LLVM 22.0.0git
InstCombineSelect.cpp
Go to the documentation of this file.
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitSelect function.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/STLExtras.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
26#include "llvm/IR/Constants.h"
28#include "llvm/IR/FMF.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Instruction.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/User.h"
39#include "llvm/IR/Value.h"
44#include <cassert>
45#include <utility>
46
47#define DEBUG_TYPE "instcombine"
49
50using namespace llvm;
51using namespace PatternMatch;
52
53
54/// Replace a select operand based on an equality comparison with the identity
55/// constant of a binop.
57 const TargetLibraryInfo &TLI,
58 InstCombinerImpl &IC) {
59 // The select condition must be an equality compare with a constant operand.
60 Value *X;
61 Constant *C;
62 CmpPredicate Pred;
63 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
64 return nullptr;
65
66 bool IsEq;
67 if (ICmpInst::isEquality(Pred))
68 IsEq = Pred == ICmpInst::ICMP_EQ;
69 else if (Pred == FCmpInst::FCMP_OEQ)
70 IsEq = true;
71 else if (Pred == FCmpInst::FCMP_UNE)
72 IsEq = false;
73 else
74 return nullptr;
75
76 // A select operand must be a binop.
78 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
79 return nullptr;
80
81 // The compare constant must be the identity constant for that binop.
82 // If this a floating-point compare with 0.0, any zero constant will do.
83 Type *Ty = BO->getType();
85 if (IdC != C) {
86 if (!IdC || !CmpInst::isFPPredicate(Pred))
87 return nullptr;
88 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
89 return nullptr;
90 }
91
92 // Last, match the compare variable operand with a binop operand.
93 Value *Y;
94 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
95 return nullptr;
96 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
97 return nullptr;
98
99 // +0.0 compares equal to -0.0, and so it does not behave as required for this
100 // transform. Bail out if we can not exclude that possibility.
101 if (isa<FPMathOperator>(BO))
102 if (!BO->hasNoSignedZeros() &&
105 return nullptr;
106
107 // BO = binop Y, X
108 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
109 // =>
110 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
111 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
112}
113
114/// This folds:
115/// select (icmp eq (and X, C1)), TC, FC
116/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117/// To something like:
118/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119/// Or:
120/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121/// With some variations depending if FC is larger than TC, or the shift
122/// isn't needed, or the bit widths don't match.
123static Value *foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal,
124 Value *FalseVal, Value *V, const APInt &AndMask,
125 bool CreateAnd,
126 InstCombiner::BuilderTy &Builder) {
127 const APInt *SelTC, *SelFC;
128 if (!match(TrueVal, m_APInt(SelTC)) || !match(FalseVal, m_APInt(SelFC)))
129 return nullptr;
130
131 Type *SelType = Sel.getType();
132 // In general, when both constants are non-zero, we would need an offset to
133 // replace the select. This would require more instructions than we started
134 // with. But there's one special-case that we handle here because it can
135 // simplify/reduce the instructions.
136 const APInt &TC = *SelTC;
137 const APInt &FC = *SelFC;
138 if (!TC.isZero() && !FC.isZero()) {
139 if (TC.getBitWidth() != AndMask.getBitWidth())
140 return nullptr;
141 // If we have to create an 'and', then we must kill the cmp to not
142 // increase the instruction count.
143 if (CreateAnd && !CondVal->hasOneUse())
144 return nullptr;
145
146 // (V & AndMaskC) == 0 ? TC : FC --> TC | (V & AndMaskC)
147 // (V & AndMaskC) == 0 ? TC : FC --> TC ^ (V & AndMaskC)
148 // (V & AndMaskC) == 0 ? TC : FC --> TC + (V & AndMaskC)
149 // (V & AndMaskC) == 0 ? TC : FC --> TC - (V & AndMaskC)
150 Constant *TCC = ConstantInt::get(SelType, TC);
151 Constant *FCC = ConstantInt::get(SelType, FC);
152 Constant *MaskC = ConstantInt::get(SelType, AndMask);
153 for (auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
154 Instruction::Sub}) {
155 if (ConstantFoldBinaryOpOperands(Opc, TCC, MaskC, Sel.getDataLayout()) ==
156 FCC) {
157 if (CreateAnd)
158 V = Builder.CreateAnd(V, MaskC);
159 return Builder.CreateBinOp(Opc, TCC, V);
160 }
161 }
162
163 return nullptr;
164 }
165
166 // Make sure one of the select arms is a power-of-2.
167 if (!TC.isPowerOf2() && !FC.isPowerOf2())
168 return nullptr;
169
170 // Determine which shift is needed to transform result of the 'and' into the
171 // desired result.
172 const APInt &ValC = !TC.isZero() ? TC : FC;
173 unsigned ValZeros = ValC.logBase2();
174 unsigned AndZeros = AndMask.logBase2();
175 bool ShouldNotVal = !TC.isZero();
176 bool NeedShift = ValZeros != AndZeros;
177 bool NeedZExtTrunc =
178 SelType->getScalarSizeInBits() != V->getType()->getScalarSizeInBits();
179
180 // If we would need to create an 'and' + 'shift' + 'xor' + cast to replace
181 // a 'select' + 'icmp', then this transformation would result in more
182 // instructions and potentially interfere with other folding.
183 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
184 1 + CondVal->hasOneUse())
185 return nullptr;
186
187 // Insert the 'and' instruction on the input to the truncate.
188 if (CreateAnd)
189 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
190
191 // If types don't match, we can still convert the select by introducing a zext
192 // or a trunc of the 'and'.
193 if (ValZeros > AndZeros) {
194 V = Builder.CreateZExtOrTrunc(V, SelType);
195 V = Builder.CreateShl(V, ValZeros - AndZeros);
196 } else if (ValZeros < AndZeros) {
197 V = Builder.CreateLShr(V, AndZeros - ValZeros);
198 V = Builder.CreateZExtOrTrunc(V, SelType);
199 } else {
200 V = Builder.CreateZExtOrTrunc(V, SelType);
201 }
202
203 // Okay, now we know that everything is set up, we just don't know whether we
204 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
205 if (ShouldNotVal)
206 V = Builder.CreateXor(V, ValC);
207
208 return V;
209}
210
211/// We want to turn code that looks like this:
212/// %C = or %A, %B
213/// %D = select %cond, %C, %A
214/// into:
215/// %C = select %cond, %B, 0
216/// %D = or %A, %C
217///
218/// Assuming that the specified instruction is an operand to the select, return
219/// a bitmask indicating which operands of this instruction are foldable if they
220/// equal the other incoming value of the select.
222 switch (I->getOpcode()) {
223 case Instruction::Add:
224 case Instruction::FAdd:
225 case Instruction::Mul:
226 case Instruction::FMul:
227 case Instruction::And:
228 case Instruction::Or:
229 case Instruction::Xor:
230 return 3; // Can fold through either operand.
231 case Instruction::Sub: // Can only fold on the amount subtracted.
232 case Instruction::FSub:
233 case Instruction::FDiv: // Can only fold on the divisor amount.
234 case Instruction::Shl: // Can only fold on the shift amount.
235 case Instruction::LShr:
236 case Instruction::AShr:
237 return 1;
238 default:
239 return 0; // Cannot fold
240 }
241}
242
243/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
245 Instruction *FI) {
246 // Don't break up min/max patterns. The hasOneUse checks below prevent that
247 // for most cases, but vector min/max with bitcasts can be transformed. If the
248 // one-use restrictions are eased for other patterns, we still don't want to
249 // obfuscate min/max.
250 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
251 match(&SI, m_SMax(m_Value(), m_Value())) ||
252 match(&SI, m_UMin(m_Value(), m_Value())) ||
253 match(&SI, m_UMax(m_Value(), m_Value()))))
254 return nullptr;
255
256 // If this is a cast from the same type, merge.
257 Value *Cond = SI.getCondition();
258 Type *CondTy = Cond->getType();
259 if (TI->getNumOperands() == 1 && TI->isCast()) {
260 Type *FIOpndTy = FI->getOperand(0)->getType();
261 if (TI->getOperand(0)->getType() != FIOpndTy)
262 return nullptr;
263
264 // The select condition may be a vector. We may only change the operand
265 // type if the vector width remains the same (and matches the condition).
266 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
267 if (!FIOpndTy->isVectorTy() ||
268 CondVTy->getElementCount() !=
269 cast<VectorType>(FIOpndTy)->getElementCount())
270 return nullptr;
271
272 // TODO: If the backend knew how to deal with casts better, we could
273 // remove this limitation. For now, there's too much potential to create
274 // worse codegen by promoting the select ahead of size-altering casts
275 // (PR28160).
276 //
277 // Note that ValueTracking's matchSelectPattern() looks through casts
278 // without checking 'hasOneUse' when it matches min/max patterns, so this
279 // transform may end up happening anyway.
280 if (TI->getOpcode() != Instruction::BitCast &&
281 (!TI->hasOneUse() || !FI->hasOneUse()))
282 return nullptr;
283 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
284 // TODO: The one-use restrictions for a scalar select could be eased if
285 // the fold of a select in visitLoadInst() was enhanced to match a pattern
286 // that includes a cast.
287 return nullptr;
288 }
289
290 // Fold this by inserting a select from the input values.
291 Value *NewSI =
293 SI.getName() + ".v", &SI);
295 TI->getType());
296 }
297
298 Value *OtherOpT, *OtherOpF;
299 bool MatchIsOpZero;
300 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
301 bool Swapped = false) -> Value * {
302 assert(!(Commute && Swapped) &&
303 "Commute and Swapped can't set at the same time");
304 if (!Swapped) {
305 if (TI->getOperand(0) == FI->getOperand(0)) {
306 OtherOpT = TI->getOperand(1);
307 OtherOpF = FI->getOperand(1);
308 MatchIsOpZero = true;
309 return TI->getOperand(0);
310 } else if (TI->getOperand(1) == FI->getOperand(1)) {
311 OtherOpT = TI->getOperand(0);
312 OtherOpF = FI->getOperand(0);
313 MatchIsOpZero = false;
314 return TI->getOperand(1);
315 }
316 }
317
318 if (!Commute && !Swapped)
319 return nullptr;
320
321 // If we are allowing commute or swap of operands, then
322 // allow a cross-operand match. In that case, MatchIsOpZero
323 // means that TI's operand 0 (FI's operand 1) is the common op.
324 if (TI->getOperand(0) == FI->getOperand(1)) {
325 OtherOpT = TI->getOperand(1);
326 OtherOpF = FI->getOperand(0);
327 MatchIsOpZero = true;
328 return TI->getOperand(0);
329 } else if (TI->getOperand(1) == FI->getOperand(0)) {
330 OtherOpT = TI->getOperand(0);
331 OtherOpF = FI->getOperand(1);
332 MatchIsOpZero = false;
333 return TI->getOperand(1);
334 }
335 return nullptr;
336 };
337
338 if (TI->hasOneUse() || FI->hasOneUse()) {
339 // Cond ? -X : -Y --> -(Cond ? X : Y)
340 Value *X, *Y;
341 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
342 // Intersect FMF from the fneg instructions and union those with the
343 // select.
345 FMF &= FI->getFastMathFlags();
346 FMF |= SI.getFastMathFlags();
347 Value *NewSel =
348 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
349 if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
350 NewSelI->setFastMathFlags(FMF);
351 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
352 NewFNeg->setFastMathFlags(FMF);
353 return NewFNeg;
354 }
355
356 // Min/max intrinsic with a common operand can have the common operand
357 // pulled after the select. This is the same transform as below for binops,
358 // but specialized for intrinsic matching and without the restrictive uses
359 // clause.
360 auto *TII = dyn_cast<IntrinsicInst>(TI);
361 auto *FII = dyn_cast<IntrinsicInst>(FI);
362 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
363 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
364 if (Value *MatchOp = getCommonOp(TI, FI, true)) {
365 Value *NewSel =
366 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
367 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
368 }
369 }
370
371 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
372 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
373 //
374 // select c, (ldexp v0, e0), (ldexp v1, e1) ->
375 // ldexp (select c, v0, v1), (select c, e0, e1)
376 if (TII->getIntrinsicID() == Intrinsic::ldexp) {
377 Value *LdexpVal0 = TII->getArgOperand(0);
378 Value *LdexpExp0 = TII->getArgOperand(1);
379 Value *LdexpVal1 = FII->getArgOperand(0);
380 Value *LdexpExp1 = FII->getArgOperand(1);
381 if (LdexpExp0->getType() == LdexpExp1->getType()) {
382 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
383 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
384 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
385 FMF |= SelectFPOp->getFastMathFlags();
386
387 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
388 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
389
390 CallInst *NewLdexp = Builder.CreateIntrinsic(
391 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
392 NewLdexp->setFastMathFlags(FMF);
393 return replaceInstUsesWith(SI, NewLdexp);
394 }
395 }
396 }
397
398 auto CreateCmpSel = [&](std::optional<CmpPredicate> P,
399 bool Swapped) -> CmpInst * {
400 if (!P)
401 return nullptr;
402 auto *MatchOp = getCommonOp(TI, FI, ICmpInst::isEquality(*P),
403 ICmpInst::isRelational(*P) && Swapped);
404 if (!MatchOp)
405 return nullptr;
406 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
407 SI.getName() + ".v", &SI);
408 return new ICmpInst(MatchIsOpZero ? *P
410 MatchOp, NewSel);
411 };
412
413 // icmp with a common operand also can have the common operand
414 // pulled after the select.
415 CmpPredicate TPred, FPred;
416 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
417 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
418 if (auto *R =
419 CreateCmpSel(CmpPredicate::getMatching(TPred, FPred), false))
420 return R;
421 if (auto *R =
422 CreateCmpSel(CmpPredicate::getMatching(
424 true))
425 return R;
426 }
427 }
428
429 // Only handle binary operators (including two-operand getelementptr) with
430 // one-use here. As with the cast case above, it may be possible to relax the
431 // one-use constraint, but that needs be examined carefully since it may not
432 // reduce the total number of instructions.
433 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
434 !TI->isSameOperationAs(FI) ||
435 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
436 !TI->hasOneUse() || !FI->hasOneUse())
437 return nullptr;
438
439 // Figure out if the operations have any operands in common.
440 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
441 if (!MatchOp)
442 return nullptr;
443
444 // If the select condition is a vector, the operands of the original select's
445 // operands also must be vectors. This may not be the case for getelementptr
446 // for example.
447 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
448 !OtherOpF->getType()->isVectorTy()))
449 return nullptr;
450
451 // If we are sinking div/rem after a select, we may need to freeze the
452 // condition because div/rem may induce immediate UB with a poison operand.
453 // For example, the following transform is not safe if Cond can ever be poison
454 // because we can replace poison with zero and then we have div-by-zero that
455 // didn't exist in the original code:
456 // Cond ? x/y : x/z --> x / (Cond ? y : z)
457 auto *BO = dyn_cast<BinaryOperator>(TI);
458 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
459 // A udiv/urem with a common divisor is safe because UB can only occur with
460 // div-by-zero, and that would be present in the original code.
461 if (BO->getOpcode() == Instruction::SDiv ||
462 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
464 }
465
466 // If we reach here, they do have operations in common.
467 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
468 SI.getName() + ".v", &SI);
469 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
470 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
471 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
472 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
473 NewBO->copyIRFlags(TI);
474 NewBO->andIRFlags(FI);
475 return NewBO;
476 }
477 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
478 auto *FGEP = cast<GetElementPtrInst>(FI);
479 Type *ElementType = TGEP->getSourceElementType();
481 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
482 }
483 llvm_unreachable("Expected BinaryOperator or GEP");
484 return nullptr;
485}
486
487static bool isSelect01(const APInt &C1I, const APInt &C2I) {
488 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
489 return false;
490 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
491}
492
493/// Try to fold the select into one of the operands to allow further
494/// optimization.
496 Value *FalseVal) {
497 // See the comment above getSelectFoldableOperands for a description of the
498 // transformation we are doing here.
499 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
500 Value *FalseVal,
501 bool Swapped) -> Instruction * {
502 auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
503 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
504 return nullptr;
505
506 unsigned SFO = getSelectFoldableOperands(TVI);
507 unsigned OpToFold = 0;
508 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
509 OpToFold = 1;
510 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
511 OpToFold = 2;
512
513 if (!OpToFold)
514 return nullptr;
515
516 FastMathFlags FMF;
517 if (isa<FPMathOperator>(&SI))
518 FMF = SI.getFastMathFlags();
520 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
521 Value *OOp = TVI->getOperand(2 - OpToFold);
522 // Avoid creating select between 2 constants unless it's selecting
523 // between 0, 1 and -1.
