LLVM 22.0.0git
InstCombinePHI.cpp
Go to the documentation of this file.
1//===- InstCombinePHI.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitPHINode function.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
23#include <optional>
24
25using namespace llvm;
26using namespace llvm::PatternMatch;
27
28#define DEBUG_TYPE "instcombine"
29
31MaxNumPhis("instcombine-max-num-phis", cl::init(512),
32 cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
33
34STATISTIC(NumPHIsOfInsertValues,
35 "Number of phi-of-insertvalue turned into insertvalue-of-phis");
36STATISTIC(NumPHIsOfExtractValues,
37 "Number of phi-of-extractvalue turned into extractvalue-of-phi");
38STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
39
40/// The PHI arguments will be folded into a single operation with a PHI node
41/// as input. The debug location of the single operation will be the merged
42/// locations of the original PHI node arguments.
44 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
45 Inst->setDebugLoc(FirstInst->getDebugLoc());
46 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
47 // will be inefficient.
48 assert(!isa<CallInst>(Inst));
49
50 for (Value *V : drop_begin(PN.incoming_values())) {
51 auto *I = cast<Instruction>(V);
52 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
53 }
54}
55
56/// If the phi is within a phi web, which is formed by the def-use chain
57/// of phis and all the phis in the web are only used in the other phis.
58/// In this case, these phis are dead and we will remove all of them.
62 Stack.push_back(&PN);
63 while (!Stack.empty()) {
64 PHINode *Phi = Stack.pop_back_val();
65 if (!Visited.insert(Phi).second)
66 continue;
67 // Early stop if the set of PHIs is large
68 if (Visited.size() == 16)
69 return false;
70 for (User *Use : Phi->users()) {
71 if (PHINode *PhiUse = dyn_cast<PHINode>(Use))
72 Stack.push_back(PhiUse);
73 else
74 return false;
75 }
76 }
77 for (PHINode *Phi : Visited)
78 replaceInstUsesWith(*Phi, PoisonValue::get(Phi->getType()));
79 for (PHINode *Phi : Visited)
81 return true;
82}
83
84// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
85// If there is an existing pointer typed PHI that produces the same value as PN,
86// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
87// PHI node:
88//
89// Case-1:
90// bb1:
91// int_init = PtrToInt(ptr_init)
92// br label %bb2
93// bb2:
94// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
95// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
96// ptr_val2 = IntToPtr(int_val)
97// ...
98// use(ptr_val2)
99// ptr_val_inc = ...
100// inc_val_inc = PtrToInt(ptr_val_inc)
101//
102// ==>
103// bb1:
104// br label %bb2
105// bb2:
106// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
107// ...
108// use(ptr_val)
109// ptr_val_inc = ...
110//
111// Case-2:
112// bb1:
113// int_ptr = BitCast(ptr_ptr)
114// int_init = Load(int_ptr)
115// br label %bb2
116// bb2:
117// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
118// ptr_val2 = IntToPtr(int_val)
119// ...
120// use(ptr_val2)
121// ptr_val_inc = ...
122// inc_val_inc = PtrToInt(ptr_val_inc)
123// ==>
124// bb1:
125// ptr_init = Load(ptr_ptr)
126// br label %bb2
127// bb2:
128// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
129// ...
130// use(ptr_val)
131// ptr_val_inc = ...
132// ...
133//
135 if (!PN.getType()->isIntegerTy())
136 return false;
137 if (!PN.hasOneUse())
138 return false;
139
140 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
141 if (!IntToPtr)
142 return false;
143
144 // Check if the pointer is actually used as pointer:
145 auto HasPointerUse = [](Instruction *IIP) {
146 for (User *U : IIP->users()) {
147 Value *Ptr = nullptr;
148 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
149 Ptr = LoadI->getPointerOperand();
150 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
151 Ptr = SI->getPointerOperand();
152 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
153 Ptr = GI->getPointerOperand();
154 }
155
156 if (Ptr && Ptr == IIP)
157 return true;
158 }
159 return false;
160 };
161
162 if (!HasPointerUse(IntToPtr))
163 return false;
164
165 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
166 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
167 return false;
168
169 SmallVector<Value *, 4> AvailablePtrVals;
170 for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
171 BasicBlock *BB = std::get<0>(Incoming);
172 Value *Arg = std::get<1>(Incoming);
173
174 // Arg could be a constant, constant expr, etc., which we don't cover here.
175 if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
176 return false;
177
178 // First look backward:
179 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
180 AvailablePtrVals.emplace_back(PI->getOperand(0));
181 continue;
182 }
183
184 // Next look forward:
185 Value *ArgIntToPtr = nullptr;
186 for (User *U : Arg->users()) {
187 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
188 (DT.dominates(cast<Instruction>(U), BB) ||
189 cast<Instruction>(U)->getParent() == BB)) {
190 ArgIntToPtr = U;
191 break;
192 }
193 }
194
195 if (ArgIntToPtr) {
196 AvailablePtrVals.emplace_back(ArgIntToPtr);
197 continue;
198 }
199
200 // If Arg is defined by a PHI, allow it. This will also create
201 // more opportunities iteratively.
202 if (isa<PHINode>(Arg)) {
203 AvailablePtrVals.emplace_back(Arg);
204 continue;
205 }
206
207 // For a single use integer load:
208 auto *LoadI = dyn_cast<LoadInst>(Arg);
209 if (!LoadI)
210 return false;
211
212 if (!LoadI->hasOneUse())
213 return false;
214
215 // Push the integer typed Load instruction into the available
216 // value set, and fix it up later when the pointer typed PHI
217 // is synthesized.
218 AvailablePtrVals.emplace_back(LoadI);
219 }
220
221 // Now search for a matching PHI
222 auto *BB = PN.getParent();
223 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
224 "Not enough available ptr typed incoming values");
225 PHINode *MatchingPtrPHI = nullptr;
226 unsigned NumPhis = 0;
227 for (PHINode &PtrPHI : BB->phis()) {
228 // FIXME: consider handling this in AggressiveInstCombine
229 if (NumPhis++ > MaxNumPhis)
230 return false;
231 if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
232 continue;
233 if (any_of(zip(PN.blocks(), AvailablePtrVals),
234 [&](const auto &BlockAndValue) {
235 BasicBlock *BB = std::get<0>(BlockAndValue);
236 Value *V = std::get<1>(BlockAndValue);
237 return PtrPHI.getIncomingValueForBlock(BB) != V;
238 }))
239 continue;
240 MatchingPtrPHI = &PtrPHI;
241 break;
242 }
243
244 if (MatchingPtrPHI) {
245 assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
246 "Phi's Type does not match with IntToPtr");
247 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
248 // to make sure another transform can't undo it in the meantime.
249 replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
250 eraseInstFromFunction(*IntToPtr);
252 return true;
253 }
254
255 // If it requires a conversion for every PHI operand, do not do it.
256 if (all_of(AvailablePtrVals, [&](Value *V) {
257 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
258 }))
259 return false;
260
261 // If any of the operand that requires casting is a terminator
262 // instruction, do not do it. Similarly, do not do the transform if the value
263 // is PHI in a block with no insertion point, for example, a catchswitch
264 // block, since we will not be able to insert a cast after the PHI.
