29#define DEBUG_TYPE "instcombine"
40 return Builder.CreateICmp(NewPred,
LHS,
RHS);
50 return Builder.CreateFCmpFMF(NewPred,
LHS,
RHS, FMF);
60 "Lo is not < Hi in range emission code!");
62 Type *Ty = V->getType();
67 if (
isSigned ?
Lo.isMinSignedValue() :
Lo.isMinValue()) {
69 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty,
Hi));
75 Builder.CreateSub(V, ConstantInt::get(Ty,
Lo), V->getName() +
".off");
77 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
124 const APInt *ConstA =
nullptr, *ConstB =
nullptr, *ConstC =
nullptr;
129 bool IsAPow2 = ConstA && ConstA->
isPowerOf2();
130 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
131 unsigned MaskVal = 0;
132 if (ConstC && ConstC->isZero()) {
151 }
else if (ConstA && ConstC && ConstC->
isSubsetOf(*ConstA)) {
161 }
else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
195 Y = ConstantInt::get(
X->getType(), Res->Mask);
196 Z = ConstantInt::get(
X->getType(), Res->C);
205static std::optional<std::pair<unsigned, unsigned>>
218 Value *L1, *L11, *L12, *L2, *L21, *L22;
220 L21 = L22 = L1 =
nullptr;
227 if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
230 PredL = LHSCMP->getPredicate();
231 L1 = LHSCMP->getOperand(0);
232 L2 = LHSCMP->getOperand(1);
253 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
256 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
268 if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
271 PredR = RHSCMP->getPredicate();
273 Value *R1 = RHSCMP->getOperand(0);
274 R2 = RHSCMP->getOperand(1);
283 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
288 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
306 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
310 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
327 }
else if (L12 ==
A) {
330 }
else if (L21 ==
A) {
333 }
else if (L22 ==
A) {
340 return std::optional<std::pair<unsigned, unsigned>>(
341 std::make_pair(LeftType, RightType));
363 const APInt *BCst, *DCst, *OrigECst;
374 APInt ECst = *OrigECst;
380 if (*BCst == 0 || *DCst == 0)
390 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
391 Attribute::StrictFP)) {
393 if (!Ty->isIEEELikeFPTy())
399 APInt FractionBits = ~ExpBits;
401 if (*BCst != FractionBits)
426 if ((((*BCst & *DCst) & ECst) == 0) &&
427 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
428 APInt BorD = *BCst | *DCst;
429 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
430 Value *NewMask = ConstantInt::get(
A->getType(), BorD);
431 Value *NewMaskedValue = ConstantInt::get(
A->getType(), BandBxorDorE);
432 Value *NewAnd = Builder.CreateAnd(
A, NewMask);
433 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
436 auto IsSubSetOrEqual = [](
const APInt *C1,
const APInt *C2) {
437 return (*C1 & *C2) == *C1;
439 auto IsSuperSetOrEqual = [](
const APInt *C1,
const APInt *C2) {
440 return (*C1 & *C2) == *C2;
449 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
461 if (IsSubSetOrEqual(BCst, DCst))
462 return ConstantInt::get(
LHS->getType(), !IsAnd);
472 if (IsSuperSetOrEqual(BCst, DCst)) {
475 ICmp->setSameSign(
false);
481 assert(IsSubSetOrEqual(BCst, DCst) &&
"Precondition due to above code");
482 if ((*BCst & ECst) != 0) {
485 ICmp->setSameSign(
false);
492 return ConstantInt::get(
LHS->getType(), !IsAnd);
504 "Expected equality predicates for masked type of icmps.");
516 LHS,
RHS, IsAnd,
A,
B,
D,
E, PredL, PredR, Builder)) {
521 RHS,
LHS, IsAnd,
A,
D,
B,
C, PredR, PredL, Builder)) {
534 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr, *
E =
nullptr;
536 std::optional<std::pair<unsigned, unsigned>> MaskPair =
541 "Expected equality predicates for masked type of icmps.");
542 unsigned LHSMask = MaskPair->first;
543 unsigned RHSMask = MaskPair->second;
544 unsigned Mask = LHSMask & RHSMask;
549 LHS,
RHS, IsAnd,
A,
B,
C,
D,
E, PredL, PredR, LHSMask, RHSMask,
579 Value *NewOr = Builder.CreateOr(
B,
D);
580 Value *NewAnd = Builder.CreateAnd(
A, NewOr);
585 return Builder.CreateICmp(NewCC, NewAnd, Zero);
592 Value *NewOr = Builder.CreateOr(
B,
D);
593 Value *NewAnd = Builder.CreateAnd(
A, NewOr);
594 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
601 Value *NewAnd1 = Builder.CreateAnd(
B,
D);
602 Value *NewAnd2 = Builder.CreateAnd(
A, NewAnd1);
603 return Builder.CreateICmp(NewCC, NewAnd2,
A);
606 const APInt *ConstB, *ConstD;
614 APInt NewMask = *ConstB & *ConstD;
615 if (NewMask == *ConstB)
617 if (NewMask == *ConstD) {
620 RHSI->dropPoisonGeneratingFlags();
631 APInt NewMask = *ConstB | *ConstD;
632 if (NewMask == *ConstB)
634 if (NewMask == *ConstD)
661 const APInt *OldConstC, *OldConstE;
667 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
668 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
670 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
671 return IsNot ? nullptr : ConstantInt::get(
LHS->getType(), !IsAnd);
674 !ConstD->isSubsetOf(*ConstB))
679 BD = *ConstB & *ConstD;
680 CE = ConstC & ConstE;
682 BD = *ConstB | *ConstD;
683 CE = ConstC | ConstE;
685 Value *NewAnd = Builder.CreateAnd(
A, BD);
686 Value *CEVal = ConstantInt::get(
A->getType(), CE);
687 return Builder.CreateICmp(CC, NewAnd, CEVal);
691 return FoldBMixed(NewCC,
false);
693 return FoldBMixed(NewCC,
true);
708 D = Builder.CreateFreeze(
D);
709 Value *Mask = Builder.CreateOr(
B,
D);
711 return Builder.CreateICmp(NewCC,
Masked, Mask);
761 default:
return nullptr;
785 if (
LHS->getPredicate() != Pred ||
RHS->getPredicate() != Pred)
810 return Builder.CreateICmp(Pred,
And,
Op);
849 auto tryToMatchSignedTruncationCheck = [](
ICmpInst *ICmp,
Value *&
X,
850 APInt &SignBitMask) ->
bool {
851 const APInt *I01, *I1;
855 I1->ugt(*I01) && I01->
shl(1) == *I1))
867 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
869 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
874 assert(HighestBit.
isPowerOf2() &&
"expected to be power of two (non-zero)");
878 APInt &UnsetBitsMask) ->
bool {
887 UnsetBitsMask = Res->Mask;
897 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
900 assert(!UnsetBitsMask.
isZero() &&
"empty mask makes no sense.");
915 APInt SignBitsMask = ~(HighestBit - 1U);
922 if (!UnsetBitsMask.
