LLVM 22.0.0git
InstCombineAndOrXor.cpp
Go to the documentation of this file.
1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitAnd, visitOr, and visitXor functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
21#include "llvm/IR/Intrinsics.h"
25
26using namespace llvm;
27using namespace PatternMatch;
28
29#define DEBUG_TYPE "instcombine"
30
31namespace llvm {
33}
34
35/// This is the complement of getICmpCode, which turns an opcode and two
36/// operands into either a constant true or false, or a brand new ICmp
37/// instruction. The sign is passed in to determine which kind of predicate to
38/// use in the new icmp instruction.
39static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
40 InstCombiner::BuilderTy &Builder) {
41 ICmpInst::Predicate NewPred;
42 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
43 return TorF;
44 return Builder.CreateICmp(NewPred, LHS, RHS);
45}
46
47/// This is the complement of getFCmpCode, which turns an opcode and two
48/// operands into either a FCmp instruction, or a true/false constant.
49static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
50 InstCombiner::BuilderTy &Builder, FMFSource FMF) {
51 FCmpInst::Predicate NewPred;
52 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
53 return TorF;
54 return Builder.CreateFCmpFMF(NewPred, LHS, RHS, FMF);
55}
56
57/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
58/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
59/// whether to treat V, Lo, and Hi as signed or not.
61 const APInt &Hi, bool isSigned,
62 bool Inside) {
63 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
64 "Lo is not < Hi in range emission code!");
65
66 Type *Ty = V->getType();
67
68 // V >= Min && V < Hi --> V < Hi
69 // V < Min || V >= Hi --> V >= Hi
71 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
72 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
73 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
74 }
75
76 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
77 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
78 Value *VMinusLo =
79 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
80 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
81 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
82}
83
84/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
85/// that can be simplified.
86/// One of A and B is considered the mask. The other is the value. This is
87/// described as the "AMask" or "BMask" part of the enum. If the enum contains
88/// only "Mask", then both A and B can be considered masks. If A is the mask,
89/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
90/// If both A and C are constants, this proof is also easy.
91/// For the following explanations, we assume that A is the mask.
92///
93/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
94/// bits of A are set in B.
95/// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
96///
97/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
98/// bits of A are cleared in B.
99/// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
100///
101/// "Mixed" declares that (A & B) == C and C might or might not contain any
102/// number of one bits and zero bits.
103/// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
104///
105/// "Not" means that in above descriptions "==" should be replaced by "!=".
106/// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
107///
108/// If the mask A contains a single bit, then the following is equivalent:
109/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
110/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
123
124/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
125/// satisfies.
126static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
127 ICmpInst::Predicate Pred) {
128 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
129 match(A, m_APInt(ConstA));
130 match(B, m_APInt(ConstB));
131 match(C, m_APInt(ConstC));
132 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
133 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
134 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
135 unsigned MaskVal = 0;
136 if (ConstC && ConstC->isZero()) {
137 // if C is zero, then both A and B qualify as mask
138 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
140 if (IsAPow2)
141 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
143 if (IsBPow2)
144 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
146 return MaskVal;
147 }
148
149 if (A == C) {
150 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
152 if (IsAPow2)
153 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
155 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
156 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
157 }
158
159 if (B == C) {
160 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
162 if (IsBPow2)
163 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
165 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
166 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
167 }
168
169 return MaskVal;
170}
171
172/// Convert an analysis of a masked ICmp into its equivalent if all boolean
173/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
174/// is adjacent to the corresponding normal flag (recording ==), this just
175/// involves swapping those bits over.
176static unsigned conjugateICmpMask(unsigned Mask) {
177 unsigned NewMask;
178 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
180 << 1;
181
182 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
184 >> 1;
185
186 return NewMask;
187}
188
189// Adapts the external decomposeBitTestICmp for local use.
191 Value *&X, Value *&Y, Value *&Z) {
192 auto Res = llvm::decomposeBitTest(Cond, /*LookThroughTrunc=*/true,
193 /*AllowNonZeroC=*/true);
194 if (!Res)
195 return false;
196
197 Pred = Res->Pred;
198 X = Res->X;
199 Y = ConstantInt::get(X->getType(), Res->Mask);
200 Z = ConstantInt::get(X->getType(), Res->C);
201 return true;
202}
203
204/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
205/// Return the pattern classes (from MaskedICmpType) for the left hand side and
206/// the right hand side as a pair.
207/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
208/// and PredR are their predicates, respectively.
209static std::optional<std::pair<unsigned, unsigned>>
212 ICmpInst::Predicate &PredR) {
213
214 // Here comes the tricky part:
215 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
216 // and L11 & L12 == L21 & L22. The same goes for RHS.
217 // Now we must find those components L** and R**, that are equal, so
218 // that we can extract the parameters A, B, C, D, and E for the canonical
219 // above.
220
221 // Check whether the icmp can be decomposed into a bit test.
222 Value *L1, *L11, *L12, *L2, *L21, *L22;
223 if (decomposeBitTestICmp(LHS, PredL, L11, L12, L2)) {
224 L21 = L22 = L1 = nullptr;
225 } else {
226 auto *LHSCMP = dyn_cast<ICmpInst>(LHS);
227 if (!LHSCMP)
228 return std::nullopt;
229
230 // Don't allow pointers. Splat vectors are fine.
231 if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
232 return std::nullopt;
233
234 PredL = LHSCMP->getPredicate();
235 L1 = LHSCMP->getOperand(0);
236 L2 = LHSCMP->getOperand(1);
237 // Look for ANDs in the LHS icmp.
238 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
239 // Any icmp can be viewed as being trivially masked; if it allows us to
240 // remove one, it's worth it.
241 L11 = L1;
243 }
244
245 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
246 L21 = L2;
248 }
249 }
250
251 // Bail if LHS was a icmp that can't be decomposed into an equality.
252 if (!ICmpInst::isEquality(PredL))
253 return std::nullopt;
254
255 Value *R11, *R12, *R2;
256 if (decomposeBitTestICmp(RHS, PredR, R11, R12, R2)) {
257 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
258 A = R11;
259 D = R12;
260 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
261 A = R12;
262 D = R11;
263 } else {
264 return std::nullopt;
265 }
266 E = R2;
267 } else {
268 auto *RHSCMP = dyn_cast<ICmpInst>(RHS);
269 if (!RHSCMP)
270 return std::nullopt;
271 // Don't allow pointers. Splat vectors are fine.
272 if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
273 return std::nullopt;
274
275 PredR = RHSCMP->getPredicate();
276
277 Value *R1 = RHSCMP->getOperand(0);
278 R2 = RHSCMP->getOperand(1);
279 bool Ok = false;
280 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
281 // As before, model no mask as a trivial mask if it'll let us do an
282 // optimization.
283 R11 = R1;
285 }
286
287 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
288 A = R11;
289 D = R12;
290 E = R2;
291 Ok = true;
292 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
293 A = R12;
294 D = R11;
295 E = R2;
296 Ok = true;
297 }
298
299 // Avoid matching against the -1 value we created for unmasked operand.
300 if (Ok && match(A, m_AllOnes()))
301 Ok = false;
302
303 // Look for ANDs on the right side of the RHS icmp.
304 if (!Ok) {
305 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
306 R11 = R2;
307 R12 = Constant::getAllOnesValue(R2->getType());
308 }
309
310 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
311 A = R11;
312 D = R12;
313 E = R1;
314 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
315 A = R12;
316 D = R11;
317 E = R1;
318 } else {
319 return std::nullopt;
320 }
321 }
322 }
323
324 // Bail if RHS was a icmp that can't be decomposed into an equality.
325 if (!ICmpInst::isEquality(PredR))
326 return std::nullopt;
327
328 if (L11 == A) {
329 B = L12;
330 C = L2;
331 } else if (L12 == A) {
332 B = L11;
333 C = L2;
334 } else if (L21 == A) {
335 B = L22;
336 C = L1;
337 } else if (L22 == A) {
338 B = L21;
339 C = L1;
340 }
341
342 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
343 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
344 return std::optional<std::pair<unsigned, unsigned>>(
345 std::make_pair(LeftType, RightType));
346}
347
348/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
349/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
350/// and the right hand side is of type BMask_Mixed. For example,
351/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
352/// Also used for logical and/or, must be poison safe.
354 Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E,
356 InstCombiner::BuilderTy &Builder) {
357 // We are given the canonical form:
358 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
359 // where D & E == E.
360 //
361 // If IsAnd is false, we get it in negated form:
362 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
363 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
364 //
365 // We currently handle the case of B, C, D, E are constant.
366 //
367 const APInt *BCst, *DCst, *OrigECst;
368 if (!match(B, m_APInt(BCst)) || !match(D, m_APInt(DCst)) ||
369 !match(E, m_APInt(OrigECst)))
370 return nullptr;
371
373
374 // Update E to the canonical form when D is a power of two and RHS is
375 // canonicalized as,
376 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
377 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
378 APInt ECst = *OrigECst;
379 if (PredR != NewCC)
380 ECst ^= *DCst;
381
382 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
383 // other folding rules and this pattern won't apply any more.
384 if (*BCst == 0 || *DCst == 0)
385 return nullptr;
386
387 // If B and D don't intersect, ie. (B & D) == 0, try to fold isNaN idiom:
388 // (icmp ne (A & FractionBits), 0) & (icmp eq (A & ExpBits), ExpBits)
389 // -> isNaN(A)
390 // Otherwise, we cannot deduce anything from it.
391 if (!BCst->intersects(*DCst)) {
392 Value *Src;
393 if (*DCst == ECst && match(A, m_ElementWiseBitCast(m_Value(Src))) &&
394 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
395 Attribute::StrictFP)) {
396 Type *Ty = Src->getType()->getScalarType();
397 if (!Ty->isIEEELikeFPTy())
398 return nullptr;
399
400 APInt ExpBits = APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt();
401 if (ECst != ExpBits)
402 return nullptr;
403 APInt FractionBits = ~ExpBits;
404 FractionBits.clearSignBit();
405 if (*BCst != FractionBits)
406 return nullptr;
407
408 return Builder.CreateFCmp(IsAnd ? FCmpInst::FCMP_UNO : FCmpInst::FCMP_ORD,
409 Src, ConstantFP::getZero(Src->getType()));
410 }
411 return nullptr;
412 }
413
414 // If the following two conditions are met:
415 //
416 // 1. mask B covers only a single bit that's not covered by mask D, that is,
417 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
418 // B and D has only one bit set) and,
419 //
420 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
421 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
422 //
423 // then that single bit in B must be one and thus the whole expression can be
424 // folded to
425 // (A & (B | D)) == (B & (B ^ D)) | E.
426 //
427 // For example,
428 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
429 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
430 if ((((*BCst & *DCst) & ECst) == 0) &&
431 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
432 APInt BorD = *BCst | *DCst;
433 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
434 Value *NewMask = ConstantInt::get(A->getType(), BorD);
435 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
436 Value *NewAnd = Builder.CreateAnd(A, NewMask);
437 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
438 }
439
440 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
441 return (*C1 & *C2) == *C1;
442 };
443 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
444 return (*C1 & *C2) == *C2;
445 };
446
447 // In the following, we consider only the cases where B is a superset of D, B
448 // is a subset of D, or B == D because otherwise there's at least one bit
449 // covered by B but not D, in which case we can't deduce much from it, so
450 // no folding (aside from the single must-be-one bit case right above.)
451 // For example,
452 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
453 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
454 return nullptr;
455
456 // At this point, either B is a superset of D, B is a subset of D or B == D.
457
458 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
459 // and the whole expression becomes false (or true if negated), otherwise, no
460 // folding.
461 // For example,
462 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
463 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
464 if (ECst.isZero()) {
465 if (IsSubSetOrEqual(BCst, DCst))
466 return ConstantInt::get(LHS->getType(), !IsAnd);
467 return nullptr;
468 }
469
470 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
471 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
472 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
473 // RHS. For example,
474 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
475 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
476 if (IsSuperSetOrEqual(BCst, DCst)) {
477 // We can't guarantee that samesign hold after this fold.
478 if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
479 ICmp->setSameSign(false);
480 return RHS;
481 }
482 // Otherwise, B is a subset of D. If B and E have a common bit set,
483 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
484 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
485 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
486 if ((*BCst & ECst) != 0) {
487 // We can't guarantee that samesign hold after this fold.
488 if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
489 ICmp->setSameSign(false);
490 return RHS;
491 }
492 // Otherwise, LHS and RHS contradict and the whole expression becomes false
493 // (or true if negated.) For example,
494 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
495 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
496 return ConstantInt::get(LHS->getType(), !IsAnd);
497}
498
499/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
500/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
501/// aren't of the common mask pattern type.
502/// Also used for logical and/or, must be poison safe.
504 Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D,
506 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
508 "Expected equality predicates for masked type of icmps.");
509 // Handle Mask_NotAllZeros-BMask_Mixed cases.
510 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
511 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
512 // which gets swapped to
513 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
514 if (!IsAnd) {
515 LHSMask = conjugateICmpMask(LHSMask);
516 RHSMask = conjugateICmpMask(RHSMask);
517 }
518 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
520 LHS, RHS, IsAnd, A, B, D, E, PredL, PredR, Builder)) {
521 return V;
522 }
523 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
525 RHS, LHS, IsAnd, A, D, B, C, PredR, PredL, Builder)) {
526 return V;
527 }
528 }
529 return nullptr;
530}
531
532/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
533/// into a single (icmp(A & X) ==/!= Y).
535 bool IsLogical,
537 const SimplifyQuery &Q) {
538 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
539 ICmpInst::Predicate PredL, PredR;
540 std::optional<std::pair<unsigned, unsigned>> MaskPair =
541 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
542 if (!MaskPair)
543 return nullptr;
545 "Expected equality predicates for masked type of icmps.");
546 unsigned LHSMask = MaskPair->first;
547 unsigned RHSMask = MaskPair->second;
548 unsigned Mask = LHSMask & RHSMask;
549 if (Mask == 0) {
550 // Even if the two sides don't share a common pattern, check if folding can
551 // still happen.
553 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
554 Builder))
555 return V;
556 return nullptr;
557 }
558
559 // In full generality:
560 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
561 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
562 //
563 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
564 // equivalent to (icmp (A & X) !Op Y).
565 //
566 // Therefore, we can pretend for the rest of this function that we're dealing
567 // with the conjunction, provided we flip the sense of any comparisons (both
568 // input and output).
569
570 // In most cases we're going to produce an EQ for the "&&" case.
572 if (!IsAnd) {
573 // Convert the masking analysis into its equivalent with negated
574 // comparisons.
575 Mask = conjugateICmpMask(Mask);
576 }
577
578 if (Mask & Mask_AllZeros) {
579 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
580 // -> (icmp eq (A & (B|D)), 0)
581 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
582 return nullptr; // TODO: Use freeze?
583 Value *NewOr = Builder.CreateOr(B, D);
584 Value *NewAnd = Builder.CreateAnd(A, NewOr);
585 // We can't use C as zero because we might actually handle
586 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
587 // with B and D, having a single bit set.
588 Value *Zero = Constant::getNullValue(A->getType());
589 return Builder.CreateICmp(NewCC, NewAnd, Zero);
590 }
591 if (Mask & BMask_AllOnes) {
592 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
593 // -> (icmp eq (A & (B|D)), (B|D))
594 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
595 return nullptr; // TODO: Use freeze?
596 Value *NewOr = Builder.CreateOr(B, D);
597 Value *NewAnd = Builder.CreateAnd(A, NewOr);
598 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
599 }
600 if (Mask & AMask_AllOnes) {
601 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
602 // -> (icmp eq (A & (B&D)), A)
603 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
604 return nullptr; // TODO: Use freeze?
605 Value *NewAnd1 = Builder.CreateAnd(B, D);
606 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
607 return Builder.CreateICmp(NewCC, NewAnd2, A);
608 }
609
610 const APInt *ConstB, *ConstD;
611 if (match(B, m_APInt(ConstB)) && match(D, m_APInt(ConstD))) {
612 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
613 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
614 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
615 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
616 // Only valid if one of the masks is a superset of the other (check "B&D"
617 // is the same as either B or D).
618 APInt NewMask = *ConstB & *ConstD;
619 if (NewMask == *ConstB)
620 return LHS;
621 if (NewMask == *ConstD) {
622 if (IsLogical) {
623 if (auto *RHSI = dyn_cast<Instruction>(RHS))
624 RHSI->dropPoisonGeneratingFlags();
625 }
626 return RHS;
627 }
628 }
629
630 if (Mask & AMask_NotAllOnes) {
631 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
632 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
633 // Only valid if one of the masks is a superset of the other (check "B|D"
634 // is the same as either B or D).
635 APInt NewMask = *ConstB | *ConstD;
636 if (NewMask == *ConstB)
637 return LHS;
638 if (NewMask == *ConstD)
639 return RHS;
640 }
641
642 if (Mask & (BMask_Mixed | BMask_NotMixed)) {
643 // Mixed:
644 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
645 // We already know that B & C == C && D & E == E.
646 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
647 // C and E, which are shared by both the mask B and the mask D, don't
648 // contradict, then we can transform to
649 // -> (icmp eq (A & (B|D)), (C|E))
650 // Currently, we only handle the case of B, C, D, and E being constant.
651 // We can't simply use C and E because we might actually handle
652 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
653 // with B and D, having a single bit set.
654
655 // NotMixed:
656 // (icmp ne (A & B), C) & (icmp ne (A & D), E)
657 // -> (icmp ne (A & (B & D)), (C & E))
658 // Check the intersection (B & D) for inequality.
659 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
660 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both
661 // the B and the D, don't contradict. Note that we can assume (~B & C) ==
662 // 0 && (~D & E) == 0, previous operation should delete these icmps if it
663 // hadn't been met.
664
665 const APInt *OldConstC, *OldConstE;
666 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
667 return nullptr;
668
669 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
670 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
671 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
672 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
673
674 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
675 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
676
677 if (IsNot && !ConstB->isSubsetOf(*ConstD) &&
678 !ConstD->isSubsetOf(*ConstB))
679 return nullptr;
680
681 APInt BD, CE;
682 if (IsNot) {
683 BD = *ConstB & *ConstD;
684 CE = ConstC & ConstE;
685 } else {
686 BD = *ConstB | *ConstD;
687 CE = ConstC | ConstE;
688 }
689 Value *NewAnd = Builder.CreateAnd(A, BD);
690 Value *CEVal = ConstantInt::get(A->getType(), CE);
691 return Builder.CreateICmp(CC, NewAnd, CEVal);
692 };
693
694 if (Mask & BMask_Mixed)
695 return FoldBMixed(NewCC, false);
696 if (Mask & BMask_NotMixed) // can be else also
697 return FoldBMixed(NewCC, true);
698 }
699 }
700
701 // (icmp eq (A & B), 0) | (icmp eq (A & D), 0)
702 // -> (icmp ne (A & (B|D)), (B|D))
703 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0)
704 // -> (icmp eq (A & (B|D)), (B|D))
705 // iff B and D is known to be a power of two
706 if (Mask & Mask_NotAllZeros &&
707 isKnownToBeAPowerOfTwo(B, /*OrZero=*/false, Q) &&
708 isKnownToBeAPowerOfTwo(D, /*OrZero=*/false, Q)) {
709 // If this is a logical and/or, then we must prevent propagation of a
710 // poison value from the RHS by inserting freeze.
711 if (IsLogical)
712 D = Builder.CreateFreeze(D);
713 Value *Mask = Builder.CreateOr(B, D);
714 Value *Masked = Builder.CreateAnd(A, Mask);
715 return Builder.CreateICmp(NewCC, Masked, Mask);
716 }
717 return nullptr;
718}
719
720/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
721/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
722/// If \p Inverted is true then the check is for the inverted range, e.g.
723/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
725 bool Inverted) {
726 // Check the lower range comparison, e.g. x >= 0
727 // InstCombine already ensured that if there is a constant it's on the RHS.
728 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
729 if (!RangeStart)
730 return nullptr;
731
732 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
733 Cmp0->getPredicate());
734
735 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
736 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
737 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
738 return nullptr;
739
740 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
741 Cmp1->getPredicate());
742
743 Value *Input = Cmp0->getOperand(0);
744 Value *Cmp1Op0 = Cmp1->getOperand(0);
745 Value *Cmp1Op1 = Cmp1->getOperand(1);
746 Value *RangeEnd;
747 if (match(Cmp1Op0, m_SExtOrSelf(m_Specific(Input)))) {
748 // For the upper range compare we have: icmp x, n
749 Input = Cmp1Op0;
750 RangeEnd = Cmp1Op1;
751 } else if (match(Cmp1Op1, m_SExtOrSelf(m_Specific(Input)))) {
752 // For the upper range compare we have: icmp n, x
753 Input = Cmp1Op1;
754 RangeEnd = Cmp1Op0;
755 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
756 } else {
757 return nullptr;
758 }
759
760 // Check the upper range comparison, e.g. x < n
761 ICmpInst::Predicate NewPred;
762 switch (Pred1) {
763 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
764 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
765 default: return nullptr;
766 }
767
768 // This simplification is only valid if the upper range is not negative.
769 KnownBits Known = computeKnownBits(RangeEnd, Cmp1);
770 if (!Known.isNonNegative())
771 return nullptr;
772
773 if (Inverted)
774 NewPred = ICmpInst::getInversePredicate(NewPred);
775
776 return Builder.CreateICmp(NewPred, Input, RangeEnd);
777}
778
779// (or (icmp eq X, 0), (icmp eq X, Pow2OrZero))
780// -> (icmp eq (and X, Pow2OrZero), X)
781// (and (icmp ne X, 0), (icmp ne X, Pow2OrZero))
782// -> (icmp ne (and X, Pow2OrZero), X)
783static Value *
785 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
786 const SimplifyQuery &Q) {
788 // Make sure we have right compares for our op.
789 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
790 return nullptr;
791
792 // Make it so we can match LHS against the (icmp eq/ne X, 0) just for
793 // simplicity.
794 if (match(RHS->getOperand(1), m_Zero()))
795 std::swap(LHS, RHS);
796
797 Value *Pow2, *Op;
798 // Match the desired pattern:
799 // LHS: (icmp eq/ne X, 0)
800 // RHS: (icmp eq/ne X, Pow2OrZero)
801 // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but
802 // this form ends up slightly less canonical.
803 // We could potentially be more sophisticated than requiring LHS/RHS
804 // be one-use. We don't create additional instructions if only one
805 // of them is one-use. So cases where one is one-use and the other
806 // is two-use might be profitable.
