47#define DEBUG_TYPE "instcombine"
51using namespace PatternMatch;
68 IsEq = Pred == ICmpInst::ICMP_EQ;
69 else if (Pred == FCmpInst::FCMP_OEQ)
71 else if (Pred == FCmpInst::FCMP_UNE)
101 if (isa<FPMathOperator>(BO))
127 const APInt *SelTC, *SelFC;
136 const APInt &TC = *SelTC;
137 const APInt &FC = *SelFC;
138 if (!TC.
isZero() && !FC.isZero()) {
150 Constant *TCC = ConstantInt::get(SelType, TC);
151 Constant *FCC = ConstantInt::get(SelType, FC);
152 Constant *MaskC = ConstantInt::get(SelType, AndMask);
153 for (
auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
173 unsigned ValZeros = ValC.
logBase2();
174 unsigned AndZeros = AndMask.
logBase2();
175 bool ShouldNotVal = !TC.
isZero();
176 bool NeedShift = ValZeros != AndZeros;
183 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
189 V = Builder.
CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
193 if (ValZeros > AndZeros) {
195 V = Builder.
CreateShl(V, ValZeros - AndZeros);
196 }
else if (ValZeros < AndZeros) {
197 V = Builder.
CreateLShr(V, AndZeros - ValZeros);
222 switch (
I->getOpcode()) {
223 case Instruction::Add:
224 case Instruction::FAdd:
225 case Instruction::Mul:
226 case Instruction::FMul:
227 case Instruction::And:
228 case Instruction::Or:
229 case Instruction::Xor:
231 case Instruction::Sub:
232 case Instruction::FSub:
233 case Instruction::FDiv:
234 case Instruction::Shl:
235 case Instruction::LShr:
236 case Instruction::AShr:
266 if (
auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
268 CondVTy->getElementCount() !=
269 cast<VectorType>(FIOpndTy)->getElementCount())
280 if (TI->
getOpcode() != Instruction::BitCast &&
293 SI.getName() +
".v", &SI);
298 Value *OtherOpT, *OtherOpF;
301 bool Swapped =
false) ->
Value * {
302 assert(!(Commute && Swapped) &&
303 "Commute and Swapped can't set at the same time");
308 MatchIsOpZero =
true;
313 MatchIsOpZero =
false;
318 if (!Commute && !Swapped)
327 MatchIsOpZero =
true;
332 MatchIsOpZero =
false;
346 FMF |= SI.getFastMathFlags();
349 if (
auto *NewSelI = dyn_cast<Instruction>(NewSel))
350 NewSelI->setFastMathFlags(FMF);
351 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
360 auto *
TII = dyn_cast<IntrinsicInst>(TI);
361 auto *FII = dyn_cast<IntrinsicInst>(FI);
362 if (
TII && FII &&
TII->getIntrinsicID() == FII->getIntrinsicID()) {
364 if (
Value *MatchOp = getCommonOp(TI, FI,
true)) {
376 if (
TII->getIntrinsicID() == Intrinsic::ldexp) {
377 Value *LdexpVal0 =
TII->getArgOperand(0);
378 Value *LdexpExp0 =
TII->getArgOperand(1);
379 Value *LdexpVal1 = FII->getArgOperand(0);
380 Value *LdexpExp1 = FII->getArgOperand(1);
384 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
391 TII->
getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
398 auto CreateCmpSel = [&](std::optional<CmpPredicate>
P,
407 SI.getName() +
".v", &SI);
435 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
457 auto *BO = dyn_cast<BinaryOperator>(TI);
461 if (BO->getOpcode() == Instruction::SDiv ||
462 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
468 SI.getName() +
".v", &SI);
469 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
470 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
471 if (
auto *BO = dyn_cast<BinaryOperator>(TI)) {
477 if (
auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
478 auto *FGEP = cast<GetElementPtrInst>(FI);
479 Type *ElementType = TGEP->getSourceElementType();
481 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
502 auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
503 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
507 unsigned OpToFold = 0;
508 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
510 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
517 if (isa<FPMathOperator>(&SI))
518 FMF = SI.getFastMathFlags();
520 TVI->getOpcode(), TVI->getType(),
true, FMF.
noSignedZeros());
521 Value *OOp = TVI->getOperand(2 - OpToFold);
526 if (isa<Constant>(OOp) &&
527 (!OOpIsAPInt || !
