LLVM 22.0.0git
InstCombineAndOrXor.cpp
Go to the documentation of this file.
1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitAnd, visitOr, and visitXor functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
21#include "llvm/IR/Intrinsics.h"
25
26using namespace llvm;
27using namespace PatternMatch;
28
29#define DEBUG_TYPE "instcombine"
30
31/// This is the complement of getICmpCode, which turns an opcode and two
32/// operands into either a constant true or false, or a brand new ICmp
33/// instruction. The sign is passed in to determine which kind of predicate to
34/// use in the new icmp instruction.
35static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
36 InstCombiner::BuilderTy &Builder) {
37 ICmpInst::Predicate NewPred;
38 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
39 return TorF;
40 return Builder.CreateICmp(NewPred, LHS, RHS);
41}
42
43/// This is the complement of getFCmpCode, which turns an opcode and two
44/// operands into either a FCmp instruction, or a true/false constant.
45static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
46 InstCombiner::BuilderTy &Builder, FMFSource FMF) {
47 FCmpInst::Predicate NewPred;
48 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
49 return TorF;
50 return Builder.CreateFCmpFMF(NewPred, LHS, RHS, FMF);
51}
52
53/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
54/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
55/// whether to treat V, Lo, and Hi as signed or not.
57 const APInt &Hi, bool isSigned,
58 bool Inside) {
59 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
60 "Lo is not < Hi in range emission code!");
61
62 Type *Ty = V->getType();
63
64 // V >= Min && V < Hi --> V < Hi
65 // V < Min || V >= Hi --> V >= Hi
67 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
68 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
69 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
70 }
71
72 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
73 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
74 Value *VMinusLo =
75 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
76 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
77 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
78}
79
80/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
81/// that can be simplified.
82/// One of A and B is considered the mask. The other is the value. This is
83/// described as the "AMask" or "BMask" part of the enum. If the enum contains
84/// only "Mask", then both A and B can be considered masks. If A is the mask,
85/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
86/// If both A and C are constants, this proof is also easy.
87/// For the following explanations, we assume that A is the mask.
88///
89/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
90/// bits of A are set in B.
91/// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
92///
93/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
94/// bits of A are cleared in B.
95/// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
96///
97/// "Mixed" declares that (A & B) == C and C might or might not contain any
98/// number of one bits and zero bits.
99/// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
100///
101/// "Not" means that in above descriptions "==" should be replaced by "!=".
102/// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
103///
104/// If the mask A contains a single bit, then the following is equivalent:
105/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
106/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
119
120/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
121/// satisfies.
122static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
123 ICmpInst::Predicate Pred) {
124 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
125 match(A, m_APInt(ConstA));
126 match(B, m_APInt(ConstB));
127 match(C, m_APInt(ConstC));
128 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
129 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
130 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
131 unsigned MaskVal = 0;
132 if (ConstC && ConstC->isZero()) {
133 // if C is zero, then both A and B qualify as mask
134 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
136 if (IsAPow2)
137 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
139 if (IsBPow2)
140 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
142 return MaskVal;
143 }
144
145 if (A == C) {
146 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
148 if (IsAPow2)
149 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
151 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
152 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
153 }
154
155 if (B == C) {
156 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
158 if (IsBPow2)
159 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
161 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
162 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
163 }
164
165 return MaskVal;
166}
167
168/// Convert an analysis of a masked ICmp into its equivalent if all boolean
169/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
170/// is adjacent to the corresponding normal flag (recording ==), this just
171/// involves swapping those bits over.
172static unsigned conjugateICmpMask(unsigned Mask) {
173 unsigned NewMask;
174 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
176 << 1;
177
178 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
180 >> 1;
181
182 return NewMask;
183}
184
185// Adapts the external decomposeBitTestICmp for local use.
187 Value *&X, Value *&Y, Value *&Z) {
188 auto Res = llvm::decomposeBitTest(Cond, /*LookThroughTrunc=*/true,
189 /*AllowNonZeroC=*/true);
190 if (!Res)
191 return false;
192
193 Pred = Res->Pred;
194 X = Res->X;
195 Y = ConstantInt::get(X->getType(), Res->Mask);
196 Z = ConstantInt::get(X->getType(), Res->C);
197 return true;
198}
199
200/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
201/// Return the pattern classes (from MaskedICmpType) for the left hand side and
202/// the right hand side as a pair.
203/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
204/// and PredR are their predicates, respectively.
205static std::optional<std::pair<unsigned, unsigned>>
208 ICmpInst::Predicate &PredR) {
209
210 // Here comes the tricky part:
211 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
212 // and L11 & L12 == L21 & L22. The same goes for RHS.
213 // Now we must find those components L** and R**, that are equal, so
214 // that we can extract the parameters A, B, C, D, and E for the canonical
215 // above.
216
217 // Check whether the icmp can be decomposed into a bit test.
218 Value *L1, *L11, *L12, *L2, *L21, *L22;
219 if (decomposeBitTestICmp(LHS, PredL, L11, L12, L2)) {
220 L21 = L22 = L1 = nullptr;
221 } else {
222 auto *LHSCMP = dyn_cast<ICmpInst>(LHS);
223 if (!LHSCMP)
224 return std::nullopt;
225
226 // Don't allow pointers. Splat vectors are fine.
227 if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
228 return std::nullopt;
229
230 PredL = LHSCMP->getPredicate();
231 L1 = LHSCMP->getOperand(0);
232 L2 = LHSCMP->getOperand(1);
233 // Look for ANDs in the LHS icmp.
234 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
235 // Any icmp can be viewed as being trivially masked; if it allows us to
236 // remove one, it's worth it.
237 L11 = L1;
239 }
240
241 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
242 L21 = L2;
244 }
245 }
246
247 // Bail if LHS was a icmp that can't be decomposed into an equality.
248 if (!ICmpInst::isEquality(PredL))
249 return std::nullopt;
250
251 Value *R11, *R12, *R2;
252 if (decomposeBitTestICmp(RHS, PredR, R11, R12, R2)) {
253 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
254 A = R11;
255 D = R12;
256 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
257 A = R12;
258 D = R11;
259 } else {
260 return std::nullopt;
261 }
262 E = R2;
263 } else {
264 auto *RHSCMP = dyn_cast<ICmpInst>(RHS);
265 if (!RHSCMP)
266 return std::nullopt;
267 // Don't allow pointers. Splat vectors are fine.
268 if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
269 return std::nullopt;
270
271 PredR = RHSCMP->getPredicate();
272
273 Value *R1 = RHSCMP->getOperand(0);
274 R2 = RHSCMP->getOperand(1);
275 bool Ok = false;
276 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
277 // As before, model no mask as a trivial mask if it'll let us do an
278 // optimization.
279 R11 = R1;
281 }
282
283 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
284 A = R11;
285 D = R12;
286 E = R2;
287 Ok = true;
288 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
289 A = R12;
290 D = R11;
291 E = R2;
292 Ok = true;
293 }
294
295 // Avoid matching against the -1 value we created for unmasked operand.
296 if (Ok && match(A, m_AllOnes()))
297 Ok = false;
298
299 // Look for ANDs on the right side of the RHS icmp.
300 if (!Ok) {
301 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
302 R11 = R2;
303 R12 = Constant::getAllOnesValue(R2->getType());
304 }
305
306 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
307 A = R11;
308 D = R12;
309 E = R1;
310 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
311 A = R12;
312 D = R11;
313 E = R1;
314 } else {
315 return std::nullopt;
316 }
317 }
318 }
319
320 // Bail if RHS was a icmp that can't be decomposed into an equality.
321 if (!ICmpInst::isEquality(PredR))
322 return std::nullopt;
323
324 if (L11 == A) {
325 B = L12;
326 C = L2;
327 } else if (L12 == A) {
328 B = L11;
329 C = L2;
330 } else if (L21 == A) {
331 B = L22;
332 C = L1;
333 } else if (L22 == A) {
334 B = L21;
335 C = L1;
336 }
337
338 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
339 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
340 return std::optional<std::pair<unsigned, unsigned>>(
341 std::make_pair(LeftType, RightType));
342}
343
344/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
345/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
346/// and the right hand side is of type BMask_Mixed. For example,
347/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
348/// Also used for logical and/or, must be poison safe.
350 Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E,
352 InstCombiner::BuilderTy &Builder) {
353 // We are given the canonical form:
354 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
355 // where D & E == E.
356 //
357 // If IsAnd is false, we get it in negated form:
358 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
359 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
360 //
361 // We currently handle the case of B, C, D, E are constant.
362 //
363 const APInt *BCst, *DCst, *OrigECst;
364 if (!match(B, m_APInt(BCst)) || !match(D, m_APInt(DCst)) ||
365 !match(E, m_APInt(OrigECst)))
366 return nullptr;
367
369
370 // Update E to the canonical form when D is a power of two and RHS is
371 // canonicalized as,
372 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
373 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
374 APInt ECst = *OrigECst;
375 if (PredR != NewCC)
376 ECst ^= *DCst;
377
378 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
379 // other folding rules and this pattern won't apply any more.
380 if (*BCst == 0 || *DCst == 0)
381 return nullptr;
382
383 // If B and D don't intersect, ie. (B & D) == 0, try to fold isNaN idiom:
384 // (icmp ne (A & FractionBits), 0) & (icmp eq (A & ExpBits), ExpBits)
385 // -> isNaN(A)
386 // Otherwise, we cannot deduce anything from it.
387 if (!BCst->intersects(*DCst)) {
388 Value *Src;
389 if (*DCst == ECst && match(A, m_ElementWiseBitCast(m_Value(Src))) &&
390 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
391 Attribute::StrictFP)) {
392 Type *Ty = Src->getType()->getScalarType();
393 if (!Ty->isIEEELikeFPTy())
394 return nullptr;
395
396 APInt ExpBits = APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt();
397 if (ECst != ExpBits)
398 return nullptr;
399 APInt FractionBits = ~ExpBits;
400 FractionBits.clearSignBit();
401 if (*BCst != FractionBits)
402 return nullptr;
403
404 return Builder.CreateFCmp(IsAnd ? FCmpInst::FCMP_UNO : FCmpInst::FCMP_ORD,
405 Src, ConstantFP::getZero(Src->getType()));
406 }
407 return nullptr;
408 }
409
410 // If the following two conditions are met:
411 //
412 // 1. mask B covers only a single bit that's not covered by mask D, that is,
413 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
414 // B and D has only one bit set) and,
415 //
416 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
417 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
418 //
419 // then that single bit in B must be one and thus the whole expression can be
420 // folded to
421 // (A & (B | D)) == (B & (B ^ D)) | E.
422 //
423 // For example,
424 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
425 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
426 if ((((*BCst & *DCst) & ECst) == 0) &&
427 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
428 APInt BorD = *BCst | *DCst;
429 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
430 Value *NewMask = ConstantInt::get(A->getType(), BorD);
431 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
432 Value *NewAnd = Builder.CreateAnd(A, NewMask);
433 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
434 }
435
436 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
437 return (*C1 & *C2) == *C1;
438 };
439 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
440 return (*C1 & *C2) == *C2;
441 };
442
443 // In the following, we consider only the cases where B is a superset of D, B
444 // is a subset of D, or B == D because otherwise there's at least one bit
445 // covered by B but not D, in which case we can't deduce much from it, so
446 // no folding (aside from the single must-be-one bit case right above.)
447 // For example,
448 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
449 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
450 return nullptr;
451
452 // At this point, either B is a superset of D, B is a subset of D or B == D.
453
454 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
455 // and the whole expression becomes false (or true if negated), otherwise, no
456 // folding.
457 // For example,
458 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
459 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
460 if (ECst.isZero()) {
461 if (IsSubSetOrEqual(BCst, DCst))
462 return ConstantInt::get(LHS->getType(), !IsAnd);
463 return nullptr;
464 }
465
466 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
467 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
468 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
469 // RHS. For example,
470 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
471 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
472 if (IsSuperSetOrEqual(BCst, DCst)) {
473 // We can't guarantee that samesign hold after this fold.
474 if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
475 ICmp->setSameSign(false);
476 return RHS;
477 }
478 // Otherwise, B is a subset of D. If B and E have a common bit set,
479 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
480 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
481 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
482 if ((*BCst & ECst) != 0) {
483 // We can't guarantee that samesign hold after this fold.
484 if (auto *ICmp = dyn_cast<ICmpInst>(RHS))
485 ICmp->setSameSign(false);
486 return RHS;
487 }
488 // Otherwise, LHS and RHS contradict and the whole expression becomes false
489 // (or true if negated.) For example,
490 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
491 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
492 return ConstantInt::get(LHS->getType(), !IsAnd);
493}
494
495/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
496/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
497/// aren't of the common mask pattern type.
498/// Also used for logical and/or, must be poison safe.
500 Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D,
502 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
504 "Expected equality predicates for masked type of icmps.");
505 // Handle Mask_NotAllZeros-BMask_Mixed cases.
506 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
507 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
508 // which gets swapped to
509 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
510 if (!IsAnd) {
511 LHSMask = conjugateICmpMask(LHSMask);
512 RHSMask = conjugateICmpMask(RHSMask);
513 }
514 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
516 LHS, RHS, IsAnd, A, B, D, E, PredL, PredR, Builder)) {
517 return V;
518 }
519 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
521 RHS, LHS, IsAnd, A, D, B, C, PredR, PredL, Builder)) {
522 return V;
523 }
524 }
525 return nullptr;
526}
527
528/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
529/// into a single (icmp(A & X) ==/!= Y).
531 bool IsLogical,
533 const SimplifyQuery &Q) {
534 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
535 ICmpInst::Predicate PredL, PredR;
536 std::optional<std::pair<unsigned, unsigned>> MaskPair =
537 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
538 if (!MaskPair)
539 return nullptr;
541 "Expected equality predicates for masked type of icmps.");
542 unsigned LHSMask = MaskPair->first;
543 unsigned RHSMask = MaskPair->second;
544 unsigned Mask = LHSMask & RHSMask;
545 if (Mask == 0) {
546 // Even if the two sides don't share a common pattern, check if folding can
547 // still happen.
549 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
550 Builder))
551 return V;
552 return nullptr;
553 }
554
555 // In full generality:
556 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
557 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
558 //
559 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
560 // equivalent to (icmp (A & X) !Op Y).
561 //
562 // Therefore, we can pretend for the rest of this function that we're dealing
563 // with the conjunction, provided we flip the sense of any comparisons (both
564 // input and output).
565
566 // In most cases we're going to produce an EQ for the "&&" case.
568 if (!IsAnd) {
569 // Convert the masking analysis into its equivalent with negated
570 // comparisons.
571 Mask = conjugateICmpMask(Mask);
572 }
573
574 if (Mask & Mask_AllZeros) {
575 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
576 // -> (icmp eq (A & (B|D)), 0)
577 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
578 return nullptr; // TODO: Use freeze?
579 Value *NewOr = Builder.CreateOr(B, D);
580 Value *NewAnd = Builder.CreateAnd(A, NewOr);
581 // We can't use C as zero because we might actually handle
582 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
583 // with B and D, having a single bit set.
584 Value *Zero = Constant::getNullValue(A->getType());
585 return Builder.CreateICmp(NewCC, NewAnd, Zero);
586 }
587 if (Mask & BMask_AllOnes) {
588 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
589 // -> (icmp eq (A & (B|D)), (B|D))
590 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
591 return nullptr; // TODO: Use freeze?
592 Value *NewOr = Builder.CreateOr(B, D);
593 Value *NewAnd = Builder.CreateAnd(A, NewOr);
594 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
595 }
596 if (Mask & AMask_AllOnes) {
597 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
598 // -> (icmp eq (A & (B&D)), A)
599 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
600 return nullptr; // TODO: Use freeze?
601 Value *NewAnd1 = Builder.CreateAnd(B, D);
602 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
603 return Builder.CreateICmp(NewCC, NewAnd2, A);
604 }
605
606 const APInt *ConstB, *ConstD;
607 if (match(B, m_APInt(ConstB)) && match(D, m_APInt(ConstD))) {
608 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
609 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
610 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
611 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
612 // Only valid if one of the masks is a superset of the other (check "B&D"
613 // is the same as either B or D).
614 APInt NewMask = *ConstB & *ConstD;
615 if (NewMask == *ConstB)
616 return LHS;
617 if (NewMask == *ConstD) {
618 if (IsLogical) {
619 if (auto *RHSI = dyn_cast<Instruction>(RHS))
620 RHSI->dropPoisonGeneratingFlags();
621 }
622 return RHS;
623 }
624 }
625
626 if (Mask & AMask_NotAllOnes) {
627 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
628 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
629 // Only valid if one of the masks is a superset of the other (check "B|D"
630 // is the same as either B or D).
631 APInt NewMask = *ConstB | *ConstD;
632 if (NewMask == *ConstB)
633 return LHS;
634 if (NewMask == *ConstD)
635 return RHS;
636 }
637
638 if (Mask & (BMask_Mixed | BMask_NotMixed)) {
639 // Mixed:
640 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
641 // We already know that B & C == C && D & E == E.
642 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
643 // C and E, which are shared by both the mask B and the mask D, don't
644 // contradict, then we can transform to
645 // -> (icmp eq (A & (B|D)), (C|E))
646 // Currently, we only handle the case of B, C, D, and E being constant.
647 // We can't simply use C and E because we might actually handle
648 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
649 // with B and D, having a single bit set.
650
651 // NotMixed:
652 // (icmp ne (A & B), C) & (icmp ne (A & D), E)
653 // -> (icmp ne (A & (B & D)), (C & E))
654 // Check the intersection (B & D) for inequality.
655 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
656 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both
657 // the B and the D, don't contradict. Note that we can assume (~B & C) ==
658 // 0 && (~D & E) == 0, previous operation should delete these icmps if it
659 // hadn't been met.
660
661 const APInt *OldConstC, *OldConstE;
662 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
663 return nullptr;
664
665 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
666 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
667 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
668 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
669
670 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
671 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
672
673 if (IsNot && !ConstB->isSubsetOf(*ConstD) &&
674 !ConstD->isSubsetOf(*ConstB))
675 return nullptr;
676
677 APInt BD, CE;
678 if (IsNot) {
679 BD = *ConstB & *ConstD;
680 CE = ConstC & ConstE;
681 } else {
682 BD = *ConstB | *ConstD;
683 CE = ConstC | ConstE;
684 }
685 Value *NewAnd = Builder.CreateAnd(A, BD);
686 Value *CEVal = ConstantInt::get(A->getType(), CE);
687 return Builder.CreateICmp(CC, NewAnd, CEVal);
688 };
689
690 if (Mask & BMask_Mixed)
691 return FoldBMixed(NewCC, false);
692 if (Mask & BMask_NotMixed) // can be else also
693 return FoldBMixed(NewCC, true);
694 }
695 }
696
697 // (icmp eq (A & B), 0) | (icmp eq (A & D), 0)
698 // -> (icmp ne (A & (B|D)), (B|D))
699 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0)
700 // -> (icmp eq (A & (B|D)), (B|D))
701 // iff B and D is known to be a power of two
702 if (Mask & Mask_NotAllZeros &&
703 isKnownToBeAPowerOfTwo(B, /*OrZero=*/false, Q) &&
704 isKnownToBeAPowerOfTwo(D, /*OrZero=*/false, Q)) {
705 // If this is a logical and/or, then we must prevent propagation of a
706 // poison value from the RHS by inserting freeze.
707 if (IsLogical)
708 D = Builder.CreateFreeze(D);
709 Value *Mask = Builder.CreateOr(B, D);
710 Value *Masked = Builder.CreateAnd(A, Mask);
711 return Builder.CreateICmp(NewCC, Masked, Mask);
712 }
713 return nullptr;
714}
715
716/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
717/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
718/// If \p Inverted is true then the check is for the inverted range, e.g.
719/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
721 bool Inverted) {
722 // Check the lower range comparison, e.g. x >= 0
723 // InstCombine already ensured that if there is a constant it's on the RHS.
724 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
725 if (!RangeStart)
726 return nullptr;
727
728 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
729 Cmp0->getPredicate());
730
731 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
732 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
733 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
734 return nullptr;
735
736 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
737 Cmp1->getPredicate());
738
739 Value *Input = Cmp0->getOperand(0);
740 Value *Cmp1Op0 = Cmp1->getOperand(0);
741 Value *Cmp1Op1 = Cmp1->getOperand(1);
742 Value *RangeEnd;
743 if (match(Cmp1Op0, m_SExtOrSelf(m_Specific(Input)))) {
744 // For the upper range compare we have: icmp x, n
745 Input = Cmp1Op0;
746 RangeEnd = Cmp1Op1;
747 } else if (match(Cmp1Op1, m_SExtOrSelf(m_Specific(Input)))) {
748 // For the upper range compare we have: icmp n, x
749 Input = Cmp1Op1;
750 RangeEnd = Cmp1Op0;
751 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
752 } else {
753 return nullptr;
754 }
755
756 // Check the upper range comparison, e.g. x < n
757 ICmpInst::Predicate NewPred;
758 switch (Pred1) {
759 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
760 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
761 default: return nullptr;
762 }
763
764 // This simplification is only valid if the upper range is not negative.
765 KnownBits Known = computeKnownBits(RangeEnd, Cmp1);
766 if (!Known.isNonNegative())
767 return nullptr;
768
769 if (Inverted)
770 NewPred = ICmpInst::getInversePredicate(NewPred);
771
772 return Builder.CreateICmp(NewPred, Input, RangeEnd);
773}
774
775// (or (icmp eq X, 0), (icmp eq X, Pow2OrZero))
776// -> (icmp eq (and X, Pow2OrZero), X)
777// (and (icmp ne X, 0), (icmp ne X, Pow2OrZero))
778// -> (icmp ne (and X, Pow2OrZero), X)
779static Value *
781 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
782 const SimplifyQuery &Q) {
784 // Make sure we have right compares for our op.
785 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
786 return nullptr;
787
788 // Make it so we can match LHS against the (icmp eq/ne X, 0) just for
789 // simplicity.
790 if (match(RHS->getOperand(1), m_Zero()))
791 std::swap(LHS, RHS);
792
793 Value *Pow2, *Op;
794 // Match the desired pattern:
795 // LHS: (icmp eq/ne X, 0)
796 // RHS: (icmp eq/ne X, Pow2OrZero)
797 // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but
798 // this form ends up slightly less canonical.
799 // We could potentially be more sophisticated than requiring LHS/RHS
800 // be one-use. We don't create additional instructions if only one
801 // of them is one-use. So cases where one is one-use and the other
802 // is two-use might be profitable.