265 if (any_of(AvailablePtrVals, [&](Value *V) {
266 if (V->getType() == IntToPtr->getType())
267 return false;
268 auto *Inst = dyn_cast<Instruction>(V);
269 if (!Inst)
270 return false;
271 if (Inst->isTerminator())
272 return true;
273 auto *BB = Inst->getParent();
274 if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
275 return true;
276 return false;
277 }))
278 return false;
279
280 PHINode *NewPtrPHI = PHINode::Create(
281 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
282
283 InsertNewInstBefore(NewPtrPHI, PN.getIterator());
285 for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
286 auto *IncomingBB = std::get<0>(Incoming);
287 auto *IncomingVal = std::get<1>(Incoming);
288
289 if (IncomingVal->getType() == IntToPtr->getType()) {
290 NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
291 continue;
292 }
293
294#ifndef NDEBUG
295 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
296 assert((isa<PHINode>(IncomingVal) ||
297 IncomingVal->getType()->isPointerTy() ||
298 (LoadI && LoadI->hasOneUse())) &&
299 "Can not replace LoadInst with multiple uses");
300#endif
301 // Need to insert a BitCast.
302 // For an integer Load instruction with a single use, the load + IntToPtr
303 // cast will be simplified into a pointer load:
304 // %v = load i64, i64* %a.ip, align 8
305 // %v.cast = inttoptr i64 %v to float **
306 // ==>
307 // %v.ptrp = bitcast i64 * %a.ip to float **
308 // %v.cast = load float *, float ** %v.ptrp, align 8
309 Instruction *&CI = Casts[IncomingVal];
310 if (!CI) {
311 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
312 IncomingVal->getName() + ".ptr");
313 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
314 BasicBlock::iterator InsertPos(IncomingI);
315 InsertPos++;
316 BasicBlock *BB = IncomingI->getParent();
317 if (isa<PHINode>(IncomingI))
318 InsertPos = BB->getFirstInsertionPt();
319 assert(InsertPos != BB->end() && "should have checked above");
320 InsertNewInstBefore(CI, InsertPos);
321 } else {
322 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
323 InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
324 }
325 }
326 NewPtrPHI->addIncoming(CI, IncomingBB);
327 }
328
329 // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
330 // to make sure another transform can't undo it in the meantime.
331 replaceInstUsesWith(*IntToPtr, NewPtrPHI);
332 eraseInstFromFunction(*IntToPtr);
334 return true;
335}
336
337// Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
338// fold Phi-operand to bitcast.
340 // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
341 // Make sure all uses of phi are ptr2int.
342 if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
343 return nullptr;
344
345 // Iterating over all operands to check presence of target pointers for
346 // optimization.
347 bool OperandWithRoundTripCast = false;
348 for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
349 if (auto *NewOp =
350 simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
351 replaceOperand(PN, OpNum, NewOp);
352 OperandWithRoundTripCast = true;
353 }
354 }
355 if (!OperandWithRoundTripCast)
356 return nullptr;
357 return &PN;
358}
359
360/// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
361/// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
364 auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
365
366 // Scan to see if all operands are `insertvalue`'s with the same indices,
367 // and all have a single use.
368 for (Value *V : drop_begin(PN.incoming_values())) {
369 auto *I = dyn_cast<InsertValueInst>(V);
370 if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
371 return nullptr;
372 }
373
374 // For each operand of an `insertvalue`
375 std::array<PHINode *, 2> NewOperands;
376 for (int OpIdx : {0, 1}) {
377 auto *&NewOperand = NewOperands[OpIdx];
378 // Create a new PHI node to receive the values the operand has in each
379 // incoming basic block.
380 NewOperand = PHINode::Create(
381 FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
382 FirstIVI->getOperand(OpIdx)->getName() + ".pn");
383 // And populate each operand's PHI with said values.
384 for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
385 NewOperand->addIncoming(
386 cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
387 std::get<0>(Incoming));
388 InsertNewInstBefore(NewOperand, PN.getIterator());
389 }
390
391 // And finally, create `insertvalue` over the newly-formed PHI nodes.
392 auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
393 FirstIVI->getIndices(), PN.getName());
394
395 PHIArgMergedDebugLoc(NewIVI, PN);
396 ++NumPHIsOfInsertValues;
397 return NewIVI;
398}
399
400/// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
401/// turn this into a phi[a,b] and a single extractvalue.
404 auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
405
406 // Scan to see if all operands are `extractvalue`'s with the same indices,
407 // and all have a single use.
408 for (Value *V : drop_begin(PN.incoming_values())) {
409 auto *I = dyn_cast<ExtractValueInst>(V);
410 if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
411 I->getAggregateOperand()->getType() !=
412 FirstEVI->getAggregateOperand()->getType())
413 return nullptr;
414 }
415
416 // Create a new PHI node to receive the values the aggregate operand has
417 // in each incoming basic block.
418 auto *NewAggregateOperand = PHINode::Create(
419 FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
420 FirstEVI->getAggregateOperand()->getName() + ".pn");
421 // And populate the PHI with said values.
422 for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
423 NewAggregateOperand->addIncoming(
424 cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
425 std::get<0>(Incoming));
426 InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
427
428 // And finally, create `extractvalue` over the newly-formed PHI nodes.
429 auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
430 FirstEVI->getIndices(), PN.getName());
431
432 PHIArgMergedDebugLoc(NewEVI, PN);
433 ++NumPHIsOfExtractValues;
434 return NewEVI;
435}
436
437/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
438/// adds all have a single user, turn this into a phi and a single binop.
440 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
441 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
442 unsigned Opc = FirstInst->getOpcode();
443 Value *LHSVal = FirstInst->getOperand(0);
444 Value *RHSVal = FirstInst->getOperand(1);
445
446 Type *LHSType = LHSVal->getType();
447 Type *RHSType = RHSVal->getType();
448
449 // Scan to see if all operands are the same opcode, and all have one user.
450 for (Value *V : drop_begin(PN.incoming_values())) {
451 Instruction *I = dyn_cast<Instruction>(V);
452 if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
453 // Verify type of the LHS matches so we don't fold cmp's of different
454 // types.
455 I->getOperand(0)->getType() != LHSType ||
456 I->getOperand(1)->getType() != RHSType)
457 return nullptr;
458
459 // If they are CmpInst instructions, check their predicates
460 if (CmpInst *CI = dyn_cast<CmpInst>(I))
461 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
462 return nullptr;
463
464 // Keep track of which operand needs a phi node.
465 if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
466 if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
467 }
468
469 // If both LHS and RHS would need a PHI, don't do this transformation,
470 // because it would increase the number of PHIs entering the block,
471 // which leads to higher register pressure. This is especially
472 // bad when the PHIs are in the header of a loop.
473 if (!LHSVal && !RHSVal)
474 return nullptr;
475
476 // Otherwise, this is safe to transform!
477
478 Value *InLHS = FirstInst->getOperand(0);
479 Value *InRHS = FirstInst->getOperand(1);
480 PHINode *NewLHS = nullptr, *NewRHS = nullptr;
481 if (!LHSVal) {
482 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
483 FirstInst->getOperand(0)->getName() + ".pn");
484 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
485 InsertNewInstBefore(NewLHS, PN.getIterator());
486 LHSVal = NewLHS;
487 }
488
489 if (!RHSVal) {
490 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
491 FirstInst->getOperand(1)->getName() + ".pn");
492 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
493 InsertNewInstBefore(NewRHS, PN.getIterator());
494 RHSVal = NewRHS;
495 }
496
497 // Add all operands to the new PHIs.
