29#define DEBUG_TYPE "instcombine"
40 return Builder.CreateICmp(NewPred,
LHS,
RHS);
50 return Builder.CreateFCmpFMF(NewPred,
LHS,
RHS, FMF);
60 "Lo is not < Hi in range emission code!");
62 Type *Ty = V->getType();
67 if (
isSigned ?
Lo.isMinSignedValue() :
Lo.isMinValue()) {
69 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty,
Hi));
75 Builder.CreateSub(V, ConstantInt::get(Ty,
Lo), V->getName() +
".off");
77 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
124 const APInt *ConstA =
nullptr, *ConstB =
nullptr, *ConstC =
nullptr;
129 bool IsAPow2 = ConstA && ConstA->
isPowerOf2();
130 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
131 unsigned MaskVal = 0;
132 if (ConstC && ConstC->isZero()) {
151 }
else if (ConstA && ConstC && ConstC->
isSubsetOf(*ConstA)) {
161 }
else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
195 Y = ConstantInt::get(
X->getType(), Res->Mask);
196 Z = ConstantInt::get(
X->getType(), Res->C);
205static std::optional<std::pair<unsigned, unsigned>>
218 Value *L1, *L11, *L12, *L2, *L21, *L22;
220 L21 = L22 = L1 =
nullptr;
227 if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
230 PredL = LHSCMP->getPredicate();
231 L1 = LHSCMP->getOperand(0);
232 L2 = LHSCMP->getOperand(1);
253 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
256 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
268 if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy())
271 PredR = RHSCMP->getPredicate();
273 Value *R1 = RHSCMP->getOperand(0);
274 R2 = RHSCMP->getOperand(1);
283 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
288 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
306 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
310 }
else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
327 }
else if (L12 ==
A) {
330 }
else if (L21 ==
A) {
333 }
else if (L22 ==
A) {
340 return std::optional<std::pair<unsigned, unsigned>>(
341 std::make_pair(LeftType, RightType));
363 const APInt *BCst, *DCst, *OrigECst;
374 APInt ECst = *OrigECst;
380 if (*BCst == 0 || *DCst == 0)
390 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
391 Attribute::StrictFP)) {
393 if (!Ty->isIEEELikeFPTy())
399 APInt FractionBits = ~ExpBits;
401 if (*BCst != FractionBits)
426 if ((((*BCst & *DCst) & ECst) == 0) &&
427 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
428 APInt BorD = *BCst | *DCst;
429 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
430 Value *NewMask = ConstantInt::get(
A->getType(), BorD);
431 Value *NewMaskedValue = ConstantInt::get(
A->getType(), BandBxorDorE);
432 Value *NewAnd = Builder.CreateAnd(
A, NewMask);
433 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
436 auto IsSubSetOrEqual = [](
const APInt *C1,
const APInt *C2) {
437 return (*C1 & *C2) == *C1;
439 auto IsSuperSetOrEqual = [](
const APInt *C1,
const APInt *C2) {
440 return (*C1 & *C2) == *C2;
449 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
461 if (IsSubSetOrEqual(BCst, DCst))
462 return ConstantInt::get(
LHS->getType(), !IsAnd);
472 if (IsSuperSetOrEqual(BCst, DCst)) {
475 ICmp->setSameSign(
false);
481 assert(IsSubSetOrEqual(BCst, DCst) &&
"Precondition due to above code");
482 if ((*BCst & ECst) != 0) {
485 ICmp->setSameSign(
false);
492 return ConstantInt::get(
LHS->getType(), !IsAnd);
504 "Expected equality predicates for masked type of icmps.");
516 LHS,
RHS, IsAnd,
A,
B,
D,
E, PredL, PredR, Builder)) {
521 RHS,
LHS, IsAnd,
A,
D,
B,
C, PredR, PredL, Builder)) {
534 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr, *
E =
nullptr;
536 std::optional<std::pair<unsigned, unsigned>> MaskPair =
541 "Expected equality predicates for masked type of icmps.");
542 unsigned LHSMask = MaskPair->first;
543 unsigned RHSMask = MaskPair->second;
544 unsigned Mask = LHSMask & RHSMask;
549 LHS,
RHS, IsAnd,
A,
B,
C,
D,
E, PredL, PredR, LHSMask, RHSMask,
579 Value *NewOr = Builder.CreateOr(
B,
D);
580 Value *NewAnd = Builder.CreateAnd(
A, NewOr);
585 return Builder.CreateICmp(NewCC, NewAnd, Zero);
592 Value *NewOr = Builder.CreateOr(
B,
D);
593 Value *NewAnd = Builder.CreateAnd(
A, NewOr);
594 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
601 Value *NewAnd1 = Builder.CreateAnd(
B,
D);
602 Value *NewAnd2 = Builder.CreateAnd(
A, NewAnd1);
603 return Builder.CreateICmp(NewCC, NewAnd2,
A);
606 const APInt *ConstB, *ConstD;
614 APInt NewMask = *ConstB & *ConstD;
615 if (NewMask == *ConstB)
617 if (NewMask == *ConstD) {
620 RHSI->dropPoisonGeneratingFlags();
631 APInt NewMask = *ConstB | *ConstD;
632 if (NewMask == *ConstB)
634 if (NewMask == *ConstD)
661 const APInt *OldConstC, *OldConstE;
667 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
668 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
670 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
671 return IsNot ? nullptr : ConstantInt::get(
LHS->getType(), !IsAnd);
674 !ConstD->isSubsetOf(*ConstB))
679 BD = *ConstB & *ConstD;
680 CE = ConstC & ConstE;
682 BD = *ConstB | *ConstD;
683 CE = ConstC | ConstE;
685 Value *NewAnd = Builder.CreateAnd(
A, BD);
686 Value *CEVal = ConstantInt::get(
A->getType(), CE);
687 return Builder.CreateICmp(CC, NewAnd, CEVal);
691 return FoldBMixed(NewCC,
false);
693 return FoldBMixed(NewCC,
true);
708 D = Builder.CreateFreeze(
D);
709 Value *Mask = Builder.CreateOr(
B,
D);
711 return Builder.CreateICmp(NewCC,
Masked, Mask);
761 default:
return nullptr;
785 if (
LHS->getPredicate() != Pred ||
RHS->getPredicate() != Pred)
810 return Builder.CreateICmp(Pred,
And,
Op);
849 auto tryToMatchSignedTruncationCheck = [](
ICmpInst *ICmp,
Value *&
X,
850 APInt &SignBitMask) ->
bool {
851 const APInt *I01, *I1;
855 I1->ugt(*I01) && I01->
shl(1) == *I1))
867 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
869 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
874 assert(HighestBit.
isPowerOf2() &&
"expected to be power of two (non-zero)");
878 APInt &UnsetBitsMask) ->
bool {
887 UnsetBitsMask = Res->Mask;
897 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
900 assert(!UnsetBitsMask.
isZero() &&
"empty mask makes no sense.");
915 APInt SignBitsMask = ~(HighestBit - 1U);
922 if (!UnsetBitsMask.