803 if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) ||
804 !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) ||
805 match(Pow2, m_One()) ||
806 !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, Q.AC, Q.CxtI, Q.DT))
807 return nullptr;
808
809 Value *And = Builder.CreateAnd(Op, Pow2);
810 return Builder.CreateICmp(Pred, And, Op);
811}
812
813/// General pattern:
814/// X & Y
815///
816/// Where Y is checking that all the high bits (covered by a mask 4294967168)
817/// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
818/// Pattern can be one of:
819/// %t = add i32 %arg, 128
820/// %r = icmp ult i32 %t, 256
821/// Or
822/// %t0 = shl i32 %arg, 24
823/// %t1 = ashr i32 %t0, 24
824/// %r = icmp eq i32 %t1, %arg
825/// Or
826/// %t0 = trunc i32 %arg to i8
827/// %t1 = sext i8 %t0 to i32
828/// %r = icmp eq i32 %t1, %arg
829/// This pattern is a signed truncation check.
830///
831/// And X is checking that some bit in that same mask is zero.
832/// I.e. can be one of:
833/// %r = icmp sgt i32 %arg, -1
834/// Or
835/// %t = and i32 %arg, 2147483648
836/// %r = icmp eq i32 %t, 0
837///
838/// Since we are checking that all the bits in that mask are the same,
839/// and a particular bit is zero, what we are really checking is that all the
840/// masked bits are zero.
841/// So this should be transformed to:
842/// %r = icmp ult i32 %arg, 128
844 Instruction &CxtI,
845 InstCombiner::BuilderTy &Builder) {
846 assert(CxtI.getOpcode() == Instruction::And);
847
848 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
849 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
850 APInt &SignBitMask) -> bool {
851 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
853 m_Add(m_Value(X), m_Power2(I01)),
854 m_Power2(I1))) &&
855 I1->ugt(*I01) && I01->shl(1) == *I1))
856 return false;
857 // Which bit is the new sign bit as per the 'signed truncation' pattern?
858 SignBitMask = *I01;
859 return true;
860 };
861
862 // One icmp needs to be 'signed truncation check'.
863 // We need to match this first, else we will mismatch commutative cases.
864 Value *X1;
865 APInt HighestBit;
866 ICmpInst *OtherICmp;
867 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
868 OtherICmp = ICmp0;
869 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
870 OtherICmp = ICmp1;
871 else
872 return nullptr;
873
874 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
875
876 // Try to match/decompose into: icmp eq (X & Mask), 0
877 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
878 APInt &UnsetBitsMask) -> bool {
879 CmpPredicate Pred = ICmp->getPredicate();
880 // Can it be decomposed into icmp eq (X & Mask), 0 ?
882 ICmp->getOperand(0), ICmp->getOperand(1), Pred,
883 /*LookThroughTrunc=*/false, /*AllowNonZeroC=*/false,
884 /*DecomposeAnd=*/true);
885 if (Res && Res->Pred == ICmpInst::ICMP_EQ) {
886 X = Res->X;
887 UnsetBitsMask = Res->Mask;
888 return true;
889 }
890
891 return false;
892 };
893
894 // And the other icmp needs to be decomposable into a bit test.
895 Value *X0;
896 APInt UnsetBitsMask;
897 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
898 return nullptr;
899
900 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
901
902 // Are they working on the same value?
903 Value *X;
904 if (X1 == X0) {
905 // Ok as is.
906 X = X1;
907 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
908 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
909 X = X1;
910 } else
911 return nullptr;
912
913 // So which bits should be uniform as per the 'signed truncation check'?
914 // (all the bits starting with (i.e. including) HighestBit)
915 APInt SignBitsMask = ~(HighestBit - 1U);
916
917 // UnsetBitsMask must have some common bits with SignBitsMask,
918 if (!UnsetBitsMask.intersects(SignBitsMask))
919 return nullptr;
920
921 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
922 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
923 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
924 if (!OtherHighestBit.isPowerOf2())
925 return nullptr;
926 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
927 }
928 // Else, if it does not, then all is ok as-is.
929
930 // %r = icmp ult %X, SignBit
931 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
932 CxtI.getName() + ".simplified");
933}
934
935/// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
936/// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
937/// Also used for logical and/or, must be poison safe if range attributes are
938/// dropped.
939static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
941 InstCombinerImpl &IC) {
942 CmpPredicate Pred0, Pred1;
943 Value *X;
945 m_SpecificInt(1))) ||
946 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
947 return nullptr;
948
949 auto *CtPop = cast<Instruction>(Cmp0->getOperand(0));
950 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) {
951 // Drop range attributes and re-infer them in the next iteration.
952 CtPop->dropPoisonGeneratingAnnotations();
953 IC.addToWorklist(CtPop);
954 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
955 }
956 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) {
957 // Drop range attributes and re-infer them in the next iteration.
958 CtPop->dropPoisonGeneratingAnnotations();
959 IC.addToWorklist(CtPop);
960 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
961 }
962
963 return nullptr;
964}
965
966/// Reduce a pair of compares that check if a value has exactly 1 bit set.
967/// Also used for logical and/or, must be poison safe if range attributes are
968/// dropped.
969static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
971 InstCombinerImpl &IC) {
972 // Handle 'and' / 'or' commutation: make the equality check the first operand.
973 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
974 std::swap(Cmp0, Cmp1);
975 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
976 std::swap(Cmp0, Cmp1);
977
978 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
979 Value *X;
980 if (JoinedByAnd &&
984 m_SpecificInt(2)))) {
985 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
986 // Drop range attributes and re-infer them in the next iteration.
987 CtPop->dropPoisonGeneratingAnnotations();
988 IC.addToWorklist(CtPop);
989 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
990 }
991 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
992 if (!JoinedByAnd &&
996 m_SpecificInt(1)))) {
997 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
998 // Drop range attributes and re-infer them in the next iteration.
999 CtPop->dropPoisonGeneratingAnnotations();
1000 IC.addToWorklist(CtPop);
1001 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1002 }
1003 return nullptr;
1004}
1005
1006/// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
1007/// B is a contiguous set of ones starting from the most significant bit
1008/// (negative power of 2), D and E are equal, and D is a contiguous set of ones
1009/// starting at the most significant zero bit in B. Parameter B supports masking
1010/// using undef/poison in either scalar or vector values.
1012 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
1015 "Expected equality predicates for masked type of icmps.");
1016 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
1017 return nullptr;
1018
1019 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
1020 !match(E, m_ShiftedMask()))
1021 return nullptr;
1022
1023 // Test scalar arguments for conversion. B has been validated earlier to be a
1024 // negative power of two and thus is guaranteed to have one or more contiguous
1025 // ones starting from the MSB followed by zero or more contiguous zeros. D has
1026 // been validated earlier to be a shifted set of one or more contiguous ones.
1027 // In order to match, B leading ones and D leading zeros should be equal. The
1028 // predicate that B be a negative power of 2 prevents the condition of there
1029 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
1030 // D always be a shifted mask prevents the condition of D equaling 0. This
1031 // prevents matching the condition where B contains the maximum number of
1032 // leading one bits (-1) and D contains the maximum number of leading zero
1033 // bits (0).
1034 auto isReducible = [](const Value *B, const Value *D, const Value *E) {
1035 const APInt *BCst, *DCst, *ECst;
1036 return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) &&
1037 match(E, m_APInt(ECst)) && *DCst == *ECst &&
1038 (isa<PoisonValue>(B) ||
1039 (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
1040 };
1041
1042 // Test vector type arguments for conversion.
1043 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
1044 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
1045 const auto *BConst = dyn_cast<Constant>(B);
1046 const auto *DConst = dyn_cast<Constant>(D);
1047 const auto *EConst = dyn_cast<Constant>(E);
1048
1049 if (!BFVTy || !BConst || !DConst || !EConst)
1050 return nullptr;
1051
1052 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
1053 const auto *BElt = BConst->getAggregateElement(I);
1054 const auto *DElt = DConst->getAggregateElement(I);
1055 const auto *EElt = EConst->getAggregateElement(I);
1056
1057 if (!BElt || !DElt || !EElt)
1058 return nullptr;
1059 if (!isReducible(BElt, DElt, EElt))
1060 return nullptr;
1061 }
1062 } else {
1063 // Test scalar type arguments for conversion.
1064 if (!isReducible(B, D, E))
1065 return nullptr;
1066 }
1067 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
1068}
1069
1070/// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
1071/// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
1072/// M is a contiguous shifted mask starting at the right most significant zero
1073/// bit in P. SGT is supported as when P is the largest representable power of
1074/// 2, an earlier optimization converts the expression into (icmp X s> -1).
1075/// Parameter P supports masking using undef/poison in either scalar or vector
1076/// values.
1078 bool JoinedByAnd,
1079 InstCombiner::BuilderTy &Builder) {
1080 if (!JoinedByAnd)
1081 return nullptr;
1082 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
1083 ICmpInst::Predicate CmpPred0, CmpPred1;
1084 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
1085 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
1086 // SignMask) == 0).
1087 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1088 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
1089 if (!MaskPair)
1090 return nullptr;
1091
1092 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
1093 unsigned CmpMask0 = MaskPair->first;
1094 unsigned CmpMask1 = MaskPair->second;
1095 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1096 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
1097 CmpPred1, Builder))
1098 return V;
1099 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
1100 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
1101 CmpPred0, Builder))
1102 return V;
1103 }
1104 return nullptr;
1105}
1106
1107/// Commuted variants are assumed to be handled by calling this function again
1108/// with the parameters swapped.
1110 ICmpInst *UnsignedICmp, bool IsAnd,
1111 const SimplifyQuery &Q,
1112 InstCombiner::BuilderTy &Builder) {
1113 Value *ZeroCmpOp;
1114 CmpPredicate EqPred;
1115 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1116 !ICmpInst::isEquality(EqPred))
1117 return nullptr;
1118
1119 CmpPredicate UnsignedPred;
1120
1121 Value *A, *B;
1122 if (match(UnsignedICmp,
1123 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1124 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1125 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1126 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1127 if (!isKnownNonZero(NonZero, Q))
1128 std::swap(NonZero, Other);
1129 return isKnownNonZero(NonZero, Q);
1130 };
1131
1132 // Given ZeroCmpOp = (A + B)
1133 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1134 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1135 // with X being the value (A/B) that is known to be non-zero,
1136 // and Y being remaining value.
1137 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1138 IsAnd && GetKnownNonZeroAndOther(B, A))
1139 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1140 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1141 !IsAnd && GetKnownNonZeroAndOther(B, A))
1142 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1143 }
1144
1145 return nullptr;
1146}
1147
1148struct IntPart {
1150 unsigned StartBit;
1151 unsigned NumBits;
1152};
1153
1154/// Match an extraction of bits from an integer.
1155static std::optional<IntPart> matchIntPart(Value *V) {
1156 Value *X;
1157 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1158 return std::nullopt;
1159
1160 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1161 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1162 Value *Y;
1163 const APInt *Shift;
1164 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1165 // from Y, not any shifted-in zeroes.
1166 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1167 Shift->ule(NumOriginalBits - NumExtractedBits))
1168 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1169 return {{X, 0, NumExtractedBits}};
1170}
1171
1172/// Materialize an extraction of bits from an integer in IR.
1173static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1174 Value *V = P.From;
1175 if (P.StartBit)
1176 V = Builder.CreateLShr(V, P.StartBit);
1177 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1178 if (TruncTy != V->getType())
1179 V = Builder.CreateTrunc(V, TruncTy);
1180 return V;
1181}
1182
1183/// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1184/// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1185/// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1186Value *InstCombinerImpl::foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd) {
1187 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1188 return nullptr;
1189
1191 auto GetMatchPart = [&](Value *CmpV,
1192 unsigned OpNo) -> std::optional<IntPart> {
1193 assert(CmpV->getType()->isIntOrIntVectorTy(1) && "Must be bool");
1194
1195 Value *X, *Y;
1196 // icmp ne (and x, 1), (and y, 1) <=> trunc (xor x, y) to i1
1197 // icmp eq (and x, 1), (and y, 1) <=> not (trunc (xor x, y) to i1)
1198 if (Pred == CmpInst::ICMP_NE
1199 ? match(CmpV, m_Trunc(m_Xor(m_Value(X), m_Value(Y))))
1200 : match(CmpV, m_Not(m_Trunc(m_Xor(m_Value(X), m_Value(Y))))))
1201 return {{OpNo == 0 ? X : Y, 0, 1}};
1202
1203 auto *Cmp = dyn_cast<ICmpInst>(CmpV);
1204 if (!Cmp)
1205 return std::nullopt;
1206
1207 if (Pred == Cmp->getPredicate())
1208 return matchIntPart(Cmp->getOperand(OpNo));
1209
1210 const APInt *C;
1211 // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to:
1212 // (icmp ult (xor x, y), 1 << C) so also look for that.
1213 if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) {
1214 if (!match(Cmp->getOperand(1), m_Power2(C)) ||
1215 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1216 return std::nullopt;
1217 }
1218
1219 // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to:
1220 // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that.
1221 else if (Pred == CmpInst::ICMP_NE &&
1222 Cmp->getPredicate() == CmpInst::ICMP_UGT) {
1223 if (!match(Cmp->getOperand(1), m_LowBitMask(C)) ||
1224 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1225 return std::nullopt;
1226 } else {
1227 return std::nullopt;
1228 }
1229
1230 unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero();
1231 Instruction *I = cast<Instruction>(Cmp->getOperand(0));
1232 return {{I->getOperand(OpNo), From, C->getBitWidth() - From}};
1233 };
1234
1235 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1236 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1237 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1238 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1239 if (!L0 || !R0 || !L1 || !R1)
1240 return nullptr;
1241
1242 // Make sure the LHS/RHS compare a part of the same value, possibly after
1243 // an operand swap.
1244 if (L0->From != L1->From || R0->From != R1->From) {
1245 if (L0->From != R1->From || R0->From != L1->From)
1246 return nullptr;
1247 std::swap(L1, R1);
1248 }
1249
1250 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1251 // the low part and L1/R1 being the high part.
1252 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1253 R0->StartBit + R0->NumBits != R1->StartBit) {
1254 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1255 R1->StartBit + R1->NumBits != R0->StartBit)
1256 return nullptr;
1257 std::swap(L0, L1);
1258 std::swap(R0, R1);
1259 }
1260
1261 // We can simplify to a comparison of these larger parts of the integers.
1262 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1263 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1266 return Builder.CreateICmp(Pred, LValue, RValue);
1267}
1268
1269/// Reduce logic-of-compares with equality to a constant by substituting a
1270/// common operand with the constant. Callers are expected to call this with
1271/// Cmp0/Cmp1 switched to handle logic op commutativity.
1273 bool IsAnd, bool IsLogical,
1274 InstCombiner::BuilderTy &Builder,
1275 const SimplifyQuery &Q) {
1276 // Match an equality compare with a non-poison constant as Cmp0.
1277 // Also, give up if the compare can be constant-folded to avoid looping.
1278 CmpPredicate Pred0;
1279 Value *X;
1280 Constant *C;
1281 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1283 return nullptr;
1284 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1285 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1286 return nullptr;
1287
1288 // The other compare must include a common operand (X). Canonicalize the
1289 // common operand as operand 1 (Pred1 is swapped if the common operand was
1290 // operand 0).
1291 Value *Y;
1292 CmpPredicate Pred1;
1293 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X))))
1294 return nullptr;
1295
1296 // Replace variable with constant value equivalence to remove a variable use:
1297 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1298 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1299 // Can think of the 'or' substitution with the 'and' bool equivalent:
1300 // A || B --> A || (!A && B)
1301 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1302 if (!SubstituteCmp) {
1303 // If we need to create a new instruction, require that the old compare can
1304 // be removed.
1305 if (!Cmp1->hasOneUse())
1306 return nullptr;
1307 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1308 }
1309 if (IsLogical)
1310 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1311 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1312 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1313 SubstituteCmp);
1314}
1315
1316/// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1317/// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1318/// into a single comparison using range-based reasoning.
1319/// NOTE: This is also used for logical and/or, must be poison-safe!
1320Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1321 ICmpInst *ICmp2,
1322 bool IsAnd) {
1323 CmpPredicate Pred1, Pred2;
1324 Value *V1, *V2;
1325 const APInt *C1, *C2;
1326 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1327 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1328 return nullptr;
1329
1330 // Look through add of a constant offset on V1, V2, or both operands. This
1331 // allows us to interpret the V + C' < C'' range idiom into a proper range.
1332 const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1333 if (V1 != V2) {
1334 Value *X;
1335 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1336 V1 = X;
1337 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1338 V2 = X;
1339 }
1340
1341 // Look through and with a negative power of 2 mask on V1 or V2. This
1342 // detects idioms of the form `(x == A) || ((x & Mask) == A + 1)` where A + 1
1343 // is aligned to the mask and A + 1 >= |Mask|. This pattern corresponds to a
1344 // contiguous range check, which can be folded into an addition and compare.
1345 // The same applies for `(x != A) && ((x & Mask) != A + 1)`.
1346 auto AreContiguousRangePredicates = [](CmpPredicate Pred1, CmpPredicate Pred2,
1347 bool IsAnd) {
1348 if (IsAnd)
1349 return Pred1 == ICmpInst::ICMP_NE && Pred2 == ICmpInst::ICMP_NE;
1350 return Pred1 == ICmpInst::ICMP_EQ && Pred2 == ICmpInst::ICMP_EQ;
1351 };
1352 const APInt *Mask1 = nullptr, *Mask2 = nullptr;
1353 bool MatchedAnd1 = false, MatchedAnd2 = false;
1354 if (V1 != V2 && AreContiguousRangePredicates(Pred1, Pred2, IsAnd)) {
1355 Value *X;
1356 if (match(V1, m_OneUse(m_And(m_Value(X), m_NegatedPower2(Mask1)))) &&
1357 C1->getBitWidth() == C2->getBitWidth() && *C1 == *C2 + 1 &&
1358 C1->uge(Mask1->abs()) && C1->isPowerOf2()) {
1359 MatchedAnd1 = true;
1360 V1 = X;
1361 }
1362 if (match(V2, m_OneUse(m_And(m_Value(X), m_NegatedPower2(Mask2)))) &&
1363 C1->getBitWidth() == C2->getBitWidth() && *C2 == *C1 + 1 &&
1364 C2->uge(Mask2->abs()) && C2->isPowerOf2()) {
1365 MatchedAnd2 = true;
1366 V2 = X;
1367 }
1368 }
1369
1370 if (V1 != V2)
1371 return nullptr;
1372
1373 ConstantRange CR1 =
1374 MatchedAnd1
1375 ? ConstantRange(*C1, *C1 - *Mask1)
1376 : ConstantRange::makeExactICmpRegion(
1377 IsAnd ? ICmpInst::getInverseCmpPredicate(Pred1) : Pred1, *C1);
1378 if (Offset1)
1379 CR1 = CR1.subtract(*Offset1);
1380
1381 ConstantRange CR2 =
1382 MatchedAnd2
1383 ? ConstantRange(*C2, *C2 - *Mask2)
1385 IsAnd ? ICmpInst::getInverseCmpPredicate(Pred2) : Pred2, *C2);
1386 if (Offset2)
1387 CR2 = CR2.subtract(*Offset2);
1388
1389 Type *Ty = V1->getType();
1390 Value *NewV = V1;
1391 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1392 if (!CR) {
1393 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1394 CR2.isWrappedSet())
1395 return nullptr;
1396
1397 // Check whether we have equal-size ranges that only differ by one bit.
1398 // In that case we can apply a mask to map one range onto the other.
1399 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1400 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1401 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1402 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1403 CR1Size != CR2.getUpper() - CR2.getLower())
1404 return nullptr;
1405
1406 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1407 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1408 }
1409
1410 if (IsAnd)
1411 CR = CR->inverse();
1412
1413 CmpInst::Predicate NewPred;
1414 APInt NewC, Offset;
1415 CR->getEquivalentICmp(NewPred, NewC, Offset);
1416
1417 if (Offset != 0)
1418 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1419 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1420}
1421
1422/// Ignore all operations which only change the sign of a value, returning the
1423/// underlying magnitude value.
1425 match(Val, m_FNeg(m_Value(Val)));
1426 match(Val, m_FAbs(m_Value(Val)));
1427 match(Val, m_CopySign(m_Value(Val), m_Value()));
1428 return Val;
1429}
1430
1431/// Matches canonical form of isnan, fcmp ord x, 0
1435
1436/// Matches fcmp u__ x, +/-inf
1441
1442/// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1443///
1444/// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1446 FCmpInst *RHS) {
1447 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1448 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1449 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1450
1451 if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1452 !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1453 return nullptr;
1454
1455 return Builder.CreateFCmpFMF(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1,
1457}
1458
1459Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1460 bool IsAnd, bool IsLogicalSelect) {
1461 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1462 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1463 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1464
1465 if (LHS0 == RHS1 && RHS0 == LHS1) {
1466 // Swap RHS operands to match LHS.
1467 PredR = FCmpInst::getSwappedPredicate(PredR);
1468 std::swap(RHS0, RHS1);
1469 }
1470
1471 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1472 // Suppose the relation between x and y is R, where R is one of
1473 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1474 // testing the desired relations.
1475 //
1476 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1477 // bool(R & CC0) && bool(R & CC1)
1478 // = bool((R & CC0) & (R & CC1))
1479 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1480 //
1481 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1482 // bool(R & CC0) || bool(R & CC1)
1483 // = bool((R & CC0) | (R & CC1))
1484 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1485 if (LHS0 == RHS0 && LHS1 == RHS1) {
1486 unsigned FCmpCodeL = getFCmpCode(PredL);
1487 unsigned FCmpCodeR = getFCmpCode(PredR);
1488 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1489
1490 // Intersect the fast math flags.
1491 // TODO: We can union the fast math flags unless this is a logical select.
1492 return getFCmpValue(NewPred, LHS0, LHS1, Builder,
1494 }
1495
1496 // This transform is not valid for a logical select.
1497 if (!IsLogicalSelect &&
1498 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1499 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1500 !IsAnd))) {
1501 if (LHS0->getType() != RHS0->getType())
1502 return nullptr;
1503
1504 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1505 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1506 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) {
1507 // Ignore the constants because they are obviously not NANs:
1508 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1509 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1510 return Builder.CreateFCmpFMF(PredL, LHS0, RHS0,
1512 }
1513 }
1514
1515 // This transform is not valid for a logical select.
1516 if (!IsLogicalSelect && IsAnd &&
1517 stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1518 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1519 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1521 return Left;
1523 return Right;
1524 }
1525
1526 // Turn at least two fcmps with constants into llvm.is.fpclass.