807 if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) ||
808 !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) ||
809 match(Pow2, m_One()) ||
810 !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, Q.AC, Q.CxtI, Q.DT))
811 return nullptr;
812
813 Value *And = Builder.CreateAnd(Op, Pow2);
814 return Builder.CreateICmp(Pred, And, Op);
815}
816
817/// General pattern:
818/// X & Y
819///
820/// Where Y is checking that all the high bits (covered by a mask 4294967168)
821/// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
822/// Pattern can be one of:
823/// %t = add i32 %arg, 128
824/// %r = icmp ult i32 %t, 256
825/// Or
826/// %t0 = shl i32 %arg, 24
827/// %t1 = ashr i32 %t0, 24
828/// %r = icmp eq i32 %t1, %arg
829/// Or
830/// %t0 = trunc i32 %arg to i8
831/// %t1 = sext i8 %t0 to i32
832/// %r = icmp eq i32 %t1, %arg
833/// This pattern is a signed truncation check.
834///
835/// And X is checking that some bit in that same mask is zero.
836/// I.e. can be one of:
837/// %r = icmp sgt i32 %arg, -1
838/// Or
839/// %t = and i32 %arg, 2147483648
840/// %r = icmp eq i32 %t, 0
841///
842/// Since we are checking that all the bits in that mask are the same,
843/// and a particular bit is zero, what we are really checking is that all the
844/// masked bits are zero.
845/// So this should be transformed to:
846/// %r = icmp ult i32 %arg, 128
848 Instruction &CxtI,
849 InstCombiner::BuilderTy &Builder) {
850 assert(CxtI.getOpcode() == Instruction::And);
851
852 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
853 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
854 APInt &SignBitMask) -> bool {
855 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
857 m_Add(m_Value(X), m_Power2(I01)),
858 m_Power2(I1))) &&
859 I1->ugt(*I01) && I01->shl(1) == *I1))
860 return false;
861 // Which bit is the new sign bit as per the 'signed truncation' pattern?
862 SignBitMask = *I01;
863 return true;
864 };
865
866 // One icmp needs to be 'signed truncation check'.
867 // We need to match this first, else we will mismatch commutative cases.
868 Value *X1;
869 APInt HighestBit;
870 ICmpInst *OtherICmp;
871 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
872 OtherICmp = ICmp0;
873 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
874 OtherICmp = ICmp1;
875 else
876 return nullptr;
877
878 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
879
880 // Try to match/decompose into: icmp eq (X & Mask), 0
881 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
882 APInt &UnsetBitsMask) -> bool {
883 CmpPredicate Pred = ICmp->getPredicate();
884 // Can it be decomposed into icmp eq (X & Mask), 0 ?
886 ICmp->getOperand(0), ICmp->getOperand(1), Pred,
887 /*LookThroughTrunc=*/false, /*AllowNonZeroC=*/false,
888 /*DecomposeAnd=*/true);
889 if (Res && Res->Pred == ICmpInst::ICMP_EQ) {
890 X = Res->X;
891 UnsetBitsMask = Res->Mask;
892 return true;
893 }
894
895 return false;
896 };
897
898 // And the other icmp needs to be decomposable into a bit test.
899 Value *X0;
900 APInt UnsetBitsMask;
901 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
902 return nullptr;
903
904 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
905
906 // Are they working on the same value?
907 Value *X;
908 if (X1 == X0) {
909 // Ok as is.
910 X = X1;
911 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
912 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
913 X = X1;
914 } else
915 return nullptr;
916
917 // So which bits should be uniform as per the 'signed truncation check'?
918 // (all the bits starting with (i.e. including) HighestBit)
919 APInt SignBitsMask = ~(HighestBit - 1U);
920
921 // UnsetBitsMask must have some common bits with SignBitsMask,
922 if (!UnsetBitsMask.intersects(SignBitsMask))
923 return nullptr;
924
925 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
926 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
927 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
928 if (!OtherHighestBit.isPowerOf2())
929 return nullptr;
930 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
931 }
932 // Else, if it does not, then all is ok as-is.
933
934 // %r = icmp ult %X, SignBit
935 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
936 CxtI.getName() + ".simplified");
937}
938
939/// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
940/// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
941/// Also used for logical and/or, must be poison safe if range attributes are
942/// dropped.
943static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
945 InstCombinerImpl &IC) {
946 CmpPredicate Pred0, Pred1;
947 Value *X;
949 m_SpecificInt(1))) ||
950 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
951 return nullptr;
952
953 auto *CtPop = cast<Instruction>(Cmp0->getOperand(0));
954 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) {
955 // Drop range attributes and re-infer them in the next iteration.
956 CtPop->dropPoisonGeneratingAnnotations();
957 IC.addToWorklist(CtPop);
958 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
959 }
960 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) {
961 // Drop range attributes and re-infer them in the next iteration.
962 CtPop->dropPoisonGeneratingAnnotations();
963 IC.addToWorklist(CtPop);
964 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
965 }
966
967 return nullptr;
968}
969
970/// Reduce a pair of compares that check if a value has exactly 1 bit set.
971/// Also used for logical and/or, must be poison safe if range attributes are
972/// dropped.
973static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
975 InstCombinerImpl &IC) {
976 // Handle 'and' / 'or' commutation: make the equality check the first operand.
977 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
978 std::swap(Cmp0, Cmp1);
979 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
980 std::swap(Cmp0, Cmp1);
981
982 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
983 Value *X;
984 if (JoinedByAnd &&
988 m_SpecificInt(2)))) {
989 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
990 // Drop range attributes and re-infer them in the next iteration.
991 CtPop->dropPoisonGeneratingAnnotations();
992 IC.addToWorklist(CtPop);
993 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
994 }
995 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
996 if (!JoinedByAnd &&
1000 m_SpecificInt(1)))) {
1001 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
1002 // Drop range attributes and re-infer them in the next iteration.
1003 CtPop->dropPoisonGeneratingAnnotations();
1004 IC.addToWorklist(CtPop);
1005 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1006 }
1007 return nullptr;
1008}
1009
1010/// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
1011/// B is a contiguous set of ones starting from the most significant bit
1012/// (negative power of 2), D and E are equal, and D is a contiguous set of ones
1013/// starting at the most significant zero bit in B. Parameter B supports masking
1014/// using undef/poison in either scalar or vector values.
1016 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
1019 "Expected equality predicates for masked type of icmps.");
1020 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
1021 return nullptr;
1022
1023 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
1024 !match(E, m_ShiftedMask()))
1025 return nullptr;
1026
1027 // Test scalar arguments for conversion. B has been validated earlier to be a
1028 // negative power of two and thus is guaranteed to have one or more contiguous
1029 // ones starting from the MSB followed by zero or more contiguous zeros. D has
1030 // been validated earlier to be a shifted set of one or more contiguous ones.
1031 // In order to match, B leading ones and D leading zeros should be equal. The
1032 // predicate that B be a negative power of 2 prevents the condition of there
1033 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
1034 // D always be a shifted mask prevents the condition of D equaling 0. This
1035 // prevents matching the condition where B contains the maximum number of
1036 // leading one bits (-1) and D contains the maximum number of leading zero
1037 // bits (0).
1038 auto isReducible = [](const Value *B, const Value *D, const Value *E) {
1039 const APInt *BCst, *DCst, *ECst;
1040 return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) &&
1041 match(E, m_APInt(ECst)) && *DCst == *ECst &&
1042 (isa<PoisonValue>(B) ||
1043 (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
1044 };
1045
1046 // Test vector type arguments for conversion.
1047 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
1048 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
1049 const auto *BConst = dyn_cast<Constant>(B);
1050 const auto *DConst = dyn_cast<Constant>(D);
1051 const auto *EConst = dyn_cast<Constant>(E);
1052
1053 if (!BFVTy || !BConst || !DConst || !EConst)
1054 return nullptr;
1055
1056 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
1057 const auto *BElt = BConst->getAggregateElement(I);
1058 const auto *DElt = DConst->getAggregateElement(I);
1059 const auto *EElt = EConst->getAggregateElement(I);
1060
1061 if (!BElt || !DElt || !EElt)
1062 return nullptr;
1063 if (!isReducible(BElt, DElt, EElt))
1064 return nullptr;
1065 }
1066 } else {
1067 // Test scalar type arguments for conversion.
1068 if (!isReducible(B, D, E))
1069 return nullptr;
1070 }
1071 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
1072}
1073
1074/// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
1075/// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
1076/// M is a contiguous shifted mask starting at the right most significant zero
1077/// bit in P. SGT is supported as when P is the largest representable power of
1078/// 2, an earlier optimization converts the expression into (icmp X s> -1).
1079/// Parameter P supports masking using undef/poison in either scalar or vector
1080/// values.
1082 bool JoinedByAnd,
1083 InstCombiner::BuilderTy &Builder) {
1084 if (!JoinedByAnd)
1085 return nullptr;
1086 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
1087 ICmpInst::Predicate CmpPred0, CmpPred1;
1088 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
1089 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
1090 // SignMask) == 0).
1091 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1092 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
1093 if (!MaskPair)
1094 return nullptr;
1095
1096 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
1097 unsigned CmpMask0 = MaskPair->first;
1098 unsigned CmpMask1 = MaskPair->second;
1099 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1100 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
1101 CmpPred1, Builder))
1102 return V;
1103 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
1104 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
1105 CmpPred0, Builder))
1106 return V;
1107 }
1108 return nullptr;
1109}
1110
1111/// Commuted variants are assumed to be handled by calling this function again
1112/// with the parameters swapped.
1114 ICmpInst *UnsignedICmp, bool IsAnd,
1115 const SimplifyQuery &Q,
1116 InstCombiner::BuilderTy &Builder) {
1117 Value *ZeroCmpOp;
1118 CmpPredicate EqPred;
1119 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1120 !ICmpInst::isEquality(EqPred))
1121 return nullptr;
1122
1123 CmpPredicate UnsignedPred;
1124
1125 Value *A, *B;
1126 if (match(UnsignedICmp,
1127 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1128 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1129 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1130 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1131 if (!isKnownNonZero(NonZero, Q))
1132 std::swap(NonZero, Other);
1133 return isKnownNonZero(NonZero, Q);
1134 };
1135
1136 // Given ZeroCmpOp = (A + B)
1137 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1138 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1139 // with X being the value (A/B) that is known to be non-zero,
1140 // and Y being remaining value.
1141 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1142 IsAnd && GetKnownNonZeroAndOther(B, A))
1143 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1144 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1145 !IsAnd && GetKnownNonZeroAndOther(B, A))
1146 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1147 }
1148
1149 return nullptr;
1150}
1151
1152struct IntPart {
1154 unsigned StartBit;
1155 unsigned NumBits;
1156};
1157
1158/// Match an extraction of bits from an integer.
1159static std::optional<IntPart> matchIntPart(Value *V) {
1160 Value *X;
1161 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1162 return std::nullopt;
1163
1164 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1165 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1166 Value *Y;
1167 const APInt *Shift;
1168 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1169 // from Y, not any shifted-in zeroes.
1170 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1171 Shift->ule(NumOriginalBits - NumExtractedBits))
1172 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1173 return {{X, 0, NumExtractedBits}};
1174}
1175
1176/// Materialize an extraction of bits from an integer in IR.
1177static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1178 Value *V = P.From;
1179 if (P.StartBit)
1180 V = Builder.CreateLShr(V, P.StartBit);
1181 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1182 if (TruncTy != V->getType())
1183 V = Builder.CreateTrunc(V, TruncTy);
1184 return V;
1185}
1186
1187/// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1188/// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1189/// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1190Value *InstCombinerImpl::foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd) {
1191 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1192 return nullptr;
1193
1195 auto GetMatchPart = [&](Value *CmpV,
1196 unsigned OpNo) -> std::optional<IntPart> {
1197 assert(CmpV->getType()->isIntOrIntVectorTy(1) && "Must be bool");
1198
1199 Value *X, *Y;
1200 // icmp ne (and x, 1), (and y, 1) <=> trunc (xor x, y) to i1
1201 // icmp eq (and x, 1), (and y, 1) <=> not (trunc (xor x, y) to i1)
1202 if (Pred == CmpInst::ICMP_NE
1203 ? match(CmpV, m_Trunc(m_Xor(m_Value(X), m_Value(Y))))
1204 : match(CmpV, m_Not(m_Trunc(m_Xor(m_Value(X), m_Value(Y))))))
1205 return {{OpNo == 0 ? X : Y, 0, 1}};
1206
1207 auto *Cmp = dyn_cast<ICmpInst>(CmpV);
1208 if (!Cmp)
1209 return std::nullopt;
1210
1211 if (Pred == Cmp->getPredicate())
1212 return matchIntPart(Cmp->getOperand(OpNo));
1213
1214 const APInt *C;
1215 // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to:
1216 // (icmp ult (xor x, y), 1 << C) so also look for that.
1217 if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) {
1218 if (!match(Cmp->getOperand(1), m_Power2(C)) ||
1219 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1220 return std::nullopt;
1221 }
1222
1223 // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to:
1224 // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that.
1225 else if (Pred == CmpInst::ICMP_NE &&
1226 Cmp->getPredicate() == CmpInst::ICMP_UGT) {
1227 if (!match(Cmp->getOperand(1), m_LowBitMask(C)) ||
1228 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1229 return std::nullopt;
1230 } else {
1231 return std::nullopt;
1232 }
1233
1234 unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero();
1235 Instruction *I = cast<Instruction>(Cmp->getOperand(0));
1236 return {{I->getOperand(OpNo), From, C->getBitWidth() - From}};
1237 };
1238
1239 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1240 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1241 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1242 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1243 if (!L0 || !R0 || !L1 || !R1)
1244 return nullptr;
1245
1246 // Make sure the LHS/RHS compare a part of the same value, possibly after
1247 // an operand swap.
1248 if (L0->From != L1->From || R0->From != R1->From) {
1249 if (L0->From != R1->From || R0->From != L1->From)
1250 return nullptr;
1251 std::swap(L1, R1);
1252 }
1253
1254 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1255 // the low part and L1/R1 being the high part.
1256 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1257 R0->StartBit + R0->NumBits != R1->StartBit) {
1258 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1259 R1->StartBit + R1->NumBits != R0->StartBit)
1260 return nullptr;
1261 std::swap(L0, L1);
1262 std::swap(R0, R1);
1263 }
1264
1265 // We can simplify to a comparison of these larger parts of the integers.
1266 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1267 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1270 return Builder.CreateICmp(Pred, LValue, RValue);
1271}
1272
1273/// Reduce logic-of-compares with equality to a constant by substituting a
1274/// common operand with the constant. Callers are expected to call this with
1275/// Cmp0/Cmp1 switched to handle logic op commutativity.
1277 bool IsAnd, bool IsLogical,
1278 InstCombiner::BuilderTy &Builder,
1279 const SimplifyQuery &Q,
1280 Instruction &I) {
1281 // Match an equality compare with a non-poison constant as Cmp0.
1282 // Also, give up if the compare can be constant-folded to avoid looping.
1283 CmpPredicate Pred0;
1284 Value *X;
1285 Constant *C;
1286 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1288 return nullptr;
1289 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1290 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1291 return nullptr;
1292
1293 // The other compare must include a common operand (X). Canonicalize the
1294 // common operand as operand 1 (Pred1 is swapped if the common operand was
1295 // operand 0).
1296 Value *Y;
1297 CmpPredicate Pred1;
1298 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X))))
1299 return nullptr;
1300
1301 // Replace variable with constant value equivalence to remove a variable use:
1302 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1303 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1304 // Can think of the 'or' substitution with the 'and' bool equivalent:
1305 // A || B --> A || (!A && B)
1306 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1307 if (!SubstituteCmp) {
1308 // If we need to create a new instruction, require that the old compare can
1309 // be removed.
1310 if (!Cmp1->hasOneUse())
1311 return nullptr;
1312 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1313 }
1314 if (IsLogical) {
1315 Instruction *MDFrom =
1317 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp, "", MDFrom)
1318 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp, "", MDFrom);
1319 }
1320 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1321 SubstituteCmp);
1322}
1323
1324/// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1325/// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1326/// into a single comparison using range-based reasoning.
1327/// NOTE: This is also used for logical and/or, must be poison-safe!
1328Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1329 ICmpInst *ICmp2,
1330 bool IsAnd) {
1331 // Return (V, CR) for a range check idiom V in CR.
1332 auto MatchExactRangeCheck =
1333 [](ICmpInst *ICmp) -> std::optional<std::pair<Value *, ConstantRange>> {
1334 const APInt *C;
1335 if (!match(ICmp->getOperand(1), m_APInt(C)))
1336 return std::nullopt;
1337 Value *LHS = ICmp->getOperand(0);
1338 CmpPredicate Pred = ICmp->getPredicate();
1339 Value *X;
1340 // Match (x & NegPow2) ==/!= C
1341 const APInt *Mask;
1342 if (ICmpInst::isEquality(Pred) &&
1344 C->countr_zero() >= Mask->countr_zero()) {
1345 ConstantRange CR(*C, *C - *Mask);
1346 if (Pred == ICmpInst::ICMP_NE)
1347 CR = CR.inverse();
1348 return std::make_pair(X, CR);
1349 }
1350 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1351 // Match (add X, C1) pred C
1352 // TODO: investigate whether we should apply the one-use check on m_AddLike.
1353 const APInt *C1;
1354 if (match(LHS, m_AddLike(m_Value(X), m_APInt(C1))))
1355 return std::make_pair(X, CR.subtract(*C1));
1356 return std::make_pair(LHS, CR);
1357 };
1358
1359 auto RC1 = MatchExactRangeCheck(ICmp1);
1360 if (!RC1)
1361 return nullptr;
1362
1363 auto RC2 = MatchExactRangeCheck(ICmp2);
1364 if (!RC2)
1365 return nullptr;
1366
1367 auto &[V1, CR1] = *RC1;
1368 auto &[V2, CR2] = *RC2;
1369 if (V1 != V2)
1370 return nullptr;
1371
1372 // For 'and', we use the De Morgan's Laws to simplify the implementation.
1373 if (IsAnd) {
1374 CR1 = CR1.inverse();
1375 CR2 = CR2.inverse();
1376 }
1377
1378 Type *Ty = V1->getType();
1379 Value *NewV = V1;
1380 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1381 if (!CR) {
1382 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1383 CR2.isWrappedSet())
1384 return nullptr;
1385
1386 // Check whether we have equal-size ranges that only differ by one bit.
1387 // In that case we can apply a mask to map one range onto the other.
1388 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1389 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1390 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1391 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1392 CR1Size != CR2.getUpper() - CR2.getLower())
1393 return nullptr;
1394
1395 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1396 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1397 }
1398
1399 if (IsAnd)
1400 CR = CR->inverse();
1401
1402 CmpInst::Predicate NewPred;
1403 APInt NewC, Offset;
1404 CR->getEquivalentICmp(NewPred, NewC, Offset);
1405
1406 if (Offset != 0)
1407 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1408 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1409}
1410
1411/// Ignore all operations which only change the sign of a value, returning the
1412/// underlying magnitude value.
1414 match(Val, m_FNeg(m_Value(Val)));
1415 match(Val, m_FAbs(m_Value(Val)));
1416 match(Val, m_CopySign(m_Value(Val), m_Value()));
1417 return Val;
1418}
1419
1420/// Matches canonical form of isnan, fcmp ord x, 0
1424
1425/// Matches fcmp u__ x, +/-inf
1430
1431/// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1432///
1433/// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1435 FCmpInst *RHS) {
1436 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1437 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1438 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1439
1440 if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1441 !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1442 return nullptr;
1443
1444 return Builder.CreateFCmpFMF(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1,
1446}
1447
1448Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1449 bool IsAnd, bool IsLogicalSelect) {
1450 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1451 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1452 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1453
1454 if (LHS0 == RHS1 && RHS0 == LHS1) {
1455 // Swap RHS operands to match LHS.
1456 PredR = FCmpInst::getSwappedPredicate(PredR);
1457 std::swap(RHS0, RHS1);
1458 }
1459
1460 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1461 // Suppose the relation between x and y is R, where R is one of
1462 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1463 // testing the desired relations.
1464 //
1465 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1466 // bool(R & CC0) && bool(R & CC1)
1467 // = bool((R & CC0) & (R & CC1))
1468 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1469 //
1470 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1471 // bool(R & CC0) || bool(R & CC1)
1472 // = bool((R & CC0) | (R & CC1))
1473 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1474 if (LHS0 == RHS0 && LHS1 == RHS1) {
1475 unsigned FCmpCodeL = getFCmpCode(PredL);
1476 unsigned FCmpCodeR = getFCmpCode(PredR);
1477 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1478
1479 // Intersect the fast math flags.
1480 // TODO: We can union the fast math flags unless this is a logical select.
1481 return getFCmpValue(NewPred, LHS0, LHS1, Builder,
1483 }
1484
1485 // This transform is not valid for a logical select.
1486 if (!IsLogicalSelect &&
1487 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1488 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1489 !IsAnd))) {
1490 if (LHS0->getType() != RHS0->getType())
1491 return nullptr;
1492
1493 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1494 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1495 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) {
1496 // Ignore the constants because they are obviously not NANs:
1497 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1498 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1499 return Builder.CreateFCmpFMF(PredL, LHS0, RHS0,
1501 }
1502 }
1503
1504 // This transform is not valid for a logical select.
1505 if (!IsLogicalSelect && IsAnd &&
1506 stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1507 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1508 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1510 return Left;
1512 return Right;
1513 }
1514
1515 // Turn at least two fcmps with constants into llvm.is.fpclass.
1516 //
1517 // If we can represent a combined value test with one class call, we can
1518 // potentially eliminate 4-6 instructions. If we can represent a test with a
1519 // single fcmp with fneg and fabs, that's likely a better canonical form.
1520 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1521 auto [ClassValRHS, ClassMaskRHS] =
1522 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
1523 if (ClassValRHS) {
1524 auto [ClassValLHS, ClassMaskLHS] =
1525 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
1526 if (ClassValLHS == ClassValRHS) {
1527 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1528 : (ClassMaskLHS | ClassMaskRHS);
1529 return Builder.CreateIntrinsic(
1530 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1531 {ClassValLHS, Builder.getInt32(CombinedMask)});
1532 }
1533 }
1534 }
1535
1536 // Canonicalize the range check idiom:
1537 // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C)
1538 // --> fabs(x) olt/ole/ult/ule C
1539 // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C)
1540 // --> fabs(x) ogt/oge/ugt/uge C
1541 // TODO: Generalize to handle a negated variable operand?