isSubsetOf(SignBitsMask)) {
923 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
931 return Builder.CreateICmpULT(
X, ConstantInt::get(
X->getType(), HighestBit),
932 CxtI.
getName() +
".simplified");
952 CtPop->dropPoisonGeneratingAnnotations();
954 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
958 CtPop->dropPoisonGeneratingAnnotations();
960 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
987 CtPop->dropPoisonGeneratingAnnotations();
989 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
999 CtPop->dropPoisonGeneratingAnnotations();
1001 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1015 "Expected equality predicates for masked type of icmps.");
1035 const APInt *BCst, *DCst, *ECst;
1049 if (!BFVTy || !BConst || !DConst || !EConst)
1052 for (
unsigned I = 0;
I != BFVTy->getNumElements(); ++
I) {
1053 const auto *BElt = BConst->getAggregateElement(
I);
1054 const auto *DElt = DConst->getAggregateElement(
I);
1055 const auto *EElt = EConst->getAggregateElement(
I);
1057 if (!BElt || !DElt || !EElt)
1059 if (!isReducible(BElt, DElt, EElt))
1064 if (!isReducible(
B,
D,
E))
1082 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr, *
E =
nullptr;
1087 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1093 unsigned CmpMask0 = MaskPair->first;
1094 unsigned CmpMask1 = MaskPair->second;
1095 if ((CmpMask0 &
Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1099 }
else if ((CmpMask0 == compareBMask) && (CmpMask1 &
Mask_AllZeros)) {
1110 ICmpInst *UnsignedICmp,
bool IsAnd,
1122 if (
match(UnsignedICmp,
1138 IsAnd && GetKnownNonZeroAndOther(
B,
A))
1139 return Builder.CreateICmpULT(Builder.CreateNeg(
B),
A);
1141 !IsAnd && GetKnownNonZeroAndOther(
B,
A))
1142 return Builder.CreateICmpUGE(Builder.CreateNeg(
B),
A);
1158 return std::nullopt;
1160 unsigned NumOriginalBits =
X->getType()->getScalarSizeInBits();
1161 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1167 Shift->
ule(NumOriginalBits - NumExtractedBits))
1169 return {{
X, 0, NumExtractedBits}};
1176 V = Builder.CreateLShr(V,
P.StartBit);
1178 if (TruncTy != V->getType())
1179 V = Builder.CreateTrunc(V, TruncTy);
1186Value *InstCombinerImpl::foldEqOfParts(
Value *Cmp0,
Value *Cmp1,
bool IsAnd) {
1191 auto GetMatchPart = [&](
Value *CmpV,
1192 unsigned OpNo) -> std::optional<IntPart> {
1201 return {{OpNo == 0 ?
X :
Y, 0, 1}};
1205 return std::nullopt;
1207 if (Pred ==
Cmp->getPredicate())
1216 return std::nullopt;
1225 return std::nullopt;
1227 return std::nullopt;
1232 return {{
I->getOperand(OpNo), From,
C->getBitWidth() - From}};
1235 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1236 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1237 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1238 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1239 if (!L0 || !R0 || !L1 || !R1)
1244 if (L0->From != L1->From || R0->From != R1->From) {
1245 if (L0->From != R1->From || R0->From != L1->From)
1252 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1253 R0->StartBit + R0->NumBits != R1->StartBit) {
1254 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1255 R1->StartBit + R1->NumBits != R0->StartBit)
1262 IntPart
L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1263 IntPart
R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1273 bool IsAnd,
bool IsLogical,
1302 if (!SubstituteCmp) {
1307 SubstituteCmp = Builder.CreateICmp(Pred1,
Y,
C);
1310 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1311 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1312 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1320Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(
ICmpInst *ICmp1,
1323 CmpPredicate Pred1, Pred2;
1325 const APInt *C1, *C2;
1332 const APInt *Offset1 =
nullptr, *Offset2 =
nullptr;
1346 auto AreContiguousRangePredicates = [](CmpPredicate Pred1, CmpPredicate Pred2,
1352 const APInt *Mask1 =
nullptr, *Mask2 =
nullptr;
1353 bool MatchedAnd1 =
false, MatchedAnd2 =
false;
1354 if (V1 != V2 && AreContiguousRangePredicates(Pred1, Pred2, IsAnd)) {
1375 ? ConstantRange(*C1, *C1 - *Mask1)
1376 : ConstantRange::makeExactICmpRegion(
1377 IsAnd ? ICmpInst::getInverseCmpPredicate(Pred1) : Pred1, *C1);
1383 ? ConstantRange(*C2, *C2 - *Mask2)
1399 APInt LowerDiff = CR1.
getLower() ^ CR2.getLower();
1400 APInt UpperDiff = (CR1.
getUpper() - 1) ^ (CR2.getUpper() - 1);
1402 if (!LowerDiff.
isPowerOf2() || LowerDiff != UpperDiff ||
1403 CR1Size != CR2.getUpper() - CR2.getLower())
1406 CR = CR1.
getLower().
ult(CR2.getLower()) ? CR1 : CR2;
1407 NewV =
Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1415 CR->getEquivalentICmp(NewPred, NewC,
Offset);
1418 NewV =
Builder.CreateAdd(NewV, ConstantInt::get(Ty,
Offset));
1419 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1447 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1448 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1460 bool IsAnd,
bool IsLogicalSelect) {
1461 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1462 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1465 if (LHS0 == RHS1 && RHS0 == LHS1) {
1485 if (LHS0 == RHS0 && LHS1 == RHS1) {
1488 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1497 if (!IsLogicalSelect &&
1510 return Builder.CreateFCmpFMF(PredL, LHS0, RHS0,
1516 if (!IsLogicalSelect && IsAnd &&
1532 auto [ClassValRHS, ClassMaskRHS] =
1535 auto [ClassValLHS, ClassMaskLHS] =
1537 if (ClassValLHS == ClassValRHS) {
1538 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1539 : (ClassMaskLHS | ClassMaskRHS);
1540 return Builder.CreateIntrinsic(
1541 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1542 {ClassValLHS,
Builder.getInt32(CombinedMask)});
1570 if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
1574 if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
1575 FastMathFlags NewFlag =
LHS->getFastMathFlags();
1576 if (!IsLogicalSelect)
1577 NewFlag |=
RHS->getFastMathFlags();
1580 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag);
1582 PredL, FAbs, ConstantFP::get(LHS0->
getType(), *LHSC), NewFlag);
1594 if (!FCmp || !FCmp->hasOneUse())
1597 std::tie(ClassVal, ClassMask) =
1598 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1599 FCmp->getOperand(0), FCmp->getOperand(1));
1600 return ClassVal !=
nullptr;
1611 Value *ClassVal0 =
nullptr;
1612 Value *ClassVal1 =
nullptr;
1613 uint64_t ClassMask0, ClassMask1;
1629 ClassVal0 == ClassVal1) {
1630 unsigned NewClassMask;
1632 case Instruction::And:
1633 NewClassMask = ClassMask0 & ClassMask1;
1635 case Instruction::Or:
1636 NewClassMask = ClassMask0 | ClassMask1;
1638 case Instruction::Xor:
1639 NewClassMask = ClassMask0 ^ ClassMask1;
1648 1, ConstantInt::get(
II->getArgOperand(1)->getType(), NewClassMask));
1655 1, ConstantInt::get(
II->getArgOperand(1)->getType(), NewClassMask));
1659 CallInst *NewClass =
1660 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->
getType()},
1661 {ClassVal0,
Builder.getInt32(NewClassMask)});
1675Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1677 assert(
I.getOpcode() == BinaryOperator::Xor &&
"Only for xor!");
1682 !