1527 //
1528 // If we can represent a combined value test with one class call, we can
1529 // potentially eliminate 4-6 instructions. If we can represent a test with a
1530 // single fcmp with fneg and fabs, that's likely a better canonical form.
1531 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1532 auto [ClassValRHS, ClassMaskRHS] =
1533 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
1534 if (ClassValRHS) {
1535 auto [ClassValLHS, ClassMaskLHS] =
1536 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
1537 if (ClassValLHS == ClassValRHS) {
1538 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1539 : (ClassMaskLHS | ClassMaskRHS);
1540 return Builder.CreateIntrinsic(
1541 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1542 {ClassValLHS, Builder.getInt32(CombinedMask)});
1543 }
1544 }
1545 }
1546
1547 // Canonicalize the range check idiom:
1548 // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C)
1549 // --> fabs(x) olt/ole/ult/ule C
1550 // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C)
1551 // --> fabs(x) ogt/oge/ugt/uge C
1552 // TODO: Generalize to handle a negated variable operand?
1553 const APFloat *LHSC, *RHSC;
1554 if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() &&
1555 FCmpInst::getSwappedPredicate(PredL) == PredR &&
1556 match(LHS1, m_APFloatAllowPoison(LHSC)) &&
1557 match(RHS1, m_APFloatAllowPoison(RHSC)) &&
1558 LHSC->bitwiseIsEqual(neg(*RHSC))) {
1559 auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) {
1560 switch (Pred) {
1561 case FCmpInst::FCMP_OLT:
1562 case FCmpInst::FCMP_OLE:
1563 case FCmpInst::FCMP_ULT:
1564 case FCmpInst::FCMP_ULE:
1565 return true;
1566 default:
1567 return false;
1568 }
1569 };
1570 if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
1571 std::swap(LHSC, RHSC);
1572 std::swap(PredL, PredR);
1573 }
1574 if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
1575 FastMathFlags NewFlag = LHS->getFastMathFlags();
1576 if (!IsLogicalSelect)
1577 NewFlag |= RHS->getFastMathFlags();
1578
1579 Value *FAbs =
1580 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag);
1581 return Builder.CreateFCmpFMF(
1582 PredL, FAbs, ConstantFP::get(LHS0->getType(), *LHSC), NewFlag);
1583 }
1584 }
1585
1586 return nullptr;
1587}
1588
1589/// Match an fcmp against a special value that performs a test possible by
1590/// llvm.is.fpclass.
1591static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
1592 uint64_t &ClassMask) {
1593 auto *FCmp = dyn_cast<FCmpInst>(Op);
1594 if (!FCmp || !FCmp->hasOneUse())
1595 return false;
1596
1597 std::tie(ClassVal, ClassMask) =
1598 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1599 FCmp->getOperand(0), FCmp->getOperand(1));
1600 return ClassVal != nullptr;
1601}
1602
1603/// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1604/// -> is_fpclass x, (mask0 | mask1)
1605/// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1606/// -> is_fpclass x, (mask0 & mask1)
1607/// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1608/// -> is_fpclass x, (mask0 ^ mask1)
1609Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1610 Value *Op0, Value *Op1) {
1611 Value *ClassVal0 = nullptr;
1612 Value *ClassVal1 = nullptr;
1613 uint64_t ClassMask0, ClassMask1;
1614
1615 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
1616 // new class.
1617 //
1618 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
1619 // better.
1620
1621 bool IsLHSClass =
1623 m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
1624 bool IsRHSClass =
1626 m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
1627 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
1628 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
1629 ClassVal0 == ClassVal1) {
1630 unsigned NewClassMask;
1631 switch (BO.getOpcode()) {
1632 case Instruction::And:
1633 NewClassMask = ClassMask0 & ClassMask1;
1634 break;
1635 case Instruction::Or:
1636 NewClassMask = ClassMask0 | ClassMask1;
1637 break;
1638 case Instruction::Xor:
1639 NewClassMask = ClassMask0 ^ ClassMask1;
1640 break;
1641 default:
1642 llvm_unreachable("not a binary logic operator");
1643 }
1644
1645 if (IsLHSClass) {
1646 auto *II = cast<IntrinsicInst>(Op0);
1647 II->setArgOperand(
1648 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1649 return replaceInstUsesWith(BO, II);
1650 }
1651
1652 if (IsRHSClass) {
1653 auto *II = cast<IntrinsicInst>(Op1);
1654 II->setArgOperand(
1655 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1656 return replaceInstUsesWith(BO, II);
1657 }
1658
1659 CallInst *NewClass =
1660 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
1661 {ClassVal0, Builder.getInt32(NewClassMask)});
1662 return replaceInstUsesWith(BO, NewClass);
1663 }
1664
1665 return nullptr;
1666}
1667
1668/// Look for the pattern that conditionally negates a value via math operations:
1669/// cond.splat = sext i1 cond
1670/// sub = add cond.splat, x
1671/// xor = xor sub, cond.splat
1672/// and rewrite it to do the same, but via logical operations:
1673/// value.neg = sub 0, value
1674/// cond = select i1 neg, value.neg, value
1675Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1676 BinaryOperator &I) {
1677 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1678 Value *Cond, *X;
1679 // As per complexity ordering, `xor` is not commutative here.
1680 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1681 !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1682 !Cond->getType()->isIntOrIntVectorTy(1) ||
1683 !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X))))
1684 return nullptr;
1685 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1686 X);
1687}
1688
1689/// This a limited reassociation for a special case (see above) where we are
1690/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1691/// This could be handled more generally in '-reassociation', but it seems like
1692/// an unlikely pattern for a large number of logic ops and fcmps.
1694 InstCombiner::BuilderTy &Builder) {
1695 Instruction::BinaryOps Opcode = BO.getOpcode();
1696 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1697 "Expecting and/or op for fcmp transform");
1698
1699 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1700 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1701 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1702 if (match(Op1, m_FCmp(m_Value(), m_AnyZeroFP())))
1703 std::swap(Op0, Op1);
1704
1705 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1706 Value *BO10, *BO11;
1707 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1709 if (!match(Op0, m_SpecificFCmp(NanPred, m_Value(X), m_AnyZeroFP())) ||
1710 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1711 return nullptr;
1712
1713 // The inner logic op must have a matching fcmp operand.
1714 Value *Y;
1715 if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
1716 X->getType() != Y->getType())
1717 std::swap(BO10, BO11);
1718
1719 if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) ||
1720 X->getType() != Y->getType())
1721 return nullptr;
1722
1723 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1724 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1725 // Intersect FMF from the 2 source fcmps.
1726 Value *NewFCmp =
1727 Builder.CreateFCmpFMF(NanPred, X, Y, FMFSource::intersect(Op0, BO10));
1728 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1729}
1730
1731/// Match variations of De Morgan's Laws:
1732/// (~A & ~B) == (~(A | B))
1733/// (~A | ~B) == (~(A & B))
1735 InstCombiner &IC) {
1736 const Instruction::BinaryOps Opcode = I.getOpcode();
1737 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1738 "Trying to match De Morgan's Laws with something other than and/or");
1739
1740 // Flip the logic operation.
1741 const Instruction::BinaryOps FlippedOpcode =
1742 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1743
1744 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1745 Value *A, *B;
1746 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1747 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1748 !IC.isFreeToInvert(A, A->hasOneUse()) &&
1749 !IC.isFreeToInvert(B, B->hasOneUse())) {
1750 Value *AndOr =
1751 IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1752 return BinaryOperator::CreateNot(AndOr);
1753 }
1754
1755 // The 'not' ops may require reassociation.
1756 // (A & ~B) & ~C --> A & ~(B | C)
1757 // (~B & A) & ~C --> A & ~(B | C)
1758 // (A | ~B) | ~C --> A | ~(B & C)
1759 // (~B | A) | ~C --> A | ~(B & C)
1760 Value *C;
1761 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1762 match(Op1, m_Not(m_Value(C)))) {
1763 Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C);
1764 return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO));
1765 }
1766
1767 return nullptr;
1768}
1769
1770bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1771 Value *CastSrc = CI->getOperand(0);
1772
1773 // Noop casts and casts of constants should be eliminated trivially.
1774 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1775 return false;
1776
1777 // If this cast is paired with another cast that can be eliminated, we prefer
1778 // to have it eliminated.
1779 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1780 if (isEliminableCastPair(PrecedingCI, CI))
1781 return false;
1782
1783 return true;
1784}
1785
1786/// Fold {and,or,xor} (cast X), C.
1788 InstCombinerImpl &IC) {
1790 if (!C)
1791 return nullptr;
1792
1793 auto LogicOpc = Logic.getOpcode();
1794 Type *DestTy = Logic.getType();
1795 Type *SrcTy = Cast->getSrcTy();
1796
1797 // Move the logic operation ahead of a zext or sext if the constant is
1798 // unchanged in the smaller source type. Performing the logic in a smaller
1799 // type may provide more information to later folds, and the smaller logic
1800 // instruction may be cheaper (particularly in the case of vectors).
1801 Value *X;
1802 auto &DL = IC.getDataLayout();
1803 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1804 if (Constant *TruncC = getLosslessUnsignedTrunc(C, SrcTy, DL)) {
1805 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1806 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1807 return new ZExtInst(NewOp, DestTy);
1808 }
1809 }
1810
1811 if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) {
1812 if (Constant *TruncC = getLosslessSignedTrunc(C, SrcTy, DL)) {
1813 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1814 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1815 return new SExtInst(NewOp, DestTy);
1816 }
1817 }
1818
1819 return nullptr;
1820}
1821
1822/// Fold {and,or,xor} (cast X), Y.
1823Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1824 auto LogicOpc = I.getOpcode();
1825 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1826
1827 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1828
1829 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the
1830 // type of A)
1831 // -> bitwise(zext(A < 0), zext(icmp))
1832 // -> zext(bitwise(A < 0, icmp))
1833 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
1834 Value *Op1) -> Instruction * {
1835 Value *A;
1836 bool IsMatched =
1837 match(Op0,
1839 m_Value(A),
1840 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
1841 match(Op1, m_OneUse(m_ZExt(m_ICmp(m_Value(), m_Value()))));
1842
1843 if (!IsMatched)
1844 return nullptr;
1845
1846 auto *ICmpL =
1847 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
1848 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
1849 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1850
1851 return new ZExtInst(BitwiseOp, Op0->getType());
1852 };
1853
1854 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1855 return Ret;
1856
1857 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1858 return Ret;
1859
1860 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1861 if (!Cast0)
1862 return nullptr;
1863
1864 // This must be a cast from an integer or integer vector source type to allow
1865 // transformation of the logic operation to the source type.
1866 Type *DestTy = I.getType();
1867 Type *SrcTy = Cast0->getSrcTy();
1868 if (!SrcTy->isIntOrIntVectorTy())
1869 return nullptr;
1870
1871 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this))
1872 return Ret;
1873
1874 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1875 if (!Cast1)
1876 return nullptr;
1877
1878 // Both operands of the logic operation are casts. The casts must be the
1879 // same kind for reduction.
1880 Instruction::CastOps CastOpcode = Cast0->getOpcode();
1881 if (CastOpcode != Cast1->getOpcode())
1882 return nullptr;
1883
1884 // Can't fold it profitably if no one of casts has one use.
1885 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
1886 return nullptr;
1887
1888 Value *X, *Y;
1889 if (match(Cast0, m_ZExtOrSExt(m_Value(X))) &&
1890 match(Cast1, m_ZExtOrSExt(m_Value(Y)))) {
1891 // Cast the narrower source to the wider source type.
1892 unsigned XNumBits = X->getType()->getScalarSizeInBits();
1893 unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1894 if (XNumBits != YNumBits) {
1895 // Cast the narrower source to the wider source type only if both of casts
1896 // have one use to avoid creating an extra instruction.
1897 if (!Cast0->hasOneUse() || !Cast1->hasOneUse())
1898 return nullptr;
1899
1900 // If the source types do not match, but the casts are matching extends,
1901 // we can still narrow the logic op.
1902 if (XNumBits < YNumBits) {
1903 X = Builder.CreateCast(CastOpcode, X, Y->getType());
1904 } else if (YNumBits < XNumBits) {
1905 Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1906 }
1907 }
1908
1909 // Do the logic op in the intermediate width, then widen more.
1910 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y, I.getName());
1911 auto *Disjoint = dyn_cast<PossiblyDisjointInst>(&I);
1912 auto *NewDisjoint = dyn_cast<PossiblyDisjointInst>(NarrowLogic);
1913 if (Disjoint && NewDisjoint)
1914 NewDisjoint->setIsDisjoint(Disjoint->isDisjoint());
1915 return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1916 }
1917
1918 // If the src type of casts are different, give up for other cast opcodes.
1919 if (SrcTy != Cast1->getSrcTy())
1920 return nullptr;
1921
1922 Value *Cast0Src = Cast0->getOperand(0);
1923 Value *Cast1Src = Cast1->getOperand(0);
1924
1925 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1926 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1927 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1928 I.getName());
1929 return CastInst::Create(CastOpcode, NewOp, DestTy);
1930 }
1931
1932 return nullptr;
1933}
1934
1936 InstCombiner::BuilderTy &Builder) {
1937 assert(I.getOpcode() == Instruction::And);
1938 Value *Op0 = I.getOperand(0);
1939 Value *Op1 = I.getOperand(1);
1940 Value *A, *B;
1941
1942 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1943 // (A | B) & ~(A & B) --> A ^ B
1944 // (A | B) & ~(B & A) --> A ^ B
1945 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1947 return BinaryOperator::CreateXor(A, B);
1948
1949 // (A | ~B) & (~A | B) --> ~(A ^ B)
1950 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1951 // (~B | A) & (~A | B) --> ~(A ^ B)
1952 // (~B | A) & (B | ~A) --> ~(A ^ B)
1953 if (Op0->hasOneUse() || Op1->hasOneUse())
1956 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1957
1958 return nullptr;
1959}
1960
1962 InstCombiner::BuilderTy &Builder) {
1963 assert(I.getOpcode() == Instruction::Or);
1964 Value *Op0 = I.getOperand(0);
1965 Value *Op1 = I.getOperand(1);
1966 Value *A, *B;
1967
1968 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1969 // (A & B) | ~(A | B) --> ~(A ^ B)
1970 // (A & B) | ~(B | A) --> ~(A ^ B)
1971 if (Op0->hasOneUse() || Op1->hasOneUse())
1972 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1974 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1975
1976 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1977 // (A ^ B) | ~(A | B) --> ~(A & B)
1978 // (A ^ B) | ~(B | A) --> ~(A & B)
1979 if (Op0->hasOneUse() || Op1->hasOneUse())
1980 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1982 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1983
1984 // (A & ~B) | (~A & B) --> A ^ B
1985 // (A & ~B) | (B & ~A) --> A ^ B
1986 // (~B & A) | (~A & B) --> A ^ B
1987 // (~B & A) | (B & ~A) --> A ^ B
1988 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1990 return BinaryOperator::CreateXor(A, B);
1991
1992 return nullptr;
1993}
1994
1995/// Return true if a constant shift amount is always less than the specified
1996/// bit-width. If not, the shift could create poison in the narrower type.
1997static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1998 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1999 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
2000}
2001
2002/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
2003/// a common zext operand: and (binop (zext X), C), (zext X).
2004Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
2005 // This transform could also apply to {or, and, xor}, but there are better
2006 // folds for those cases, so we don't expect those patterns here. AShr is not
2007 // handled because it should always be transformed to LShr in this sequence.
2008 // The subtract transform is different because it has a constant on the left.
2009 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
2010 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
2011 Constant *C;
2012 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
2013 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
2014 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
2015 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
2016 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
2017 return nullptr;
2018
2019 Value *X;
2020 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
2021 return nullptr;
2022
2023 Type *Ty = And.getType();
2024 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
2025 return nullptr;
2026
2027 // If we're narrowing a shift, the shift amount must be safe (less than the
2028 // width) in the narrower type. If the shift amount is greater, instsimplify
2029 // usually handles that case, but we can't guarantee/assert it.
2031 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
2032 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
2033 return nullptr;
2034
2035 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
2036 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
2037 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
2038 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
2039 : Builder.CreateBinOp(Opc, X, NewC);
2040 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
2041}
2042
2043/// Try folding relatively complex patterns for both And and Or operations
2044/// with all And and Or swapped.
2046 InstCombiner::BuilderTy &Builder) {
2047 const Instruction::BinaryOps Opcode = I.getOpcode();
2048 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
2049
2050 // Flip the logic operation.
2051 const Instruction::BinaryOps FlippedOpcode =
2052 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
2053
2054 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2055 Value *A, *B, *C, *X, *Y, *Dummy;
2056
2057 // Match following expressions:
2058 // (~(A | B) & C)
2059 // (~(A & B) | C)
2060 // Captures X = ~(A | B) or ~(A & B)
2061 const auto matchNotOrAnd =
2062 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
2063 Value *&X, bool CountUses = false) -> bool {
2064 if (CountUses && !Op->hasOneUse())
2065 return false;
2066
2067 if (match(Op,
2068 m_c_BinOp(FlippedOpcode,
2069 m_Value(X, m_Not(m_c_BinOp(Opcode, m_A, m_B))), m_C)))
2070 return !CountUses || X->hasOneUse();
2071
2072 return false;
2073 };
2074
2075 // (~(A | B) & C) | ... --> ...
2076 // (~(A & B) | C) & ... --> ...
2077 // TODO: One use checks are conservative. We just need to check that a total
2078 // number of multiple used values does not exceed reduction
2079 // in operations.
2080 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
2081 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
2082 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
2083 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
2084 true)) {
2085 Value *Xor = Builder.CreateXor(B, C);
2086 return (Opcode == Instruction::Or)
2087 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
2088 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
2089 }
2090
2091 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
2092 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
2093 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
2094 true)) {
2095 Value *Xor = Builder.CreateXor(A, C);
2096 return (Opcode == Instruction::Or)
2097 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
2098 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
2099 }
2100
2101 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
2102 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
2103 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2104 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2105 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2106 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
2107
2108 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
2109 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
2110 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2111 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
2112 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2113 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
2114
2115 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
2116 // Note, the pattern with swapped and/or is not handled because the
2117 // result is more undefined than a source:
2118 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
2119 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
2120 match(Op1,
2122 Y, m_c_BinOp(Opcode, m_Specific(C),
2123 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
2124 // X = ~(A | B)
2125 // Y = (C | (A ^ B)
2126 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
2127 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
2128 }
2129 }
2130
2131 // (~A & B & C) | ... --> ...
2132 // (~A | B | C) | ... --> ...
2133 // TODO: One use checks are conservative. We just need to check that a total
2134 // number of multiple used values does not exceed reduction
2135 // in operations.
2136 if (match(Op0,
2137 m_OneUse(m_c_BinOp(FlippedOpcode,
2138 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
2139 m_Value(X, m_Not(m_Value(A)))))) ||
2140 match(Op0, m_OneUse(m_c_BinOp(FlippedOpcode,
2141 m_c_BinOp(FlippedOpcode, m_Value(C),
2142 m_Value(X, m_Not(m_Value(A)))),
2143 m_Value(B))))) {
2144 // X = ~A
2145 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
2146 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
2147 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
2148 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
2149 m_Specific(C))))) ||
2151 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
2152 m_Specific(A))))) ||
2154 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
2155 m_Specific(B)))))) {
2156 Value *Xor = Builder.CreateXor(B, C);
2157 return (Opcode == Instruction::Or)
2158 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
2159 : BinaryOperator::CreateOr(Xor, X);
2160 }
2161
2162 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
2163 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
2164 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2165 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
2167 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
2168 X);
2169
2170 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
2171 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
2172 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2173 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2175 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
2176 X);
2177 }
2178
2179 return nullptr;
2180}
2181
2182/// Try to reassociate a pair of binops so that values with one use only are
2183/// part of the same instruction. This may enable folds that are limited with
2184/// multi-use restrictions and makes it more likely to match other patterns that
2185/// are looking for a common operand.
2187 InstCombinerImpl::BuilderTy &Builder) {
2188 Instruction::BinaryOps Opcode = BO.getOpcode();
2189 Value *X, *Y, *Z;
2190 if (match(&BO,
2191 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
2192 m_OneUse(m_Value(Z))))) {
2193 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
2194 // (X op Y) op Z --> (Y op Z) op X
2195 if (!X->hasOneUse()) {
2196 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
2197 return BinaryOperator::Create(Opcode, YZ, X);
2198 }
2199 // (X op Y) op Z --> (X op Z) op Y
2200 if (!Y->hasOneUse()) {
2201 Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
2202 return BinaryOperator::Create(Opcode, XZ, Y);
2203 }
2204 }
2205 }
2206
2207 return nullptr;
2208}
2209
2210// Match
2211// (X + C2) | C
2212// (X + C2) ^ C
2213// (X + C2) & C
2214// and convert to do the bitwise logic first:
2215// (X | C) + C2
2216// (X ^ C) + C2
2217// (X & C) + C2
2218// iff bits affected by logic op are lower than last bit affected by math op
2220 InstCombiner::BuilderTy &Builder) {
2221 Type *Ty = I.getType();
2222 Instruction::BinaryOps OpC = I.getOpcode();
2223 Value *Op0 = I.getOperand(0);
2224 Value *Op1 = I.getOperand(1);
2225 Value *X;
2226 const APInt *C, *C2;
2227
2228 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
2229 match(Op1, m_APInt(C))))
2230 return nullptr;
2231
2232 unsigned Width = Ty->getScalarSizeInBits();
2233 unsigned LastOneMath = Width - C2->countr_zero();
2234
2235 switch (OpC) {
2236 case Instruction::And:
2237 if (C->countl_one() < LastOneMath)
2238 return nullptr;
2239 break;
2240 case Instruction::Xor:
2241 case Instruction::Or:
2242 if (C->countl_zero() < LastOneMath)
2243 return nullptr;
2244 break;
2245 default:
2246 llvm_unreachable("Unexpected BinaryOp!");
2247 }
2248
2249 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
2250 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
2251 ConstantInt::get(Ty, *C2), Op0);
2252}
2253
2254// binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
2255// shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
2256// where both shifts are the same and AddC is a valid shift amount.
2257Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
2258 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
2259 "Unexpected opcode");
2260
2261 Value *ShAmt;
2262 Constant *ShiftedC1, *ShiftedC2, *AddC;
2263 Type *Ty = I.getType();
2264 unsigned BitWidth = Ty->getScalarSizeInBits();
2265 if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
2266 m_Shift(m_ImmConstant(ShiftedC2),
2267 m_AddLike(m_Deferred(ShAmt),
2268 m_ImmConstant(AddC))))))
2269 return nullptr;
2270
2271 // Make sure the add constant is a valid shift amount.