1542 const APFloat *LHSC, *RHSC;
1543 if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() &&
1544 FCmpInst::getSwappedPredicate(PredL) == PredR &&
1545 match(LHS1, m_APFloatAllowPoison(LHSC)) &&
1546 match(RHS1, m_APFloatAllowPoison(RHSC)) &&
1547 LHSC->bitwiseIsEqual(neg(*RHSC))) {
1548 auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) {
1549 switch (Pred) {
1550 case FCmpInst::FCMP_OLT:
1551 case FCmpInst::FCMP_OLE:
1552 case FCmpInst::FCMP_ULT:
1553 case FCmpInst::FCMP_ULE:
1554 return true;
1555 default:
1556 return false;
1557 }
1558 };
1559 if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
1560 std::swap(LHSC, RHSC);
1561 std::swap(PredL, PredR);
1562 }
1563 if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
1564 FastMathFlags NewFlag = LHS->getFastMathFlags();
1565 if (!IsLogicalSelect)
1566 NewFlag |= RHS->getFastMathFlags();
1567
1568 Value *FAbs =
1569 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag);
1570 return Builder.CreateFCmpFMF(
1571 PredL, FAbs, ConstantFP::get(LHS0->getType(), *LHSC), NewFlag);
1572 }
1573 }
1574
1575 return nullptr;
1576}
1577
1578/// Match an fcmp against a special value that performs a test possible by
1579/// llvm.is.fpclass.
1580static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
1581 uint64_t &ClassMask) {
1582 auto *FCmp = dyn_cast<FCmpInst>(Op);
1583 if (!FCmp || !FCmp->hasOneUse())
1584 return false;
1585
1586 std::tie(ClassVal, ClassMask) =
1587 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1588 FCmp->getOperand(0), FCmp->getOperand(1));
1589 return ClassVal != nullptr;
1590}
1591
1592/// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1593/// -> is_fpclass x, (mask0 | mask1)
1594/// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1595/// -> is_fpclass x, (mask0 & mask1)
1596/// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1597/// -> is_fpclass x, (mask0 ^ mask1)
1598Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1599 Value *Op0, Value *Op1) {
1600 Value *ClassVal0 = nullptr;
1601 Value *ClassVal1 = nullptr;
1602 uint64_t ClassMask0, ClassMask1;
1603
1604 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
1605 // new class.
1606 //
1607 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
1608 // better.
1609
1610 bool IsLHSClass =
1612 m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
1613 bool IsRHSClass =
1615 m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
1616 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
1617 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
1618 ClassVal0 == ClassVal1) {
1619 unsigned NewClassMask;
1620 switch (BO.getOpcode()) {
1621 case Instruction::And:
1622 NewClassMask = ClassMask0 & ClassMask1;
1623 break;
1624 case Instruction::Or:
1625 NewClassMask = ClassMask0 | ClassMask1;
1626 break;
1627 case Instruction::Xor:
1628 NewClassMask = ClassMask0 ^ ClassMask1;
1629 break;
1630 default:
1631 llvm_unreachable("not a binary logic operator");
1632 }
1633
1634 if (IsLHSClass) {
1635 auto *II = cast<IntrinsicInst>(Op0);
1636 II->setArgOperand(
1637 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1638 return replaceInstUsesWith(BO, II);
1639 }
1640
1641 if (IsRHSClass) {
1642 auto *II = cast<IntrinsicInst>(Op1);
1643 II->setArgOperand(
1644 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1645 return replaceInstUsesWith(BO, II);
1646 }
1647
1648 CallInst *NewClass =
1649 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
1650 {ClassVal0, Builder.getInt32(NewClassMask)});
1651 return replaceInstUsesWith(BO, NewClass);
1652 }
1653
1654 return nullptr;
1655}
1656
1657/// Look for the pattern that conditionally negates a value via math operations:
1658/// cond.splat = sext i1 cond
1659/// sub = add cond.splat, x
1660/// xor = xor sub, cond.splat
1661/// and rewrite it to do the same, but via logical operations:
1662/// value.neg = sub 0, value
1663/// cond = select i1 neg, value.neg, value
1664Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1665 BinaryOperator &I) {
1666 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1667 Value *Cond, *X;
1668 // As per complexity ordering, `xor` is not commutative here.
1669 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1670 !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1671 !Cond->getType()->isIntOrIntVectorTy(1) ||
1672 !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X))))
1673 return nullptr;
1674 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1675 X);
1676}
1677
1678/// This a limited reassociation for a special case (see above) where we are
1679/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1680/// This could be handled more generally in '-reassociation', but it seems like
1681/// an unlikely pattern for a large number of logic ops and fcmps.
1683 InstCombiner::BuilderTy &Builder) {
1684 Instruction::BinaryOps Opcode = BO.getOpcode();
1685 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1686 "Expecting and/or op for fcmp transform");
1687
1688 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1689 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1690 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1691 if (match(Op1, m_FCmp(m_Value(), m_AnyZeroFP())))
1692 std::swap(Op0, Op1);
1693
1694 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1695 Value *BO10, *BO11;
1696 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1698 if (!match(Op0, m_SpecificFCmp(NanPred, m_Value(X), m_AnyZeroFP())) ||
1699 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1700 return nullptr;
1701
1702 // The inner logic op must have a matching fcmp operand.
1703 Value *Y;
1704 if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
1705 X->getType() != Y->getType())
1706 std::swap(BO10, BO11);
1707
1708 if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
1709 X->getType() != Y->getType())
1710 return nullptr;
1711
1712 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1713 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1714 // Intersect FMF from the 2 source fcmps.
1715 Value *NewFCmp =
1716 Builder.CreateFCmpFMF(NanPred, X, Y, FMFSource::intersect(Op0, BO10));
1717 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1718}
1719
1720/// Match variations of De Morgan's Laws:
1721/// (~A & ~B) == (~(A | B))
1722/// (~A | ~B) == (~(A & B))
1724 InstCombiner &IC) {
1725 const Instruction::BinaryOps Opcode = I.getOpcode();
1726 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1727 "Trying to match De Morgan's Laws with something other than and/or");
1728
1729 // Flip the logic operation.
1730 const Instruction::BinaryOps FlippedOpcode =
1731 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1732
1733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1734 Value *A, *B;
1735 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1736 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1737 !IC.isFreeToInvert(A, A->hasOneUse()) &&
1738 !IC.isFreeToInvert(B, B->hasOneUse())) {
1739 Value *AndOr =
1740 IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1741 return BinaryOperator::CreateNot(AndOr);
1742 }
1743
1744 // The 'not' ops may require reassociation.
1745 // (A & ~B) & ~C --> A & ~(B | C)
1746 // (~B & A) & ~C --> A & ~(B | C)
1747 // (A | ~B) | ~C --> A | ~(B & C)
1748 // (~B | A) | ~C --> A | ~(B & C)
1749 Value *C;
1750 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1751 match(Op1, m_Not(m_Value(C)))) {
1752 Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C);
1753 return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO));
1754 }
1755
1756 return nullptr;
1757}
1758
1759bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1760 Value *CastSrc = CI->getOperand(0);
1761
1762 // Noop casts and casts of constants should be eliminated trivially.
1763 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1764 return false;
1765
1766 // If this cast is paired with another cast that can be eliminated, we prefer
1767 // to have it eliminated.
1768 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1769 if (isEliminableCastPair(PrecedingCI, CI))
1770 return false;
1771
1772 return true;
1773}
1774
1775/// Fold {and,or,xor} (cast X), C.
1777 InstCombinerImpl &IC) {
1779 if (!C)
1780 return nullptr;
1781
1782 auto LogicOpc = Logic.getOpcode();
1783 Type *DestTy = Logic.getType();
1784 Type *SrcTy = Cast->getSrcTy();
1785
1786 // Move the logic operation ahead of a zext or sext if the constant is
1787 // unchanged in the smaller source type. Performing the logic in a smaller
1788 // type may provide more information to later folds, and the smaller logic
1789 // instruction may be cheaper (particularly in the case of vectors).
1790 Value *X;
1791 auto &DL = IC.getDataLayout();
1792 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1793 PreservedCastFlags Flags;
1794 if (Constant *TruncC = getLosslessUnsignedTrunc(C, SrcTy, DL, &Flags)) {
1795 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1796 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1797 auto *ZExt = new ZExtInst(NewOp, DestTy);
1798 ZExt->setNonNeg(Flags.NNeg);
1799 ZExt->andIRFlags(Cast);
1800 return ZExt;
1801 }
1802 }
1803
1804 if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) {
1805 if (Constant *TruncC = getLosslessSignedTrunc(C, SrcTy, DL)) {
1806 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1807 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1808 return new SExtInst(NewOp, DestTy);
1809 }
1810 }
1811
1812 return nullptr;
1813}
1814
1815/// Fold {and,or,xor} (cast X), Y.
1816Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1817 auto LogicOpc = I.getOpcode();
1818 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1819
1820 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1821
1822 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the
1823 // type of A)
1824 // -> bitwise(zext(A < 0), zext(icmp))
1825 // -> zext(bitwise(A < 0, icmp))
1826 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
1827 Value *Op1) -> Instruction * {
1828 Value *A;
1829 bool IsMatched =
1830 match(Op0,
1832 m_Value(A),
1833 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
1834 match(Op1, m_OneUse(m_ZExt(m_ICmp(m_Value(), m_Value()))));
1835
1836 if (!IsMatched)
1837 return nullptr;
1838
1839 auto *ICmpL =
1840 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
1841 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
1842 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1843
1844 return new ZExtInst(BitwiseOp, Op0->getType());
1845 };
1846
1847 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1848 return Ret;
1849
1850 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1851 return Ret;
1852
1853 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1854 if (!Cast0)
1855 return nullptr;
1856
1857 // This must be a cast from an integer or integer vector source type to allow
1858 // transformation of the logic operation to the source type.
1859 Type *DestTy = I.getType();
1860 Type *SrcTy = Cast0->getSrcTy();
1861 if (!SrcTy->isIntOrIntVectorTy())
1862 return nullptr;
1863
1864 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this))
1865 return Ret;
1866
1867 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1868 if (!Cast1)
1869 return nullptr;
1870
1871 // Both operands of the logic operation are casts. The casts must be the
1872 // same kind for reduction.
1873 Instruction::CastOps CastOpcode = Cast0->getOpcode();
1874 if (CastOpcode != Cast1->getOpcode())
1875 return nullptr;
1876
1877 // Can't fold it profitably if no one of casts has one use.
1878 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
1879 return nullptr;
1880
1881 Value *X, *Y;
1882 if (match(Cast0, m_ZExtOrSExt(m_Value(X))) &&
1883 match(Cast1, m_ZExtOrSExt(m_Value(Y)))) {
1884 // Cast the narrower source to the wider source type.
1885 unsigned XNumBits = X->getType()->getScalarSizeInBits();
1886 unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1887 if (XNumBits != YNumBits) {
1888 // Cast the narrower source to the wider source type only if both of casts
1889 // have one use to avoid creating an extra instruction.
1890 if (!Cast0->hasOneUse() || !Cast1->hasOneUse())
1891 return nullptr;
1892
1893 // If the source types do not match, but the casts are matching extends,
1894 // we can still narrow the logic op.
1895 if (XNumBits < YNumBits) {
1896 X = Builder.CreateCast(CastOpcode, X, Y->getType());
1897 } else if (YNumBits < XNumBits) {
1898 Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1899 }
1900 }
1901
1902 // Do the logic op in the intermediate width, then widen more.
1903 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y, I.getName());
1904 auto *Disjoint = dyn_cast<PossiblyDisjointInst>(&I);
1905 auto *NewDisjoint = dyn_cast<PossiblyDisjointInst>(NarrowLogic);
1906 if (Disjoint && NewDisjoint)
1907 NewDisjoint->setIsDisjoint(Disjoint->isDisjoint());
1908 return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1909 }
1910
1911 // If the src type of casts are different, give up for other cast opcodes.
1912 if (SrcTy != Cast1->getSrcTy())
1913 return nullptr;
1914
1915 Value *Cast0Src = Cast0->getOperand(0);
1916 Value *Cast1Src = Cast1->getOperand(0);
1917
1918 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1919 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1920 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1921 I.getName());
1922 return CastInst::Create(CastOpcode, NewOp, DestTy);
1923 }
1924
1925 return nullptr;
1926}
1927
1929 InstCombiner::BuilderTy &Builder) {
1930 assert(I.getOpcode() == Instruction::And);
1931 Value *Op0 = I.getOperand(0);
1932 Value *Op1 = I.getOperand(1);
1933 Value *A, *B;
1934
1935 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1936 // (A | B) & ~(A & B) --> A ^ B
1937 // (A | B) & ~(B & A) --> A ^ B
1938 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1940 return BinaryOperator::CreateXor(A, B);
1941
1942 // (A | ~B) & (~A | B) --> ~(A ^ B)
1943 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1944 // (~B | A) & (~A | B) --> ~(A ^ B)
1945 // (~B | A) & (B | ~A) --> ~(A ^ B)
1946 if (Op0->hasOneUse() || Op1->hasOneUse())
1949 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1950
1951 return nullptr;
1952}
1953
1955 InstCombiner::BuilderTy &Builder) {
1956 assert(I.getOpcode() == Instruction::Or);
1957 Value *Op0 = I.getOperand(0);
1958 Value *Op1 = I.getOperand(1);
1959 Value *A, *B;
1960
1961 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1962 // (A & B) | ~(A | B) --> ~(A ^ B)
1963 // (A & B) | ~(B | A) --> ~(A ^ B)
1964 if (Op0->hasOneUse() || Op1->hasOneUse())
1965 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1967 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1968
1969 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1970 // (A ^ B) | ~(A | B) --> ~(A & B)
1971 // (A ^ B) | ~(B | A) --> ~(A & B)
1972 if (Op0->hasOneUse() || Op1->hasOneUse())
1973 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1975 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1976
1977 // (A & ~B) | (~A & B) --> A ^ B
1978 // (A & ~B) | (B & ~A) --> A ^ B
1979 // (~B & A) | (~A & B) --> A ^ B
1980 // (~B & A) | (B & ~A) --> A ^ B
1981 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1983 return BinaryOperator::CreateXor(A, B);
1984
1985 return nullptr;
1986}
1987
1988/// Return true if a constant shift amount is always less than the specified
1989/// bit-width. If not, the shift could create poison in the narrower type.
1990static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1991 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1992 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1993}
1994
1995/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1996/// a common zext operand: and (binop (zext X), C), (zext X).
1997Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1998 // This transform could also apply to {or, and, xor}, but there are better
1999 // folds for those cases, so we don't expect those patterns here. AShr is not
2000 // handled because it should always be transformed to LShr in this sequence.
2001 // The subtract transform is different because it has a constant on the left.
2002 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
2003 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
2004 Constant *C;
2005 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
2006 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
2007 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
2008 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
2009 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
2010 return nullptr;
2011
2012 Value *X;
2013 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
2014 return nullptr;
2015
2016 Type *Ty = And.getType();
2017 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
2018 return nullptr;
2019
2020 // If we're narrowing a shift, the shift amount must be safe (less than the
2021 // width) in the narrower type. If the shift amount is greater, instsimplify
2022 // usually handles that case, but we can't guarantee/assert it.
2024 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
2025 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
2026 return nullptr;
2027
2028 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
2029 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
2030 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
2031 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
2032 : Builder.CreateBinOp(Opc, X, NewC);
2033 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
2034}
2035
2036/// Try folding relatively complex patterns for both And and Or operations
2037/// with all And and Or swapped.
2039 InstCombiner::BuilderTy &Builder) {
2040 const Instruction::BinaryOps Opcode = I.getOpcode();
2041 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
2042
2043 // Flip the logic operation.
2044 const Instruction::BinaryOps FlippedOpcode =
2045 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
2046
2047 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2048 Value *A, *B, *C, *X, *Y, *Dummy;
2049
2050 // Match following expressions:
2051 // (~(A | B) & C)
2052 // (~(A & B) | C)
2053 // Captures X = ~(A | B) or ~(A & B)
2054 const auto matchNotOrAnd =
2055 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
2056 Value *&X, bool CountUses = false) -> bool {
2057 if (CountUses && !Op->hasOneUse())
2058 return false;
2059
2060 if (match(Op,
2061 m_c_BinOp(FlippedOpcode,
2062 m_Value(X, m_Not(m_c_BinOp(Opcode, m_A, m_B))), m_C)))
2063 return !CountUses || X->hasOneUse();
2064
2065 return false;
2066 };
2067
2068 // (~(A | B) & C) | ... --> ...
2069 // (~(A & B) | C) & ... --> ...
2070 // TODO: One use checks are conservative. We just need to check that a total
2071 // number of multiple used values does not exceed reduction
2072 // in operations.
2073 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
2074 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
2075 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
2076 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
2077 true)) {
2078 Value *Xor = Builder.CreateXor(B, C);
2079 return (Opcode == Instruction::Or)
2080 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
2081 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
2082 }
2083
2084 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
2085 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
2086 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
2087 true)) {
2088 Value *Xor = Builder.CreateXor(A, C);
2089 return (Opcode == Instruction::Or)
2090 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
2091 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
2092 }
2093
2094 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
2095 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
2096 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2097 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2098 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2099 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
2100
2101 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
2102 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
2103 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2104 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
2105 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2106 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
2107
2108 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
2109 // Note, the pattern with swapped and/or is not handled because the
2110 // result is more undefined than a source:
2111 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
2112 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
2113 match(Op1,
2115 Y, m_c_BinOp(Opcode, m_Specific(C),
2116 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
2117 // X = ~(A | B)
2118 // Y = (C | (A ^ B)
2119 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
2120 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
2121 }
2122 }
2123
2124 // (~A & B & C) | ... --> ...
2125 // (~A | B | C) | ... --> ...
2126 // TODO: One use checks are conservative. We just need to check that a total
2127 // number of multiple used values does not exceed reduction
2128 // in operations.
2129 if (match(Op0,
2130 m_OneUse(m_c_BinOp(FlippedOpcode,
2131 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
2132 m_Value(X, m_Not(m_Value(A)))))) ||
2133 match(Op0, m_OneUse(m_c_BinOp(FlippedOpcode,
2134 m_c_BinOp(FlippedOpcode, m_Value(C),
2135 m_Value(X, m_Not(m_Value(A)))),
2136 m_Value(B))))) {
2137 // X = ~A
2138 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
2139 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
2140 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
2141 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
2142 m_Specific(C))))) ||
2144 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
2145 m_Specific(A))))) ||
2147 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
2148 m_Specific(B)))))) {
2149 Value *Xor = Builder.CreateXor(B, C);
2150 return (Opcode == Instruction::Or)
2151 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
2152 : BinaryOperator::CreateOr(Xor, X);
2153 }
2154
2155 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
2156 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
2157 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2158 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
2160 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
2161 X);
2162
2163 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
2164 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
2165 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2166 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2168 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
2169 X);
2170 }
2171
2172 return nullptr;
2173}
2174
2175/// Try to reassociate a pair of binops so that values with one use only are
2176/// part of the same instruction. This may enable folds that are limited with
2177/// multi-use restrictions and makes it more likely to match other patterns that
2178/// are looking for a common operand.
2180 InstCombinerImpl::BuilderTy &Builder) {
2181 Instruction::BinaryOps Opcode = BO.getOpcode();
2182 Value *X, *Y, *Z;
2183 if (match(&BO,
2184 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
2185 m_OneUse(m_Value(Z))))) {
2186 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
2187 // (X op Y) op Z --> (Y op Z) op X
2188 if (!X->hasOneUse()) {
2189 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
2190 return BinaryOperator::Create(Opcode, YZ, X);
2191 }
2192 // (X op Y) op Z --> (X op Z) op Y
2193 if (!Y->hasOneUse()) {
2194 Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
2195 return BinaryOperator::Create(Opcode, XZ, Y);
2196 }
2197 }
2198 }
2199
2200 return nullptr;
2201}
2202
2203// Match
2204// (X + C2) | C
2205// (X + C2) ^ C
2206// (X + C2) & C
2207// and convert to do the bitwise logic first:
2208// (X | C) + C2
2209// (X ^ C) + C2
2210// (X & C) + C2
2211// iff bits affected by logic op are lower than last bit affected by math op
2213 InstCombiner::BuilderTy &Builder) {
2214 Type *Ty = I.getType();
2215 Instruction::BinaryOps OpC = I.getOpcode();
2216 Value *Op0 = I.getOperand(0);
2217 Value *Op1 = I.getOperand(1);
2218 Value *X;
2219 const APInt *C, *C2;
2220
2221 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
2222 match(Op1, m_APInt(C))))
2223 return nullptr;
2224
2225 unsigned Width = Ty->getScalarSizeInBits();
2226 unsigned LastOneMath = Width - C2->countr_zero();
2227
2228 switch (OpC) {
2229 case Instruction::And:
2230 if (C->countl_one() < LastOneMath)
2231 return nullptr;
2232 break;
2233 case Instruction::Xor:
2234 case Instruction::Or:
2235 if (C->countl_zero() < LastOneMath)
2236 return nullptr;
2237 break;
2238 default:
2239 llvm_unreachable("Unexpected BinaryOp!");
2240 }
2241
2242 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
2243 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
2244 ConstantInt::get(Ty, *C2), Op0);
2245}
2246
2247// binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
2248// shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
2249// where both shifts are the same and AddC is a valid shift amount.
2250Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
2251 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
2252 "Unexpected opcode");
2253
2254 Value *ShAmt;
2255 Constant *ShiftedC1, *ShiftedC2, *AddC;
2256 Type *Ty = I.getType();
2257 unsigned BitWidth = Ty->getScalarSizeInBits();
2258 if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
2259 m_Shift(m_ImmConstant(ShiftedC2),
2260 m_AddLike(m_Deferred(ShAmt),
2261 m_ImmConstant(AddC))))))
2262 return nullptr;
2263
2264 // Make sure the add constant is a valid shift amount.
2265 if (!match(AddC,
2267 return nullptr;
2268
2269 // Avoid constant expressions.
2270 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
2271 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
2272 if (!Op0Inst || !Op1Inst)
2273 return nullptr;
2274
2275 // Both shifts must be the same.
2276 Instruction::BinaryOps ShiftOp =
2277 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
2278 if (ShiftOp != Op1Inst->getOpcode())
2279 return nullptr;
2280
2281 // For adds, only left shifts are supported.