Cond->getType()->isIntOrIntVectorTy(1) ||
1696 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1697 "Expecting and/or op for fcmp transform");
1716 X->getType() !=
Y->getType())
1720 X->getType() !=
Y->getType())
1737 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1738 "Trying to match De Morgan's Laws with something other than and/or");
1742 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1744 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1770bool InstCombinerImpl::shouldOptimizeCast(
CastInst *CI) {
1780 if (isEliminableCastPair(PrecedingCI, CI))
1807 return new ZExtInst(NewOp, DestTy);
1815 return new SExtInst(NewOp, DestTy);
1825 assert(
I.isBitwiseLogicOp() &&
"Unexpected opcode for bitwise logic folding");
1827 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1833 auto FoldBitwiseICmpZeroWithICmp = [&](
Value *Op0,
1834 Value *Op1) -> Instruction * {
1849 auto *BitwiseOp =
Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1851 return new ZExtInst(BitwiseOp, Op0->
getType());
1854 if (
auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1857 if (
auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1866 Type *DestTy =
I.getType();
1892 unsigned XNumBits =
X->getType()->getScalarSizeInBits();
1893 unsigned YNumBits =
Y->getType()->getScalarSizeInBits();
1894 if (XNumBits != YNumBits) {
1902 if (XNumBits < YNumBits) {
1903 X =
Builder.CreateCast(CastOpcode,
X,
Y->getType());
1904 }
else if (YNumBits < XNumBits) {
1905 Y =
Builder.CreateCast(CastOpcode,
Y,
X->getType());
1910 Value *NarrowLogic =
Builder.CreateBinOp(LogicOpc,
X,
Y,
I.getName());
1913 if (Disjoint && NewDisjoint)
1914 NewDisjoint->setIsDisjoint(Disjoint->isDisjoint());
1926 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1927 Value *NewOp =
Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1937 assert(
I.getOpcode() == Instruction::And);
1938 Value *Op0 =
I.getOperand(0);
1939 Value *Op1 =
I.getOperand(1);
1947 return BinaryOperator::CreateXor(
A,
B);
1963 assert(
I.getOpcode() == Instruction::Or);
1964 Value *Op0 =
I.getOperand(0);
1965 Value *Op1 =
I.getOperand(1);
1990 return BinaryOperator::CreateXor(
A,
B);
2010 Value *Op0 =
And.getOperand(0), *Op1 =
And.getOperand(1);
2031 if (
Opc == Instruction::LShr ||
Opc == Instruction::Shl)
2040 return new ZExtInst(
Builder.CreateAnd(NewBO,
X), Ty);
2048 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
2052 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
2054 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2061 const auto matchNotOrAnd =
2062 [Opcode, FlippedOpcode](
Value *
Op,
auto m_A,
auto m_B,
auto m_C,
2063 Value *&
X,
bool CountUses =
false) ->
bool {
2064 if (CountUses && !
Op->hasOneUse())
2070 return !CountUses ||
X->hasOneUse();
2086 return (Opcode == Instruction::Or)
2087 ? BinaryOperator::CreateAnd(
Xor, Builder.CreateNot(
A))
2096 return (Opcode == Instruction::Or)
2097 ? BinaryOperator::CreateAnd(
Xor, Builder.CreateNot(
B))
2106 Opcode, Builder.CreateBinOp(FlippedOpcode,
B,
C),
A));
2113 Opcode, Builder.CreateBinOp(FlippedOpcode,
A,
C),
B));
2119 if (Opcode == Instruction::Or && Op0->
hasOneUse() &&
2157 return (Opcode == Instruction::Or)
2159 : BinaryOperator::CreateOr(
Xor,
X);
2167 FlippedOpcode, Builder.CreateBinOp(Opcode,
C, Builder.CreateNot(
B)),
2175 FlippedOpcode, Builder.CreateBinOp(Opcode,
B, Builder.CreateNot(
C)),
2195 if (!
X->hasOneUse()) {
2196 Value *YZ = Builder.CreateBinOp(Opcode,
Y, Z);
2200 if (!
Y->hasOneUse()) {
2201 Value *XZ = Builder.CreateBinOp(Opcode,
X, Z);
2221 Type *Ty =
I.getType();
2223 Value *Op0 =
I.getOperand(0);
2224 Value *Op1 =
I.getOperand(1);
2232 unsigned Width = Ty->getScalarSizeInBits();
2236 case Instruction::And:
2237 if (
C->countl_one() < LastOneMath)
2240 case Instruction::Xor:
2241 case Instruction::Or:
2242 if (
C->countl_zero() < LastOneMath)
2249 Value *NewBinOp = Builder.CreateBinOp(OpC,
X, ConstantInt::get(Ty, *
C));
2251 ConstantInt::get(Ty, *C2), Op0);
2258 assert((
I.isBitwiseLogicOp() ||
I.getOpcode() == Instruction::Add) &&
2259 "Unexpected opcode");
2262 Constant *ShiftedC1, *ShiftedC2, *AddC;
2263 Type *Ty =
I.getType();
2279 if (!Op0Inst || !Op1Inst)
2285 if (ShiftOp != Op1Inst->getOpcode())
2289 if (
I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2293 I.getOpcode(), ShiftedC1,
Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2309 assert(
I.isBitwiseLogicOp() &&
"Should and/or/xor");
2310 if (!
I.getOperand(0)->hasOneUse())
2317 if (
Y && (!
Y->hasOneUse() ||
X->getIntrinsicID() !=
Y->getIntrinsicID()))
2323 if (!
Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2328 case Intrinsic::fshl:
2329 case Intrinsic::fshr: {
2330 if (
X->getOperand(2) !=
Y->getOperand(2))
2333 Builder.CreateBinOp(
I.getOpcode(),
X->getOperand(0),
Y->getOperand(0));
2335 Builder.CreateBinOp(
I.getOpcode(),
X->getOperand(1),
Y->getOperand(1));
2340 case Intrinsic::bswap:
2341 case Intrinsic::bitreverse: {
2342 Value *NewOp0 = Builder.CreateBinOp(
2343 I.getOpcode(),
X->getOperand(0),
2344 Y ?
Y->getOperand(0)
2345 : ConstantInt::get(
I.getType(), IID == Intrinsic::bswap
2365 unsigned Depth = 0) {
2373 if (!
I || !
I->isBitwiseLogicOp() ||
Depth >= 3)
2376 if (!
I->hasOneUse())
2377 SimplifyOnly =
true;
2380 SimplifyOnly, IC,
Depth + 1);
2382 SimplifyOnly, IC,
Depth + 1);
2383 if (!NewOp0 && !NewOp1)
2387 NewOp0 =
I->getOperand(0);
2389 NewOp1 =
I->getOperand(1);
2405 bool RHSIsLogical) {
2409 if (
Value *Res = foldBooleanAndOr(
LHS,
X,
I, IsAnd,
false))
2410 return RHSIsLogical ?
Builder.CreateLogicalOp(Opcode, Res,
Y)
2411 :
Builder.CreateBinOp(Opcode, Res,
Y);
2414 if (
Value *Res = foldBooleanAndOr(
LHS,
Y,
I, IsAnd,
false))
2415 return RHSIsLogical ?
Builder.CreateLogicalOp(Opcode,
X, Res)
2416 :
Builder.CreateBinOp(Opcode,
X, Res);
2424 Type *Ty =
I.getType();
2427 SQ.getWithInstruction(&
I)))
2458 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2467 Value *IsZero =
Builder.CreateICmpEQ(
X, ConstantInt::get(Ty, 0));
2486 return BinaryOperator::CreateAnd(
Builder.CreateNot(
X),
Y);
2492 Constant *NewC = ConstantInt::get(Ty, *
C & *XorC);
2495 return BinaryOperator::CreateXor(
And, NewC);
2506 APInt Together = *
C & *OrC;
2509 return BinaryOperator::CreateOr(
And, ConstantInt::get(Ty, Together));
2512 unsigned Width = Ty->getScalarSizeInBits();
2513 const APInt *ShiftC;
2515 ShiftC->
ult(Width)) {
2520 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->
zext(Width));
2521 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2529 return BinaryOperator::CreateLShr(
X, ConstantInt::get(Ty, *ShiftC));
2537 if (Op0->
hasOneUse() &&
C->isPowerOf2() && (*AddC & (*
C - 1)) == 0) {
2538 assert((*
C & *AddC) != 0 &&
"Expected common bit");
2540 return BinaryOperator::CreateXor(NewAnd, Op1);
2547 switch (
B->getOpcode()) {
2548 case Instruction::Xor:
2549 case Instruction::Or:
2550 case Instruction::Mul:
2551 case Instruction::Add:
2552 case Instruction::Sub:
2568 C->isIntN(
X->getType()->getScalarSizeInBits())) {
2569 unsigned XWidth =
X->getType()->getScalarSizeInBits();
2570 Constant *TruncC1 = ConstantInt::get(
X->getType(), C1->
trunc(XWidth));
2572 ?