isSelect01(
C->getUniqueInteger(), *OOpC)))
536 if (isa<FPMathOperator>(&SI) &&
541 Swapped ? OOp :
C,
"", &SI);
542 if (isa<FPMathOperator>(&SI))
543 cast<Instruction>(NewSel)->setFastMathFlags(FMF);
548 if (isa<FPMathOperator>(&SI)) {
559 if (
Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal,
false))
562 if (
Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal,
true))
575 const Value *CmpLHS = Cmp->getOperand(0);
576 const Value *CmpRHS = Cmp->getOperand(1);
583 if (CmpRHS == TVal) {
590 if (!(CmpLHS == TVal && isa<Instruction>(FVal)))
595 cast<Instruction>(FVal)->setHasNoUnsignedWrap(
false);
601 cast<Instruction>(FVal)->setHasNoUnsignedWrap(
false);
607 cast<Instruction>(FVal)->setHasNoSignedWrap(
false);
616 cast<Instruction>(FVal)->setHasNoSignedWrap(
false);
617 cast<Instruction>(FVal)->setHasNoUnsignedWrap(
false);
635 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
667 Constant *One = ConstantInt::get(SelType, 1);
672 return new ZExtInst(ICmpNeZero, SelType);
694 const APInt *C2, *C1;
704 auto *FI = dyn_cast<Instruction>(FVal);
708 FI->setHasNoSignedWrap(
false);
709 FI->setHasNoUnsignedWrap(
false);
744 const auto *Ashr = cast<Instruction>(FalseVal);
746 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
775 const APInt &AndMask,
bool CreateAnd,
778 if (!TrueVal->getType()->isIntOrIntVectorTy())
781 unsigned C1Log = AndMask.
logBase2();
788 BinOp = cast<BinaryOperator>(FalseVal);
792 BinOp = cast<BinaryOperator>(TrueVal);
802 if (IdentityC ==
nullptr || !IdentityC->isNullValue())
807 bool NeedShift = C1Log != C2Log;
808 bool NeedZExtTrunc =
Y->getType()->getScalarSizeInBits() !=
809 V->getType()->getScalarSizeInBits();
812 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
818 V = Builder.
CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
824 }
else if (C1Log > C2Log) {
834 if (
auto *BO = dyn_cast<BinaryOperator>(Res))
835 BO->copyIRFlags(BinOp);
854 Constant *OrC = ConstantInt::get(Ty, *
C);
856 return BinaryOperator::CreateOr(
T, NewSel);
863 Constant *OrC = ConstantInt::get(Ty, *
C);
865 return BinaryOperator::CreateOr(
F, NewSel);
886 auto *CondVal = SI.getCondition();
887 auto *TrueVal = SI.getTrueValue();
888 auto *FalseVal = SI.getFalseValue();
906 auto *TrueValC = dyn_cast<Constant>(TrueVal);
907 if (TrueValC ==
nullptr || !isa<Instruction>(FalseVal))
925 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
933 auto *FalseValI = cast<Instruction>(FalseVal);
938 FalseValI->getOperand(0) ==
Y
940 : (FalseValI->getOperand(1) ==
Y ? 1 : 2),
949 const Value *TrueVal,
950 const Value *FalseVal,
971 ConstantInt::get(
A->getType(), 1));
985 "Unexpected isUnsigned predicate!");
991 bool IsNegative =
false;
1004 if (IsNegative && !TrueVal->hasOneUse() && !ICI->
hasOneUse())
1017 if (!Cmp->hasOneUse())
1021 Value *Cmp0 = Cmp->getOperand(0);
1022 Value *Cmp1 = Cmp->getOperand(1);
1043 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1054 ConstantInt::get(Cmp0->
getType(), *
C));
1064 ConstantInt::get(Cmp0->
getType(), *
C));
1074 ConstantInt::get(Cmp0->
getType(), *
C));
1121 auto *TI = dyn_cast<Instruction>(TVal);
1122 auto *FI = dyn_cast<Instruction>(FVal);
1128 Value *
A = Cmp->getOperand(0);
1129 Value *
B = Cmp->getOperand(1);
1142 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1143 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1150 TI->setHasNoUnsignedWrap(
false);
1151 if (!TI->hasNoSignedWrap())
1152 TI->setHasNoSignedWrap(TI->hasOneUse());
1180 if (!
match(FalseVal,
1184 if (!
match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1191 auto *
II = cast<IntrinsicInst>(Ctlz);
1196 II->getModule(), Intrinsic::cttz,
II->getType());
1228 Value *Count =
nullptr;
1236 if (!
match(Count, m_Intrinsic<Intrinsic::cttz>(
m_Value(
X))) &&
1258 II->dropPoisonGeneratingAnnotations();
1270 II->dropUBImplyingAttrsAndMetadata();
1281 if (!
