swap(A, B);
1669 }
1670
1671 if (ICmpInst::isLT(LTPred) && ICmpInst::isGT(GTPred) &&
1672 ICmpInst::isSigned(LTPred) == ICmpInst::isSigned(GTPred))
1673 return replaceInstUsesWith(
1675 Ty,
1676 ICmpInst::isSigned(LTPred) ? Intrinsic::scmp : Intrinsic::ucmp,
1677 {A, B}));
1678 }
1679
1680 // A+B --> A|B iff A and B have no bits set in common.
1681 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1682 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
1683 return BinaryOperator::CreateDisjointOr(LHS, RHS);
1684
1685 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1686 return Ext;
1687
1688 // (add (xor A, B) (and A, B)) --> (or A, B)
1689 // (add (and A, B) (xor A, B)) --> (or A, B)
1690 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1692 return BinaryOperator::CreateOr(A, B);
1693
1694 // (add (or A, B) (and A, B)) --> (add A, B)
1695 // (add (and A, B) (or A, B)) --> (add A, B)
1696 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1698 // Replacing operands in-place to preserve nuw/nsw flags.
1699 replaceOperand(I, 0, A);
1700 replaceOperand(I, 1, B);
1701 return &I;
1702 }
1703
1704 // (add A (or A, -A)) --> (and (add A, -1) A)
1705 // (add A (or -A, A)) --> (and (add A, -1) A)
1706 // (add (or A, -A) A) --> (and (add A, -1) A)
1707 // (add (or -A, A) A) --> (and (add A, -1) A)
1709 m_Deferred(A)))))) {
1710 Value *Add =
1712 I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1713 return BinaryOperator::CreateAnd(Add, A);
1714 }
1715
1716 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1717 // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1718 if (match(&I,
1720 m_AllOnes()))) {
1722 Value *Dec = Builder.CreateAdd(A, AllOnes);
1723 Value *Not = Builder.CreateXor(A, AllOnes);
1724 return BinaryOperator::CreateAnd(Dec, Not);
1725 }
1726
1727 // Disguised reassociation/factorization:
1728 // ~(A * C1) + A
1729 // ((A * -C1) - 1) + A
1730 // ((A * -C1) + A) - 1
1731 // (A * (1 - C1)) - 1
1732 if (match(&I,
1734 m_Deferred(A)))) {
1735 Type *Ty = I.getType();
1736 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1737 Value *NewMul = Builder.CreateMul(A, NewMulC);
1738 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1739 }
1740
1741 // (A * -2**C) + B --> B - (A << C)
1742 const APInt *NegPow2C;
1743 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1744 m_Value(B)))) {
1745 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1746 Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1747 return BinaryOperator::CreateSub(B, Shl);
1748 }
1749
1750 // Canonicalize signum variant that ends in add:
1751 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1756 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1757 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1758 return BinaryOperator::CreateOr(LHS, Zext);
1759 }
1760
1761 {
1762 Value *Cond, *Ext;
1763 Constant *C;
1764 // (add X, (sext/zext (icmp eq X, C)))
1765 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X)
1766 auto CondMatcher =
1768 m_ImmConstant(C)));
1769
1770 if (match(&I,
1771 m_c_Add(m_Value(A), m_Value(Ext, m_ZExtOrSExt(CondMatcher)))) &&
1772 Ext->hasOneUse()) {
1773 Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C)
1776 }
1777 }
1778
1779 // (add (add A, 1), (sext (icmp ne A, 0))) => call umax(A, 1)
1780 if (match(LHS, m_Add(m_Value(A), m_One())) &&
1783 Value *OneConst = ConstantInt::get(A->getType(), 1);
1784 Value *UMax = Builder.CreateBinaryIntrinsic(Intrinsic::umax, A, OneConst);
1785 return replaceInstUsesWith(I, UMax);
1786 }
1787
1788 if (Instruction *Ashr = foldAddToAshr(I))
1789 return Ashr;
1790
1791 // Ceiling division by power-of-2:
1792 // (X >> log2(N)) + zext(X & (N-1) != 0) --> (X + (N-1)) >> log2(N)
1793 // This is valid when adding (N-1) to X doesn't overflow.
1794 {
1795 Value *X;
1796 const APInt *ShiftAmt, *Mask;
1797 CmpPredicate Pred;
1798
1799 // Match: (X >> C) + zext((X & Mask) != 0)
1800 // or: zext((X & Mask) != 0) + (X >> C)
1801 if (match(&I, m_c_Add(m_OneUse(m_LShr(m_Value(X), m_APInt(ShiftAmt))),
1804 m_And(m_Deferred(X), m_LowBitMask(Mask)),
1805 m_ZeroInt())))) &&
1806 Mask->popcount() == *ShiftAmt) {
1807
1808 // Check if X + Mask doesn't overflow
1809 Constant *MaskC = ConstantInt::get(X->getType(), *Mask);
1810 if (willNotOverflowUnsignedAdd(X, MaskC, I)) {
1811 // (X + Mask) >> ShiftAmt
1812 Value *Add = Builder.CreateNUWAdd(X, MaskC);
1813 return BinaryOperator::CreateLShr(
1814 Add, ConstantInt::get(X->getType(), *ShiftAmt));
1815 }
1816 }
1817 }
1818
1819 // (~X) + (~Y) --> -2 - (X + Y)
1820 {
1821 // To ensure we can save instructions we need to ensure that we consume both
1822 // LHS/RHS (i.e they have a `not`).
1823 bool ConsumesLHS, ConsumesRHS;
1824 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
1825 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
1828 assert(NotLHS != nullptr && NotRHS != nullptr &&
1829 "isFreeToInvert desynced with getFreelyInverted");
1830 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1831 return BinaryOperator::CreateSub(
1832 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
1833 }
1834 }
1835
1837 return R;
1838
1839 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1840 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1841 // computeKnownBits.
1842 bool Changed = false;
1843 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
1844 Changed = true;
1845 I.setHasNoSignedWrap(true);
1846 }
1847 if (!I.hasNoUnsignedWrap() &&
1848 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
1849 Changed = true;
1850 I.setHasNoUnsignedWrap(true);
1851 }
1852
1854 return V;
1855
1856 if (Instruction *V =
1858 return V;
1859
1861 return SatAdd;
1862
1863 // usub.sat(A, B) + B => umax(A, B)
1864 if (match(&I, m_c_BinOp(
1865 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1866 m_Deferred(B)))) {
1867 return replaceInstUsesWith(I,
1868 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1869 }
1870
1871 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1872 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1873 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1875 return replaceInstUsesWith(
1876 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1877 {Builder.CreateOr(A, B)}));
1878
1879 // Fold the log2_ceil idiom:
1880 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1881 // -->
1882 // BW - ctlz(A - 1, false)
1883 const APInt *XorC;
1884 CmpPredicate Pred;
1885 if (match(&I,
1886 m_c_Add(
1887 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1888 m_One())),
1891 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1892 m_APInt(XorC))))))) &&
1893 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1894 *XorC == A->getType()->getScalarSizeInBits() - 1) {
1896 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1897 {Sub, Builder.getFalse()});
1898 Value *Ret = Builder.CreateSub(
1899 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1900 Ctlz, "", /*HasNUW=*/true, /*HasNSW=*/true);
1901 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1902 }
1903
1904 if (Instruction *Res = foldSquareSumInt(I))
1905 return Res;
1906
1907 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1908 return Res;
1909
1911 return Res;
1912
1913 // Re-enqueue users of the induction variable of add recurrence if we infer
1914 // new nuw/nsw flags.