Builder.CreateBinOp(BOpcode,
X, TruncC1)
2573 :
Builder.CreateBinOp(BOpcode, TruncC1,
X);
2574 Constant *TruncC = ConstantInt::get(
X->getType(),
C->trunc(XWidth));
2584 C->isMask(
X->getType()->getScalarSizeInBits())) {
2586 Value *TrY =
Builder.CreateTrunc(
Y,
X->getType(),
Y->getName() +
".tr");
2594 C->isMask(
X->getType()->getScalarSizeInBits())) {
2596 Value *TrY =
Builder.CreateTrunc(
Y,
X->getType(),
Y->getName() +
".tr");
2613 Value *NewRHS =
Builder.CreateAnd(
Y, Op1,
Y->getName() +
".masked");
2619 Value *NewLHS =
Builder.CreateAnd(
X, Op1,
X->getName() +
".masked");
2628 if (
C->isPowerOf2() &&
2631 int Log2C =
C->exactLogBase2();
2634 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2635 assert(BitNum >= 0 &&
"Expected demanded bits to handle impossible mask");
2636 Value *Cmp =
Builder.CreateICmpEQ(
X, ConstantInt::get(Ty, BitNum));
2668 if (Cmp && Cmp->isZeroValue()) {
2692 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2693 Attribute::NoImplicitFloat)) {
2697 Value *FAbs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2708 APInt(Ty->getScalarSizeInBits(),
2709 Ty->getScalarSizeInBits() -
2710 X->getType()->getScalarSizeInBits())))) {
2711 auto *SExt =
Builder.CreateSExt(
X, Ty,
X->getName() +
".signext");
2712 return BinaryOperator::CreateAnd(SExt, Op1);
2718 if (
I.getType()->isIntOrIntVectorTy(1)) {
2721 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,
true))
2726 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,
true))
2741 return BinaryOperator::CreateAnd(Op0,
B);
2744 return BinaryOperator::CreateAnd(Op1,
B);
2752 if (NotC !=
nullptr)
2753 return BinaryOperator::CreateAnd(Op0, NotC);
2762 if (NotC !=
nullptr)
2763 return BinaryOperator::CreateAnd(Op1,
Builder.CreateNot(
C));
2772 return BinaryOperator::CreateAnd(
A,
B);
2780 return BinaryOperator::CreateAnd(
A,
B);
2788 return BinaryOperator::CreateAnd(
Builder.CreateNot(
A),
B);
2796 return BinaryOperator::CreateAnd(
Builder.CreateNot(
A),
B);
2800 foldBooleanAndOr(Op0, Op1,
I,
true,
false))
2805 if (
auto *V = reassociateBooleanAndOr(Op0,
X,
Y,
I,
true,
2811 if (
auto *V = reassociateBooleanAndOr(Op1,
X,
Y,
I,
true,
2819 if (
Instruction *CastedAnd = foldCastedBitwiseLogic(
I))
2832 A->getType()->isIntOrIntVectorTy(1))
2838 A->getType()->isIntOrIntVectorTy(1))
2843 A->getType()->isIntOrIntVectorTy(1))
2850 if (
A->getType()->isIntOrIntVectorTy(1))
2863 *
C ==
X->getType()->getScalarSizeInBits() - 1) {
2872 *
C ==
X->getType()->getScalarSizeInBits() - 1) {
2883 Value *Start =
nullptr, *Step =
nullptr;
2891 return Canonicalized;
2893 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
2905 return BinaryOperator::CreateAnd(V, Op1);
2909 return BinaryOperator::CreateAnd(Op0, V);
2916 bool MatchBitReversals) {
2924 for (
auto *Inst : Insts) {
2925 Inst->setDebugLoc(
I.getDebugLoc());
2931std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
2935 assert(
Or.getOpcode() == BinaryOperator::Or &&
"Expecting or instruction");
2937 unsigned Width =
Or.getType()->getScalarSizeInBits();
2942 return std::nullopt;
2950 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2956 return std::nullopt;
2959 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2965 Or1->
getOpcode() == BinaryOperator::LShr &&
2966 "Illegal or(shift,shift) pair");
2970 auto matchShiftAmount = [&](
Value *L,
Value *R,
unsigned Width) ->
Value * {
2972 const APInt *LI, *RI;
2974 if (LI->
ult(Width) && RI->
ult(Width) && (*LI + *RI) == Width)
2975 return ConstantInt::get(L->getType(), *LI);
2999 if (ShVal0 != ShVal1)
3010 unsigned Mask = Width - 1;
3034 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
3036 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
3040 return std::nullopt;
3042 FShiftArgs = {ShVal0, ShVal1, ShAmt};
3059 const APInt *ZextHighShlAmt;
3062 return std::nullopt;
3066 return std::nullopt;
3068 unsigned HighSize =
High->getType()->getScalarSizeInBits();
3069 unsigned LowSize =
Low->getType()->getScalarSizeInBits();
3072 if (ZextHighShlAmt->
ult(LowSize) || ZextHighShlAmt->
ugt(Width - HighSize))
3073 return std::nullopt;
3083 const APInt *ZextLowShlAmt;
3090 if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
3096 ZextLowShlAmt->
ule(Width - LowSize) &&
"Invalid concat");
3098 FShiftArgs = {U, U, ConstantInt::get(Or0->
getType(), *ZextHighShlAmt)};
3103 if (FShiftArgs.
empty())
3104 return std::nullopt;
3106 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
3107 return std::make_pair(IID, FShiftArgs);
3113 auto [IID, FShiftArgs] = *Opt;
3124 assert(
Or.getOpcode() == Instruction::Or &&
"bswap requires an 'or'");
3125 Value *Op0 =
Or.getOperand(0), *Op1 =
Or.getOperand(1);
3128 unsigned Width = Ty->getScalarSizeInBits();
3129 if ((Width & 1) != 0)
3131 unsigned HalfWidth = Width / 2;
3138 Value *LowerSrc, *ShlVal, *UpperSrc;
3149 Value *NewLower = Builder.CreateZExt(
Lo, Ty);
3150 Value *NewUpper = Builder.CreateZExt(
Hi, Ty);
3151 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
3152 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
3153 return Builder.CreateIntrinsic(
id, Ty, BinOp);
3158 Value *LowerBSwap, *UpperBSwap;
3161 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
3165 Value *LowerBRev, *UpperBRev;
3168 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
3180 return Builder.CreateSExt(
X, Ty);
3188 for (
unsigned i = 0; i != NumElts; ++i) {
3191 if (!EltC1 || !EltC2)
3210 Type *Ty =
A->getType();
3226 if (
A->getType()->isIntOrIntVectorTy()) {
3228 if (NumSignBits ==
A->getType()->getScalarSizeInBits() &&
3251 Cond->getType()->isIntOrIntVectorTy(1)) {
3277 Cond->getType()->isIntOrIntVectorTy(1) &&
3291 Value *
D,
bool InvertFalseVal) {
3297 if (
Value *
Cond = getSelectCondition(
A,
C, InvertFalseVal)) {
3302 Type *SelTy =
A->getType();
3305 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3309 Type *EltTy =
Builder.getIntNTy(SelEltSize / Elts);