2272 if (!match(AddC,
2274 return nullptr;
2275
2276 // Avoid constant expressions.
2277 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
2278 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
2279 if (!Op0Inst || !Op1Inst)
2280 return nullptr;
2281
2282 // Both shifts must be the same.
2283 Instruction::BinaryOps ShiftOp =
2284 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
2285 if (ShiftOp != Op1Inst->getOpcode())
2286 return nullptr;
2287
2288 // For adds, only left shifts are supported.
2289 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2290 return nullptr;
2291
2292 Value *NewC = Builder.CreateBinOp(
2293 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2294 return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
2295}
2296
2297// Fold and/or/xor with two equal intrinsic IDs:
2298// bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt))
2299// -> fshl(bitwise(A, C), bitwise(B, D), ShAmt)
2300// bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt))
2301// -> fshr(bitwise(A, C), bitwise(B, D), ShAmt)
2302// bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B))
2303// bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C)))
2304// bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B))
2305// bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C)))
2306static Instruction *
2308 InstCombiner::BuilderTy &Builder) {
2309 assert(I.isBitwiseLogicOp() && "Should and/or/xor");
2310 if (!I.getOperand(0)->hasOneUse())
2311 return nullptr;
2312 IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0));
2313 if (!X)
2314 return nullptr;
2315
2316 IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1));
2317 if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID()))
2318 return nullptr;
2319
2320 Intrinsic::ID IID = X->getIntrinsicID();
2321 const APInt *RHSC;
2322 // Try to match constant RHS.
2323 if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2324 !match(I.getOperand(1), m_APInt(RHSC))))
2325 return nullptr;
2326
2327 switch (IID) {
2328 case Intrinsic::fshl:
2329 case Intrinsic::fshr: {
2330 if (X->getOperand(2) != Y->getOperand(2))
2331 return nullptr;
2332 Value *NewOp0 =
2333 Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0));
2334 Value *NewOp1 =
2335 Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1));
2336 Function *F =
2337 Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
2338 return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)});
2339 }
2340 case Intrinsic::bswap:
2341 case Intrinsic::bitreverse: {
2342 Value *NewOp0 = Builder.CreateBinOp(
2343 I.getOpcode(), X->getOperand(0),
2344 Y ? Y->getOperand(0)
2345 : ConstantInt::get(I.getType(), IID == Intrinsic::bswap
2346 ? RHSC->byteSwap()
2347 : RHSC->reverseBits()));
2348 Function *F =
2349 Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType());
2350 return CallInst::Create(F, {NewOp0});
2351 }
2352 default:
2353 return nullptr;
2354 }
2355}
2356
2357// Try to simplify V by replacing occurrences of Op with RepOp, but only look
2358// through bitwise operations. In particular, for X | Y we try to replace Y with
2359// 0 inside X and for X & Y we try to replace Y with -1 inside X.
2360// Return the simplified result of X if successful, and nullptr otherwise.
2361// If SimplifyOnly is true, no new instructions will be created.
2363 bool SimplifyOnly,
2364 InstCombinerImpl &IC,
2365 unsigned Depth = 0) {
2366 if (Op == RepOp)
2367 return nullptr;
2368
2369 if (V == Op)
2370 return RepOp;
2371
2372 auto *I = dyn_cast<BinaryOperator>(V);
2373 if (!I || !I->isBitwiseLogicOp() || Depth >= 3)
2374 return nullptr;
2375
2376 if (!I->hasOneUse())
2377 SimplifyOnly = true;
2378
2379 Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp,
2380 SimplifyOnly, IC, Depth + 1);
2381 Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp,
2382 SimplifyOnly, IC, Depth + 1);
2383 if (!NewOp0 && !NewOp1)
2384 return nullptr;
2385
2386 if (!NewOp0)
2387 NewOp0 = I->getOperand(0);
2388 if (!NewOp1)
2389 NewOp1 = I->getOperand(1);
2390
2391 if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1,
2393 return Res;
2394
2395 if (SimplifyOnly)
2396 return nullptr;
2397 return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1);
2398}
2399
2400/// Reassociate and/or expressions to see if we can fold the inner and/or ops.
2401/// TODO: Make this recursive; it's a little tricky because an arbitrary
2402/// number of and/or instructions might have to be created.
2403Value *InstCombinerImpl::reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y,
2404 Instruction &I, bool IsAnd,
2405 bool RHSIsLogical) {
2406 Instruction::BinaryOps Opcode = IsAnd ? Instruction::And : Instruction::Or;
2407 // LHS bop (X lop Y) --> (LHS bop X) lop Y
2408 // LHS bop (X bop Y) --> (LHS bop X) bop Y
2409 if (Value *Res = foldBooleanAndOr(LHS, X, I, IsAnd, /*IsLogical=*/false))
2410 return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, Res, Y)
2411 : Builder.CreateBinOp(Opcode, Res, Y);
2412 // LHS bop (X bop Y) --> X bop (LHS bop Y)
2413 // LHS bop (X lop Y) --> X lop (LHS bop Y)
2414 if (Value *Res = foldBooleanAndOr(LHS, Y, I, IsAnd, /*IsLogical=*/false))
2415 return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, X, Res)
2416 : Builder.CreateBinOp(Opcode, X, Res);
2417 return nullptr;
2418}
2419
2420// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2421// here. We should standardize that construct where it is needed or choose some
2422// other way to ensure that commutated variants of patterns are not missed.
2424 Type *Ty = I.getType();
2425
2426 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
2427 SQ.getWithInstruction(&I)))
2428 return replaceInstUsesWith(I, V);
2429
2431 return &I;
2432
2434 return X;
2435
2437 return Phi;
2438
2439 // See if we can simplify any instructions used by the instruction whose sole
2440 // purpose is to compute bits we don't care about.
2442 return &I;
2443
2444 // Do this before using distributive laws to catch simple and/or/not patterns.
2446 return Xor;
2447
2449 return X;
2450
2451 // (A|B)&(A|C) -> A|(B&C) etc
2453 return replaceInstUsesWith(I, V);
2454
2456 return R;
2457
2458 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2459
2460 Value *X, *Y;
2461 const APInt *C;
2462 if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) ||
2463 (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) &&
2464 match(Op1, m_One())) {
2465 // (1 >> X) & 1 --> zext(X == 0)
2466 // (C << X) & 1 --> zext(X == 0), when C is odd
2467 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
2468 return new ZExtInst(IsZero, Ty);
2469 }
2470
2471 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
2472 Value *Neg;
2473 if (match(&I,
2475 m_Value(Y)))) {
2476 Value *Cmp = Builder.CreateIsNull(Neg);
2478 }
2479
2480 // Canonicalize:
2481 // (X +/- Y) & Y --> ~X & Y when Y is a power of 2.
2484 m_Sub(m_Value(X), m_Deferred(Y)))))) &&
2485 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, &I))
2486 return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y);
2487
2488 if (match(Op1, m_APInt(C))) {
2489 const APInt *XorC;
2490 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
2491 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2492 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
2493 Value *And = Builder.CreateAnd(X, Op1);
2494 And->takeName(Op0);
2495 return BinaryOperator::CreateXor(And, NewC);
2496 }
2497
2498 const APInt *OrC;
2499 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2500 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2501 // NOTE: This reduces the number of bits set in the & mask, which
2502 // can expose opportunities for store narrowing for scalars.
2503 // NOTE: SimplifyDemandedBits should have already removed bits from C1
2504 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2505 // above, but this feels safer.
2506 APInt Together = *C & *OrC;
2507 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2508 And->takeName(Op0);
2509 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2510 }
2511
2512 unsigned Width = Ty->getScalarSizeInBits();
2513 const APInt *ShiftC;
2514 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2515 ShiftC->ult(Width)) {
2516 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2517 // We are clearing high bits that were potentially set by sext+ashr:
2518 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2519 Value *Sext = Builder.CreateSExt(X, Ty);
2520 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2521 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2522 }
2523 }
2524
2525 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2526 // and (ashr X, ShiftC), C --> lshr X, ShiftC
2527 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2528 C->isMask(Width - ShiftC->getZExtValue()))
2529 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2530
2531 const APInt *AddC;
2532 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2533 // If we are masking the result of the add down to exactly one bit and
2534 // the constant we are adding has no bits set below that bit, then the
2535 // add is flipping a single bit. Example:
2536 // (X + 4) & 4 --> (X & 4) ^ 4
2537 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2538 assert((*C & *AddC) != 0 && "Expected common bit");
2539 Value *NewAnd = Builder.CreateAnd(X, Op1);
2540 return BinaryOperator::CreateXor(NewAnd, Op1);
2541 }
2542 }
2543
2544 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2545 // bitwidth of X and OP behaves well when given trunc(C1) and X.
2546 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2547 switch (B->getOpcode()) {
2548 case Instruction::Xor:
2549 case Instruction::Or:
2550 case Instruction::Mul:
2551 case Instruction::Add:
2552 case Instruction::Sub:
2553 return true;
2554 default:
2555 return false;
2556 }
2557 };
2558 BinaryOperator *BO;
2559 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2560 Instruction::BinaryOps BOpcode = BO->getOpcode();
2561 Value *X;
2562 const APInt *C1;
2563 // TODO: The one-use restrictions could be relaxed a little if the AND
2564 // is going to be removed.
2565 // Try to narrow the 'and' and a binop with constant operand:
2566 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2567 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2568 C->isIntN(X->getType()->getScalarSizeInBits())) {
2569 unsigned XWidth = X->getType()->getScalarSizeInBits();
2570 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2571 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2572 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2573 : Builder.CreateBinOp(BOpcode, TruncC1, X);
2574 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2575 Value *And = Builder.CreateAnd(BinOp, TruncC);
2576 return new ZExtInst(And, Ty);
2577 }
2578
2579 // Similar to above: if the mask matches the zext input width, then the
2580 // 'and' can be eliminated, so we can truncate the other variable op:
2581 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2582 if (isa<Instruction>(BO->getOperand(0)) &&
2583 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2584 C->isMask(X->getType()->getScalarSizeInBits())) {
2585 Y = BO->getOperand(1);
2586 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2587 Value *NewBO =
2588 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2589 return new ZExtInst(NewBO, Ty);
2590 }
2591 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2592 if (isa<Instruction>(BO->getOperand(1)) &&
2593 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2594 C->isMask(X->getType()->getScalarSizeInBits())) {
2595 Y = BO->getOperand(0);
2596 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2597 Value *NewBO =
2598 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2599 return new ZExtInst(NewBO, Ty);
2600 }
2601 }
2602
2603 // This is intentionally placed after the narrowing transforms for
2604 // efficiency (transform directly to the narrow logic op if possible).
2605 // If the mask is only needed on one incoming arm, push the 'and' op up.
2606 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2607 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2608 APInt NotAndMask(~(*C));
2609 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2610 if (MaskedValueIsZero(X, NotAndMask, &I)) {
2611 // Not masking anything out for the LHS, move mask to RHS.
2612 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2613 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2614 return BinaryOperator::Create(BinOp, X, NewRHS);
2615 }
2616 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, &I)) {
2617 // Not masking anything out for the RHS, move mask to LHS.
2618 // and ({x}or X, Y), C --> {x}or (and X, C), Y
2619 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2620 return BinaryOperator::Create(BinOp, NewLHS, Y);
2621 }
2622 }
2623
2624 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2625 // constant, test if the shift amount equals the offset bit index:
2626 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2627 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2628 if (C->isPowerOf2() &&
2629 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2630 int Log2ShiftC = ShiftC->exactLogBase2();
2631 int Log2C = C->exactLogBase2();
2632 bool IsShiftLeft =
2633 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2634 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2635 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2636 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2637 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2639 }
2640
2641 Constant *C1, *C2;
2642 const APInt *C3 = C;
2643 Value *X;
2644 if (C3->isPowerOf2()) {
2645 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
2647 m_ImmConstant(C2)))) &&
2648 match(C1, m_Power2())) {
2650 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2651 KnownBits KnownLShrc = computeKnownBits(LshrC, nullptr);
2652 if (KnownLShrc.getMaxValue().ult(Width)) {
2653 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2654 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2655 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2656 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2657 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2659 }
2660 }
2661
2663 m_ImmConstant(C2)))) &&
2664 match(C1, m_Power2())) {
2666 Constant *Cmp =
2668 if (Cmp && Cmp->isZeroValue()) {
2669 // iff C1,C3 is pow2 and Log2(C3) >= C2:
2670 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2671 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2672 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2673 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2674 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2676 }
2677 }
2678 }
2679 }
2680
2681 // If we are clearing the sign bit of a floating-point value, convert this to
2682 // fabs, then cast back to integer.
2683 //
2684 // This is a generous interpretation for noimplicitfloat, this is not a true
2685 // floating-point operation.
2686 //
2687 // Assumes any IEEE-represented type has the sign bit in the high bit.
2688 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
2689 Value *CastOp;
2690 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
2691 match(Op1, m_MaxSignedValue()) &&
2692 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2693 Attribute::NoImplicitFloat)) {
2694 Type *EltTy = CastOp->getType()->getScalarType();
2695 if (EltTy->isFloatingPointTy() &&
2697 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2698 return new BitCastInst(FAbs, I.getType());
2699 }
2700 }
2701
2702 // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask)
2703 // where Y is a valid shift amount.
2705 m_SignMask())) &&
2708 APInt(Ty->getScalarSizeInBits(),
2709 Ty->getScalarSizeInBits() -
2710 X->getType()->getScalarSizeInBits())))) {
2711 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2712 return BinaryOperator::CreateAnd(SExt, Op1);
2713 }
2714
2715 if (Instruction *Z = narrowMaskedBinOp(I))
2716 return Z;
2717
2718 if (I.getType()->isIntOrIntVectorTy(1)) {
2719 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2720 if (auto *R =
2721 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2722 return R;
2723 }
2724 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2725 if (auto *R =
2726 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2727 return R;
2728 }
2729 }
2730
2731 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2732 return FoldedLogic;
2733
2734 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
2735 return DeMorgan;
2736
2737 {
2738 Value *A, *B, *C;
2739 // A & ~(A ^ B) --> A & B
2740 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2741 return BinaryOperator::CreateAnd(Op0, B);
2742 // ~(A ^ B) & A --> A & B
2743 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2744 return BinaryOperator::CreateAnd(Op1, B);
2745
2746 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2747 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2748 match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) {
2749 Value *NotC = Op1->hasOneUse()
2750 ? Builder.CreateNot(C)
2751 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2752 if (NotC != nullptr)
2753 return BinaryOperator::CreateAnd(Op0, NotC);
2754 }
2755
2756 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2757 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) &&
2758 match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) {
2759 Value *NotC = Op0->hasOneUse()
2760 ? Builder.CreateNot(C)
2761 : getFreelyInverted(C, C->hasOneUse(), &Builder);
2762 if (NotC != nullptr)
2763 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2764 }
2765
2766 // (A | B) & (~A ^ B) -> A & B
2767 // (A | B) & (B ^ ~A) -> A & B
2768 // (B | A) & (~A ^ B) -> A & B
2769 // (B | A) & (B ^ ~A) -> A & B
2770 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2771 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2772 return BinaryOperator::CreateAnd(A, B);
2773
2774 // (~A ^ B) & (A | B) -> A & B
2775 // (~A ^ B) & (B | A) -> A & B
2776 // (B ^ ~A) & (A | B) -> A & B
2777 // (B ^ ~A) & (B | A) -> A & B
2778 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2779 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2780 return BinaryOperator::CreateAnd(A, B);
2781
2782 // (~A | B) & (A ^ B) -> ~A & B
2783 // (~A | B) & (B ^ A) -> ~A & B
2784 // (B | ~A) & (A ^ B) -> ~A & B
2785 // (B | ~A) & (B ^ A) -> ~A & B
2786 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2788 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2789
2790 // (A ^ B) & (~A | B) -> ~A & B
2791 // (B ^ A) & (~A | B) -> ~A & B
2792 // (A ^ B) & (B | ~A) -> ~A & B
2793 // (B ^ A) & (B | ~A) -> ~A & B
2794 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2796 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2797 }
2798
2799 if (Value *Res =
2800 foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/true, /*IsLogical=*/false))
2801 return replaceInstUsesWith(I, Res);
2802
2803 if (match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2804 bool IsLogical = isa<SelectInst>(Op1);
2805 if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/true,
2806 /*RHSIsLogical=*/IsLogical))
2807 return replaceInstUsesWith(I, V);
2808 }
2809 if (match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2810 bool IsLogical = isa<SelectInst>(Op0);
2811 if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/true,
2812 /*RHSIsLogical=*/IsLogical))
2813 return replaceInstUsesWith(I, V);
2814 }
2815
2816 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2817 return FoldedFCmps;
2818
2819 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2820 return CastedAnd;
2821
2822 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2823 return Sel;
2824
2825 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2826 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2827 // with binop identity constant. But creating a select with non-constant
2828 // arm may not be reversible due to poison semantics. Is that a good
2829 // canonicalization?
2830 Value *A, *B;
2831 if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) &&
2832 A->getType()->isIntOrIntVectorTy(1))
2834
2835 // Similarly, a 'not' of the bool translates to a swap of the select arms:
2836 // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
2837 if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
2838 A->getType()->isIntOrIntVectorTy(1))
2840
2841 // and(zext(A), B) -> A ? (B & 1) : 0
2842 if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) &&
2843 A->getType()->isIntOrIntVectorTy(1))
2844 return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)),
2846
2847 // (-1 + A) & B --> A ? 0 : B where A is 0/1.
2849 m_Value(B)))) {
2850 if (A->getType()->isIntOrIntVectorTy(1))
2852 if (computeKnownBits(A, &I).countMaxActiveBits() <= 1) {
2853 return SelectInst::Create(
2854 Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B,
2856 }
2857 }
2858
2859 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2862 m_Value(Y))) &&
2863 *C == X->getType()->getScalarSizeInBits() - 1) {
2864 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2866 }
2867 // If there's a 'not' of the shifted value, swap the select operands:
2868 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2871 m_Value(Y))) &&
2872 *C == X->getType()->getScalarSizeInBits() - 1) {
2873 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2875 }
2876
2877 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2879 return &I;
2880
2881 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2882 PHINode *PN = nullptr;
2883 Value *Start = nullptr, *Step = nullptr;
2884 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2885 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2886
2888 return R;
2889
2890 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2891 return Canonicalized;
2892
2893 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2894 return Folded;
2895
2896 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
2897 return Res;
2898
2900 return Res;
2901
2902 if (Value *V =
2904 /*SimplifyOnly*/ false, *this))
2905 return BinaryOperator::CreateAnd(V, Op1);
2906 if (Value *V =
2908 /*SimplifyOnly*/ false, *this))
2909 return BinaryOperator::CreateAnd(Op0, V);
2910
2911 return nullptr;
2912}
2913
2915 bool MatchBSwaps,
2916 bool MatchBitReversals) {
2918 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2919 Insts))
2920 return nullptr;
2921 Instruction *LastInst = Insts.pop_back_val();
2922 LastInst->removeFromParent();
2923
2924 for (auto *Inst : Insts) {
2925 Inst->setDebugLoc(I.getDebugLoc());
2926 Worklist.push(Inst);
2927 }
2928 return LastInst;
2929}
2930
2931std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
2933 // TODO: Can we reduce the code duplication between this and the related
2934 // rotate matching code under visitSelect and visitTrunc?
2935 assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction");
2936
2937 unsigned Width = Or.getType()->getScalarSizeInBits();
2938
2939 Instruction *Or0, *Or1;
2940 if (!match(Or.getOperand(0), m_Instruction(Or0)) ||
2941 !match(Or.getOperand(1), m_Instruction(Or1)))
2942 return std::nullopt;
2943
2944 bool IsFshl = true; // Sub on LSHR.
2945 SmallVector<Value *, 3> FShiftArgs;
2946
2947 // First, find an or'd pair of opposite shifts:
2948 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2949 if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) {
2950 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2951 if (!match(Or0,
2952 m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2953 !match(Or1,
2954 m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2955 Or0->getOpcode() == Or1->getOpcode())
2956 return std::nullopt;
2957
2958 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2959 if (Or0->getOpcode() == BinaryOperator::LShr) {
2960 std::swap(Or0, Or1);
2961 std::swap(ShVal0, ShVal1);
2962 std::swap(ShAmt0, ShAmt1);
2963 }
2964 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2965 Or1->getOpcode() == BinaryOperator::LShr &&
2966 "Illegal or(shift,shift) pair");
2967
2968 // Match the shift amount operands for a funnel shift pattern. This always
2969 // matches a subtraction on the R operand.
2970 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2971 // Check for constant shift amounts that sum to the bitwidth.
2972 const APInt *LI, *RI;
2973 if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI)))
2974 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2975 return ConstantInt::get(L->getType(), *LI);
2976
2977 Constant *LC, *RC;
2978 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2979 match(L,
2980 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2981 match(R,
2982 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2984 return ConstantExpr::mergeUndefsWith(LC, RC);
2985
2986 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2987 // We limit this to X < Width in case the backend re-expands the
2988 // intrinsic, and has to reintroduce a shift modulo operation (InstCombine
2989 // might remove it after this fold). This still doesn't guarantee that the
2990 // final codegen will match this original pattern.
2991 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2992 KnownBits KnownL = computeKnownBits(L, &Or);
2993 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2994 }
2995
2996 // For non-constant cases, the following patterns currently only work for
2997 // rotation patterns.
2998 // TODO: Add general funnel-shift compatible patterns.
2999 if (ShVal0 != ShVal1)
3000 return nullptr;
3001
3002 // For non-constant cases we don't support non-pow2 shift masks.
3003 // TODO: Is it worth matching urem as well?
3004 if (!isPowerOf2_32(Width))
3005 return nullptr;
3006
3007 // The shift amount may be masked with negation:
3008 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
3009 Value *X;
3010 unsigned Mask = Width - 1;
3011 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
3012 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
3013 return X;
3014
3015 // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1)))
3016 if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask))))
3017 return L;
3018
3019 // Similar to above, but the shift amount may be extended after masking,
3020 // so return the extended value as the parameter for the intrinsic.
3021 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
3022 match(R,
3024 m_SpecificInt(Mask))))
3025 return L;
3026
3027 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
3029 return L;
3030
3031 return nullptr;
3032 };
3033
3034 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
3035 if (!ShAmt) {
3036 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
3037 IsFshl = false; // Sub on SHL.
3038 }
3039 if (!ShAmt)
3040 return std::nullopt;
3041
3042 FShiftArgs = {ShVal0, ShVal1, ShAmt};
3043 } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
3044 // If there are two 'or' instructions concat variables in opposite order:
3045 //
3046 // Slot1 and Slot2 are all zero bits.