1915 if (Changed) {
1916 PHINode *PHI;
1917 Value *Start, *Step;
1918 if (matchSimpleRecurrence(&I, PHI, Start, Step))
1920 }
1921
1922 return Changed ? &I : nullptr;
1923}
1924
1925/// Eliminate an op from a linear interpolation (lerp) pattern.
1927 InstCombiner::BuilderTy &Builder) {
1928 Value *X, *Y, *Z;
1931 m_Value(Z))))),
1933 return nullptr;
1934
1935 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1936 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1937 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1938 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1939}
1940
1941/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1943 InstCombiner::BuilderTy &Builder) {
1944 assert((I.getOpcode() == Instruction::FAdd ||
1945 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1946 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1947 "FP factorization requires FMF");
1948
1949 if (Instruction *Lerp = factorizeLerp(I, Builder))
1950 return Lerp;
1951
1952 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1953 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1954 return nullptr;
1955
1956 Value *X, *Y, *Z;
1957 bool IsFMul;
1958 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1959 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1960 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1961 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1962 IsFMul = true;
1963 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1964 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1965 IsFMul = false;
1966 else
1967 return nullptr;
1968
1969 // (X * Z) + (Y * Z) --> (X + Y) * Z
1970 // (X * Z) - (Y * Z) --> (X - Y) * Z
1971 // (X / Z) + (Y / Z) --> (X + Y) / Z
1972 // (X / Z) - (Y / Z) --> (X - Y) / Z
1973 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1974 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1975 : Builder.CreateFSubFMF(X, Y, &I);
1976
1977 // Bail out if we just created a denormal constant.
1978 // TODO: This is copied from a previous implementation. Is it necessary?
1979 const APFloat *C;
1980 if (match(XY, m_APFloat(C)) && !C->isNormal())
1981 return nullptr;
1982
1983 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1985}
1986
1988 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1989 I.getFastMathFlags(),
1991 return replaceInstUsesWith(I, V);
1992
1994 return &I;
1995
1997 return X;
1998
2000 return Phi;
2001
2002 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
2003 return FoldedFAdd;
2004
2005 // (-X) + Y --> Y - X
2006 Value *X, *Y;
2007 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
2009
2010 // Similar to above, but look through fmul/fdiv for the negated term.
2011 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
2012 Value *Z;
2014 m_Value(Z)))) {
2015 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
2016 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
2017 }
2018 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
2019 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
2021 m_Value(Z))) ||
2023 m_Value(Z)))) {
2024 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
2025 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
2026 }
2027
2028 // Check for (fadd double (sitofp x), y), see if we can merge this into an
2029 // integer add followed by a promotion.
2030 if (Instruction *R = foldFBinOpOfIntCasts(I))
2031 return R;
2032
2033 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2034 // Handle specials cases for FAdd with selects feeding the operation
2036 return replaceInstUsesWith(I, V);
2037
2038 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2040 return F;
2041
2043 return F;
2044
2045 // Try to fold fadd into start value of reduction intrinsic.
2046 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
2047 m_AnyZeroFP(), m_Value(X))),
2048 m_Value(Y)))) {
2049 // fadd (rdx 0.0, X), Y --> rdx Y, X
2050 return replaceInstUsesWith(
2051 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2052 {X->getType()}, {Y, X}, &I));
2053 }
2054 const APFloat *StartC, *C;
2055 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
2056 m_APFloat(StartC), m_Value(X)))) &&
2057 match(RHS, m_APFloat(C))) {
2058 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
2059 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
2060 return replaceInstUsesWith(
2061 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2062 {X->getType()}, {NewStartC, X}, &I));
2063 }
2064
2065 // (X * MulC) + X --> X * (MulC + 1.0)
2066 Constant *MulC;
2067 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
2068 m_Deferred(X)))) {
2070 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
2071 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
2072 }
2073
2074 // (-X - Y) + (X + Z) --> Z - Y
2076 m_c_FAdd(m_Deferred(X), m_Value(Z)))))
2077 return BinaryOperator::CreateFSubFMF(Z, Y, &I);
2078
2079 if (Value *V = FAddCombine(Builder).simplify(&I))
2080 return replaceInstUsesWith(I, V);
2081 }
2082
2083 // minumum(X, Y) + maximum(X, Y) => X + Y.
2084 if (match(&I,
2085 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
2086 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
2087 m_Deferred(Y))))) {
2089 // We cannot preserve ninf if nnan flag is not set.
2090 // If X is NaN and Y is Inf then in original program we had NaN + NaN,
2091 // while in optimized version NaN + Inf and this is a poison with ninf flag.
2092 if (!Result->hasNoNaNs())
2093 Result->setHasNoInfs(false);
2094 return Result;
2095 }
2096
2097 return nullptr;
2098}
2099
2102
2103 if (LHS->getType() != RHS->getType())
2104 return Base;
2105
2106 // Collect all base pointers of LHS.
2108 Value *Ptr = LHS;
2109 while (true) {
2110 Ptrs.insert(Ptr);
2111 if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
2112 Ptr = GEP->getPointerOperand();
2113 else
2114 break;
2115 }
2116
2117 // Find common base and collect RHS GEPs.
2118 while (true) {
2119 if (Ptrs.contains(RHS)) {
2120 Base.Ptr = RHS;
2121 break;
2122 }
2123
2124 if (auto *GEP = dyn_cast<GEPOperator>(RHS)) {
2125 Base.RHSGEPs.push_back(GEP);
2126 Base.RHSNW &= GEP->getNoWrapFlags();
2127 RHS = GEP->getPointerOperand();
2128 } else {
2129 // No common base.
2130 return Base;
2131 }
2132 }
2133
2134 // Collect LHS GEPs.