3326 bool IsAnd,
bool IsLogical,
3333 IsAnd ?
LHS->getInversePredicate() :
LHS->getPredicate();
3335 IsAnd ?
RHS->getInversePredicate() :
RHS->getPredicate();
3341 !(
LHS->hasOneUse() ||
RHS->hasOneUse()))
3344 auto MatchRHSOp = [LHS0, CInt](
const Value *RHSOp) {
3347 (CInt->
isZero() && RHSOp == LHS0);
3361 return Builder.CreateICmp(
3363 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->
getType(), *CInt + 1)),
3373 const SimplifyQuery Q =
SQ.getWithInstruction(&
I);
3376 Value *LHS0 =
LHS->getOperand(0), *RHS0 =
RHS->getOperand(0);
3377 Value *LHS1 =
LHS->getOperand(1), *RHS1 =
RHS->getOperand(1);
3379 const APInt *LHSC =
nullptr, *RHSC =
nullptr;
3386 if (LHS0 == RHS1 && LHS1 == RHS0) {
3390 if (LHS0 == RHS0 && LHS1 == RHS1) {
3393 bool IsSigned =
LHS->isSigned() ||
RHS->isSigned();
3416 RHS->setSameSign(
false);
3442 if (IsAnd && !IsLogical)
3468 return Builder.CreateICmp(PredL, NewOr,
3479 return Builder.CreateICmp(PredL, NewAnd,
3499 const APInt *AndC, *SmallC =
nullptr, *BigC =
nullptr;
3513 if (SmallC && BigC) {
3514 unsigned BigBitSize = BigC->getBitWidth();
3521 APInt
N = SmallC->
zext(BigBitSize) | *BigC;
3523 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3533 bool TrueIfSignedL, TrueIfSignedR;
3539 if ((TrueIfSignedL && !TrueIfSignedR &&
3542 (!TrueIfSignedL && TrueIfSignedR &&
3546 return Builder.CreateIsNeg(NewXor);
3549 if ((TrueIfSignedL && !TrueIfSignedR &&
3552 (!TrueIfSignedL && TrueIfSignedR &&
3556 return Builder.CreateIsNotNeg(NewXor);
3565 if (LHS0 == RHS0 && PredL == PredR &&
3567 !
I.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
3570 X->getType()->getScalarType()->isIEEELikeFPTy() &&
3571 APFloat(
X->getType()->getScalarType()->getFltSemantics(), *MaskC)
3573 ((LHSC->
isZero() && *RHSC == *MaskC) ||
3574 (RHSC->
isZero() && *LHSC == *MaskC)))
3578 return foldAndOrOfICmpsUsingRanges(
LHS,
RHS, IsAnd);
3593 SQ.getWithInstruction(&
I)))
3598 if (
Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp,
I, IsAnd, IsLogical))
3603 if (
Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical))
3614 assert(
I.getOpcode() == Instruction::Or &&
3615 "Simplification only supports or at the moment.");
3617 Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
3624 return Builder.CreateXor(Cmp1, Cmp4);
3626 return Builder.CreateXor(Cmp1, Cmp3);
3656 const unsigned EltBitWidth = EltTy->getBitWidth();
3658 if (TargetBitWidth % EltBitWidth != 0 || ShlAmt % EltBitWidth != 0)
3660 const unsigned TargetEltWidth = TargetBitWidth / EltBitWidth;
3661 const unsigned ShlEltAmt = ShlAmt / EltBitWidth;
3663 const unsigned MaskIdx =
3664 DL.isLittleEndian() ? ShlEltAmt : TargetEltWidth - ShlEltAmt - 1;
3666 VecOffset =
static_cast<int64_t
>(VecIdx) -
static_cast<int64_t
>(MaskIdx);
3667 Mask.resize(TargetEltWidth);
3681 Mask.resize(SrcTy->getNumElements());
3695 const unsigned NumVecElts = VecTy->getNumElements();
3696 bool FoundVecOffset =
false;
3697 for (
unsigned Idx = 0; Idx < ShuffleMask.size(); ++Idx) {
3700 const unsigned ShuffleIdx = ShuffleMask[Idx];
3701 if (ShuffleIdx >= NumVecElts) {
3702 const unsigned ConstIdx = ShuffleIdx - NumVecElts;
3705 if (!ConstElt || !ConstElt->isNullValue())
3710 if (FoundVecOffset) {
3711 if (VecOffset + Idx != ShuffleIdx)
3714 if (ShuffleIdx < Idx)
3716 VecOffset = ShuffleIdx - Idx;
3717 FoundVecOffset =
true;
3721 return FoundVecOffset;
3734 bool AlreadyInsertedMaskedElt = Mask.test(InsertIdx);
3736 if (!AlreadyInsertedMaskedElt)
3737 Mask.reset(InsertIdx);
3746 assert(
I.getOpcode() == Instruction::Or);
3747 Value *LhsVec, *RhsVec;
3748 int64_t LhsVecOffset, RhsVecOffset;
3756 if (LhsVec != RhsVec || LhsVecOffset != RhsVecOffset)
3760 const unsigned ZeroVecIdx =
3763 for (
unsigned Idx : Mask.set_bits()) {
3764 assert(LhsVecOffset + Idx >= 0);
3765 ShuffleMask[Idx] = LhsVecOffset + Idx;
3768 Value *MaskedVec = Builder.CreateShuffleVector(
3770 I.getName() +
".v");
3796 const APInt *ShiftedMaskConst =
nullptr;
3803 if (!
match(MaskedOp0,
3808 if (LShrAmt > ShlAmt)
3810 Offset = ShlAmt - LShrAmt;
3812 Mask = ShiftedMaskConst ? ShiftedMaskConst->
shl(LShrAmt)
3814 Int->getType()->getScalarSizeInBits(), LShrAmt);
3824 Value *LhsInt, *RhsInt;
3825 APInt LhsMask, RhsMask;
3827 bool IsLhsShlNUW, IsLhsShlNSW, IsRhsShlNUW, IsRhsShlNSW;
3834 if (LhsInt != RhsInt || LhsOffset != RhsOffset)
3837 APInt Mask = LhsMask | RhsMask;
3840 Value *Res = Builder.CreateShl(
3842 Builder.CreateAnd(LhsInt, Mask, LhsInt->
getName() +
".mask"), DestTy,
3844 ConstantInt::get(DestTy, LhsOffset),
"", IsLhsShlNUW && IsRhsShlNUW,
3845 IsLhsShlNSW && IsRhsShlNSW);
3870 return std::nullopt;
3873 Value *Original =
nullptr;
3874 const APInt *Mask =
nullptr;
3875 const APInt *MulConst =
nullptr;
3878 if (MulConst->
isZero() || Mask->isZero())
3879 return std::nullopt;
3881 return std::optional<DecomposedBitMaskMul>(
3882 {Original, *MulConst, *Mask,
3888 const APInt *EqZero =
nullptr, *NeZero =
nullptr;
3892 auto ICmpDecompose =
3895 if (!ICmpDecompose.has_value())
3896 return std::nullopt;
3899 ICmpDecompose->C.isZero());
3904 if (!EqZero->
isZero() || NeZero->isZero())
3905 return std::nullopt;
3907 if (!ICmpDecompose->Mask.isPowerOf2() || ICmpDecompose->Mask.isZero() ||
3908 NeZero->getBitWidth() != ICmpDecompose->Mask.getBitWidth())
3909 return std::nullopt;
3911 if (!NeZero->urem(ICmpDecompose->Mask).isZero())
3912 return std::nullopt;
3914 return std::optional<DecomposedBitMaskMul>(
3915 {ICmpDecompose->X, NeZero->udiv(ICmpDecompose->Mask),
3916 ICmpDecompose->Mask,
false,
false});
3919 return std::nullopt;
3935 if (Decomp0->isCombineableWith(*Decomp1)) {
3936 Value *NewAnd = Builder.CreateAnd(
3938 ConstantInt::get(Decomp0->X->getType(), Decomp0->Mask + Decomp1->Mask));