isSubsetOf(SignBitsMask)) {
923 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
931 return Builder.CreateICmpULT(
X, ConstantInt::get(
X->getType(), HighestBit),
932 CxtI.
getName() +
".simplified");
952 CtPop->dropPoisonGeneratingAnnotations();
954 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
958 CtPop->dropPoisonGeneratingAnnotations();
960 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
987 CtPop->dropPoisonGeneratingAnnotations();
989 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
999 CtPop->dropPoisonGeneratingAnnotations();
1001 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1015 "Expected equality predicates for masked type of icmps.");
1035 const APInt *BCst, *DCst, *ECst;
1049 if (!BFVTy || !BConst || !DConst || !EConst)
1052 for (
unsigned I = 0;
I != BFVTy->getNumElements(); ++
I) {
1053 const auto *BElt = BConst->getAggregateElement(
I);
1054 const auto *DElt = DConst->getAggregateElement(
I);
1055 const auto *EElt = EConst->getAggregateElement(
I);
1057 if (!BElt || !DElt || !EElt)
1059 if (!isReducible(BElt, DElt, EElt))
1064 if (!isReducible(
B,
D,
E))
1082 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr, *
E =
nullptr;
1087 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1093 unsigned CmpMask0 = MaskPair->first;
1094 unsigned CmpMask1 = MaskPair->second;
1095 if ((CmpMask0 &
Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1099 }
else if ((CmpMask0 == compareBMask) && (CmpMask1 &
Mask_AllZeros)) {
1110 ICmpInst *UnsignedICmp,
bool IsAnd,
1122 if (
match(UnsignedICmp,
1138 IsAnd && GetKnownNonZeroAndOther(
B,
A))
1139 return Builder.CreateICmpULT(Builder.CreateNeg(
B),
A);
1141 !IsAnd && GetKnownNonZeroAndOther(
B,
A))
1142 return Builder.CreateICmpUGE(Builder.CreateNeg(
B),
A);
1158 return std::nullopt;
1160 unsigned NumOriginalBits =
X->getType()->getScalarSizeInBits();
1161 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1167 Shift->
ule(NumOriginalBits - NumExtractedBits))
1169 return {{
X, 0, NumExtractedBits}};
1176 V = Builder.CreateLShr(V,
P.StartBit);
1178 if (TruncTy != V->getType())
1179 V = Builder.CreateTrunc(V, TruncTy);
1186Value *InstCombinerImpl::foldEqOfParts(
Value *Cmp0,
Value *Cmp1,
bool IsAnd) {
1191 auto GetMatchPart = [&](
Value *CmpV,
1192 unsigned OpNo) -> std::optional<IntPart> {
1201 return {{OpNo == 0 ?
X :
Y, 0, 1}};
1205 return std::nullopt;
1207 if (Pred ==
Cmp->getPredicate())
1216 return std::nullopt;
1225 return std::nullopt;
1227 return std::nullopt;
1232 return {{
I->getOperand(OpNo), From,
C->getBitWidth() - From}};
1235 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1236 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1237 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1238 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1239 if (!L0 || !R0 || !L1 || !R1)
1244 if (L0->From != L1->From || R0->From != R1->From) {
1245 if (L0->From != R1->From || R0->From != L1->From)
1252 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1253 R0->StartBit + R0->NumBits != R1->StartBit) {
1254 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1255 R1->StartBit + R1->NumBits != R0->StartBit)
1262 IntPart
L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1263 IntPart
R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1273 bool IsAnd,
bool IsLogical,
1302 if (!SubstituteCmp) {
1307 SubstituteCmp = Builder.CreateICmp(Pred1,
Y,
C);
1310 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1311 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1312 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1320Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(
ICmpInst *ICmp1,
1323 CmpPredicate Pred1, Pred2;
1325 const APInt *C1, *C2;
1332 const APInt *Offset1 =
nullptr, *Offset2 =
nullptr;
1346 auto AreContiguousRangePredicates = [](CmpPredicate Pred1, CmpPredicate Pred2,
1352 const APInt *Mask1 =
nullptr, *Mask2 =
nullptr;
1353 bool MatchedAnd1 =
false, MatchedAnd2 =
false;
1354 if (V1 != V2 && AreContiguousRangePredicates(Pred1, Pred2, IsAnd)) {
1375 ? ConstantRange(*C1, *C1 - *Mask1)
1376 : ConstantRange::makeExactICmpRegion(
1377 IsAnd ? ICmpInst::getInverseCmpPredicate(Pred1) : Pred1, *C1);
1383 ? ConstantRange(*C2, *C2 - *Mask2)
1399 APInt LowerDiff = CR1.
getLower() ^ CR2.getLower();
1400 APInt UpperDiff = (CR1.
getUpper() - 1) ^ (CR2.getUpper() - 1);
1402 if (!LowerDiff.
isPowerOf2() || LowerDiff != UpperDiff ||
1403 CR1Size != CR2.getUpper() - CR2.getLower())
1406 CR = CR1.
getLower().
ult(CR2.getLower()) ? CR1 : CR2;
1407 NewV =
Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1415 CR->getEquivalentICmp(NewPred, NewC,
Offset);
1418 NewV =
Builder.CreateAdd(NewV, ConstantInt::get(Ty,
Offset));
1419 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1447 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1448 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1460 bool IsAnd,
bool IsLogicalSelect) {
1461 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1462 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1465 if (LHS0 == RHS1 && RHS0 == LHS1) {
1485 if (LHS0 == RHS0 && LHS1 == RHS1) {
1488 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1497 if (!IsLogicalSelect &&
1510 return Builder.CreateFCmpFMF(PredL, LHS0, RHS0,
1516 if (!IsLogicalSelect && IsAnd &&
1532 auto [ClassValRHS, ClassMaskRHS] =
1535 auto [ClassValLHS, ClassMaskLHS] =
1537 if (ClassValLHS == ClassValRHS) {
1538 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1539 : (ClassMaskLHS | ClassMaskRHS);
1540 return Builder.CreateIntrinsic(
1541 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1542 {ClassValLHS,
Builder.getInt32(CombinedMask)});
1570 if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
1574 if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
1575 FastMathFlags NewFlag =
LHS->getFastMathFlags();
1576 if (!IsLogicalSelect)
1577 NewFlag |=
RHS->getFastMathFlags();
1580 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag);
1582 PredL, FAbs, ConstantFP::get(LHS0->
getType(), *LHSC), NewFlag);
1594 if (!FCmp || !FCmp->hasOneUse())
1597 std::tie(ClassVal, ClassMask) =
1598 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1599 FCmp->getOperand(0), FCmp->getOperand(1));
1600 return ClassVal !=
nullptr;
1611 Value *ClassVal0 =
nullptr;
1612 Value *ClassVal1 =
nullptr;
1613 uint64_t ClassMask0, ClassMask1;
1629 ClassVal0 == ClassVal1) {
1630 unsigned NewClassMask;
1632 case Instruction::And:
1633 NewClassMask = ClassMask0 & ClassMask1;
1635 case Instruction::Or:
1636 NewClassMask = ClassMask0 | ClassMask1;
1638 case Instruction::Xor:
1639 NewClassMask = ClassMask0 ^ ClassMask1;
1648 1, ConstantInt::get(
II->getArgOperand(1)->getType(), NewClassMask));
1655 1, ConstantInt::get(
II->getArgOperand(1)->getType(), NewClassMask));
1659 CallInst *NewClass =
1660 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->
getType()},
1661 {ClassVal0,
Builder.getInt32(NewClassMask)});
1675Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1677 assert(
I.getOpcode() == BinaryOperator::Xor &&
"Only for xor!");
1682 !