2135 while (true) {
2136 if (LHS == Base.Ptr)
2137 break;
2138
2139 auto *GEP = cast<GEPOperator>(LHS);
2140 Base.LHSGEPs.push_back(GEP);
2141 Base.LHSNW &= GEP->getNoWrapFlags();
2142 LHS = GEP->getPointerOperand();
2143 }
2144
2145 return Base;
2146}
2147
2149 unsigned NumGEPs = 0;
2150 auto ProcessGEPs = [&NumGEPs](ArrayRef<GEPOperator *> GEPs) {
2151 bool SeenMultiUse = false;
2152 for (GEPOperator *GEP : GEPs) {
2153 // Only count multi-use GEPs, excluding the first one. For the first one,
2154 // we will directly reuse the offset. For one-use GEPs, their offset will
2155 // be folded into a multi-use GEP.
2156 if (!GEP->hasOneUse()) {
2157 if (SeenMultiUse)
2158 ++NumGEPs;
2159 SeenMultiUse = true;
2160 }
2161 }
2162 };
2163 ProcessGEPs(LHSGEPs);
2164 ProcessGEPs(RHSGEPs);
2165 return NumGEPs > 2;
2166}
2167
2168/// Optimize pointer differences into the same array into a size. Consider:
2169/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
2170/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
2172 Type *Ty, bool IsNUW) {
2174 if (!Base.Ptr || Base.isExpensive())
2175 return nullptr;
2176
2177 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the
2178 // computed offset.
2179 // TODO: We should probably do this even if there is only one GEP.
2180 bool RewriteGEPs = !Base.LHSGEPs.empty() && !Base.RHSGEPs.empty();
2181
2182 Type *IdxTy = DL.getIndexType(LHS->getType());
2183 Value *Result = EmitGEPOffsets(Base.LHSGEPs, Base.LHSNW, IdxTy, RewriteGEPs);
2184 Value *Offset2 = EmitGEPOffsets(Base.RHSGEPs, Base.RHSNW, IdxTy, RewriteGEPs);
2185
2186 // If this is a single inbounds GEP and the original sub was nuw,
2187 // then the final multiplication is also nuw.
2188 if (auto *I = dyn_cast<OverflowingBinaryOperator>(Result))
2189 if (IsNUW && match(Offset2, m_Zero()) && Base.LHSNW.isInBounds() &&
2190 (I->use_empty() || I->hasOneUse()) && I->hasNoSignedWrap() &&
2191 !I->hasNoUnsignedWrap() &&
2192 ((I->getOpcode() == Instruction::Mul &&
2193 match(I->getOperand(1), m_NonNegative())) ||
2194 I->getOpcode() == Instruction::Shl))
2195 cast<Instruction>(I)->setHasNoUnsignedWrap();
2196
2197 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2198 // If both GEPs are inbounds, then the subtract does not have signed overflow.
2199 // If both GEPs are nuw and the original sub is nuw, the new sub is also nuw.
2200 if (!match(Offset2, m_Zero())) {
2201 Result =
2202 Builder.CreateSub(Result, Offset2, "gepdiff",
2203 IsNUW && Base.LHSNW.hasNoUnsignedWrap() &&
2204 Base.RHSNW.hasNoUnsignedWrap(),
2205 Base.LHSNW.isInBounds() && Base.RHSNW.isInBounds());
2206 }
2207
2208 return Builder.CreateIntCast(Result, Ty, true);
2209}
2210
2212 InstCombiner::BuilderTy &Builder) {
2213 Value *Op0 = I.getOperand(0);
2214 Value *Op1 = I.getOperand(1);
2215 Type *Ty = I.getType();
2216 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2217 if (!MinMax)
2218 return nullptr;
2219
2220 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2221 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2222 Value *X = MinMax->getLHS();
2223 Value *Y = MinMax->getRHS();
2224 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2225 (Op0->hasOneUse() || Op1->hasOneUse())) {
2226 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2227 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2228 return CallInst::Create(F, {X, Y});
2229 }
2230
2231 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2232 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2233 Value *Z;
2234 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2235 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2236 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2237 return BinaryOperator::CreateAdd(X, USub);
2238 }
2239 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2240 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2241 return BinaryOperator::CreateAdd(X, USub);
2242 }
2243 }
2244
2245 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2246 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2247 if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2248 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2249 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2250 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2251 return CallInst::Create(F, {Op0, Z});
2252 }
2253
2254 return nullptr;
2255}
2256
2258 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
2259 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
2261 return replaceInstUsesWith(I, V);
2262
2264 return X;
2265
2267 return Phi;
2268
2269 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2270
2271 // If this is a 'B = x-(-A)', change to B = x+A.
2272 // We deal with this without involving Negator to preserve NSW flag.
2273 if (Value *V = dyn_castNegVal(Op1)) {
2274 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
2275
2276 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2277 assert(BO->getOpcode() == Instruction::Sub &&
2278 "Expected a subtraction operator!");
2279 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2280 Res->setHasNoSignedWrap(true);
2281 } else {
2282 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2283 Res->setHasNoSignedWrap(true);
2284 }
2285
2286 return Res;
2287 }
2288
2289 // Try this before Negator to preserve NSW flag.
2291 return R;
2292
2293 Constant *C;
2294 if (match(Op0, m_ImmConstant(C))) {
2295 Value *X;
2296 Constant *C2;
2297
2298 // C-(X+C2) --> (C-C2)-X
2299 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
2300 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2301 // => (C-C2)-X can have NSW/NUW
2302 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
2303 BinaryOperator *Res =
2304 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
2305 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2306 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2307 WillNotSOV);
2308 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2309 OBO1->hasNoUnsignedWrap());
2310 return Res;
2311 }
2312 }
2313
2314 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2315 if (Instruction *Ext = narrowMathIfNoOverflow(I))
2316 return Ext;
2317
2318 bool Changed = false;
2319 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2320 Changed = true;
2321 I.setHasNoSignedWrap(true);
2322 }
2323 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2324 Changed = true;
2325 I.setHasNoUnsignedWrap(true);
2326 }
2327
2328 return Changed ? &I : nullptr;
2329 };
2330
2331 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2332 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2333 // a pure negation used by a select that looks like abs/nabs.
2334 bool IsNegation = match(Op0, m_ZeroInt());
2335 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
2336 const Instruction *UI = dyn_cast<Instruction>(U);
2337 if (!UI)
2338 return false;
2339 return match(UI, m_c_Select(m_Specific(Op1), m_Specific(&I)));
2340 })) {
2341 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
2342 I.hasNoSignedWrap(),
2343 Op1, *this))
2344 return BinaryOperator::CreateAdd(NegOp1, Op0);
2345 }
2346 if (IsNegation)
2347 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2348
2349 // (A*B)-(A*C) -> A*(B-C) etc
2351 return replaceInstUsesWith(I, V);
2352
2353 if (I.getType()->isIntOrIntVectorTy(1))
2354 return BinaryOperator::CreateXor(Op0, Op1);
2355
2356 // Replace (-1 - A) with (~A).