3047 // | Slot1 | Low | Slot2 | High |
3048 // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
3049 // | Slot2 | High | Slot1 | Low |
3050 // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
3051 //
3052 // the latter 'or' can be safely convert to
3053 // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
3054 // if ZextLowShlAmt + ZextHighShlAmt == Width.
3055 if (!isa<ZExtInst>(Or1))
3056 std::swap(Or0, Or1);
3057
3058 Value *High, *ZextHigh, *Low;
3059 const APInt *ZextHighShlAmt;
3060 if (!match(Or0,
3061 m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
3062 return std::nullopt;
3063
3064 if (!match(Or1, m_ZExt(m_Value(Low))) ||
3065 !match(ZextHigh, m_ZExt(m_Value(High))))
3066 return std::nullopt;
3067
3068 unsigned HighSize = High->getType()->getScalarSizeInBits();
3069 unsigned LowSize = Low->getType()->getScalarSizeInBits();
3070 // Make sure High does not overlap with Low and most significant bits of
3071 // High aren't shifted out.
3072 if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
3073 return std::nullopt;
3074
3075 for (User *U : ZextHigh->users()) {
3076 Value *X, *Y;
3077 if (!match(U, m_Or(m_Value(X), m_Value(Y))))
3078 continue;
3079
3080 if (!isa<ZExtInst>(Y))
3081 std::swap(X, Y);
3082
3083 const APInt *ZextLowShlAmt;
3084 if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
3085 !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
3086 continue;
3087
3088 // HighLow is good concat. If sum of two shifts amount equals to Width,
3089 // LowHigh must also be a good concat.
3090 if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
3091 continue;
3092
3093 // Low must not overlap with High and most significant bits of Low must
3094 // not be shifted out.
3095 assert(ZextLowShlAmt->uge(HighSize) &&
3096 ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
3097
3098 FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
3099 break;
3100 }
3101 }
3102
3103 if (FShiftArgs.empty())
3104 return std::nullopt;
3105
3106 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
3107 return std::make_pair(IID, FShiftArgs);
3108}
3109
3110/// Match UB-safe variants of the funnel shift intrinsic.
3112 if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) {
3113 auto [IID, FShiftArgs] = *Opt;
3114 Function *F =
3115 Intrinsic::getOrInsertDeclaration(Or.getModule(), IID, Or.getType());
3116 return CallInst::Create(F, FShiftArgs);
3117 }
3118
3119 return nullptr;
3120}
3121
3122/// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
3124 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
3125 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
3126 Type *Ty = Or.getType();
3127
3128 unsigned Width = Ty->getScalarSizeInBits();
3129 if ((Width & 1) != 0)
3130 return nullptr;
3131 unsigned HalfWidth = Width / 2;
3132
3133 // Canonicalize zext (lower half) to LHS.
3134 if (!isa<ZExtInst>(Op0))
3135 std::swap(Op0, Op1);
3136
3137 // Find lower/upper half.
3138 Value *LowerSrc, *ShlVal, *UpperSrc;
3139 const APInt *C;
3140 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
3141 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
3142 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
3143 return nullptr;
3144 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
3145 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
3146 return nullptr;
3147
3148 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
3149 Value *NewLower = Builder.CreateZExt(Lo, Ty);
3150 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
3151 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
3152 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
3153 return Builder.CreateIntrinsic(id, Ty, BinOp);
3154 };
3155
3156 // BSWAP: Push the concat down, swapping the lower/upper sources.
3157 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
3158 Value *LowerBSwap, *UpperBSwap;
3159 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
3160 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
3161 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
3162
3163 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
3164 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
3165 Value *LowerBRev, *UpperBRev;
3166 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
3167 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
3168 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
3169
3170 // iX ext split: extending or(zext(x),shl(zext(y),bw/2) pattern
3171 // to consume sext/ashr:
3172 // or(zext(sext(x)),shl(zext(sext(ashr(x,xbw-1))),bw/2)
3173 // or(zext(x),shl(zext(ashr(x,xbw-1)),bw/2)
3174 Value *X;
3175 if (match(LowerSrc, m_SExtOrSelf(m_Value(X))) &&
3176 match(UpperSrc,
3178 m_Specific(X),
3179 m_SpecificInt(X->getType()->getScalarSizeInBits() - 1)))))
3180 return Builder.CreateSExt(X, Ty);
3181
3182 return nullptr;
3183}
3184
3185/// If all elements of two constant vectors are 0/-1 and inverses, return true.
3187 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
3188 for (unsigned i = 0; i != NumElts; ++i) {
3189 Constant *EltC1 = C1->getAggregateElement(i);
3190 Constant *EltC2 = C2->getAggregateElement(i);
3191 if (!EltC1 || !EltC2)
3192 return false;
3193
3194 // One element must be all ones, and the other must be all zeros.
3195 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
3196 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
3197 return false;
3198 }
3199 return true;
3200}
3201
3202/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
3203/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
3204/// B, it can be used as the condition operand of a select instruction.
3205/// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
3206Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
3207 bool ABIsTheSame) {
3208 // We may have peeked through bitcasts in the caller.
3209 // Exit immediately if we don't have (vector) integer types.
3210 Type *Ty = A->getType();
3211 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
3212 return nullptr;
3213
3214 // If A is the 'not' operand of B and has enough signbits, we have our answer.
3215 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
3216 // If these are scalars or vectors of i1, A can be used directly.
3217 if (Ty->isIntOrIntVectorTy(1))
3218 return A;
3219
3220 // If we look through a vector bitcast, the caller will bitcast the operands
3221 // to match the condition's number of bits (N x i1).
3222 // To make this poison-safe, disallow bitcast from wide element to narrow
3223 // element. That could allow poison in lanes where it was not present in the
3224 // original code.
3226 if (A->getType()->isIntOrIntVectorTy()) {
3227 unsigned NumSignBits = ComputeNumSignBits(A);
3228 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
3229 NumSignBits <= Ty->getScalarSizeInBits())
3230 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
3231 }
3232 return nullptr;
3233 }
3234
3235 // TODO: add support for sext and constant case
3236 if (ABIsTheSame)
3237 return nullptr;
3238
3239 // If both operands are constants, see if the constants are inverse bitmasks.
3240 Constant *AConst, *BConst;
3241 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
3242 if (AConst == ConstantExpr::getNot(BConst) &&
3244 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
3245
3246 // Look for more complex patterns. The 'not' op may be hidden behind various
3247 // casts. Look through sexts and bitcasts to find the booleans.
3248 Value *Cond;
3249 Value *NotB;
3250 if (match(A, m_SExt(m_Value(Cond))) &&
3251 Cond->getType()->isIntOrIntVectorTy(1)) {
3252 // A = sext i1 Cond; B = sext (not (i1 Cond))
3253 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
3254 return Cond;
3255
3256 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
3257 // TODO: The one-use checks are unnecessary or misplaced. If the caller
3258 // checked for uses on logic ops/casts, that should be enough to
3259 // make this transform worthwhile.
3260 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
3261 NotB = peekThroughBitcast(NotB, true);
3262 if (match(NotB, m_SExt(m_Specific(Cond))))
3263 return Cond;
3264 }
3265 }
3266
3267 // All scalar (and most vector) possibilities should be handled now.
3268 // Try more matches that only apply to non-splat constant vectors.
3269 if (!Ty->isVectorTy())
3270 return nullptr;
3271
3272 // If both operands are xor'd with constants using the same sexted boolean
3273 // operand, see if the constants are inverse bitmasks.
3274 // TODO: Use ConstantExpr::getNot()?
3275 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
3276 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
3277 Cond->getType()->isIntOrIntVectorTy(1) &&
3278 areInverseVectorBitmasks(AConst, BConst)) {
3280 return Builder.CreateXor(Cond, AConst);
3281 }
3282 return nullptr;
3283}
3284
3285/// We have an expression of the form (A & B) | (C & D). Try to simplify this
3286/// to "A' ? B : D", where A' is a boolean or vector of booleans.
3287/// When InvertFalseVal is set to true, we try to match the pattern
3288/// where we have peeked through a 'not' op and A and C are the same:
3289/// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D
3290Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C,
3291 Value *D, bool InvertFalseVal) {
3292 // The potential condition of the select may be bitcasted. In that case, look
3293 // through its bitcast and the corresponding bitcast of the 'not' condition.
3294 Type *OrigType = A->getType();
3295 A = peekThroughBitcast(A, true);
3296 C = peekThroughBitcast(C, true);
3297 if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) {
3298 // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D))
3299 // If this is a vector, we may need to cast to match the condition's length.
3300 // The bitcasts will either all exist or all not exist. The builder will
3301 // not create unnecessary casts if the types already match.
3302 Type *SelTy = A->getType();
3303 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
3304 // For a fixed or scalable vector get N from <{vscale x} N x iM>
3305 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3306 // For a fixed or scalable vector, get the size in bits of N x iM; for a
3307 // scalar this is just M.
3308 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
3309 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
3310 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
3311 }
3312 Value *BitcastB = Builder.CreateBitCast(B, SelTy);
3313 if (InvertFalseVal)
3314 D = Builder.CreateNot(D);
3315 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
3316 Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD);
3317 return Builder.CreateBitCast(Select, OrigType);
3318 }
3319
3320 return nullptr;
3321}
3322
3323// (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
3324// (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
3326 bool IsAnd, bool IsLogical,
3327 IRBuilderBase &Builder) {
3328 Value *LHS0 = LHS->getOperand(0);
3329 Value *RHS0 = RHS->getOperand(0);
3330 Value *RHS1 = RHS->getOperand(1);
3331
3332 ICmpInst::Predicate LPred =
3333 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
3334 ICmpInst::Predicate RPred =
3335 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
3336
3337 const APInt *CInt;
3338 if (LPred != ICmpInst::ICMP_EQ ||
3339 !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) ||
3340 !LHS0->getType()->isIntOrIntVectorTy() ||
3341 !(LHS->hasOneUse() || RHS->hasOneUse()))
3342 return nullptr;
3343
3344 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
3345 return match(RHSOp,
3346 m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) ||
3347 (CInt->isZero() && RHSOp == LHS0);
3348 };
3349
3350 Value *Other;
3351 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
3352 Other = RHS0;
3353 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
3354 Other = RHS1;
3355 else
3356 return nullptr;
3357
3358 if (IsLogical)
3359 Other = Builder.CreateFreeze(Other);
3360
3361 return Builder.CreateICmp(
3363 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
3364 Other);
3365}
3366
3367/// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
3368/// If IsLogical is true, then the and/or is in select form and the transform
3369/// must be poison-safe.
3370Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3371 Instruction &I, bool IsAnd,
3372 bool IsLogical) {
3373 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3374
3375 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3376 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
3377 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
3378
3379 const APInt *LHSC = nullptr, *RHSC = nullptr;
3380 match(LHS1, m_APInt(LHSC));
3381 match(RHS1, m_APInt(RHSC));
3382
3383 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3384 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3385 if (predicatesFoldable(PredL, PredR)) {
3386 if (LHS0 == RHS1 && LHS1 == RHS0) {
3387 PredL = ICmpInst::getSwappedPredicate(PredL);
3388 std::swap(LHS0, LHS1);
3389 }
3390 if (LHS0 == RHS0 && LHS1 == RHS1) {
3391 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
3392 : getICmpCode(PredL) | getICmpCode(PredR);
3393 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3394 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3395 }
3396 }
3397
3398 if (Value *V =
3399 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
3400 return V;
3401 // We can treat logical like bitwise here, because both operands are used on
3402 // the LHS, and as such poison from both will propagate.
3404 /*IsLogical*/ false, Builder))
3405 return V;
3406
3407 if (Value *V =
3408 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
3409 return V;
3410 // We can convert this case to bitwise and, because both operands are used
3411 // on the LHS, and as such poison from both will propagate.
3412 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
3413 /*IsLogical=*/false, Builder, Q)) {
3414 // If RHS is still used, we should drop samesign flag.
3415 if (IsLogical && RHS->hasSameSign() && !RHS->use_empty()) {
3416 RHS->setSameSign(false);
3418 }
3419 return V;
3420 }
3421
3422 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder, *this))
3423 return V;
3424 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder, *this))
3425 return V;
3426
3427 // TODO: One of these directions is fine with logical and/or, the other could
3428 // be supported by inserting freeze.
3429 if (!IsLogical) {
3430 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
3431 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
3432 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
3433 return V;
3434
3435 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
3436 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
3437 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
3438 return V;
3439 }
3440
3441 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
3442 if (IsAnd && !IsLogical)
3444 return V;
3445
3446 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this))
3447 return V;
3448
3449 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
3450 return V;
3451
3452 // TODO: Verify whether this is safe for logical and/or.
3453 if (!IsLogical) {
3454 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
3455 return X;
3456 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
3457 return X;
3458 }
3459
3460 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
3461 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
3462 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
3463 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3464 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
3465 LHS0->getType() == RHS0->getType() &&
3466 (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
3467 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
3468 return Builder.CreateICmp(PredL, NewOr,
3470 }
3471
3472 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
3473 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
3474 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3475 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
3476 LHS0->getType() == RHS0->getType() &&
3477 (!IsLogical || isGuaranteedNotToBePoison(RHS0))) {
3478 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
3479 return Builder.CreateICmp(PredL, NewAnd,
3481 }
3482
3483 if (!IsLogical)
3484 if (Value *V =
3486 return V;
3487
3488 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
3489 if (!LHSC || !RHSC)
3490 return nullptr;
3491
3492 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
3493 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
3494 // where CMAX is the all ones value for the truncated type,
3495 // iff the lower bits of C2 and CA are zero.
3496 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3497 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
3498 Value *V;
3499 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
3500
3501 // (trunc x) == C1 & (and x, CA) == C2
3502 // (and x, CA) == C2 & (trunc x) == C1
3503 if (match(RHS0, m_Trunc(m_Value(V))) &&
3504 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3505 SmallC = RHSC;
3506 BigC = LHSC;
3507 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
3508 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3509 SmallC = LHSC;
3510 BigC = RHSC;
3511 }
3512
3513 if (SmallC && BigC) {
3514 unsigned BigBitSize = BigC->getBitWidth();
3515 unsigned SmallBitSize = SmallC->getBitWidth();
3516
3517 // Check that the low bits are zero.
3518 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
3519 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
3520 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
3521 APInt N = SmallC->zext(BigBitSize) | *BigC;
3522 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
3523 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3524 }
3525 }
3526 }
3527
3528 // Match naive pattern (and its inverted form) for checking if two values
3529 // share same sign. An example of the pattern:
3530 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
3531 // Inverted form (example):
3532 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
3533 bool TrueIfSignedL, TrueIfSignedR;
3534 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
3535 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
3536 (RHS->hasOneUse() || LHS->hasOneUse())) {
3537 Value *X, *Y;
3538 if (IsAnd) {
3539 if ((TrueIfSignedL && !TrueIfSignedR &&
3540 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3541 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
3542 (!TrueIfSignedL && TrueIfSignedR &&
3543 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3544 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
3545 Value *NewXor = Builder.CreateXor(X, Y);
3546 return Builder.CreateIsNeg(NewXor);
3547 }
3548 } else {
3549 if ((TrueIfSignedL && !TrueIfSignedR &&
3550 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3551 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
3552 (!TrueIfSignedL && TrueIfSignedR &&
3553 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3554 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
3555 Value *NewXor = Builder.CreateXor(X, Y);
3556 return Builder.CreateIsNotNeg(NewXor);
3557 }
3558 }
3559 }
3560
3561 // (X & ExpMask) != 0 && (X & ExpMask) != ExpMask -> isnormal(X)
3562 // (X & ExpMask) == 0 || (X & ExpMask) == ExpMask -> !isnormal(X)
3563 Value *X;
3564 const APInt *MaskC;
3565 if (LHS0 == RHS0 && PredL == PredR &&
3566 PredL == (IsAnd ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ) &&
3567 !I.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
3568 LHS->hasOneUse() && RHS->hasOneUse() &&
3569 match(LHS0, m_And(m_ElementWiseBitCast(m_Value(X)), m_APInt(MaskC))) &&
3570 X->getType()->getScalarType()->isIEEELikeFPTy() &&
3571 APFloat(X->getType()->getScalarType()->getFltSemantics(), *MaskC)
3572 .isPosInfinity() &&
3573 ((LHSC->isZero() && *RHSC == *MaskC) ||
3574 (RHSC->isZero() && *LHSC == *MaskC)))
3575 return Builder.createIsFPClass(X, IsAnd ? FPClassTest::fcNormal
3577
3578 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
3579}
3580
3581/// If IsLogical is true, then the and/or is in select form and the transform
3582/// must be poison-safe.
3583Value *InstCombinerImpl::foldBooleanAndOr(Value *LHS, Value *RHS,
3584 Instruction &I, bool IsAnd,
3585 bool IsLogical) {
3586 if (!LHS->getType()->isIntOrIntVectorTy(1))
3587 return nullptr;
3588
3589 // handle (roughly):
3590 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
3591 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
3592 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder,
3593 SQ.getWithInstruction(&I)))
3594 return V;
3595
3596 if (auto *LHSCmp = dyn_cast<ICmpInst>(LHS))
3597 if (auto *RHSCmp = dyn_cast<ICmpInst>(RHS))
3598 if (Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp, I, IsAnd, IsLogical))
3599 return Res;
3600
3601 if (auto *LHSCmp = dyn_cast<FCmpInst>(LHS))
3602 if (auto *RHSCmp = dyn_cast<FCmpInst>(RHS))
3603 if (Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical))
3604 return Res;
3605
3606 if (Value *Res = foldEqOfParts(LHS, RHS, IsAnd))
3607 return Res;
3608
3609 return nullptr;
3610}
3611
3613 InstCombiner::BuilderTy &Builder) {
3614 assert(I.getOpcode() == Instruction::Or &&
3615 "Simplification only supports or at the moment.");
3616
3617 Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
3618 if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) ||
3619 !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4))))
3620 return nullptr;
3621
3622 // Check if any two pairs of the and operations are inversions of each other.
3623 if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4))
3624 return Builder.CreateXor(Cmp1, Cmp4);
3625 if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3))
3626 return Builder.CreateXor(Cmp1, Cmp3);
3627
3628 return nullptr;
3629}
3630
3631/// Match \p V as "shufflevector -> bitcast" or "extractelement -> zext -> shl"
3632/// patterns, which extract vector elements and pack them in the same relative
3633/// positions.
3634///
3635/// \p Vec is the underlying vector being extracted from.
3636/// \p Mask is a bitmask identifying which packed elements are obtained from the
3637/// vector.
3638/// \p VecOffset is the vector element corresponding to index 0 of the
3639/// mask.
3641 int64_t &VecOffset,
3642 SmallBitVector &Mask,
3643 const DataLayout &DL) {
3644 // First try to match extractelement -> zext -> shl
3645 uint64_t VecIdx, ShlAmt;
3647 m_ConstantInt(VecIdx))),
3648 ShlAmt))) {
3649 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3650 if (!VecTy)
3651 return false;
3652 auto *EltTy = dyn_cast<IntegerType>(VecTy->getElementType());
3653 if (!EltTy)
3654 return false;
3655
3656 const unsigned EltBitWidth = EltTy->getBitWidth();
3657 const unsigned TargetBitWidth = V->getType()->getIntegerBitWidth();
3658 if (TargetBitWidth % EltBitWidth != 0 || ShlAmt % EltBitWidth != 0)
3659 return false;
3660 const unsigned TargetEltWidth = TargetBitWidth / EltBitWidth;
3661 const unsigned ShlEltAmt = ShlAmt / EltBitWidth;
3662
3663 const unsigned MaskIdx =
3664 DL.isLittleEndian() ? ShlEltAmt : TargetEltWidth - ShlEltAmt - 1;
3665
3666 VecOffset = static_cast<int64_t>(VecIdx) - static_cast<int64_t>(MaskIdx);
3667 Mask.resize(TargetEltWidth);
3668 Mask.set(MaskIdx);
3669 return true;
3670 }
3671
3672 // Now try to match a bitcasted subvector.
3673 Instruction *SrcVecI;
3674 if (!match(V, m_BitCast(m_Instruction(SrcVecI))))
3675 return false;
3676
3677 auto *SrcTy = dyn_cast<FixedVectorType>(SrcVecI->getType());
3678 if (!SrcTy)
3679 return false;
3680
3681 Mask.resize(SrcTy->getNumElements());
3682
3683 // First check for a subvector obtained from a shufflevector.
3684 if (isa<ShuffleVectorInst>(SrcVecI)) {
3685 Constant *ConstVec;
3686 ArrayRef<int> ShuffleMask;
3687 if (!match(SrcVecI, m_Shuffle(m_Value(Vec), m_Constant(ConstVec),
3688 m_Mask(ShuffleMask))))
3689 return false;
3690
3691 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3692 if (!VecTy)
3693 return false;
3694
3695 const unsigned NumVecElts = VecTy->getNumElements();
3696 bool FoundVecOffset = false;
3697 for (unsigned Idx = 0; Idx < ShuffleMask.size(); ++Idx) {
3698 if (ShuffleMask[Idx] == PoisonMaskElem)
3699 return false;
3700 const unsigned ShuffleIdx = ShuffleMask[Idx];
3701 if (ShuffleIdx >= NumVecElts) {
3702 const unsigned ConstIdx = ShuffleIdx - NumVecElts;
3703 auto *ConstElt =
3704 dyn_cast<ConstantInt>(ConstVec->getAggregateElement(ConstIdx));
3705 if (!ConstElt || !ConstElt->isNullValue())
3706 return false;
3707 continue;
3708 }
3709
3710 if (FoundVecOffset) {
3711 if (VecOffset + Idx != ShuffleIdx)
3712 return false;
3713 } else {
3714 if (ShuffleIdx < Idx)
3715 return false;
3716 VecOffset = ShuffleIdx - Idx;
3717 FoundVecOffset = true;
3718 }
3719 Mask.set(Idx);
3720 }
3721 return FoundVecOffset;
3722 }
3723
3724 // Check for a subvector obtained as an (insertelement V, 0, idx)
3725 uint64_t InsertIdx;
3726 if (!match(SrcVecI,
3727 m_InsertElt(m_Value(Vec), m_Zero(), m_ConstantInt(InsertIdx))))
3728 return false;
3729
3730 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3731 if (!VecTy)
3732 return false;
3733 VecOffset = 0;
3734 bool AlreadyInsertedMaskedElt = Mask.test(InsertIdx);
3735 Mask.set();
3736 if (!AlreadyInsertedMaskedElt)
3737 Mask.reset(InsertIdx);
3738 return true;
3739}
3740
3741/// Try to fold the join of two scalar integers whose contents are packed
3742/// elements of the same vector.