498 if (NewLHS || NewRHS) {
499 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
500 BasicBlock *InBB = std::get<0>(Incoming);
501 Value *InVal = std::get<1>(Incoming);
502 Instruction *InInst = cast<Instruction>(InVal);
503 if (NewLHS) {
504 Value *NewInLHS = InInst->getOperand(0);
505 NewLHS->addIncoming(NewInLHS, InBB);
506 }
507 if (NewRHS) {
508 Value *NewInRHS = InInst->getOperand(1);
509 NewRHS->addIncoming(NewInRHS, InBB);
510 }
511 }
512 }
513
514 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
515 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
516 LHSVal, RHSVal);
517 PHIArgMergedDebugLoc(NewCI, PN);
518 return NewCI;
519 }
520
521 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
522 BinaryOperator *NewBinOp =
523 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
524
525 NewBinOp->copyIRFlags(PN.getIncomingValue(0));
526
527 for (Value *V : drop_begin(PN.incoming_values()))
528 NewBinOp->andIRFlags(V);
529
530 PHIArgMergedDebugLoc(NewBinOp, PN);
531 return NewBinOp;
532}
533
535 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
536
537 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
538 FirstInst->op_end());
539 // This is true if all GEP bases are allocas and if all indices into them are
540 // constants.
541 bool AllBasePointersAreAllocas = true;
542
543 // We don't want to replace this phi if the replacement would require
544 // more than one phi, which leads to higher register pressure. This is
545 // especially bad when the PHIs are in the header of a loop.
546 bool NeededPhi = false;
547
548 // Remember flags of the first phi-operand getelementptr.
549 GEPNoWrapFlags NW = FirstInst->getNoWrapFlags();
550
551 // Scan to see if all operands are the same opcode, and all have one user.
552 for (Value *V : drop_begin(PN.incoming_values())) {
553 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
554 if (!GEP || !GEP->hasOneUser() ||
555 GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
556 GEP->getNumOperands() != FirstInst->getNumOperands())
557 return nullptr;
558
559 NW &= GEP->getNoWrapFlags();
560
561 // Keep track of whether or not all GEPs are of alloca pointers.
562 if (AllBasePointersAreAllocas &&
563 (!isa<AllocaInst>(GEP->getOperand(0)) ||
564 !GEP->hasAllConstantIndices()))
565 AllBasePointersAreAllocas = false;
566
567 // Compare the operand lists.
568 for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
569 if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
570 continue;
571
572 // Don't merge two GEPs when two operands differ (introducing phi nodes)
573 // if one of the PHIs has a constant for the index. The index may be
574 // substantially cheaper to compute for the constants, so making it a
575 // variable index could pessimize the path. This also handles the case
576 // for struct indices, which must always be constant.
577 if (isa<Constant>(FirstInst->getOperand(Op)) ||
578 isa<Constant>(GEP->getOperand(Op)))
579 return nullptr;
580
581 if (FirstInst->getOperand(Op)->getType() !=
582 GEP->getOperand(Op)->getType())
583 return nullptr;
584
585 // If we already needed a PHI for an earlier operand, and another operand
586 // also requires a PHI, we'd be introducing more PHIs than we're
587 // eliminating, which increases register pressure on entry to the PHI's
588 // block.
589 if (NeededPhi)
590 return nullptr;
591
592 FixedOperands[Op] = nullptr; // Needs a PHI.
593 NeededPhi = true;
594 }
595 }
596
597 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
598 // bother doing this transformation. At best, this will just save a bit of
599 // offset calculation, but all the predecessors will have to materialize the
600 // stack address into a register anyway. We'd actually rather *clone* the
601 // load up into the predecessors so that we have a load of a gep of an alloca,
602 // which can usually all be folded into the load.
603 if (AllBasePointersAreAllocas)
604 return nullptr;
605
606 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
607 // that is variable.
608 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
609
610 bool HasAnyPHIs = false;
611 for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
612 if (FixedOperands[I])
613 continue; // operand doesn't need a phi.
614 Value *FirstOp = FirstInst->getOperand(I);
615 PHINode *NewPN =
616 PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
617 InsertNewInstBefore(NewPN, PN.getIterator());
618
619 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
620 OperandPhis[I] = NewPN;
621 FixedOperands[I] = NewPN;
622 HasAnyPHIs = true;
623 }
624
625 // Add all operands to the new PHIs.
626 if (HasAnyPHIs) {
627 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
628 BasicBlock *InBB = std::get<0>(Incoming);
629 Value *InVal = std::get<1>(Incoming);
630 GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
631
632 for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
633 if (PHINode *OpPhi = OperandPhis[Op])
634 OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
635 }
636 }
637
638 Value *Base = FixedOperands[0];
639 GetElementPtrInst *NewGEP =
641 ArrayRef(FixedOperands).slice(1), NW);
642 PHIArgMergedDebugLoc(NewGEP, PN);
643 return NewGEP;
644}
645
646/// Return true if we know that it is safe to sink the load out of the block
647/// that defines it. This means that it must be obvious the value of the load is
648/// not changed from the point of the load to the end of the block it is in.
649///
650/// Finally, it is safe, but not profitable, to sink a load targeting a
651/// non-address-taken alloca. Doing so will cause us to not promote the alloca
652/// to a register.
654 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
655
656 for (++BBI; BBI != E; ++BBI)
657 if (BBI->mayWriteToMemory()) {
658 // Calls that only access inaccessible memory do not block sinking the
659 // load.
660 if (auto *CB = dyn_cast<CallBase>(BBI))
661 if (CB->onlyAccessesInaccessibleMemory())
662 continue;
663 return false;
664 }
665
666 // Check for non-address taken alloca. If not address-taken already, it isn't
667 // profitable to do this xform.
668 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
669 bool IsAddressTaken = false;
670 for (User *U : AI->users()) {
671 if (isa<LoadInst>(U)) continue;
672 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
673 // If storing TO the alloca, then the address isn't taken.
674 if (SI->getOperand(1) == AI) continue;
675 }
676 IsAddressTaken = true;
677 break;
678 }
679
680 if (!IsAddressTaken && AI->isStaticAlloca())
681 return false;
682 }
683
684 // If this load is a load from a GEP with a constant offset from an alloca,
685 // then we don't want to sink it. In its present form, it will be
686 // load [constant stack offset]. Sinking it will cause us to have to
687 // materialize the stack addresses in each predecessor in a register only to
688 // do a shared load from register in the successor.
689 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
690 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
691 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
692 return false;
693
694 return true;
695}
696
698 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
699
700 // Can't forward swifterror through a phi.
701 if (FirstLI->getOperand(0)->isSwiftError())
702 return nullptr;
703
704 // FIXME: This is overconservative; this transform is allowed in some cases
705 // for atomic operations.
706 if (FirstLI->isAtomic())
707 return nullptr;
708
709 // When processing loads, we need to propagate two bits of information to the
710 // sunk load: whether it is volatile, and what its alignment is.
711 bool IsVolatile = FirstLI->isVolatile();
712 Align LoadAlignment = FirstLI->getAlign();
713 const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
714
715 // We can't sink the load if the loaded value could be modified between the
716 // load and the PHI.
717 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
719 return nullptr;
720
721 // If the PHI is of volatile loads and the load block has multiple
722 // successors, sinking it would remove a load of the volatile value from
723 // the path through the other successor.
724 if (IsVolatile &&
725 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
726 return nullptr;
727
728 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
729 BasicBlock *InBB = std::get<0>(Incoming);
730 Value *InVal = std::get<1>(Incoming);
731 LoadInst *LI = dyn_cast<LoadInst>(InVal);
732 if (!LI || !LI->hasOneUser() || LI->isAtomic())
733 return nullptr;
734
735 // Make sure all arguments are the same type of operation.