2282 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2283 return nullptr;
2284
2285 Value *NewC = Builder.CreateBinOp(
2286 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2287 return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
2288}
2289
2290// Fold and/or/xor with two equal intrinsic IDs:
2291// bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt))
2292// -> fshl(bitwise(A, C), bitwise(B, D), ShAmt)
2293// bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt))
2294// -> fshr(bitwise(A, C), bitwise(B, D), ShAmt)
2295// bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B))
2296// bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C)))
2297// bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B))
2298// bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C)))
2299static Instruction *
2301 InstCombiner::BuilderTy &Builder) {
2302 assert(I.isBitwiseLogicOp() && "Should and/or/xor");
2303 if (!I.getOperand(0)->hasOneUse())
2304 return nullptr;
2305 IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0));
2306 if (!X)
2307 return nullptr;
2308
2309 IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1));
2310 if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID()))
2311 return nullptr;
2312
2313 Intrinsic::ID IID = X->getIntrinsicID();
2314 const APInt *RHSC;
2315 // Try to match constant RHS.
2316 if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2317 !match(I.getOperand(1), m_APInt(RHSC))))
2318 return nullptr;
2319
2320 switch (IID) {
2321 case Intrinsic::fshl:
2322 case Intrinsic::fshr: {
2323 if (X->getOperand(2) != Y->getOperand(2))
2324 return nullptr;
2325 Value *NewOp0 =
2326 Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0));
2327 Value *NewOp1 =
2328 Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1));
2329 Function *F =
2330 Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
2331 return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)});
2332 }
2333 case Intrinsic::bswap:
2334 case Intrinsic::bitreverse: {
2335 Value *NewOp0 = Builder.CreateBinOp(
2336 I.getOpcode(), X->getOperand(0),
2337 Y ? Y->getOperand(0)
2338 : ConstantInt::get(I.getType(), IID == Intrinsic::bswap
2339 ? RHSC->byteSwap()
2340 : RHSC->reverseBits()));
2341 Function *F =
2342 Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
2343 return CallInst::Create(F, {NewOp0});
2344 }
2345 default:
2346 return nullptr;
2347 }
2348}
2349
2350// Try to simplify V by replacing occurrences of Op with RepOp, but only look
2351// through bitwise operations. In particular, for X | Y we try to replace Y with
2352// 0 inside X and for X & Y we try to replace Y with -1 inside X.
2353// Return the simplified result of X if successful, and nullptr otherwise.
2354// If SimplifyOnly is true, no new instructions will be created.
2356 bool SimplifyOnly,
2357 InstCombinerImpl &IC,
2358 unsigned Depth = 0) {
2359 if (Op == RepOp)
2360 return nullptr;
2361
2362 if (V == Op)
2363 return RepOp;
2364
2365 auto *I = dyn_cast<BinaryOperator>(V);
2366 if (!I || !I->isBitwiseLogicOp() || Depth >= 3)
2367 return nullptr;
2368
2369 if (!I->hasOneUse())
2370 SimplifyOnly = true;
2371
2372 Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp,
2373 SimplifyOnly, IC, Depth + 1);
2374 Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp,
2375 SimplifyOnly, IC, Depth + 1);
2376 if (!NewOp0 && !NewOp1)
2377 return nullptr;
2378
2379 if (!NewOp0)
2380 NewOp0 = I->getOperand(0);
2381 if (!NewOp1)
2382 NewOp1 = I->getOperand(1);
2383
2384 if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1,
2386 return Res;
2387
2388 if (SimplifyOnly)
2389 return nullptr;
2390 return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1);
2391}
2392
2393/// Reassociate and/or expressions to see if we can fold the inner and/or ops.
2394/// TODO: Make this recursive; it's a little tricky because an arbitrary
2395/// number of and/or instructions might have to be created.
2396Value *InstCombinerImpl::reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y,
2397 Instruction &I, bool IsAnd,
2398 bool RHSIsLogical) {
2399 Instruction::BinaryOps Opcode = IsAnd ? Instruction::And : Instruction::Or;
2400 // LHS bop (X lop Y) --> (LHS bop X) lop Y
2401 // LHS bop (X bop Y) --> (LHS bop X) bop Y
2402 if (Value *Res = foldBooleanAndOr(LHS, X, I, IsAnd, /*IsLogical=*/false))
2403 return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, Res, Y)
2404 : Builder.CreateBinOp(Opcode, Res, Y);
2405 // LHS bop (X bop Y) --> X bop (LHS bop Y)
2406 // LHS bop (X lop Y) --> X lop (LHS bop Y)
2407 if (Value *Res = foldBooleanAndOr(LHS, Y, I, IsAnd, /*IsLogical=*/false))
2408 return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, X, Res)
2409 : Builder.CreateBinOp(Opcode, X, Res);
2410 return nullptr;
2411}
2412
2413// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2414// here. We should standardize that construct where it is needed or choose some
2415// other way to ensure that commutated variants of patterns are not missed.
2417 Type *Ty = I.getType();
2418
2419 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
2420 SQ.getWithInstruction(&I)))
2421 return replaceInstUsesWith(I, V);
2422
2424 return &I;
2425
2427 return X;
2428
2430 return Phi;
2431
2432 // See if we can simplify any instructions used by the instruction whose sole
2433 // purpose is to compute bits we don't care about.
2435 return &I;
2436
2437 // Do this before using distributive laws to catch simple and/or/not patterns.
2439 return Xor;
2440
2442 return X;
2443
2444 // (A|B)&(A|C) -> A|(B&C) etc
2446 return replaceInstUsesWith(I, V);
2447
2449 return R;
2450
2451 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2452
2453 Value *X, *Y;
2454 const APInt *C;
2455 if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) ||
2456 (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) &&
2457 match(Op1, m_One())) {
2458 // (1 >> X) & 1 --> zext(X == 0)
2459 // (C << X) & 1 --> zext(X == 0), when C is odd
2460 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
2461 return new ZExtInst(IsZero, Ty);
2462 }
2463
2464 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
2465 Value *Neg;
2466 if (match(&I,
2468 m_Value(Y)))) {
2469 Value *Cmp = Builder.CreateIsNull(Neg);
2471 }
2472
2473 // Canonicalize:
2474 // (X +/- Y) & Y --> ~X & Y when Y is a power of 2.
2477 m_Sub(m_Value(X), m_Deferred(Y)))))) &&
2478 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, &I))
2479 return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y);
2480
2481 if (match(Op1, m_APInt(C))) {
2482 const APInt *XorC;
2483 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
2484 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2485 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
2486 Value *And = Builder.CreateAnd(X, Op1);
2487 And->takeName(Op0);
2488 return BinaryOperator::CreateXor(And, NewC);
2489 }
2490
2491 const APInt *OrC;
2492 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2493 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2494 // NOTE: This reduces the number of bits set in the & mask, which
2495 // can expose opportunities for store narrowing for scalars.
2496 // NOTE: SimplifyDemandedBits should have already removed bits from C1
2497 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2498 // above, but this feels safer.
2499 APInt Together = *C & *OrC;
2500 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2501 And->takeName(Op0);
2502 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2503 }
2504
2505 unsigned Width = Ty->getScalarSizeInBits();
2506 const APInt *ShiftC;
2507 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2508 ShiftC->ult(Width)) {
2509 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2510 // We are clearing high bits that were potentially set by sext+ashr:
2511 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2512 Value *Sext = Builder.CreateSExt(X, Ty);
2513 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2514 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2515 }
2516 }
2517
2518 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2519 // and (ashr X, ShiftC), C --> lshr X, ShiftC
2520 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2521 C->isMask(Width - ShiftC->getZExtValue()))
2522 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2523
2524 const APInt *AddC;
2525 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2526 // If we are masking the result of the add down to exactly one bit and
2527 // the constant we are adding has no bits set below that bit, then the
2528 // add is flipping a single bit. Example:
2529 // (X + 4) & 4 --> (X & 4) ^ 4
2530 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2531 assert((*C & *AddC) != 0 && "Expected common bit");
2532 Value *NewAnd = Builder.CreateAnd(X, Op1);
2533 return BinaryOperator::CreateXor(NewAnd, Op1);
2534 }
2535 }
2536
2537 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2538 // bitwidth of X and OP behaves well when given trunc(C1) and X.
2539 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2540 switch (B->getOpcode()) {
2541 case Instruction::Xor:
2542 case Instruction::Or:
2543 case Instruction::Mul:
2544 case Instruction::Add:
2545 case Instruction::Sub:
2546 return true;
2547 default:
2548 return false;
2549 }
2550 };
2551 BinaryOperator *BO;
2552 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2553 Instruction::BinaryOps BOpcode = BO->getOpcode();
2554 Value *X;
2555 const APInt *C1;
2556 // TODO: The one-use restrictions could be relaxed a little if the AND
2557 // is going to be removed.
2558 // Try to narrow the 'and' and a binop with constant operand:
2559 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2560 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2561 C->isIntN(X->getType()->getScalarSizeInBits())) {
2562 unsigned XWidth = X->getType()->getScalarSizeInBits();
2563 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2564 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2565 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2566 : Builder.CreateBinOp(BOpcode, TruncC1, X);
2567 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2568 Value *And = Builder.CreateAnd(BinOp, TruncC);
2569 return new ZExtInst(And, Ty);
2570 }
2571
2572 // Similar to above: if the mask matches the zext input width, then the
2573 // 'and' can be eliminated, so we can truncate the other variable op:
2574 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2575 if (isa<Instruction>(BO->getOperand(0)) &&
2576 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2577 C->isMask(X->getType()->getScalarSizeInBits())) {
2578 Y = BO->getOperand(1);
2579 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2580 Value *NewBO =
2581 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2582 return new ZExtInst(NewBO, Ty);
2583 }
2584 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2585 if (isa<Instruction>(BO->getOperand(1)) &&
2586 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2587 C->isMask(X->getType()->getScalarSizeInBits())) {
2588 Y = BO->getOperand(0);
2589 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2590 Value *NewBO =
2591 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2592 return new ZExtInst(NewBO, Ty);
2593 }
2594 }
2595
2596 // This is intentionally placed after the narrowing transforms for
2597 // efficiency (transform directly to the narrow logic op if possible).
2598 // If the mask is only needed on one incoming arm, push the 'and' op up.
2599 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2600 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2601 APInt NotAndMask(~(*C));
2602 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2603 if (MaskedValueIsZero(X, NotAndMask, &I)) {
2604 // Not masking anything out for the LHS, move mask to RHS.
2605 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2606 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2607 return BinaryOperator::Create(BinOp, X, NewRHS);
2608 }
2609 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, &I)) {
2610 // Not masking anything out for the RHS, move mask to LHS.
2611 // and ({x}or X, Y), C --> {x}or (and X, C), Y
2612 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2613 return BinaryOperator::Create(BinOp, NewLHS, Y);
2614 }
2615 }
2616
2617 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2618 // constant, test if the shift amount equals the offset bit index:
2619 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2620 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2621 if (C->isPowerOf2() &&
2622 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2623 int Log2ShiftC = ShiftC->exactLogBase2();
2624 int Log2C = C->exactLogBase2();
2625 bool IsShiftLeft =
2626 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2627 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2628 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2629 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2630 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2632 }
2633
2634 Constant *C1, *C2;
2635 const APInt *C3 = C;
2636 Value *X;
2637 if (C3->isPowerOf2()) {
2638 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
2640 m_ImmConstant(C2)))) &&
2641 match(C1, m_Power2())) {
2643 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2644 KnownBits KnownLShrc = computeKnownBits(LshrC, nullptr);
2645 if (KnownLShrc.getMaxValue().ult(Width)) {
2646 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2647 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2648 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2649 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2650 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2652 }
2653 }
2654
2656 m_ImmConstant(C2)))) &&
2657 match(C1, m_Power2())) {
2659 Constant *Cmp =
2661 if (Cmp && Cmp->isZeroValue()) {
2662 // iff C1,C3 is pow2 and Log2(C3) >= C2:
2663 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2664 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2665 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2666 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2667 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2669 }
2670 }
2671 }
2672 }
2673
2674 // If we are clearing the sign bit of a floating-point value, convert this to
2675 // fabs, then cast back to integer.
2676 //
2677 // This is a generous interpretation for noimplicitfloat, this is not a true
2678 // floating-point operation.
2679 //
2680 // Assumes any IEEE-represented type has the sign bit in the high bit.
2681 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
2682 Value *CastOp;
2683 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
2684 match(Op1, m_MaxSignedValue()) &&
2685 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2686 Attribute::NoImplicitFloat)) {
2687 Type *EltTy = CastOp->getType()->getScalarType();
2688 if (EltTy->isFloatingPointTy() &&
2690 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2691 return new BitCastInst(FAbs, I.getType());
2692 }
2693 }
2694
2695 // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask)
2696 // where Y is a valid shift amount.
2698 m_SignMask())) &&
2701 APInt(Ty->getScalarSizeInBits(),
2702 Ty->getScalarSizeInBits() -
2703 X->getType()->getScalarSizeInBits())))) {
2704 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2705 return BinaryOperator::CreateAnd(SExt, Op1);
2706 }
2707
2708 if (Instruction *Z = narrowMaskedBinOp(I))
2709 return Z;
2710
2711 if (I.getType()->isIntOrIntVectorTy(1)) {
2712 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2713 if (auto *R =
2714 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2715 return R;
2716 }
2717 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2718 if (auto *R =
2719 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2720 return R;
2721 }
2722 }
2723
2724 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2725 return FoldedLogic;
2726
2727 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
2728 return DeMorgan;
2729
2730 {
2731 Value *A, *B, *C;
2732 // A & ~(A ^ B) --> A & B
2733 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2734 return BinaryOperator::CreateAnd(Op0, B);
2735 // ~(A ^ B) & A --> A & B
2736 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2737 return BinaryOperator::CreateAnd(Op1, B);
2738
2739 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2740 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2741 match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) {
2742 Value *NotC = Op1->hasOneUse()
2743 ? Builder.CreateNot(C)
2744 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2745 if (NotC != nullptr)
2746 return BinaryOperator::CreateAnd(Op0, NotC);
2747 }
2748
2749 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2750 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) &&
2751 match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) {
2752 Value *NotC = Op0->hasOneUse()
2753 ? Builder.CreateNot(C)
2754 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2755 if (NotC != nullptr)
2756 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2757 }
2758
2759 // (A | B) & (~A ^ B) -> A & B
2760 // (A | B) & (B ^ ~A) -> A & B
2761 // (B | A) & (~A ^ B) -> A & B
2762 // (B | A) & (B ^ ~A) -> A & B
2763 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2764 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2765 return BinaryOperator::CreateAnd(A, B);
2766
2767 // (~A ^ B) & (A | B) -> A & B
2768 // (~A ^ B) & (B | A) -> A & B
2769 // (B ^ ~A) & (A | B) -> A & B
2770 // (B ^ ~A) & (B | A) -> A & B
2771 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2772 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2773 return BinaryOperator::CreateAnd(A, B);
2774
2775 // (~A | B) & (A ^ B) -> ~A & B
2776 // (~A | B) & (B ^ A) -> ~A & B
2777 // (B | ~A) & (A ^ B) -> ~A & B
2778 // (B | ~A) & (B ^ A) -> ~A & B
2779 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2781 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2782
2783 // (A ^ B) & (~A | B) -> ~A & B
2784 // (B ^ A) & (~A | B) -> ~A & B
2785 // (A ^ B) & (B | ~A) -> ~A & B
2786 // (B ^ A) & (B | ~A) -> ~A & B
2787 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2789 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2790 }
2791
2792 if (Value *Res =
2793 foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/true, /*IsLogical=*/false))
2794 return replaceInstUsesWith(I, Res);
2795
2796 if (match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2797 bool IsLogical = isa<SelectInst>(Op1);
2798 if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/true,
2799 /*RHSIsLogical=*/IsLogical))
2800 return replaceInstUsesWith(I, V);
2801 }
2802 if (match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2803 bool IsLogical = isa<SelectInst>(Op0);
2804 if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/true,
2805 /*RHSIsLogical=*/IsLogical))
2806 return replaceInstUsesWith(I, V);
2807 }
2808
2809 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2810 return FoldedFCmps;
2811
2812 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2813 return CastedAnd;
2814
2815 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2816 return Sel;
2817
2818 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2819 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2820 // with binop identity constant. But creating a select with non-constant
2821 // arm may not be reversible due to poison semantics. Is that a good
2822 // canonicalization?
2823 Value *A, *B;
2824 if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) &&
2825 A->getType()->isIntOrIntVectorTy(1))
2827
2828 // Similarly, a 'not' of the bool translates to a swap of the select arms:
2829 // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
2830 if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
2831 A->getType()->isIntOrIntVectorTy(1))
2833
2834 // and(zext(A), B) -> A ? (B & 1) : 0
2835 if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) &&
2836 A->getType()->isIntOrIntVectorTy(1))
2837 return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)),
2839
2840 // (-1 + A) & B --> A ? 0 : B where A is 0/1.
2842 m_Value(B)))) {
2843 if (A->getType()->isIntOrIntVectorTy(1))
2845 if (computeKnownBits(A, &I).countMaxActiveBits() <= 1) {
2846 return SelectInst::Create(
2847 Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B,
2849 }
2850 }
2851
2852 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2855 m_Value(Y))) &&
2856 *C == X->getType()->getScalarSizeInBits() - 1) {
2857 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2859 }
2860 // If there's a 'not' of the shifted value, swap the select operands:
2861 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2864 m_Value(Y))) &&
2865 *C == X->getType()->getScalarSizeInBits() - 1) {
2866 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2868 }
2869
2870 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2872 return &I;
2873
2874 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2875 PHINode *PN = nullptr;
2876 Value *Start = nullptr, *Step = nullptr;
2877 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2878 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2879
2881 return R;
2882
2883 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2884 return Canonicalized;
2885
2886 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2887 return Folded;
2888
2889 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
2890 return Res;
2891
2893 return Res;
2894
2895 if (Value *V =
2897 /*SimplifyOnly*/ false, *this))
2898 return BinaryOperator::CreateAnd(V, Op1);
2899 if (Value *V =
2901 /*SimplifyOnly*/ false, *this))
2902 return BinaryOperator::CreateAnd(Op0, V);
2903
2904 return nullptr;
2905}
2906
2908 bool MatchBSwaps,
2909 bool MatchBitReversals) {
2911 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2912 Insts))
2913 return nullptr;
2914 Instruction *LastInst = Insts.pop_back_val();
2915 LastInst->removeFromParent();
2916
2917 for (auto *Inst : Insts) {
2918 Inst->setDebugLoc(I.getDebugLoc());
2919 Worklist.push(Inst);
2920 }
2921 return LastInst;
2922}
2923
2924std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
2926 // TODO: Can we reduce the code duplication between this and the related
2927 // rotate matching code under visitSelect and visitTrunc?
2928 assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction");
2929
2930 unsigned Width = Or.getType()->getScalarSizeInBits();
2931
2932 Instruction *Or0, *Or1;
2933 if (!match(Or.getOperand(0), m_Instruction(Or0)) ||
2934 !match(Or.getOperand(1), m_Instruction(Or1)))
2935 return std::nullopt;
2936
2937 bool IsFshl = true; // Sub on LSHR.
2938 SmallVector<Value *, 3> FShiftArgs;
2939
2940 // First, find an or'd pair of opposite shifts:
2941 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2942 if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) {
2943 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2944 if (!match(Or0,
2945 m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2946 !match(Or1,
2947 m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2948 Or0->getOpcode() == Or1->getOpcode())
2949 return std::nullopt;
2950
2951 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2952 if (Or0->getOpcode() == BinaryOperator::LShr) {
2953 std::swap(Or0, Or1);
2954 std::swap(ShVal0, ShVal1);
2955 std::swap(ShAmt0, ShAmt1);
2956 }
2957 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2958 Or1->getOpcode() == BinaryOperator::LShr &&
2959 "Illegal or(shift,shift) pair");
2960
2961 // Match the shift amount operands for a funnel shift pattern. This always
2962 // matches a subtraction on the R operand.
2963 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2964 // Check for constant shift amounts that sum to the bitwidth.
2965 const APInt *LI, *RI;
2966 if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI)))
2967 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2968 return ConstantInt::get(L->getType(), *LI);
2969
2970 Constant *LC, *RC;
2971 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2972 match(L,
2973 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2974 match(R,
2975 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2977 return ConstantExpr::mergeUndefsWith(LC, RC);
2978
2979 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2980 // We limit this to X < Width in case the backend re-expands the
2981 // intrinsic, and has to reintroduce a shift modulo operation (InstCombine
2982 // might remove it after this fold). This still doesn't guarantee that the
2983 // final codegen will match this original pattern.
2984 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2985 KnownBits KnownL = computeKnownBits(L, &Or);
2986 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2987 }
2988
2989 // For non-constant cases, the following patterns currently only work for
2990 // rotation patterns.
2991 // TODO: Add general funnel-shift compatible patterns.
2992 if (ShVal0 != ShVal1)
2993 return nullptr;
2994
2995 // For non-constant cases we don't support non-pow2 shift masks.
2996 // TODO: Is it worth matching urem as well?
2997 if (!isPowerOf2_32(Width))
2998 return nullptr;
2999
3000 // The shift amount may be masked with negation:
3001 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
3002 Value *X;
3003 unsigned Mask = Width - 1;
3004 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
3005 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
3006 return X;
3007
3008 // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1)))
3009 if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask))))
3010 return L;
3011
3012 // Similar to above, but the shift amount may be extended after masking,
3013 // so return the extended value as the parameter for the intrinsic.
3014 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
3015 match(R,
3017 m_SpecificInt(Mask))))
3018 return L;
3019
3020 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
3022 return L;
3023
3024 return nullptr;
3025 };
3026
3027 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
3028 if (!ShAmt) {
3029 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
3030 IsFshl = false; // Sub on SHL.
3031 }
3032 if (!ShAmt)
3033 return std::nullopt;
3034
3035 FShiftArgs = {ShVal0, ShVal1, ShAmt};
3036 } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
3037 // If there are two 'or' instructions concat variables in opposite order:
3038 //
3039 // Slot1 and Slot2 are all zero bits.
3040 // | Slot1 | Low | Slot2 | High |
3041 // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
3042 // | Slot2 | High | Slot1 | Low |
3043 // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
3044 //
3045 // the latter 'or' can be safely convert to
3046 // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
3047 // if ZextLowShlAmt + ZextHighShlAmt == Width.