524 const APInt *OOpC;
525 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
526 if (isa<Constant>(OOp) &&
527 (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC)))
528 return nullptr;
529
530 // If the false value is a NaN then we have that the floating point math
531 // operation in the transformed code may not preserve the exact NaN
532 // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
533 // This makes the transformation incorrect since the original program would
534 // have preserved the exact NaN bit-pattern.
535 // Avoid the folding if the false value might be a NaN.
536 if (isa<FPMathOperator>(&SI) &&
537 !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN())
538 return nullptr;
539
540 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
541 Swapped ? OOp : C, "", &SI);
542 if (isa<FPMathOperator>(&SI))
543 cast<Instruction>(NewSel)->setFastMathFlags(FMF);
544 NewSel->takeName(TVI);
545 BinaryOperator *BO =
546 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
547 BO->copyIRFlags(TVI);
548 if (isa<FPMathOperator>(&SI)) {
549 // Merge poison generating flags from the select.
550 BO->setHasNoNaNs(BO->hasNoNaNs() && FMF.noNaNs());
551 BO->setHasNoInfs(BO->hasNoInfs() && FMF.noInfs());
552 // Merge no-signed-zeros flag from the select.
553 // Otherwise we may produce zeros with different sign.
555 }
556 return BO;
557 };
558
559 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
560 return R;
561
562 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
563 return R;
564
565 return nullptr;
566}
567
568/// Try to fold a select to a min/max intrinsic. Many cases are already handled
569/// by matchDecomposedSelectPattern but here we handle the cases where more
570/// extensive modification of the IR is required.
571static Value *foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal,
572 Value *FVal,
574 const SimplifyQuery &SQ) {
575 const Value *CmpLHS = Cmp->getOperand(0);
576 const Value *CmpRHS = Cmp->getOperand(1);
577 ICmpInst::Predicate Pred = Cmp->getPredicate();
578
579 // (X > Y) ? X : (Y - 1) ==> MIN(X, Y - 1)
580 // (X < Y) ? X : (Y + 1) ==> MAX(X, Y + 1)
581 // This transformation is valid when overflow corresponding to the sign of
582 // the comparison is poison and we must drop the non-matching overflow flag.
583 if (CmpRHS == TVal) {
584 std::swap(CmpLHS, CmpRHS);
585 Pred = CmpInst::getSwappedPredicate(Pred);
586 }
587
588 // TODO: consider handling 'or disjoint' as well, though these would need to
589 // be converted to 'add' instructions.
590 if (!(CmpLHS == TVal && isa<Instruction>(FVal)))
591 return nullptr;
592
593 if (Pred == CmpInst::ICMP_SGT &&
594 match(FVal, m_NSWAdd(m_Specific(CmpRHS), m_One()))) {
595 cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
596 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
597 }
598
599 if (Pred == CmpInst::ICMP_SLT &&
600 match(FVal, m_NSWAdd(m_Specific(CmpRHS), m_AllOnes()))) {
601 cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
602 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
603 }
604
605 if (Pred == CmpInst::ICMP_UGT &&
606 match(FVal, m_NUWAdd(m_Specific(CmpRHS), m_One()))) {
607 cast<Instruction>(FVal)->setHasNoSignedWrap(false);
608 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
609 }
610
611 // Note: We must use isKnownNonZero here because "sub nuw %x, 1" will be
612 // canonicalized to "add %x, -1" discarding the nuw flag.
613 if (Pred == CmpInst::ICMP_ULT &&
614 match(FVal, m_Add(m_Specific(CmpRHS), m_AllOnes())) &&
615 isKnownNonZero(CmpRHS, SQ)) {
616 cast<Instruction>(FVal)->setHasNoSignedWrap(false);
617 cast<Instruction>(FVal)->setHasNoUnsignedWrap(false);
618 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
619 }
620
621 return nullptr;
622}
623
624/// We want to turn:
625/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
626/// into:
627/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
628/// Note:
629/// Z may be 0 if lshr is missing.
630/// Worst-case scenario is that we will replace 5 instructions with 5 different
631/// instructions, but we got rid of select.
632static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
633 Value *TVal, Value *FVal,
634 InstCombiner::BuilderTy &Builder) {
635 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
636 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
637 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
638 return nullptr;
639
640 // The TrueVal has general form of: and %B, 1
641 Value *B;
642 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
643 return nullptr;
644
645 // Where %B may be optionally shifted: lshr %X, %Z.
646 Value *X, *Z;
647 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
648
649 // The shift must be valid.
650 // TODO: This restricts the fold to constant shift amounts. Is there a way to
651 // handle variable shifts safely? PR47012
652 if (HasShift &&
654 APInt(SelType->getScalarSizeInBits(),
655 SelType->getScalarSizeInBits()))))
656 return nullptr;
657
658 if (!HasShift)
659 X = B;
660
661 Value *Y;
662 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
663 return nullptr;
664
665 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
666 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
667 Constant *One = ConstantInt::get(SelType, 1);
668 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
669 Value *FullMask = Builder.CreateOr(Y, MaskB);
670 Value *MaskedX = Builder.CreateAnd(X, FullMask);
671 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
672 return new ZExtInst(ICmpNeZero, SelType);
673}
674
675/// We want to turn:
676/// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
677/// iff C1 is a mask and the number of its leading zeros is equal to C2
678/// into:
679/// shl X, C2
681 Value *FVal,
682 InstCombiner::BuilderTy &Builder) {
683 CmpPredicate Pred;
684 Value *AndVal;
685 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
686 return nullptr;
687
688 if (Pred == ICmpInst::ICMP_NE) {
689 Pred = ICmpInst::ICMP_EQ;
690 std::swap(TVal, FVal);
691 }
692
693 Value *X;
694 const APInt *C2, *C1;
695 if (Pred != ICmpInst::ICMP_EQ ||
696 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
697 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
698 return nullptr;
699
700 if (!C1->isMask() ||
701 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
702 return nullptr;
703
704 auto *FI = dyn_cast<Instruction>(FVal);
705 if (!FI)
706 return nullptr;
707
708 FI->setHasNoSignedWrap(false);
709 FI->setHasNoUnsignedWrap(false);
710 return FVal;
711}
712
713/// We want to turn:
714/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
715/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
716/// into:
717/// ashr (X, Y)
718static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
719 Value *FalseVal,
720 InstCombiner::BuilderTy &Builder) {
722 Value *CmpLHS = IC->getOperand(0);
723 Value *CmpRHS = IC->getOperand(1);
724 if (!CmpRHS->getType()->isIntOrIntVectorTy())
725 return nullptr;
726
727 Value *X, *Y;
728 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
729 if ((Pred != ICmpInst::ICMP_SGT ||
731 APInt::getAllOnes(Bitwidth)))) &&
732 (Pred != ICmpInst::ICMP_SLT ||
734 APInt::getZero(Bitwidth)))))
735 return nullptr;
736
737 // Canonicalize so that ashr is in FalseVal.
738 if (Pred == ICmpInst::ICMP_SLT)
739 std::swap(TrueVal, FalseVal);
740
741 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
742 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
743 match(CmpLHS, m_Specific(X))) {
744 const auto *Ashr = cast<Instruction>(FalseVal);
745 // if lshr is not exact and ashr is, this new ashr must not be exact.
746 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
747 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
748 }
749
750 return nullptr;
751}
752
753/// We want to turn:
754/// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
755/// into:
756/// IF C2 u>= C1
757/// (BinOp Y, (shl (and X, C1), C3))
758/// ELSE
759/// (BinOp Y, (lshr (and X, C1), C3))
760/// iff:
761/// 0 on the RHS is the identity value (i.e add, xor, shl, etc...)
762/// C1 and C2 are both powers of 2
763/// where:
764/// IF C2 u>= C1
765/// C3 = Log(C2) - Log(C1)
766/// ELSE
767/// C3 = Log(C1) - Log(C2)
768///
769/// This transform handles cases where:
770/// 1. The icmp predicate is inverted
771/// 2. The select operands are reversed
772/// 3. The magnitude of C2 and C1 are flipped
773static Value *foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal,
774 Value *FalseVal, Value *V,
775 const APInt &AndMask, bool CreateAnd,
776 InstCombiner::BuilderTy &Builder) {
777 // Only handle integer compares.
778 if (!TrueVal->getType()->isIntOrIntVectorTy())
779 return nullptr;
780
781 unsigned C1Log = AndMask.logBase2();
782 Value *Y;
783 BinaryOperator *BinOp;
784 const APInt *C2;
785 bool NeedXor;
786 if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
787 Y = TrueVal;
788 BinOp = cast<BinaryOperator>(FalseVal);
789 NeedXor = false;
790 } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
791 Y = FalseVal;
792 BinOp = cast<BinaryOperator>(TrueVal);
793 NeedXor = true;
794 } else {
795 return nullptr;
796 }
797
798 // Check that 0 on RHS is identity value for this binop.
799 auto *IdentityC =
801 /*AllowRHSConstant*/ true);
802 if (IdentityC == nullptr || !IdentityC->isNullValue())
803 return nullptr;
804
805 unsigned C2Log = C2->logBase2();
806
807 bool NeedShift = C1Log != C2Log;
808 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
809 V->getType()->getScalarSizeInBits();
810
811 // Make sure we don't create more instructions than we save.
812 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
813 (CondVal->hasOneUse() + BinOp->hasOneUse()))
814 return nullptr;
815
816 if (CreateAnd) {
817 // Insert the AND instruction on the input to the truncate.
818 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
819 }
820
821 if (C2Log > C1Log) {
822 V = Builder.CreateZExtOrTrunc(V, Y->getType());
823 V = Builder.CreateShl(V, C2Log - C1Log);
824 } else if (C1Log > C2Log) {
825 V = Builder.CreateLShr(V, C1Log - C2Log);
826 V = Builder.CreateZExtOrTrunc(V, Y->getType());
827 } else
828 V = Builder.CreateZExtOrTrunc(V, Y->getType());
829
830 if (NeedXor)
831 V = Builder.CreateXor(V, *C2);
832
833 auto *Res = Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
834 if (auto *BO = dyn_cast<BinaryOperator>(Res))
835 BO->copyIRFlags(BinOp);
836 return Res;
837}
838
839/// Canonicalize a set or clear of a masked set of constant bits to
840/// select-of-constants form.
842 InstCombiner::BuilderTy &Builder) {
843 Value *Cond = Sel.getCondition();
844 Value *T = Sel.getTrueValue();
845 Value *F = Sel.getFalseValue();
846 Type *Ty = Sel.getType();
847 Value *X;
848 const APInt *NotC, *C;
849
850 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
851 if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
852 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
854 Constant *OrC = ConstantInt::get(Ty, *C);
855 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
856 return BinaryOperator::CreateOr(T, NewSel);
857 }
858
859 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
860 if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
861 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
863 Constant *OrC = ConstantInt::get(Ty, *C);
864 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
865 return BinaryOperator::CreateOr(F, NewSel);
866 }
867
868 return nullptr;
869}
870
871// select (x == 0), 0, x * y --> freeze(y) * x
872// select (y == 0), 0, x * y --> freeze(x) * y
873// select (x == 0), undef, x * y --> freeze(y) * x
874// select (x == undef), 0, x * y --> freeze(y) * x
875// Usage of mul instead of 0 will make the result more poisonous,
876// so the operand that was not checked in the condition should be frozen.
877// The latter folding is applied only when a constant compared with x is
878// is a vector consisting of 0 and undefs. If a constant compared with x
879// is a scalar undefined value or undefined vector then an expression
880// should be already folded into a constant.
881//
882// This also holds all operations such that Op(0) == 0
883// e.g. Shl, Umin, etc
885 InstCombinerImpl &IC) {
886 auto *CondVal = SI.getCondition();
887 auto *TrueVal = SI.getTrueValue();
888 auto *FalseVal = SI.getFalseValue();
889 Value *X, *Y;
891
892 // Assuming that constant compared with zero is not undef (but it may be
893 // a vector with some undef elements). Otherwise (when a constant is undef)
894 // the select expression should be already simplified.
895 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
897 return nullptr;
898
900 std::swap(TrueVal, FalseVal);
901
902 // Check that TrueVal is a constant instead of matching it with m_Zero()
903 // to handle the case when it is a scalar undef value or a vector containing
904 // non-zero elements that are masked by undef elements in the compare
905 // constant.
906 auto *TrueValC = dyn_cast<Constant>(TrueVal);
907 if (TrueValC == nullptr || !isa<Instruction>(FalseVal))
908 return nullptr;
909
910 bool FreezeY;
911 if (match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
912 match(FalseVal, m_c_And(m_Specific(X), m_Value(Y))) ||
913 match(FalseVal, m_FShl(m_Specific(X), m_Specific(X), m_Value(Y))) ||
914 match(FalseVal, m_FShr(m_Specific(X), m_Specific(X), m_Value(Y))) ||
915 match(FalseVal,
916 m_c_Intrinsic<Intrinsic::umin>(m_Specific(X), m_Value(Y)))) {
917 FreezeY = true;
918 } else if (match(FalseVal, m_IDiv(m_Specific(X), m_Value(Y))) ||
919 match(FalseVal, m_IRem(m_Specific(X), m_Value(Y)))) {
920 FreezeY = false;
921 } else {
922 return nullptr;
923 }
924
925 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
926 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
927 // If X is compared with 0 then TrueVal could be either zero or undef.
928 // m_Zero match vectors containing some undef elements, but for scalars
929 // m_Undef should be used explicitly.
930 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
931 return nullptr;
932
933 auto *FalseValI = cast<Instruction>(FalseVal);
934 if (FreezeY) {
935 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
936 FalseValI->getIterator());
937 IC.replaceOperand(*FalseValI,
938 FalseValI->getOperand(0) == Y
939 ? 0
940 : (FalseValI->getOperand(1) == Y ? 1 : 2),
941 FrY);
942 }
943 return IC.replaceInstUsesWith(SI, FalseValI);
944}
945
946/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
947/// There are 8 commuted/swapped variants of this pattern.
949 const Value *TrueVal,
950 const Value *FalseVal,
951 InstCombiner::BuilderTy &Builder) {
952 ICmpInst::Predicate Pred = ICI->getPredicate();
953 Value *A = ICI->getOperand(0);
954 Value *B = ICI->getOperand(1);
955
956 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
957 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
958 if (match(TrueVal, m_Zero())) {
960 std::swap(TrueVal, FalseVal);
961 }
962
963 if (!match(FalseVal, m_Zero()))
964 return nullptr;
965
966 // ugt 0 is canonicalized to ne 0 and requires special handling
967 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
968 if (Pred == ICmpInst::ICMP_NE) {
969 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
970 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
971 ConstantInt::get(A->getType(), 1));
972 return nullptr;
973 }
974
975 if (!ICmpInst::isUnsigned(Pred))
976 return nullptr;
977
978 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
979 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
980 std::swap(A, B);
982 }
983
984 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
985 "Unexpected isUnsigned predicate!");
986
987 // Ensure the sub is of the form:
988 // (a > b) ? a - b : 0 -> usub.sat(a, b)
989 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
990 // Checking for both a-b and a+(-b) as a constant.
991 bool IsNegative = false;
992 const APInt *C;
993 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
994 (match(A, m_APInt(C)) &&
995 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
996 IsNegative = true;
997 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
998 !(match(B, m_APInt(C)) &&
999 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
1000 return nullptr;
1001
1002 // If we are adding a negate and the sub and icmp are used anywhere else, we
1003 // would end up with more instructions.
1004 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
1005 return nullptr;
1006
1007 // (a > b) ? a - b : 0 -> usub.sat(a, b)
1008 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
1009 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
1010 if (IsNegative)
1011 Result = Builder.CreateNeg(Result);
1012 return Result;
1013}
1014
1016 InstCombiner::BuilderTy &Builder) {
1017 if (!Cmp->hasOneUse())
1018 return nullptr;
1019
1020 // Match unsigned saturated add with constant.
1021 Value *Cmp0 = Cmp->getOperand(0);
1022 Value *Cmp1 = Cmp->getOperand(1);
1023 ICmpInst::Predicate Pred = Cmp->getPredicate();
1024 Value *X;
1025 const APInt *C;
1026
1027 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
1028 // There are 8 commuted variants.
1029 // Canonicalize -1 (saturated result) to true value of the select.