2357 if (match(Op0, m_AllOnes()))
2358 return BinaryOperator::CreateNot(Op1);
2359
2360 // (X + -1) - Y --> ~Y + X
2361 Value *X, *Y;
2362 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2363 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2364
2365 // if (C1 & C2) == C2 then (X & C1) - (X & C2) -> X & (C1 ^ C2)
2366 Constant *C1, *C2;
2367 if (match(Op0, m_And(m_Value(X), m_ImmConstant(C1))) &&
2368 match(Op1, m_And(m_Specific(X), m_ImmConstant(C2)))) {
2369 Value *AndC = ConstantFoldBinaryInstruction(Instruction::And, C1, C2);
2370 if (C2->isElementWiseEqual(AndC))
2371 return BinaryOperator::CreateAnd(
2372 X, ConstantFoldBinaryInstruction(Instruction::Xor, C1, C2));
2373 }
2374
2375 // Reassociate sub/add sequences to create more add instructions and
2376 // reduce dependency chains:
2377 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2378 Value *Z;
2380 m_Value(Z))))) {
2381 Value *XZ = Builder.CreateAdd(X, Z);
2382 Value *YW = Builder.CreateAdd(Y, Op1);
2383 return BinaryOperator::CreateSub(XZ, YW);
2384 }
2385
2386 // ((X - Y) - Op1) --> X - (Y + Op1)
2387 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2388 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0);
2389 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2390 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2391 Value *Add = Builder.CreateAdd(Y, Op1, "", /*HasNUW=*/HasNUW,
2392 /*HasNSW=*/HasNSW);
2393 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
2394 Sub->setHasNoUnsignedWrap(HasNUW);
2395 Sub->setHasNoSignedWrap(HasNSW);
2396 return Sub;
2397 }
2398
2399 {
2400 // (X + Z) - (Y + Z) --> (X - Y)
2401 // This is done in other passes, but we want to be able to consume this
2402 // pattern in InstCombine so we can generate it without creating infinite
2403 // loops.
2404 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
2405 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
2406 return BinaryOperator::CreateSub(X, Y);
2407
2408 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2409 Constant *CX, *CY;
2410 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
2411 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
2412 Value *OpsSub = Builder.CreateSub(X, Y);
2413 Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
2414 return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2415 }
2416 }
2417
2418 {
2419 Value *W, *Z;
2420 if (match(Op0, m_AddLike(m_Value(W), m_Value(X))) &&
2421 match(Op1, m_AddLike(m_Value(Y), m_Value(Z)))) {
2422 Instruction *R = nullptr;
2423 if (W == Y)
2424 R = BinaryOperator::CreateSub(X, Z);
2425 else if (W == Z)
2426 R = BinaryOperator::CreateSub(X, Y);
2427 else if (X == Y)
2428 R = BinaryOperator::CreateSub(W, Z);
2429 else if (X == Z)
2430 R = BinaryOperator::CreateSub(W, Y);
2431 if (R) {
2432 bool NSW = I.hasNoSignedWrap() &&
2433 match(Op0, m_NSWAddLike(m_Value(), m_Value())) &&
2434 match(Op1, m_NSWAddLike(m_Value(), m_Value()));
2435
2436 bool NUW = I.hasNoUnsignedWrap() &&
2437 match(Op1, m_NUWAddLike(m_Value(), m_Value()));
2438 R->setHasNoSignedWrap(NSW);
2439 R->setHasNoUnsignedWrap(NUW);
2440 return R;
2441 }
2442 }
2443 }
2444
2445 // (~X) - (~Y) --> Y - X
2446 {
2447 // Need to ensure we can consume at least one of the `not` instructions,
2448 // otherwise this can inf loop.
2449 bool ConsumesOp0, ConsumesOp1;
2450 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
2451 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
2452 (ConsumesOp0 || ConsumesOp1)) {
2453 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
2454 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
2455 assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2456 "isFreeToInvert desynced with getFreelyInverted");
2457 return BinaryOperator::CreateSub(NotOp1, NotOp0);
2458 }
2459 }
2460
2461 auto m_AddRdx = [](Value *&Vec) {
2462 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2463 };
2464 Value *V0, *V1;
2465 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2466 V0->getType() == V1->getType()) {
2467 // Difference of sums is sum of differences:
2468 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2469 Value *Sub = Builder.CreateSub(V0, V1);
2470 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2471 {Sub->getType()}, {Sub});
2472 return replaceInstUsesWith(I, Rdx);
2473 }
2474
2475 if (Constant *C = dyn_cast<Constant>(Op0)) {
2476 Value *X;
2477 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2478 // C - (zext bool) --> bool ? C - 1 : C
2480 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2481 // C - (sext bool) --> bool ? C + 1 : C
2483
2484 // C - ~X == X + (1+C)
2485 if (match(Op1, m_Not(m_Value(X))))
2486 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2487
2488 // Try to fold constant sub into select arguments.
2489 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2490 if (Instruction *R = FoldOpIntoSelect(I, SI))
2491 return R;
2492
2493 // Try to fold constant sub into PHI values.
2494 if (PHINode *PN = dyn_cast<PHINode>(Op1))
2495 if (Instruction *R = foldOpIntoPhi(I, PN))
2496 return R;
2497
2498 Constant *C2;
2499
2500 // C-(C2-X) --> X+(C-C2)
2501 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2502 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2503 }
2504
2505 const APInt *Op0C;
2506 if (match(Op0, m_APInt(Op0C))) {
2507 if (Op0C->isMask()) {
2508 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2509 // zero. We don't use information from dominating conditions so this
2510 // transform is easier to reverse if necessary.