3048 if (!isa<ZExtInst>(Or1))
3049 std::swap(Or0, Or1);
3050
3051 Value *High, *ZextHigh, *Low;
3052 const APInt *ZextHighShlAmt;
3053 if (!match(Or0,
3054 m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
3055 return std::nullopt;
3056
3057 if (!match(Or1, m_ZExt(m_Value(Low))) ||
3058 !match(ZextHigh, m_ZExt(m_Value(High))))
3059 return std::nullopt;
3060
3061 unsigned HighSize = High->getType()->getScalarSizeInBits();
3062 unsigned LowSize = Low->getType()->getScalarSizeInBits();
3063 // Make sure High does not overlap with Low and most significant bits of
3064 // High aren't shifted out.
3065 if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
3066 return std::nullopt;
3067
3068 for (User *U : ZextHigh->users()) {
3069 Value *X, *Y;
3070 if (!match(U, m_Or(m_Value(X), m_Value(Y))))
3071 continue;
3072
3073 if (!isa<ZExtInst>(Y))
3074 std::swap(X, Y);
3075
3076 const APInt *ZextLowShlAmt;
3077 if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
3078 !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
3079 continue;
3080
3081 // HighLow is good concat. If sum of two shifts amount equals to Width,
3082 // LowHigh must also be a good concat.
3083 if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
3084 continue;
3085
3086 // Low must not overlap with High and most significant bits of Low must
3087 // not be shifted out.
3088 assert(ZextLowShlAmt->uge(HighSize) &&
3089 ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
3090
3091 // We cannot reuse the result if it may produce poison.
3092 // Drop poison generating flags in the expression tree.
3093 // Or
3094 cast<Instruction>(U)->dropPoisonGeneratingFlags();
3095 // Shl
3096 cast<Instruction>(X)->dropPoisonGeneratingFlags();
3097
3098 FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
3099 break;
3100 }
3101 }
3102
3103 if (FShiftArgs.empty())
3104 return std::nullopt;
3105
3106 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
3107 return std::make_pair(IID, FShiftArgs);
3108}
3109
3110/// Match UB-safe variants of the funnel shift intrinsic.
3112 if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) {
3113 auto [IID, FShiftArgs] = *Opt;
3114 Function *F =
3115 Intrinsic::getOrInsertDeclaration(Or.getModule(), IID, Or.getType());
3116 return CallInst::Create(F, FShiftArgs);
3117 }
3118
3119 return nullptr;
3120}
3121
3122/// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
3124 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
3125 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
3126 Type *Ty = Or.getType();
3127
3128 unsigned Width = Ty->getScalarSizeInBits();
3129 if ((Width & 1) != 0)
3130 return nullptr;
3131 unsigned HalfWidth = Width / 2;
3132
3133 // Canonicalize zext (lower half) to LHS.
3134 if (!isa<ZExtInst>(Op0))
3135 std::swap(Op0, Op1);
3136
3137 // Find lower/upper half.
3138 Value *LowerSrc, *ShlVal, *UpperSrc;
3139 const APInt *C;
3140 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
3141 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
3142 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
3143 return nullptr;
3144 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
3145 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
3146 return nullptr;
3147
3148 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
3149 Value *NewLower = Builder.CreateZExt(Lo, Ty);
3150 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
3151 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
3152 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
3153 return Builder.CreateIntrinsic(id, Ty, BinOp);
3154 };
3155
3156 // BSWAP: Push the concat down, swapping the lower/upper sources.
3157 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
3158 Value *LowerBSwap, *UpperBSwap;
3159 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
3160 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
3161 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
3162
3163 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
3164 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
3165 Value *LowerBRev, *UpperBRev;
3166 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
3167 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
3168 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
3169
3170 // iX ext split: extending or(zext(x),shl(zext(y),bw/2) pattern
3171 // to consume sext/ashr:
3172 // or(zext(sext(x)),shl(zext(sext(ashr(x,xbw-1))),bw/2)
3173 // or(zext(x),shl(zext(ashr(x,xbw-1)),bw/2)
3174 Value *X;
3175 if (match(LowerSrc, m_SExtOrSelf(m_Value(X))) &&
3176 match(UpperSrc,
3178 m_Specific(X),
3179 m_SpecificInt(X->getType()->getScalarSizeInBits() - 1)))))
3180 return Builder.CreateSExt(X, Ty);
3181
3182 return nullptr;
3183}
3184
3185/// If all elements of two constant vectors are 0/-1 and inverses, return true.
3187 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
3188 for (unsigned i = 0; i != NumElts; ++i) {
3189 Constant *EltC1 = C1->getAggregateElement(i);
3190 Constant *EltC2 = C2->getAggregateElement(i);
3191 if (!EltC1 || !EltC2)
3192 return false;
3193
3194 // One element must be all ones, and the other must be all zeros.
3195 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
3196 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
3197 return false;
3198 }
3199 return true;
3200}
3201
3202/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
3203/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
3204/// B, it can be used as the condition operand of a select instruction.
3205/// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
3206Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
3207 bool ABIsTheSame) {
3208 // We may have peeked through bitcasts in the caller.
3209 // Exit immediately if we don't have (vector) integer types.
3210 Type *Ty = A->getType();
3211 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
3212 return nullptr;
3213
3214 // If A is the 'not' operand of B and has enough signbits, we have our answer.
3215 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
3216 // If these are scalars or vectors of i1, A can be used directly.
3217 if (Ty->isIntOrIntVectorTy(1))
3218 return A;
3219
3220 // If we look through a vector bitcast, the caller will bitcast the operands
3221 // to match the condition's number of bits (N x i1).
3222 // To make this poison-safe, disallow bitcast from wide element to narrow
3223 // element. That could allow poison in lanes where it was not present in the
3224 // original code.
3226 if (A->getType()->isIntOrIntVectorTy()) {
3227 unsigned NumSignBits = ComputeNumSignBits(A);
3228 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
3229 NumSignBits <= Ty->getScalarSizeInBits())
3230 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
3231 }
3232 return nullptr;
3233 }
3234
3235 // TODO: add support for sext and constant case
3236 if (ABIsTheSame)
3237 return nullptr;
3238
3239 // If both operands are constants, see if the constants are inverse bitmasks.
3240 Constant *AConst, *BConst;
3241 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
3242 if (AConst == ConstantExpr::getNot(BConst) &&
3244 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
3245
3246 // Look for more complex patterns. The 'not' op may be hidden behind various
3247 // casts. Look through sexts and bitcasts to find the booleans.
3248 Value *Cond;
3249 Value *NotB;
3250 if (match(A, m_SExt(m_Value(Cond))) &&
3251 Cond->getType()->isIntOrIntVectorTy(1)) {
3252 // A = sext i1 Cond; B = sext (not (i1 Cond))
3253 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
3254 return Cond;
3255
3256 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
3257 // TODO: The one-use checks are unnecessary or misplaced. If the caller
3258 // checked for uses on logic ops/casts, that should be enough to
3259 // make this transform worthwhile.
3260 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
3261 NotB = peekThroughBitcast(NotB, true);
3262 if (match(NotB, m_SExt(m_Specific(Cond))))
3263 return Cond;
3264 }
3265 }
3266
3267 // All scalar (and most vector) possibilities should be handled now.
3268 // Try more matches that only apply to non-splat constant vectors.
3269 if (!Ty->isVectorTy())
3270 return nullptr;
3271
3272 // If both operands are xor'd with constants using the same sexted boolean
3273 // operand, see if the constants are inverse bitmasks.
3274 // TODO: Use ConstantExpr::getNot()?
3275 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
3276 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
3277 Cond->getType()->isIntOrIntVectorTy(1) &&
3278 areInverseVectorBitmasks(AConst, BConst)) {
3280 return Builder.CreateXor(Cond, AConst);
3281 }
3282 return nullptr;
3283}
3284
3285/// We have an expression of the form (A & B) | (C & D). Try to simplify this
3286/// to "A' ? B : D", where A' is a boolean or vector of booleans.
3287/// When InvertFalseVal is set to true, we try to match the pattern
3288/// where we have peeked through a 'not' op and A and C are the same:
3289/// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D
3290Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C,
3291 Value *D, bool InvertFalseVal) {
3292 // The potential condition of the select may be bitcasted. In that case, look
3293 // through its bitcast and the corresponding bitcast of the 'not' condition.
3294 Type *OrigType = A->getType();
3295 A = peekThroughBitcast(A, true);
3296 C = peekThroughBitcast(C, true);
3297 if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) {
3298 // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D))
3299 // If this is a vector, we may need to cast to match the condition's length.
3300 // The bitcasts will either all exist or all not exist. The builder will
3301 // not create unnecessary casts if the types already match.
3302 Type *SelTy = A->getType();
3303 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
3304 // For a fixed or scalable vector get N from <{vscale x} N x iM>
3305 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3306 // For a fixed or scalable vector, get the size in bits of N x iM; for a
3307 // scalar this is just M.
3308 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
3309 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
3310 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
3311 }
3312 Value *BitcastB = Builder.CreateBitCast(B, SelTy);
3313 if (InvertFalseVal)
3314 D = Builder.CreateNot(D);
3315 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
3316 Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD);
3317 return Builder.CreateBitCast(Select, OrigType);
3318 }
3319
3320 return nullptr;
3321}
3322
3323// (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
3324// (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
3326 bool IsAnd, bool IsLogical,
3327 IRBuilderBase &Builder) {
3328 Value *LHS0 = LHS->getOperand(0);
3329 Value *RHS0 = RHS->getOperand(0);
3330 Value *RHS1 = RHS->getOperand(1);
3331
3332 ICmpInst::Predicate LPred =
3333 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
3334 ICmpInst::Predicate RPred =
3335 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
3336
3337 const APInt *CInt;
3338 if (LPred != ICmpInst::ICMP_EQ ||
3339 !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) ||
3340 !LHS0->getType()->isIntOrIntVectorTy() ||
3341 !(LHS->hasOneUse() || RHS->hasOneUse()))
3342 return nullptr;
3343
3344 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
3345 return match(RHSOp,
3346 m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) ||
3347 (CInt->isZero() && RHSOp == LHS0);
3348 };
3349
3350 Value *Other;
3351 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
3352 Other = RHS0;
3353 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
3354 Other = RHS1;
3355 else
3356 return nullptr;
3357
3358 if (IsLogical)
3359 Other = Builder.CreateFreeze(Other);
3360
3361 return Builder.CreateICmp(
3363 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
3364 Other);
3365}
3366
3367/// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
3368/// If IsLogical is true, then the and/or is in select form and the transform
3369/// must be poison-safe.
3370Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3371 Instruction &I, bool IsAnd,
3372 bool IsLogical) {
3373 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3374
3375 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3376 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
3377 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
3378
3379 const APInt *LHSC = nullptr, *RHSC = nullptr;
3380 match(LHS1, m_APInt(LHSC));
3381 match(RHS1, m_APInt(RHSC));
3382
3383 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3384 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3385 if (predicatesFoldable(PredL, PredR)) {
3386 if (LHS0 == RHS1 && LHS1 == RHS0) {
3387 PredL = ICmpInst::getSwappedPredicate(PredL);
3388 std::swap(LHS0, LHS1);
3389 }
3390 if (LHS0 == RHS0 && LHS1 == RHS1) {
3391 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
3392 : getICmpCode(PredL) | getICmpCode(PredR);
3393 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3394 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3395 }
3396 }
3397
3398 if (Value *V =
3399 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
3400 return V;
3401 // We can treat logical like bitwise here, because both operands are used on
3402 // the LHS, and as such poison from both will propagate.
3404 /*IsLogical*/ false, Builder))
3405 return V;
3406
3407 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical,
3408 Builder, Q, I))
3409 return V;
3410 // We can convert this case to bitwise and, because both operands are used
3411 // on the LHS, and as such poison from both will propagate.
3413 RHS, LHS, IsAnd, /*IsLogical=*/false, Builder, Q, I)) {
3414 // If RHS is still used, we should drop samesign flag.
3415 if (IsLogical && RHS->hasSameSign() && !RHS->use_empty()) {
3416 RHS->setSameSign(false);
3418 }
3419 return V;
3420 }
3421
3422 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder, *this))
3423 return V;
3424 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder, *this))
3425 return V;
3426
3427 // TODO: One of these directions is fine with logical and/or, the other could
3428 // be supported by inserting freeze.
3429 if (!IsLogical) {
3430 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
3431 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
3432 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
3433 return V;
3434
3435 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
3436 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
3437 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
3438 return V;
3439 }
3440
3441 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
3442 if (IsAnd && !IsLogical)
3444 return V;
3445
3446 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this))
3447 return V;
3448
3449 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
3450 return V;
3451
3452 // TODO: Verify whether this is safe for logical and/or.
3453 if (!IsLogical) {
3454 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
3455 return X;
3456 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
3457 return X;
3458 }
3459
3460 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
3461 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
3462 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
3463 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3464 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
3465 LHS0->getType() == RHS0->getType() &&
3466 (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
3467 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
3468 return Builder.CreateICmp(PredL, NewOr,
3470 }
3471
3472 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
3473 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
3474 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3475 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
3476 LHS0->getType() == RHS0->getType() &&
3477 (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
3478 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
3479 return Builder.CreateICmp(PredL, NewAnd,
3481 }
3482
3483 if (!IsLogical)
3484 if (Value *V =
3486 return V;
3487
3488 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
3489 if (!LHSC || !RHSC)
3490 return nullptr;
3491
3492 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
3493 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
3494 // where CMAX is the all ones value for the truncated type,
3495 // iff the lower bits of C2 and CA are zero.
3496 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3497 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
3498 Value *V;
3499 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
3500
3501 // (trunc x) == C1 & (and x, CA) == C2
3502 // (and x, CA) == C2 & (trunc x) == C1
3503 if (match(RHS0, m_Trunc(m_Value(V))) &&
3504 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3505 SmallC = RHSC;
3506 BigC = LHSC;
3507 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
3508 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3509 SmallC = LHSC;
3510 BigC = RHSC;
3511 }
3512
3513 if (SmallC && BigC) {
3514 unsigned BigBitSize = BigC->getBitWidth();
3515 unsigned SmallBitSize = SmallC->getBitWidth();
3516
3517 // Check that the low bits are zero.
3518 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
3519 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
3520 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
3521 APInt N = SmallC->zext(BigBitSize) | *BigC;
3522 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
3523 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3524 }
3525 }
3526 }
3527
3528 // Match naive pattern (and its inverted form) for checking if two values
3529 // share same sign. An example of the pattern:
3530 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
3531 // Inverted form (example):
3532 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
3533 bool TrueIfSignedL, TrueIfSignedR;
3534 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
3535 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
3536 (RHS->hasOneUse() || LHS->hasOneUse())) {
3537 Value *X, *Y;
3538 if (IsAnd) {
3539 if ((TrueIfSignedL && !TrueIfSignedR &&
3540 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3541 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
3542 (!TrueIfSignedL && TrueIfSignedR &&
3543 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3544 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
3545 Value *NewXor = Builder.CreateXor(X, Y);
3546 return Builder.CreateIsNeg(NewXor);
3547 }
3548 } else {
3549 if ((TrueIfSignedL && !TrueIfSignedR &&
3550 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3551 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
3552 (!TrueIfSignedL && TrueIfSignedR &&
3553 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3554 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
3555 Value *NewXor = Builder.CreateXor(X, Y);
3556 return Builder.CreateIsNotNeg(NewXor);
3557 }
3558 }
3559 }
3560
3561 // (X & ExpMask) != 0 && (X & ExpMask) != ExpMask -> isnormal(X)
3562 // (X & ExpMask) == 0 || (X & ExpMask) == ExpMask -> !isnormal(X)
3563 Value *X;
3564 const APInt *MaskC;
3565 if (LHS0 == RHS0 && PredL == PredR &&
3566 PredL == (IsAnd ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ) &&
3567 !I.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
3568 LHS->hasOneUse() && RHS->hasOneUse() &&
3569 match(LHS0, m_And(m_ElementWiseBitCast(m_Value(X)), m_APInt(MaskC))) &&
3570 X->getType()->getScalarType()->isIEEELikeFPTy() &&
3571 APFloat(X->getType()->getScalarType()->getFltSemantics(), *MaskC)
3572 .isPosInfinity() &&
3573 ((LHSC->isZero() && *RHSC == *MaskC) ||
3574 (RHSC->isZero() && *LHSC == *MaskC)))
3575 return Builder.createIsFPClass(X, IsAnd ? FPClassTest::fcNormal
3577
3578 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
3579}
3580
3581/// If IsLogical is true, then the and/or is in select form and the transform
3582/// must be poison-safe.
3583Value *InstCombinerImpl::foldBooleanAndOr(Value *LHS, Value *RHS,
3584 Instruction &I, bool IsAnd,
3585 bool IsLogical) {
3586 if (!LHS->getType()->isIntOrIntVectorTy(1))
3587 return nullptr;
3588
3589 // handle (roughly):
3590 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
3591 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
3592 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder,
3593 SQ.getWithInstruction(&I)))
3594 return V;
3595
3596 if (auto *LHSCmp = dyn_cast<ICmpInst>(LHS))
3597 if (auto *RHSCmp = dyn_cast<ICmpInst>(RHS))
3598 if (Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp, I, IsAnd, IsLogical))
3599 return Res;
3600
3601 if (auto *LHSCmp = dyn_cast<FCmpInst>(LHS))
3602 if (auto *RHSCmp = dyn_cast<FCmpInst>(RHS))
3603 if (Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical))
3604 return Res;
3605
3606 if (Value *Res = foldEqOfParts(LHS, RHS, IsAnd))
3607 return Res;
3608
3609 return nullptr;
3610}
3611
3613 InstCombiner::BuilderTy &Builder) {
3614 assert(I.getOpcode() == Instruction::Or &&
3615 "Simplification only supports or at the moment.");
3616
3617 Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
3618 if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) ||
3619 !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4))))
3620 return nullptr;
3621
3622 // Check if any two pairs of the and operations are inversions of each other.
3623 if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4))
3624 return Builder.CreateXor(Cmp1, Cmp4);
3625 if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3))
3626 return Builder.CreateXor(Cmp1, Cmp3);
3627
3628 return nullptr;
3629}
3630
3631/// Match \p V as "shufflevector -> bitcast" or "extractelement -> zext -> shl"
3632/// patterns, which extract vector elements and pack them in the same relative
3633/// positions.
3634///
3635/// \p Vec is the underlying vector being extracted from.
3636/// \p Mask is a bitmask identifying which packed elements are obtained from the
3637/// vector.
3638/// \p VecOffset is the vector element corresponding to index 0 of the
3639/// mask.
3641 int64_t &VecOffset,
3642 SmallBitVector &Mask,
3643 const DataLayout &DL) {
3644 // First try to match extractelement -> zext -> shl
3645 uint64_t VecIdx, ShlAmt;
3647 m_ConstantInt(VecIdx))),
3648 ShlAmt))) {
3649 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3650 if (!VecTy)
3651 return false;
3652 auto *EltTy = dyn_cast<IntegerType>(VecTy->getElementType());
3653 if (!EltTy)
3654 return false;
3655
3656 const unsigned EltBitWidth = EltTy->getBitWidth();
3657 const unsigned TargetBitWidth = V->getType()->getIntegerBitWidth();
3658 if (TargetBitWidth % EltBitWidth != 0 || ShlAmt % EltBitWidth != 0)
3659 return false;
3660 const unsigned TargetEltWidth = TargetBitWidth / EltBitWidth;
3661 const unsigned ShlEltAmt = ShlAmt / EltBitWidth;
3662
3663 const unsigned MaskIdx =
3664 DL.isLittleEndian() ? ShlEltAmt : TargetEltWidth - ShlEltAmt - 1;
3665
3666 VecOffset = static_cast<int64_t>(VecIdx) - static_cast<int64_t>(MaskIdx);
3667 Mask.resize(TargetEltWidth);
3668 Mask.set(MaskIdx);
3669 return true;
3670 }
3671
3672 // Now try to match a bitcasted subvector.
3673 Instruction *SrcVecI;
3674 if (!match(V, m_BitCast(m_Instruction(SrcVecI))))
3675 return false;
3676
3677 auto *SrcTy = dyn_cast<FixedVectorType>(SrcVecI->getType());
3678 if (!SrcTy)
3679 return false;
3680
3681 Mask.resize(SrcTy->getNumElements());
3682
3683 // First check for a subvector obtained from a shufflevector.
3684 if (isa<ShuffleVectorInst>(SrcVecI)) {
3685 Constant *ConstVec;
3686 ArrayRef<int> ShuffleMask;
3687 if (!match(SrcVecI, m_Shuffle(m_Value(Vec), m_Constant(ConstVec),
3688 m_Mask(ShuffleMask))))
3689 return false;
3690
3691 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3692 if (!VecTy)
3693 return false;
3694
3695 const unsigned NumVecElts = VecTy->getNumElements();
3696 bool FoundVecOffset = false;
3697 for (unsigned Idx = 0; Idx < ShuffleMask.size(); ++Idx) {
3698 if (ShuffleMask[Idx] == PoisonMaskElem)
3699 return false;
3700 const unsigned ShuffleIdx = ShuffleMask[Idx];
3701 if (ShuffleIdx >= NumVecElts) {
3702 const unsigned ConstIdx = ShuffleIdx - NumVecElts;
3703 auto *ConstElt =
3704 dyn_cast<ConstantInt>(ConstVec->getAggregateElement(ConstIdx));
3705 if (!ConstElt || !ConstElt->isNullValue())
3706 return false;
3707 continue;
3708 }
3709
3710 if (FoundVecOffset) {
3711 if (VecOffset + Idx != ShuffleIdx)
3712 return false;
3713 } else {
3714 if (ShuffleIdx < Idx)
3715 return false;
3716 VecOffset = ShuffleIdx - Idx;
3717 FoundVecOffset = true;
3718 }
3719 Mask.set(Idx);
3720 }
3721 return FoundVecOffset;
3722 }
3723
3724 // Check for a subvector obtained as an (insertelement V, 0, idx)
3725 uint64_t InsertIdx;
3726 if (!match(SrcVecI,
3727 m_InsertElt(m_Value(Vec), m_Zero(), m_ConstantInt(InsertIdx))))
3728 return false;
3729
3730 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3731 if (!VecTy)
3732 return false;
3733 VecOffset = 0;
3734 bool AlreadyInsertedMaskedElt = Mask.test(InsertIdx);
3735 Mask.set();
3736 if (!AlreadyInsertedMaskedElt)
3737 Mask.reset(InsertIdx);
3738 return true;
3739}
3740
3741/// Try to fold the join of two scalar integers whose contents are packed
3742/// elements of the same vector.