TrueVal->getType()->isIntOrIntVectorTy())
1318 assert(!isa<Constant>(Old) &&
"Only replace non-constant values");
1320 auto *
I = dyn_cast<Instruction>(V);
1321 if (!
I || !
I->hasOneUse() ||
1329 bool Changed =
false;
1330 for (
Use &U :
I->operands()) {
1363 bool Swapped =
false;
1364 if (
Cmp.isEquivalence(
true)) {
1367 }
else if (!
Cmp.isEquivalence()) {
1371 Value *CmpLHS =
Cmp.getOperand(0), *CmpRHS =
Cmp.getOperand(1);
1372 auto ReplaceOldOpWithNewOp = [&](
Value *OldOp,
1380 if (TrueVal == OldOp && (isa<Constant>(OldOp) || !isa<Constant>(NewOp)))
1397 (isa<Instruction>(TrueVal) &&
1398 is_contained(cast<Instruction>(TrueVal)->operands(), V))) {
1419 if (
Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1421 if (
Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1424 auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1439 &DropFlags) == TrueVal ||
1442 &DropFlags) == TrueVal) {
1444 I->dropPoisonGeneratingAnnotations();
1489 cast<ICmpInst>(XeqY)->setSameSign(
false);
1524 if (!isa<SelectInst>(Sel1)) {
1565 if (Cmp00->
getType() !=
X->getType() &&
X->hasOneUse())
1573 else if (!
match(Cmp00,
1581 Value *ReplacementLow, *ReplacementHigh;
1618 std::swap(ReplacementLow, ReplacementHigh);
1624 "Unexpected predicate type.");
1632 "Unexpected predicate type.");
1634 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1650 if (
X->getType() != Sel0.
getType()) {
1660 assert(ReplacementLow && ReplacementHigh &&
1661 "Constant folding of ImmConstant cannot fail");
1667 Value *MaybeReplacedLow =
1673 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1717 Value *SelVal0, *SelVal1;
1726 auto MatchesSelectValue = [SelVal0, SelVal1](
Constant *
C) {
1727 return C->isElementWiseEqual(SelVal0) ||
C->isElementWiseEqual(SelVal1);
1731 if (MatchesSelectValue(C0))
1736 if (!FlippedStrictness)
1740 if (!MatchesSelectValue(FlippedStrictness->second))
1749 Cmp.getName() +
".inv");
1760 if (!
Cmp->hasOneUse())
1790 Value *TVal =
SI.getTrueValue();
1791 Value *FVal =
SI.getFalseValue();
1825 Op->dropPoisonGeneratingFlags();
1829 if (
auto *MMI = dyn_cast<MinMaxIntrinsic>(
Op);
1830 MMI && MMI->getLHS() == V &&
match(MMI->getRHS(),
m_APInt(OpC))) {
1832 {InvDomCR, ConstantRange(*OpC)});
1834 MMI->dropPoisonGeneratingAnnotations();
1897 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
1929 Opcode = BOp->getOpcode();
1930 IsIntrinsic =
false;
1944 Opcode =
II->getIntrinsicID();
1961 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
1964 }
else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
1966 RHS = Flipped->second;
1981 if (
Instruction *BinOpInst = dyn_cast<Instruction>(BinOp)) {
1982 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
1983 BinOpc == Instruction::Mul) {
1984 Instruction *OldBinOp = cast<BinaryOperator>(TrueVal);
1986 willNotOverflow(BinOpc, RHS, C2, *BinOpInst,
true))
1987 BinOpInst->setHasNoSignedWrap();
1989 willNotOverflow(BinOpc, RHS, C2, *BinOpInst,
false))
1990 BinOpInst->setHasNoUnsignedWrap();
2000 canonicalizeSPF(*ICI,
SI.getTrueValue(),
SI.getFalseValue(), *
this))
2003 if (
Value *V = foldSelectInstWithICmpConst(SI, ICI,
Builder))
2006 if (
Value *V = canonicalizeClampLike(SI, *ICI,
Builder, *
this))
2010 tryToReuseConstantFromSelectInComparison(SI, *ICI, *
this))
2014 bool Changed =
false;
2021 if (
Instruction *NewSel = foldSelectICmpEq(SI, ICI, *
this))
2036 SI.swapProfMetadata();
2059 if (
Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *
this))
2074 return Changed ? &
SI :
nullptr;
2087 if (
C ==
A ||
C ==
B) {
2102 Value *CondVal =
SI.getCondition();
2105 auto *TI = dyn_cast<Instruction>(TrueVal);
2106 auto *FI = dyn_cast<Instruction>(FalseVal);
2107 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2111 if ((TI->getOpcode() == Instruction::Sub &&
2112 FI->getOpcode() == Instruction::Add) ||
2113 (TI->getOpcode() == Instruction::FSub &&
2114 FI->getOpcode() == Instruction::FAdd)) {
2117 }
else if ((FI->getOpcode() == Instruction::Sub &&
2118 TI->getOpcode() == Instruction::Add) ||
2119 (FI->getOpcode() == Instruction::FSub &&
2120 TI->getOpcode() == Instruction::FAdd)) {
2126 Value *OtherAddOp =
nullptr;