2513 if ((*Op0C | RHSKnown.Zero).isAllOnes())
2514 return BinaryOperator::CreateXor(Op1, Op0);
2515 }
2516
2517 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2518 // (C3 - ((C2 & C3) - 1)) is pow2
2519 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2520 // C2 is negative pow2 || sub nuw
2521 const APInt *C2, *C3;
2522 BinaryOperator *InnerSub;
2523 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2524 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2525 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2526 APInt C2AndC3 = *C2 & *C3;
2527 APInt C2AndC3Minus1 = C2AndC3 - 1;
2528 APInt C2AddC3 = *C2 + *C3;
2529 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2530 C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2531 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2532 return BinaryOperator::CreateAdd(
2533 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2534 }
2535 }
2536 }
2537
2538 {
2539 Value *Y;
2540 // X-(X+Y) == -Y X-(Y+X) == -Y
2541 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2543
2544 // (X-Y)-X == -Y
2545 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2547 }
2548
2549 // (sub (or A, B) (and A, B)) --> (xor A, B)
2550 {
2551 Value *A, *B;
2552 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2553 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2554 return BinaryOperator::CreateXor(A, B);
2555 }
2556
2557 // (sub (add A, B) (or A, B)) --> (and A, B)
2558 {
2559 Value *A, *B;
2560 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2561 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2562 return BinaryOperator::CreateAnd(A, B);
2563 }
2564
2565 // (sub (add A, B) (and A, B)) --> (or A, B)
2566 {
2567 Value *A, *B;
2568 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2570 return BinaryOperator::CreateOr(A, B);
2571 }
2572
2573 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2574 {
2575 Value *A, *B;
2576 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2577 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2578 (Op0->hasOneUse() || Op1->hasOneUse()))
2580 }
2581
2582 // (sub (or A, B), (xor A, B)) --> (and A, B)
2583 {
2584 Value *A, *B;
2585 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2586 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2587 return BinaryOperator::CreateAnd(A, B);
2588 }
2589
2590 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2591 {
2592 Value *A, *B;
2593 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2594 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2595 (Op0->hasOneUse() || Op1->hasOneUse()))
2597 }
2598
2599 {
2600 Value *Y;
2601 // ((X | Y) - X) --> (~X & Y)
2602 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2603 return BinaryOperator::CreateAnd(
2604 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2605 }
2606
2607 {
2608 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2609 Value *X;
2610 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2611 m_OneUse(m_Neg(m_Value(X))))))) {
2613 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2614 }
2615 }
2616
2617 {
2618 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2619 Constant *C;
2620 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2623 }
2624 }
2625
2626 {
2627 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2628 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2629 Value *C, *X;
2630 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2631 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) &&
2632 match(RHS, m_SExt(m_Value(C))) &&
2633 (C->getType()->getScalarSizeInBits() == 1);
2634 };
2635 if (m_SubXorCmp(Op0, Op1))
2637 if (m_SubXorCmp(Op1, Op0))
2639 }
2640
2642 return R;
2643
2645 return R;
2646
2647 {
2648 // If we have a subtraction between some value and a select between
2649 // said value and something else, sink subtraction into select hands, i.e.:
2650 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2651 // ->
2652 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2653 // or
2654 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2655 // ->
2656 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2657 // This will result in select between new subtraction and 0.
2658 auto SinkSubIntoSelect =
2659 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2660 auto SubBuilder) -> Instruction * {
2661 Value *Cond, *TrueVal, *FalseVal;
2662 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2663 m_Value(FalseVal)))))
2664 return nullptr;
2665 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2666 return nullptr;
2667 // While it is really tempting to just create two subtractions and let
2668 // InstCombine fold one of those to 0, it isn't possible to do so
2669 // because of worklist visitation order. So ugly it is.
2670 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2671 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2672 Constant *Zero = Constant::getNullValue(Ty);
2673 SelectInst *NewSel =
2674 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2675 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2676 // Preserve prof metadata if any.
2677 NewSel->copyMetadata(cast<Instruction>(*Select));
2678 return NewSel;
2679 };
2680 if (Instruction *NewSel = SinkSubIntoSelect(
2681 /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2682 [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2683 return Builder->CreateSub(OtherHandOfSelect,
2684 /*OtherHandOfSub=*/Op1);
2685 }))
2686 return NewSel;
2687 if (Instruction *NewSel = SinkSubIntoSelect(
2688 /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2689 [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2690 return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2691 OtherHandOfSelect);
2692 }))
2693 return NewSel;
2694 }
2695
2696 // (X - (X & Y)) --> (X & ~Y)
2697 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2698 (Op1->hasOneUse() || isa<Constant>(Y)))
2699 return BinaryOperator::CreateAnd(
2700 Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2701
2702 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2703 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2704 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2705 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2706 // As long as Y is freely invertible, this will be neutral or a win.
2707 // Note: We don't generate the inverse max/min, just create the 'not' of
2708 // it and let other folds do the rest.
2709 if (match(Op0, m_Not(m_Value(X))) &&
2710 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2711 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2712 Value *Not = Builder.CreateNot(Op1);
2713 return BinaryOperator::CreateSub(Not, X);
2714 }
2715 if (match(Op1, m_Not(m_Value(X))) &&
2716 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2717 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2718 Value *Not = Builder.CreateNot(Op0);
2719 return BinaryOperator::CreateSub(X, Not);
2720 }
2721
2722 // Optimize pointer differences into the same array into a size. Consider:
2723 // &A[10] - &A[0]: we should compile this to "10".
2724 Value *LHSOp, *RHSOp;
2725 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2726 match(Op1, m_PtrToInt(m_Value(RHSOp))))
2727 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2728 I.hasNoUnsignedWrap()))
2729 return replaceInstUsesWith(I, Res);
2730
2731 // trunc(p)-trunc(q) -> trunc(p-q)
2732 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2733 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2734 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2735 /* IsNUW */ false))
2736 return replaceInstUsesWith(I, Res);
2737
2738 if (match(Op0, m_ZExt(m_PtrToIntSameSize(DL, m_Value(LHSOp)))) &&
2739 match(Op1, m_ZExtOrSelf(m_PtrToInt(m_Value(RHSOp))))) {
2740 if (auto *GEP = dyn_cast<GEPOperator>(LHSOp)) {
2741 if (GEP->getPointerOperand() == RHSOp) {
2742 if (GEP->hasNoUnsignedWrap() || GEP->hasNoUnsignedSignedWrap()) {
2743 Value *Offset = EmitGEPOffset(GEP);
2744 Value *Res = GEP->hasNoUnsignedWrap()
2746 Offset, I.getType(), "",
2747 /*IsNonNeg=*/GEP->hasNoUnsignedSignedWrap())
2748 : Builder.CreateSExt(Offset, I.getType());
2749 return replaceInstUsesWith(I, Res);
2750 }
2751 }
2752 }
2753 }
2754
2755 // Canonicalize a shifty way to code absolute value to the common pattern.
2756 // There are 2 potential commuted variants.
2757 // We're relying on the fact that we only do this transform when the shift has
2758 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2759 // instructions).
2760 Value *A;
2761 const APInt *ShAmt;
2762 Type *Ty = I.getType();
2763 unsigned BitWidth = Ty->getScalarSizeInBits();
2764 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2765 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2766 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2767 // B = ashr i32 A, 31 ; smear the sign bit
2768 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2769 // --> (A < 0) ? -A : A
2770 Value *IsNeg = Builder.CreateIsNeg(A);
2771 // Copy the nsw flags from the sub to the negate.
2772 Value *NegA = I.hasNoUnsignedWrap()
2773 ? Constant::getNullValue(A->getType())
2774 : Builder.CreateNeg(A, "", I.hasNoSignedWrap());
2775 return SelectInst::Create(IsNeg, NegA, A);
2776 }
2777
2778 // If we are subtracting a low-bit masked subset of some value from an add
2779 // of that same value with no low bits changed, that is clearing some low bits
2780 // of the sum:
2781 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2782 const APInt *AddC, *AndC;
2783 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2784 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2785 unsigned Cttz = AddC->countr_zero();
2786 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2787 if ((HighMask & *AndC).isZero())
2788 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2789 }
2790
2791 if (Instruction *V =
2793 return V;
2794
2795 // X - usub.sat(X, Y) => umin(X, Y)
2796 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2797 m_Value(Y)))))
2798 return replaceInstUsesWith(
2799 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2800
2801 // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2802 // TODO: The one-use restriction is not strictly necessary, but it may
2803 // require improving other pattern matching and/or codegen.