3744 InstCombiner::BuilderTy &Builder,
3745 const DataLayout &DL) {
3746 assert(I.getOpcode() == Instruction::Or);
3747 Value *LhsVec, *RhsVec;
3748 int64_t LhsVecOffset, RhsVecOffset;
3749 SmallBitVector Mask;
3750 if (!matchSubIntegerPackFromVector(I.getOperand(0), LhsVec, LhsVecOffset,
3751 Mask, DL))
3752 return nullptr;
3753 if (!matchSubIntegerPackFromVector(I.getOperand(1), RhsVec, RhsVecOffset,
3754 Mask, DL))
3755 return nullptr;
3756 if (LhsVec != RhsVec || LhsVecOffset != RhsVecOffset)
3757 return nullptr;
3758
3759 // Convert into shufflevector -> bitcast;
3760 const unsigned ZeroVecIdx =
3761 cast<FixedVectorType>(LhsVec->getType())->getNumElements();
3762 SmallVector<int> ShuffleMask(Mask.size(), ZeroVecIdx);
3763 for (unsigned Idx : Mask.set_bits()) {
3764 assert(LhsVecOffset + Idx >= 0);
3765 ShuffleMask[Idx] = LhsVecOffset + Idx;
3766 }
3767
3768 Value *MaskedVec = Builder.CreateShuffleVector(
3769 LhsVec, Constant::getNullValue(LhsVec->getType()), ShuffleMask,
3770 I.getName() + ".v");
3771 return CastInst::Create(Instruction::BitCast, MaskedVec, I.getType());
3772}
3773
3774/// Match \p V as "lshr -> mask -> zext -> shl".
3775///
3776/// \p Int is the underlying integer being extracted from.
3777/// \p Mask is a bitmask identifying which bits of the integer are being
3778/// extracted. \p Offset identifies which bit of the result \p V corresponds to
3779/// the least significant bit of \p Int
3780static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask,
3781 uint64_t &Offset, bool &IsShlNUW,
3782 bool &IsShlNSW) {
3783 Value *ShlOp0;
3784 uint64_t ShlAmt = 0;
3785 if (!match(V, m_OneUse(m_Shl(m_Value(ShlOp0), m_ConstantInt(ShlAmt)))))
3786 return false;
3787
3788 IsShlNUW = cast<BinaryOperator>(V)->hasNoUnsignedWrap();
3789 IsShlNSW = cast<BinaryOperator>(V)->hasNoSignedWrap();
3790
3791 Value *ZExtOp0;
3792 if (!match(ShlOp0, m_OneUse(m_ZExt(m_Value(ZExtOp0)))))
3793 return false;
3794
3795 Value *MaskedOp0;
3796 const APInt *ShiftedMaskConst = nullptr;
3797 if (!match(ZExtOp0, m_CombineOr(m_OneUse(m_And(m_Value(MaskedOp0),
3798 m_APInt(ShiftedMaskConst))),
3799 m_Value(MaskedOp0))))
3800 return false;
3801
3802 uint64_t LShrAmt = 0;
3803 if (!match(MaskedOp0,
3805 m_Value(Int))))
3806 return false;
3807
3808 if (LShrAmt > ShlAmt)
3809 return false;
3810 Offset = ShlAmt - LShrAmt;
3811
3812 Mask = ShiftedMaskConst ? ShiftedMaskConst->shl(LShrAmt)
3814 Int->getType()->getScalarSizeInBits(), LShrAmt);
3815
3816 return true;
3817}
3818
3819/// Try to fold the join of two scalar integers whose bits are unpacked and
3820/// zexted from the same source integer.
3822 InstCombiner::BuilderTy &Builder) {
3823
3824 Value *LhsInt, *RhsInt;
3825 APInt LhsMask, RhsMask;
3826 uint64_t LhsOffset, RhsOffset;
3827 bool IsLhsShlNUW, IsLhsShlNSW, IsRhsShlNUW, IsRhsShlNSW;
3828 if (!matchZExtedSubInteger(Lhs, LhsInt, LhsMask, LhsOffset, IsLhsShlNUW,
3829 IsLhsShlNSW))
3830 return nullptr;
3831 if (!matchZExtedSubInteger(Rhs, RhsInt, RhsMask, RhsOffset, IsRhsShlNUW,
3832 IsRhsShlNSW))
3833 return nullptr;
3834 if (LhsInt != RhsInt || LhsOffset != RhsOffset)
3835 return nullptr;
3836
3837 APInt Mask = LhsMask | RhsMask;
3838
3839 Type *DestTy = Lhs->getType();
3840 Value *Res = Builder.CreateShl(
3841 Builder.CreateZExt(
3842 Builder.CreateAnd(LhsInt, Mask, LhsInt->getName() + ".mask"), DestTy,
3843 LhsInt->getName() + ".zext"),
3844 ConstantInt::get(DestTy, LhsOffset), "", IsLhsShlNUW && IsRhsShlNUW,
3845 IsLhsShlNSW && IsRhsShlNSW);
3846 Res->takeName(Lhs);
3847 return Res;
3848}
3849
3850// A decomposition of ((X & Mask) * Factor). The NUW / NSW bools
3851// track these properities for preservation. Note that we can decompose
3852// equivalent select form of this expression (e.g. (!(X & Mask) ? 0 : Mask *
3853// Factor))
3858 bool NUW;
3859 bool NSW;
3860
3862 return X == Other.X && !Mask.intersects(Other.Mask) &&
3863 Factor == Other.Factor;
3864 }
3865};
3866
3867static std::optional<DecomposedBitMaskMul> matchBitmaskMul(Value *V) {
3869 if (!Op)
3870 return std::nullopt;
3871
3872 // Decompose (A & N) * C) into BitMaskMul
3873 Value *Original = nullptr;
3874 const APInt *Mask = nullptr;
3875 const APInt *MulConst = nullptr;
3876 if (match(Op, m_Mul(m_And(m_Value(Original), m_APInt(Mask)),
3877 m_APInt(MulConst)))) {
3878 if (MulConst->isZero() || Mask->isZero())
3879 return std::nullopt;
3880
3881 return std::optional<DecomposedBitMaskMul>(
3882 {Original, *MulConst, *Mask,
3883 cast<BinaryOperator>(Op)->hasNoUnsignedWrap(),
3884 cast<BinaryOperator>(Op)->hasNoSignedWrap()});
3885 }
3886
3887 Value *Cond = nullptr;
3888 const APInt *EqZero = nullptr, *NeZero = nullptr;
3889
3890 // Decompose ((A & N) ? 0 : N * C) into BitMaskMul
3891 if (match(Op, m_Select(m_Value(Cond), m_APInt(EqZero), m_APInt(NeZero)))) {
3892 auto ICmpDecompose =
3893 decomposeBitTest(Cond, /*LookThruTrunc=*/true,
3894 /*AllowNonZeroC=*/false, /*DecomposeBitMask=*/true);
3895 if (!ICmpDecompose.has_value())
3896 return std::nullopt;
3897
3898 assert(ICmpInst::isEquality(ICmpDecompose->Pred) &&
3899 ICmpDecompose->C.isZero());
3900
3901 if (ICmpDecompose->Pred == ICmpInst::ICMP_NE)
3902 std::swap(EqZero, NeZero);
3903
3904 if (!EqZero->isZero() || NeZero->isZero())
3905 return std::nullopt;
3906
3907 if (!ICmpDecompose->Mask.isPowerOf2() || ICmpDecompose->Mask.isZero() ||
3908 NeZero->getBitWidth() != ICmpDecompose->Mask.getBitWidth())
3909 return std::nullopt;
3910
3911 if (!NeZero->urem(ICmpDecompose->Mask).isZero())
3912 return std::nullopt;
3913
3914 return std::optional<DecomposedBitMaskMul>(
3915 {ICmpDecompose->X, NeZero->udiv(ICmpDecompose->Mask),
3916 ICmpDecompose->Mask, /*NUW=*/false, /*NSW=*/false});
3917 }
3918
3919 return std::nullopt;
3920}
3921
3922/// (A & N) * C + (A & M) * C -> (A & (N + M)) & C
3923/// This also accepts the equivalent select form of (A & N) * C
3924/// expressions i.e. !(A & N) ? 0 : N * C)
3925static Value *foldBitmaskMul(Value *Op0, Value *Op1,
3926 InstCombiner::BuilderTy &Builder) {
3927 auto Decomp1 = matchBitmaskMul(Op1);
3928 if (!Decomp1)
3929 return nullptr;
3930
3931 auto Decomp0 = matchBitmaskMul(Op0);
3932 if (!Decomp0)
3933 return nullptr;
3934
3935 if (Decomp0->isCombineableWith(*Decomp1)) {
3936 Value *NewAnd = Builder.CreateAnd(
3937 Decomp0->X,
3938 ConstantInt::get(Decomp0->X->getType(), Decomp0->Mask + Decomp1->Mask));
3939
3940 return Builder.CreateMul(
3941 NewAnd, ConstantInt::get(NewAnd->getType(), Decomp1->Factor), "",
3942 Decomp0->NUW && Decomp1->NUW, Decomp0->NSW && Decomp1->NSW);
3943 }
3944
3945 return nullptr;
3946}
3947
3948Value *InstCombinerImpl::foldDisjointOr(Value *LHS, Value *RHS) {
3949 if (Value *Res = foldBitmaskMul(LHS, RHS, Builder))
3950 return Res;
3952 return Res;
3953
3954 return nullptr;
3955}
3956
3957Value *InstCombinerImpl::reassociateDisjointOr(Value *LHS, Value *RHS) {
3958
3959 Value *X, *Y;
3961 if (Value *Res = foldDisjointOr(LHS, X))
3962 return Builder.CreateOr(Res, Y, "", /*IsDisjoint=*/true);
3963 if (Value *Res = foldDisjointOr(LHS, Y))
3964 return Builder.CreateOr(Res, X, "", /*IsDisjoint=*/true);
3965 }
3966
3968 if (Value *Res = foldDisjointOr(X, RHS))
3969 return Builder.CreateOr(Res, Y, "", /*IsDisjoint=*/true);
3970 if (Value *Res = foldDisjointOr(Y, RHS))
3971 return Builder.CreateOr(Res, X, "", /*IsDisjoint=*/true);
3972 }
3973
3974 return nullptr;
3975}
3976
3977/// Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2))
3978/// --> (ugt x (c2/c1)). This code checks whether a multiplication of two
3979/// unsigned numbers (one is a constant) is mathematically greater than a
3980/// second constant.
3982 InstCombiner::BuilderTy &Builder,
3983 const DataLayout &DL) {
3984 Value *WOV, *X;
3985 const APInt *C1, *C2;
3986 if (match(&I,
3989 m_Value(X), m_APInt(C1)))),
3992 m_APInt(C2))))) &&
3993 !C1->isZero()) {
3994 Constant *NewC = ConstantInt::get(X->getType(), C2->udiv(*C1));
3995 return Builder.CreateICmp(ICmpInst::ICMP_UGT, X, NewC);
3996 }
3997 return nullptr;
3998}
3999
4000// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4001// here. We should standardize that construct where it is needed or choose some
4002// other way to ensure that commutated variants of patterns are not missed.
4004 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
4005 SQ.getWithInstruction(&I)))
4006 return replaceInstUsesWith(I, V);
4007
4009 return &I;
4010
4012 return X;
4013
4015 return Phi;
4016
4017 // See if we can simplify any instructions used by the instruction whose sole
4018 // purpose is to compute bits we don't care about.
4020 return &I;
4021
4022 // Do this before using distributive laws to catch simple and/or/not patterns.
4024 return Xor;
4025
4027 return X;
4028
4030 return X;
4031
4032 // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D
4033 // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C
4034 if (Value *V = foldOrOfInversions(I, Builder))
4035 return replaceInstUsesWith(I, V);
4036
4037 // (A&B)|(A&C) -> A&(B|C) etc
4039 return replaceInstUsesWith(I, V);
4040
4041 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4042 Type *Ty = I.getType();
4043 if (Ty->isIntOrIntVectorTy(1)) {
4044 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
4045 if (auto *R =
4046 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
4047 return R;
4048 }
4049 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
4050 if (auto *R =
4051 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
4052 return R;
4053 }
4054 }
4055
4056 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4057 return FoldedLogic;
4058
4059 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
4060 /*MatchBitReversals*/ true))
4061 return BitOp;
4062
4063 if (Instruction *Funnel = matchFunnelShift(I, *this))
4064 return Funnel;
4065
4067 return replaceInstUsesWith(I, Concat);
4068
4070 return R;
4071
4073 return R;
4074
4075 if (cast<PossiblyDisjointInst>(I).isDisjoint()) {
4076 if (Instruction *R =
4077 foldAddLikeCommutative(I.getOperand(0), I.getOperand(1),
4078 /*NSW=*/true, /*NUW=*/true))
4079 return R;
4080 if (Instruction *R =
4081 foldAddLikeCommutative(I.getOperand(1), I.getOperand(0),
4082 /*NSW=*/true, /*NUW=*/true))
4083 return R;
4084
4085 if (Value *Res = foldDisjointOr(I.getOperand(0), I.getOperand(1)))
4086 return replaceInstUsesWith(I, Res);
4087
4088 if (Value *Res = reassociateDisjointOr(I.getOperand(0), I.getOperand(1)))
4089 return replaceInstUsesWith(I, Res);
4090 }
4091
4092 Value *X, *Y;
4093 const APInt *CV;
4094 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
4095 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, &I)) {
4096 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
4097 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
4098 Value *Or = Builder.CreateOr(X, Y);
4099 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
4100 }
4101
4102 // If the operands have no common bits set:
4103 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
4105 m_Deferred(X)))) {
4106 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
4107 return BinaryOperator::CreateMul(X, IncrementY);
4108 }
4109
4110 // (A & C) | (B & D)
4111 Value *A, *B, *C, *D;
4112 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4113 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4114
4115 // (A & C0) | (B & C1)
4116 const APInt *C0, *C1;
4117 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
4118 Value *X;
4119 if (*C0 == ~*C1) {
4120 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
4121 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
4122 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
4123 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
4124 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
4125 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
4126
4127 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
4128 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
4129 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
4130 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
4131 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
4132 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
4133 }
4134
4135 if ((*C0 & *C1).isZero()) {
4136 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
4137 // iff (C0 & C1) == 0 and (X & ~C0) == 0
4138 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
4139 MaskedValueIsZero(X, ~*C0, &I)) {
4140 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4141 return BinaryOperator::CreateAnd(A, C01);
4142 }
4143 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
4144 // iff (C0 & C1) == 0 and (X & ~C1) == 0
4145 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
4146 MaskedValueIsZero(X, ~*C1, &I)) {
4147 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4148 return BinaryOperator::CreateAnd(B, C01);
4149 }
4150 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
4151 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
4152 const APInt *C2, *C3;
4153 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
4154 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
4155 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
4156 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
4157 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4158 return BinaryOperator::CreateAnd(Or, C01);
4159 }
4160 }
4161 }
4162
4163 // Don't try to form a select if it's unlikely that we'll get rid of at
4164 // least one of the operands. A select is generally more expensive than the
4165 // 'or' that it is replacing.
4166 if (Op0->hasOneUse() || Op1->hasOneUse()) {
4167 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
4168 if (Value *V = matchSelectFromAndOr(A, C, B, D))
4169 return replaceInstUsesWith(I, V);
4170 if (Value *V = matchSelectFromAndOr(A, C, D, B))
4171 return replaceInstUsesWith(I, V);
4172 if (Value *V = matchSelectFromAndOr(C, A, B, D))
4173 return replaceInstUsesWith(I, V);
4174 if (Value *V = matchSelectFromAndOr(C, A, D, B))
4175 return replaceInstUsesWith(I, V);
4176 if (Value *V = matchSelectFromAndOr(B, D, A, C))
4177 return replaceInstUsesWith(I, V);
4178 if (Value *V = matchSelectFromAndOr(B, D, C, A))
4179 return replaceInstUsesWith(I, V);
4180 if (Value *V = matchSelectFromAndOr(D, B, A, C))
4181 return replaceInstUsesWith(I, V);
4182 if (Value *V = matchSelectFromAndOr(D, B, C, A))
4183 return replaceInstUsesWith(I, V);
4184 }
4185 }
4186
4187 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4188 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
4189 (Op0->hasOneUse() || Op1->hasOneUse())) {
4190 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
4191 if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
4192 return replaceInstUsesWith(I, V);
4193 if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
4194 return replaceInstUsesWith(I, V);
4195 if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
4196 return replaceInstUsesWith(I, V);
4197 if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
4198 return replaceInstUsesWith(I, V);
4199 }
4200
4201 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
4202 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
4203 if (match(Op1,
4206 return BinaryOperator::CreateOr(Op0, C);
4207
4208 // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C
4209 if (match(Op1, m_Xor(m_Value(A), m_Value(B))))
4210 if (match(Op0,
4213 return BinaryOperator::CreateOr(Op1, C);
4214
4215 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
4216 return DeMorgan;
4217
4218 // Canonicalize xor to the RHS.
4219 bool SwappedForXor = false;
4220 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
4221 std::swap(Op0, Op1);
4222 SwappedForXor = true;
4223 }
4224
4225 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
4226 // (A | ?) | (A ^ B) --> (A | ?) | B
4227 // (B | ?) | (A ^ B) --> (B | ?) | A
4228 if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
4229 return BinaryOperator::CreateOr(Op0, B);
4230 if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
4231 return BinaryOperator::CreateOr(Op0, A);
4232
4233 // (A & B) | (A ^ B) --> A | B
4234 // (B & A) | (A ^ B) --> A | B
4235 if (match(Op0, m_c_And(m_Specific(A), m_Specific(B))))
4236 return BinaryOperator::CreateOr(A, B);
4237
4238 // ~A | (A ^ B) --> ~(A & B)
4239 // ~B | (A ^ B) --> ~(A & B)
4240 // The swap above should always make Op0 the 'not'.
4241 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4242 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
4243 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4244
4245 // Same as above, but peek through an 'and' to the common operand:
4246 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
4247 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
4249 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4250 match(Op0,
4252 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
4253 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4254 match(Op0,
4256 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
4257
4258 // (~A | C) | (A ^ B) --> ~(A & B) | C
4259 // (~B | C) | (A ^ B) --> ~(A & B) | C
4260 if (Op0->hasOneUse() && Op1->hasOneUse() &&
4261 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
4262 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
4263 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
4264 return BinaryOperator::CreateOr(Nand, C);
4265 }
4266 }
4267
4268 if (SwappedForXor)
4269 std::swap(Op0, Op1);
4270
4271 if (Value *Res =
4272 foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/false, /*IsLogical=*/false))
4273 return replaceInstUsesWith(I, Res);
4274
4275 if (match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
4276 bool IsLogical = isa<SelectInst>(Op1);
4277 if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/false,
4278 /*RHSIsLogical=*/IsLogical))
4279 return replaceInstUsesWith(I, V);
4280 }
4281 if (match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
4282 bool IsLogical = isa<SelectInst>(Op0);
4283 if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/false,
4284 /*RHSIsLogical=*/IsLogical))
4285 return replaceInstUsesWith(I, V);
4286 }
4287
4288 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
4289 return FoldedFCmps;
4290
4291 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
4292 return CastedOr;
4293
4294 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
4295 return Sel;
4296
4297 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
4298 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
4299 // with binop identity constant. But creating a select with non-constant
4300 // arm may not be reversible due to poison semantics. Is that a good
4301 // canonicalization?
4302 if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
4303 A->getType()->isIntOrIntVectorTy(1))
4305
4306 // Note: If we've gotten to the point of visiting the outer OR, then the
4307 // inner one couldn't be simplified. If it was a constant, then it won't
4308 // be simplified by a later pass either, so we try swapping the inner/outer
4309 // ORs in the hopes that we'll be able to simplify it this way.
4310 // (X|C) | V --> (X|V) | C
4311 // Pass the disjoint flag in the following two patterns:
4312 // 1. or-disjoint (or-disjoint X, C), V -->
4313 // or-disjoint (or-disjoint X, V), C
4314 //
4315 // 2. or-disjoint (or X, C), V -->
4316 // or (or-disjoint X, V), C
4317 ConstantInt *CI;
4318 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
4319 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
4320 bool IsDisjointOuter = cast<PossiblyDisjointInst>(I).isDisjoint();
4321 bool IsDisjointInner = cast<PossiblyDisjointInst>(Op0)->isDisjoint();
4322 Value *Inner = Builder.CreateOr(A, Op1);
4323 cast<PossiblyDisjointInst>(Inner)->setIsDisjoint(IsDisjointOuter);
4324 Inner->takeName(Op0);
4325 return IsDisjointOuter && IsDisjointInner
4326 ? BinaryOperator::CreateDisjointOr(Inner, CI)
4327 : BinaryOperator::CreateOr(Inner, CI);
4328 }
4329
4330 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
4331 // Since this OR statement hasn't been optimized further yet, we hope
4332 // that this transformation will allow the new ORs to be optimized.
4333 {
4334 Value *X = nullptr, *Y = nullptr;
4335 if (Op0->hasOneUse() && Op1->hasOneUse() &&
4336 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
4337 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
4338 Value *orTrue = Builder.CreateOr(A, C);
4339 Value *orFalse = Builder.CreateOr(B, D);
4340 return SelectInst::Create(X, orTrue, orFalse);
4341 }
4342 }
4343
4344 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
4345 {
4346 Value *X, *Y;
4349 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
4350 m_Deferred(X)))) {
4351 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
4353 return SelectInst::Create(NewICmpInst, AllOnes, X);
4354 }
4355 }
4356
4357 {
4358 // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
4359 // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
4360 // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
4361 // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
4362 const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
4363 if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) &&
4364 match(Rhs,
4366 return BinaryOperator::CreateXor(A, B);
4367 }
4368 return nullptr;
4369 };
4370
4371 if (Instruction *Result = TryXorOpt(Op0, Op1))
4372 return Result;
4373 if (Instruction *Result = TryXorOpt(Op1, Op0))
4374 return Result;
4375 }
4376
4377 if (Instruction *V =
4379 return V;
4380
4381 CmpPredicate Pred;
4382 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
4383 // Check if the OR weakens the overflow condition for umul.with.overflow by
4384 // treating any non-zero result as overflow. In that case, we overflow if both
4385 // umul.with.overflow operands are != 0, as in that case the result can only
4386 // be 0, iff the multiplication overflows.