3940 return Builder.CreateMul(
3941 NewAnd, ConstantInt::get(NewAnd->
getType(), Decomp1->Factor),
"",
3942 Decomp0->NUW && Decomp1->NUW, Decomp0->NSW && Decomp1->NSW);
3961 if (
Value *Res = foldDisjointOr(
LHS,
X))
3962 return Builder.CreateOr(Res,
Y,
"",
true);
3963 if (
Value *Res = foldDisjointOr(
LHS,
Y))
3964 return Builder.CreateOr(Res,
X,
"",
true);
3968 if (
Value *Res = foldDisjointOr(
X,
RHS))
3969 return Builder.CreateOr(Res,
Y,
"",
true);
3970 if (
Value *Res = foldDisjointOr(
Y,
RHS))
3971 return Builder.CreateOr(Res,
X,
"",
true);
3985 const APInt *C1, *C2;
3994 Constant *NewC = ConstantInt::get(
X->getType(), C2->
udiv(*C1));
4005 SQ.getWithInstruction(&
I)))
4041 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
4042 Type *Ty =
I.getType();
4043 if (Ty->isIntOrIntVectorTy(1)) {
4046 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0,
false))
4051 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1,
false))
4085 if (
Value *Res = foldDisjointOr(
I.getOperand(0),
I.getOperand(1)))
4088 if (
Value *Res = reassociateDisjointOr(
I.getOperand(0),
I.getOperand(1)))
4099 return BinaryOperator::CreateXor(
Or, ConstantInt::get(Ty, *CV));
4106 Value *IncrementY =
Builder.CreateAdd(
Y, ConstantInt::get(Ty, 1));
4107 return BinaryOperator::CreateMul(
X, IncrementY);
4116 const APInt *C0, *C1;
4122 return BinaryOperator::CreateOr(
Builder.CreateAnd(
X, *C0),
B);
4125 return BinaryOperator::CreateOr(
Builder.CreateAnd(
X, *C1),
A);
4129 return BinaryOperator::CreateXor(
Builder.CreateAnd(
X, *C0),
B);
4132 return BinaryOperator::CreateXor(
Builder.CreateAnd(
X, *C1),
A);
4135 if ((*C0 & *C1).
isZero()) {
4140 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4141 return BinaryOperator::CreateAnd(
A, C01);
4147 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4148 return BinaryOperator::CreateAnd(
B, C01);
4152 const APInt *C2, *C3;
4157 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
4158 return BinaryOperator::CreateAnd(
Or, C01);
4168 if (
Value *V = matchSelectFromAndOr(
A,
C,
B,
D))
4170 if (
Value *V = matchSelectFromAndOr(
A,
C,
D,
B))
4172 if (
Value *V = matchSelectFromAndOr(
C,
A,
B,
D))
4174 if (
Value *V = matchSelectFromAndOr(
C,
A,
D,
B))
4176 if (
Value *V = matchSelectFromAndOr(
B,
D,
A,
C))
4178 if (
Value *V = matchSelectFromAndOr(
B,
D,
C,
A))
4180 if (
Value *V = matchSelectFromAndOr(
D,
B,
A,
C))
4182 if (
Value *V = matchSelectFromAndOr(
D,
B,
C,
A))
4191 if (
Value *V = matchSelectFromAndOr(
A,
C,
B,
D,
true))
4193 if (
Value *V = matchSelectFromAndOr(
A,
C,
D,
B,
true))
4195 if (
Value *V = matchSelectFromAndOr(
C,
A,
B,
D,
true))
4197 if (
Value *V = matchSelectFromAndOr(
C,
A,
D,
B,
true))
4206 return BinaryOperator::CreateOr(Op0,
C);
4213 return BinaryOperator::CreateOr(Op1,
C);
4219 bool SwappedForXor =
false;
4222 SwappedForXor =
true;
4229 return BinaryOperator::CreateOr(Op0,
B);
4231 return BinaryOperator::CreateOr(Op0,
A);
4236 return BinaryOperator::CreateOr(
A,
B);
4264 return BinaryOperator::CreateOr(Nand,
C);
4272 foldBooleanAndOr(Op0, Op1,
I,
false,
false))
4277 if (
auto *V = reassociateBooleanAndOr(Op0,
X,
Y,
I,
false,
4283 if (
auto *V = reassociateBooleanAndOr(Op1,
X,
Y,
I,
false,
4303 A->getType()->isIntOrIntVectorTy(1))
4325 return IsDisjointOuter && IsDisjointInner
4326 ? BinaryOperator::CreateDisjointOr(Inner, CI)
4327 : BinaryOperator::CreateOr(Inner, CI);
4334 Value *
X =
nullptr, *
Y =
nullptr;
4366 return BinaryOperator::CreateXor(
A,
B);
4382 Value *
Mul, *Ov, *MulIsNotZero, *UMulWithOv;
4400 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
4409 const APInt *C1, *C2;
4424 : C2->
uadd_ov(*C1, Overflow));
4428 return BinaryOperator::CreateOr(Ov, NewCmp);
4447 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1),
X);
4453 Value *Start =
nullptr, *Step =
nullptr;
4471 return BinaryOperator::CreateOr(
4483 return BinaryOperator::CreateOr(
4491 return Canonicalized;
4493 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
4513 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4514 Attribute::NoImplicitFloat)) {
4518 Value *FAbs =
Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
4528 if ((KnownX.
One & *C2) == *C2)
4529 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, *C1 | *C2));
4538 return BinaryOperator::CreateOr(V, Op1);
4542 return BinaryOperator::CreateOr(Op0, V);
4555 assert(
I.getOpcode() == Instruction::Xor);
4556 Value *Op0 =
I.getOperand(0);
4557 Value *Op1 =
I.getOperand(1);
4568 return BinaryOperator::CreateXor(
A,
B);
4576 return BinaryOperator::CreateXor(
A,
B);
4584 return BinaryOperator::CreateXor(
A,
B);
4606 assert(
I.getOpcode() == Instruction::Xor &&
I.getOperand(0) ==
LHS &&
4607 I.getOperand(1) ==
RHS &&
"Should be 'xor' with these operands");
4610 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
4611 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
4614 if (LHS0 == RHS1 && LHS1 == RHS0) {
4618 if (LHS0 == RHS0 && LHS1 == RHS1) {
4621 bool IsSigned =
LHS->isSigned() ||
RHS->isSigned();
4626 const APInt *LC, *RC;
4635 bool TrueIfSignedL, TrueIfSignedR;
4640 return TrueIfSignedL == TrueIfSignedR ?
Builder.CreateIsNeg(XorLR) :
4641 Builder.CreateIsNotNeg(XorLR);
4651 if (CRUnion && CRIntersect)
4652 if (
auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4653 if (CR->isFullSet())
4655 if (CR->isEmptySet())
4660 CR->getEquivalentICmp(NewPred, NewC,
Offset);
4667 NewV =
Builder.CreateAdd(NewV, ConstantInt::get(Ty,
Offset));
4668 return Builder.CreateICmp(NewPred, NewV,
4669 ConstantInt::get(Ty, NewC));
4701 ICmpInst *
X =
nullptr, *
Y =
nullptr;
4702 if (OrICmp ==
LHS && AndICmp ==
RHS) {
4707 if (OrICmp ==
RHS && AndICmp ==
LHS) {
4714 Y->setPredicate(
Y->getInversePredicate());
4716 if (!