2804 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2805 return replaceInstUsesWith(
2806 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2807
2808 // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2809 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2810 return replaceInstUsesWith(
2811 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2812
2813 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2814 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2815 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2816 return BinaryOperator::CreateNeg(USub);
2817 }
2818
2819 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2820 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2821 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2822 return BinaryOperator::CreateNeg(USub);
2823 }
2824
2825 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2826 if (match(Op0, m_SpecificInt(BitWidth)) &&
2827 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2828 return replaceInstUsesWith(
2829 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2830 {Builder.CreateNot(X)}));
2831
2832 // Reduce multiplies for difference-of-squares by factoring:
2833 // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2834 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2835 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2836 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2837 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2838 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2839 OBO1->hasNoSignedWrap() && BitWidth > 2;
2840 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2841 OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2842 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2843 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2844 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2845 return replaceInstUsesWith(I, Mul);
2846 }
2847
2848 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2849 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
2851 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2852 Value *Sub =
2853 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2854 Value *Call =
2855 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
2856 return replaceInstUsesWith(I, Call);
2857 }
2858 }
2859
2861 return Res;
2862
2863 // (sub (sext (add nsw (X, Y)), sext (X))) --> (sext (Y))
2864 if (match(Op1, m_SExtLike(m_Value(X))) &&
2866 Value *SExtY = Builder.CreateSExt(Y, I.getType());
2867 return replaceInstUsesWith(I, SExtY);
2868 }
2869
2870 // (sub[ nsw] (sext (add nsw (X, Y)), sext (add nsw (X, Z)))) -->
2871 // --> (sub[ nsw] (sext (Y), sext (Z)))
2872 {
2873 Value *Z, *Add0, *Add1;
2874 if (match(Op0, m_SExtLike(m_Value(Add0))) &&
2875 match(Op1, m_SExtLike(m_Value(Add1))) &&
2876 ((match(Add0, m_NSWAdd(m_Value(X), m_Value(Y))) &&
2877 match(Add1, m_c_NSWAdd(m_Specific(X), m_Value(Z)))) ||
2878 (match(Add0, m_NSWAdd(m_Value(Y), m_Value(X))) &&
2879 match(Add1, m_c_NSWAdd(m_Specific(X), m_Value(Z)))))) {
2880 unsigned NumOfNewInstrs = 0;
2881 // Non-constant Y, Z require new SExt.
2882 NumOfNewInstrs += !isa<Constant>(Y) ? 1 : 0;
2883 NumOfNewInstrs += !isa<Constant>(Z) ? 1 : 0;
2884 // Check if we can trade some of the old instructions for the new ones.
2885 unsigned NumOfDeadInstrs = 0;
2886 if (Op0->hasOneUse()) {
2887 // If Op0 (sext) has multiple uses, then we keep it
2888 // and the add that it uses, otherwise, we can remove
2889 // the sext and probably the add (depending on the number of its uses).
2890 ++NumOfDeadInstrs;
2891 NumOfDeadInstrs += Add0->hasOneUse() ? 1 : 0;
2892 }
2893 if (Op1->hasOneUse()) {
2894 ++NumOfDeadInstrs;
2895 NumOfDeadInstrs += Add1->hasOneUse() ? 1 : 0;
2896 }
2897 if (NumOfDeadInstrs >= NumOfNewInstrs) {
2898 Value *SExtY = Builder.CreateSExt(Y, I.getType());
2899 Value *SExtZ = Builder.CreateSExt(Z, I.getType());
2900 Value *Sub = Builder.CreateSub(SExtY, SExtZ, "",
2901 /*HasNUW=*/false,
2902 /*HasNSW=*/I.hasNoSignedWrap());
2903 return replaceInstUsesWith(I, Sub);
2904 }
2905 }
2906 }
2907
2908 return TryToNarrowDeduceFlags();
2909}
2910
2911/// This eliminates floating-point negation in either 'fneg(X)' or
2912/// 'fsub(-0.0, X)' form by combining into a constant operand.
2914 // This is limited with one-use because fneg is assumed better for
2915 // reassociation and cheaper in codegen than fmul/fdiv.
2916 // TODO: Should the m_OneUse restriction be removed?
2917 Instruction *FNegOp;
2918 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2919 return nullptr;
2920
2921 Value *X;
2922 Constant *C;
2923
2924 // Fold negation into constant operand.
2925 // -(X * C) --> X * (-C)
2926 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2927 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2928 FastMathFlags FNegF = I.getFastMathFlags();
2929 FastMathFlags OpF = FNegOp->getFastMathFlags();
2930 FastMathFlags FMF = FastMathFlags::unionValue(FNegF, OpF) |
2932 FMF.setNoInfs(FNegF.noInfs() && OpF.noInfs());
2933 return BinaryOperator::CreateFMulFMF(X, NegC, FMF);
2934 }
2935 // -(X / C) --> X / (-C)
2936 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2937 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2938 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2939 // -(C / X) --> (-C) / X
2940 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2941 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2943
2944 // Intersect 'nsz' and 'ninf' because those special value exceptions may
2945 // not apply to the fdiv. Everything else propagates from the fneg.
2946 // TODO: We could propagate nsz/ninf from fdiv alone?
2947 FastMathFlags FMF = I.getFastMathFlags();
2948 FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2949 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2950 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2951 return FDiv;
2952 }
2953 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2954 // -(X + C) --> -X + -C --> -C - X
2955 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2956 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2957 return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2958
2959 return nullptr;
2960}
2961
2962Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
2964 Value *X, *Y;
2965 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
2966 // Push into RHS which is more likely to simplify (const or another fneg).
2967 // FIXME: It would be better to invert the transform.
2968 return cast<Instruction>(Builder.CreateFMulFMF(
2970 }
2971
2972 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
2973 return cast<Instruction>(Builder.CreateFDivFMF(
2975 }
2976
2977 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
2978 // Make sure to preserve flags and metadata on the call.
2979 if (II->getIntrinsicID() == Intrinsic::ldexp) {
2980 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
2981 CallInst *New =
2982 Builder.CreateCall(II->getCalledFunction(),
2983 {Builder.CreateFNegFMF(II->getArgOperand(0), FMF),
2984 II->getArgOperand(1)});
2985 New->setFastMathFlags(FMF);
2986 New->copyMetadata(*II);
2987 return New;
2988 }
2989 }
2990
2991 return nullptr;
2992}
2993
2995 Value *Op = I.getOperand(0);
2996
2997 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2998 getSimplifyQuery().getWithInstruction(&I)))
2999 return replaceInstUsesWith(I, V);
3000
3002 return X;
3003
3004 Value *X, *Y;
3005
3006 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
3007 if (I.hasNoSignedZeros() &&
3010
3011 Value *OneUse;
3012 if (!match(Op, m_OneUse(m_Value(OneUse))))
3013 return nullptr;
3014
3015 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
3016 return replaceInstUsesWith(I, R);
3017
3018 // Try to eliminate fneg if at least 1 arm of the select is negated.