3744 InstCombiner::BuilderTy &Builder,
3745 const DataLayout &DL) {
3746 assert(I.getOpcode() == Instruction::Or);
3747 Value *LhsVec, *RhsVec;
3748 int64_t LhsVecOffset, RhsVecOffset;
3749 SmallBitVector Mask;
3750 if (!matchSubIntegerPackFromVector(I.getOperand(0), LhsVec, LhsVecOffset,
3751 Mask, DL))
3752 return nullptr;
3753 if (!matchSubIntegerPackFromVector(I.getOperand(1), RhsVec, RhsVecOffset,
3754 Mask, DL))
3755 return nullptr;
3756 if (LhsVec != RhsVec || LhsVecOffset != RhsVecOffset)
3757 return nullptr;
3758
3759 // Convert into shufflevector -> bitcast;
3760 const unsigned ZeroVecIdx =
3761 cast<FixedVectorType>(LhsVec->getType())->getNumElements();
3762 SmallVector<int> ShuffleMask(Mask.size(), ZeroVecIdx);
3763 for (unsigned Idx : Mask.set_bits()) {
3764 assert(LhsVecOffset + Idx >= 0);
3765 ShuffleMask[Idx] = LhsVecOffset + Idx;
3766 }
3767
3768 Value *MaskedVec = Builder.CreateShuffleVector(
3769 LhsVec, Constant::getNullValue(LhsVec->getType()), ShuffleMask,
3770 I.getName() + ".v");
3771 return CastInst::Create(Instruction::BitCast, MaskedVec, I.getType());
3772}
3773
3774/// Match \p V as "lshr -> mask -> zext -> shl".
3775///
3776/// \p Int is the underlying integer being extracted from.
3777/// \p Mask is a bitmask identifying which bits of the integer are being
3778/// extracted. \p Offset identifies which bit of the result \p V corresponds to
3779/// the least significant bit of \p Int
3780static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask,
3781 uint64_t &Offset, bool &IsShlNUW,
3782 bool &IsShlNSW) {
3783 Value *ShlOp0;
3784 uint64_t ShlAmt = 0;
3785 if (!match(V, m_OneUse(m_Shl(m_Value(ShlOp0), m_ConstantInt(ShlAmt)))))
3786 return false;
3787
3788 IsShlNUW = cast<BinaryOperator>(V)->hasNoUnsignedWrap();
3789 IsShlNSW = cast<BinaryOperator>(V)->hasNoSignedWrap();
3790
3791 Value *ZExtOp0;
3792 if (!match(ShlOp0, m_OneUse(m_ZExt(m_Value(ZExtOp0)))))
3793 return false;
3794
3795 Value *MaskedOp0;
3796 const APInt *ShiftedMaskConst = nullptr;
3797 if (!match(ZExtOp0, m_CombineOr(m_OneUse(m_And(m_Value(MaskedOp0),
3798 m_APInt(ShiftedMaskConst))),
3799 m_Value(MaskedOp0))))
3800 return false;
3801
3802 uint64_t LShrAmt = 0;
3803 if (!match(MaskedOp0,
3805 m_Value(Int))))
3806 return false;
3807
3808 if (LShrAmt > ShlAmt)
3809 return false;
3810 Offset = ShlAmt - LShrAmt;
3811
3812 Mask = ShiftedMaskConst ? ShiftedMaskConst->shl(LShrAmt)
3814 Int->getType()->getScalarSizeInBits(), LShrAmt);
3815
3816 return true;
3817}
3818
3819/// Try to fold the join of two scalar integers whose bits are unpacked and
3820/// zexted from the same source integer.
3822 InstCombiner::BuilderTy &Builder) {
3823
3824 Value *LhsInt, *RhsInt;
3825 APInt LhsMask, RhsMask;
3826 uint64_t LhsOffset, RhsOffset;
3827 bool IsLhsShlNUW, IsLhsShlNSW, IsRhsShlNUW, IsRhsShlNSW;
3828 if (!matchZExtedSubInteger(Lhs, LhsInt, LhsMask, LhsOffset, IsLhsShlNUW,
3829 IsLhsShlNSW))
3830 return nullptr;
3831 if (!matchZExtedSubInteger(Rhs, RhsInt, RhsMask, RhsOffset, IsRhsShlNUW,
3832 IsRhsShlNSW))
3833 return nullptr;
3834 if (LhsInt != RhsInt || LhsOffset != RhsOffset)
3835 return nullptr;
3836
3837 APInt Mask = LhsMask | RhsMask;
3838
3839 Type *DestTy = Lhs->getType();
3840 Value *Res = Builder.CreateShl(
3841 Builder.CreateZExt(
3842 Builder.CreateAnd(LhsInt, Mask, LhsInt->getName() + ".mask"), DestTy,
3843 LhsInt->getName() + ".zext"),
3844 ConstantInt::get(DestTy, LhsOffset), "", IsLhsShlNUW && IsRhsShlNUW,
3845 IsLhsShlNSW && IsRhsShlNSW);
3846 Res->takeName(Lhs);
3847 return Res;
3848}
3849
3850// A decomposition of ((X & Mask) * Factor). The NUW / NSW bools
3851// track these properities for preservation. Note that we can decompose
3852// equivalent select form of this expression (e.g. (!(X & Mask) ? 0 : Mask *
3853// Factor))
3858 bool NUW;
3859 bool NSW;
3860
3862 return X == Other.X && !Mask.intersects(Other.Mask) &&
3863 Factor == Other.Factor;
3864 }
3865};
3866
3867static std::optional<DecomposedBitMaskMul> matchBitmaskMul(Value *V) {
3869 if (!Op)
3870 return std::nullopt;
3871
3872 // Decompose (A & N) * C) into BitMaskMul
3873 Value *Original = nullptr;
3874 const APInt *Mask = nullptr;
3875 const APInt *MulConst = nullptr;
3876 if (match(Op, m_Mul(m_And(m_Value(Original), m_APInt(Mask)),
3877 m_APInt(MulConst)))) {
3878 if (MulConst->isZero() || Mask->isZero())
3879 return std::nullopt;
3880
3881 return std::optional<DecomposedBitMaskMul>(
3882 {Original, *MulConst, *Mask,
3883 cast<BinaryOperator>(Op)->hasNoUnsignedWrap(),
3884 cast<BinaryOperator>(Op)->hasNoSignedWrap()});
3885 }
3886
3887 Value *Cond = nullptr;
3888 const APInt *EqZero = nullptr, *NeZero = nullptr;
3889
3890 // Decompose ((A & N) ? 0 : N * C) into BitMaskMul
3891 if (match(Op, m_Select(m_Value(Cond), m_APInt(EqZero), m_APInt(NeZero)))) {
3892 auto ICmpDecompose =
3893 decomposeBitTest(Cond, /*LookThruTrunc=*/true,
3894 /*AllowNonZeroC=*/false, /*DecomposeBitMask=*/true);
3895 if (!ICmpDecompose.has_value())
3896 return std::nullopt;
3897
3898 assert(ICmpInst::isEquality(ICmpDecompose->Pred) &&
3899 ICmpDecompose->C.isZero());
3900
3901 if (ICmpDecompose->Pred == ICmpInst::ICMP_NE)
3902 std::swap(EqZero, NeZero);
3903
3904 if (!EqZero->isZero() || NeZero->isZero())
3905 return std::nullopt;
3906
3907 if (!ICmpDecompose->Mask.isPowerOf2() || ICmpDecompose->Mask.isZero() ||
3908 NeZero->getBitWidth() != ICmpDecompose->Mask.getBitWidth())
3909 return std::nullopt;
3910
3911 if (!NeZero->urem(ICmpDecompose->Mask).isZero())
3912 return std::nullopt;
3913
3914 return std::optional<DecomposedBitMaskMul>(
3915 {ICmpDecompose->X, NeZero->udiv(ICmpDecompose->Mask),
3916 ICmpDecompose->Mask, /*NUW=*/false, /*NSW=*/false});
3917 }
3918
3919 return std::nullopt;
3920}
3921
3922/// (A & N) * C + (A & M) * C -> (A & (N + M)) & C
3923/// This also accepts the equivalent select form of (A & N) * C
3924/// expressions i.e. !(A & N) ? 0 : N * C)
3925static Value *foldBitmaskMul(Value *Op0, Value *Op1,
3926 InstCombiner::BuilderTy &Builder) {
3927 auto Decomp1 = matchBitmaskMul(Op1);
3928 if (!Decomp1)
3929 return nullptr;
3930
3931 auto Decomp0 = matchBitmaskMul(Op0);
3932 if (!Decomp0)
3933 return nullptr;
3934
3935 if (Decomp0->isCombineableWith(*Decomp1)) {
3936 Value *NewAnd = Builder.CreateAnd(
3937 Decomp0->X,
3938 ConstantInt::get(Decomp0->X->getType(), Decomp0->Mask + Decomp1->Mask));
3939
3940 return Builder.CreateMul(
3941 NewAnd, ConstantInt::get(NewAnd->getType(), Decomp1->Factor), "",
3942 Decomp0->NUW && Decomp1->NUW, Decomp0->NSW && Decomp1->NSW);
3943 }
3944
3945 return nullptr;
3946}
3947
3948Value *InstCombinerImpl::foldDisjointOr(Value *LHS, Value *RHS) {
3949 if (Value *Res = foldBitmaskMul(LHS, RHS, Builder))
3950 return Res;
3952 return Res;
3953
3954 return nullptr;
3955}
3956
3957Value *InstCombinerImpl::reassociateDisjointOr(Value *LHS, Value *RHS) {
3958
3959 Value *X, *Y;
3961 if (Value *Res = foldDisjointOr(LHS, X))
3962 return Builder.CreateOr(Res, Y, "", /*IsDisjoint=*/true);
3963 if (Value *Res = foldDisjointOr(LHS, Y))
3964 return Builder.CreateOr(Res, X, "", /*IsDisjoint=*/true);
3965 }
3966
3968 if (Value *Res = foldDisjointOr(X, RHS))
3969 return Builder.CreateOr(Res, Y, "", /*IsDisjoint=*/true);
3970 if (Value *Res = foldDisjointOr(Y, RHS))
3971 return Builder.CreateOr(Res, X, "", /*IsDisjoint=*/true);
3972 }
3973
3974 return nullptr;
3975}
3976
3977/// Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2))
3978/// --> (ugt x (c2/c1)). This code checks whether a multiplication of two
3979/// unsigned numbers (one is a constant) is mathematically greater than a
3980/// second constant.
3982 InstCombiner::BuilderTy &Builder,
3983 const DataLayout &DL) {
3984 Value *WOV, *X;
3985 const APInt *C1, *C2;
3986 if (match(&I,
3989 m_Value(X), m_APInt(C1)))),
3992 m_APInt(C2))))) &&
3993 !C1->isZero()) {
3994 Constant *NewC = ConstantInt::get(X->getType(), C2->udiv(*C1));
3995 return Builder.CreateICmp(ICmpInst::ICMP_UGT, X, NewC);
3996 }
3997 return nullptr;
3998}
3999
4000// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4001// here. We should standardize that construct where it is needed or choose some
4002// other way to ensure that commutated variants of patterns are not missed.
4004 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
4005 SQ.getWithInstruction(&I)))
4006 return replaceInstUsesWith(I, V);
4007
4009 return &I;
4010
4012 return X;
4013
4015 return Phi;
4016
4017 // See if we can simplify any instructions used by the instruction whose sole
4018 // purpose is to compute bits we don't care about.
4020 return &I;
4021
4022 // Do this before using distributive laws to catch simple and/or/not patterns.
4024 return Xor;
4025
4027 return X;
4028
4030 return X;
4031
4032 // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D
4033 // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C
4034 if (Value *V = foldOrOfInversions(I, Builder))
4035 return replaceInstUsesWith(I, V);
4036
4037 // (A&B)|(A&C) -> A&(B|C) etc
4039 return replaceInstUsesWith(I, V);
4040
4041 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4042 Type *Ty = I.getType();
4043 if (Ty->isIntOrIntVectorTy(1)) {
4044 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
4045 if (auto *R =
4046 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
4047 return R;
4048 }
4049 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
4050 if (auto *R =
4051 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
4052 return R;
4053 }
4054 }
4055
4056 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4057 return FoldedLogic;
4058
4059 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
4060 /*MatchBitReversals*/ true))
4061 return BitOp;
4062
4063 if (Instruction *Funnel = matchFunnelShift(I, *this))
4064 return Funnel;
4065
4067 return replaceInstUsesWith(I, Concat);
4068
4070 return R;
4071
4073 return R;
4074
4075 if (cast<PossiblyDisjointInst>(I).isDisjoint()) {
4076 if (Instruction *R =
4077 foldAddLikeCommutative(I.getOperand(0), I.getOperand(1),
4078 /*NSW=*/true, /*NUW=*/true))
4079 return R;
4080 if (Instruction *R =
4081 foldAddLikeCommutative(I.getOperand(1), I.getOperand(0),
4082 /*NSW=*/true, /*NUW=*/true))
4083 return R;
4084
4085 if (Value *Res = foldDisjointOr(I.getOperand(0), I.getOperand(1)))
4086 return replaceInstUsesWith(I, Res);
4087
4088 if (Value *Res = reassociateDisjointOr(I.getOperand(0), I.getOperand(1)))
4089 return replaceInstUsesWith(I, Res);
4090 }
4091
4092 Value *X, *Y;
4093 const APInt *CV;
4094 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
4095 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, &I)) {
4096 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
4097 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
4098 Value *Or = Builder.CreateOr(X, Y);
4099 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
4100 }
4101
4102 // If the operands have no common bits set:
4103 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
4105 m_Deferred(X)))) {
4106 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
4107 return BinaryOperator::CreateMul(X, IncrementY);
4108 }
4109
4110 // (A & C) | (B & D)
4111 Value *A, *B, *C, *D;
4112 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4113 match(Op1, m_And(m_Value(B), m_Value(D)))) {
4114
4115 // (A & C0) | (B & C1)
4116 const APInt *C0, *C1;
4117 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
4118 Value *X;
4119 if (*C0 == ~*C1) {
4120 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
4121 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
4122 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
4123 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
4124 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
4125 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
4126
4127 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
4128 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
4129 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
4130 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
4131 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
4132 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
4133 }
4134
4135 if ((*C0 & *C1).isZero()) {
4136 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
4137 // iff (C0 & C1) == 0 and (X & ~C0) == 0
4138 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
4139 MaskedValueIsZero(X, ~*C0, &I)) {
4140 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4141 return BinaryOperator::CreateAnd(A, C01);
4142 }
4143 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
4144 // iff (C0 & C1) == 0 and (X & ~C1) == 0
4145 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
4146 MaskedValueIsZero(X, ~*C1, &I)) {
4147 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4148 return BinaryOperator::CreateAnd(B, C01);
4149 }
4150 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
4151 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
4152 const APInt *C2, *C3;
4153 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
4154 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
4155 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
4156 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
4157 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4158 return BinaryOperator::CreateAnd(Or, C01);
4159 }
4160 }
4161 }
4162
4163 // Don't try to form a select if it's unlikely that we'll get rid of at
4164 // least one of the operands. A select is generally more expensive than the
4165 // 'or' that it is replacing.
4166 if (Op0->hasOneUse() || Op1->hasOneUse()) {
4167 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
4168 if (Value *V = matchSelectFromAndOr(A, C, B, D))
4169 return replaceInstUsesWith(I, V);
4170 if (Value *V = matchSelectFromAndOr(A, C, D, B))
4171 return replaceInstUsesWith(I, V);
4172 if (Value *V = matchSelectFromAndOr(C, A, B, D))
4173 return replaceInstUsesWith(I, V);
4174 if (Value *V = matchSelectFromAndOr(C, A, D, B))
4175 return replaceInstUsesWith(I, V);
4176 if (Value *V = matchSelectFromAndOr(B, D, A, C))
4177 return replaceInstUsesWith(I, V);
4178 if (Value *V = matchSelectFromAndOr(B, D, C, A))
4179 return replaceInstUsesWith(I, V);
4180 if (Value *V = matchSelectFromAndOr(D, B, A, C))
4181 return replaceInstUsesWith(I, V);
4182 if (Value *V = matchSelectFromAndOr(D, B, C, A))
4183 return replaceInstUsesWith(I, V);
4184 }
4185 }
4186
4187 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
4188 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
4189 (Op0->hasOneUse() || Op1->hasOneUse())) {
4190 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
4191 if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
4192 return replaceInstUsesWith(I, V);
4193 if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
4194 return replaceInstUsesWith(I, V);
4195 if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
4196 return replaceInstUsesWith(I, V);
4197 if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
4198 return replaceInstUsesWith(I, V);
4199 }
4200
4201 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
4202 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
4203 if (match(Op1,
4206 return BinaryOperator::CreateOr(Op0, C);
4207
4208 // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C
4209 if (match(Op1, m_Xor(m_Value(A), m_Value(B))))
4210 if (match(Op0,
4213 return BinaryOperator::CreateOr(Op1, C);
4214
4215 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
4216 return DeMorgan;
4217
4218 // Canonicalize xor to the RHS.
4219 bool SwappedForXor = false;
4220 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
4221 std::swap(Op0, Op1);
4222 SwappedForXor = true;
4223 }
4224
4225 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
4226 // (A | ?) | (A ^ B) --> (A | ?) | B
4227 // (B | ?) | (A ^ B) --> (B | ?) | A
4228 if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
4229 return BinaryOperator::CreateOr(Op0, B);
4230 if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
4231 return BinaryOperator::CreateOr(Op0, A);
4232
4233 // (A & B) | (A ^ B) --> A | B
4234 // (B & A) | (A ^ B) --> A | B
4235 if (match(Op0, m_c_And(m_Specific(A), m_Specific(B))))
4236 return BinaryOperator::CreateOr(A, B);
4237
4238 // ~A | (A ^ B) --> ~(A & B)
4239 // ~B | (A ^ B) --> ~(A & B)
4240 // The swap above should always make Op0 the 'not'.
4241 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4242 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
4243 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4244
4245 // Same as above, but peek through an 'and' to the common operand:
4246 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
4247 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
4249 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4250 match(Op0,
4252 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
4253 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
4254 match(Op0,
4256 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
4257
4258 // (~A | C) | (A ^ B) --> ~(A & B) | C
4259 // (~B | C) | (A ^ B) --> ~(A & B) | C
4260 if (Op0->hasOneUse() && Op1->hasOneUse() &&
4261 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
4262 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
4263 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
4264 return BinaryOperator::CreateOr(Nand, C);
4265 }
4266 }
4267
4268 if (SwappedForXor)
4269 std::swap(Op0, Op1);
4270
4271 if (Value *Res =
4272 foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/false, /*IsLogical=*/false))
4273 return replaceInstUsesWith(I, Res);
4274
4275 if (match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
4276 bool IsLogical = isa<SelectInst>(Op1);
4277 if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/false,
4278 /*RHSIsLogical=*/IsLogical))
4279 return replaceInstUsesWith(I, V);
4280 }
4281 if (match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
4282 bool IsLogical = isa<SelectInst>(Op0);
4283 if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/false,
4284 /*RHSIsLogical=*/IsLogical))
4285 return replaceInstUsesWith(I, V);
4286 }
4287
4288 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
4289 return FoldedFCmps;
4290
4291 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
4292 return CastedOr;
4293
4294 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
4295 return Sel;
4296
4297 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
4298 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
4299 // with binop identity constant. But creating a select with non-constant
4300 // arm may not be reversible due to poison semantics. Is that a good
4301 // canonicalization?
4302 if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
4303 A->getType()->isIntOrIntVectorTy(1))
4305
4306 // Note: If we've gotten to the point of visiting the outer OR, then the
4307 // inner one couldn't be simplified. If it was a constant, then it won't
4308 // be simplified by a later pass either, so we try swapping the inner/outer
4309 // ORs in the hopes that we'll be able to simplify it this way.
4310 // (X|C) | V --> (X|V) | C
4311 // Pass the disjoint flag in the following two patterns:
4312 // 1. or-disjoint (or-disjoint X, C), V -->
4313 // or-disjoint (or-disjoint X, V), C
4314 //
4315 // 2. or-disjoint (or X, C), V -->
4316 // or (or-disjoint X, V), C
4317 ConstantInt *CI;
4318 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
4319 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
4320 bool IsDisjointOuter = cast<PossiblyDisjointInst>(I).isDisjoint();
4321 bool IsDisjointInner = cast<PossiblyDisjointInst>(Op0)->isDisjoint();
4322 Value *Inner = Builder.CreateOr(A, Op1);
4323 cast<PossiblyDisjointInst>(Inner)->setIsDisjoint(IsDisjointOuter);
4324 Inner->takeName(Op0);
4325 return IsDisjointOuter && IsDisjointInner
4326 ? BinaryOperator::CreateDisjointOr(Inner, CI)
4327 : BinaryOperator::CreateOr(Inner, CI);
4328 }
4329
4330 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
4331 // Since this OR statement hasn't been optimized further yet, we hope
4332 // that this transformation will allow the new ORs to be optimized.
4333 {
4334 Value *X = nullptr, *Y = nullptr;
4335 if (Op0->hasOneUse() && Op1->hasOneUse() &&
4336 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
4337 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
4338 Value *orTrue = Builder.CreateOr(A, C);
4339 Value *orFalse = Builder.CreateOr(B, D);
4340 return SelectInst::Create(X, orTrue, orFalse);
4341 }
4342 }
4343
4344 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
4345 {
4346 Value *X, *Y;
4349 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
4350 m_Deferred(X)))) {
4351 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
4353 return SelectInst::Create(NewICmpInst, AllOnes, X);
4354 }
4355 }
4356
4357 {
4358 // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
4359 // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
4360 // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
4361 // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
4362 const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
4363 if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) &&
4364 match(Rhs,
4366 return BinaryOperator::CreateXor(A, B);
4367 }
4368 return nullptr;
4369 };
4370
4371 if (Instruction *Result = TryXorOpt(Op0, Op1))
4372 return Result;
4373 if (Instruction *Result = TryXorOpt(Op1, Op0))
4374 return Result;
4375 }
4376
4377 if (Instruction *V =
4379 return V;
4380
4381 CmpPredicate Pred;
4382 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
4383 // Check if the OR weakens the overflow condition for umul.with.overflow by
4384 // treating any non-zero result as overflow. In that case, we overflow if both
4385 // umul.with.overflow operands are != 0, as in that case the result can only
4386 // be 0, iff the multiplication overflows.