1030 if (match(FVal, m_AllOnes())) {
1031 std::swap(TVal, FVal);
1032 Pred = CmpInst::getInversePredicate(Pred);
1033 }
1034 if (!match(TVal, m_AllOnes()))
1035 return nullptr;
1036
1037 // uge -1 is canonicalized to eq -1 and requires special handling
1038 // (a == -1) ? -1 : a + 1 -> uadd.sat(a, 1)
1039 if (Pred == ICmpInst::ICMP_EQ) {
1040 if (match(FVal, m_Add(m_Specific(Cmp0), m_One())) &&
1041 match(Cmp1, m_AllOnes())) {
1042 return Builder.CreateBinaryIntrinsic(
1043 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->getType(), 1));
1044 }
1045 return nullptr;
1046 }
1047
1048 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
1049 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
1050 match(Cmp1, m_SpecificIntAllowPoison(~*C))) {
1051 // (X u> ~C) ? -1 : (X + C) --> uadd.sat(X, C)
1052 // (X u>= ~C)? -1 : (X + C) --> uadd.sat(X, C)
1053 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1054 ConstantInt::get(Cmp0->getType(), *C));
1055 }
1056
1057 // Negative one does not work here because X u> -1 ? -1, X + -1 is not a
1058 // saturated add.
1059 if (Pred == ICmpInst::ICMP_UGT &&
1060 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
1061 match(Cmp1, m_SpecificIntAllowPoison(~*C - 1)) && !C->isAllOnes()) {
1062 // (X u> ~C - 1) ? -1 : (X + C) --> uadd.sat(X, C)
1063 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1064 ConstantInt::get(Cmp0->getType(), *C));
1065 }
1066
1067 // Zero does not work here because X u>= 0 ? -1 : X -> is always -1, which is
1068 // not a saturated add.
1069 if (Pred == ICmpInst::ICMP_UGE &&
1070 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) &&
1071 match(Cmp1, m_SpecificIntAllowPoison(-*C)) && !C->isZero()) {
1072 // (X u >= -C) ? -1 : (X + C) --> uadd.sat(X, C)
1073 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1074 ConstantInt::get(Cmp0->getType(), *C));
1075 }
1076
1077 // Canonicalize predicate to less-than or less-or-equal-than.
1078 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
1079 std::swap(Cmp0, Cmp1);
1080 Pred = CmpInst::getSwappedPredicate(Pred);
1081 }
1082 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
1083 return nullptr;
1084
1085 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
1086 // Strictness of the comparison is irrelevant.
1087 Value *Y;
1088 if (match(Cmp0, m_Not(m_Value(X))) &&
1089 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
1090 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1091 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
1092 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
1093 }
1094 // The 'not' op may be included in the sum but not the compare.
1095 // Strictness of the comparison is irrelevant.
1096 X = Cmp0;
1097 Y = Cmp1;
1099 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
1100 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
1101 BinaryOperator *BO = cast<BinaryOperator>(FVal);
1102 return Builder.CreateBinaryIntrinsic(
1103 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
1104 }
1105 // The overflow may be detected via the add wrapping round.
1106 // This is only valid for strict comparison!
1107 if (Pred == ICmpInst::ICMP_ULT &&
1108 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
1109 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
1110 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
1111 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1112 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
1113 }
1114
1115 return nullptr;
1116}
1117
1118/// Try to match patterns with select and subtract as absolute difference.
1119static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
1120 InstCombiner::BuilderTy &Builder) {
1121 auto *TI = dyn_cast<Instruction>(TVal);
1122 auto *FI = dyn_cast<Instruction>(FVal);
1123 if (!TI || !FI)
1124 return nullptr;
1125
1126 // Normalize predicate to gt/lt rather than ge/le.
1127 ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
1128 Value *A = Cmp->getOperand(0);
1129 Value *B = Cmp->getOperand(1);
1130
1131 // Normalize "A - B" as the true value of the select.
1132 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
1133 std::swap(FI, TI);
1134 Pred = ICmpInst::getSwappedPredicate(Pred);
1135 }
1136
1137 // With any pair of no-wrap subtracts:
1138 // (A > B) ? (A - B) : (B - A) --> abs(A - B)
1139 if (Pred == CmpInst::ICMP_SGT &&
1140 match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
1141 match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
1142 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1143 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1144 // The remaining subtract is not "nuw" any more.
1145 // If there's one use of the subtract (no other use than the use we are
1146 // about to replace), then we know that the sub is "nsw" in this context
1147 // even if it was only "nuw" before. If there's another use, then we can't
1148 // add "nsw" to the existing instruction because it may not be safe in the
1149 // other user's context.
1150 TI->setHasNoUnsignedWrap(false);
1151 if (!TI->hasNoSignedWrap())
1152 TI->setHasNoSignedWrap(TI->hasOneUse());
1153 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1154 }
1155
1156 return nullptr;
1157}
1158
1159/// Fold the following code sequence:
1160/// \code
1161/// int a = ctlz(x & -x);
1162// x ? 31 - a : a;
1163// // or
1164// x ? 31 - a : 32;
1165/// \code
1166///
1167/// into:
1168/// cttz(x)
1169static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
1170 Value *FalseVal,
1171 InstCombiner::BuilderTy &Builder) {
1172 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
1173 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
1174 return nullptr;
1175
1176 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
1177 std::swap(TrueVal, FalseVal);
1178
1179 Value *Ctlz;
1180 if (!match(FalseVal,
1181 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
1182 return nullptr;
1183
1184 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1185 return nullptr;
1186
1187 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
1188 return nullptr;
1189
1190 Value *X = ICI->getOperand(0);
1191 auto *II = cast<IntrinsicInst>(Ctlz);
1192 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
1193 return nullptr;
1194
1196 II->getModule(), Intrinsic::cttz, II->getType());
1197 return CallInst::Create(F, {X, II->getArgOperand(1)});
1198}
1199
1200/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
1201/// call to cttz/ctlz with flag 'is_zero_poison' cleared.
1202///
1203/// For example, we can fold the following code sequence:
1204/// \code
1205/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
1206/// %1 = icmp ne i32 %x, 0
1207/// %2 = select i1 %1, i32 %0, i32 32
1208/// \code
1209///
1210/// into:
1211/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
1212static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
1213 InstCombinerImpl &IC) {
1214 ICmpInst::Predicate Pred = ICI->getPredicate();
1215 Value *CmpLHS = ICI->getOperand(0);
1216 Value *CmpRHS = ICI->getOperand(1);
1217
1218 // Check if the select condition compares a value for equality.
1219 if (!ICI->isEquality())
1220 return nullptr;
1221
1222 Value *SelectArg = FalseVal;
1223 Value *ValueOnZero = TrueVal;
1224 if (Pred == ICmpInst::ICMP_NE)
1225 std::swap(SelectArg, ValueOnZero);
1226
1227 // Skip zero extend/truncate.
1228 Value *Count = nullptr;
1229 if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1230 !match(SelectArg, m_Trunc(m_Value(Count))))
1231 Count = SelectArg;
1232
1233 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1234 // input to the cttz/ctlz is used as LHS for the compare instruction.
1235 Value *X;
1236 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1237 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1238 return nullptr;
1239
1240 // (X == 0) ? BitWidth : ctz(X)
1241 // (X == -1) ? BitWidth : ctz(~X)
1242 // (X == Y) ? BitWidth : ctz(X ^ Y)
1243 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1244 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())) &&
1245 !match(X, m_c_Xor(m_Specific(CmpLHS), m_Specific(CmpRHS))))
1246 return nullptr;
1247
1248 IntrinsicInst *II = cast<IntrinsicInst>(Count);
1249
1250 // Check if the value propagated on zero is a constant number equal to the
1251 // sizeof in bits of 'Count'.
1252 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1253 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1254 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1255 // true to false on this flag, so we can replace it for all users.
1256 II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1257 // A range annotation on the intrinsic may no longer be valid.
1258 II->dropPoisonGeneratingAnnotations();
1259 IC.addToWorklist(II);
1260 return SelectArg;
1261 }
1262
1263 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1264 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1265 // not be used if the input is zero. Relax to 'zero is poison' for that case.
1266 if (II->hasOneUse() && SelectArg->hasOneUse() &&
1267 !match(II->getArgOperand(1), m_One())) {
1268 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1269 // noundef attribute on the intrinsic may no longer be valid.
1270 II->dropUBImplyingAttrsAndMetadata();
1271 IC.addToWorklist(II);
1272 }
1273
1274 return nullptr;
1275}
1276
1277static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal,
1278 InstCombinerImpl &IC) {
1279 Value *LHS, *RHS;
1280 // TODO: What to do with pointer min/max patterns?
1281 if (!TrueVal->getType()->isIntOrIntVectorTy())
1282 return nullptr;
1283
1285 matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor;
1286 if (SPF == SelectPatternFlavor::SPF_ABS ||
1288 if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1289 return nullptr; // TODO: Relax this restriction.
1290
1291 // Note that NSW flag can only be propagated for normal, non-negated abs!
1292 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1293 match(RHS, m_NSWNeg(m_Specific(LHS)));
1294 Constant *IntMinIsPoisonC =
1295 ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison);
1296 Value *Abs =
1297 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1298
1300 return IC.Builder.CreateNeg(Abs); // Always without NSW flag!
1301 return Abs;
1302 }
1303
1305 Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF);
1306 return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS);
1307 }
1308
1309 return nullptr;
1310}
1311
1313 unsigned Depth) {
1314 // Conservatively limit replacement to two instructions upwards.
1315 if (Depth == 2)
1316 return false;
1317
1318 assert(!isa<Constant>(Old) && "Only replace non-constant values");
1319
1320 auto *I = dyn_cast<Instruction>(V);
1321 if (!I || !I->hasOneUse() ||
1323 return false;
1324
1325 // Forbid potentially lane-crossing instructions.
1326 if (Old->getType()->isVectorTy() && !isNotCrossLaneOperation(I))
1327 return false;
1328
1329 bool Changed = false;
1330 for (Use &U : I->operands()) {
1331 if (U == Old) {
1332 replaceUse(U, New);
1333 Worklist.add(I);
1334 Changed = true;
1335 } else {
1336 Changed |= replaceInInstruction(U, Old, New, Depth + 1);
1337 }
1338 }
1339 return Changed;
1340}
1341
1342/// If we have a select with an equality comparison, then we know the value in
1343/// one of the arms of the select. See if substituting this value into an arm
1344/// and simplifying the result yields the same value as the other arm.
1345///
1346/// To make this transform safe, we must drop poison-generating flags
1347/// (nsw, etc) if we simplified to a binop because the select may be guarding
1348/// that poison from propagating. If the existing binop already had no
1349/// poison-generating flags, then this transform can be done by instsimplify.
1350///
1351/// Consider:
1352/// %cmp = icmp eq i32 %x, 2147483647
1353/// %add = add nsw i32 %x, 1
1354/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1355///
1356/// We can't replace %sel with %add unless we strip away the flags.
1357/// TODO: Wrapping flags could be preserved in some cases with better analysis.
1359 CmpInst &Cmp) {
1360 // Canonicalize the pattern to an equivalence on the predicate by swapping the
1361 // select operands.
1362 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1363 bool Swapped = false;
1364 if (Cmp.isEquivalence(/*Invert=*/true)) {
1365 std::swap(TrueVal, FalseVal);
1366 Swapped = true;
1367 } else if (!Cmp.isEquivalence()) {
1368 return nullptr;
1369 }
1370
1371 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1372 auto ReplaceOldOpWithNewOp = [&](Value *OldOp,
1373 Value *NewOp) -> Instruction * {
1374 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1375 // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that
1376 // would lead to an infinite replacement cycle.
1377 // If we will be able to evaluate f(Y) to a constant, we can allow undef,
1378 // otherwise Y cannot be undef as we might pick different values for undef
1379 // in the cmp and in f(Y).
1380 if (TrueVal == OldOp && (isa<Constant>(OldOp) || !isa<Constant>(NewOp)))
1381 return nullptr;
1382
1383 if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ,
1384 /* AllowRefinement=*/true)) {
1385 // Need some guarantees about the new simplified op to ensure we don't inf
1386 // loop.
1387 // If we simplify to a constant, replace if we aren't creating new undef.
1388 if (match(V, m_ImmConstant()) &&
1389 isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT))
1390 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1391
1392 // If NewOp is a constant and OldOp is not replace iff NewOp doesn't
1393 // contain and undef elements.
1394 // Make sure that V is always simpler than TrueVal, otherwise we might
1395 // end up in an infinite loop.
1396 if (match(NewOp, m_ImmConstant()) ||
1397 (isa<Instruction>(TrueVal) &&
1398 is_contained(cast<Instruction>(TrueVal)->operands(), V))) {
1399 if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
1400 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1401 return nullptr;
1402 }
1403 }
1404
1405 // Even if TrueVal does not simplify, we can directly replace a use of
1406 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1407 // else and is safe to speculatively execute (we may end up executing it
1408 // with different operands, which should not cause side-effects or trigger
1409 // undefined behavior). Only do this if CmpRHS is a constant, as
1410 // profitability is not clear for other cases.
1411 if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) &&
1412 !match(OldOp, m_Constant()) &&
1413 isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT))
1414 if (replaceInInstruction(TrueVal, OldOp, NewOp))
1415 return &Sel;
1416 return nullptr;
1417 };
1418
1419 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1420 return R;
1421 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1422 return R;
1423
1424 auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1425 if (!FalseInst)
1426 return nullptr;
1427
1428 // InstSimplify already performed this fold if it was possible subject to
1429 // current poison-generating flags. Check whether dropping poison-generating
1430 // flags enables the transform.
1431
1432 // Try each equivalence substitution possibility.
1433 // We have an 'EQ' comparison, so the select's false value will propagate.
1434 // Example:
1435 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1437 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1438 /* AllowRefinement */ false,
1439 &DropFlags) == TrueVal ||
1440 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1441 /* AllowRefinement */ false,
1442 &DropFlags) == TrueVal) {
1443 for (Instruction *I : DropFlags) {
1444 I->dropPoisonGeneratingAnnotations();
1445 Worklist.add(I);
1446 }
1447
1448 return replaceInstUsesWith(Sel, FalseVal);
1449 }
1450
1451 return nullptr;
1452}
1453
1454/// Fold the following code sequence:
1455/// \code
1456/// %XeqZ = icmp eq i64 %X, %Z
1457/// %YeqZ = icmp eq i64 %Y, %Z
1458/// %XeqY = icmp eq i64 %X, %Y
1459/// %not.YeqZ = xor i1 %YeqZ, true
1460/// %and = select i1 %not.YeqZ, i1 %XeqY, i1 false
1461/// %equal = select i1 %XeqZ, i1 %YeqZ, i1 %and
1462/// \code
1463///
1464/// into:
1465/// %equal = icmp eq i64 %X, %Y
1467 Value *X, *Y, *Z;
1468 Value *XeqY, *XeqZ = Sel.getCondition(), *YeqZ = Sel.getTrueValue();
1469
1471 return nullptr;
1472
1473 if (!match(YeqZ,
1475 std::swap(X, Z);
1476
1477 if (!match(YeqZ,
1479 return nullptr;
1480
1481 if (!match(Sel.getFalseValue(),
1482 m_c_LogicalAnd(m_Not(m_Specific(YeqZ)), m_Value(XeqY))))
1483 return nullptr;
1484
1485 if (!match(XeqY,
1487 return nullptr;
1488
1489 cast<ICmpInst>(XeqY)->setSameSign(false);
1490 return replaceInstUsesWith(Sel, XeqY);
1491}
1492
1493// See if this is a pattern like:
1494// %old_cmp1 = icmp slt i32 %x, C2
1495// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1496// %old_x_offseted = add i32 %x, C1
1497// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1498// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1499// This can be rewritten as more canonical pattern:
1500// %new_cmp1 = icmp slt i32 %x, -C1
1501// %new_cmp2 = icmp sge i32 %x, C0-C1
1502// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1503// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1504// Iff -C1 s<= C2 s<= C0-C1
1505// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1506// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1507static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1508 InstCombiner::BuilderTy &Builder,
1509 InstCombiner &IC) {
1510 Value *X = Sel0.getTrueValue();
1511 Value *Sel1 = Sel0.getFalseValue();
1512
1513 // First match the condition of the outermost select.
1514 // Said condition must be one-use.
1515 if (!Cmp0.hasOneUse())
1516 return nullptr;
1517 ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1518 Value *Cmp00 = Cmp0.getOperand(0);
1519 Constant *C0;
1520 if (!match(Cmp0.getOperand(1),
1522 return nullptr;
1523
1524 if (!isa<SelectInst>(Sel1)) {
1525 Pred0 = ICmpInst::getInversePredicate(Pred0);
1526 std::swap(X, Sel1);
1527 }
1528
1529 // Canonicalize Cmp0 into ult or uge.
1530 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1531 switch (Pred0) {
1534 // Although icmp ult %x, 0 is an unusual thing to try and should generally
1535 // have been simplified, it does not verify with undef inputs so ensure we
1536 // are not in a strange state.