Cond->getType()->isIntOrIntVectorTy(1) ||
1696 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1697 "Expecting and/or op for fcmp transform");
1716 X->getType() !=
Y->getType())
1720 X->getType() !=
Y->getType())
1737 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1738 "Trying to match De Morgan's Laws with something other than and/or");
1742 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1744 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1770bool InstCombinerImpl::shouldOptimizeCast(
CastInst *CI) {
1780 if (isEliminableCastPair(PrecedingCI, CI))
1808 auto *ZExt =
new ZExtInst(NewOp, DestTy);
1809 ZExt->setNonNeg(Flags.NNeg);
1810 ZExt->andIRFlags(Cast);
1819 return new SExtInst(NewOp, DestTy);
1829 assert(
I.isBitwiseLogicOp() &&
"Unexpected opcode for bitwise logic folding");
1831 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1837 auto FoldBitwiseICmpZeroWithICmp = [&](
Value *Op0,
1838 Value *Op1) -> Instruction * {
1853 auto *BitwiseOp =
Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1855 return new ZExtInst(BitwiseOp, Op0->
getType());
1858 if (
auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1861 if (
auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1870 Type *DestTy =
I.getType();
1896 unsigned XNumBits =
X->getType()->getScalarSizeInBits();
1897 unsigned YNumBits =
Y->getType()->getScalarSizeInBits();
1898 if (XNumBits != YNumBits) {
1906 if (XNumBits < YNumBits) {
1907 X =
Builder.CreateCast(CastOpcode,
X,
Y->getType());
1908 }
else if (YNumBits < XNumBits) {
1909 Y =
Builder.CreateCast(CastOpcode,
Y,
X->getType());
1914 Value *NarrowLogic =
Builder.CreateBinOp(LogicOpc,
X,
Y,
I.getName());
1917 if (Disjoint && NewDisjoint)
1918 NewDisjoint->setIsDisjoint(Disjoint->isDisjoint());
1930 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1931 Value *NewOp =
Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1941 assert(
I.getOpcode() == Instruction::And);
1942 Value *Op0 =
I.getOperand(0);
1943 Value *Op1 =
I.getOperand(1);
1951 return BinaryOperator::CreateXor(
A,
B);
1967 assert(
I.getOpcode() == Instruction::Or);
1968 Value *Op0 =
I.getOperand(0);
1969 Value *Op1 =
I.getOperand(1);
1994 return BinaryOperator::CreateXor(
A,
B);
2014 Value *Op0 =
And.getOperand(0), *Op1 =
And.getOperand(1);
2035 if (
Opc == Instruction::LShr ||
Opc == Instruction::Shl)
2044 return new ZExtInst(
Builder.CreateAnd(NewBO,
X), Ty);
2052 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
2056 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
2058 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2065 const auto matchNotOrAnd =
2066 [Opcode, FlippedOpcode](
Value *
Op,
auto m_A,
auto m_B,
auto m_C,
2067 Value *&
X,
bool CountUses =
false) ->
bool {
2068 if (CountUses && !
Op->hasOneUse())
2074 return !CountUses ||
X->hasOneUse();
2090 return (Opcode == Instruction::Or)
2091 ? BinaryOperator::CreateAnd(
Xor, Builder.CreateNot(
A))
2100 return (Opcode == Instruction::Or)
2101 ? BinaryOperator::CreateAnd(
Xor, Builder.CreateNot(
B))
2110 Opcode, Builder.CreateBinOp(FlippedOpcode,
B,
C),
A));
2117 Opcode, Builder.CreateBinOp(FlippedOpcode,
A,
C),
B));
2123 if (Opcode == Instruction::Or && Op0->
hasOneUse() &&
2161 return (Opcode == Instruction::Or)
2163 : BinaryOperator::CreateOr(
Xor,
X);
2171 FlippedOpcode, Builder.CreateBinOp(Opcode,
C, Builder.CreateNot(
B)),
2179 FlippedOpcode, Builder.CreateBinOp(Opcode,
B, Builder.CreateNot(
C)),
2199 if (!
X->hasOneUse()) {
2200 Value *YZ = Builder.CreateBinOp(Opcode,
Y, Z);
2204 if (!
Y->hasOneUse()) {
2205 Value *XZ = Builder.CreateBinOp(Opcode,
X, Z);
2225 Type *Ty =
I.getType();
2227 Value *Op0 =
I.getOperand(0);
2228 Value *Op1 =
I.getOperand(1);
2236 unsigned Width = Ty->getScalarSizeInBits();
2240 case Instruction::And:
2241 if (
C->countl_one() < LastOneMath)
2244 case Instruction::Xor:
2245 case Instruction::Or:
2246 if (
C->countl_zero() < LastOneMath)
2253 Value *NewBinOp = Builder.CreateBinOp(OpC,
X, ConstantInt::get(Ty, *
C));
2255 ConstantInt::get(Ty, *C2), Op0);
2262 assert((
I.isBitwiseLogicOp() ||
I.getOpcode() == Instruction::Add) &&
2263 "Unexpected opcode");
2266 Constant *ShiftedC1, *ShiftedC2, *AddC;
2267 Type *Ty =
I.getType();
2283 if (!Op0Inst || !Op1Inst)
2289 if (ShiftOp != Op1Inst->getOpcode())
2293 if (
I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2297 I.getOpcode(), ShiftedC1,
Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2313 assert(
I.isBitwiseLogicOp() &&
"Should and/or/xor");
2314 if (!
I.getOperand(0)->hasOneUse())
2321 if (
Y && (!
Y->hasOneUse() ||
X->getIntrinsicID() !=
Y->getIntrinsicID()))
2327 if (!
Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2332 case Intrinsic::fshl:
2333 case Intrinsic::fshr: {
2334 if (
X->getOperand(2) !=
Y->getOperand(2))
2337 Builder.CreateBinOp(
I.getOpcode(),
X->getOperand(0),
Y->getOperand(0));
2339 Builder.CreateBinOp(
I.getOpcode(),
X->getOperand(1),
Y->getOperand(1));
2344 case Intrinsic::bswap:
2345 case Intrinsic::bitreverse: {
2346 Value *NewOp0 = Builder.CreateBinOp(
2347 I.getOpcode(),
X->getOperand(0),
2348 Y ?
Y->getOperand(0)
2349 : ConstantInt::get(
I.getType(), IID == Intrinsic::bswap
2369 unsigned Depth = 0) {
2377 if (!
I || !
I->isBitwiseLogicOp() ||
Depth >= 3)
2380 if (!
I->hasOneUse())
2381 SimplifyOnly =
true;
2384 SimplifyOnly, IC,
Depth + 1);
2386 SimplifyOnly, IC,
Depth + 1);
2387 if (!NewOp0 && !NewOp1)
2391 NewOp0 =
I->getOperand(0);
2393 NewOp1 =
I->getOperand(1);
2409 bool RHSIsLogical) {
2413 if (
Value *Res = foldBooleanAndOr(
LHS,
X,
I, IsAnd,
false))
2414 return RHSIsLogical ?
Builder.CreateLogicalOp(Opcode, Res,
Y)
2415 :
Builder.CreateBinOp(Opcode, Res,
Y);
2418 if (
Value *Res = foldBooleanAndOr(
LHS,
Y,
I, IsAnd,
false))
2419 return RHSIsLogical ?
Builder.CreateLogicalOp(Opcode,
X, Res)
2420 :
Builder.CreateBinOp(Opcode,
X, Res);
2428 Type *Ty =
I.getType();
2431 SQ.getWithInstruction(&
I)))
2462 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2471 Value *IsZero =
Builder.CreateICmpEQ(
X, ConstantInt::get(Ty, 0));
2490 return BinaryOperator::CreateAnd(
Builder.CreateNot(
X),
Y);
2496 Constant *NewC = ConstantInt::get(Ty, *
C & *XorC);
2499 return BinaryOperator::CreateXor(
And, NewC);
2510 APInt Together = *
C & *OrC;
2513 return BinaryOperator::CreateOr(
And, ConstantInt::get(Ty, Together));
2516 unsigned Width = Ty->getScalarSizeInBits();
2517 const APInt *ShiftC;
2519 ShiftC->
ult(Width)) {
2524 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->
zext(Width));
2525 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2533 return BinaryOperator::CreateLShr(
X, ConstantInt::get(Ty, *ShiftC));
2541 if (Op0->
hasOneUse() &&
C->isPowerOf2() && (*AddC & (*
C - 1)) == 0) {
2542 assert((*
C & *AddC) != 0 &&
"Expected common bit");
2544 return BinaryOperator::CreateXor(NewAnd, Op1);
2551 switch (
B->getOpcode()) {
2552 case Instruction::Xor:
2553 case Instruction::Or:
2554 case Instruction::Mul:
2555 case Instruction::Add:
2556 case Instruction::Sub:
2572 C->isIntN(
X->getType()->getScalarSizeInBits())) {
2573 unsigned XWidth =
X->getType()->getScalarSizeInBits();
2574 Constant *TruncC1 = ConstantInt::get(
X->getType(), C1->
trunc(XWidth));
2576 ?