736 if (LI->isVolatile() != IsVolatile ||
737 LI->getPointerAddressSpace() != LoadAddrSpace)
738 return nullptr;
739
740 // Can't forward swifterror through a phi.
741 if (LI->getOperand(0)->isSwiftError())
742 return nullptr;
743
744 // We can't sink the load if the loaded value could be modified between
745 // the load and the PHI.
746 if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
747 return nullptr;
748
749 LoadAlignment = std::min(LoadAlignment, LI->getAlign());
750
751 // If the PHI is of volatile loads and the load block has multiple
752 // successors, sinking it would remove a load of the volatile value from
753 // the path through the other successor.
754 if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
755 return nullptr;
756 }
757
758 // Okay, they are all the same operation. Create a new PHI node of the
759 // correct type, and PHI together all of the LHS's of the instructions.
760 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
762 PN.getName()+".in");
763
764 Value *InVal = FirstLI->getOperand(0);
765 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
766 LoadInst *NewLI =
767 new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
768 NewLI->copyMetadata(*FirstLI);
769
770 // Add all operands to the new PHI and combine TBAA metadata.
771 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
772 BasicBlock *BB = std::get<0>(Incoming);
773 Value *V = std::get<1>(Incoming);
774 LoadInst *LI = cast<LoadInst>(V);
775 combineMetadataForCSE(NewLI, LI, true);
776 Value *NewInVal = LI->getOperand(0);
777 if (NewInVal != InVal)
778 InVal = nullptr;
779 NewPN->addIncoming(NewInVal, BB);
780 }
781
782 if (InVal) {
783 // The new PHI unions all of the same values together. This is really
784 // common, so we handle it intelligently here for compile-time speed.
785 NewLI->setOperand(0, InVal);
786 delete NewPN;
787 } else {
788 InsertNewInstBefore(NewPN, PN.getIterator());
789 }
790
791 // If this was a volatile load that we are merging, make sure to loop through
792 // and mark all the input loads as non-volatile. If we don't do this, we will
793 // insert a new volatile load and the old ones will not be deletable.
794 if (IsVolatile)
795 for (Value *IncValue : PN.incoming_values())
796 cast<LoadInst>(IncValue)->setVolatile(false);
797
798 PHIArgMergedDebugLoc(NewLI, PN);
799 return NewLI;
800}
801
802/// TODO: This function could handle other cast types, but then it might
803/// require special-casing a cast from the 'i1' type. See the comment in
804/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
806 // We cannot create a new instruction after the PHI if the terminator is an
807 // EHPad because there is no valid insertion point.
808 if (Instruction *TI = Phi.getParent()->getTerminator())
809 if (TI->isEHPad())
810 return nullptr;
811
812 // Early exit for the common case of a phi with two operands. These are
813 // handled elsewhere. See the comment below where we check the count of zexts
814 // and constants for more details.
815 unsigned NumIncomingValues = Phi.getNumIncomingValues();
816 if (NumIncomingValues < 3)
817 return nullptr;
818
819 // Find the narrower type specified by the first zext.
820 Type *NarrowType = nullptr;
821 for (Value *V : Phi.incoming_values()) {
822 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
823 NarrowType = Zext->getSrcTy();
824 break;
825 }
826 }
827 if (!NarrowType)
828 return nullptr;
829
830 // Walk the phi operands checking that we only have zexts or constants that
831 // we can shrink for free. Store the new operands for the new phi.
832 SmallVector<Value *, 4> NewIncoming;
833 unsigned NumZexts = 0;
834 unsigned NumConsts = 0;
835 for (Value *V : Phi.incoming_values()) {
836 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
837 // All zexts must be identical and have one user.
838 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
839 return nullptr;
840 NewIncoming.push_back(Zext->getOperand(0));
841 NumZexts++;
842 } else if (auto *C = dyn_cast<Constant>(V)) {
843 // Make sure that constants can fit in the new type.
844 Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
845 if (!Trunc)
846 return nullptr;
847 NewIncoming.push_back(Trunc);
848 NumConsts++;
849 } else {
850 // If it's not a cast or a constant, bail out.
851 return nullptr;
852 }
853 }
854
855 // The more common cases of a phi with no constant operands or just one
856 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
857 // respectively. foldOpIntoPhi() wants to do the opposite transform that is
858 // performed here. It tries to replicate a cast in the phi operand's basic
859 // block to expose other folding opportunities. Thus, InstCombine will
860 // infinite loop without this check.
861 if (NumConsts == 0 || NumZexts < 2)
862 return nullptr;
863
864 // All incoming values are zexts or constants that are safe to truncate.
865 // Create a new phi node of the narrow type, phi together all of the new
866 // operands, and zext the result back to the original type.
867 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
868 Phi.getName() + ".shrunk");
869 for (unsigned I = 0; I != NumIncomingValues; ++I)
870 NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
871
872 InsertNewInstBefore(NewPhi, Phi.getIterator());
873 auto *CI = CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
874
875 // We use a dropped location here because the new ZExt is necessarily a merge
876 // of ZExtInsts and at least one constant from incoming branches; the presence
877 // of the constant means we have no viable DebugLoc from that branch, and
878 // therefore we must use a dropped location.
879 CI->setDebugLoc(DebugLoc::getDropped());
880 return CI;
881}
882
883/// If all operands to a PHI node are the same "unary" operator and they all are
884/// only used by the PHI, PHI together their inputs, and do the operation once,
885/// to the result of the PHI.
887 // We cannot create a new instruction after the PHI if the terminator is an
888 // EHPad because there is no valid insertion point.
889 if (Instruction *TI = PN.getParent()->getTerminator())
890 if (TI->isEHPad())
891 return nullptr;
892
893 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
894
895 if (isa<GetElementPtrInst>(FirstInst))
896 return foldPHIArgGEPIntoPHI(PN);
897 if (isa<LoadInst>(FirstInst))
898 return foldPHIArgLoadIntoPHI(PN);
899 if (isa<InsertValueInst>(FirstInst))
901 if (isa<ExtractValueInst>(FirstInst))
903
904 // Scan the instruction, looking for input operations that can be folded away.
905 // If all input operands to the phi are the same instruction (e.g. a cast from
906 // the same type or "+42") we can pull the operation through the PHI, reducing
907 // code size and simplifying code.
908 Constant *ConstantOp = nullptr;
909 Type *CastSrcTy = nullptr;
910
911 if (isa<CastInst>(FirstInst)) {
912 CastSrcTy = FirstInst->getOperand(0)->getType();
913
914 // Be careful about transforming integer PHIs. We don't want to pessimize
915 // the code by turning an i32 into an i1293.
916 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
917 if (!shouldChangeType(PN.getType(), CastSrcTy))
918 return nullptr;
919 }
920 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
921 // Can fold binop, compare or shift here if the RHS is a constant,
922 // otherwise call FoldPHIArgBinOpIntoPHI.
923 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
924 if (!ConstantOp)
925 return foldPHIArgBinOpIntoPHI(PN);
926 } else {
927 return nullptr; // Cannot fold this operation.
928 }
929
930 // Check to see if all arguments are the same operation.
931 for (Value *V : drop_begin(PN.incoming_values())) {
932 Instruction *I = dyn_cast<Instruction>(V);
933 if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
934 return nullptr;
935 if (CastSrcTy) {
936 if (I->getOperand(0)->getType() != CastSrcTy)
937 return nullptr; // Cast operation must match.
938 } else if (I->getOperand(1) != ConstantOp) {
939 return nullptr;
940 }
941 }
942
943 // Okay, they are all the same operation. Create a new PHI node of the
944 // correct type, and PHI together all of the LHS's of the instructions.