1537 if (!match(C0, m_SpecificInt_ICMP(
1540 return nullptr;
1541 break; // Great!
1544 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1545 // C0, which again means it must not have any all-ones elements.
1546 if (!match(C0,
1550 return nullptr; // Can't do, have all-ones element[s].
1552 C0 = InstCombiner::AddOne(C0);
1553 break;
1554 default:
1555 return nullptr; // Unknown predicate.
1556 }
1557
1558 // Now that we've canonicalized the ICmp, we know the X we expect;
1559 // the select in other hand should be one-use.
1560 if (!Sel1->hasOneUse())
1561 return nullptr;
1562
1563 // If the types do not match, look through any truncs to the underlying
1564 // instruction.
1565 if (Cmp00->getType() != X->getType() && X->hasOneUse())
1567
1568 // We now can finish matching the condition of the outermost select:
1569 // it should either be the X itself, or an addition of some constant to X.
1570 Constant *C1;
1571 if (Cmp00 == X)
1572 C1 = ConstantInt::getNullValue(X->getType());
1573 else if (!match(Cmp00,
1576 return nullptr;
1577
1578 Value *Cmp1;
1579 CmpPredicate Pred1;
1580 Constant *C2;
1581 Value *ReplacementLow, *ReplacementHigh;
1582 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1583 m_Value(ReplacementHigh))) ||
1584 !match(Cmp1,
1585 m_ICmp(Pred1, m_Specific(X),
1587 return nullptr;
1588
1589 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1590 return nullptr; // Not enough one-use instructions for the fold.
1591 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1592 // two comparisons we'll need to build.
1593
1594 // Canonicalize Cmp1 into the form we expect.
1595 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1596 switch (Pred1) {
1598 break;
1600 // We'd have to increment C2 by one, and for that it must not have signed
1601 // max element, but then it would have been canonicalized to 'slt' before
1602 // we get here. So we can't do anything useful with 'sle'.
1603 return nullptr;
1605 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1606 // which again means it must not have any signed max elements.
1607 if (!match(C2,
1610 C2->getType()->getScalarSizeInBits()))))
1611 return nullptr; // Can't do, have signed max element[s].
1612 C2 = InstCombiner::AddOne(C2);
1613 [[fallthrough]];
1615 // Also non-canonical, but here we don't need to change C2,
1616 // so we don't have any restrictions on C2, so we can just handle it.
1618 std::swap(ReplacementLow, ReplacementHigh);
1619 break;
1620 default:
1621 return nullptr; // Unknown predicate.
1622 }
1624 "Unexpected predicate type.");
1625
1626 // The thresholds of this clamp-like pattern.
1627 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1628 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1629
1632 "Unexpected predicate type.");
1633 if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1634 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1635
1636 // The fold has a precondition 1: C2 s>= ThresholdLow
1637 auto *Precond1 = ConstantFoldCompareInstOperands(
1638 ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout());
1639 if (!Precond1 || !match(Precond1, m_One()))
1640 return nullptr;
1641 // The fold has a precondition 2: C2 s<= ThresholdHigh
1642 auto *Precond2 = ConstantFoldCompareInstOperands(
1643 ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout());
1644 if (!Precond2 || !match(Precond2, m_One()))
1645 return nullptr;
1646
1647 // If we are matching from a truncated input, we need to sext the
1648 // ReplacementLow and ReplacementHigh values. Only do the transform if they
1649 // are free to extend due to being constants.
1650 if (X->getType() != Sel0.getType()) {
1651 Constant *LowC, *HighC;
1652 if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1653 !match(ReplacementHigh, m_ImmConstant(HighC)))
1654 return nullptr;
1655 const DataLayout &DL = Sel0.getDataLayout();
1656 ReplacementLow =
1657 ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL);
1658 ReplacementHigh =
1659 ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL);
1660 assert(ReplacementLow && ReplacementHigh &&
1661 "Constant folding of ImmConstant cannot fail");
1662 }
1663
1664 // All good, finally emit the new pattern.
1665 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1666 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1667 Value *MaybeReplacedLow =
1668 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1669
1670 // Create the final select. If we looked through a truncate above, we will
1671 // need to retruncate the result.
1672 Value *MaybeReplacedHigh = Builder.CreateSelect(
1673 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1674 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1675}
1676
1677// If we have
1678// %cmp = icmp [canonical predicate] i32 %x, C0
1679// %r = select i1 %cmp, i32 %y, i32 C1
1680// Where C0 != C1 and %x may be different from %y, see if the constant that we
1681// will have if we flip the strictness of the predicate (i.e. without changing
1682// the result) is identical to the C1 in select. If it matches we can change
1683// original comparison to one with swapped predicate, reuse the constant,
1684// and swap the hands of select.
1685static Instruction *
1686tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1687 InstCombinerImpl &IC) {
1688 CmpPredicate Pred;
1689 Value *X;
1690 Constant *C0;
1691 if (!match(&Cmp, m_OneUse(m_ICmp(
1692 Pred, m_Value(X),
1694 return nullptr;
1695
1696 // If comparison predicate is non-relational, we won't be able to do anything.
1697 if (ICmpInst::isEquality(Pred))
1698 return nullptr;
1699
1700 // If comparison predicate is non-canonical, then we certainly won't be able
1701 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1703 return nullptr;
1704
1705 // If the [input] type of comparison and select type are different, lets abort
1706 // for now. We could try to compare constants with trunc/[zs]ext though.
1707 if (C0->getType() != Sel.getType())
1708 return nullptr;
1709
1710 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1711 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1712 // Or should we just abandon this transform entirely?
1713 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1714 return nullptr;
1715
1716
1717 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1718 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1719 // At least one of these values we are selecting between must be a constant
1720 // else we'll never succeed.
1721 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1722 !match(SelVal1, m_AnyIntegralConstant()))
1723 return nullptr;
1724
1725 // Does this constant C match any of the `select` values?
1726 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1727 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1728 };
1729
1730 // If C0 *already* matches true/false value of select, we are done.
1731 if (MatchesSelectValue(C0))
1732 return nullptr;
1733
1734 // Check the constant we'd have with flipped-strictness predicate.
1735 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1736 if (!FlippedStrictness)
1737 return nullptr;
1738
1739 // If said constant doesn't match either, then there is no hope,
1740 if (!MatchesSelectValue(FlippedStrictness->second))
1741 return nullptr;
1742
1743 // It matched! Lets insert the new comparison just before select.
1745 IC.Builder.SetInsertPoint(&Sel);
1746
1747 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1748 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1749 Cmp.getName() + ".inv");
1750 IC.replaceOperand(Sel, 0, NewCmp);
1751 Sel.swapValues();
1752 Sel.swapProfMetadata();
1753
1754 return &Sel;
1755}
1756
1757static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1758 Value *FVal,
1759 InstCombiner::BuilderTy &Builder) {
1760 if (!Cmp->hasOneUse())
1761 return nullptr;
1762
1763 const APInt *CmpC;
1764 if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC)))
1765 return nullptr;
1766
1767 // (X u< 2) ? -X : -1 --> sext (X != 0)
1768 Value *X = Cmp->getOperand(0);
1769 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1770 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1771 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1772
1773 // (X u> 1) ? -1 : -X --> sext (X != 0)
1774 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1775 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1776 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1777
1778 return nullptr;
1779}
1780
1781static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
1782 InstCombiner::BuilderTy &Builder) {
1783 const APInt *CmpC;
1784 Value *V;
1785 CmpPredicate Pred;
1786 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1787 return nullptr;
1788
1789 // Match clamp away from min/max value as a max/min operation.
1790 Value *TVal = SI.getTrueValue();
1791 Value *FVal = SI.getFalseValue();
1792 if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
1793 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
1794 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1795 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
1796 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
1797 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1798 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
1799 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
1800 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1801 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
1802 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
1803 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1804 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
1805 }
1806
1807 // Fold icmp(X) ? f(X) : C to f(X) when f(X) is guaranteed to be equal to C
1808 // for all X in the exact range of the inverse predicate.
1809 Instruction *Op;
1810 const APInt *C;
1811 CmpInst::Predicate CPred;
1812 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_Instruction(Op))))
1813 CPred = ICI->getPredicate();
1814 else if (match(&SI, m_Select(m_Specific(ICI), m_Instruction(Op), m_APInt(C))))
1815 CPred = ICI->getInversePredicate();
1816 else
1817 return nullptr;
1818
1819 ConstantRange InvDomCR = ConstantRange::makeExactICmpRegion(CPred, *CmpC);
1820 const APInt *OpC;
1821 if (match(Op, m_BinOp(m_Specific(V), m_APInt(OpC)))) {
1822 ConstantRange R = InvDomCR.binaryOp(
1823 static_cast<Instruction::BinaryOps>(Op->getOpcode()), *OpC);
1824 if (R == *C) {
1825 Op->dropPoisonGeneratingFlags();
1826 return Op;
1827 }
1828 }
1829 if (auto *MMI = dyn_cast<MinMaxIntrinsic>(Op);
1830 MMI && MMI->getLHS() == V && match(MMI->getRHS(), m_APInt(OpC))) {
1831 ConstantRange R = ConstantRange::intrinsic(MMI->getIntrinsicID(),
1832 {InvDomCR, ConstantRange(*OpC)});
1833 if (R == *C) {
1834 MMI->dropPoisonGeneratingAnnotations();
1835 return MMI;
1836 }
1837 }
1838
1839 return nullptr;
1840}
1841
1842/// `A == MIN_INT ? B != MIN_INT : A < B` --> `A < B`
1843/// `A == MAX_INT ? B != MAX_INT : A > B` --> `A > B`
1844static Instruction *foldSelectWithExtremeEqCond(Value *CmpLHS, Value *CmpRHS,
1845 Value *TrueVal,
1846 Value *FalseVal) {
1847 Type *Ty = CmpLHS->getType();
1848
1849 if (Ty->isPtrOrPtrVectorTy())
1850 return nullptr;
1851
1852 CmpPredicate Pred;
1853 Value *B;
1854
1855 if (!match(FalseVal, m_c_ICmp(Pred, m_Specific(CmpLHS), m_Value(B))))
1856 return nullptr;
1857
1858 Value *TValRHS;
1860 m_Value(TValRHS))))
1861 return nullptr;
1862
1863 APInt C;
1864 unsigned BitWidth = Ty->getScalarSizeInBits();
1865
1866 if (ICmpInst::isLT(Pred)) {
1869 } else if (ICmpInst::isGT(Pred)) {
1872 } else {
1873 return nullptr;
1874 }
1875
1876 if (!match(CmpRHS, m_SpecificInt(C)) || !match(TValRHS, m_SpecificInt(C)))
1877 return nullptr;
1878
1879 return new ICmpInst(Pred, CmpLHS, B);
1880}
1881
1882static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI,
1883 InstCombinerImpl &IC) {
1884 ICmpInst::Predicate Pred = ICI->getPredicate();
1885 if (!ICmpInst::isEquality(Pred))
1886 return nullptr;
1887
1888 Value *TrueVal = SI.getTrueValue();
1889 Value *FalseVal = SI.getFalseValue();
1890 Value *CmpLHS = ICI->getOperand(0);
1891 Value *CmpRHS = ICI->getOperand(1);
1892
1893 if (Pred == ICmpInst::ICMP_NE)
1894 std::swap(TrueVal, FalseVal);
1895
1896 if (Instruction *Res =
1897 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
1898 return Res;
1899
1900 return nullptr;
1901}
1902
1903/// Fold `X Pred C1 ? X BOp C2 : C1 BOp C2` to `min/max(X, C1) BOp C2`.
1904/// This allows for better canonicalization.
1906 Value *TrueVal,
1907 Value *FalseVal) {
1908 Constant *C1, *C2, *C3;
1909 Value *X;
1911
1912 if (!match(Cmp, m_ICmp(Predicate, m_Value(X), m_Constant(C1))))
1913 return nullptr;
1914
1916 return nullptr;
1917
1918 if (match(TrueVal, m_Constant())) {
1919 std::swap(FalseVal, TrueVal);
1921 }
1922
1923 if (!match(FalseVal, m_Constant(C3)) || !TrueVal->hasOneUse())
1924 return nullptr;
1925
1926 bool IsIntrinsic;
1927 unsigned Opcode;
1928 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(TrueVal)) {
1929 Opcode = BOp->getOpcode();
1930 IsIntrinsic = false;
1931
1932 // This fold causes some regressions and is primarily intended for
1933 // add and sub. So we early exit for div and rem to minimize the
1934 // regressions.
1935 if (Instruction::isIntDivRem(Opcode))
1936 return nullptr;
1937
1938 if (!match(BOp, m_BinOp(m_Specific(X), m_Constant(C2))))
1939 return nullptr;
1940
1941 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(TrueVal)) {
1942 if (!match(II, m_MaxOrMin(m_Specific(X), m_Constant(C2))))
1943 return nullptr;
1944 Opcode = II->getIntrinsicID();
1945 IsIntrinsic = true;
1946 } else {
1947 return nullptr;
1948 }
1949
1950 Value *RHS;
1952 const DataLayout &DL = Cmp->getDataLayout();
1954
1955 auto FoldBinaryOpOrIntrinsic = [&](Constant *LHS, Constant *RHS) {
1956 return IsIntrinsic ? ConstantFoldBinaryIntrinsic(Opcode, LHS, RHS,
1957 LHS->getType(), nullptr)
1959 };
1960
1961 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
1963 RHS = C1;
1964 } else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
1965 SPF = getSelectPattern(Flipped->first).Flavor;
1966 RHS = Flipped->second;
1967 } else {
1968 return nullptr;
1969 }
1970
1971 Intrinsic::ID MinMaxID = getMinMaxIntrinsic(SPF);
1972 Value *MinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, RHS);
1973 if (IsIntrinsic)
1974 return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
1975
1976 const auto BinOpc = Instruction::BinaryOps(Opcode);
1977 Value *BinOp = Builder.CreateBinOp(BinOpc, MinMax, C2);
1978
1979 // If we can attach no-wrap flags to the new instruction, do so if the
1980 // old instruction had them and C1 BinOp C2 does not overflow.
1981 if (Instruction *BinOpInst = dyn_cast<Instruction>(BinOp)) {
1982 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
1983 BinOpc == Instruction::Mul) {
1984 Instruction *OldBinOp = cast<BinaryOperator>(TrueVal);
1985 if (OldBinOp->hasNoSignedWrap() &&
1986 willNotOverflow(BinOpc, RHS, C2, *BinOpInst, /*IsSigned=*/true))
1987 BinOpInst->setHasNoSignedWrap();
1988 if (OldBinOp->hasNoUnsignedWrap() &&
1989 willNotOverflow(BinOpc, RHS, C2, *BinOpInst, /*IsSigned=*/false))
1990 BinOpInst->setHasNoUnsignedWrap();
1991 }
1992 }
1993 return BinOp;
1994}
1995
1996/// Visit a SelectInst that has an ICmpInst as its first operand.
1998 ICmpInst *ICI) {
1999 if (Value *V =
2000 canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this))
2001 return replaceInstUsesWith(SI, V);
2002
2003 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
2004 return replaceInstUsesWith(SI, V);
2005
2006 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this))
2007 return replaceInstUsesWith(SI, V);
2008
2009 if (Instruction *NewSel =
2010 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
2011 return NewSel;
2012
2013 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
2014 bool Changed = false;
2015 Value *TrueVal = SI.getTrueValue();
2016 Value *FalseVal = SI.getFalseValue();
2017 ICmpInst::Predicate Pred = ICI->getPredicate();
2018 Value *CmpLHS = ICI->getOperand(0);
2019 Value *CmpRHS = ICI->getOperand(1);
2020
2021 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this))
2022 return NewSel;
2023
2024 // Canonicalize a signbit condition to use zero constant by swapping:
2025 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
2026 // To avoid conflicts (infinite loops) with other canonicalizations, this is
2027 // not applied with any constant select arm.