Y->hasOneUse()) {
4723 Builder.SetInsertPoint(
Y->getParent(), ++(
Y->getIterator()));
4727 Y->replaceUsesWithIf(NotY,
4728 [NotY](Use &U) {
return U.getUser() != NotY; });
4766 Value *NewA = Builder.CreateAnd(
D, NotM);
4767 return BinaryOperator::CreateXor(NewA,
X);
4773 Type *EltTy =
C->getType()->getScalarType();
4777 Value *NotC = Builder.CreateNot(
C);
4778 Value *
RHS = Builder.CreateAnd(
B, NotC);
4779 return BinaryOperator::CreateOr(
LHS,
RHS);
4794 return A ==
C ||
A ==
D ||
B ==
C ||
B ==
D;
4802 Value *NotY = Builder.CreateNot(
Y);
4803 return BinaryOperator::CreateOr(
X, NotY);
4810 Value *NotX = Builder.CreateNot(
X);
4811 return BinaryOperator::CreateOr(
Y, NotX);
4821 assert(
Xor.getOpcode() == Instruction::Xor &&
"Expected an xor instruction.");
4827 Value *Op0 =
Xor.getOperand(0), *Op1 =
Xor.getOperand(1);
4835 Op1->
hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4840 Value *IsNeg = Builder.CreateIsNeg(
A);
4843 Value *NegA =
Add->hasNoUnsignedWrap()
4845 : Builder.CreateNeg(
A,
"",
Add->hasNoSignedWrap());
4863 Op->replaceUsesWithIf(NotOp,
4864 [NotOp](
Use &U) {
return U.getUser() != NotOp; });
4905 Builder.SetInsertPoint(*
I.getInsertionPointAfterDef());
4908 NewLogicOp =
Builder.CreateBinOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4911 Builder.CreateLogicalOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4934 Value *NotOp0 =
nullptr;
4935 Value *NotOp1 =
nullptr;
4936 Value **OpToInvert =
nullptr;
4953 Builder.SetInsertPoint(*
I.getInsertionPointAfterDef());
4956 NewBinOp =
Builder.CreateBinOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4958 NewBinOp =
Builder.CreateLogicalOp(NewOpc, Op0, Op1,
I.getName() +
".not");
4981 Type *Ty =
I.getType();
4984 Value *NotY = Builder.CreateNot(
Y,
Y->getName() +
".not");
4985 return BinaryOperator::CreateOr(
X, NotY);
4988 Value *NotY = Builder.CreateNot(
Y,
Y->getName() +
".not");
4996 return BinaryOperator::CreateAnd(
X, NotY);
5004 BinaryOperator *NotVal;
5011 return BinaryOperator::CreateAnd(DecX, NotY);
5016 return BinaryOperator::CreateAShr(
X,
Y);
5022 return BinaryOperator::CreateAShr(
X,
Y);
5029 return new SExtInst(IsNotNeg, Ty);
5056 return BinaryOperator::CreateAdd(
Builder.CreateNot(
X),
Y);
5081 return new BitCastInst(Sext, Ty);
5092 if (
II &&
II->hasOneUse()) {
5096 Value *InvMaxMin =
Builder.CreateBinaryIntrinsic(InvID,
X, NotY);
5100 if (
II->getIntrinsicID() == Intrinsic::is_fpclass) {
5103 1, ConstantInt::get(ClassMask->
getType(),
5119 Value *TV = Sel->getTrueValue();
5120 Value *FV = Sel->getFalseValue();
5123 bool InvertibleT = (CmpT && CmpT->hasOneUse()) ||
isa<Constant>(TV);
5124 bool InvertibleF = (CmpF && CmpF->hasOneUse()) ||
isa<Constant>(FV);
5125 if (InvertibleT && InvertibleF) {
5127 CmpT->setPredicate(CmpT->getInversePredicate());
5131 CmpF->setPredicate(CmpF->getInversePredicate());
5155 SQ.getWithInstruction(&
I)))
5185 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5193 return BinaryOperator::CreateXor(XorAC,
Y);
5196 return BinaryOperator::CreateXor(XorBC,
X);
5206 return BinaryOperator::CreateDisjointOr(Op0, Op1);
5208 return BinaryOperator::CreateOr(Op0, Op1);
5225 return BinaryOperator::CreateXor(
5248 *CA ==
X->getType()->getScalarSizeInBits() - 1 &&
5256 Type *Ty =
I.getType();
5264 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *
C + *RHSC),
X);
5268 return BinaryOperator::CreateAdd(
X, ConstantInt::get(Ty, *
C + *RHSC));
5273 return BinaryOperator::CreateXor(
X, ConstantInt::get(Ty, *
C ^ *RHSC));
5279 if (
II &&
II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
5281 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
5284 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
5297 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *
C));
5303 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *
C));
5321 !
Builder.GetInsertBlock()->getParent()->hasFnAttribute(
5322 Attribute::NoImplicitFloat)) {
5345 auto *Opnd0 =
Builder.CreateLShr(
X, C2);
5346 Opnd0->takeName(Op0);
5347 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
5357 return BinaryOperator::CreateAnd(
X,
Builder.CreateNot(Op0));
5361 return BinaryOperator::CreateAnd(
X,
Builder.CreateNot(Op1));
5366 return BinaryOperator::CreateAnd(Op0,
Builder.CreateNot(
X));
5374 return BinaryOperator::CreateAnd(Op1,
Builder.CreateNot(
X));
5380 return BinaryOperator::CreateXor(
5386 return BinaryOperator::CreateXor(
5392 return BinaryOperator::CreateOr(
A,
B);
5396 return BinaryOperator::CreateOr(
A,
B);
5406 return BinaryOperator::CreateOr(
A,
B);
5421 if (
B ==
C ||
B ==
D)
5427 return BinaryOperator::CreateAnd(
Builder.CreateXor(
B,
C), NotA);
5432 if (
I.getType()->isIntOrIntVectorTy(1) &&
5436 if (
B ==
C ||
B ==
D)
5450 if (
Value *V = foldXorOfICmps(LHS, RHS,
I))
5453 if (
Instruction *CastedXor = foldCastedBitwiseLogic(
I))
5466 return BinaryOperator::CreateXor(
Builder.CreateXor(
X,
Y), C1);
5472 return Canonicalized;
5474 if (
Instruction *Folded = foldLogicOfIsFPClass(
I, Op0, Op1))
5477 if (
Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(
I))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool isSigned(unsigned int Opcode)
static Value * foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and fold (icmp ne ctpop(X) 1) & ...
static Value * foldBitmaskMul(Value *Op0, Value *Op1, InstCombiner::BuilderTy &Builder)
(A & N) * C + (A & M) * C -> (A & (N + M)) & C This also accepts the equivalent select form of (A & N...
static unsigned conjugateICmpMask(unsigned Mask)
Convert an analysis of a masked ICmp into its equivalent if all boolean operations had the opposite s...
static Instruction * foldNotXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Value * getFCmpValue(unsigned Code, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder, FMFSource FMF)
This is the complement of getFCmpCode, which turns an opcode and two operands into either a FCmp inst...
static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, uint64_t &ClassMask)
Match an fcmp against a special value that performs a test possible by llvm.is.fpclass.
static Value * foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, Instruction &CxtI, InstCombiner::BuilderTy &Builder)
General pattern: X & Y.
static Instruction * visitMaskedMerge(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a masked merge, in the canonical form of: (assuming that A only has one use....
static Instruction * canonicalizeAbs(BinaryOperator &Xor, InstCombiner::BuilderTy &Builder)
Canonicalize a shifty way to code absolute value to the more common pattern that uses negation and se...
static Value * foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder, InstCombinerImpl &IC)
Reduce a pair of compares that check if a value has exactly 1 bit set.