2127 if (SubOp->getOperand(0) == AddOp->
getOperand(0)) {
2129 }
else if (SubOp->getOperand(0) == AddOp->
getOperand(1)) {
2137 if (
SI.getType()->isFPOrFPVectorTy()) {
2138 NegVal = Builder.
CreateFNeg(SubOp->getOperand(1));
2139 if (
Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
2141 Flags &= SubOp->getFastMathFlags();
2142 NegInst->setFastMathFlags(Flags);
2145 NegVal = Builder.
CreateNeg(SubOp->getOperand(1));
2148 Value *NewTrueOp = OtherAddOp;
2149 Value *NewFalseOp = NegVal;
2153 SI.getName() +
".p", &SI);
2155 if (
SI.getType()->isFPOrFPVectorTy()) {
2157 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2160 Flags &= SubOp->getFastMathFlags();
2164 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2177 Value *CondVal =
SI.getCondition();
2189 auto IsSignedSaturateLimit = [&](
Value *Limit,
bool IsAdd) {
2199 auto IsZeroOrOne = [](
const APInt &
C) {
return C.isZero() ||
C.isOne(); };
2216 IsMinMax(TrueVal, FalseVal))
2223 IsMinMax(FalseVal, TrueVal))
2229 IsMinMax(TrueVal, FalseVal))
2234 IsMinMax(FalseVal, TrueVal))
2239 IsMinMax(FalseVal, TrueVal))
2244 IsMinMax(TrueVal, FalseVal))
2252 if (
II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2255 NewIntrinsicID = Intrinsic::uadd_sat;
2256 else if (
II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2259 NewIntrinsicID = Intrinsic::usub_sat;
2260 else if (
II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2261 IsSignedSaturateLimit(TrueVal,
true))
2270 NewIntrinsicID = Intrinsic::sadd_sat;
2271 else if (
II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2272 IsSignedSaturateLimit(TrueVal,
false))
2281 NewIntrinsicID = Intrinsic::ssub_sat;
2286 NewIntrinsicID,
SI.getType());
2302 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2308 Type *SmallType =
X->getType();
2310 auto *
Cmp = dyn_cast<CmpInst>(
Cond);
2312 (!Cmp ||
Cmp->getOperand(0)->getType() != SmallType))
2320 Value *TruncCVal = cast<Value>(TruncC);
2336 Value *CondVal =
SI.getCondition();
2338 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->
getType());
2342 unsigned NumElts = CondValTy->getNumElements();
2344 Mask.reserve(NumElts);
2345 for (
unsigned i = 0; i != NumElts; ++i) {
2355 Mask.push_back(i + NumElts);
2356 }
else if (isa<UndefValue>(Elt)) {
2376 auto *Ty = dyn_cast<VectorType>(Sel.
getType());
2408 if (TVal ==
A || TVal ==
B || FVal ==
A || FVal ==
B)
2425 if (TSrc ==
C && FSrc ==
D) {
2429 }
else if (TSrc ==
D && FSrc ==
C) {
2468 auto *Extract = dyn_cast<ExtractValueInst>(V);
2471 if (Extract->getIndices()[0] !=
I)
2473 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2479 if (
auto *
Select = dyn_cast<SelectInst>(
SI.user_back()))
2480 if (
Select->getCondition() ==
SI.getCondition())
2481 if (
Select->getFalseValue() ==
SI.getTrueValue() ||
2482 Select->getTrueValue() ==
SI.getFalseValue())
2486 auto *CmpXchg = isExtractFromCmpXchg(
SI.getCondition(), 1);
2493 if (
auto *
X = isExtractFromCmpXchg(
SI.getTrueValue(), 0))
2494 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getFalseValue())
2495 return SI.getFalseValue();
2500 if (
auto *
X = isExtractFromCmpXchg(
SI.getFalseValue(), 0))
2501 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getTrueValue())
2502 return SI.getFalseValue();
2526 Value *SV0, *SV1, *SA0, *SA1;
2535 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2541 Or1->
getOpcode() == BinaryOperator::LShr &&
2542 "Illegal or(shift,shift) pair");
2557 bool IsFshl = (ShAmt == SA0);
2559 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2579 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2601 assert(TC != FC &&
"Expected equal select arms to simplify");
2605 bool IsTrueIfSignSet;
2623 Value *MagArg = ConstantFP::get(SelType,
abs(*TC));
2630 if (!isa<VectorType>(Sel.