4387 if (match(&I, m_c_Or(m_Value(Ov, m_ExtractValue<1>(m_Value(UMulWithOv))),
4388 m_Value(MulIsNotZero,
4392 m_Deferred(UMulWithOv))),
4393 m_ZeroInt())))) &&
4394 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse()))) {
4395 Value *A, *B;
4397 m_Value(A), m_Value(B)))) {
4398 Value *NotNullA = Builder.CreateIsNotNull(A);
4399 Value *NotNullB = Builder.CreateIsNotNull(B);
4400 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
4401 }
4402 }
4403
4404 /// Res, Overflow = xxx_with_overflow X, C1
4405 /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into
4406 /// "Overflow | icmp pred X, C2 +/- C1".
4407 const WithOverflowInst *WO;
4408 const Value *WOV;
4409 const APInt *C1, *C2;
4411 m_Value(WOV, m_WithOverflowInst(WO)))),
4413 m_APInt(C2))))) &&
4414 (WO->getBinaryOp() == Instruction::Add ||
4415 WO->getBinaryOp() == Instruction::Sub) &&
4416 (ICmpInst::isEquality(Pred) ||
4417 WO->isSigned() == ICmpInst::isSigned(Pred)) &&
4418 match(WO->getRHS(), m_APInt(C1))) {
4419 bool Overflow;
4420 APInt NewC = WO->getBinaryOp() == Instruction::Add
4421 ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow)
4422 : C2->usub_ov(*C1, Overflow))
4423 : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow)
4424 : C2->uadd_ov(*C1, Overflow));
4425 if (!Overflow || ICmpInst::isEquality(Pred)) {
4426 Value *NewCmp = Builder.CreateICmp(
4427 Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC));
4428 return BinaryOperator::CreateOr(Ov, NewCmp);
4429 }
4430 }
4431
4432 // Try to fold the pattern "Overflow | icmp pred Res, C2" into a single
4433 // comparison instruction for umul.with.overflow.
4435 return replaceInstUsesWith(I, R);
4436
4437 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
4439 return &I;
4440
4441 // Improve "get low bit mask up to and including bit X" pattern:
4442 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
4443 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
4444 m_Shl(m_One(), m_Deferred(X)))) &&
4445 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
4446 Value *Sub = Builder.CreateSub(
4447 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
4448 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
4449 }
4450
4451 // An or recurrence w/loop invariant step is equivelent to (or start, step)
4452 PHINode *PN = nullptr;
4453 Value *Start = nullptr, *Step = nullptr;
4454 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
4455 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
4456
4457 // (A & B) | (C | D) or (C | D) | (A & B)
4458 // Can be combined if C or D is of type (A/B & X)
4460 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
4461 // (A & B) | (C | ?) -> C | (? | (A & B))
4462 // (A & B) | (C | ?) -> C | (? | (A & B))
4463 // (A & B) | (C | ?) -> C | (? | (A & B))
4464 // (A & B) | (C | ?) -> C | (? | (A & B))
4465 // (C | ?) | (A & B) -> C | (? | (A & B))
4466 // (C | ?) | (A & B) -> C | (? | (A & B))
4467 // (C | ?) | (A & B) -> C | (? | (A & B))
4468 // (C | ?) | (A & B) -> C | (? | (A & B))
4469 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
4471 return BinaryOperator::CreateOr(
4472 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
4473 // (A & B) | (? | D) -> (? | (A & B)) | D
4474 // (A & B) | (? | D) -> (? | (A & B)) | D
4475 // (A & B) | (? | D) -> (? | (A & B)) | D
4476 // (A & B) | (? | D) -> (? | (A & B)) | D
4477 // (? | D) | (A & B) -> (? | (A & B)) | D
4478 // (? | D) | (A & B) -> (? | (A & B)) | D
4479 // (? | D) | (A & B) -> (? | (A & B)) | D
4480 // (? | D) | (A & B) -> (? | (A & B)) | D
4481 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
4483 return BinaryOperator::CreateOr(
4484 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
4485 }
4486
4488 return R;
4489
4490 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4491 return Canonicalized;
4492
4493 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4494 return Folded;
4495
4496 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
4497 return Res;
4498
4499 // If we are setting the sign bit of a floating-point value, convert
4500 // this to fneg(fabs), then cast back to integer.
4501 //
4502 // If the result isn't immediately cast back to a float, this will increase
4503 // the number of instructions. This is still probably a better canonical form
4504 // as it enables FP value tracking.
4505 //
4506 // Assumes any IEEE-represented type has the sign bit in the high bit.
4507 //
4508 // This is generous interpretation of noimplicitfloat, this is not a true
4509 // floating-point operation.
4510 Value *CastOp;
4511 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
4512 match(Op1, m_SignMask()) &&
4513 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4514 Attribute::NoImplicitFloat)) {
4515 Type *EltTy = CastOp->getType()->getScalarType();
4516 if (EltTy->isFloatingPointTy() &&
4518 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
4519 Value *FNegFAbs = Builder.CreateFNeg(FAbs);
4520 return new BitCastInst(FNegFAbs, I.getType());
4521 }
4522 }
4523
4524 // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2
4525 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) &&
4526 match(Op1, m_APInt(C2))) {
4527 KnownBits KnownX = computeKnownBits(X, &I);
4528 if ((KnownX.One & *C2) == *C2)
4529 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2));
4530 }
4531
4533 return Res;
4534
4535 if (Value *V =
4537 /*SimplifyOnly*/ false, *this))
4538 return BinaryOperator::CreateOr(V, Op1);
4539 if (Value *V =
4541 /*SimplifyOnly*/ false, *this))
4542 return BinaryOperator::CreateOr(Op0, V);
4543
4544 if (cast<PossiblyDisjointInst>(I).isDisjoint())
4546 return replaceInstUsesWith(I, V);
4547
4548 return nullptr;
4549}
4550
4551/// A ^ B can be specified using other logic ops in a variety of patterns. We
4552/// can fold these early and efficiently by morphing an existing instruction.
4554 InstCombiner::BuilderTy &Builder) {
4555 assert(I.getOpcode() == Instruction::Xor);
4556 Value *Op0 = I.getOperand(0);
4557 Value *Op1 = I.getOperand(1);
4558 Value *A, *B;
4559
4560 // There are 4 commuted variants for each of the basic patterns.
4561
4562 // (A & B) ^ (A | B) -> A ^ B
4563 // (A & B) ^ (B | A) -> A ^ B
4564 // (A | B) ^ (A & B) -> A ^ B
4565 // (A | B) ^ (B & A) -> A ^ B
4566 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
4568 return BinaryOperator::CreateXor(A, B);
4569
4570 // (A | ~B) ^ (~A | B) -> A ^ B
4571 // (~B | A) ^ (~A | B) -> A ^ B
4572 // (~A | B) ^ (A | ~B) -> A ^ B
4573 // (B | ~A) ^ (A | ~B) -> A ^ B
4574 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
4576 return BinaryOperator::CreateXor(A, B);
4577
4578 // (A & ~B) ^ (~A & B) -> A ^ B
4579 // (~B & A) ^ (~A & B) -> A ^ B
4580 // (~A & B) ^ (A & ~B) -> A ^ B
4581 // (B & ~A) ^ (A & ~B) -> A ^ B
4582 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
4584 return BinaryOperator::CreateXor(A, B);
4585
4586 // For the remaining cases we need to get rid of one of the operands.
4587 if (!Op0->hasOneUse() && !Op1->hasOneUse())
4588 return nullptr;
4589
4590 // (A | B) ^ ~(A & B) -> ~(A ^ B)
4591 // (A | B) ^ ~(B & A) -> ~(A ^ B)
4592 // (A & B) ^ ~(A | B) -> ~(A ^ B)
4593 // (A & B) ^ ~(B | A) -> ~(A ^ B)
4594 // Complexity sorting ensures the not will be on the right side.
4595 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
4596 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
4597 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4599 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4600
4601 return nullptr;
4602}
4603
4604Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
4605 BinaryOperator &I) {
4606 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
4607 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
4608
4609 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
4610 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
4611 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
4612
4613 if (predicatesFoldable(PredL, PredR)) {
4614 if (LHS0 == RHS1 && LHS1 == RHS0) {
4615 std::swap(LHS0, LHS1);
4616 PredL = ICmpInst::getSwappedPredicate(PredL);
4617 }
4618 if (LHS0 == RHS0 && LHS1 == RHS1) {
4619 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4620 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
4621 bool IsSigned = LHS->isSigned() || RHS->isSigned();
4622 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
4623 }
4624 }
4625
4626 const APInt *LC, *RC;
4627 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
4628 LHS0->getType() == RHS0->getType() &&
4629 LHS0->getType()->isIntOrIntVectorTy()) {
4630 // Convert xor of signbit tests to signbit test of xor'd values:
4631 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
4632 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
4633 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
4634 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
4635 bool TrueIfSignedL, TrueIfSignedR;
4636 if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
4637 isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
4638 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
4639 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
4640 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
4641 Builder.CreateIsNotNeg(XorLR);
4642 }
4643
4644 // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2)
4645 // into a single comparison using range-based reasoning.
4646 if (LHS0 == RHS0) {
4647 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC);
4648 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC);
4649 auto CRUnion = CR1.exactUnionWith(CR2);
4650 auto CRIntersect = CR1.exactIntersectWith(CR2);
4651 if (CRUnion && CRIntersect)
4652 if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4653 if (CR->isFullSet())
4654 return ConstantInt::getTrue(I.getType());
4655 if (CR->isEmptySet())
4656 return ConstantInt::getFalse(I.getType());
4657
4658 CmpInst::Predicate NewPred;
4659 APInt NewC, Offset;
4660 CR->getEquivalentICmp(NewPred, NewC, Offset);
4661
4662 if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) ||
4663 (LHS->hasOneUse() && RHS->hasOneUse())) {
4664 Value *NewV = LHS0;
4665 Type *Ty = LHS0->getType();
4666 if (!Offset.isZero())
4667 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
4668 return Builder.CreateICmp(NewPred, NewV,
4669 ConstantInt::get(Ty, NewC));
4670 }
4671 }
4672 }
4673
4674 // Fold (icmp eq/ne (X & Pow2), 0) ^ (icmp eq/ne (Y & Pow2), 0) into
4675 // (icmp eq/ne ((X ^ Y) & Pow2), 0)
4676 Value *X, *Y, *Pow2;
4677 if (ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
4678 LC->isZero() && RC->isZero() && LHS->hasOneUse() && RHS->hasOneUse() &&
4679 match(LHS0, m_And(m_Value(X), m_Value(Pow2))) &&
4680 match(RHS0, m_And(m_Value(Y), m_Specific(Pow2))) &&
4681 isKnownToBeAPowerOfTwo(Pow2, /*OrZero=*/true, &I)) {
4682 Value *Xor = Builder.CreateXor(X, Y);
4683 Value *And = Builder.CreateAnd(Xor, Pow2);
4684 return Builder.CreateICmp(PredL == PredR ? ICmpInst::ICMP_NE
4686 And, ConstantInt::getNullValue(Xor->getType()));
4687 }
4688 }
4689
4690 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
4691 // into those logic ops. That is, try to turn this into an and-of-icmps
4692 // because we have many folds for that pattern.
4693 //
4694 // This is based on a truth table definition of xor:
4695 // X ^ Y --> (X | Y) & !(X & Y)
4696 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
4697 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
4698 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
4699 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
4700 // TODO: Independently handle cases where the 'and' side is a constant.
4701 ICmpInst *X = nullptr, *Y = nullptr;
4702 if (OrICmp == LHS && AndICmp == RHS) {
4703 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
4704 X = LHS;
4705 Y = RHS;
4706 }
4707 if (OrICmp == RHS && AndICmp == LHS) {
4708 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
4709 X = RHS;
4710 Y = LHS;
4711 }
4712 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
4713 // Invert the predicate of 'Y', thus inverting its output.
4714 Y->setPredicate(Y->getInversePredicate());
4715 // So, are there other uses of Y?
4716 if (!Y->hasOneUse()) {
4717 // We need to adapt other uses of Y though. Get a value that matches
4718 // the original value of Y before inversion. While this increases
4719 // immediate instruction count, we have just ensured that all the
4720 // users are freely-invertible, so that 'not' *will* get folded away.
4722 // Set insertion point to right after the Y.
4723 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
4724 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4725 // Replace all uses of Y (excluding the one in NotY!) with NotY.
4726 Worklist.pushUsersToWorkList(*Y);
4727 Y->replaceUsesWithIf(NotY,
4728 [NotY](Use &U) { return U.getUser() != NotY; });
4729 }
4730 // All done.
4731 return Builder.CreateAnd(LHS, RHS);
4732 }
4733 }
4734 }
4735
4736 return nullptr;
4737}
4738
4739/// If we have a masked merge, in the canonical form of:
4740/// (assuming that A only has one use.)
4741/// | A | |B|
4742/// ((x ^ y) & M) ^ y
4743/// | D |
4744/// * If M is inverted:
4745/// | D |
4746/// ((x ^ y) & ~M) ^ y
4747/// We can canonicalize by swapping the final xor operand
4748/// to eliminate the 'not' of the mask.
4749/// ((x ^ y) & M) ^ x
4750/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
4751/// because that shortens the dependency chain and improves analysis:
4752/// (x & M) | (y & ~M)
4754 InstCombiner::BuilderTy &Builder) {
4755 Value *B, *X, *D;
4756 Value *M;
4757 if (!match(&I, m_c_Xor(m_Value(B),
4760 m_Value(M))))))
4761 return nullptr;
4762
4763 Value *NotM;
4764 if (match(M, m_Not(m_Value(NotM)))) {
4765 // De-invert the mask and swap the value in B part.
4766 Value *NewA = Builder.CreateAnd(D, NotM);
4767 return BinaryOperator::CreateXor(NewA, X);
4768 }
4769
4770 Constant *C;
4771 if (D->hasOneUse() && match(M, m_Constant(C))) {
4772 // Propagating undef is unsafe. Clamp undef elements to -1.
4773 Type *EltTy = C->getType()->getScalarType();
4775 // Unfold.
4776 Value *LHS = Builder.CreateAnd(X, C);
4777 Value *NotC = Builder.CreateNot(C);
4778 Value *RHS = Builder.CreateAnd(B, NotC);
4779 return BinaryOperator::CreateOr(LHS, RHS);
4780 }
4781
4782 return nullptr;
4783}
4784
4786 InstCombiner::BuilderTy &Builder) {
4787 Value *X, *Y;
4788 // FIXME: one-use check is not needed in general, but currently we are unable
4789 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
4790 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
4791 return nullptr;
4792
4793 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
4794 return A == C || A == D || B == C || B == D;
4795 };
4796
4797 Value *A, *B, *C, *D;
4798 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
4799 // 4 commuted variants
4800 if (match(X, m_And(m_Value(A), m_Value(B))) &&
4801 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4802 Value *NotY = Builder.CreateNot(Y);
4803 return BinaryOperator::CreateOr(X, NotY);
4804 };
4805
4806 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
4807 // 4 commuted variants
4808 if (match(Y, m_And(m_Value(A), m_Value(B))) &&
4809 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4810 Value *NotX = Builder.CreateNot(X);
4811 return BinaryOperator::CreateOr(Y, NotX);
4812 };
4813
4814 return nullptr;
4815}
4816
4817/// Canonicalize a shifty way to code absolute value to the more common pattern
4818/// that uses negation and select.
4820 InstCombiner::BuilderTy &Builder) {
4821 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
4822
4823 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
4824 // We're relying on the fact that we only do this transform when the shift has
4825 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
4826 // instructions).
4827 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
4828 if (Op0->hasNUses(2))
4829 std::swap(Op0, Op1);
4830
4831 Type *Ty = Xor.getType();
4832 Value *A;
4833 const APInt *ShAmt;
4834 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
4835 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4836 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
4837 // Op1 = ashr i32 A, 31 ; smear the sign bit
4838 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
4839 // --> (A < 0) ? -A : A
4840 Value *IsNeg = Builder.CreateIsNeg(A);
4841 // Copy the nsw flags from the add to the negate.
4842 auto *Add = cast<BinaryOperator>(Op0);
4843 Value *NegA = Add->hasNoUnsignedWrap()
4844 ? Constant::getNullValue(A->getType())
4845 : Builder.CreateNeg(A, "", Add->hasNoSignedWrap());
4846 return SelectInst::Create(IsNeg, NegA, A);
4847 }
4848 return nullptr;
4849}
4850
4852 Instruction *IgnoredUser) {
4853 auto *I = dyn_cast<Instruction>(Op);
4854 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
4855 IC.canFreelyInvertAllUsersOf(I, IgnoredUser);
4856}
4857
4859 Instruction *IgnoredUser) {
4860 auto *I = cast<Instruction>(Op);
4861 IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef());
4862 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
4863 Op->replaceUsesWithIf(NotOp,
4864 [NotOp](Use &U) { return U.getUser() != NotOp; });
4865 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
4866 return NotOp;
4867}
4868
4869// Transform
4870// z = ~(x &/| y)
4871// into:
4872// z = ((~x) |/& (~y))
4873// iff both x and y are free to invert and all uses of z can be freely updated.
4875 Value *Op0, *Op1;
4876 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4877 return false;
4878
4879 // If this logic op has not been simplified yet, just bail out and let that
4880 // happen first. Otherwise, the code below may wrongly invert.
4881 if (Op0 == Op1)
4882 return false;
4883
4884 // If one of the operands is a user of the other,
4885 // freelyInvert->freelyInvertAllUsersOf will change the operands of I, which
4886 // may cause miscompilation.
4887 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
4888 return false;
4889
4890 Instruction::BinaryOps NewOpc =
4891 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4892 bool IsBinaryOp = isa<BinaryOperator>(I);
4893
4894 // Can our users be adapted?
4895 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4896 return false;
4897
4898 // And can the operands be adapted?
4899 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
4900 return false;
4901
4902 Op0 = freelyInvert(*this, Op0, &I);
4903 Op1 = freelyInvert(*this, Op1, &I);
4904
4905 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4906 Value *NewLogicOp;
4907 if (IsBinaryOp)
4908 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4909 else
4910 NewLogicOp =
4911 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4912
4913 replaceInstUsesWith(I, NewLogicOp);
4914 // We can not just create an outer `not`, it will most likely be immediately
4915 // folded back, reconstructing our initial pattern, and causing an
4916 // infinite combine loop, so immediately manually fold it away.
4917 freelyInvertAllUsersOf(NewLogicOp);
4918 return true;
4919}
4920
4921// Transform
4922// z = (~x) &/| y
4923// into:
4924// z = ~(x |/& (~y))
4925// iff y is free to invert and all uses of z can be freely updated.
4927 Value *Op0, *Op1;
4928 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4929 return false;
4930 Instruction::BinaryOps NewOpc =
4931 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4932 bool IsBinaryOp = isa<BinaryOperator>(I);
4933
4934 Value *NotOp0 = nullptr;
4935 Value *NotOp1 = nullptr;
4936 Value **OpToInvert = nullptr;
4937 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
4938 Op0 = NotOp0;
4939 OpToInvert = &Op1;
4940 } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
4941 canFreelyInvert(*this, Op0, &I)) {
4942 Op1 = NotOp1;
4943 OpToInvert = &Op0;
4944 } else
4945 return false;
4946
4947 // And can our users be adapted?
4948 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4949 return false;
4950
4951 *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
4952
4953 Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4954 Value *NewBinOp;
4955 if (IsBinaryOp)
4956 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4957 else
4958 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4959 replaceInstUsesWith(I, NewBinOp);
4960 // We can not just create an outer `not`, it will most likely be immediately
4961 // folded back, reconstructing our initial pattern, and causing an
4962 // infinite combine loop, so immediately manually fold it away.
4963 freelyInvertAllUsersOf(NewBinOp);
4964 return true;
4965}
4966
4967Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
4968 Value *NotOp;
4969 if (!match(&I, m_Not(m_Value(NotOp))))
4970 return nullptr;
4971
4972 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
4973 // We must eliminate the and/or (one-use) for these transforms to not increase
4974 // the instruction count.
4975 //
4976 // ~(~X & Y) --> (X | ~Y)
4977 // ~(Y & ~X) --> (X | ~Y)
4978 //
4979 // Note: The logical matches do not check for the commuted patterns because
4980 // those are handled via SimplifySelectsFeedingBinaryOp().
4981 Type *Ty = I.getType();
4982 Value *X, *Y;
4983 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
4984 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4985 return BinaryOperator::CreateOr(X, NotY);
4986 }
4987 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
4988 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4989 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
4990 }
4991
4992 // ~(~X | Y) --> (X & ~Y)
4993 // ~(Y | ~X) --> (X & ~Y)
4994 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
4995 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4996 return BinaryOperator::CreateAnd(X, NotY);
4997 }
4998 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
4999 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
5000 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
5001 }
5002
5003 // Is this a 'not' (~) fed by a binary operator?
5004 BinaryOperator *NotVal;
5005 if (match(NotOp, m_BinOp(NotVal))) {
5006 // ~((-X) | Y) --> (X - 1) & (~Y)
5007 if (match(NotVal,
5009 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
5010 Value *NotY = Builder.CreateNot(Y);
5011 return BinaryOperator::CreateAnd(DecX, NotY);
5012 }
5013
5014 // ~(~X >>s Y) --> (X >>s Y)
5015 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
5016 return BinaryOperator::CreateAShr(X, Y);
5017
5018 // Treat lshr with non-negative operand as ashr.
5019 // ~(~X >>u Y) --> (X >>s Y) iff X is known negative
5020 if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) &&
5021 isKnownNegative(X, SQ.getWithInstruction(NotVal)))
5022 return BinaryOperator::CreateAShr(X, Y);
5023
5024 // Bit-hack form of a signbit test for iN type:
5025 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
5026 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
5027 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
5028 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
5029 return new SExtInst(IsNotNeg, Ty);
5030 }
5031
5032 // If we are inverting a right-shifted constant, we may be able to eliminate
5033 // the 'not' by inverting the constant and using the opposite shift type.
5034 // Canonicalization rules ensure that only a negative constant uses 'ashr',
5035 // but we must check that in case that transform has not fired yet.