Builder.CreateBinOp(BOpcode,
X, TruncC1)
2577 :
Builder.CreateBinOp(BOpcode, TruncC1,
X);
2578 Constant *TruncC = ConstantInt::get(
X->getType(),
C->trunc(XWidth));
2588 C->isMask(
X->getType()->getScalarSizeInBits())) {
2590 Value *TrY =
Builder.CreateTrunc(
Y,
X->getType(),
Y->getName() +
".tr");
2598 C->isMask(
X->getType()->getScalarSizeInBits())) {
2600 Value *TrY =
Builder.CreateTrunc(
Y,
X->getType(),
Y->getName() +
".tr");
2617 Value *NewRHS =
Builder.CreateAnd(
Y, Op1,
Y->getName() +
".masked");
2623 Value *NewLHS =
Builder.CreateAnd(
X, Op1,
X->getName() +
".masked");
2632 if (
C->isPowerOf2() &&
2635 int Log2C =
C->exactLogBase2();
2638 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2639 assert(BitNum >= 0 &&
"Expected demanded bits to handle impossible mask");
2640 Value *Cmp =
Builder.CreateICmpEQ(
X, ConstantInt::get(Ty, BitNum));
2672 if (Cmp && Cmp->isZeroValue()) {
2696 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2697 Attribute::NoImplicitFloat)) {
2701 Value *FAbs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2712 APInt(Ty->getScalarSizeInBits(),
2713 Ty->getScalarSizeInBits() -
2714 X->getType()->getScalarSizeInBits())))) {
2715 auto *SExt =
Builder.CreateSExt(
X, Ty,
X->getName() +
".signext");
2716 return BinaryOperator::CreateAnd(SExt, Op1);
2722 if (
I.getType()->isIntOrIntVectorTy(1)) {
2725 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,
true))
2730 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,
true))
2745 return BinaryOperator::CreateAnd(Op0,
B);
2748 return BinaryOperator::CreateAnd(Op1,
B);
2756 if (NotC !=
nullptr)
2757 return BinaryOperator::CreateAnd(Op0, NotC);
2766 if (NotC !=
nullptr)
2767 return BinaryOperator::CreateAnd(Op1,
Builder.CreateNot(
C));
2776 return BinaryOperator::CreateAnd(
A,
B);
2784 return BinaryOperator::CreateAnd(
A,
B);
2792 return BinaryOperator::CreateAnd(
Builder.CreateNot(
A),
B);
2800 return BinaryOperator::CreateAnd(
Builder.CreateNot(
A),
B);
2804 foldBooleanAndOr(Op0, Op1,
I,
true,
false))
2809 if (
auto *V = reassociateBooleanAndOr(Op0,
X,
Y,
I,
true,
2815 if (
auto *V = reassociateBooleanAndOr(Op1,
X,
Y,
I,
true,
2823 if (
Instruction *CastedAnd = foldCastedBitwiseLogic(
I))
2836 A->getType()->isIntOrIntVectorTy(1))
2842 A->getType()->isIntOrIntVectorTy(1))
2847 A->getType()->isIntOrIntVectorTy(1))
2854 if (
A->getType()->isIntOrIntVectorTy(1))
2867 *
C ==
X->getType()->getScalarSizeInBits() - 1) {
2876 *
C ==
X->getType()->getScalarSizeInBits() - 1) {
2887 Value *Start =
nullptr, *Step =
nullptr;
2895 return Canonicalized;
2897 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
2909 return BinaryOperator::CreateAnd(V, Op1);
2913 return BinaryOperator::CreateAnd(Op0, V);
2920 bool MatchBitReversals) {
2928 for (
auto *Inst : Insts) {
2929 Inst->setDebugLoc(
I.getDebugLoc());
2935std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
2939 assert(
Or.getOpcode() == BinaryOperator::Or &&
"Expecting or instruction");
2941 unsigned Width =
Or.getType()->getScalarSizeInBits();
2946 return std::nullopt;
2954 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2960 return std::nullopt;
2963 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2969 Or1->
getOpcode() == BinaryOperator::LShr &&
2970 "Illegal or(shift,shift) pair");
2974 auto matchShiftAmount = [&](
Value *L,
Value *R,
unsigned Width) ->
Value * {
2976 const APInt *LI, *RI;
2978 if (LI->
ult(Width) && RI->
ult(Width) && (*LI + *RI) == Width)
2979 return ConstantInt::get(L->getType(), *LI);
3003 if (ShVal0 != ShVal1)
3014 unsigned Mask = Width - 1;
3038 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
3040 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
3044 return std::nullopt;
3046 FShiftArgs = {ShVal0, ShVal1, ShAmt};
3063 const APInt *ZextHighShlAmt;
3066 return std::nullopt;
3070 return std::nullopt;
3072 unsigned HighSize =
High->getType()->getScalarSizeInBits();
3073 unsigned LowSize =
Low->getType()->getScalarSizeInBits();
3076 if (ZextHighShlAmt->
ult(LowSize) || ZextHighShlAmt->
ugt(Width - HighSize))
3077 return std::nullopt;
3087 const APInt *ZextLowShlAmt;
3094 if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
3100 ZextLowShlAmt->
ule(Width - LowSize) &&
"Invalid concat");
3102 FShiftArgs = {U, U, ConstantInt::get(Or0->
getType(), *ZextHighShlAmt)};
3107 if (FShiftArgs.
empty())
3108 return std::nullopt;
3110 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
3111 return std::make_pair(IID, FShiftArgs);
3117 auto [IID, FShiftArgs] = *Opt;
3128 assert(
Or.getOpcode() == Instruction::Or &&
"bswap requires an 'or'");
3129 Value *Op0 =
Or.getOperand(0), *Op1 =
Or.getOperand(1);
3132 unsigned Width = Ty->getScalarSizeInBits();
3133 if ((Width & 1) != 0)
3135 unsigned HalfWidth = Width / 2;
3142 Value *LowerSrc, *ShlVal, *UpperSrc;
3153 Value *NewLower = Builder.CreateZExt(
Lo, Ty);
3154 Value *NewUpper = Builder.CreateZExt(
Hi, Ty);
3155 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
3156 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
3157 return Builder.CreateIntrinsic(
id, Ty, BinOp);
3162 Value *LowerBSwap, *UpperBSwap;
3165 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
3169 Value *LowerBRev, *UpperBRev;
3172 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
3184 return Builder.CreateSExt(
X, Ty);
3192 for (
unsigned i = 0; i != NumElts; ++i) {
3195 if (!EltC1 || !EltC2)
3214 Type *Ty =
A->getType();
3230 if (
A->getType()->isIntOrIntVectorTy()) {
3232 if (NumSignBits ==
A->getType()->getScalarSizeInBits() &&
3255 Cond->getType()->isIntOrIntVectorTy(1)) {
3281 Cond->getType()->isIntOrIntVectorTy(1) &&
3295 Value *
D,
bool InvertFalseVal) {
3301 if (
Value *
Cond = getSelectCondition(
A,
C, InvertFalseVal)) {
3306 Type *SelTy =
A->getType();
3309 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3313 Type *EltTy =
Builder.getIntNTy(SelEltSize / Elts);