945 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
947 PN.getName()+".in");
948
949 Value *InVal = FirstInst->getOperand(0);
950 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
951
952 // Add all operands to the new PHI.
953 for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
954 BasicBlock *BB = std::get<0>(Incoming);
955 Value *V = std::get<1>(Incoming);
956 Value *NewInVal = cast<Instruction>(V)->getOperand(0);
957 if (NewInVal != InVal)
958 InVal = nullptr;
959 NewPN->addIncoming(NewInVal, BB);
960 }
961
962 Value *PhiVal;
963 if (InVal) {
964 // The new PHI unions all of the same values together. This is really
965 // common, so we handle it intelligently here for compile-time speed.
966 PhiVal = InVal;
967 delete NewPN;
968 } else {
969 InsertNewInstBefore(NewPN, PN.getIterator());
970 PhiVal = NewPN;
971 }
972
973 // Insert and return the new operation.
974 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
975 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
976 PN.getType());
977 PHIArgMergedDebugLoc(NewCI, PN);
978 return NewCI;
979 }
980
981 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
982 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
983 BinOp->copyIRFlags(PN.getIncomingValue(0));
984
985 for (Value *V : drop_begin(PN.incoming_values()))
986 BinOp->andIRFlags(V);
987
988 PHIArgMergedDebugLoc(BinOp, PN);
989 return BinOp;
990 }
991
992 CmpInst *CIOp = cast<CmpInst>(FirstInst);
993 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
994 PhiVal, ConstantOp);
995 PHIArgMergedDebugLoc(NewCI, PN);
996 return NewCI;
997}
998
999/// Return true if this phi node is always equal to NonPhiInVal.
1000/// This happens with mutually cyclic phi nodes like:
1001/// z = some value; x = phi (y, z); y = phi (x, z)
1002static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
1003 SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
1004 // See if we already saw this PHI node.
1005 if (!ValueEqualPHIs.insert(PN).second)
1006 return true;
1007
1008 // Don't scan crazily complex things.
1009 if (ValueEqualPHIs.size() == 16)
1010 return false;
1011
1012 // Scan the operands to see if they are either phi nodes or are equal to
1013 // the value.
1014 for (Value *Op : PN->incoming_values()) {
1015 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
1016 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
1017 if (NonPhiInVal)
1018 return false;
1019 NonPhiInVal = OpPN;
1020 }
1021 } else if (Op != NonPhiInVal)
1022 return false;
1023 }
1024
1025 return true;
1026}
1027
1028/// Return an existing non-zero constant if this phi node has one, otherwise
1029/// return constant 1.
1031 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1032 for (Value *V : PN.operands())
1033 if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1034 if (!ConstVA->isZero())
1035 return ConstVA;
1036 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1037}
1038
1039namespace {
1040struct PHIUsageRecord {
1041 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
1042 unsigned Shift; // The amount shifted.
1043 Instruction *Inst; // The trunc instruction.
1044
1045 PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
1046 : PHIId(Pn), Shift(Sh), Inst(User) {}
1047
1048 bool operator<(const PHIUsageRecord &RHS) const {
1049 if (PHIId < RHS.PHIId) return true;
1050 if (PHIId > RHS.PHIId) return false;
1051 if (Shift < RHS.Shift) return true;
1052 if (Shift > RHS.Shift) return false;
1053 return Inst->getType()->getPrimitiveSizeInBits() <
1055 }
1056};
1057
1058struct LoweredPHIRecord {
1059 PHINode *PN; // The PHI that was lowered.
1060 unsigned Shift; // The amount shifted.
1061 unsigned Width; // The width extracted.
1062
1063 LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
1064 : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1065
1066 // Ctor form used by DenseMap.
1067 LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
1068};
1069} // namespace
1070
1071namespace llvm {
1072 template<>
1073 struct DenseMapInfo<LoweredPHIRecord> {
1074 static inline LoweredPHIRecord getEmptyKey() {
1075 return LoweredPHIRecord(nullptr, 0);
1076 }
1077 static inline LoweredPHIRecord getTombstoneKey() {
1078 return LoweredPHIRecord(nullptr, 1);
1079 }
1080 static unsigned getHashValue(const LoweredPHIRecord &Val) {
1081 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1082 (Val.Width>>3);
1083 }
1084 static bool isEqual(const LoweredPHIRecord &LHS,
1085 const LoweredPHIRecord &RHS) {
1086 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1087 LHS.Width == RHS.Width;
1088 }
1089 };
1090} // namespace llvm
1091
1092
1093/// This is an integer PHI and we know that it has an illegal type: see if it is
1094/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1095/// the various pieces being extracted. This sort of thing is introduced when
1096/// SROA promotes an aggregate to large integer values.
1097///
1098/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1099/// inttoptr. We should produce new PHIs in the right type.
1100///
1102 // PHIUsers - Keep track of all of the truncated values extracted from a set
1103 // of PHIs, along with their offset. These are the things we want to rewrite.
1105
1106 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1107 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
1108 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1109 // check the uses of (to ensure they are all extracts).
1110 SmallVector<PHINode*, 8> PHIsToSlice;
1111 SmallPtrSet<PHINode*, 8> PHIsInspected;
1112
1113 PHIsToSlice.push_back(&FirstPhi);
1114 PHIsInspected.insert(&FirstPhi);
1115
1116 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1117 PHINode *PN = PHIsToSlice[PHIId];
1118
1119 // Scan the input list of the PHI. If any input is an invoke, and if the
1120 // input is defined in the predecessor, then we won't be split the critical
1121 // edge which is required to insert a truncate. Because of this, we have to
1122 // bail out.
1123 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1124 BasicBlock *BB = std::get<0>(Incoming);
1125 Value *V = std::get<1>(Incoming);
1126 InvokeInst *II = dyn_cast<InvokeInst>(V);
1127 if (!II)
1128 continue;
1129 if (II->getParent() != BB)
1130 continue;
1131
1132 // If we have a phi, and if it's directly in the predecessor, then we have
1133 // a critical edge where we need to put the truncate. Since we can't
1134 // split the edge in instcombine, we have to bail out.
1135 return nullptr;
1136 }
1137
1138 // If the incoming value is a PHI node before a catchswitch, we cannot
1139 // extract the value within that BB because we cannot insert any non-PHI
1140 // instructions in the BB.
1141 for (auto *Pred : PN->blocks())
1142 if (Pred->getFirstInsertionPt() == Pred->end())
1143 return nullptr;
1144
1145 for (User *U : PN->users()) {
1146 Instruction *UserI = cast<Instruction>(U);
1147
1148 // If the user is a PHI, inspect its uses recursively.
1149 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1150 if (PHIsInspected.insert(UserPN).second)
1151 PHIsToSlice.push_back(UserPN);
1152 continue;
1153 }
1154
1155 // Truncates are always ok.
1156 if (isa<TruncInst>(UserI)) {
1157 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1158 continue;
1159 }
1160
1161 // Otherwise it must be a lshr which can only be used by one trunc.
1162 if (UserI->getOpcode() != Instruction::LShr ||
1163 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1164 !isa<ConstantInt>(UserI->getOperand(1)))
1165 return nullptr;
1166
1167 // Bail on out of range shifts.
1168 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1169 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1170 return nullptr;
1171
1172 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1173 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1174 }
1175 }
1176
1177 // If we have no users, they must be all self uses, just nuke the PHI.
1178 if (PHIUsers.empty())
1179 return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1180
1181 // If this phi node is transformable, create new PHIs for all the pieces
1182 // extracted out of it. First, sort the users by their offset and size.