5036
5037 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
5038 Constant *C;
5039 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
5040 match(C, m_Negative()))
5041 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
5042
5043 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
5044 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
5045 match(C, m_NonNegative()))
5046 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
5047
5048 // ~(X + C) --> ~C - X
5049 if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C))))
5050 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
5051
5052 // ~(X - Y) --> ~X + Y
5053 // FIXME: is it really beneficial to sink the `not` here?
5054 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
5055 if (isa<Constant>(X) || NotVal->hasOneUse())
5056 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
5057
5058 // ~(~X + Y) --> X - Y
5059 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
5060 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
5061 NotVal);
5062 }
5063
5064 // not (cmp A, B) = !cmp A, B
5065 CmpPredicate Pred;
5066 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
5067 (NotOp->hasOneUse() ||
5069 /*IgnoredUser=*/nullptr))) {
5070 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
5072 return &I;
5073 }
5074
5075 // Move a 'not' ahead of casts of a bool to enable logic reduction:
5076 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
5077 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
5078 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
5079 Value *NotX = Builder.CreateNot(X);
5080 Value *Sext = Builder.CreateSExt(NotX, SextTy);
5081 return new BitCastInst(Sext, Ty);
5082 }
5083
5084 if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
5085 if (sinkNotIntoLogicalOp(*NotOpI))
5086 return &I;
5087
5088 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
5089 // ~min(~X, ~Y) --> max(X, Y)
5090 // ~max(~X, Y) --> min(X, ~Y)
5091 auto *II = dyn_cast<IntrinsicInst>(NotOp);
5092 if (II && II->hasOneUse()) {
5093 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
5094 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
5095 Value *NotY = Builder.CreateNot(Y);
5096 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
5097 return replaceInstUsesWith(I, InvMaxMin);
5098 }
5099
5100 if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
5101 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
5102 II->setArgOperand(
5103 1, ConstantInt::get(ClassMask->getType(),
5104 ~ClassMask->getZExtValue() & fcAllFlags));
5105 return replaceInstUsesWith(I, II);
5106 }
5107 }
5108
5109 if (NotOp->hasOneUse()) {
5110 // Pull 'not' into operands of select if both operands are one-use compares
5111 // or one is one-use compare and the other one is a constant.
5112 // Inverting the predicates eliminates the 'not' operation.
5113 // Example:
5114 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
5115 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
5116 // not (select ?, (cmp TPred, ?, ?), true -->
5117 // select ?, (cmp InvTPred, ?, ?), false
5118 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
5119 Value *TV = Sel->getTrueValue();
5120 Value *FV = Sel->getFalseValue();
5121 auto *CmpT = dyn_cast<CmpInst>(TV);
5122 auto *CmpF = dyn_cast<CmpInst>(FV);
5123 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
5124 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
5125 if (InvertibleT && InvertibleF) {
5126 if (CmpT)
5127 CmpT->setPredicate(CmpT->getInversePredicate());
5128 else
5129 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
5130 if (CmpF)
5131 CmpF->setPredicate(CmpF->getInversePredicate());
5132 else
5133 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
5134 return replaceInstUsesWith(I, Sel);
5135 }
5136 }
5137 }
5138
5139 if (Instruction *NewXor = foldNotXor(I, Builder))
5140 return NewXor;
5141
5142 // TODO: Could handle multi-use better by checking if all uses of NotOp (other
5143 // than I) can be inverted.
5144 if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder))
5145 return replaceInstUsesWith(I, R);
5146
5147 return nullptr;
5148}
5149
5150// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
5151// here. We should standardize that construct where it is needed or choose some
5152// other way to ensure that commutated variants of patterns are not missed.
5154 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
5155 SQ.getWithInstruction(&I)))
5156 return replaceInstUsesWith(I, V);
5157
5159 return &I;
5160
5162 return X;
5163
5165 return Phi;
5166
5167 if (Instruction *NewXor = foldXorToXor(I, Builder))
5168 return NewXor;
5169
5170 // (A&B)^(A&C) -> A&(B^C) etc
5172 return replaceInstUsesWith(I, V);
5173
5174 // See if we can simplify any instructions used by the instruction whose sole
5175 // purpose is to compute bits we don't care about.
5177 return &I;
5178
5179 if (Instruction *R = foldNot(I))
5180 return R;
5181
5183 return R;
5184
5185 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5186 Value *X, *Y, *M;
5187
5188 // (X | Y) ^ M -> (X ^ M) ^ Y
5189 // (X | Y) ^ M -> (Y ^ M) ^ X
5191 m_Value(M)))) {
5192 if (Value *XorAC = simplifyXorInst(X, M, SQ.getWithInstruction(&I)))
5193 return BinaryOperator::CreateXor(XorAC, Y);
5194
5195 if (Value *XorBC = simplifyXorInst(Y, M, SQ.getWithInstruction(&I)))
5196 return BinaryOperator::CreateXor(XorBC, X);
5197 }
5198
5199 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
5200 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
5201 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
5202 // have already taken care of those cases.
5203 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
5204 m_c_And(m_Deferred(M), m_Value())))) {
5206 return BinaryOperator::CreateDisjointOr(Op0, Op1);
5207 else
5208 return BinaryOperator::CreateOr(Op0, Op1);
5209 }
5210
5212 return Xor;
5213
5214 Constant *C1;
5215 if (match(Op1, m_Constant(C1))) {
5216 Constant *C2;
5217
5218 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
5219 match(C1, m_ImmConstant())) {
5220 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
5223 Value *And = Builder.CreateAnd(
5225 return BinaryOperator::CreateXor(
5227 }
5228
5229 // Use DeMorgan and reassociation to eliminate a 'not' op.
5230 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
5231 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
5232 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
5233 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
5234 }
5235 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
5236 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
5237 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
5238 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
5239 }
5240
5241 // Convert xor ([trunc] (ashr X, BW-1)), C =>
5242 // select(X >s -1, C, ~C)
5243 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
5244 // constant depending on whether this input is less than 0.
5245 const APInt *CA;
5246 if (match(Op0, m_OneUse(m_TruncOrSelf(
5247 m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) &&
5248 *CA == X->getType()->getScalarSizeInBits() - 1 &&
5249 !match(C1, m_AllOnes())) {
5250 assert(!C1->isZeroValue() && "Unexpected xor with 0");
5251 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
5252 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
5253 }
5254 }
5255
5256 Type *Ty = I.getType();
5257 {
5258 const APInt *RHSC;
5259 if (match(Op1, m_APInt(RHSC))) {
5260 Value *X;
5261 const APInt *C;
5262 // (C - X) ^ signmaskC --> (C + signmaskC) - X
5263 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
5264 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
5265
5266 // (X + C) ^ signmaskC --> X + (C + signmaskC)
5267 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
5268 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
5269
5270 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
5271 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
5272 MaskedValueIsZero(X, *C, &I))
5273 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
5274
5275 // When X is a power-of-two or zero and zero input is poison:
5276 // ctlz(i32 X) ^ 31 --> cttz(X)
5277 // cttz(i32 X) ^ 31 --> ctlz(X)
5278 auto *II = dyn_cast<IntrinsicInst>(Op0);
5279 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
5280 Intrinsic::ID IID = II->getIntrinsicID();
5281 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
5282 match(II->getArgOperand(1), m_One()) &&
5283 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
5284 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
5285 Function *F =
5286 Intrinsic::getOrInsertDeclaration(II->getModule(), IID, Ty);
5287 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
5288 }
5289 }
5290
5291 // If RHSC is inverting the remaining bits of shifted X,
5292 // canonicalize to a 'not' before the shift to help SCEV and codegen:
5293 // (X << C) ^ RHSC --> ~X << C
5294 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
5295 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
5296 Value *NotX = Builder.CreateNot(X);
5297 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
5298 }
5299 // (X >>u C) ^ RHSC --> ~X >>u C
5300 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
5301 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
5302 Value *NotX = Builder.CreateNot(X);
5303 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
5304 }
5305 // TODO: We could handle 'ashr' here as well. That would be matching
5306 // a 'not' op and moving it before the shift. Doing that requires
5307 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
5308 }
5309
5310 // If we are XORing the sign bit of a floating-point value, convert
5311 // this to fneg, then cast back to integer.
5312 //
5313 // This is generous interpretation of noimplicitfloat, this is not a true
5314 // floating-point operation.
5315 //
5316 // Assumes any IEEE-represented type has the sign bit in the high bit.
5317 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
5318 Value *CastOp;
5319 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
5320 match(Op1, m_SignMask()) &&
5321 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
5322 Attribute::NoImplicitFloat)) {
5323 Type *EltTy = CastOp->getType()->getScalarType();
5324 if (EltTy->isFloatingPointTy() &&
5326 Value *FNeg = Builder.CreateFNeg(CastOp);
5327 return new BitCastInst(FNeg, I.getType());
5328 }
5329 }
5330 }
5331
5332 // FIXME: This should not be limited to scalar (pull into APInt match above).
5333 {
5334 Value *X;
5335 ConstantInt *C1, *C2, *C3;
5336 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
5337 if (match(Op1, m_ConstantInt(C3)) &&
5339 m_ConstantInt(C2))) &&
5340 Op0->hasOneUse()) {
5341 // fold (C1 >> C2) ^ C3
5342 APInt FoldConst = C1->getValue().lshr(C2->getValue());
5343 FoldConst ^= C3->getValue();
5344 // Prepare the two operands.
5345 auto *Opnd0 = Builder.CreateLShr(X, C2);
5346 Opnd0->takeName(Op0);
5347 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
5348 }
5349 }
5350
5351 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
5352 return FoldedLogic;
5353
5354 // Y ^ (X | Y) --> X & ~Y
5355 // Y ^ (Y | X) --> X & ~Y
5356 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
5357 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
5358 // (X | Y) ^ Y --> X & ~Y
5359 // (Y | X) ^ Y --> X & ~Y
5360 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
5361 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
5362
5363 // Y ^ (X & Y) --> ~X & Y
5364 // Y ^ (Y & X) --> ~X & Y
5365 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
5366 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
5367 // (X & Y) ^ Y --> ~X & Y
5368 // (Y & X) ^ Y --> ~X & Y
5369 // Canonical form is (X & C) ^ C; don't touch that.
5370 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
5371 // be fixed to prefer that (otherwise we get infinite looping).
5372 if (!match(Op1, m_Constant()) &&
5373 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
5374 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
5375
5376 Value *A, *B, *C;
5377 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
5380 return BinaryOperator::CreateXor(
5381 Builder.CreateAnd(Builder.CreateNot(A), C), B);
5382
5383 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
5386 return BinaryOperator::CreateXor(
5387 Builder.CreateAnd(Builder.CreateNot(B), C), A);
5388
5389 // (A & B) ^ (A ^ B) -> (A | B)
5390 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
5392 return BinaryOperator::CreateOr(A, B);
5393 // (A ^ B) ^ (A & B) -> (A | B)
5394 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
5396 return BinaryOperator::CreateOr(A, B);
5397
5398 // (A & ~B) ^ ~A -> ~(A & B)
5399 // (~B & A) ^ ~A -> ~(A & B)
5400 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
5401 match(Op1, m_Not(m_Specific(A))))
5402 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
5403
5404 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
5406 return BinaryOperator::CreateOr(A, B);
5407
5408 // (~A | B) ^ A --> ~(A & B)
5409 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
5410 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
5411
5412 // A ^ (~A | B) --> ~(A & B)
5413 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
5414 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
5415
5416 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
5417 // TODO: Loosen one-use restriction if common operand is a constant.
5418 Value *D;
5419 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
5420 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
5421 if (B == C || B == D)
5422 std::swap(A, B);
5423 if (A == C)
5424 std::swap(C, D);
5425 if (A == D) {
5426 Value *NotA = Builder.CreateNot(A);
5427 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
5428 }
5429 }
5430
5431 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
5432 if (I.getType()->isIntOrIntVectorTy(1) &&
5435 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
5436 if (B == C || B == D)
5437 std::swap(A, B);
5438 if (A == C)
5439 std::swap(C, D);
5440 if (A == D) {
5441 if (NeedFreeze)
5442 A = Builder.CreateFreeze(A);
5443 Value *NotB = Builder.CreateNot(B);
5444 return SelectInst::Create(A, NotB, C);
5445 }
5446 }
5447
5448 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
5449 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
5450 if (Value *V = foldXorOfICmps(LHS, RHS, I))
5451 return replaceInstUsesWith(I, V);
5452
5453 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
5454 return CastedXor;
5455
5456 if (Instruction *Abs = canonicalizeAbs(I, Builder))
5457 return Abs;
5458
5459 // Otherwise, if all else failed, try to hoist the xor-by-constant:
5460 // (X ^ C) ^ Y --> (X ^ Y) ^ C
5461 // Just like we do in other places, we completely avoid the fold
5462 // for constantexprs, at least to avoid endless combine loop.
5464 m_ImmConstant(C1))),
5465 m_Value(Y))))
5466 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
5467
5469 return R;
5470
5471 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
5472 return Canonicalized;
5473
5474 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
5475 return Folded;
5476
5477 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
5478 return Folded;
5479
5480 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
5481 return Res;
5482
5484 return Res;
5485
5486 return nullptr;
5487}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool isSigned(unsigned int Opcode)
static Value * foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and fold (icmp ne ctpop(X) 1) & ...
static Value * foldBitmaskMul(Value *Op0, Value *Op1, InstCombiner::BuilderTy &Builder)
(A & N) * C + (A & M) * C -> (A & (N + M)) & C This also accepts the equivalent select form of (A & N...
static unsigned conjugateICmpMask(unsigned Mask)
Convert an analysis of a masked ICmp into its equivalent if all boolean operations had the opposite s...
static Instruction * foldNotXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Value * getFCmpValue(unsigned Code, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder, FMFSource FMF)
This is the complement of getFCmpCode, which turns an opcode and two operands into either a FCmp inst...
static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, uint64_t &ClassMask)
Match an fcmp against a special value that performs a test possible by llvm.is.fpclass.
static Value * foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, Instruction &CxtI, InstCombiner::BuilderTy &Builder)
General pattern: X & Y.
static Instruction * visitMaskedMerge(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a masked merge, in the canonical form of: (assuming that A only has one use....
static Instruction * canonicalizeAbs(BinaryOperator &Xor, InstCombiner::BuilderTy &Builder)
Canonicalize a shifty way to code absolute value to the more common pattern that uses negation and se...
static Value * foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Reduce a pair of compares that check if a value has exactly 1 bit set.
static Value * foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Instruction * foldOrToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, bool SimplifyOnly, InstCombinerImpl &IC, unsigned Depth=0)
static Instruction * matchDeMorgansLaws(BinaryOperator &I, InstCombiner &IC)
Match variations of De Morgan's Laws: (~A & ~B) == (~(A | B)) (~A | ~B) == (~(A & B))
static Value * foldLogOpOfMaskedICmpsAsymmetric(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Instruction * foldAndToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, ICmpInst::Predicate Pred)
Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) satisfies.
static Instruction * foldXorToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
A ^ B can be specified using other logic ops in a variety of patterns.
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth)
Return true if a constant shift amount is always less than the specified bit-width.
static Instruction * foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, InstCombinerImpl &IC)
Fold {and,or,xor} (cast X), C.
static Value * foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, bool IsLogical, IRBuilderBase &Builder)
static bool canFreelyInvert(InstCombiner &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldNegativePower2AndShiftedMask(Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff B is a contiguous set of o...
static Value * matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, FCmpInst *RHS)
and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
static Value * foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder)
Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & (icmp(X & M) !...
static Value * stripSignOnlyFPOps(Value *Val)
Ignore all operations which only change the sign of a value, returning the underlying magnitude value...
static Value * foldOrUnsignedUMulOverflowICmp(BinaryOperator &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2)) --> (ugt x (c2/c1)).
static Value * freelyInvert(InstCombinerImpl &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static std::optional< IntPart > matchIntPart(Value *V)
Match an extraction of bits from an integer.
static Instruction * canonicalizeLogicFirst(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * reassociateFCmps(BinaryOperator &BO, InstCombiner::BuilderTy &Builder)
This a limited reassociation for a special case (see above) where we are checking if two values are e...
static Value * getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder)
This is the complement of getICmpCode, which turns an opcode and two operands into either a constant ...
static Value * extractIntPart(const IntPart &P, IRBuilderBase &Builder)
Materialize an extraction of bits from an integer in IR.
static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches fcmp u__ x, +/-inf.
static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches canonical form of isnan, fcmp ord x, 0.
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2)
If all elements of two constant vectors are 0/-1 and inverses, return true.
MaskedICmpType
Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns that can be simplified.
@ BMask_NotAllOnes
@ AMask_NotAllOnes
@ Mask_NotAllZeros
static Instruction * foldComplexAndOrPatterns(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Try folding relatively complex patterns for both And and Or operations with all And and Or swapped.
static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask, uint64_t &Offset, bool &IsShlNUW, bool &IsShlNSW)
Match V as "lshr -> mask -> zext -> shl".
static std::optional< DecomposedBitMaskMul > matchBitmaskMul(Value *V)
static Value * foldOrOfInversions(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool matchSubIntegerPackFromVector(Value *V, Value *&Vec, int64_t &VecOffset, SmallBitVector &Mask, const DataLayout &DL)
Match V as "shufflevector -> bitcast" or "extractelement -> zext -> shl" patterns,...
static Instruction * matchFunnelShift(Instruction &Or, InstCombinerImpl &IC)
Match UB-safe variants of the funnel shift intrinsic.
static Instruction * reassociateForUses(BinaryOperator &BO, InstCombinerImpl::BuilderTy &Builder)
Try to reassociate a pair of binops so that values with one use only are part of the same instruction...
static Value * matchOrConcat(Instruction &Or, InstCombiner::BuilderTy &Builder)
Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
static Value * foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, const SimplifyQuery &Q)
static Instruction * foldBitwiseLogicWithIntrinsics(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< unsigned, unsigned > > getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR)
Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
static Instruction * foldIntegerPackFromVector(Instruction &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Try to fold the join of two scalar integers whose contents are packed elements of the same vector.
static Value * foldIntegerRepackThroughZExt(Value *Lhs, Value *Rhs, InstCombiner::BuilderTy &Builder)
Try to fold the join of two scalar integers whose bits are unpacked and zexted from the same source i...
static Value * foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Reduce logic-of-compares with equality to a constant by substituting a common operand with the consta...
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:546
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define R2(n)
uint64_t High
uint64_t IntrinsicInst * II
#define P(N)
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
Value * RHS
Value * LHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
bool bitwiseIsEqual(const APFloat &RHS) const
Definition APFloat.h:1414
bool isZero() const
Definition APFloat.h:1445
APInt bitcastToAPInt() const
Definition APFloat.h:1353
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
unsigned countLeadingOnes() const
Definition APInt.h:1624
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1249
int32_t exactLogBase2() const
Definition APInt.h:1783
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countLeadingZeros() const
Definition APInt.h:1606
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
void clearSignBit()
Set the sign bit to 0.
Definition APInt.h:1449
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:219
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
Definition InstrTypes.h:448
Type * getSrcTy() const
Return the source type, as a convenience.
Definition InstrTypes.h:617
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition InstrTypes.h:612
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Type * getDestTy() const
Return the destination type, as a convenience.
Definition InstrTypes.h:619
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
bool isSigned() const
Definition InstrTypes.h:932
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:829
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:767
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static Predicate getOrderedPredicate(Predicate Pred)
Returns the ordered variant of a floating point compare.
Definition InstrTypes.h:798
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
Definition Constants.h:226
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI std::optional< ConstantRange > exactUnionWith(const ConstantRange &CR) const
Union the two ranges and return the result if it can be represented exactly, otherwise return std::nu...
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isWrappedSet() const
Return true if this set wraps around the unsigned domain.
const APInt & getUpper() const
Return the upper value for this range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
This instruction compares its operands according to the predicate given to the constructor.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
Definition IRBuilder.h:107
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getInverseCmpPredicate() const
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1805
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitOr(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Value * insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside)
Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise (V < Lo || V >= Hi).
bool sinkNotIntoLogicalOp(Instruction &I)
std::optional< std::pair< Intrinsic::ID, SmallVector< Value *, 3 > > > convertOrOfShiftsToFunnelShift(Instruction &Or)
Instruction * visitAnd(BinaryOperator &I)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Value * simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted)
Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * visitXor(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
static Value * peekThroughBitcast(Value *V, bool OneUseOnly=false)
Return the source operand of a potentially bitcasted value while optionally checking if it has one us...
bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser)
Given i1 V, can every user of V be freely adapted if V is changed to !V ?
void addToWorklist(Instruction *I)
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
DominatorTree & DT
BuilderTy & Builder
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
A wrapper class for inspecting calls to intrinsic functions.
This class represents a sign extension of integer types.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition Type.h:246
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition Value.cpp:158
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
bool use_empty() const
Definition Value.h:346
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
cst_pred_ty< is_shifted_mask > m_ShiftedMask()
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
ShiftLike_match< LHS, Instruction::Shl > m_ShlOrSelf(const LHS &L, uint64_t &R)
Matches shl L, ConstShAmt or L itself (R will be set to zero in this case).
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
DisjointOr_match< LHS, RHS, true > m_c_DisjointOr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, FCmpInst > m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
NodeAddr< CodeNode * > Code
Definition RDFGraph.h:388
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
Constant * getPredForFCmpCode(unsigned Code, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getFCmpCode.
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
bool predicatesFoldable(CmpInst::Predicate P1, CmpInst::Predicate P2)
Return true if both predicates match sign or if at least one of them is an equality comparison (which...
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI bool recognizeBSwapOrBitReverseIdiom(Instruction *I, bool MatchBSwaps, bool MatchBitReversals, SmallVectorImpl< Instruction * > &InsertedInsts)
Try to match a bswap or bitreverse idiom.
Definition Local.cpp:3725
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
APFloat neg(APFloat X)
Returns the negated value of the argument.
Definition APFloat.h:1569
unsigned getICmpCode(CmpInst::Predicate Pred)
Encode a icmp predicate into a three bit mask.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
unsigned getFCmpCode(CmpInst::Predicate CC)
Similar to getICmpCode but for FCmpInst.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
Constant * getPredForICmpCode(unsigned Code, bool Sign, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getICmpCode.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
bool isCombineableWith(const DecomposedBitMaskMul Other)
static LLVM_ABI bool hasSignBitInMSB(const fltSemantics &)
Definition APFloat.cpp:370
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:101
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:138
Matching combinators.
const DataLayout & DL
const Instruction * CxtI
const DominatorTree * DT
SimplifyQuery getWithInstruction(const Instruction *I) const
AssumptionCache * AC