getType()))
2641 if (
auto *
I = dyn_cast<Instruction>(V))
2642 I->copyIRFlags(&Sel);
2645 M, Intrinsic::vector_reverse,
V->getType());
2653 return createSelReverse(
C,
X,
Y);
2657 return createSelReverse(
C,
X, FVal);
2662 return createSelReverse(
C, TVal,
Y);
2665 auto *VecTy = dyn_cast<FixedVectorType>(Sel.
getType());
2669 unsigned NumElts = VecTy->getNumElements();
2670 APInt PoisonElts(NumElts, 0);
2684 cast<ShuffleVectorInst>(TVal)->isSelect()) {
2698 cast<ShuffleVectorInst>(FVal)->isSelect()) {
2719 auto *IDomNode = DT[BB]->getIDom();
2725 Value *IfTrue, *IfFalse;
2741 if (TrueSucc == FalseSucc)
2762 if (
auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2763 if (!DT.
dominates(Insn, Pred->getTerminator()))
2781 if (
auto *
I = dyn_cast<Instruction>(V))
2782 CandidateBlocks.
insert(
I->getParent());
2785 if (
auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2798 Value *CondVal =
SI.getCondition();
2803 Value *
Op, *RemRes, *Remainder;
2805 bool TrueIfSigned =
false;
2819 return BinaryOperator::CreateAnd(
Op,
Add);
2831 return FoldToBitwiseAnd(Remainder);
2840 return FoldToBitwiseAnd(ConstantInt::get(RemRes->
getType(), 2));
2876 Value *InnerCondVal =
SI.getCondition();
2877 Value *InnerTrueVal =
SI.getTrueValue();
2878 Value *InnerFalseVal =
SI.getFalseValue();
2880 "The type of inner condition must match with the outer.");
2882 return *Implied ? InnerTrueVal : InnerFalseVal;
2889 assert(
Op->getType()->isIntOrIntVectorTy(1) &&
2890 "Op must be either i1 or vector of i1.");
2891 if (
SI.getCondition()->getType() !=
Op->getType())
2893 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(SI,
Op, IsAnd,
DL))
2904 Value *CondVal =
SI.getCondition();
2906 bool ChangedFMF =
false;
2907 for (
bool Swap : {
false,
true}) {
2924 (cast<FPMathOperator>(CondVal)->hasNoNaNs() ||
SI.hasNoNaNs() ||
2927 cast<Instruction>(CondVal))))) {
2944 FastMathFlags FMF = cast<FPMathOperator>(CondVal)->getFastMathFlags();
2945 if (FMF.
noNaNs() && !
SI.hasNoNaNs()) {
2946 SI.setHasNoNaNs(
true);
2949 if (FMF.
noInfs() && !
SI.hasNoInfs()) {
2950 SI.setHasNoInfs(
true);
2955 if (!
SI.hasNoNaNs() && cast<FPMathOperator>(TrueVal)->hasNoNaNs() &&
2957 SI.setHasNoNaNs(
true);
2971 if (!
SI.hasNoSignedZeros() &&
2974 if (!
SI.hasNoNaNs() &&
2992 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
3001 for (
bool Swap : {
false,
true}) {
3017 if (Swap == TrueIfSigned && !CondVal->
hasOneUse() && !
TrueVal->hasOneUse())
3023 if (Swap != TrueIfSigned)
3028 return ChangedFMF ? &
SI :
nullptr;
3046foldRoundUpIntegerWithPow2Alignment(
SelectInst &SI,
3050 Value *XBiasedHighBits =
SI.getFalseValue();
3063 const APInt *LowBitMaskCst;
3068 const APInt *BiasCst, *HighBitMaskCst;
3069 if (!
match(XBiasedHighBits,
3072 !
match(XBiasedHighBits,
3077 if (!LowBitMaskCst->
isMask())
3080 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3081 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3084 APInt AlignmentCst = *LowBitMaskCst + 1;
3086 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3091 if (*BiasCst == *LowBitMaskCst &&
impliesPoison(XBiasedHighBits,
X))
3092 return XBiasedHighBits;
3097 Type *Ty =
X->getType();
3098 Value *XOffset = Builder.
CreateAdd(
X, ConstantInt::get(Ty, *LowBitMaskCst),
3099 X->getName() +
".biased");
3100 Value *
R = Builder.
CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3106struct DecomposedSelect {
3118foldSelectOfSymmetricSelect(
SelectInst &OuterSelVal,
3121 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3149 DecomposedSelect OuterSel;
3156 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3164 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3168 [](
Value *V) {
return V->hasOneUse(); }))
3172 DecomposedSelect InnerSel;
3173 if (!
match(InnerSelVal,
3180 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3182 Value *AltCond =
nullptr;
3183 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](
auto m_InnerCond) {
3188 return IsAndVariant ?
match(OuterSel.Cond,
3198 if (matchOuterCond(
m_Specific(InnerSel.Cond))) {
3203 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3204 InnerSel.Cond = NotInnerCond;
3209 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3210 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3213 IsAndVariant ? SelInner : InnerSel.TrueVal,
3214 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3220static bool impliesPoisonOrCond(
const Value *ValAssumedPoison,
const Value *V,
3227 if (
auto *ICmp = dyn_cast<ICmpInst>(ValAssumedPoison)) {
3232 if (ICmp->hasSameSign() &&
3251 Value *CondVal =
SI.getCondition();
3254 Type *SelType =
SI.getType();
3271 if (impliesPoisonOrCond(FalseVal, CondVal,
false)) {
3273 return BinaryOperator::CreateOr(CondVal, FalseVal);
3277 impliesPoisonOrCond(FalseVal,
B,
false)) {
3287 bool CondLogicAnd = isa<SelectInst>(CondVal);
3288 bool FalseLogicAnd = isa<SelectInst>(FalseVal);
3289 auto AndFactorization = [&](
Value *Common,
Value *InnerCond,
3295 if (FalseLogicAnd || (CondLogicAnd && Common ==
A))
3298 return BinaryOperator::CreateAnd(Common, InnerSel);
3302 return AndFactorization(
A,
B,
D);
3304 return AndFactorization(
A,
B,
C);
3306 return AndFactorization(
B,
A,
D);
3308 return AndFactorization(
B,
A,
C, CondLogicAnd && FalseLogicAnd);
3313 if (impliesPoisonOrCond(TrueVal, CondVal,
true)) {
3315 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3319 impliesPoisonOrCond(TrueVal,
B,
true)) {
3329 bool CondLogicOr = isa<SelectInst>(CondVal);
3330 bool TrueLogicOr = isa<SelectInst>(TrueVal);
3331 auto OrFactorization = [&](
Value *Common,
Value *InnerCond,
3337 if (TrueLogicOr || (CondLogicOr && Common ==
A))
3340 return BinaryOperator::CreateOr(Common, InnerSel);
3344 return OrFactorization(
A,
B,
D);
3346 return OrFactorization(
A,
B,
C);
3348 return OrFactorization(
B,
A,
D);
3350 return OrFactorization(
B,
A,
C, CondLogicOr && TrueLogicOr);
3393 return BinaryOperator::CreateXor(
A,
B);
3427 auto *FI =
new FreezeInst(*
Y, (*Y)->getName() +
".fr");
3433 if (
auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3444 if (Res && *Res ==
false)
3450 if (Res && *Res ==
false)
3459 if (Res && *Res ==
true)
3465 if (Res && *Res ==
true)
3478 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3479 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3480 bool MayNeedFreeze = SelCond && SelFVal &&
3481 match(SelFVal->getTrueValue(),
3494 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3495 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3496 bool MayNeedFreeze = SelCond && SelFVal &&
3497 match(SelCond->getTrueValue(),
3513 bool &ShouldDropNoWrap) {
3536 ShouldDropNoWrap =
false;
3542 auto MatchForward = [&](
Value *CommonAncestor) {
3543 const APInt *
C =
nullptr;
3544 if (CtlzOp == CommonAncestor)
3547 ShouldDropNoWrap =
true;
3552 ShouldDropNoWrap =
true;
3563 const APInt *
C =
nullptr;
3564 Value *CommonAncestor;
3565 if (MatchForward(Cond0)) {
3569 if (!MatchForward(CommonAncestor))
3607 Type *SelType =
SI.getType();
3614 Value *Cond0, *Ctlz, *CtlzOp;
3623 bool ShouldDropNoWrap;
3630 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp,
BitWidth,
3634 if (ShouldDropNoWrap) {
3635 cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(
false);
3636 cast<Instruction>(CtlzOp)->setHasNoSignedWrap(
false);
3645 cast<Instruction>(Ctlz)->dropPoisonGeneratingAnnotations();
3647 cast<Instruction>(Ctlz)->setOperand(1, Builder.