3019 Value *Cond;
3020 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
3021 // Unlike most transforms, this one is not safe to propagate nsz unless
3022 // it is present on the original select. We union the flags from the select
3023 // and fneg and then remove nsz if needed.
3024 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
3025 S->copyFastMathFlags(&I);
3026 if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
3027 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
3028 S->setFastMathFlags(FMF);
3029 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
3030 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
3031 S->setHasNoSignedZeros(false);
3032 }
3033 };
3034 // -(Cond ? -P : Y) --> Cond ? P : -Y
3035 Value *P;
3036 if (match(X, m_FNeg(m_Value(P)))) {
3037 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
3038 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
3039 propagateSelectFMF(NewSel, P == Y);
3040 return NewSel;
3041 }
3042 // -(Cond ? X : -P) --> Cond ? -X : P
3043 if (match(Y, m_FNeg(m_Value(P)))) {
3044 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
3045 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
3046 propagateSelectFMF(NewSel, P == X);
3047 return NewSel;
3048 }
3049
3050 // -(Cond ? X : C) --> Cond ? -X : -C
3051 // -(Cond ? C : Y) --> Cond ? -C : -Y
3052 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) {
3053 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
3054 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
3055 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY);
3056 propagateSelectFMF(NewSel, /*CommonOperand=*/true);
3057 return NewSel;
3058 }
3059 }
3060
3061 // fneg (copysign x, y) -> copysign x, (fneg y)
3062 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
3063 // The source copysign has an additional value input, so we can't propagate
3064 // flags the copysign doesn't also have.
3065 FastMathFlags FMF = I.getFastMathFlags();
3066 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
3067 Value *NegY = Builder.CreateFNegFMF(Y, FMF);
3068 Value *NewCopySign = Builder.CreateCopySign(X, NegY, FMF);
3069 return replaceInstUsesWith(I, NewCopySign);
3070 }
3071
3072 // fneg (shuffle x, Mask) --> shuffle (fneg x), Mask
3073 ArrayRef<int> Mask;
3074 if (match(OneUse, m_Shuffle(m_Value(X), m_Poison(), m_Mask(Mask))))
3075 return new ShuffleVectorInst(Builder.CreateFNegFMF(X, &I), Mask);
3076
3077 // fneg (reverse x) --> reverse (fneg x)
3078 if (match(OneUse, m_VecReverse(m_Value(X)))) {
3080 return replaceInstUsesWith(I, Reverse);
3081 }
3082
3083 return nullptr;
3084}
3085
3087 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
3088 I.getFastMathFlags(),
3089 getSimplifyQuery().getWithInstruction(&I)))
3090 return replaceInstUsesWith(I, V);
3091
3093 return X;
3094
3096 return Phi;
3097
3098 // Subtraction from -0.0 is the canonical form of fneg.
3099 // fsub -0.0, X ==> fneg X
3100 // fsub nsz 0.0, X ==> fneg nsz X
3101 //
3102 // FIXME This matcher does not respect FTZ or DAZ yet:
3103 // fsub -0.0, Denorm ==> +-0
3104 // fneg Denorm ==> -Denorm
3105 Value *Op;
3106 if (match(&I, m_FNeg(m_Value(Op))))
3108
3110 return X;
3111
3112 if (Instruction *R = foldFBinOpOfIntCasts(I))
3113 return R;
3114
3115 Value *X, *Y;
3116 Constant *C;
3117
3118 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3119 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
3120 // Canonicalize to fadd to make analysis easier.
3121 // This can also help codegen because fadd is commutative.
3122 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
3123 // killed later. We still limit that particular transform with 'hasOneUse'
3124 // because an fneg is assumed better/cheaper than a generic fsub.
3125 if (I.hasNoSignedZeros() ||
3126 cannotBeNegativeZero(Op0, getSimplifyQuery().getWithInstruction(&I))) {
3127 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
3128 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
3129 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
3130 }
3131 }
3132
3133 // (-X) - Op1 --> -(X + Op1)
3134 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
3135 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
3136 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
3138 }
3139
3140 if (isa<Constant>(Op0))
3141 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3142 if (Instruction *NV = FoldOpIntoSelect(I, SI))
3143 return NV;
3144
3145 // X - C --> X + (-C)
3146 // But don't transform constant expressions because there's an inverse fold
3147 // for X + (-Y) --> X - Y.
3148 if (match(Op1, m_ImmConstant(C)))
3149 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
3150 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
3151
3152 // X - (-Y) --> X + Y
3153 if (match(Op1, m_FNeg(m_Value(Y))))
3154 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
3155
3156 // Similar to above, but look through a cast of the negated value:
3157 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
3158 Type *Ty = I.getType();
3159 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
3161
3162 // X - (fpext(-Y)) --> X + fpext(Y)
3163 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
3165
3166 // Similar to above, but look through fmul/fdiv of the negated value:
3167 // Op0 - (-X * Y) --> Op0 + (X * Y)
3168 // Op0 - (Y * -X) --> Op0 + (X * Y)
3169 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
3171 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
3172 }
3173 // Op0 - (-X / Y) --> Op0 + (X / Y)
3174 // Op0 - (X / -Y) --> Op0 + (X / Y)
3175 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
3176 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
3177 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
3178 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
3179 }
3180
3181 // Handle special cases for FSub with selects feeding the operation
3182 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
3183 return replaceInstUsesWith(I, V);
3184
3185 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
3186 // (Y - X) - Y --> -X
3187 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
3189
3190 // Y - (X + Y) --> -X
3191 // Y - (Y + X) --> -X
3192 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
3194
3195 // (X * C) - X --> X * (C - 1.0)
3196 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
3198 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
3199 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
3200 }
3201 // X - (X * C) --> X * (1.0 - C)
3202 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
3204 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
3205 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
3206 }
3207
3208 // Reassociate fsub/fadd sequences to create more fadd instructions and
3209 // reduce dependency chains:
3210 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
3211 Value *Z;
3213 m_Value(Z))))) {
3214 Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
3215 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
3216 return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
3217 }
3218
3219 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
3220 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
3221 m_Value(Vec)));
3222 };
3223 Value *A0, *A1, *V0, *V1;
3224 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
3225 V0->getType() == V1->getType()) {
3226 // Difference of sums is sum of differences:
3227 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
3228 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
3229 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
3230 {Sub->getType()}, {A0, Sub}, &I);
3231 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
3232 }
3233
3235 return F;
3236
3237 // TODO: This performs reassociative folds for FP ops. Some fraction of the
3238 // functionality has been subsumed by simple pattern matching here and in
3239 // InstSimplify. We should let a dedicated reassociation pass handle more
3240 // complex pattern matching and remove this from InstCombine.