3330 bool IsAnd,
bool IsLogical,
3337 IsAnd ?
LHS->getInversePredicate() :
LHS->getPredicate();
3339 IsAnd ?
RHS->getInversePredicate() :
RHS->getPredicate();
3345 !(
LHS->hasOneUse() ||
RHS->hasOneUse()))
3348 auto MatchRHSOp = [LHS0, CInt](
const Value *RHSOp) {
3351 (CInt->
isZero() && RHSOp == LHS0);
3365 return Builder.CreateICmp(
3367 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->
getType(), *CInt + 1)),
3377 const SimplifyQuery Q =
SQ.getWithInstruction(&
I);
3380 Value *LHS0 =
LHS->getOperand(0), *RHS0 =
RHS->getOperand(0);
3381 Value *LHS1 =
LHS->getOperand(1), *RHS1 =
RHS->getOperand(1);
3383 const APInt *LHSC =
nullptr, *RHSC =
nullptr;
3390 if (LHS0 == RHS1 && LHS1 == RHS0) {
3394 if (LHS0 == RHS0 && LHS1 == RHS1) {
3397 bool IsSigned =
LHS->isSigned() ||
RHS->isSigned();
3420 RHS->setSameSign(
false);
3446 if (IsAnd && !IsLogical)
3472 return Builder.CreateICmp(PredL, NewOr,
3483 return Builder.CreateICmp(PredL, NewAnd,
3503 const APInt *AndC, *SmallC =
nullptr, *BigC =
nullptr;
3517 if (SmallC && BigC) {
3518 unsigned BigBitSize = BigC->getBitWidth();
3525 APInt
N = SmallC->
zext(BigBitSize) | *BigC;
3527 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3537 bool TrueIfSignedL, TrueIfSignedR;
3543 if ((TrueIfSignedL && !TrueIfSignedR &&
3546 (!TrueIfSignedL && TrueIfSignedR &&
3550 return Builder.CreateIsNeg(NewXor);
3553 if ((TrueIfSignedL && !TrueIfSignedR &&
3556 (!TrueIfSignedL && TrueIfSignedR &&
3560 return Builder.CreateIsNotNeg(NewXor);
3569 if (LHS0 == RHS0 && PredL == PredR &&
3571 !
I.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
3574 X->getType()->getScalarType()->isIEEELikeFPTy() &&
3575 APFloat(
X->getType()->getScalarType()->getFltSemantics(), *MaskC)
3577 ((LHSC->
isZero() && *RHSC == *MaskC) ||
3578 (RHSC->
isZero() && *LHSC == *MaskC)))
3582 return foldAndOrOfICmpsUsingRanges(
LHS,
RHS, IsAnd);
3597 SQ.getWithInstruction(&
I)))
3602 if (
Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp,
I, IsAnd, IsLogical))
3607 if (
Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical))
3618 assert(
I.getOpcode() == Instruction::Or &&
3619 "Simplification only supports or at the moment.");
3621 Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
3628 return Builder.CreateXor(Cmp1, Cmp4);
3630 return Builder.CreateXor(Cmp1, Cmp3);
3660 const unsigned EltBitWidth = EltTy->getBitWidth();
3662 if (TargetBitWidth % EltBitWidth != 0 || ShlAmt % EltBitWidth != 0)
3664 const unsigned TargetEltWidth = TargetBitWidth / EltBitWidth;
3665 const unsigned ShlEltAmt = ShlAmt / EltBitWidth;
3667 const unsigned MaskIdx =
3668 DL.isLittleEndian() ? ShlEltAmt : TargetEltWidth - ShlEltAmt - 1;
3670 VecOffset =
static_cast<int64_t
>(VecIdx) -
static_cast<int64_t
>(MaskIdx);
3671 Mask.resize(TargetEltWidth);
3685 Mask.resize(SrcTy->getNumElements());
3699 const unsigned NumVecElts = VecTy->getNumElements();
3700 bool FoundVecOffset =
false;
3701 for (
unsigned Idx = 0; Idx < ShuffleMask.size(); ++Idx) {
3704 const unsigned ShuffleIdx = ShuffleMask[Idx];
3705 if (ShuffleIdx >= NumVecElts) {
3706 const unsigned ConstIdx = ShuffleIdx - NumVecElts;
3709 if (!ConstElt || !ConstElt->isNullValue())
3714 if (FoundVecOffset) {
3715 if (VecOffset + Idx != ShuffleIdx)
3718 if (ShuffleIdx < Idx)
3720 VecOffset = ShuffleIdx - Idx;
3721 FoundVecOffset =
true;
3725 return FoundVecOffset;
3738 bool AlreadyInsertedMaskedElt = Mask.test(InsertIdx);
3740 if (!AlreadyInsertedMaskedElt)
3741 Mask.reset(InsertIdx);
3750 assert(
I.getOpcode() == Instruction::Or);
3751 Value *LhsVec, *RhsVec;
3752 int64_t LhsVecOffset, RhsVecOffset;
3760 if (LhsVec != RhsVec || LhsVecOffset != RhsVecOffset)
3764 const unsigned ZeroVecIdx =
3767 for (
unsigned Idx : Mask.set_bits()) {
3768 assert(LhsVecOffset + Idx >= 0);
3769 ShuffleMask[Idx] = LhsVecOffset + Idx;
3772 Value *MaskedVec = Builder.CreateShuffleVector(
3774 I.getName() +
".v");
3800 const APInt *ShiftedMaskConst =
nullptr;
3807 if (!