getFalse());
3664 Value *TV =
SI.getTrueValue();
3665 Value *FV =
SI.getFalseValue();
3677 if (!isa<Constant>(TV)) {
3678 if (!isa<Constant>(FV))
3685 if (
Constant *
C = dyn_cast<Constant>(RHS)) {
3686 auto FlippedPredAndConst =
3688 if (!FlippedPredAndConst)
3690 Pred = FlippedPredAndConst->first;
3691 RHS = FlippedPredAndConst->second;
3708 bool Replace =
false;
3730 const APInt *InnerTV, *InnerFV;
3736 FalseBranchSelectPredicate =
3741 if (!InnerTV->
isOne()) {
3753 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
3775 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3797 if (
auto *
I = dyn_cast<Instruction>(V)) {
3798 if (isa<PHINode>(
I)) {
3804 return Op->getType()->isIntOrIntVectorTy() &&
3805 hasAffectedValue(Op, Affected, Depth + 1);
3818 auto *SIFOp = dyn_cast<FPMathOperator>(&SI);
3819 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
3822 auto TryFoldIntoAddConstant =
3834 Swapped ?
X :
Z,
"", &
SI);
3845 cast<Instruction>(NewFAdd)->setFastMathFlags(NewFMF);
3846 cast<Instruction>(NewSelect)->setFastMathFlags(NewFMF);
3865 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
false);
3869 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
true);
3885 bool CreateAnd =
false;
3887 Value *CmpLHS, *CmpRHS;
3895 const APInt *AndRHS;
3902 AndMask = Res->Mask;
3914 }
else if (
auto *Trunc = dyn_cast<TruncInst>(CondVal)) {
3915 V = Trunc->getOperand(0);
3916 AndMask =
APInt(
V->getType()->getScalarSizeInBits(), 1);
3918 CreateAnd = !Trunc->hasNoUnsignedWrap();
3927 CreateAnd, Builder))
3931 CreateAnd, Builder))
3938 Value *CondVal =
SI.getCondition();
3941 Type *SelType =
SI.getType();
3950 if (
Instruction *
I = canonicalizeScalarSelectOfVecs(SI, *
this))
3992 return new ZExtInst(CondVal, SelType);
3996 return new SExtInst(CondVal, SelType);
4001 return new ZExtInst(NotCond, SelType);
4007 return new SExtInst(NotCond, SelType);
4011 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
4013 if (
auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
4015 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4017 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4018 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4027 FCmp->getName() +
".inv");
4030 if (FCmp->hasNoNaNs())
4032 if (FCmp->hasNoInfs())
4054 Value *MatchCmp0 =
nullptr;
4055 Value *MatchCmp1 =
nullptr;
4067 if (Cmp0 == MatchCmp0 &&
4068 matchFMulByZeroIfResultEqZero(*
this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4069 SI, SIFPOp->hasNoSignedZeros()))
4077 auto *FCmp = dyn_cast<FCmpInst>(CondVal);
4081 if (SIFPOp->hasNoNaNs() &&
4082 (SIFPOp->hasNoSignedZeros() ||
4083 (SIFPOp->hasOneUse() &&
4089 if (
auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
4090 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4091 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4099 if (
auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
4100 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4101 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4109 if (
Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *
this))
4113 if (
CmpInst *CI = dyn_cast<CmpInst>(CondVal))
4117 if (
ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
4121 if (
Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal,
Builder,
SQ))
4134 auto *TI = dyn_cast<Instruction>(TrueVal);
4135 auto *FI = dyn_cast<Instruction>(FalseVal);
4136 if (TI && FI && TI->getOpcode() == FI->
getOpcode())
4155 if (isa<VectorType>(CondVal->
getType()) && !isa<VectorType>(
Idx->getType()))
4167 if (
auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
4168 if (
auto *NewGep = SelectGepWithBase(TrueGep, FalseVal,
false))
4170 if (
auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
4171 if (
auto *NewGep = SelectGepWithBase(FalseGep, TrueVal,
true))
4187 RHS2, SI, SPF, RHS))
4191 RHS2, SI, SPF, LHS))
4200 bool IsCastNeeded =
LHS->
getType() != SelType;
4201 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
4202 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
4205 ((CmpLHS != LHS && CmpLHS != RHS) ||
4206 (CmpRHS != LHS && CmpRHS != RHS)))) {
4214 cast<Instruction>(
SI.getCondition()));
4227 if (
auto *PN = dyn_cast<PHINode>(
SI.getCondition()))
4231 if (
SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
4232 if (TrueSI->getCondition()->getType() == CondVal->
getType()) {
4235 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4236 *TrueSI, CondVal,
true,
DL))
4243 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4251 if (
SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
4252 if (FalseSI->getCondition()->getType() == CondVal->
getType()) {
4255 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4256 *FalseSI, CondVal,