2028 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
2029 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
2030 ICI->hasOneUse()) {
2033 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
2034 replaceOperand(SI, 0, IsNeg);
2035 SI.swapValues();
2036 SI.swapProfMetadata();
2037 return &SI;
2038 }
2039
2040 if (Value *V = foldSelectICmpMinMax(ICI, TrueVal, FalseVal, Builder, SQ))
2041 return replaceInstUsesWith(SI, V);
2042
2043 if (Instruction *V =
2044 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
2045 return V;
2046
2047 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
2048 return replaceInstUsesWith(SI, V);
2049
2050 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
2051 return V;
2052
2053 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
2054 return V;
2055
2056 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
2057 return replaceInstUsesWith(SI, V);
2058
2059 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this))
2060 return replaceInstUsesWith(SI, V);
2061
2062 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
2063 return replaceInstUsesWith(SI, V);
2064
2065 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
2066 return replaceInstUsesWith(SI, V);
2067
2068 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
2069 return replaceInstUsesWith(SI, V);
2070
2071 if (Value *V = foldSelectWithConstOpToBinOp(ICI, TrueVal, FalseVal))
2072 return replaceInstUsesWith(SI, V);
2073
2074 return Changed ? &SI : nullptr;
2075}
2076
2077/// We have an SPF (e.g. a min or max) of an SPF of the form:
2078/// SPF2(SPF1(A, B), C)
2081 Value *B, Instruction &Outer,
2083 Value *C) {
2084 if (Outer.getType() != Inner->getType())
2085 return nullptr;
2086
2087 if (C == A || C == B) {
2088 // MAX(MAX(A, B), B) -> MAX(A, B)
2089 // MIN(MIN(a, b), a) -> MIN(a, b)
2090 // TODO: This could be done in instsimplify.
2091 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
2092 return replaceInstUsesWith(Outer, Inner);
2093 }
2094
2095 return nullptr;
2096}
2097
2098/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
2099/// This is even legal for FP.
2100static Instruction *foldAddSubSelect(SelectInst &SI,
2101 InstCombiner::BuilderTy &Builder) {
2102 Value *CondVal = SI.getCondition();
2103 Value *TrueVal = SI.getTrueValue();
2104 Value *FalseVal = SI.getFalseValue();
2105 auto *TI = dyn_cast<Instruction>(TrueVal);
2106 auto *FI = dyn_cast<Instruction>(FalseVal);
2107 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2108 return nullptr;
2109
2110 Instruction *AddOp = nullptr, *SubOp = nullptr;
2111 if ((TI->getOpcode() == Instruction::Sub &&
2112 FI->getOpcode() == Instruction::Add) ||
2113 (TI->getOpcode() == Instruction::FSub &&
2114 FI->getOpcode() == Instruction::FAdd)) {
2115 AddOp = FI;
2116 SubOp = TI;
2117 } else if ((FI->getOpcode() == Instruction::Sub &&
2118 TI->getOpcode() == Instruction::Add) ||
2119 (FI->getOpcode() == Instruction::FSub &&
2120 TI->getOpcode() == Instruction::FAdd)) {
2121 AddOp = TI;
2122 SubOp = FI;
2123 }
2124
2125 if (AddOp) {
2126 Value *OtherAddOp = nullptr;
2127 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
2128 OtherAddOp = AddOp->getOperand(1);
2129 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
2130 OtherAddOp = AddOp->getOperand(0);
2131 }
2132
2133 if (OtherAddOp) {
2134 // So at this point we know we have (Y -> OtherAddOp):
2135 // select C, (add X, Y), (sub X, Z)
2136 Value *NegVal; // Compute -Z
2137 if (SI.getType()->isFPOrFPVectorTy()) {
2138 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
2139 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
2141 Flags &= SubOp->getFastMathFlags();
2142 NegInst->setFastMathFlags(Flags);
2143 }
2144 } else {
2145 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
2146 }
2147
2148 Value *NewTrueOp = OtherAddOp;
2149 Value *NewFalseOp = NegVal;
2150 if (AddOp != TI)
2151 std::swap(NewTrueOp, NewFalseOp);
2152 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
2153 SI.getName() + ".p", &SI);
2154
2155 if (SI.getType()->isFPOrFPVectorTy()) {
2156 Instruction *RI =
2157 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2158
2160 Flags &= SubOp->getFastMathFlags();
2161 RI->setFastMathFlags(Flags);
2162 return RI;
2163 } else
2164 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2165 }
2166 }
2167 return nullptr;
2168}
2169
2170/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2171/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2172/// Along with a number of patterns similar to:
2173/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2174/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2175static Instruction *
2176foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
2177 Value *CondVal = SI.getCondition();
2178 Value *TrueVal = SI.getTrueValue();
2179 Value *FalseVal = SI.getFalseValue();
2180
2182 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
2183 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
2184 return nullptr;
2185
2186 Value *X = II->getLHS();
2187 Value *Y = II->getRHS();
2188
2189 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
2190 Type *Ty = Limit->getType();
2191
2192 CmpPredicate Pred;
2193 Value *TrueVal, *FalseVal, *Op;
2194 const APInt *C;
2195 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
2196 m_Value(TrueVal), m_Value(FalseVal))))
2197 return false;
2198
2199 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
2200 auto IsMinMax = [&](Value *Min, Value *Max) {
2203 return match(Min, m_SpecificInt(MinVal)) &&
2204 match(Max, m_SpecificInt(MaxVal));
2205 };
2206
2207 if (Op != X && Op != Y)
2208 return false;
2209
2210 if (IsAdd) {
2211 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2212 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2213 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2214 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2215 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2216 IsMinMax(TrueVal, FalseVal))
2217 return true;
2218 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2219 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2220 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2221 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2222 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2223 IsMinMax(FalseVal, TrueVal))
2224 return true;
2225 } else {
2226 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2227 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2228 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
2229 IsMinMax(TrueVal, FalseVal))
2230 return true;
2231 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2232 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2233 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
2234 IsMinMax(FalseVal, TrueVal))
2235 return true;
2236 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2237 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2238 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2239 IsMinMax(FalseVal, TrueVal))
2240 return true;
2241 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2242 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2243 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2244 IsMinMax(TrueVal, FalseVal))
2245 return true;
2246 }
2247
2248 return false;
2249 };
2250
2251 Intrinsic::ID NewIntrinsicID;
2252 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2253 match(TrueVal, m_AllOnes()))
2254 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2255 NewIntrinsicID = Intrinsic::uadd_sat;
2256 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2257 match(TrueVal, m_Zero()))
2258 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2259 NewIntrinsicID = Intrinsic::usub_sat;
2260 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2261 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
2262 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2263 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2264 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2265 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2266 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2267 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2268 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2269 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2270 NewIntrinsicID = Intrinsic::sadd_sat;
2271 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2272 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
2273 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2274 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2275 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2276 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2277 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2278 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2279 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2280 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2281 NewIntrinsicID = Intrinsic::ssub_sat;
2282 else
2283 return nullptr;
2284
2286 NewIntrinsicID, SI.getType());
2287 return CallInst::Create(F, {X, Y});
2288}
2289
2291 Constant *C;
2292 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2293 !match(Sel.getFalseValue(), m_Constant(C)))
2294 return nullptr;
2295
2296 Instruction *ExtInst;
2297 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2298 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2299 return nullptr;
2300
2301 auto ExtOpcode = ExtInst->getOpcode();
2302 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2303 return nullptr;
2304
2305 // If we are extending from a boolean type or if we can create a select that
2306 // has the same size operands as its condition, try to narrow the select.
2307 Value *X = ExtInst->getOperand(0);
2308 Type *SmallType = X->getType();
2309 Value *Cond = Sel.getCondition();
2310 auto *Cmp = dyn_cast<CmpInst>(Cond);
2311 if (!SmallType->isIntOrIntVectorTy(1) &&
2312 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2313 return nullptr;
2314
2315 // If the constant is the same after truncation to the smaller type and
2316 // extension to the original type, we can narrow the select.
2317 Type *SelType = Sel.getType();
2318 Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode);
2319 if (TruncC && ExtInst->hasOneUse()) {
2320 Value *TruncCVal = cast<Value>(TruncC);
2321 if (ExtInst == Sel.getFalseValue())
2322 std::swap(X, TruncCVal);
2323
2324 // select Cond, (ext X), C --> ext(select Cond, X, C')
2325 // select Cond, C, (ext X) --> ext(select Cond, C', X)
2326 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2327 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2328 }
2329
2330 return nullptr;
2331}
2332
2333/// Try to transform a vector select with a constant condition vector into a
2334/// shuffle for easier combining with other shuffles and insert/extract.
2335static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2336 Value *CondVal = SI.getCondition();
2337 Constant *CondC;
2338 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2339 if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2340 return nullptr;
2341
2342 unsigned NumElts = CondValTy->getNumElements();
2344 Mask.reserve(NumElts);
2345 for (unsigned i = 0; i != NumElts; ++i) {
2346 Constant *Elt = CondC->getAggregateElement(i);
2347 if (!Elt)
2348 return nullptr;
2349
2350 if (Elt->isOneValue()) {
2351 // If the select condition element is true, choose from the 1st vector.
2352 Mask.push_back(i);
2353 } else if (Elt->isNullValue()) {
2354 // If the select condition element is false, choose from the 2nd vector.
2355 Mask.push_back(i + NumElts);
2356 } else if (isa<UndefValue>(Elt)) {
2357 // Undef in a select condition (choose one of the operands) does not mean
2358 // the same thing as undef in a shuffle mask (any value is acceptable), so
2359 // give up.
2360 return nullptr;
2361 } else {
2362 // Bail out on a constant expression.
2363 return nullptr;
2364 }
2365 }
2366
2367 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2368}
2369
2370/// If we have a select of vectors with a scalar condition, try to convert that
2371/// to a vector select by splatting the condition. A splat may get folded with
2372/// other operations in IR and having all operands of a select be vector types
2373/// is likely better for vector codegen.
2374static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2375 InstCombinerImpl &IC) {
2376 auto *Ty = dyn_cast<VectorType>(Sel.getType());
2377 if (!Ty)
2378 return nullptr;
2379
2380 // We can replace a single-use extract with constant index.
2381 Value *Cond = Sel.getCondition();
2383 return nullptr;
2384
2385 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2386 // Splatting the extracted condition reduces code (we could directly create a
2387 // splat shuffle of the source vector to eliminate the intermediate step).
2388 return IC.replaceOperand(
2389 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2390}
2391
2392/// Reuse bitcasted operands between a compare and select:
2393/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2394/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2395static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2396 InstCombiner::BuilderTy &Builder) {
2397 Value *Cond = Sel.getCondition();
2398 Value *TVal = Sel.getTrueValue();
2399 Value *FVal = Sel.getFalseValue();
2400
2401 CmpPredicate Pred;
2402 Value *A, *B;
2403 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2404 return nullptr;
2405
2406 // The select condition is a compare instruction. If the select's true/false
2407 // values are already the same as the compare operands, there's nothing to do.
2408 if (TVal == A || TVal == B || FVal == A || FVal == B)
2409 return nullptr;
2410
2411 Value *C, *D;
2412 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2413 return nullptr;
2414
2415 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2416 Value *TSrc, *FSrc;
2417 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2418 !match(FVal, m_BitCast(m_Value(FSrc))))
2419 return nullptr;
2420
2421 // If the select true/false values are *different bitcasts* of the same source
2422 // operands, make the select operands the same as the compare operands and
2423 // cast the result. This is the canonical select form for min/max.
2424 Value *NewSel;
2425 if (TSrc == C && FSrc == D) {
2426 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2427 // bitcast (select (cmp A, B), A, B)
2428 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2429 } else if (TSrc == D && FSrc == C) {
2430 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2431 // bitcast (select (cmp A, B), B, A)
2432 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2433 } else {
2434 return nullptr;
2435 }
2436 return new BitCastInst(NewSel, Sel.getType());
2437}
2438
2439/// Try to eliminate select instructions that test the returned flag of cmpxchg
2440/// instructions.
2441///
2442/// If a select instruction tests the returned flag of a cmpxchg instruction and
2443/// selects between the returned value of the cmpxchg instruction its compare
2444/// operand, the result of the select will always be equal to its false value.
2445/// For example:
2446///
2447/// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2448/// %val = extractvalue { i64, i1 } %cmpxchg, 0
2449/// %success = extractvalue { i64, i1 } %cmpxchg, 1
2450/// %sel = select i1 %success, i64 %compare, i64 %val
2451/// ret i64 %sel
2452///
2453/// The returned value of the cmpxchg instruction (%val) is the original value
2454/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val
2455/// must have been equal to %compare. Thus, the result of the select is always
2456/// equal to %val, and the code can be simplified to:
2457///
2458/// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2459/// %val = extractvalue { i64, i1 } %cmpxchg, 0
2460/// ret i64 %val
2461///
2462static Value *foldSelectCmpXchg(SelectInst &SI) {
2463 // A helper that determines if V is an extractvalue instruction whose
2464 // aggregate operand is a cmpxchg instruction and whose single index is equal
2465 // to I. If such conditions are true, the helper returns the cmpxchg
2466 // instruction; otherwise, a nullptr is returned.
2467 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2468 auto *Extract = dyn_cast<ExtractValueInst>(V);
2469 if (!Extract)
2470 return nullptr;
2471 if (Extract->getIndices()[0] != I)
2472 return nullptr;
2473 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2474 };
2475
2476 // If the select has a single user, and this user is a select instruction that
2477 // we can simplify, skip the cmpxchg simplification for now.
2478 if (SI.hasOneUse())
2479 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2480 if (Select->getCondition() == SI.getCondition())
2481 if (Select->getFalseValue() == SI.getTrueValue() ||
2482 Select->getTrueValue() == SI.getFalseValue())
2483 return nullptr;
2484
2485 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2486 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2487 if (!CmpXchg)
2488 return nullptr;
2489
2490 // Check the true value case: The true value of the select is the returned
2491 // value of the same cmpxchg used by the condition, and the false value is the
2492 // cmpxchg instruction's compare operand.
2493 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2494 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2495 return SI.getFalseValue();
2496
2497 // Check the false value case: The false value of the select is the returned
2498 // value of the same cmpxchg used by the condition, and the true value is the
2499 // cmpxchg instruction's compare operand.
2500 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2501 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2502 return SI.getFalseValue();
2503
2504 return nullptr;
2505}
2506
2507/// Try to reduce a funnel/rotate pattern that includes a compare and select
2508/// into a funnel shift intrinsic. Example:
2509/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2510/// --> call llvm.fshl.i32(a, a, b)
2511/// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2512/// --> call llvm.fshl.i32(a, b, c)
2513/// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2514/// --> call llvm.fshr.i32(a, b, c)
2515static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2516 InstCombiner::BuilderTy &Builder) {
2517 // This must be a power-of-2 type for a bitmasking transform to be valid.
2518 unsigned Width = Sel.getType()->getScalarSizeInBits();
2519 if (!isPowerOf2_32(Width))
2520 return nullptr;
2521
2522 BinaryOperator *Or0, *Or1;
2523 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2524 return nullptr;
2525
2526 Value *SV0, *SV1, *SA0, *SA1;
2527 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2528 m_ZExtOrSelf(m_Value(SA0))))) ||
2530 m_ZExtOrSelf(m_Value(SA1))))) ||
2531 Or0->getOpcode() == Or1->getOpcode())
2532 return nullptr;
2533
2534 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2535 if (Or0->getOpcode() == BinaryOperator::LShr) {
2536 std::swap(Or0, Or1);
2537 std::swap(SV0, SV1);
2538 std::swap(SA0, SA1);
2539 }
2540 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2541 Or1->getOpcode() == BinaryOperator::LShr &&
2542 "Illegal or(shift,shift) pair");
2543
2544 // Check the shift amounts to see if they are an opposite pair.
2545 Value *ShAmt;
2546 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2547 ShAmt = SA0;
2548 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2549 ShAmt = SA1;
2550 else
2551 return nullptr;
2552
2553 // We should now have this pattern:
2554 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2555 // The false value of the select must be a funnel-shift of the true value:
2556 // IsFShl -> TVal must be SV0 else TVal must be SV1.
2557 bool IsFshl = (ShAmt == SA0);
2558 Value *TVal = Sel.getTrueValue();
2559 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2560 return nullptr;
2561
2562 // Finally, see if the select is filtering out a shift-by-zero.
2563 Value *Cond = Sel.getCondition();
2565 m_ZeroInt()))))
2566 return nullptr;
2567
2568 // If this is not a rotate then the select was blocking poison from the
2569 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2570 if (SV0 != SV1) {
2571 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2572 SV1 = Builder.CreateFreeze(SV1);
2573 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2574 SV0 = Builder.CreateFreeze(SV0);
2575 }
2576
2577 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2578 // Convert to funnel shift intrinsic.
2579 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2580 Function *F =
2582 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2583 return CallInst::Create(F, { SV0, SV1, ShAmt });
2584}
2585
2586static Instruction *foldSelectToCopysign(SelectInst &Sel,
2587 InstCombiner::BuilderTy &Builder) {
2588 Value *Cond = Sel.getCondition();
2589 Value *TVal = Sel.getTrueValue();
2590 Value *FVal = Sel.getFalseValue();
2591 Type *SelType = Sel.getType();
2592
2593 // Match select ?, TC, FC where the constants are equal but negated.
2594 // TODO: Generalize to handle a negated variable operand?