match(MaskedOp0,
3812 if (LShrAmt > ShlAmt)
3814 Offset = ShlAmt - LShrAmt;
3816 Mask = ShiftedMaskConst ? ShiftedMaskConst->
shl(LShrAmt)
3818 Int->getType()->getScalarSizeInBits(), LShrAmt);
3828 Value *LhsInt, *RhsInt;
3829 APInt LhsMask, RhsMask;
3831 bool IsLhsShlNUW, IsLhsShlNSW, IsRhsShlNUW, IsRhsShlNSW;
3838 if (LhsInt != RhsInt || LhsOffset != RhsOffset)
3841 APInt Mask = LhsMask | RhsMask;
3844 Value *Res = Builder.CreateShl(
3846 Builder.CreateAnd(LhsInt, Mask, LhsInt->
getName() +
".mask"), DestTy,
3848 ConstantInt::get(DestTy, LhsOffset),
"", IsLhsShlNUW && IsRhsShlNUW,
3849 IsLhsShlNSW && IsRhsShlNSW);
3874 return std::nullopt;
3877 Value *Original =
nullptr;
3878 const APInt *Mask =
nullptr;
3879 const APInt *MulConst =
nullptr;
3882 if (MulConst->
isZero() || Mask->isZero())
3883 return std::nullopt;
3885 return std::optional<DecomposedBitMaskMul>(
3886 {Original, *MulConst, *Mask,
3892 const APInt *EqZero =
nullptr, *NeZero =
nullptr;
3896 auto ICmpDecompose =
3899 if (!ICmpDecompose.has_value())
3900 return std::nullopt;
3903 ICmpDecompose->C.isZero());
3908 if (!EqZero->
isZero() || NeZero->isZero())
3909 return std::nullopt;
3911 if (!ICmpDecompose->Mask.isPowerOf2() || ICmpDecompose->Mask.isZero() ||
3912 NeZero->getBitWidth() != ICmpDecompose->Mask.getBitWidth())
3913 return std::nullopt;
3915 if (!NeZero->urem(ICmpDecompose->Mask).isZero())
3916 return std::nullopt;
3918 return std::optional<DecomposedBitMaskMul>(
3919 {ICmpDecompose->X, NeZero->udiv(ICmpDecompose->Mask),
3920 ICmpDecompose->Mask,
false,
false});
3923 return std::nullopt;
3939 if (Decomp0->isCombineableWith(*Decomp1)) {
3940 Value *NewAnd = Builder.CreateAnd(
3942 ConstantInt::get(Decomp0->X->getType(), Decomp0->Mask + Decomp1->Mask));
3944 return Builder.CreateMul(
3945 NewAnd, ConstantInt::get(NewAnd->
getType(), Decomp1->Factor),
"",
3946 Decomp0->NUW && Decomp1->NUW, Decomp0->NSW && Decomp1->NSW);
3965 if (
Value *Res = foldDisjointOr(
LHS,
X))
3966 return Builder.CreateOr(Res,
Y,
"",
true);
3967 if (
Value *Res = foldDisjointOr(
LHS,
Y))
3968 return Builder.CreateOr(Res,
X,
"",
true);
3972 if (
Value *Res = foldDisjointOr(
X,
RHS))
3973 return Builder.CreateOr(Res,
Y,
"",
true);
3974 if (
Value *Res = foldDisjointOr(
Y,
RHS))
3975 return Builder.CreateOr(Res,
X,
"",
true);
3989 const APInt *C1, *C2;
3998 Constant *NewC = ConstantInt::get(
X->getType(), C2->
udiv(*C1));
4009 SQ.getWithInstruction(&
I)))
4045 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
4046 Type *Ty =
I.getType();
4047 if (Ty->isIntOrIntVectorTy(1)) {
4050 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,
false))
4055 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,
false))
4089 if (
Value *Res = foldDisjointOr(
I.getOperand(0),
I.getOperand(1)))
4092 if (
Value *Res = reassociateDisjointOr(
I.getOperand(0),
I.getOperand(1)))
4103 return BinaryOperator::CreateXor(
Or, ConstantInt::get(Ty, *CV));
4110 Value *IncrementY =
Builder.CreateAdd(
Y, ConstantInt::get(Ty, 1));
4111 return BinaryOperator::CreateMul(
X, IncrementY);
4120 const APInt *C0, *C1;
4126 return BinaryOperator::CreateOr(
Builder.CreateAnd(
X, *C0),
B);
4129 return BinaryOperator::CreateOr(
Builder.CreateAnd(
X, *C1),
A);
4133 return BinaryOperator::CreateXor(
Builder.CreateAnd(
X, *C0),
B);
4136 return BinaryOperator::CreateXor(
Builder.CreateAnd(
X, *C1),
A);
4139 if ((*C0 & *C1).
isZero()) {
4144 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4145 return BinaryOperator::CreateAnd(
A, C01);
4151 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4152 return BinaryOperator::CreateAnd(
B, C01);
4156 const APInt *C2, *C3;
4161 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4162 return BinaryOperator::CreateAnd(
Or, C01);
4172 if (
Value *V = matchSelectFromAndOr(
A,
C,
B,
D))
4174 if (
Value *V = matchSelectFromAndOr(
A,
C,
D,
B))
4176 if (
Value *V = matchSelectFromAndOr(
C,
A,
B,
D))
4178 if (
Value *V = matchSelectFromAndOr(
C,
A,
D,
B))
4180 if (
Value *V = matchSelectFromAndOr(
B,
D,
A,
C))
4182 if (
Value *V = matchSelectFromAndOr(
B,
D,
C,
A))
4184 if (
Value *V = matchSelectFromAndOr(
D,
B,
A,
C))
4186 if (
Value *V = matchSelectFromAndOr(
D,
B,
C,
A))
4195 if (
Value *V = matchSelectFromAndOr(
A,
C,
B,
D,
true))
4197 if (
Value *V = matchSelectFromAndOr(
A,
C,
D,
B,
true))
4199 if (
Value *V = matchSelectFromAndOr(
C,
A,
B,
D,
true))
4201 if (
Value *V = matchSelectFromAndOr(
C,
A,
D,
B,
true))
4210 return BinaryOperator::CreateOr(Op0,
C);
4217 return BinaryOperator::CreateOr(Op1,
C);
4223 bool SwappedForXor =
false;
4226 SwappedForXor =
true;
4233 return BinaryOperator::CreateOr(Op0,
B);
4235 return BinaryOperator::CreateOr(Op0,
A);
4240 return BinaryOperator::CreateOr(
A,
B);
4268 return BinaryOperator::CreateOr(Nand,
C);
4276 foldBooleanAndOr(Op0, Op1,
I,
false,
false))
4281 if (
auto *V = reassociateBooleanAndOr(Op0,
X,
Y,
I,
false,
4287 if (
auto *V = reassociateBooleanAndOr(Op1,
X,
Y,
I,
false,
4307 A->getType()->isIntOrIntVectorTy(1))
4329 return IsDisjointOuter && IsDisjointInner
4330 ? BinaryOperator::CreateDisjointOr(Inner, CI)
4331 : BinaryOperator::CreateOr(Inner, CI);
4338 Value *
X =
nullptr, *
Y =
nullptr;
4370 return BinaryOperator::CreateXor(
A,
B);
4386 Value *
Mul, *Ov, *MulIsNotZero, *UMulWithOv;
4404 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
4413 const APInt *C1, *C2;
4428 : C2->
uadd_ov(*C1, Overflow));
4432 return BinaryOperator::CreateOr(Ov, NewCmp);
4451 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1),
X);
4457 Value *Start =
nullptr, *Step =
nullptr;
4475 return BinaryOperator::CreateOr(
4487 return BinaryOperator::CreateOr(
4495 return Canonicalized;
4497 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
4517 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4518 Attribute::NoImplicitFloat)) {
4522 Value *FAbs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
4532 if ((KnownX.
One & *C2) == *C2)
4533 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, *C1 | *C2));
4542 return BinaryOperator::CreateOr(V, Op1);
4546 return BinaryOperator::CreateOr(Op0, V);
4559 assert(
I.getOpcode() == Instruction::Xor);
4560 Value *Op0 =
I.getOperand(0);
4561 Value *Op1 =
I.getOperand(1);
4572 return BinaryOperator::CreateXor(
A,
B);
4580 return BinaryOperator::CreateXor(
A,
B);
4588 return BinaryOperator::CreateXor(
A,
B);
4610 assert(
I.getOpcode() == Instruction::Xor &&
I.getOperand(0) ==
LHS &&
4611 I.getOperand(1) ==
RHS &&
"Should be 'xor' with these operands");
4614 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
4615 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
4618 if (LHS0 == RHS1 && LHS1 == RHS0) {
4622 if (LHS0 == RHS0 && LHS1 == RHS1) {
4625 bool IsSigned =
LHS->isSigned() ||
RHS->isSigned();
4630 const APInt *LC, *RC;
4639 bool TrueIfSignedL, TrueIfSignedR;
4644 return TrueIfSignedL == TrueIfSignedR ?