false,
DL))
4260 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4277 if (
auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->
getOperand(0))) {
4278 if (TrueBOSI->getCondition() == CondVal) {
4284 if (
auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->
getOperand(1))) {
4285 if (TrueBOSI->getCondition() == CondVal) {
4296 if (
auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->
getOperand(0))) {
4297 if (FalseBOSI->getCondition() == CondVal) {
4303 if (
auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->
getOperand(1))) {
4304 if (FalseBOSI->getCondition() == CondVal) {
4317 SI.swapProfMetadata();
4342 if (
Value *V = foldSelectCmpXchg(SI))
4360 if (
Value *V = foldRoundUpIntegerWithPow2Alignment(SI,
Builder))
4373 auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
4374 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
4375 MaskedInst->setArgOperand(3, FalseVal );
4390 bool CanMergeSelectIntoLoad =
false;
4394 if (CanMergeSelectIntoLoad) {
4395 auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
4396 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
4397 MaskedInst->setArgOperand(3, TrueVal );
4429 auto FoldSelectWithAndOrCond = [&](
bool IsAnd,
Value *
A,
4437 if (
ICmpInst *Cmp = dyn_cast<ICmpInst>(
B))
4438 if (
Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *
this))
4440 IsAnd ? FalseVal : V);
4448 if (
Instruction *
I = FoldSelectWithAndOrCond(
true, LHS, RHS))
4450 if (
Instruction *
I = FoldSelectWithAndOrCond(
true, RHS, LHS))
4453 if (
Instruction *
I = FoldSelectWithAndOrCond(
false, LHS, RHS))
4455 if (
Instruction *
I = FoldSelectWithAndOrCond(
false, RHS, LHS))
4461 if (
Instruction *
I = FoldSelectWithAndOrCond(
true, LHS, RHS))
4464 if (
Instruction *
I = FoldSelectWithAndOrCond(
false, LHS, RHS))
4471 return BinaryOperator::CreateXor(CondVal, FalseVal);
4476 (!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) {
4480 CC.AffectedValues.insert(V);
4483 if (!CC.AffectedValues.empty()) {
4484 if (!isa<Constant>(TrueVal) &&
4485 hasAffectedValue(TrueVal, CC.AffectedValues, 0)) {
4493 if (!isa<Constant>(FalseVal) &&
4494 hasAffectedValue(FalseVal, CC.AffectedValues, 0)) {
4509 if (TrueVal == Trunc)
4511 if (FalseVal == Trunc)
4515 if (TrueVal == Trunc)
4518 if (FalseVal == Trunc)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static const uint32_t IV[8]
bool bitwiseIsEqual(const APFloat &RHS) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isMinValue() const
Determine if this is the smallest unsigned value.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned logBase2() const
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
bool isMaxValue() const
Determine if this is the largest unsigned value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
MutableArrayRef< ResultElem > assumptions()
Access the list of assumption handles currently tracked for this function.
An instruction that atomically checks whether a specified value is in a memory location,...
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isNonStrictPredicate() const
bool isFPPredicate() const
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Tagged union holding either a T or a Error.
Utility class for floating point operations which can have information about relaxed accuracy require...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
void setNoInfs(bool B=true)
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Value * getPointerOperand()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
uint64_t getType(const MachineInstr &MI) const
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
Value * CreateFCmpFMF(CmpInst::Predicate P, Value *LHS, Value *RHS, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
const DataLayout & getDataLayout() const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
void add(Instruction *I)
Add instruction to the worklist.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool contains(ConstPtrType Ptr) const
A SetVector that performs no allocations if smaller than a certain size.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedLoad Intrinsic.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apint_match m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedGather Intrinsic.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
ElementType
The element type of an SRV or UAV resource.
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Evaluate query assuming this condition holds.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithCondContext(const CondContext &CC) const
SimplifyQuery getWithInstruction(const Instruction *I) const