2595 const APFloat *TC, *FC;
2596 if (!match(TVal, m_APFloatAllowPoison(TC)) ||
2597 !match(FVal, m_APFloatAllowPoison(FC)) ||
2598 !abs(*TC).bitwiseIsEqual(abs(*FC)))
2599 return nullptr;
2600
2601 assert(TC != FC && "Expected equal select arms to simplify");
2602
2603 Value *X;
2604 const APInt *C;
2605 bool IsTrueIfSignSet;
2606 CmpPredicate Pred;
2608 m_APInt(C)))) ||
2609 !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
2610 return nullptr;
2611
2612 // If needed, negate the value that will be the sign argument of the copysign:
2613 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2614 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2615 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2616 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2617 // Note: FMF from the select can not be propagated to the new instructions.
2618 if (IsTrueIfSignSet ^ TC->isNegative())
2619 X = Builder.CreateFNeg(X);
2620
2621 // Canonicalize the magnitude argument as the positive constant since we do
2622 // not care about its sign.
2623 Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2625 Sel.getModule(), Intrinsic::copysign, Sel.getType());
2626 return CallInst::Create(F, { MagArg, X });
2627}
2628
2630 if (!isa<VectorType>(Sel.getType()))
2631 return nullptr;
2632
2633 Value *Cond = Sel.getCondition();
2634 Value *TVal = Sel.getTrueValue();
2635 Value *FVal = Sel.getFalseValue();
2636 Value *C, *X, *Y;
2637
2638 if (match(Cond, m_VecReverse(m_Value(C)))) {
2639 auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2640 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2641 if (auto *I = dyn_cast<Instruction>(V))
2642 I->copyIRFlags(&Sel);
2643 Module *M = Sel.getModule();
2645 M, Intrinsic::vector_reverse, V->getType());
2646 return CallInst::Create(F, V);
2647 };
2648
2649 if (match(TVal, m_VecReverse(m_Value(X)))) {
2650 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2651 if (match(FVal, m_VecReverse(m_Value(Y))) &&
2652 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2653 return createSelReverse(C, X, Y);
2654
2655 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2656 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2657 return createSelReverse(C, X, FVal);
2658 }
2659 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2660 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2661 (Cond->hasOneUse() || FVal->hasOneUse()))
2662 return createSelReverse(C, TVal, Y);
2663 }
2664
2665 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2666 if (!VecTy)
2667 return nullptr;
2668
2669 unsigned NumElts = VecTy->getNumElements();
2670 APInt PoisonElts(NumElts, 0);
2671 APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2672 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) {
2673 if (V != &Sel)
2674 return replaceInstUsesWith(Sel, V);
2675 return &Sel;
2676 }
2677
2678 // A select of a "select shuffle" with a common operand can be rearranged
2679 // to select followed by "select shuffle". Because of poison, this only works
2680 // in the case of a shuffle with no undefined mask elements.
2682 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2683 !is_contained(Mask, PoisonMaskElem) &&
2684 cast<ShuffleVectorInst>(TVal)->isSelect()) {
2685 if (X == FVal) {
2686 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2687 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2688 return new ShuffleVectorInst(X, NewSel, Mask);
2689 }
2690 if (Y == FVal) {
2691 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2692 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2693 return new ShuffleVectorInst(NewSel, Y, Mask);
2694 }
2695 }
2696 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2697 !is_contained(Mask, PoisonMaskElem) &&
2698 cast<ShuffleVectorInst>(FVal)->isSelect()) {
2699 if (X == TVal) {
2700 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2701 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2702 return new ShuffleVectorInst(X, NewSel, Mask);
2703 }
2704 if (Y == TVal) {
2705 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2706 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2707 return new ShuffleVectorInst(NewSel, Y, Mask);
2708 }
2709 }
2710
2711 return nullptr;
2712}
2713
2714static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2715 const DominatorTree &DT,
2716 InstCombiner::BuilderTy &Builder) {
2717 // Find the block's immediate dominator that ends with a conditional branch
2718 // that matches select's condition (maybe inverted).
2719 auto *IDomNode = DT[BB]->getIDom();
2720 if (!IDomNode)
2721 return nullptr;
2722 BasicBlock *IDom = IDomNode->getBlock();
2723
2724 Value *Cond = Sel.getCondition();
2725 Value *IfTrue, *IfFalse;
2726 BasicBlock *TrueSucc, *FalseSucc;
2727 if (match(IDom->getTerminator(),
2728 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2729 m_BasicBlock(FalseSucc)))) {
2730 IfTrue = Sel.getTrueValue();
2731 IfFalse = Sel.getFalseValue();
2732 } else if (match(IDom->getTerminator(),
2733 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2734 m_BasicBlock(FalseSucc)))) {
2735 IfTrue = Sel.getFalseValue();
2736 IfFalse = Sel.getTrueValue();
2737 } else
2738 return nullptr;
2739
2740 // Make sure the branches are actually different.
2741 if (TrueSucc == FalseSucc)
2742 return nullptr;
2743
2744 // We want to replace select %cond, %a, %b with a phi that takes value %a
2745 // for all incoming edges that are dominated by condition `%cond == true`,
2746 // and value %b for edges dominated by condition `%cond == false`. If %a
2747 // or %b are also phis from the same basic block, we can go further and take
2748 // their incoming values from the corresponding blocks.
2749 BasicBlockEdge TrueEdge(IDom, TrueSucc);
2750 BasicBlockEdge FalseEdge(IDom, FalseSucc);
2752 for (auto *Pred : predecessors(BB)) {
2753 // Check implication.
2754 BasicBlockEdge Incoming(Pred, BB);
2755 if (DT.dominates(TrueEdge, Incoming))
2756 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2757 else if (DT.dominates(FalseEdge, Incoming))
2758 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2759 else
2760 return nullptr;
2761 // Check availability.
2762 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2763 if (!DT.dominates(Insn, Pred->getTerminator()))
2764 return nullptr;
2765 }
2766
2767 Builder.SetInsertPoint(BB, BB->begin());
2768 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2769 for (auto *Pred : predecessors(BB))
2770 PN->addIncoming(Inputs[Pred], Pred);
2771 PN->takeName(&Sel);
2772 return PN;
2773}
2774
2775static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2776 InstCombiner::BuilderTy &Builder) {
2777 // Try to replace this select with Phi in one of these blocks.
2778 SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2779 CandidateBlocks.insert(Sel.getParent());
2780 for (Value *V : Sel.operands())
2781 if (auto *I = dyn_cast<Instruction>(V))
2782 CandidateBlocks.insert(I->getParent());
2783
2784 for (BasicBlock *BB : CandidateBlocks)
2785 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2786 return PN;
2787 return nullptr;
2788}
2789
2790/// Tries to reduce a pattern that arises when calculating the remainder of the
2791/// Euclidean division. When the divisor is a power of two and is guaranteed not
2792/// to be negative, a signed remainder can be folded with a bitwise and.
2793///
2794/// (x % n) < 0 ? (x % n) + n : (x % n)
2795/// -> x & (n - 1)
2796static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
2797 IRBuilderBase &Builder) {
2798 Value *CondVal = SI.getCondition();
2799 Value *TrueVal = SI.getTrueValue();
2800 Value *FalseVal = SI.getFalseValue();
2801
2802 CmpPredicate Pred;
2803 Value *Op, *RemRes, *Remainder;
2804 const APInt *C;
2805 bool TrueIfSigned = false;
2806
2807 if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
2808 isSignBitCheck(Pred, *C, TrueIfSigned)))
2809 return nullptr;
2810
2811 // If the sign bit is not set, we have a SGE/SGT comparison, and the operands
2812 // of the select are inverted.
2813 if (!TrueIfSigned)
2814 std::swap(TrueVal, FalseVal);
2815
2816 auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * {
2817 Value *Add = Builder.CreateAdd(
2818 Remainder, Constant::getAllOnesValue(RemRes->getType()));
2819 return BinaryOperator::CreateAnd(Op, Add);
2820 };
2821
2822 // Match the general case:
2823 // %rem = srem i32 %x, %n
2824 // %cnd = icmp slt i32 %rem, 0
2825 // %add = add i32 %rem, %n
2826 // %sel = select i1 %cnd, i32 %add, i32 %rem
2827 if (match(TrueVal, m_c_Add(m_Specific(RemRes), m_Value(Remainder))) &&
2828 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
2829 IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero=*/true) &&
2830 FalseVal == RemRes)
2831 return FoldToBitwiseAnd(Remainder);
2832
2833 // Match the case where the one arm has been replaced by constant 1:
2834 // %rem = srem i32 %n, 2
2835 // %cnd = icmp slt i32 %rem, 0
2836 // %sel = select i1 %cnd, i32 1, i32 %rem
2837 if (match(TrueVal, m_One()) &&
2838 match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) &&
2839 FalseVal == RemRes)
2840 return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2));
2841
2842 return nullptr;
2843}
2844
2845static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2846 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2847 if (!FI)
2848 return nullptr;
2849
2850 Value *Cond = FI->getOperand(0);
2851 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2852
2853 // select (freeze(x == y)), x, y --> y
2854 // select (freeze(x != y)), x, y --> x
2855 // The freeze should be only used by this select. Otherwise, remaining uses of
2856 // the freeze can observe a contradictory value.
2857 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
2858 // a = select c, x, y ;
2859 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
2860 // ; to y, this can happen.
2861 CmpPredicate Pred;
2862 if (FI->hasOneUse() &&
2863 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2864 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2865 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2866 }
2867
2868 return nullptr;
2869}
2870
2871/// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI.
2872static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI,
2873 Value *CondVal,
2874 bool CondIsTrue,
2875 const DataLayout &DL) {
2876 Value *InnerCondVal = SI.getCondition();
2877 Value *InnerTrueVal = SI.getTrueValue();
2878 Value *InnerFalseVal = SI.getFalseValue();
2879 assert(CondVal->getType() == InnerCondVal->getType() &&
2880 "The type of inner condition must match with the outer.");
2881 if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue))
2882 return *Implied ? InnerTrueVal : InnerFalseVal;
2883 return nullptr;
2884}
2885
2886Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2887 SelectInst &SI,
2888 bool IsAnd) {
2889 assert(Op->getType()->isIntOrIntVectorTy(1) &&
2890 "Op must be either i1 or vector of i1.");
2891 if (SI.getCondition()->getType() != Op->getType())
2892 return nullptr;
2893 if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL))
2894 return SelectInst::Create(Op,
2895 IsAnd ? V : ConstantInt::getTrue(Op->getType()),
2896 IsAnd ? ConstantInt::getFalse(Op->getType()) : V);
2897 return nullptr;
2898}
2899
2900// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2901// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2902static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2903 InstCombinerImpl &IC) {
2904 Value *CondVal = SI.getCondition();
2905
2906 bool ChangedFMF = false;
2907 for (bool Swap : {false, true}) {
2908 Value *TrueVal = SI.getTrueValue();
2909 Value *X = SI.getFalseValue();
2910 CmpPredicate Pred;
2911
2912 if (Swap)
2913 std::swap(TrueVal, X);
2914
2915 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2916 continue;
2917
2918 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2919 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2920 // Note: We require "nnan" for this fold because fcmp ignores the signbit
2921 // of NAN, but IEEE-754 specifies the signbit of NAN values with
2922 // fneg/fabs operations.
2923 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X))) &&
2924 (cast<FPMathOperator>(CondVal)->hasNoNaNs() || SI.hasNoNaNs() ||
2925 (SI.hasOneUse() && canIgnoreSignBitOfNaN(*SI.use_begin())) ||
2927 cast<Instruction>(CondVal))))) {
2928 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2929 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2930 return IC.replaceInstUsesWith(SI, Fabs);
2931 }
2932 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2933 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2934 return IC.replaceInstUsesWith(SI, Fabs);
2935 }
2936 }
2937
2938 if (!match(TrueVal, m_FNeg(m_Specific(X))))
2939 return nullptr;
2940
2941 // Forward-propagate nnan and ninf from the fcmp to the select.
2942 // If all inputs are not those values, then the select is not either.
2943 // Note: nsz is defined differently, so it may not be correct to propagate.
2944 FastMathFlags FMF = cast<FPMathOperator>(CondVal)->getFastMathFlags();
2945 if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2946 SI.setHasNoNaNs(true);
2947 ChangedFMF = true;
2948 }
2949 if (FMF.noInfs() && !SI.hasNoInfs()) {
2950 SI.setHasNoInfs(true);
2951 ChangedFMF = true;
2952 }
2953 // Forward-propagate nnan from the fneg to the select.
2954 // The nnan flag can be propagated iff fneg is selected when X is NaN.
2955 if (!SI.hasNoNaNs() && cast<FPMathOperator>(TrueVal)->hasNoNaNs() &&
2956 (Swap ? FCmpInst::isOrdered(Pred) : FCmpInst::isUnordered(Pred))) {
2957 SI.setHasNoNaNs(true);
2958 ChangedFMF = true;
2959 }
2960
2961 // With nsz, when 'Swap' is false:
2962 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2963 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2964 // when 'Swap' is true:
2965 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2966 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2967 //
2968 // Note: We require "nnan" for this fold because fcmp ignores the signbit
2969 // of NAN, but IEEE-754 specifies the signbit of NAN values with
2970 // fneg/fabs operations.
2971 if (!SI.hasNoSignedZeros() &&
2972 (!SI.hasOneUse() || !canIgnoreSignBitOfZero(*SI.use_begin())))
2973 return nullptr;
2974 if (!SI.hasNoNaNs() &&
2975 (!SI.hasOneUse() || !canIgnoreSignBitOfNaN(*SI.use_begin())))
2976 return nullptr;
2977
2978 if (Swap)
2979 Pred = FCmpInst::getSwappedPredicate(Pred);
2980
2981 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2982 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2983 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2984 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2985
2986 if (IsLTOrLE) {
2987 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2988 return IC.replaceInstUsesWith(SI, Fabs);
2989 }
2990 if (IsGTOrGE) {
2991 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2992 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2993 NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2994 return NewFNeg;
2995 }
2996 }
2997
2998 // Match select with (icmp slt (bitcast X to int), 0)
2999 // or (icmp sgt (bitcast X to int), -1)
3000
3001 for (bool Swap : {false, true}) {
3002 Value *TrueVal = SI.getTrueValue();
3003 Value *X = SI.getFalseValue();
3004
3005 if (Swap)
3006 std::swap(TrueVal, X);
3007
3008 CmpPredicate Pred;
3009 const APInt *C;
3010 bool TrueIfSigned;
3011 if (!match(CondVal,
3013 !isSignBitCheck(Pred, *C, TrueIfSigned))
3014 continue;
3015 if (!match(TrueVal, m_FNeg(m_Specific(X))))
3016 return nullptr;
3017 if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse())
3018 return nullptr;
3019
3020 // Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X)
3021 // Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X)
3022 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
3023 if (Swap != TrueIfSigned)
3024 return IC.replaceInstUsesWith(SI, Fabs);
3025 return UnaryOperator::CreateFNegFMF(Fabs, &SI);
3026 }
3027
3028 return ChangedFMF ? &SI : nullptr;
3029}
3030
3031// Match the following IR pattern:
3032// %x.lowbits = and i8 %x, %lowbitmask
3033// %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
3034// %x.biased = add i8 %x, %bias
3035// %x.biased.highbits = and i8 %x.biased, %highbitmask
3036// %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
3037// Define:
3038// %alignment = add i8 %lowbitmask, 1
3039// Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
3040// and 2. %bias is equal to either %lowbitmask or %alignment,
3041// and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
3042// then this pattern can be transformed into:
3043// %x.offset = add i8 %x, %lowbitmask
3044// %x.roundedup = and i8 %x.offset, %highbitmask
3045static Value *
3046foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
3047 InstCombiner::BuilderTy &Builder) {
3048 Value *Cond = SI.getCondition();
3049 Value *X = SI.getTrueValue();
3050 Value *XBiasedHighBits = SI.getFalseValue();
3051
3052 CmpPredicate Pred;
3053 Value *XLowBits;
3054 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
3055 !ICmpInst::isEquality(Pred))
3056 return nullptr;
3057
3058 if (Pred == ICmpInst::Predicate::ICMP_NE)
3059 std::swap(X, XBiasedHighBits);
3060
3061 // FIXME: we could support non non-splats here.
3062
3063 const APInt *LowBitMaskCst;
3064 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst))))
3065 return nullptr;
3066
3067 // Match even if the AND and ADD are swapped.