Builder.CreateIsNeg(XorLR) :
4645 Builder.CreateIsNotNeg(XorLR);
4655 if (CRUnion && CRIntersect)
4656 if (
auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4657 if (CR->isFullSet())
4659 if (CR->isEmptySet())
4664 CR->getEquivalentICmp(NewPred, NewC,
Offset);
4671 NewV =
Builder.CreateAdd(NewV, ConstantInt::get(Ty,
Offset));
4672 return Builder.CreateICmp(NewPred, NewV,
4673 ConstantInt::get(Ty, NewC));
4705 ICmpInst *
X =
nullptr, *
Y =
nullptr;
4706 if (OrICmp ==
LHS && AndICmp ==
RHS) {
4711 if (OrICmp ==
RHS && AndICmp ==
LHS) {
4718 Y->setPredicate(
Y->getInversePredicate());
4720 if (!
Y->hasOneUse()) {
4727 Builder.SetInsertPoint(
Y->getParent(), ++(
Y->getIterator()));
4731 Y->replaceUsesWithIf(NotY,
4732 [NotY](Use &U) {
return U.getUser() != NotY; });
4770 Value *NewA = Builder.CreateAnd(
D, NotM);
4771 return BinaryOperator::CreateXor(NewA,
X);
4777 Type *EltTy =
C->getType()->getScalarType();
4781 Value *NotC = Builder.CreateNot(
C);
4782 Value *
RHS = Builder.CreateAnd(
B, NotC);
4783 return BinaryOperator::CreateOr(
LHS,
RHS);
4798 return A ==
C ||
A ==
D ||
B ==
C ||
B ==
D;
4806 Value *NotY = Builder.CreateNot(
Y);
4807 return BinaryOperator::CreateOr(
X, NotY);
4814 Value *NotX = Builder.CreateNot(
X);
4815 return BinaryOperator::CreateOr(
Y, NotX);
4825 assert(
Xor.getOpcode() == Instruction::Xor &&
"Expected an xor instruction.");
4831 Value *Op0 =
Xor.getOperand(0), *Op1 =
Xor.getOperand(1);
4839 Op1->
hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4844 Value *IsNeg = Builder.CreateIsNeg(
A);
4847 Value *NegA =
Add->hasNoUnsignedWrap()
4849 : Builder.CreateNeg(
A,
"",
Add->hasNoSignedWrap());
4867 Op->replaceUsesWithIf(NotOp,
4868 [NotOp](
Use &U) {
return U.getUser() != NotOp; });
4909 Builder.SetInsertPoint(*
I.getInsertionPointAfterDef());
4912 NewLogicOp =
Builder.CreateBinOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4915 Builder.CreateLogicalOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4938 Value *NotOp0 =
nullptr;
4939 Value *NotOp1 =
nullptr;
4940 Value **OpToInvert =
nullptr;
4957 Builder.SetInsertPoint(*
I.getInsertionPointAfterDef());
4960 NewBinOp =
Builder.CreateBinOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4962 NewBinOp =
Builder.CreateLogicalOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4985 Type *Ty =
I.getType();
4988 Value *NotY = Builder.CreateNot(
Y,
Y->getName() +
".not");
4989 return BinaryOperator::CreateOr(
X, NotY);
4992 Value *NotY = Builder.CreateNot(
Y,
Y->getName() +
".not");
5000 return BinaryOperator::CreateAnd(
X, NotY);
5008 BinaryOperator *NotVal;
5015 return BinaryOperator::CreateAnd(DecX, NotY);
5020 return BinaryOperator::CreateAShr(
X,
Y);
5026 return BinaryOperator::CreateAShr(
X,
Y);
5033 return new SExtInst(IsNotNeg, Ty);
5060 return BinaryOperator::CreateAdd(
Builder.CreateNot(
X),
Y);
5085 return new BitCastInst(Sext, Ty);
5096 if (
II &&
II->hasOneUse()) {
5100 Value *InvMaxMin =
Builder.CreateBinaryIntrinsic(InvID,
X, NotY);
5104 if (
II->getIntrinsicID() == Intrinsic::is_fpclass) {
5107 1, ConstantInt::get(ClassMask->
getType(),
5123 Value *TV = Sel->getTrueValue();
5124 Value *FV = Sel->getFalseValue();
5127 bool InvertibleT = (CmpT && CmpT->hasOneUse()) ||
isa<Constant>(TV);
5128 bool InvertibleF = (CmpF && CmpF->hasOneUse()) ||
isa<Constant>(FV);
5129 if (InvertibleT && InvertibleF) {
5131 CmpT->setPredicate(CmpT->getInversePredicate());
5135 CmpF->setPredicate(CmpF->getInversePredicate());
5159 SQ.getWithInstruction(&
I)))
5189 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5197 return BinaryOperator::CreateXor(XorAC,
Y);
5200 return BinaryOperator::CreateXor(XorBC,
X);
5210 return BinaryOperator::CreateDisjointOr(Op0, Op1);
5212 return BinaryOperator::CreateOr(Op0, Op1);
5229 return BinaryOperator::CreateXor(
5252 *CA ==
X->getType()->getScalarSizeInBits() - 1 &&
5260 Type *Ty =
I.getType();
5268 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *
C + *RHSC),
X);
5272 return BinaryOperator::CreateAdd(
X, ConstantInt::get(Ty, *
C + *RHSC));
5277 return BinaryOperator::CreateXor(
X, ConstantInt::get(Ty, *
C ^ *RHSC));
5283 if (
II &&
II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
5285 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
5288 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
5301 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *
C));
5307 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *
C));
5325 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
5326 Attribute::NoImplicitFloat)) {
5349 auto *Opnd0 =
Builder.CreateLShr(
X, C2);
5350 Opnd0->takeName(Op0);
5351 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
5361 return BinaryOperator::CreateAnd(
X,
Builder.CreateNot(Op0));
5365 return BinaryOperator::CreateAnd(
X,
Builder.CreateNot(Op1));
5370 return BinaryOperator::CreateAnd(Op0,
Builder.CreateNot(
X));
5378 return BinaryOperator::CreateAnd(Op1,
Builder.CreateNot(
X));
5384 return BinaryOperator::CreateXor(
5390 return BinaryOperator::CreateXor(
5396 return BinaryOperator::CreateOr(
A,
B);
5400 return BinaryOperator::CreateOr(
A,
B);
5410 return BinaryOperator::CreateOr(
A,
B);
5425 if (
B ==
C ||
B ==
D)
5431 return BinaryOperator::CreateAnd(
Builder.CreateXor(
B,
C), NotA);
5436 if (
I.getType()->isIntOrIntVectorTy(1) &&
5440 if (
B ==
C ||
B ==
D)
5454 if (
Value *V = foldXorOfICmps(LHS, RHS,
I))
5457 if (
Instruction *CastedXor = foldCastedBitwiseLogic(
I))
5470 return BinaryOperator::CreateXor(
Builder.CreateXor(
X,
Y), C1);
5476 return Canonicalized;
5478 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
5481 if (
Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(
I))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool isSigned(unsigned int Opcode)
static Value * foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and fold (icmp ne ctpop(X) 1) & ...
static Value * foldBitmaskMul(Value *Op0, Value *Op1, InstCombiner::BuilderTy &Builder)
(A & N) * C + (A & M) * C -> (A & (N + M)) & C This also accepts the equivalent select form of (A & N...
static unsigned conjugateICmpMask(unsigned Mask)
Convert an analysis of a masked ICmp into its equivalent if all boolean operations had the opposite s...
static Instruction * foldNotXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Value * getFCmpValue(unsigned Code, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder, FMFSource FMF)
This is the complement of getFCmpCode, which turns an opcode and two operands into either a FCmp inst...
static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, uint64_t &ClassMask)
Match an fcmp against a special value that performs a test possible by llvm.is.fpclass.
static Value * foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, Instruction &CxtI, InstCombiner::BuilderTy &Builder)
General pattern: X & Y.
static Instruction * visitMaskedMerge(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a masked merge, in the canonical form of: (assuming that A only has one use....
static Instruction * canonicalizeAbs(BinaryOperator &Xor, InstCombiner::BuilderTy &Builder)
Canonicalize a shifty way to code absolute value to the more common pattern that uses negation and se...
static Value * foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Reduce a pair of compares that check if a value has exactly 1 bit set.
static Value * foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Instruction * foldOrToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, bool SimplifyOnly, InstCombinerImpl &IC, unsigned Depth=0)
static Instruction * matchDeMorgansLaws(BinaryOperator &I, InstCombiner &IC)
Match variations of De Morgan's Laws: (~A & ~B) == (~(A | B)) (~A | ~B) == (~(A & B))
static Value * foldLogOpOfMaskedICmpsAsymmetric(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Instruction * foldAndToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, ICmpInst::Predicate Pred)
Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) satisfies.
static Instruction * foldXorToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
A ^ B can be specified using other logic ops in a variety of patterns.