1183 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1184
1185 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1186 for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
1187 << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
1188
1189 // PredValues - This is a temporary used when rewriting PHI nodes. It is
1190 // hoisted out here to avoid construction/destruction thrashing.
1192
1193 // ExtractedVals - Each new PHI we introduce is saved here so we don't
1194 // introduce redundant PHIs.
1196
1197 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1198 unsigned PHIId = PHIUsers[UserI].PHIId;
1199 PHINode *PN = PHIsToSlice[PHIId];
1200 unsigned Offset = PHIUsers[UserI].Shift;
1201 Type *Ty = PHIUsers[UserI].Inst->getType();
1202
1203 PHINode *EltPHI;
1204
1205 // If we've already lowered a user like this, reuse the previously lowered
1206 // value.
1207 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1208
1209 // Otherwise, Create the new PHI node for this user.
1210 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1211 PN->getName() + ".off" + Twine(Offset),
1212 PN->getIterator());
1213 assert(EltPHI->getType() != PN->getType() &&
1214 "Truncate didn't shrink phi?");
1215
1216 for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1217 BasicBlock *Pred = std::get<0>(Incoming);
1218 Value *InVal = std::get<1>(Incoming);
1219 Value *&PredVal = PredValues[Pred];
1220
1221 // If we already have a value for this predecessor, reuse it.
1222 if (PredVal) {
1223 EltPHI->addIncoming(PredVal, Pred);
1224 continue;
1225 }
1226
1227 // Handle the PHI self-reuse case.
1228 if (InVal == PN) {
1229 PredVal = EltPHI;
1230 EltPHI->addIncoming(PredVal, Pred);
1231 continue;
1232 }
1233
1234 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1235 // If the incoming value was a PHI, and if it was one of the PHIs we
1236 // already rewrote it, just use the lowered value.
1237 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1238 PredVal = Res;
1239 EltPHI->addIncoming(PredVal, Pred);
1240 continue;
1241 }
1242 }
1243
1244 // Otherwise, do an extract in the predecessor.
1246 Value *Res = InVal;
1247 if (Offset)
1248 Res = Builder.CreateLShr(
1249 Res, ConstantInt::get(InVal->getType(), Offset), "extract");
1250 Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1251 PredVal = Res;
1252 EltPHI->addIncoming(Res, Pred);
1253
1254 // If the incoming value was a PHI, and if it was one of the PHIs we are
1255 // rewriting, we will ultimately delete the code we inserted. This
1256 // means we need to revisit that PHI to make sure we extract out the
1257 // needed piece.
1258 if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
1259 if (PHIsInspected.count(OldInVal)) {
1260 unsigned RefPHIId =
1261 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1262 PHIUsers.push_back(
1263 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
1264 ++UserE;
1265 }
1266 }
1267 PredValues.clear();
1268
1269 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1270 << *EltPHI << '\n');
1271 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1272 }
1273
1274 // Replace the use of this piece with the PHI node.
1275 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1276 }
1277
1278 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1279 // with poison.
1280 Value *Poison = PoisonValue::get(FirstPhi.getType());
1281 for (PHINode *PHI : drop_begin(PHIsToSlice))
1283 return replaceInstUsesWith(FirstPhi, Poison);
1284}
1285
1287 const DominatorTree &DT) {
1288 // Simplify the following patterns:
1289 // if (cond)
1290 // / \
1291 // ... ...
1292 // \ /
1293 // phi [true] [false]
1294 // and
1295 // switch (cond)
1296 // case v1: / \ case v2:
1297 // ... ...
1298 // \ /
1299 // phi [v1] [v2]
1300 // Make sure all inputs are constants.
1301 if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1302 return nullptr;
1303
1304 BasicBlock *BB = PN.getParent();
1305 // Do not bother with unreachable instructions.
1306 if (!DT.isReachableFromEntry(BB))
1307 return nullptr;
1308
1309 // Determine which value the condition of the idom has for which successor.
1311 auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1312 Value *Cond;
1315 auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
1316 SuccForValue[C] = Succ;
1317 ++SuccCount[Succ];
1318 };
1319 if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
1320 if (BI->isUnconditional())
1321 return nullptr;
1322
1323 Cond = BI->getCondition();
1324 AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
1325 AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
1326 } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
1327 Cond = SI->getCondition();
1328 ++SuccCount[SI->getDefaultDest()];
1329 for (auto Case : SI->cases())
1330 AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
1331 } else {
1332 return nullptr;
1333 }
1334
1335 if (Cond->getType() != PN.getType())
1336 return nullptr;
1337
1338 // Check that edges outgoing from the idom's terminators dominate respective
1339 // inputs of the Phi.
1340 std::optional<bool> Invert;
1341 for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
1342 auto *Input = cast<ConstantInt>(std::get<0>(Pair));
1343 BasicBlock *Pred = std::get<1>(Pair);
1344 auto IsCorrectInput = [&](ConstantInt *Input) {
1345 // The input needs to be dominated by the corresponding edge of the idom.
1346 // This edge cannot be a multi-edge, as that would imply that multiple
1347 // different condition values follow the same edge.
1348 auto It = SuccForValue.find(Input);
1349 return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
1350 DT.dominates(BasicBlockEdge(IDom, It->second),
1351 BasicBlockEdge(Pred, BB));
1352 };
1353
1354 // Depending on the constant, the condition may need to be inverted.
1355 bool NeedsInvert;
1356 if (IsCorrectInput(Input))
1357 NeedsInvert = false;
1358 else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
1359 NeedsInvert = true;
1360 else
1361 return nullptr;
1362
1363 // Make sure the inversion requirement is always the same.
1364 if (Invert && *Invert != NeedsInvert)
1365 return nullptr;
1366
1367 Invert = NeedsInvert;
1368 }
1369
1370 if (!*Invert)
1371 return Cond;
1372
1373 // This Phi is actually opposite to branching condition of IDom. We invert
1374 // the condition that will potentially open up some opportunities for
1375 // sinking.
1376 auto InsertPt = BB->getFirstInsertionPt();
1377 if (InsertPt != BB->end()) {
1378 Self.Builder.SetInsertPoint(&*BB, InsertPt);
1379 return Self.Builder.CreateNot(Cond);
1380 }
1381
1382 return nullptr;
1383}
1384
1385// Fold iv = phi(start, iv.next = iv2.next op start)
1386// where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step)
1387// and iv2.start op start = start
1388// to iv = iv2 op start
1390 BasicBlock *BB = PN.getParent();
1391 if (PN.getNumIncomingValues() != 2)
1392 return nullptr;
1393
1394 Value *Start;
1395 Instruction *IvNext;
1396 BinaryOperator *Iv2Next;
1397 auto MatchOuterIV = [&](Value *V1, Value *V2) {
1398 if (match(V2, m_c_BinOp(m_Specific(V1), m_BinOp(Iv2Next))) ||
1399 match(V2, m_GEP(m_Specific(V1), m_BinOp(Iv2Next)))) {
1400 Start = V1;
1401 IvNext = cast<Instruction>(V2);
1402 return true;
1403 }
1404 return false;
1405 };
1406
1407 if (!MatchOuterIV(PN.getIncomingValue(0), PN.getIncomingValue(1)) &&
1408 !MatchOuterIV(PN.getIncomingValue(1), PN.getIncomingValue(0)))
1409 return nullptr;
1410
1411 PHINode *Iv2;
1412 Value *Iv2Start, *Iv2Step;
1413 if (!matchSimpleRecurrence(Iv2Next, Iv2, Iv2Start, Iv2Step) ||
1414 Iv2->getParent() != BB)
1415 return nullptr;
1416
1417 auto *BO = dyn_cast<BinaryOperator>(IvNext);
1418 Constant *Identity =
1419 BO ? ConstantExpr::getBinOpIdentity(BO->getOpcode(), Iv2Start->getType())
1420 : Constant::getNullValue(Iv2Start->getType());
1421 if (Iv2Start != Identity)
1422 return nullptr;
1423
1424 Builder.SetInsertPoint(&*BB, BB->getFirstInsertionPt());
1425 if (!BO) {
1426 auto *GEP = cast<GEPOperator>(IvNext);
1427 return Builder.CreateGEP(GEP->getSourceElementType(), Start, Iv2, "",
1428 cast<GEPOperator>(IvNext)->getNoWrapFlags());
1429 }
1430
1431 assert(BO->isCommutative() && "Must be commutative");
1432 Value *Res = Builder.CreateBinOp(BO->getOpcode(), Iv2, Start);
1433 cast<Instruction>(Res)->copyIRFlags(BO);
1434 return Res;
1435}
1436
1437// PHINode simplification
1438//
1440 if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1441 return replaceInstUsesWith(PN, V);
1442
1443 if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1444 return Result;
1445
1446 if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1447 return Result;
1448
1449 // If all PHI operands are the same operation, pull them through the PHI,
1450 // reducing code size.