static Value * foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Instruction * foldOrToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Value * simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, bool SimplifyOnly, InstCombinerImpl &IC, unsigned Depth=0)
static Instruction * matchDeMorgansLaws(BinaryOperator &I, InstCombiner &IC)
Match variations of De Morgan's Laws: (~A & ~B) == (~(A | B)) (~A | ~B) == (~(A & B))
static Value * foldLogOpOfMaskedICmpsAsymmetric(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static Instruction * foldAndToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, ICmpInst::Predicate Pred)
Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) satisfies.
static Instruction * foldXorToXor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
A ^ B can be specified using other logic ops in a variety of patterns.
static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth)
Return true if a constant shift amount is always less than the specified bit-width.
static Instruction * foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, InstCombinerImpl &IC)
Fold {and,or,xor} (cast X), C.
static Value * foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, bool IsLogical, IRBuilderBase &Builder)
static bool canFreelyInvert(InstCombiner &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldNegativePower2AndShiftedMask(Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff B is a contiguous set of o...
static Value * matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, FCmpInst *RHS)
and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
static Value * foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, InstCombiner::BuilderTy &Builder)
Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & (icmp(X & M) !...
static Value * stripSignOnlyFPOps(Value *Val)
Ignore all operations which only change the sign of a value, returning the underlying magnitude value...
static Value * foldOrUnsignedUMulOverflowICmp(BinaryOperator &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Fold Res, Overflow = (umul.with.overflow x c1); (or Overflow (ugt Res c2)) --> (ugt x (c2/c1)).
static Value * freelyInvert(InstCombinerImpl &IC, Value *Op, Instruction *IgnoredUser)
static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder)
Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single (icmp(A & X) ==/!...
static std::optional< IntPart > matchIntPart(Value *V)
Match an extraction of bits from an integer.
static Instruction * canonicalizeLogicFirst(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * reassociateFCmps(BinaryOperator &BO, InstCombiner::BuilderTy &Builder)
This a limited reassociation for a special case (see above) where we are checking if two values are e...
static Value * getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, InstCombiner::BuilderTy &Builder)
This is the complement of getICmpCode, which turns an opcode and two operands into either a constant ...
static Value * extractIntPart(const IntPart &P, IRBuilderBase &Builder)
Materialize an extraction of bits from an integer in IR.
static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches fcmp u__ x, +/-inf.
static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS)
Matches canonical form of isnan, fcmp ord x, 0.
static bool areInverseVectorBitmasks(Constant *C1, Constant *C2)
If all elements of two constant vectors are 0/-1 and inverses, return true.
MaskedICmpType
Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns that can be simplified.
static Instruction * foldComplexAndOrPatterns(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Try folding relatively complex patterns for both And and Or operations with all And and Or swapped.
static bool matchZExtedSubInteger(Value *V, Value *&Int, APInt &Mask, uint64_t &Offset, bool &IsShlNUW, bool &IsShlNSW)
Match V as "lshr -> mask -> zext -> shl".
static std::optional< DecomposedBitMaskMul > matchBitmaskMul(Value *V)
static Value * foldOrOfInversions(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool matchSubIntegerPackFromVector(Value *V, Value *&Vec, int64_t &VecOffset, SmallBitVector &Mask, const DataLayout &DL)
Match V as "shufflevector -> bitcast" or "extractelement -> zext -> shl" patterns,...
static Instruction * matchFunnelShift(Instruction &Or, InstCombinerImpl &IC)
Match UB-safe variants of the funnel shift intrinsic.
static Instruction * reassociateForUses(BinaryOperator &BO, InstCombinerImpl::BuilderTy &Builder)
Try to reassociate a pair of binops so that values with one use only are part of the same instruction...
static Value * matchOrConcat(Instruction &Or, InstCombiner::BuilderTy &Builder)
Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
static Value * foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, const SimplifyQuery &Q)
static Instruction * foldBitwiseLogicWithIntrinsics(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< unsigned, unsigned > > getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR)
Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
static Instruction * foldIntegerPackFromVector(Instruction &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
Try to fold the join of two scalar integers whose contents are packed elements of the same vector.
static Value * foldIntegerRepackThroughZExt(Value *Lhs, Value *Rhs, InstCombiner::BuilderTy &Builder)
Try to fold the join of two scalar integers whose bits are unpacked and zexted from the same source i...
static Value * foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, bool IsLogical, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
Reduce logic-of-compares with equality to a constant by substituting a common operand with the consta...
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
bool bitwiseIsEqual(const APFloat &RHS) const
APInt bitcastToAPInt() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
unsigned countLeadingOnes() const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
int32_t exactLogBase2() const
LLVM_ABI APInt reverseBits() const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countLeadingZeros() const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
Type * getSrcTy() const
Return the source type, as a convenience.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Type * getDestTy() const
Return the destination type, as a convenience.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static Predicate getOrderedPredicate(Predicate Pred)
Returns the ordered variant of a floating point compare.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
LLVM_ABI std::optional< ConstantRange > exactUnionWith(const ConstantRange &CR) const
Union the two ranges and return the result if it can be represented exactly, otherwise return std::nu...
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isWrappedSet() const
Return true if this set wraps around the unsigned domain.
const APInt & getUpper() const
Return the upper value for this range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
A parsed version of the target data layout string in and methods for querying it.
This instruction compares its operands according to the predicate given to the constructor.
This provides a helper for copying FMF from an instruction or setting specified flags.
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getInverseCmpPredicate() const
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitOr(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Value * insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside)
Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise (V < Lo || V >= Hi).
bool sinkNotIntoLogicalOp(Instruction &I)
std::optional< std::pair< Intrinsic::ID, SmallVector< Value *, 3 > > > convertOrOfShiftsToFunnelShift(Instruction &Or)
Instruction * visitAnd(BinaryOperator &I)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Value * simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted)
Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * visitXor(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
static Value * peekThroughBitcast(Value *V, bool OneUseOnly=false)
Return the source operand of a potentially bitcasted value while optionally checking if it has one us...
bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser)
Given i1 V, can every user of V be freely adapted if V is changed to !V ?
void addToWorklist(Instruction *I)
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
A wrapper class for inspecting calls to intrinsic functions.
This class represents a sign extension of integer types.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
LLVM_ABI const fltSemantics & getFltSemantics() const
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
cst_pred_ty< is_shifted_mask > m_ShiftedMask()
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
ShiftLike_match< LHS, Instruction::Shl > m_ShlOrSelf(const LHS &L, uint64_t &R)
Matches shl L, ConstShAmt or L itself (R will be set to zero in this case).
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
DisjointOr_match< LHS, RHS, true > m_c_DisjointOr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, FCmpInst > m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
NodeAddr< CodeNode * > Code
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
Constant * getPredForFCmpCode(unsigned Code, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getFCmpCode.
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool predicatesFoldable(CmpInst::Predicate P1, CmpInst::Predicate P2)
Return true if both predicates match sign or if at least one of them is an equality comparison (which...
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI bool recognizeBSwapOrBitReverseIdiom(Instruction *I, bool MatchBSwaps, bool MatchBitReversals, SmallVectorImpl< Instruction * > &InsertedInsts)
Try to match a bswap or bitreverse idiom.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned getICmpCode(CmpInst::Predicate Pred)
Encode a icmp predicate into a three bit mask.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
unsigned getFCmpCode(CmpInst::Predicate CC)
Similar to getICmpCode but for FCmpInst.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
Constant * getPredForICmpCode(unsigned Code, bool Sign, Type *OpTy, CmpInst::Predicate &Pred)
This is the complement of getICmpCode.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
bool isCombineableWith(const DecomposedBitMaskMul Other)
static LLVM_ABI bool hasSignBitInMSB(const fltSemantics &)
bool isNonNegative() const
Returns true if this value is known to be non-negative.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
SimplifyQuery getWithInstruction(const Instruction *I) const