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth)
Return true if a constant shift amount is always less than the specified bit-width.
static Instruction * foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, InstCombinerImpl &IC)
Fold {and,or,xor} (cast X), C.
static Value * foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, bool IsLogical, IRBuilderBase &Builder)
static bool canFreelyInvert(InstCombiner &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldNegativePower2AndShiftedMask(Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff B is a contiguous set of o...
static Value * matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, FCmpInst *RHS)
and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
static Value * foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder)
Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & (icmp(X & M) !...
static Value * stripSignOnlyFPOps(Value *Val)
Ignore all operations which only change the sign of a value, returning the underlying magnitude value...
static Value * foldOrUnsignedUMulOverflowICmp(BinaryOperator &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2)) --> (ugt x (c2/c1)).
static Value * freelyInvert(InstCombinerImpl &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static std::optional< IntPart > matchIntPart(Value *V)
Match an extraction of bits from an integer.
static Instruction * canonicalizeLogicFirst(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * reassociateFCmps(BinaryOperator &BO, InstCombiner::BuilderTy &Builder)
This a limited reassociation for a special case (see above) where we are checking if two values are e...
static Value * getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder)
This is the complement of getICmpCode, which turns an opcode and two operands into either a constant ...
static Value * extractIntPart(const IntPart &P, IRBuilderBase &Builder)
Materialize an extraction of bits from an integer in IR.
static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches fcmp u__ x, +/-inf.
static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches canonical form of isnan, fcmp ord x, 0.
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2)
If all elements of two constant vectors are 0/-1 and inverses, return true.
MaskedICmpType
Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns that can be simplified.
static Instruction * foldComplexAndOrPatterns(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Try folding relatively complex patterns for both And and Or operations with all And and Or swapped.
static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask, uint64_t &Offset, bool &IsShlNUW, bool &IsShlNSW)
Match V as "lshr -> mask -> zext -> shl".
static std::optional< DecomposedBitMaskMul > matchBitmaskMul(Value *V)
static Value * foldOrOfInversions(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool matchSubIntegerPackFromVector(Value *V, Value *&Vec, int64_t &VecOffset, SmallBitVector &Mask, const DataLayout &DL)
Match V as "shufflevector -> bitcast" or "extractelement -> zext -> shl" patterns,...
static Instruction * matchFunnelShift(Instruction &Or, InstCombinerImpl &IC)
Match UB-safe variants of the funnel shift intrinsic.
static Instruction * reassociateForUses(BinaryOperator &BO, InstCombinerImpl::BuilderTy &Builder)
Try to reassociate a pair of binops so that values with one use only are part of the same instruction...
static Value * matchOrConcat(Instruction &Or, InstCombiner::BuilderTy &Builder)
Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
static Value * foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, const SimplifyQuery &Q)
static Instruction * foldBitwiseLogicWithIntrinsics(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< unsigned, unsigned > > getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR)
Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
static Instruction * foldIntegerPackFromVector(Instruction &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Try to fold the join of two scalar integers whose contents are packed elements of the same vector.
static Value * foldIntegerRepackThroughZExt(Value *Lhs, Value *Rhs, InstCombiner::BuilderTy &Builder)
Try to fold the join of two scalar integers whose bits are unpacked and zexted from the same source i...
static Value * foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Reduce logic-of-compares with equality to a constant by substituting a common operand with the consta...
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
bool bitwiseIsEqual(const APFloat &RHS) const
APInt bitcastToAPInt() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
unsigned countLeadingOnes() const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
int32_t exactLogBase2() const
LLVM_ABI APInt reverseBits() const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countLeadingZeros() const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
Type * getSrcTy() const
Return the source type, as a convenience.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Type * getDestTy() const
Return the destination type, as a convenience.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static Predicate getOrderedPredicate(Predicate Pred)
Returns the ordered variant of a floating point compare.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
LLVM_ABI std::optional< ConstantRange > exactUnionWith(const ConstantRange &CR) const
Union the two ranges and return the result if it can be represented exactly, otherwise return std::nu...
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isWrappedSet() const
Return true if this set wraps around the unsigned domain.
const APInt & getUpper() const
Return the upper value for this range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
A parsed version of the target data layout string in and methods for querying it.
This instruction compares its operands according to the predicate given to the constructor.
This provides a helper for copying FMF from an instruction or setting specified flags.
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getInverseCmpPredicate() const
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitOr(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Value * insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside)
Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise (V < Lo || V >= Hi).
bool sinkNotIntoLogicalOp(Instruction &I)
std::optional< std::pair< Intrinsic::ID, SmallVector< Value *, 3 > > > convertOrOfShiftsToFunnelShift(Instruction &Or)
Instruction * visitAnd(BinaryOperator &I)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Value * simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted)
Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * visitXor(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
static Value * peekThroughBitcast(Value *V, bool OneUseOnly=false)
Return the source operand of a potentially bitcasted value while optionally checking if it has one us...
bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser)
Given i1 V, can every user of V be freely adapted if V is changed to !V ?
void addToWorklist(Instruction *I)
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
A wrapper class for inspecting calls to intrinsic functions.
This class represents a sign extension of integer types.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
LLVM_ABI const fltSemantics & getFltSemantics() const
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
cst_pred_ty< is_shifted_mask > m_ShiftedMask()
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
ShiftLike_match< LHS, Instruction::Shl > m_ShlOrSelf(const LHS &L, uint64_t &R)
Matches shl L, ConstShAmt or L itself (R will be set to zero in this case).
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
DisjointOr_match< LHS, RHS, true > m_c_DisjointOr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, FCmpInst > m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
NodeAddr< CodeNode * > Code
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
Constant * getPredForFCmpCode(unsigned Code, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getFCmpCode.
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool predicatesFoldable(CmpInst::Predicate P1, CmpInst::Predicate P2)
Return true if both predicates match sign or if at least one of them is an equality comparison (which...
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI bool recognizeBSwapOrBitReverseIdiom(Instruction *I, bool MatchBSwaps, bool MatchBitReversals, SmallVectorImpl< Instruction * > &InsertedInsts)
Try to match a bswap or bitreverse idiom.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned getICmpCode(CmpInst::Predicate Pred)
Encode a icmp predicate into a three bit mask.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
unsigned getFCmpCode(CmpInst::Predicate CC)
Similar to getICmpCode but for FCmpInst.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
Constant * getPredForICmpCode(unsigned Code, bool Sign, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getICmpCode.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
bool isCombineableWith(const DecomposedBitMaskMul Other)
static LLVM_ABI bool hasSignBitInMSB(const fltSemantics &)
bool isNonNegative() const
Returns true if this value is known to be non-negative.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
SimplifyQuery getWithInstruction(const Instruction *I) const