1451 auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
1452 auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
1453 if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
1454 Inst0->hasOneUser())
1455 if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1456 return Result;
1457
1458 // If the incoming values are pointer casts of the same original value,
1459 // replace the phi with a single cast iff we can insert a non-PHI instruction.
1460 if (PN.getType()->isPointerTy() &&
1461 PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1462 Value *IV0 = PN.getIncomingValue(0);
1463 Value *IV0Stripped = IV0->stripPointerCasts();
1464 // Set to keep track of values known to be equal to IV0Stripped after
1465 // stripping pointer casts.
1466 SmallPtrSet<Value *, 4> CheckedIVs;
1467 CheckedIVs.insert(IV0);
1468 if (IV0 != IV0Stripped &&
1469 all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1470 return !CheckedIVs.insert(IV).second ||
1471 IV0Stripped == IV->stripPointerCasts();
1472 })) {
1473 return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1474 }
1475 }
1476
1477 if (foldDeadPhiWeb(PN))
1478 return nullptr;
1479
1480 // Optimization when the phi only has one use
1481 if (PN.hasOneUse()) {
1482 if (foldIntegerTypedPHI(PN))
1483 return nullptr;
1484
1485 // If this phi has a single use, and if that use just computes a value for
1486 // the next iteration of a loop, delete the phi. This occurs with unused
1487 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1488 // common case here is good because the only other things that catch this
1489 // are induction variable analysis (sometimes) and ADCE, which is only run
1490 // late.
1491 Instruction *PHIUser = cast<Instruction>(PN.user_back());
1492 if (PHIUser->hasOneUse() &&
1493 (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
1494 isa<GetElementPtrInst>(PHIUser)) &&
1495 PHIUser->user_back() == &PN) {
1497 }
1498 }
1499
1500 // When a PHI is used only to be compared with zero, it is safe to replace
1501 // an incoming value proved as known nonzero with any non-zero constant.
1502 // For example, in the code below, the incoming value %v can be replaced
1503 // with any non-zero constant based on the fact that the PHI is only used to
1504 // be compared with zero and %v is a known non-zero value:
1505 // %v = select %cond, 1, 2
1506 // %p = phi [%v, BB] ...
1507 // icmp eq, %p, 0
1508 // FIXME: To be simple, handle only integer type for now.
1509 // This handles a small number of uses to keep the complexity down, and an
1510 // icmp(or(phi)) can equally be replaced with any non-zero constant as the
1511 // "or" will only add bits.
1512 if (!PN.hasNUsesOrMore(3)) {
1513 SmallVector<Instruction *> DropPoisonFlags;
1514 bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
1515 auto *CmpInst = dyn_cast<ICmpInst>(U);
1516 if (!CmpInst) {
1517 // This is always correct as OR only add bits and we are checking
1518 // against 0.
1519 if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
1520 DropPoisonFlags.push_back(cast<Instruction>(U));
1521 CmpInst = dyn_cast<ICmpInst>(U->user_back());
1522 }
1523 }
1524 if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
1525 !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
1526 return false;
1527 }
1528 return true;
1529 });
1530 // All uses of PHI results in a compare with zero.
1531 if (AllUsesOfPhiEndsInCmp) {
1532 ConstantInt *NonZeroConst = nullptr;
1533 bool MadeChange = false;
1534 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1536 Value *VA = PN.getIncomingValue(I);
1537 if (isKnownNonZero(VA, getSimplifyQuery().getWithInstruction(CtxI))) {
1538 if (!NonZeroConst)
1539 NonZeroConst = getAnyNonZeroConstInt(PN);
1540 if (NonZeroConst != VA) {
1541 replaceOperand(PN, I, NonZeroConst);
1542 // The "disjoint" flag may no longer hold after the transform.
1543 for (Instruction *I : DropPoisonFlags)
1544 I->dropPoisonGeneratingFlags();
1545 MadeChange = true;
1546 }
1547 }
1548 }
1549 if (MadeChange)
1550 return &PN;
1551 }
1552 }
1553
1554 // We sometimes end up with phi cycles that non-obviously end up being the
1555 // same value, for example:
1556 // z = some value; x = phi (y, z); y = phi (x, z)
1557 // where the phi nodes don't necessarily need to be in the same block. Do a
1558 // quick check to see if the PHI node only contains a single non-phi value, if
1559 // so, scan to see if the phi cycle is actually equal to that value. If the
1560 // phi has no non-phi values then allow the "NonPhiInVal" to be set later if
1561 // one of the phis itself does not have a single input.
1562 {
1563 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1564 // Scan for the first non-phi operand.
1565 while (InValNo != NumIncomingVals &&
1566 isa<PHINode>(PN.getIncomingValue(InValNo)))
1567 ++InValNo;
1568
1569 Value *NonPhiInVal =
1570 InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
1571
1572 // Scan the rest of the operands to see if there are any conflicts, if so
1573 // there is no need to recursively scan other phis.
1574 if (NonPhiInVal)
1575 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1576 Value *OpVal = PN.getIncomingValue(InValNo);
1577 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1578 break;
1579 }
1580
1581 // If we scanned over all operands, then we have one unique value plus
1582 // phi values. Scan PHI nodes to see if they all merge in each other or
1583 // the value.
1584 if (InValNo == NumIncomingVals) {
1585 SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
1586 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1587 return replaceInstUsesWith(PN, NonPhiInVal);
1588 }
1589 }
1590
1591 // If there are multiple PHIs, sort their operands so that they all list
1592 // the blocks in the same order. This will help identical PHIs be eliminated
1593 // by other passes. Other passes shouldn't depend on this for correctness
1594 // however.