3068 const APInt *BiasCst, *HighBitMaskCst;
3069 if (!match(XBiasedHighBits,
3071 m_APIntAllowPoison(HighBitMaskCst))) &&
3072 !match(XBiasedHighBits,
3073 m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)),
3074 m_APIntAllowPoison(BiasCst))))
3075 return nullptr;
3076
3077 if (!LowBitMaskCst->isMask())
3078 return nullptr;
3079
3080 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3081 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3082 return nullptr;
3083
3084 APInt AlignmentCst = *LowBitMaskCst + 1;
3085
3086 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3087 return nullptr;
3088
3089 if (!XBiasedHighBits->hasOneUse()) {
3090 // We can't directly return XBiasedHighBits if it is more poisonous.
3091 if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X))
3092 return XBiasedHighBits;
3093 return nullptr;
3094 }
3095
3096 // FIXME: could we preserve undef's here?
3097 Type *Ty = X->getType();
3098 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
3099 X->getName() + ".biased");
3100 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3101 R->takeName(&SI);
3102 return R;
3103}
3104
3105namespace {
3106struct DecomposedSelect {
3107 Value *Cond = nullptr;
3108 Value *TrueVal = nullptr;
3109 Value *FalseVal = nullptr;
3110};
3111} // namespace
3112
3113/// Folds patterns like:
3114/// select c2 (select c1 a b) (select c1 b a)
3115/// into:
3116/// select (xor c1 c2) b a
3117static Instruction *
3118foldSelectOfSymmetricSelect(SelectInst &OuterSelVal,
3119 InstCombiner::BuilderTy &Builder) {
3120
3121 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3122 if (!match(
3123 &OuterSelVal,
3124 m_Select(m_Value(OuterCond),
3125 m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal),
3126 m_Value(InnerFalseVal))),
3127 m_OneUse(m_Select(m_Deferred(InnerCond),
3128 m_Deferred(InnerFalseVal),
3129 m_Deferred(InnerTrueVal))))))
3130 return nullptr;
3131
3132 if (OuterCond->getType() != InnerCond->getType())
3133 return nullptr;
3134
3135 Value *Xor = Builder.CreateXor(InnerCond, OuterCond);
3136 return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal);
3137}
3138
3139/// Look for patterns like
3140/// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
3141/// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
3142/// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
3143/// and rewrite it as
3144/// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
3145/// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
3146static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
3147 InstCombiner::BuilderTy &Builder) {
3148 // We must start with a `select`.
3149 DecomposedSelect OuterSel;
3150 match(&OuterSelVal,
3151 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
3152 m_Value(OuterSel.FalseVal)));
3153
3154 // Canonicalize inversion of the outermost `select`'s condition.
3155 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
3156 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3157
3158 // The condition of the outermost select must be an `and`/`or`.
3159 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
3160 return nullptr;
3161
3162 // Depending on the logical op, inner select might be in different hand.
3163 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
3164 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3165
3166 // Profitability check - avoid increasing instruction count.
3167 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
3168 [](Value *V) { return V->hasOneUse(); }))
3169 return nullptr;
3170
3171 // The appropriate hand of the outermost `select` must be a select itself.
3172 DecomposedSelect InnerSel;
3173 if (!match(InnerSelVal,
3174 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
3175 m_Value(InnerSel.FalseVal))))
3176 return nullptr;
3177
3178 // Canonicalize inversion of the innermost `select`'s condition.
3179 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
3180 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3181
3182 Value *AltCond = nullptr;
3183 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) {
3184 // An unsimplified select condition can match both LogicalAnd and LogicalOr
3185 // (select true, true, false). Since below we assume that LogicalAnd implies
3186 // InnerSel match the FVal and vice versa for LogicalOr, we can't match the
3187 // alternative pattern here.
3188 return IsAndVariant ? match(OuterSel.Cond,
3189 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond)))
3190 : match(OuterSel.Cond,
3191 m_c_LogicalOr(m_InnerCond, m_Value(AltCond)));
3192 };
3193
3194 // Finally, match the condition that was driving the outermost `select`,
3195 // it should be a logical operation between the condition that was driving
3196 // the innermost `select` (after accounting for the possible inversions
3197 // of the condition), and some other condition.
3198 if (matchOuterCond(m_Specific(InnerSel.Cond))) {
3199 // Done!
3200 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
3201 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
3202 // Done!
3203 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3204 InnerSel.Cond = NotInnerCond;
3205 } else // Not the pattern we were looking for.
3206 return nullptr;
3207
3208 Value *SelInner = Builder.CreateSelect(
3209 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3210 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3211 SelInner->takeName(InnerSelVal);
3212 return SelectInst::Create(InnerSel.Cond,
3213 IsAndVariant ? SelInner : InnerSel.TrueVal,
3214 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3215}
3216
3217/// Return true if V is poison or \p Expected given that ValAssumedPoison is
3218/// already poison. For example, if ValAssumedPoison is `icmp samesign X, 10`
3219/// and V is `icmp ne X, 5`, impliesPoisonOrCond returns true.
3220static bool impliesPoisonOrCond(const Value *ValAssumedPoison, const Value *V,
3221 bool Expected) {
3222 if (impliesPoison(ValAssumedPoison, V))
3223 return true;
3224
3225 // Handle the case that ValAssumedPoison is `icmp samesign pred X, C1` and V
3226 // is `icmp pred X, C2`, where C1 is well-defined.
3227 if (auto *ICmp = dyn_cast<ICmpInst>(ValAssumedPoison)) {
3228 Value *LHS = ICmp->getOperand(0);
3229 const APInt *RHSC1;
3230 const APInt *RHSC2;
3231 CmpPredicate Pred;
3232 if (ICmp->hasSameSign() &&
3233 match(ICmp->getOperand(1), m_APIntForbidPoison(RHSC1)) &&
3234 match(V, m_ICmp(Pred, m_Specific(LHS), m_APIntAllowPoison(RHSC2)))) {
3235 unsigned BitWidth = RHSC1->getBitWidth();
3236 ConstantRange CRX =
3237 RHSC1->isNonNegative()
3240 : ConstantRange(APInt::getZero(BitWidth),
3241 APInt::getSignedMinValue(BitWidth));
3242 return CRX.icmp(Expected ? Pred : ICmpInst::getInverseCmpPredicate(Pred),
3243 *RHSC2);
3244 }
3245 }
3246
3247 return false;
3248}
3249
3251 Value *CondVal = SI.getCondition();
3252 Value *TrueVal = SI.getTrueValue();
3253 Value *FalseVal = SI.getFalseValue();
3254 Type *SelType = SI.getType();
3255
3256 // Avoid potential infinite loops by checking for non-constant condition.
3257 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
3258 // Scalar select must have simplified?
3259 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
3260 TrueVal->getType() != CondVal->getType())
3261 return nullptr;
3262
3263 auto *One = ConstantInt::getTrue(SelType);
3264 auto *Zero = ConstantInt::getFalse(SelType);
3265 Value *A, *B, *C, *D;
3266
3267 // Folding select to and/or i1 isn't poison safe in general. impliesPoison
3268 // checks whether folding it does not convert a well-defined value into
3269 // poison.
3270 if (match(TrueVal, m_One())) {
3271 if (impliesPoisonOrCond(FalseVal, CondVal, /*Expected=*/false)) {
3272 // Change: A = select B, true, C --> A = or B, C
3273 return BinaryOperator::CreateOr(CondVal, FalseVal);
3274 }
3275
3276 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) &&
3277 impliesPoisonOrCond(FalseVal, B, /*Expected=*/false)) {
3278 // (A || B) || C --> A || (B | C)
3279 return replaceInstUsesWith(
3280 SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal)));
3281 }
3282
3283 // (A && B) || (C && B) --> (A || C) && B
3284 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3285 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
3286 (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
3287 bool CondLogicAnd = isa<SelectInst>(CondVal);
3288 bool FalseLogicAnd = isa<SelectInst>(FalseVal);
3289 auto AndFactorization = [&](Value *Common, Value *InnerCond,
3290 Value *InnerVal,
3291 bool SelFirst = false) -> Instruction * {
3292 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
3293 if (SelFirst)
3294 std::swap(Common, InnerSel);
3295 if (FalseLogicAnd || (CondLogicAnd && Common == A))
3296 return SelectInst::Create(Common, InnerSel, Zero);
3297 else
3298 return BinaryOperator::CreateAnd(Common, InnerSel);
3299 };
3300
3301 if (A == C)
3302 return AndFactorization(A, B, D);
3303 if (A == D)
3304 return AndFactorization(A, B, C);
3305 if (B == C)
3306 return AndFactorization(B, A, D);
3307 if (B == D)
3308 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
3309 }
3310 }
3311
3312 if (match(FalseVal, m_Zero())) {
3313 if (impliesPoisonOrCond(TrueVal, CondVal, /*Expected=*/true)) {
3314 // Change: A = select B, C, false --> A = and B, C
3315 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3316 }
3317
3318 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) &&
3319 impliesPoisonOrCond(TrueVal, B, /*Expected=*/true)) {
3320 // (A && B) && C --> A && (B & C)
3321 return replaceInstUsesWith(
3322 SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal)));
3323 }
3324
3325 // (A || B) && (C || B) --> (A && C) || B
3326 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3327 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
3328 (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
3329 bool CondLogicOr = isa<SelectInst>(CondVal);
3330 bool TrueLogicOr = isa<SelectInst>(TrueVal);
3331 auto OrFactorization = [&](Value *Common, Value *InnerCond,
3332 Value *InnerVal,
3333 bool SelFirst = false) -> Instruction * {
3334 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
3335 if (SelFirst)
3336 std::swap(Common, InnerSel);
3337 if (TrueLogicOr || (CondLogicOr && Common == A))
3338 return SelectInst::Create(Common, One, InnerSel);
3339 else
3340 return BinaryOperator::CreateOr(Common, InnerSel);
3341 };
3342
3343 if (A == C)
3344 return OrFactorization(A, B, D);
3345 if (A == D)
3346 return OrFactorization(A, B, C);
3347 if (B == C)
3348 return OrFactorization(B, A, D);
3349 if (B == D)
3350 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
3351 }
3352 }
3353
3354 // We match the "full" 0 or 1 constant here to avoid a potential infinite
3355 // loop with vectors that may have undefined/poison elements.
3356 // select a, false, b -> select !a, b, false
3357 if (match(TrueVal, m_Specific(Zero))) {
3358 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3359 return SelectInst::Create(NotCond, FalseVal, Zero);
3360 }
3361 // select a, b, true -> select !a, true, b
3362 if (match(FalseVal, m_Specific(One))) {
3363 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3364 return SelectInst::Create(NotCond, One, TrueVal);
3365 }
3366
3367 // DeMorgan in select form: !a && !b --> !(a || b)
3368 // select !a, !b, false --> not (select a, true, b)
3369 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3370 (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
3373
3374 // DeMorgan in select form: !a || !b --> !(a && b)
3375 // select !a, true, !b --> not (select a, b, false)
3376 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3377 (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
3380
3381 // select (select a, true, b), true, b -> select a, true, b
3382 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
3383 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
3384 return replaceOperand(SI, 0, A);
3385 // select (select a, b, false), b, false -> select a, b, false
3386 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
3387 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
3388 return replaceOperand(SI, 0, A);
3389
3390 // ~(A & B) & (A | B) --> A ^ B
3393 return BinaryOperator::CreateXor(A, B);
3394
3395 // select (~a | c), a, b -> select a, (select c, true, b), false
3396 if (match(CondVal,
3397 m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) {
3398 Value *OrV = Builder.CreateSelect(C, One, FalseVal);
3399 return SelectInst::Create(TrueVal, OrV, Zero);
3400 }
3401 // select (c & b), a, b -> select b, (select ~c, true, a), false
3402 if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) {
3403 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3404 Value *OrV = Builder.CreateSelect(NotC, One, TrueVal);
3405 return SelectInst::Create(FalseVal, OrV, Zero);
3406 }
3407 }
3408 // select (a | c), a, b -> select a, true, (select ~c, b, false)
3409 if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) {
3410 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) {
3411 Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
3412 return SelectInst::Create(TrueVal, One, AndV);
3413 }
3414 }
3415 // select (c & ~b), a, b -> select b, true, (select c, a, false)
3416 if (match(CondVal,
3417 m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) {
3418 Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
3419 return SelectInst::Create(FalseVal, One, AndV);
3420 }
3421
3422 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
3423 Use *Y = nullptr;
3424 bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
3425 Value *Op1 = IsAnd ? TrueVal : FalseVal;
3426 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
3427 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
3428 InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
3429 replaceUse(*Y, FI);
3430 return replaceInstUsesWith(SI, Op1);
3431 }
3432
3433 if (auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3434 /*IsLogical=*/true))
3435 return replaceInstUsesWith(SI, V);
3436 }
3437
3438 // select (a || b), c, false -> select a, c, false
3439 // select c, (a || b), false -> select c, a, false
3440 // if c implies that b is false.
3441 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3442 match(FalseVal, m_Zero())) {
3443 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3444 if (Res && *Res == false)
3445 return replaceOperand(SI, 0, A);
3446 }
3447 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3448 match(FalseVal, m_Zero())) {
3449 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3450 if (Res && *Res == false)
3451 return replaceOperand(SI, 1, A);
3452 }
3453 // select c, true, (a && b) -> select c, true, a
3454 // select (a && b), true, c -> select a, true, c
3455 // if c = false implies that b = true
3456 if (match(TrueVal, m_One()) &&
3457 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3458 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3459 if (Res && *Res == true)
3460 return replaceOperand(SI, 2, A);
3461 }
3462 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3463 match(TrueVal, m_One())) {
3464 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3465 if (Res && *Res == true)
3466 return replaceOperand(SI, 0, A);
3467 }
3468
3469 if (match(TrueVal, m_One())) {
3470 Value *C;
3471
3472 // (C && A) || (!C && B) --> sel C, A, B
3473 // (A && C) || (!C && B) --> sel C, A, B
3474 // (C && A) || (B && !C) --> sel C, A, B
3475 // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3476 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3477 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3478 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3479 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3480 bool MayNeedFreeze = SelCond && SelFVal &&
3481 match(SelFVal->getTrueValue(),
3482 m_Not(m_Specific(SelCond->getTrueValue())));
3483 if (MayNeedFreeze)
3485 return SelectInst::Create(C, A, B);
3486 }
3487
3488 // (!C && A) || (C && B) --> sel C, B, A
3489 // (A && !C) || (C && B) --> sel C, B, A
3490 // (!C && A) || (B && C) --> sel C, B, A
3491 // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3492 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3493 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3494 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3495 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3496 bool MayNeedFreeze = SelCond && SelFVal &&
3497 match(SelCond->getTrueValue(),
3498 m_Not(m_Specific(SelFVal->getTrueValue())));
3499 if (MayNeedFreeze)
3501 return SelectInst::Create(C, B, A);
3502 }
3503 }
3504
3505 return nullptr;
3506}
3507
3508// Return true if we can safely remove the select instruction for std::bit_ceil
3509// pattern.
3510static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
3511 const APInt *Cond1, Value *CtlzOp,
3512 unsigned BitWidth,
3513 bool &ShouldDropNoWrap) {
3514 // The challenge in recognizing std::bit_ceil(X) is that the operand is used
3515 // for the CTLZ proper and select condition, each possibly with some
3516 // operation like add and sub.
3517 //
3518 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
3519 // select instruction would select 1, which allows us to get rid of the select
3520 // instruction.
3521 //
3522 // To see if we can do so, we do some symbolic execution with ConstantRange.
3523 // Specifically, we compute the range of values that Cond0 could take when
3524 // Cond == false. Then we successively transform the range until we obtain
3525 // the range of values that CtlzOp could take.
3526 //
3527 // Conceptually, we follow the def-use chain backward from Cond0 while
3528 // transforming the range for Cond0 until we meet the common ancestor of Cond0
3529 // and CtlzOp. Then we follow the def-use chain forward until we obtain the
3530 // range for CtlzOp. That said, we only follow at most one ancestor from
3531 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp.
3532
3534 CmpInst::getInversePredicate(Pred), *Cond1);
3535
3536 ShouldDropNoWrap = false;
3537
3538 // Match the operation that's used to compute CtlzOp from CommonAncestor. If
3539 // CtlzOp == CommonAncestor, return true as no operation is needed. If a
3540 // match is found, execute the operation on CR, update CR, and return true.
3541 // Otherwise, return false.
3542 auto MatchForward = [&](Value *CommonAncestor) {
3543 const APInt *C = nullptr;
3544 if (CtlzOp == CommonAncestor)
3545 return true;
3546 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
3547 ShouldDropNoWrap = true;
3548 CR = CR.add(*C);
3549 return true;
3550 }
3551 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
3552 ShouldDropNoWrap = true;
3553 CR = ConstantRange(*C).sub(CR);
3554 return true;
3555 }
3556 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
3557 CR = CR.binaryNot();
3558 return true;
3559 }
3560 return false;
3561 };
3562
3563 const APInt *C = nullptr;
3564 Value *CommonAncestor;
3565 if (MatchForward(Cond0)) {
3566 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated.