3241 if (Value *V = FAddCombine(Builder).simplify(&I))
3242 return replaceInstUsesWith(I, V);
3243
3244 // (X - Y) - Op1 --> X - (Y + Op1)
3245 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
3246 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
3248 }
3249 }
3250
3251 return nullptr;
3252}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
hexagon bit simplify
Hexagon Common GEP
static Instruction * factorizeFAddFSub(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction * foldAddToAshr(BinaryOperator &Add)
Try to reduce signed division by power-of-2 to an arithmetic shift right.
static bool MatchMul(Value *E, Value *&Op, APInt &C)
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned)
static Instruction * foldFNegIntoConstant(Instruction &I, const DataLayout &DL)
This eliminates floating-point negation in either 'fneg(X)' or 'fsub(-0.0, X)' form by combining into...
static Instruction * combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, const BinaryOperator &I)
static Instruction * factorizeLerp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction * foldSubOfMinMax(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * foldBoxMultiply(BinaryOperator &I)
Reduce a sequence of masked half-width multiplies to a single multiply.
static Value * checkForNegativeOperand(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned)
static Instruction * foldNoWrapAdd(BinaryOperator &Add, InstCombiner::BuilderTy &Builder)
Wrapping flags may allow combining constants separated by an extend.
static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, Value *&B)
static Instruction * factorizeMathWithShlOps(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This is a specialization of a more general transform from foldUsingDistributiveLaws.
static Instruction * canonicalizeLowbitMask(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Fold (1 << NBits) - 1 Into: ~(-(1 << NBits)) Because a 'not' is better for bit-tracking analysis and ...
static Instruction * foldToUnsignedSaturatedAdd(BinaryOperator &I)
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
Value * RHS
Value * LHS
const fltSemantics & getSemantics() const
Definition: APFloat.h:1457
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition: APFloat.h:1199
Class for arbitrary precision integers.
Definition: APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1971
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:449
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:423
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:206
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition: APInt.h:466
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1488
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:329
int32_t exactLogBase2() const
Definition: APInt.h:1783
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition: APInt.h:1598
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
unsigned logBase2() const
Definition: APInt.h:1761
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1960
bool isMask(unsigned numBits) const
Definition: APInt.h:488
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:985
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition: APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:440
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:296
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition: APInt.h:389
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:240
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:705
@ ICMP_EQ
equal
Definition: InstrTypes.h:699
@ ICMP_NE
not equal
Definition: InstrTypes.h:700
bool isSigned() const
Definition: InstrTypes.h:932
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:23
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2654
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2647
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:277
const APFloat & getValueAPF() const
Definition: Constants.h:320
bool isZero() const
Return true if the value is positive or negative zero.
Definition: Constants.h:324
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.h:131
This is an important base class in LLVM.
Definition: Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:420
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
LLVM_ABI bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
Definition: Constants.cpp:298
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
Definition: DataLayout.cpp:877
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition: IRBuilder.h:93
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:22
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
Definition: FMF.h:112
bool noSignedZeros() const
Definition: FMF.h:67
bool noInfs() const
Definition: FMF.h:66
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
Definition: FMF.h:120
void setNoInfs(bool B=true)
Definition: FMF.h:81
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Value * CreateFSubFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1637
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1486
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2100
Value * CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2162
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:502
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1005
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2094
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Definition: IRBuilder.h:2661
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Definition: IRBuilder.cpp:1071
Value * CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1416
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1781
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:823
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:834
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1805
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:172
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Definition: IRBuilder.h:2656
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1420
Value * CreateCopySign(Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create call to the copysign intrinsic.
Definition: IRBuilder.h:1058
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1492
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2082
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1551
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:507
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Definition: IRBuilder.h:2651
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2508
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1708
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2277
Value * CreateFAddFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1618
Value * CreateFPExt(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2177
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1795
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1599
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition: IRBuilder.h:1573
Value * CreateFDivFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1675
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1480
Value * CreateFMulFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1656
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1437
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * visitAdd(BinaryOperator &I)
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * foldSquareSumInt(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldSquareSumFP(BinaryOperator &I)
Instruction * visitSub(BinaryOperator &I)
Value * OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty, bool isNUW)
Optimize pointer differences into the same array into a size.
Instruction * visitFAdd(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * foldAddWithConstant(BinaryOperator &Add)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * visitFNeg(UnaryOperator &I)
Instruction * visitFSub(BinaryOperator &I)
SimplifyQuery SQ
Definition: InstCombiner.h:77
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
Definition: InstCombiner.h:228
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Definition: InstCombiner.h:456
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
Definition: InstCombiner.h:183
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:65
const DataLayout & DL
Definition: InstCombiner.h:76
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Definition: InstCombiner.h:433
AssumptionCache & AC
Definition: InstCombiner.h:73
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Definition: InstCombiner.h:450
DominatorTree & DT
Definition: InstCombiner.h:75
BuilderTy & Builder
Definition: InstCombiner.h:61
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
Definition: InstCombiner.h:209
const SimplifyQuery & getSimplifyQuery() const
Definition: InstCombiner.h:338
static Constant * AddOne(Constant *C)
Add one to a Constant.
Definition: InstCombiner.h:178
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:510
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:49
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition: Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition: Operator.h:105
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:476
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:246
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition: InstrTypes.h:147
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition: Value.cpp:158
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
This class represents zero extension of integer types.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:751
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:524
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
Definition: PatternMatch.h:160
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:673
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:619
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap, true > m_c_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:862
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:766
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
Definition: PatternMatch.h:560
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:980
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:627
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:931
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:316
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
@ CE
Windows NT (Windows on ARM)
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition: DWP.cpp:477
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition: MathExtras.h:174
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
Definition: DynamicAPInt.h:531
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
Definition: DynamicAPInt.h:539
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ Mul
Product of integers.
@ FMul
Product of floats.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:223
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:858
A suitably aligned and sized character array member which can hold elements of any type.
Definition: AlignOf.h:22
Value * Ptr
Common base pointer.
SmallVector< GEPOperator * > RHSGEPs
RHS GEPs until common base.
SmallVector< GEPOperator * > LHSGEPs
LHS GEPs until common base.
bool isExpensive() const
Whether expanding the GEP chains is expensive.
static CommonPointerBase compute(Value *LHS, Value *RHS)
Matching combinators.
SimplifyQuery getWithInstruction(const Instruction *I) const
SimplifyQuery getWithoutDomCondCache() const