1595 auto Res = PredOrder.try_emplace(PN.getParent());
1596 if (!Res.second) {
1597 const auto &Preds = Res.first->second;
1598 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1599 BasicBlock *BBA = PN.getIncomingBlock(I);
1600 BasicBlock *BBB = Preds[I];
1601 if (BBA != BBB) {
1602 Value *VA = PN.getIncomingValue(I);
1603 unsigned J = PN.getBasicBlockIndex(BBB);
1604 Value *VB = PN.getIncomingValue(J);
1605 PN.setIncomingBlock(I, BBB);
1606 PN.setIncomingValue(I, VB);
1607 PN.setIncomingBlock(J, BBA);
1608 PN.setIncomingValue(J, VA);
1609 // NOTE: Instcombine normally would want us to "return &PN" if we
1610 // modified any of the operands of an instruction. However, since we
1611 // aren't adding or removing uses (just rearranging them) we don't do
1612 // this in this case.
1613 }
1614 }
1615 } else {
1616 // Remember the block order of the first encountered phi node.
1617 append_range(Res.first->second, PN.blocks());
1618 }
1619
1620 // Is there an identical PHI node in this basic block?
1621 for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1622 // Ignore the PHI node itself.
1623 if (&IdenticalPN == &PN)
1624 continue;
1625 // Note that even though we've just canonicalized this PHI, due to the
1626 // worklist visitation order, there are no guarantess that *every* PHI
1627 // has been canonicalized, so we can't just compare operands ranges.
1628 if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1629 continue;
1630 // Just use that PHI instead then.
1631 ++NumPHICSEs;
1632 return replaceInstUsesWith(PN, &IdenticalPN);
1633 }
1634
1635 // If this is an integer PHI and we know that it has an illegal type, see if
1636 // it is only used by trunc or trunc(lshr) operations. If so, we split the
1637 // PHI into the various pieces being extracted. This sort of thing is
1638 // introduced when SROA promotes an aggregate to a single large integer type.
1639 if (PN.getType()->isIntegerTy() &&
1640 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1641 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1642 return Res;
1643
1644 // Ultimately, try to replace this Phi with a dominating condition.
1645 if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1646 return replaceInstUsesWith(PN, V);
1647
1648 if (Value *Res = foldDependentIVs(PN, Builder))
1649 return replaceInstUsesWith(PN, Res);
1650
1651 return nullptr;
1652}
@ Poison
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Hexagon Common GEP
This file provides internal interfaces used to implement the InstCombine.
static ConstantInt * getAnyNonZeroConstInt(PHINode &PN)
Return an existing non-zero constant if this phi node has one, otherwise return constant 1.
static Value * foldDependentIVs(PHINode &PN, IRBuilderBase &Builder)
static bool isSafeAndProfitableToSinkLoad(LoadInst *L)
Return true if we know that it is safe to sink the load out of the block that defines it.
static Value * simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, const DominatorTree &DT)
static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal, SmallPtrSetImpl< PHINode * > &ValueEqualPHIs)
Return true if this phi node is always equal to NonPhiInVal.
static cl::opt< unsigned > MaxNumPhis("instcombine-max-num-phis", cl::init(512), cl::desc("Maximum number phis to handle in intptr/ptrint folding"))
This file provides the interface for the instcombine pass implementation.
#define I(x, y, z)
Definition: MD5.cpp:58
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:83
an instruction to allocate memory on the stack
Definition: Instructions.h:64
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator end()
Definition: BasicBlock.h:472
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:393
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
BinaryOps getOpcode() const
Definition: InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:448
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:666
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:767
OtherOps getOpcode() const
Get the opcode casted to the right type.
Definition: InstrTypes.h:762
static LLVM_ABI Constant * getNot(Constant *C)
Definition: Constants.cpp:2641
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2694
This is the shared class of boolean and integer constants.
Definition: Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:868
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:875
This is an important base class in LLVM.
Definition: Constant.h:43
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This class represents an Operation in the Expression.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
Definition: DataLayout.h:390
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:674
static DebugLoc getDropped()
Definition: DebugLoc.h:164
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
iterator end()
Definition: DenseMap.h:87
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:334
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents flags for the getelementptr instruction/expression.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:949
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:973
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1513
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:1923
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1805
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2068
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1708
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Instruction * foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN)
If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], turn this into a phi[a,...
Instruction * foldPHIArgBinOpIntoPHI(PHINode &PN)
If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the adds all have a single user,...
Constant * getLosslessUnsignedTrunc(Constant *C, Type *TruncTy)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitPHINode(PHINode &PN)
Instruction * foldPHIArgOpIntoPHI(PHINode &PN)
Try to rotate an operation below a PHI node, using PHI nodes for its operands.
Instruction * foldPHIArgZextsIntoPHI(PHINode &PN)
TODO: This function could handle other cast types, but then it might require special-casing a cast fr...
Instruction * foldPHIArgLoadIntoPHI(PHINode &PN)
bool foldIntegerTypedPHI(PHINode &PN)
If an integer typed PHI has only one use which is an IntToPtr operation, replace the PHI with an exis...
bool foldDeadPhiWeb(PHINode &PN)
If the phi is within a phi web, which is formed by the def-use chain of phis and all the phis in the ...
Instruction * foldPHIArgIntToPtrToPHI(PHINode &PN)
Instruction * SliceUpIllegalIntegerPHI(PHINode &PN)
This is an integer PHI and we know that it has an illegal type: see if it is only used by trunc or tr...
Instruction * foldPHIArgGEPIntoPHI(PHINode &PN)
void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN)
Helper function for FoldPHIArgXIntoPHI() to set debug location for the folded operation.
Instruction * foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN)
If we have something like phi [extractvalue(a,0), extractvalue(b,0)], turn this into a phi[a,...
The core instruction combiner logic.
Definition: InstCombiner.h:48
SimplifyQuery SQ
Definition: InstCombiner.h:77
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Definition: InstCombiner.h:368
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
const DataLayout & DL
Definition: InstCombiner.h:76
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
DominatorTree & DT
Definition: InstCombiner.h:75
BuilderTy & Builder
Definition: InstCombiner.h:61
const SimplifyQuery & getSimplifyQuery() const
Definition: InstCombiner.h:338
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:513
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:171
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:312
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:510
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI void applyMergedLocation(DebugLoc LocA, DebugLoc LocB)
Merge 2 debug locations and apply it to the Instruction.
Definition: DebugInfo.cpp:897
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
An instruction for reading from memory.
Definition: Instructions.h:180
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:265
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:209
Align getAlign() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:215
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
size_type size() const
Definition: SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
An instruction for storing to memory.
Definition: Instructions.h:296
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:267
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
op_range operands()
Definition: User.h:292
op_iterator op_begin()
Definition: User.h:284
void setOperand(unsigned i, Value *Val)
Definition: User.h:237
Value * getOperand(unsigned i) const
Definition: User.h:232
unsigned getNumOperands() const
Definition: User.h:254
op_iterator op_end()
Definition: User.h:286
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition: Value.cpp:166
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
iterator_range< user_iterator > users()
Definition: Value.h:426
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition: Value.cpp:158
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:701
LLVM_ABI bool isSwiftError() const
Return true if this value is a swifterror value.
Definition: Value.cpp:1119
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1098
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
const ParentTy * getParent() const
Definition: ilist_node.h:34
self_iterator getIterator()
Definition: ilist_node.h:134
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
auto m_GEP(const OperandTypes &...Ops)
Matches GetElementPtrInst.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:338
@ Offset
Definition: DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:860
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:362
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1770
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2155
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
LLVM_ABI void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition: Local.cpp:3081
DWARFExpression::Operation Op
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1629
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static bool isEqual(const LoweredPHIRecord &LHS, const LoweredPHIRecord &RHS)
static unsigned getHashValue(const LoweredPHIRecord &Val)
static LoweredPHIRecord getTombstoneKey()
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:54
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
SimplifyQuery getWithInstruction(const Instruction *I) const