4387 if (match(&I, m_c_Or(m_Value(Ov, m_ExtractValue<1>(m_Value(UMulWithOv))),
4388 m_Value(MulIsNotZero,
4392 m_Deferred(UMulWithOv))),
4393 m_ZeroInt())))) &&
4394 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse()))) {
4395 Value *A, *B;
4397 m_Value(A), m_Value(B)))) {
4398 Value *NotNullA = Builder.CreateIsNotNull(A);
4399 Value *NotNullB = Builder.CreateIsNotNull(B);
4400 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
4401 }
4402 }
4403
4404 /// Res, Overflow = xxx_with_overflow X, C1
4405 /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into
4406 /// "Overflow | icmp pred X, C2 +/- C1".
4407 const WithOverflowInst *WO;
4408 const Value *WOV;
4409 const APInt *C1, *C2;
4411 m_Value(WOV, m_WithOverflowInst(WO)))),
4413 m_APInt(C2))))) &&
4414 (WO->getBinaryOp() == Instruction::Add ||
4415 WO->getBinaryOp() == Instruction::Sub) &&
4416 (ICmpInst::isEquality(Pred) ||
4417 WO->isSigned() == ICmpInst::isSigned(Pred)) &&
4418 match(WO->getRHS(), m_APInt(C1))) {
4419 bool Overflow;
4420 APInt NewC = WO->getBinaryOp() == Instruction::Add
4421 ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow)
4422 : C2->usub_ov(*C1, Overflow))
4423 : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow)
4424 : C2->uadd_ov(*C1, Overflow));
4425 if (!Overflow || ICmpInst::isEquality(Pred)) {
4426 Value *NewCmp = Builder.CreateICmp(
4427 Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC));
4428 return BinaryOperator::CreateOr(Ov, NewCmp);
4429 }
4430 }
4431
4432 // Try to fold the pattern "Overflow | icmp pred Res, C2" into a single
4433 // comparison instruction for umul.with.overflow.
4435 return replaceInstUsesWith(I, R);
4436
4437 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
4439 return &I;
4440
4441 // Improve "get low bit mask up to and including bit X" pattern:
4442 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
4443 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
4444 m_Shl(m_One(), m_Deferred(X)))) &&
4445 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
4446 Value *Sub = Builder.CreateSub(
4447 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
4448 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
4449 }
4450
4451 // An or recurrence w/loop invariant step is equivelent to (or start, step)
4452 PHINode *PN = nullptr;
4453 Value *Start = nullptr, *Step = nullptr;
4454 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
4455 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
4456
4457 // (A & B) | (C | D) or (C | D) | (A & B)
4458 // Can be combined if C or D is of type (A/B & X)
4460 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
4461 // (A & B) | (C | ?) -> C | (? | (A & B))
4462 // (A & B) | (C | ?) -> C | (? | (A & B))
4463 // (A & B) | (C | ?) -> C | (? | (A & B))
4464 // (A & B) | (C | ?) -> C | (? | (A & B))
4465 // (C | ?) | (A & B) -> C | (? | (A & B))
4466 // (C | ?) | (A & B) -> C | (? | (A & B))
4467 // (C | ?) | (A & B) -> C | (? | (A & B))
4468 // (C | ?) | (A & B) -> C | (? | (A & B))
4469 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
4471 return BinaryOperator::CreateOr(
4472 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
4473 // (A & B) | (? | D) -> (? | (A & B)) | D
4474 // (A & B) | (? | D) -> (? | (A & B)) | D
4475 // (A & B) | (? | D) -> (? | (A & B)) | D
4476 // (A & B) | (? | D) -> (? | (A & B)) | D
4477 // (? | D) | (A & B) -> (? | (A & B)) | D
4478 // (? | D) | (A & B) -> (? | (A & B)) | D
4479 // (? | D) | (A & B) -> (? | (A & B)) | D
4480 // (? | D) | (A & B) -> (? | (A & B)) | D
4481 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
4483 return BinaryOperator::CreateOr(
4484 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
4485 }
4486
4488 return R;
4489
4490 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4491 return Canonicalized;
4492
4493 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4494 return Folded;
4495
4496 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
4497 return Res;
4498
4499 // If we are setting the sign bit of a floating-point value, convert
4500 // this to fneg(fabs), then cast back to integer.
4501 //
4502 // If the result isn't immediately cast back to a float, this will increase
4503 // the number of instructions. This is still probably a better canonical form
4504 // as it enables FP value tracking.
4505 //
4506 // Assumes any IEEE-represented type has the sign bit in the high bit.
4507 //
4508 // This is generous interpretation of noimplicitfloat, this is not a true
4509 // floating-point operation.
4510 Value *CastOp;
4511 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
4512 match(Op1, m_SignMask()) &&
4513 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4514 Attribute::NoImplicitFloat)) {
4515 Type *EltTy = CastOp->getType()->getScalarType();
4516 if (EltTy->isFloatingPointTy() &&
4518 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
4519 Value *FNegFAbs = Builder.CreateFNeg(FAbs);
4520 return new BitCastInst(FNegFAbs, I.getType());
4521 }
4522 }
4523
4524 // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2
4525 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) &&
4526 match(Op1, m_APInt(C2))) {
4527 KnownBits KnownX = computeKnownBits(X, &I);
4528 if ((KnownX.One & *C2) == *C2)
4529 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2));
4530 }
4531
4533 return Res;
4534
4535 if (Value *V =
4537 /*SimplifyOnly*/ false, *this))
4538 return BinaryOperator::CreateOr(V, Op1);
4539 if (Value *V =
4541 /*SimplifyOnly*/ false, *this))
4542 return BinaryOperator::CreateOr(Op0, V);
4543
4544 if (cast<PossiblyDisjointInst>(I).isDisjoint())
4546 return replaceInstUsesWith(I, V);
4547
4548 return nullptr;
4549}
4550
4551/// A ^ B can be specified using other logic ops in a variety of patterns. We
4552/// can fold these early and efficiently by morphing an existing instruction.
4554 InstCombiner::BuilderTy &Builder) {
4555 assert(I.getOpcode() == Instruction::Xor);
4556 Value *Op0 = I.getOperand(0);
4557 Value *Op1 = I.getOperand(1);
4558 Value *A, *B;
4559
4560 // There are 4 commuted variants for each of the basic patterns.
4561
4562 // (A & B) ^ (A | B) -> A ^ B
4563 // (A & B) ^ (B | A) -> A ^ B
4564 // (A | B) ^ (A & B) -> A ^ B
4565 // (A | B) ^ (B & A) -> A ^ B
4566 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
4568 return BinaryOperator::CreateXor(A, B);
4569
4570 // (A | ~B) ^ (~A | B) -> A ^ B
4571 // (~B | A) ^ (~A | B) -> A ^ B
4572 // (~A | B) ^ (A | ~B) -> A ^ B
4573 // (B | ~A) ^ (A | ~B) -> A ^ B
4574 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
4576 return BinaryOperator::CreateXor(A, B);
4577
4578 // (A & ~B) ^ (~A & B) -> A ^ B
4579 // (~B & A) ^ (~A & B) -> A ^ B
4580 // (~A & B) ^ (A & ~B) -> A ^ B
4581 // (B & ~A) ^ (A & ~B) -> A ^ B
4582 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
4584 return BinaryOperator::CreateXor(A, B);
4585
4586 // For the remaining cases we need to get rid of one of the operands.
4587 if (!Op0->hasOneUse() && !Op1->hasOneUse())
4588 return nullptr;
4589
4590 // (A | B) ^ ~(A & B) -> ~(A ^ B)
4591 // (A | B) ^ ~(B & A) -> ~(A ^ B)
4592 // (A & B) ^ ~(A | B) -> ~(A ^ B)
4593 // (A & B) ^ ~(B | A) -> ~(A ^ B)
4594 // Complexity sorting ensures the not will be on the right side.
4595 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
4596 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
4597 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4599 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4600
4601 return nullptr;
4602}
4603
4604Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
4605 BinaryOperator &I) {
4606 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
4607 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
4608
4609 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
4610 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
4611 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
4612
4613 if (predicatesFoldable(PredL, PredR)) {
4614 if (LHS0 == RHS1 && LHS1 == RHS0) {
4615 std::swap(LHS0, LHS1);
4616 PredL = ICmpInst::getSwappedPredicate(PredL);
4617 }
4618 if (LHS0 == RHS0 && LHS1 == RHS1) {
4619 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4620 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
4621 bool IsSigned = LHS->isSigned() || RHS->isSigned();
4622 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
4623 }
4624 }
4625
4626 const APInt *LC, *RC;
4627 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
4628 LHS0->getType() == RHS0->getType() &&
4629 LHS0->getType()->isIntOrIntVectorTy()) {
4630 // Convert xor of signbit tests to signbit test of xor'd values:
4631 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
4632 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
4633 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
4634 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
4635 bool TrueIfSignedL, TrueIfSignedR;
4636 if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
4637 isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
4638 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
4639 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
4640 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
4641 Builder.CreateIsNotNeg(XorLR);
4642 }
4643
4644 // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2)
4645 // into a single comparison using range-based reasoning.
4646 if (LHS0 == RHS0) {
4647 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC);
4648 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC);
4649 auto CRUnion = CR1.exactUnionWith(CR2);
4650 auto CRIntersect = CR1.exactIntersectWith(CR2);
4651 if (CRUnion && CRIntersect)
4652 if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4653 if (CR->isFullSet())
4654 return ConstantInt::getTrue(I.getType());
4655 if (CR->isEmptySet())
4656 return ConstantInt::getFalse(I.getType());
4657
4658 CmpInst::Predicate NewPred;
4659 APInt NewC, Offset;
4660 CR->getEquivalentICmp(NewPred, NewC, Offset);
4661
4662 if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) ||
4663 (LHS->hasOneUse() && RHS->hasOneUse())) {
4664 Value *NewV = LHS0;
4665 Type *Ty = LHS0->getType();
4666 if (!Offset.isZero())
4667 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
4668 return Builder.CreateICmp(NewPred, NewV,
4669 ConstantInt::get(Ty, NewC));
4670 }
4671 }
4672 }
4673
4674 // Fold (icmp eq/ne (X & Pow2), 0) ^ (icmp eq/ne (Y & Pow2), 0) into
4675 // (icmp eq/ne ((X ^ Y) & Pow2), 0)
4676 Value *X, *Y, *Pow2;
4677 if (ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
4678 LC->isZero() && RC->isZero() && LHS->hasOneUse() && RHS->hasOneUse() &&
4679 match(LHS0, m_And(m_Value(X), m_Value(Pow2))) &&
4680 match(RHS0, m_And(m_Value(Y), m_Specific(Pow2))) &&
4681 isKnownToBeAPowerOfTwo(Pow2, /*OrZero=*/true, &I)) {
4682 Value *Xor = Builder.CreateXor(X, Y);
4683 Value *And = Builder.CreateAnd(Xor, Pow2);
4684 return Builder.CreateICmp(PredL == PredR ? ICmpInst::ICMP_NE
4686 And, ConstantInt::getNullValue(Xor->getType()));
4687 }
4688 }
4689
4690 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
4691 // into those logic ops. That is, try to turn this into an and-of-icmps
4692 // because we have many folds for that pattern.
4693 //
4694 // This is based on a truth table definition of xor:
4695 // X ^ Y --> (X | Y) & !(X & Y)
4696 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
4697 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
4698 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
4699 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
4700 // TODO: Independently handle cases where the 'and' side is a constant.
4701 ICmpInst *X = nullptr, *Y = nullptr;
4702 if (OrICmp == LHS && AndICmp == RHS) {
4703 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
4704 X = LHS;
4705 Y = RHS;
4706 }
4707 if (OrICmp == RHS && AndICmp == LHS) {
4708 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
4709 X = RHS;
4710 Y = LHS;
4711 }
4712 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
4713 // Invert the predicate of 'Y', thus inverting its output.
4714 Y->setPredicate(Y->getInversePredicate());
4715 // So, are there other uses of Y?
4716 if (!Y->hasOneUse()) {
4717 // We need to adapt other uses of Y though. Get a value that matches
4718 // the original value of Y before inversion. While this increases
4719 // immediate instruction count, we have just ensured that all the
4720 // users are freely-invertible, so that 'not' *will* get folded away.
4722 // Set insertion point to right after the Y.
4723 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
4724 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4725 // Replace all uses of Y (excluding the one in NotY!) with NotY.
4726 Worklist.pushUsersToWorkList(*Y);
4727 Y->replaceUsesWithIf(NotY,
4728 [NotY](Use &U) { return U.getUser() != NotY; });
4729 }
4730 // All done.
4731 return Builder.CreateAnd(LHS, RHS);
4732 }
4733 }
4734 }
4735
4736 return nullptr;
4737}
4738
4739/// If we have a masked merge, in the canonical form of:
4740/// (assuming that A only has one use.)
4741/// | A | |B|
4742/// ((x ^ y) & M) ^ y
4743/// | D |
4744/// * If M is inverted:
4745/// | D |
4746/// ((x ^ y) & ~M) ^ y
4747/// We can canonicalize by swapping the final xor operand
4748/// to eliminate the 'not' of the mask.
4749/// ((x ^ y) & M) ^ x
4750/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
4751/// because that shortens the dependency chain and improves analysis:
4752/// (x & M) | (y & ~M)
4754 InstCombiner::BuilderTy &Builder) {
4755 Value *B, *X, *D;
4756 Value *M;
4757 if (!match(&I, m_c_Xor(m_Value(B),
4760 m_Value(M))))))
4761 return nullptr;
4762
4763 Value *NotM;
4764 if (match(M, m_Not(m_Value(NotM)))) {
4765 // De-invert the mask and swap the value in B part.
4766 Value *NewA = Builder.CreateAnd(D, NotM);
4767 return BinaryOperator::CreateXor(NewA, X);
4768 }
4769
4770 Constant *C;
4771 if (D->hasOneUse() && match(M, m_Constant(C))) {
4772 // Propagating undef is unsafe. Clamp undef elements to -1.
4773 Type *EltTy = C->getType()->getScalarType();
4775 // Unfold.
4776 Value *LHS = Builder.CreateAnd(X, C);
4777 Value *NotC = Builder.CreateNot(C);
4778 Value *RHS = Builder.CreateAnd(B, NotC);
4779 return BinaryOperator::CreateOr(LHS, RHS);
4780 }
4781
4782 return nullptr;
4783}
4784
4786 InstCombiner::BuilderTy &Builder) {
4787 Value *X, *Y;
4788 // FIXME: one-use check is not needed in general, but currently we are unable
4789 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
4790 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
4791 return nullptr;
4792
4793 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
4794 return A == C || A == D || B == C || B == D;
4795 };
4796
4797 Value *A, *B, *C, *D;
4798 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
4799 // 4 commuted variants
4800 if (match(X, m_And(m_Value(A), m_Value(B))) &&
4801 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4802 Value *NotY = Builder.CreateNot(Y);
4803 return BinaryOperator::CreateOr(X, NotY);
4804 };
4805
4806 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
4807 // 4 commuted variants
4808 if (match(Y, m_And(m_Value(A), m_Value(B))) &&
4809 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4810 Value *NotX = Builder.CreateNot(X);
4811 return BinaryOperator::CreateOr(Y, NotX);
4812 };
4813
4814 return nullptr;
4815}
4816
4817/// Canonicalize a shifty way to code absolute value to the more common pattern
4818/// that uses negation and select.
4820 InstCombiner::BuilderTy &Builder) {
4821 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
4822
4823 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
4824 // We're relying on the fact that we only do this transform when the shift has
4825 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
4826 // instructions).
4827 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
4828 if (Op0->hasNUses(2))
4829 std::swap(Op0, Op1);
4830
4831 Type *Ty = Xor.getType();
4832 Value *A;
4833 const APInt *ShAmt;
4834 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
4835 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4836 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
4837 // Op1 = ashr i32 A, 31 ; smear the sign bit
4838 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
4839 // --> (A < 0) ? -A : A
4840 Value *IsNeg = Builder.CreateIsNeg(A);
4841 // Copy the nsw flags from the add to the negate.
4842 auto *Add = cast<BinaryOperator>(Op0);
4843 Value *NegA = Add->hasNoUnsignedWrap()
4844 ? Constant::getNullValue(A->getType())
4845 : Builder.CreateNeg(A, "", Add->hasNoSignedWrap());
4846 return SelectInst::Create(IsNeg, NegA, A);
4847 }
4848 return nullptr;
4849}
4850
4852 Instruction *IgnoredUser) {
4853 auto *I = dyn_cast<Instruction>(Op);
4854 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
4855 IC.canFreelyInvertAllUsersOf(I, IgnoredUser);
4856}
4857
4859 Instruction *IgnoredUser) {
4860 auto *I = cast<Instruction>(Op);
4861 IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef());
4862 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
4863 Op->replaceUsesWithIf(NotOp,
4864 [NotOp](Use &U) { return U.getUser() != NotOp; });
4865 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
4866 return NotOp;
4867}
4868
4869// Transform
4870// z = ~(x &/| y)
4871// into:
4872// z = ((~x) |/& (~y))
4873// iff both x and y are free to invert and all uses of z can be freely updated.
4875 Value *Op0, *Op1;
4876 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4877 return false;
4878
4879 // If this logic op has not been simplified yet, just bail out and let that
4880 // happen first. Otherwise, the code below may wrongly invert.
4881 if (Op0 == Op1)
4882 return false;
4883
4884 // If one of the operands is a user of the other,
4885 // freelyInvert->freelyInvertAllUsersOf will change the operands of I, which
4886 // may cause miscompilation.
4887 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
4888 return false;
4889
4890 Instruction::BinaryOps NewOpc =
4891 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4892 bool IsBinaryOp = isa<BinaryOperator>(I);
4893
4894 // Can our users be adapted?
4895 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4896 return false;
4897
4898 // And can the operands be adapted?
4899 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
4900 return false;
4901
4902 Op0 = freelyInvert(*this, Op0, &I);
4903 Op1 = freelyInvert(*this, Op1, &I);
4904
4905 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4906 Value *NewLogicOp;
4907 if (IsBinaryOp)
4908 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4909 else
4910 NewLogicOp =
4911 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4912
4913 replaceInstUsesWith(I, NewLogicOp);
4914 // We can not just create an outer `not`, it will most likely be immediately
4915 // folded back, reconstructing our initial pattern, and causing an
4916 // infinite combine loop, so immediately manually fold it away.
4917 freelyInvertAllUsersOf(NewLogicOp);
4918 return true;
4919}
4920
4921// Transform
4922// z = (~x) &/| y
4923// into:
4924// z = ~(x |/& (~y))
4925// iff y is free to invert and all uses of z can be freely updated.
4927 Value *Op0, *Op1;
4928 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4929 return false;
4930 Instruction::BinaryOps NewOpc =
4931 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4932 bool IsBinaryOp = isa<BinaryOperator>(I);
4933
4934 Value *NotOp0 = nullptr;
4935 Value *NotOp1 = nullptr;
4936 Value **OpToInvert = nullptr;
4937 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
4938 Op0 = NotOp0;
4939 OpToInvert = &Op1;
4940 } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
4941 canFreelyInvert(*this, Op0, &I)) {
4942 Op1 = NotOp1;
4943 OpToInvert = &Op0;
4944 } else
4945 return false;
4946
4947 // And can our users be adapted?
4948 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4949 return false;
4950
4951 *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
4952
4953 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4954 Value *NewBinOp;
4955 if (IsBinaryOp)
4956 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4957 else
4958 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4959 replaceInstUsesWith(I, NewBinOp);
4960 // We can not just create an outer `not`, it will most likely be immediately
4961 // folded back, reconstructing our initial pattern, and causing an
4962 // infinite combine loop, so immediately manually fold it away.
4963 freelyInvertAllUsersOf(NewBinOp);
4964 return true;
4965}
4966
4967Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
4968 Value *NotOp;
4969 if (!match(&I, m_Not(m_Value(NotOp))))
4970 return nullptr;
4971
4972 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
4973 // We must eliminate the and/or (one-use) for these transforms to not increase
4974 // the instruction count.
4975 //
4976 // ~(~X & Y) --> (X | ~Y)
4977 // ~(Y & ~X) --> (X | ~Y)
4978 //
4979 // Note: The logical matches do not check for the commuted patterns because
4980 // those are handled via SimplifySelectsFeedingBinaryOp().
4981 Type *Ty = I.getType();
4982 Value *X, *Y;
4983 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
4984 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4985 return BinaryOperator::CreateOr(X, NotY);
4986 }
4987 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
4988 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4989 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
4990 }
4991
4992 // ~(~X | Y) --> (X & ~Y)
4993 // ~(Y | ~X) --> (X & ~Y)
4994 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
4995 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4996 return BinaryOperator::CreateAnd(X, NotY);
4997 }
4998 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
4999 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
5000 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
5001 }
5002
5003 // Is this a 'not' (~) fed by a binary operator?
5004 BinaryOperator *NotVal;
5005 if (match(NotOp, m_BinOp(NotVal))) {
5006 // ~((-X) | Y) --> (X - 1) & (~Y)
5007 if (match(NotVal,
5009 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
5010 Value *NotY = Builder.CreateNot(Y);
5011 return BinaryOperator::CreateAnd(DecX, NotY);
5012 }
5013
5014 // ~(~X >>s Y) --> (X >>s Y)
5015 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
5016 return BinaryOperator::CreateAShr(X, Y);
5017
5018 // Treat lshr with non-negative operand as ashr.
5019 // ~(~X >>u Y) --> (X >>s Y) iff X is known negative
5020 if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) &&
5021 isKnownNegative(X, SQ.getWithInstruction(NotVal)))
5022 return BinaryOperator::CreateAShr(X, Y);
5023
5024 // Bit-hack form of a signbit test for iN type:
5025 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
5026 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
5027 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
5028 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
5029 return new SExtInst(IsNotNeg, Ty);
5030 }
5031
5032 // If we are inverting a right-shifted constant, we may be able to eliminate
5033 // the 'not' by inverting the constant and using the opposite shift type.
5034 // Canonicalization rules ensure that only a negative constant uses 'ashr',
5035 // but we must check that in case that transform has not fired yet.
5036
5037 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
5038 Constant *C;
5039 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
5040 match(C, m_Negative()))
5041 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
5042
5043 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
5044 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
5045 match(C, m_NonNegative()))
5046 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
5047
5048 // ~(X + C) --> ~C - X
5049 if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C))))
5050 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
5051
5052 // ~(X - Y) --> ~X + Y
5053 // FIXME: is it really beneficial to sink the `not` here?
5054 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
5055 if (isa<Constant>(X) || NotVal->hasOneUse())
5056 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
5057
5058 // ~(~X + Y) --> X - Y
5059 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
5060 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
5061 NotVal);
5062 }
5063
5064 // not (cmp A, B) = !cmp A, B
5065 CmpPredicate Pred;
5066 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
5067 (NotOp->hasOneUse() ||
5069 /*IgnoredUser=*/nullptr))) {
5070 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
5072 return &I;
5073 }
5074
5075 // Move a 'not' ahead of casts of a bool to enable logic reduction:
5076 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
5077 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
5078 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
5079 Value *NotX = Builder.CreateNot(X);
5080 Value *Sext = Builder.CreateSExt(NotX, SextTy);
5081 return new BitCastInst(Sext, Ty);
5082 }
5083
5084 if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
5085 if (sinkNotIntoLogicalOp(*NotOpI))
5086 return &I;
5087
5088 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
5089 // ~min(~X, ~Y) --> max(X, Y)
5090 // ~max(~X, Y) --> min(X, ~Y)
5091 auto *II = dyn_cast<IntrinsicInst>(NotOp);
5092 if (II && II->hasOneUse()) {
5093 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
5094 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
5095 Value *NotY = Builder.CreateNot(Y);
5096 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
5097 return replaceInstUsesWith(I, InvMaxMin);
5098 }
5099
5100 if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
5101 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
5102 II->setArgOperand(
5103 1, ConstantInt::get(ClassMask->getType(),
5104 ~ClassMask->getZExtValue() & fcAllFlags));
5105 return replaceInstUsesWith(I, II);
5106 }
5107 }
5108
5109 if (NotOp->hasOneUse()) {
5110 // Pull 'not' into operands of select if both operands are one-use compares
5111 // or one is one-use compare and the other one is a constant.
5112 // Inverting the predicates eliminates the 'not' operation.
5113 // Example:
5114 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
5115 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
5116 // not (select ?, (cmp TPred, ?, ?), true -->
5117 // select ?, (cmp InvTPred, ?, ?), false
5118 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
5119 Value *TV = Sel->getTrueValue();
5120 Value *FV = Sel->getFalseValue();
5121 auto *CmpT = dyn_cast<CmpInst>(TV);
5122 auto *CmpF = dyn_cast<CmpInst>(FV);
5123 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
5124 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
5125 if (InvertibleT && InvertibleF) {
5126 if (CmpT)
5127 CmpT->setPredicate(CmpT->getInversePredicate());
5128 else
5129 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
5130 if (CmpF)
5131 CmpF->setPredicate(CmpF->getInversePredicate());
5132 else
5133 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
5134 return replaceInstUsesWith(I, Sel);
5135 }
5136 }
5137 }
5138
5139 if (Instruction *NewXor = foldNotXor(I, Builder))
5140 return NewXor;
5141
5142 // TODO: Could handle multi-use better by checking if all uses of NotOp (other
5143 // than I) can be inverted.
5144 if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder))
5145 return replaceInstUsesWith(I, R);
5146
5147 return nullptr;
5148}
5149
5150// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
5151// here. We should standardize that construct where it is needed or choose some
5152// other way to ensure that commutated variants of patterns are not missed.
5154 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
5155 SQ.getWithInstruction(&I)))
5156 return replaceInstUsesWith(I, V);
5157
5159 return &I;
5160
5162 return X;
5163
5165 return Phi;
5166
5167 if (Instruction *NewXor = foldXorToXor(I, Builder))
5168 return NewXor;
5169
5170 // (A&B)^(A&C) -> A&(B^C) etc
5172 return replaceInstUsesWith(I, V);
5173
5174 // See if we can simplify any instructions used by the instruction whose sole
5175 // purpose is to compute bits we don't care about.
5177 return &I;
5178
5179 if (Instruction *R = foldNot(I))
5180 return R;
5181
5183 return R;
5184
5185 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5186 Value *X, *Y, *M;
5187
5188 // (X | Y) ^ M -> (X ^ M) ^ Y
5189 // (X | Y) ^ M -> (Y ^ M) ^ X
5191 m_Value(M)))) {
5192 if (Value *XorAC = simplifyXorInst(X, M, SQ.getWithInstruction(&I)))
5193 return BinaryOperator::CreateXor(XorAC, Y);
5194
5195 if (Value *XorBC = simplifyXorInst(Y, M, SQ.getWithInstruction(&I)))
5196 return BinaryOperator::CreateXor(XorBC, X);
5197 }
5198
5199 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
5200 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
5201 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
5202 // have already taken care of those cases.
5203 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
5204 m_c_And(m_Deferred(M), m_Value())))) {
5206 return BinaryOperator::CreateDisjointOr(Op0, Op1);
5207 else
5208 return BinaryOperator::CreateOr(Op0, Op1);
5209 }
5210
5212 return Xor;
5213
5214 Constant *C1;
5215 if (match(Op1, m_Constant(C1))) {
5216 Constant *C2;
5217
5218 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
5219 match(C1, m_ImmConstant())) {
5220 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
5223 Value *And = Builder.CreateAnd(
5225 return BinaryOperator::CreateXor(
5227 }
5228
5229 // Use DeMorgan and reassociation to eliminate a 'not' op.
5230 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
5231 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
5232 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
5233 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
5234 }
5235 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
5236 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
5237 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
5238 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
5239 }
5240
5241 // Convert xor ([trunc] (ashr X, BW-1)), C =>
5242 // select(X >s -1, C, ~C)
5243 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
5244 // constant depending on whether this input is less than 0.
5245 const APInt *CA;
5246 if (match(Op0, m_OneUse(m_TruncOrSelf(
5247 m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) &&
5248 *CA == X->getType()->getScalarSizeInBits() - 1 &&
5249 !match(C1, m_AllOnes())) {
5250 assert(!C1->isZeroValue() && "Unexpected xor with 0");
5251 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
5252 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
5253 }
5254 }
5255
5256 Type *Ty = I.getType();
5257 {
5258 const APInt *RHSC;
5259 if (match(Op1, m_APInt(RHSC))) {
5260 Value *X;
5261 const APInt *C;
5262 // (C - X) ^ signmaskC --> (C + signmaskC) - X
5263 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
5264 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
5265
5266 // (X + C) ^ signmaskC --> X + (C + signmaskC)
5267 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
5268 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
5269
5270 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
5271 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
5272 MaskedValueIsZero(X, *C, &I))
5273 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
5274
5275 // When X is a power-of-two or zero and zero input is poison:
5276 // ctlz(i32 X) ^ 31 --> cttz(X)
5277 // cttz(i32 X) ^ 31 --> ctlz(X)
5278 auto *II = dyn_cast<IntrinsicInst>(Op0);
5279 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
5280 Intrinsic::ID IID = II->getIntrinsicID();
5281 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
5282 match(II->getArgOperand(1), m_One()) &&
5283 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
5284 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
5285 Function *F =
5286 Intrinsic::getOrInsertDeclaration(II->getModule(), IID, Ty);
5287 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
5288 }
5289 }
5290
5291 // If RHSC is inverting the remaining bits of shifted X,
5292 // canonicalize to a 'not' before the shift to help SCEV and codegen:
5293 // (X << C) ^ RHSC --> ~X << C
5294 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
5295 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
5296 Value *NotX = Builder.CreateNot(X);
5297 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
5298 }
5299 // (X >>u C) ^ RHSC --> ~X >>u C
5300 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
5301 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
5302 Value *NotX = Builder.CreateNot(X);
5303 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
5304 }
5305 // TODO: We could handle 'ashr' here as well. That would be matching
5306 // a 'not' op and moving it before the shift. Doing that requires
5307 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
5308 }
5309
5310 // If we are XORing the sign bit of a floating-point value, convert
5311 // this to fneg, then cast back to integer.
5312 //
5313 // This is generous interpretation of noimplicitfloat, this is not a true
5314 // floating-point operation.
5315 //
5316 // Assumes any IEEE-represented type has the sign bit in the high bit.
5317 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
5318 Value *CastOp;
5319 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
5320 match(Op1, m_SignMask()) &&
5321 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
5322 Attribute::NoImplicitFloat)) {
5323 Type *EltTy = CastOp->getType()->getScalarType();
5324 if (EltTy->isFloatingPointTy() &&
5326 Value *FNeg = Builder.CreateFNeg(CastOp);
5327 return new BitCastInst(FNeg, I.getType());
5328 }
5329 }
5330 }
5331
5332 // FIXME: This should not be limited to scalar (pull into APInt match above).
5333 {
5334 Value *X;
5335 ConstantInt *C1, *C2, *C3;
5336 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
5337 if (match(Op1, m_ConstantInt(C3)) &&
5339 m_ConstantInt(C2))) &&
5340 Op0->hasOneUse()) {
5341 // fold (C1 >> C2) ^ C3
5342 APInt FoldConst = C1->getValue().lshr(C2->getValue());
5343 FoldConst ^= C3->getValue();
5344 // Prepare the two operands.
5345 auto *Opnd0 = Builder.CreateLShr(X, C2);
5346 Opnd0->takeName(Op0);
5347 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
5348 }
5349 }
5350
5351 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
5352 return FoldedLogic;
5353
5354 // Y ^ (X | Y) --> X & ~Y
5355 // Y ^ (Y | X) --> X & ~Y
5356 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
5357 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
5358 // (X | Y) ^ Y --> X & ~Y
5359 // (Y | X) ^ Y --> X & ~Y
5360 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
5361 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
5362
5363 // Y ^ (X & Y) --> ~X & Y
5364 // Y ^ (Y & X) --> ~X & Y
5365 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
5366 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
5367 // (X & Y) ^ Y --> ~X & Y
5368 // (Y & X) ^ Y --> ~X & Y
5369 // Canonical form is (X & C) ^ C; don't touch that.
5370 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
5371 // be fixed to prefer that (otherwise we get infinite looping).
5372 if (!match(Op1, m_Constant()) &&
5373 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
5374 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
5375
5376 Value *A, *B, *C;
5377 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
5380 return BinaryOperator::CreateXor(
5381 Builder.CreateAnd(Builder.CreateNot(A), C), B);
5382
5383 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
5386 return BinaryOperator::CreateXor(
5387 Builder.CreateAnd(Builder.CreateNot(B), C), A);
5388
5389 // (A & B) ^ (A ^ B) -> (A | B)
5390 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
5392 return BinaryOperator::CreateOr(A, B);
5393 // (A ^ B) ^ (A & B) -> (A | B)
5394 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
5396 return BinaryOperator::CreateOr(A, B);
5397
5398 // (A & ~B) ^ ~A -> ~(A & B)
5399 // (~B & A) ^ ~A -> ~(A & B)
5400 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
5401 match(Op1, m_Not(m_Specific(A))))
5402 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
5403
5404 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
5406 return BinaryOperator::CreateOr(A, B);
5407
5408 // (~A | B) ^ A --> ~(A & B)
5409 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
5410 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
5411
5412 // A ^ (~A | B) --> ~(A & B)
5413 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
5414 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
5415
5416 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
5417 // TODO: Loosen one-use restriction if common operand is a constant.
5418 Value *D;
5419 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
5420 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
5421 if (B == C || B == D)
5422 std::swap(A, B);
5423 if (A == C)
5424 std::swap(C, D);
5425 if (A == D) {
5426 Value *NotA = Builder.CreateNot(A);
5427 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
5428 }
5429 }
5430
5431 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
5432 if (I.getType()->isIntOrIntVectorTy(1) &&
5435 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
5436 if (B == C || B == D)
5437 std::swap(A, B);
5438 if (A == C)
5439 std::swap(C, D);
5440 if (A == D) {
5441 if (NeedFreeze)
5442 A = Builder.CreateFreeze(A);
5443 Value *NotB = Builder.CreateNot(B);
5444 return SelectInst::Create(A, NotB, C);
5445 }
5446 }
5447
5448 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
5449 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5450 if (Value *V = foldXorOfICmps(LHS, RHS, I))
5451 return replaceInstUsesWith(I, V);
5452
5453 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
5454 return CastedXor;
5455
5456 if (Instruction *Abs = canonicalizeAbs(I, Builder))
5457 return Abs;
5458
5459 // Otherwise, if all else failed, try to hoist the xor-by-constant:
5460 // (X ^ C) ^ Y --> (X ^ Y) ^ C
5461 // Just like we do in other places, we completely avoid the fold
5462 // for constantexprs, at least to avoid endless combine loop.
5464 m_ImmConstant(C1))),
5465 m_Value(Y))))
5466 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
5467
5469 return R;
5470
5471 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
5472 return Canonicalized;
5473
5474 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
5475 return Folded;
5476
5477 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
5478 return Folded;
5479
5480 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
5481 return Res;
5482
5484 return Res;
5485
5486 return nullptr;
5487}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool isSigned(unsigned int Opcode)
static Value * foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q, Instruction &I)
Reduce logic-of-compares with equality to a constant by substituting a common operand with the consta...
static Value * foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and fold (icmp ne ctpop(X) 1) & ...
static Value * foldBitmaskMul(Value *Op0, Value *Op1, InstCombiner::BuilderTy &Builder)
(A & N) * C + (A & M) * C -> (A & (N + M)) & C This also accepts the equivalent select form of (A & N...
static unsigned conjugateICmpMask(unsigned Mask)
Convert an analysis of a masked ICmp into its equivalent if all boolean operations had the opposite s...
static Instruction * foldNotXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Value * getFCmpValue(unsigned Code, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder, FMFSource FMF)
This is the complement of getFCmpCode, which turns an opcode and two operands into either a FCmp inst...
static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, uint64_t &ClassMask)
Match an fcmp against a special value that performs a test possible by llvm.is.fpclass.
static Value * foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, Instruction &CxtI, InstCombiner::BuilderTy &Builder)
General pattern: X & Y.
static Instruction * visitMaskedMerge(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a masked merge, in the canonical form of: (assuming that A only has one use....
static Instruction * canonicalizeAbs(BinaryOperator &Xor, InstCombiner::BuilderTy &Builder)
Canonicalize a shifty way to code absolute value to the more common pattern that uses negation and se...
static Value * foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Reduce a pair of compares that check if a value has exactly 1 bit set.
static Value * foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Instruction * foldOrToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, bool SimplifyOnly, InstCombinerImpl &IC, unsigned Depth=0)
static Instruction * matchDeMorgansLaws(BinaryOperator &I, InstCombiner &IC)
Match variations of De Morgan's Laws: (~A & ~B) == (~(A | B)) (~A | ~B) == (~(A & B))
static Value * foldLogOpOfMaskedICmpsAsymmetric(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Instruction * foldAndToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, ICmpInst::Predicate Pred)
Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) satisfies.
static Instruction * foldXorToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
A ^ B can be specified using other logic ops in a variety of patterns.
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth)
Return true if a constant shift amount is always less than the specified bit-width.
static Instruction * foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, InstCombinerImpl &IC)
Fold {and,or,xor} (cast X), C.
static Value * foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, bool IsLogical, IRBuilderBase &Builder)
static bool canFreelyInvert(InstCombiner &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldNegativePower2AndShiftedMask(Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff B is a contiguous set of o...
static Value * matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, FCmpInst *RHS)
and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
static Value * foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder)
Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & (icmp(X & M) !...
static Value * stripSignOnlyFPOps(Value *Val)
Ignore all operations which only change the sign of a value, returning the underlying magnitude value...
static Value * foldOrUnsignedUMulOverflowICmp(BinaryOperator &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2)) --> (ugt x (c2/c1)).
static Value * freelyInvert(InstCombinerImpl &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static std::optional< IntPart > matchIntPart(Value *V)
Match an extraction of bits from an integer.
static Instruction * canonicalizeLogicFirst(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * reassociateFCmps(BinaryOperator &BO, InstCombiner::BuilderTy &Builder)
This a limited reassociation for a special case (see above) where we are checking if two values are e...
static Value * getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder)
This is the complement of getICmpCode, which turns an opcode and two operands into either a constant ...
static Value * extractIntPart(const IntPart &P, IRBuilderBase &Builder)
Materialize an extraction of bits from an integer in IR.
static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches fcmp u__ x, +/-inf.
static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches canonical form of isnan, fcmp ord x, 0.
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2)
If all elements of two constant vectors are 0/-1 and inverses, return true.
MaskedICmpType
Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns that can be simplified.
@ BMask_NotAllOnes
@ AMask_NotAllOnes
@ Mask_NotAllZeros
static Instruction * foldComplexAndOrPatterns(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Try folding relatively complex patterns for both And and Or operations with all And and Or swapped.
static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask, uint64_t &Offset, bool &IsShlNUW, bool &IsShlNSW)
Match V as "lshr -> mask -> zext -> shl".
static std::optional< DecomposedBitMaskMul > matchBitmaskMul(Value *V)
static Value * foldOrOfInversions(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool matchSubIntegerPackFromVector(Value *V, Value *&Vec, int64_t &VecOffset, SmallBitVector &Mask, const DataLayout &DL)
Match V as "shufflevector -> bitcast" or "extractelement -> zext -> shl" patterns,...
static Instruction * matchFunnelShift(Instruction &Or, InstCombinerImpl &IC)
Match UB-safe variants of the funnel shift intrinsic.
static Instruction * reassociateForUses(BinaryOperator &BO, InstCombinerImpl::BuilderTy &Builder)
Try to reassociate a pair of binops so that values with one use only are part of the same instruction...
static Value * matchOrConcat(Instruction &Or, InstCombiner::BuilderTy &Builder)
Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
static Value * foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, const SimplifyQuery &Q)
static Instruction * foldBitwiseLogicWithIntrinsics(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< unsigned, unsigned > > getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR)
Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
static Instruction * foldIntegerPackFromVector(Instruction &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Try to fold the join of two scalar integers whose contents are packed elements of the same vector.
static Value * foldIntegerRepackThroughZExt(Value *Lhs, Value *Rhs, InstCombiner::BuilderTy &Builder)
Try to fold the join of two scalar integers whose bits are unpacked and zexted from the same source i...
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define R2(n)
uint64_t High
uint64_t IntrinsicInst * II
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
Value * RHS
Value * LHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
bool bitwiseIsEqual(const APFloat &RHS) const
Definition APFloat.h:1414
bool isZero() const
Definition APFloat.h:1445
APInt bitcastToAPInt() const
Definition APFloat.h:1353
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
unsigned countLeadingOnes() const
Definition APInt.h:1624
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1249
int32_t exactLogBase2() const
Definition APInt.h:1783
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countLeadingZeros() const
Definition APInt.h:1606
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
void clearSignBit()
Set the sign bit to 0.
Definition APInt.h:1449
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:219
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
Definition InstrTypes.h:448
Type * getSrcTy() const
Return the source type, as a convenience.
Definition InstrTypes.h:615
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition InstrTypes.h:610
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Type * getDestTy() const
Return the destination type, as a convenience.
Definition InstrTypes.h:617
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:691
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:690
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static Predicate getOrderedPredicate(Predicate Pred)
Returns the ordered variant of a floating point compare.
Definition InstrTypes.h:796
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
Definition Constants.h:226
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI std::optional< ConstantRange > exactUnionWith(const ConstantRange &CR) const
Union the two ranges and return the result if it can be represented exactly, otherwise return std::nu...
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
This instruction compares its operands according to the predicate given to the constructor.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
Definition IRBuilder.h:107
This instruction compares its operands according to the predicate given to the constructor.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1808
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitOr(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Value * insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside)
Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise (V < Lo || V >= Hi).
bool sinkNotIntoLogicalOp(Instruction &I)
std::optional< std::pair< Intrinsic::ID, SmallVector< Value *, 3 > > > convertOrOfShiftsToFunnelShift(Instruction &Or)
Instruction * visitAnd(BinaryOperator &I)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Value * simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted)
Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * visitXor(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
static Value * peekThroughBitcast(Value *V, bool OneUseOnly=false)
Return the source operand of a potentially bitcasted value while optionally checking if it has one us...
bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser)
Given i1 V, can every user of V be freely adapted if V is changed to !V ?
void addToWorklist(Instruction *I)
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
DominatorTree & DT
BuilderTy & Builder
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
A wrapper class for inspecting calls to intrinsic functions.
This class represents a sign extension of integer types.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition Type.h:246
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition Value.cpp:158
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
bool use_empty() const
Definition Value.h:346
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
cst_pred_ty< is_shifted_mask > m_ShiftedMask()
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
ShiftLike_match< LHS, Instruction::Shl > m_ShlOrSelf(const LHS &L, uint64_t &R)
Matches shl L, ConstShAmt or L itself (R will be set to zero in this case).
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
DisjointOr_match< LHS, RHS, true > m_c_DisjointOr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, FCmpInst > m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
NodeAddr< CodeNode * > Code
Definition RDFGraph.h:388
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
Constant * getPredForFCmpCode(unsigned Code, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getFCmpCode.
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
bool predicatesFoldable(CmpInst::Predicate P1, CmpInst::Predicate P2)
Return true if both predicates match sign or if at least one of them is an equality comparison (which...
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI bool recognizeBSwapOrBitReverseIdiom(Instruction *I, bool MatchBSwaps, bool MatchBitReversals, SmallVectorImpl< Instruction * > &InsertedInsts)
Try to match a bswap or bitreverse idiom.
Definition Local.cpp:3757
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
APFloat neg(APFloat X)
Returns the negated value of the argument.
Definition APFloat.h:1569
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
unsigned getICmpCode(CmpInst::Predicate Pred)
Encode a icmp predicate into a three bit mask.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
unsigned getFCmpCode(CmpInst::Predicate CC)
Similar to getICmpCode but for FCmpInst.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
Constant * getPredForICmpCode(unsigned Code, bool Sign, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getICmpCode.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
bool isCombineableWith(const DecomposedBitMaskMul Other)
static LLVM_ABI bool hasSignBitInMSB(const fltSemantics &)
Definition APFloat.cpp:370
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
Matching combinators.
const DataLayout & DL
const Instruction * CxtI
const DominatorTree * DT
SimplifyQuery getWithInstruction(const Instruction *I) const
AssumptionCache * AC