3567 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
3568 CR = CR.sub(*C);
3569 if (!MatchForward(CommonAncestor))
3570 return false;
3571 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated.
3572 } else {
3573 return false;
3574 }
3575
3576 // Return true if all the values in the range are either 0 or negative (if
3577 // treated as signed). We do so by evaluating:
3578 //
3579 // CR - 1 u>= (1 << BitWidth) - 1.
3580 APInt IntMax = APInt::getSignMask(BitWidth) - 1;
3581 CR = CR.sub(APInt(BitWidth, 1));
3582 return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
3583}
3584
3585// Transform the std::bit_ceil(X) pattern like:
3586//
3587// %dec = add i32 %x, -1
3588// %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3589// %sub = sub i32 32, %ctlz
3590// %shl = shl i32 1, %sub
3591// %ugt = icmp ugt i32 %x, 1
3592// %sel = select i1 %ugt, i32 %shl, i32 1
3593//
3594// into:
3595//
3596// %dec = add i32 %x, -1
3597// %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3598// %neg = sub i32 0, %ctlz
3599// %masked = and i32 %ctlz, 31
3600// %shl = shl i32 1, %sub
3601//
3602// Note that the select is optimized away while the shift count is masked with
3603// 31. We handle some variations of the input operand like std::bit_ceil(X +
3604// 1).
3605static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder,
3606 InstCombinerImpl &IC) {
3607 Type *SelType = SI.getType();
3608 unsigned BitWidth = SelType->getScalarSizeInBits();
3609
3610 Value *FalseVal = SI.getFalseValue();
3611 Value *TrueVal = SI.getTrueValue();
3612 CmpPredicate Pred;
3613 const APInt *Cond1;
3614 Value *Cond0, *Ctlz, *CtlzOp;
3615 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
3616 return nullptr;
3617
3618 if (match(TrueVal, m_One())) {
3619 std::swap(FalseVal, TrueVal);
3620 Pred = CmpInst::getInversePredicate(Pred);
3621 }
3622
3623 bool ShouldDropNoWrap;
3624
3625 if (!match(FalseVal, m_One()) ||
3626 !match(TrueVal,
3628 m_Value(Ctlz)))))) ||
3629 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Value())) ||
3630 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth,
3631 ShouldDropNoWrap))
3632 return nullptr;
3633
3634 if (ShouldDropNoWrap) {
3635 cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false);
3636 cast<Instruction>(CtlzOp)->setHasNoSignedWrap(false);
3637 }
3638
3639 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a
3640 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
3641 // is an integer constant. Masking with BitWidth-1 comes free on some
3642 // hardware as part of the shift instruction.
3643
3644 // Drop range attributes and re-infer them in the next iteration.
3645 cast<Instruction>(Ctlz)->dropPoisonGeneratingAnnotations();
3646 // Set is_zero_poison to false and re-infer them in the next iteration.
3647 cast<Instruction>(Ctlz)->setOperand(1, Builder.getFalse());
3648 IC.addToWorklist(cast<Instruction>(Ctlz));
3649 Value *Neg = Builder.CreateNeg(Ctlz);
3650 Value *Masked =
3651 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
3652 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
3653 Masked);
3654}
3655
3656// This function tries to fold the following operations:
3657// (x < y) ? -1 : zext(x != y)
3658// (x < y) ? -1 : zext(x > y)
3659// (x > y) ? 1 : sext(x != y)
3660// (x > y) ? 1 : sext(x < y)
3661// Into ucmp/scmp(x, y), where signedness is determined by the signedness
3662// of the comparison in the original sequence.
3664 Value *TV = SI.getTrueValue();
3665 Value *FV = SI.getFalseValue();
3666
3667 CmpPredicate Pred;
3668 Value *LHS, *RHS;
3669 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
3670 return nullptr;
3671
3672 if (!LHS->getType()->isIntOrIntVectorTy())
3673 return nullptr;
3674
3675 // If there is no -1, 0 or 1 at TV, then invert the select statement and try
3676 // to canonicalize to one of the forms above
3677 if (!isa<Constant>(TV)) {
3678 if (!isa<Constant>(FV))
3679 return nullptr;
3681 std::swap(TV, FV);
3682 }
3683
3685 if (Constant *C = dyn_cast<Constant>(RHS)) {
3686 auto FlippedPredAndConst =
3688 if (!FlippedPredAndConst)
3689 return nullptr;
3690 Pred = FlippedPredAndConst->first;
3691 RHS = FlippedPredAndConst->second;
3692 } else {
3693 return nullptr;
3694 }
3695 }
3696
3697 // Try to swap operands and the predicate. We need to be careful when doing
3698 // so because two of the patterns have opposite predicates, so use the
3699 // constant inside select to determine if swapping operands would be
3700 // beneficial to us.
3701 if ((ICmpInst::isGT(Pred) && match(TV, m_AllOnes())) ||
3702 (ICmpInst::isLT(Pred) && match(TV, m_One()))) {
3703 Pred = ICmpInst::getSwappedPredicate(Pred);
3704 std::swap(LHS, RHS);
3705 }
3706 bool IsSigned = ICmpInst::isSigned(Pred);
3707
3708 bool Replace = false;
3709 CmpPredicate ExtendedCmpPredicate;
3710 // (x < y) ? -1 : zext(x != y)
3711 // (x < y) ? -1 : zext(x > y)
3712 if (ICmpInst::isLT(Pred) && match(TV, m_AllOnes()) &&
3713 match(FV, m_ZExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS),
3714 m_Specific(RHS)))) &&
3715 (ExtendedCmpPredicate == ICmpInst::ICMP_NE ||
3716 ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred))
3717 Replace = true;
3718
3719 // (x > y) ? 1 : sext(x != y)
3720 // (x > y) ? 1 : sext(x < y)
3721 if (ICmpInst::isGT(Pred) && match(TV, m_One()) &&
3722 match(FV, m_SExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS),
3723 m_Specific(RHS)))) &&
3724 (ExtendedCmpPredicate == ICmpInst::ICMP_NE ||
3725 ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred))
3726 Replace = true;
3727
3728 // (x == y) ? 0 : (x > y ? 1 : -1)
3729 CmpPredicate FalseBranchSelectPredicate;
3730 const APInt *InnerTV, *InnerFV;
3731 if (Pred == ICmpInst::ICMP_EQ && match(TV, m_Zero()) &&
3732 match(FV, m_Select(m_c_ICmp(FalseBranchSelectPredicate, m_Specific(LHS),
3733 m_Specific(RHS)),
3734 m_APInt(InnerTV), m_APInt(InnerFV)))) {
3735 if (!ICmpInst::isGT(FalseBranchSelectPredicate)) {
3736 FalseBranchSelectPredicate =
3737 ICmpInst::getSwappedPredicate(FalseBranchSelectPredicate);
3738 std::swap(LHS, RHS);
3739 }
3740
3741 if (!InnerTV->isOne()) {
3742 std::swap(InnerTV, InnerFV);
3743 std::swap(LHS, RHS);
3744 }
3745
3746 if (ICmpInst::isGT(FalseBranchSelectPredicate) && InnerTV->isOne() &&
3747 InnerFV->isAllOnes()) {
3748 IsSigned = ICmpInst::isSigned(FalseBranchSelectPredicate);
3749 Replace = true;
3750 }
3751 }
3752
3753 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
3754 if (Replace)
3755 return replaceInstUsesWith(
3756 SI, Builder.CreateIntrinsic(SI.getType(), IID, {LHS, RHS}));
3757 return nullptr;
3758}
3759
3761 const Instruction *CtxI) const {
3762 KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
3763
3764 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
3765 (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
3766}
3767
3768static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
3769 Value *Cmp1, Value *TrueVal,
3770 Value *FalseVal, Instruction &CtxI,
3771 bool SelectIsNSZ) {
3772 Value *MulRHS;
3773 if (match(Cmp1, m_PosZeroFP()) &&
3774 match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
3775 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3776 // nsz must be on the select, it must be ignored on the multiply. We
3777 // need nnan and ninf on the multiply for the other value.
3778 FMF.setNoSignedZeros(SelectIsNSZ);
3779 return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
3780 }
3781
3782 return false;
3783}
3784
3785/// Check whether the KnownBits of a select arm may be affected by the
3786/// select condition.
3787static bool hasAffectedValue(Value *V, SmallPtrSetImpl<Value *> &Affected,
3788 unsigned Depth) {
3790 return false;
3791
3792 // Ignore the case where the select arm itself is affected. These cases
3793 // are handled more efficiently by other optimizations.
3794 if (Depth != 0 && Affected.contains(V))
3795 return true;
3796
3797 if (auto *I = dyn_cast<Instruction>(V)) {
3798 if (isa<PHINode>(I)) {
3800 return false;
3802 }
3803 return any_of(I->operands(), [&](Value *Op) {
3804 return Op->getType()->isIntOrIntVectorTy() &&
3805 hasAffectedValue(Op, Affected, Depth + 1);
3806 });
3807 }
3808
3809 return false;
3810}
3811
3812// This transformation enables the possibility of transforming fcmp + sel into
3813// a fmaxnum/fminnum intrinsic.
3814static Value *foldSelectIntoAddConstant(SelectInst &SI,
3815 InstCombiner::BuilderTy &Builder) {
3816 // Do this transformation only when select instruction gives NaN and NSZ
3817 // guarantee.
3818 auto *SIFOp = dyn_cast<FPMathOperator>(&SI);
3819 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
3820 return nullptr;
3821
3822 auto TryFoldIntoAddConstant =
3823 [&Builder, &SI](CmpInst::Predicate Pred, Value *X, Value *Z,
3824 Instruction *FAdd, Constant *C, bool Swapped) -> Value * {
3825 // Only these relational predicates can be transformed into maxnum/minnum
3826 // intrinsic.
3827 if (!CmpInst::isRelational(Pred) || !match(Z, m_AnyZeroFP()))
3828 return nullptr;
3829
3831 return nullptr;
3832
3833 Value *NewSelect = Builder.CreateSelect(SI.getCondition(), Swapped ? Z : X,
3834 Swapped ? X : Z, "", &SI);
3835 NewSelect->takeName(&SI);
3836
3837 Value *NewFAdd = Builder.CreateFAdd(NewSelect, C);
3838 NewFAdd->takeName(FAdd);
3839
3840 // Propagate FastMath flags
3841 FastMathFlags SelectFMF = SI.getFastMathFlags();
3842 FastMathFlags FAddFMF = FAdd->getFastMathFlags();
3843 FastMathFlags NewFMF = FastMathFlags::intersectRewrite(SelectFMF, FAddFMF) |
3844 FastMathFlags::unionValue(SelectFMF, FAddFMF);
3845 cast<Instruction>(NewFAdd)->setFastMathFlags(NewFMF);
3846 cast<Instruction>(NewSelect)->setFastMathFlags(NewFMF);
3847
3848 return NewFAdd;
3849 };
3850
3851 // select((fcmp Pred, X, 0), (fadd X, C), C)
3852 // => fadd((select (fcmp Pred, X, 0), X, 0), C)
3853 //
3854 // Pred := OGT, OGE, OLT, OLE, UGT, UGE, ULT, and ULE
3856 Constant *C;
3857 Value *X, *Z;
3858 CmpPredicate Pred;
3859
3860 // Note: OneUse check for `Cmp` is necessary because it makes sure that other
3861 // InstCombine folds don't undo this transformation and cause an infinite
3862 // loop. Furthermore, it could also increase the operation count.
3863 if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))),
3865 return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/false);
3866
3867 if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))),
3869 return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/true);
3870
3871 return nullptr;
3872}
3873
3874static Value *foldSelectBitTest(SelectInst &Sel, Value *CondVal, Value *TrueVal,
3875 Value *FalseVal,
3876 InstCombiner::BuilderTy &Builder,
3877 const SimplifyQuery &SQ) {
3878 // If this is a vector select, we need a vector compare.
3879 Type *SelType = Sel.getType();
3880 if (SelType->isVectorTy() != CondVal->getType()->isVectorTy())
3881 return nullptr;
3882
3883 Value *V;
3884 APInt AndMask;
3885 bool CreateAnd = false;
3886 CmpPredicate Pred;
3887 Value *CmpLHS, *CmpRHS;
3888
3889 if (match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
3890 if (ICmpInst::isEquality(Pred)) {
3891 if (!match(CmpRHS, m_Zero()))
3892 return nullptr;
3893
3894 V = CmpLHS;
3895 const APInt *AndRHS;
3896 if (!match(CmpLHS, m_And(m_Value(), m_Power2(AndRHS))))
3897 return nullptr;
3898
3899 AndMask = *AndRHS;
3900 } else if (auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred)) {
3901 assert(ICmpInst::isEquality(Res->Pred) && "Not equality test?");
3902 AndMask = Res->Mask;
3903 V = Res->X;
3904 KnownBits Known = computeKnownBits(V, SQ.getWithInstruction(&Sel));
3905 AndMask &= Known.getMaxValue();
3906 if (!AndMask.isPowerOf2())
3907 return nullptr;
3908
3909 Pred = Res->Pred;
3910 CreateAnd = true;
3911 } else {
3912 return nullptr;
3913 }
3914 } else if (auto *Trunc = dyn_cast<TruncInst>(CondVal)) {
3915 V = Trunc->getOperand(0);
3916 AndMask = APInt(V->getType()->getScalarSizeInBits(), 1);
3917 Pred = ICmpInst::ICMP_NE;
3918 CreateAnd = !Trunc->hasNoUnsignedWrap();
3919 } else {
3920 return nullptr;
3921 }
3922
3923 if (Pred == ICmpInst::ICMP_NE)
3924 std::swap(TrueVal, FalseVal);
3925
3926 if (Value *X = foldSelectICmpAnd(Sel, CondVal, TrueVal, FalseVal, V, AndMask,
3927 CreateAnd, Builder))
3928 return X;
3929
3930 if (Value *X = foldSelectICmpAndBinOp(CondVal, TrueVal, FalseVal, V, AndMask,
3931 CreateAnd, Builder))
3932 return X;
3933
3934 return nullptr;
3935}
3936
3938 Value *CondVal = SI.getCondition();
3939 Value *TrueVal = SI.getTrueValue();
3940 Value *FalseVal = SI.getFalseValue();
3941 Type *SelType = SI.getType();
3942
3943 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3944 SQ.getWithInstruction(&SI)))
3945 return replaceInstUsesWith(SI, V);
3946
3947 if (Instruction *I = canonicalizeSelectToShuffle(SI))
3948 return I;
3949
3950 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3951 return I;
3952
3953 // If the type of select is not an integer type or if the condition and
3954 // the selection type are not both scalar nor both vector types, there is no
3955 // point in attempting to match these patterns.
3956 Type *CondType = CondVal->getType();
3957 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3958 CondType->isVectorTy() == SelType->isVectorTy()) {
3959 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3960 ConstantInt::getTrue(CondType), SQ,
3961 /* AllowRefinement */ true))
3962 return replaceOperand(SI, 1, S);
3963
3964 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3965 ConstantInt::getFalse(CondType), SQ,
3966 /* AllowRefinement */ true))
3967 return replaceOperand(SI, 2, S);
3968
3969 if (replaceInInstruction(TrueVal, CondVal,
3970 ConstantInt::getTrue(CondType)) ||
3971 replaceInInstruction(FalseVal, CondVal,
3972 ConstantInt::getFalse(CondType)))
3973 return &SI;
3974 }
3975
3976 if (Instruction *R = foldSelectOfBools(SI))
3977 return R;
3978
3979 // Selecting between two integer or vector splat integer constants?
3980 //
3981 // Note that we don't handle a scalar select of vectors:
3982 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3983 // because that may need 3 instructions to splat the condition value:
3984 // extend, insertelement, shufflevector.
3985 //
3986 // Do not handle i1 TrueVal and FalseVal otherwise would result in
3987 // zext/sext i1 to i1.
3988 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3989 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3990 // select C, 1, 0 -> zext C to int
3991 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3992 return new ZExtInst(CondVal, SelType);
3993
3994 // select C, -1, 0 -> sext C to int
3995 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3996 return new SExtInst(CondVal, SelType);
3997
3998 // select C, 0, 1 -> zext !C to int
3999 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
4000 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
4001 return new ZExtInst(NotCond, SelType);
4002 }
4003
4004 // select C, 0, -1 -> sext !C to int
4005 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
4006 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
4007 return new SExtInst(NotCond, SelType);
4008 }
4009 }
4010
4011 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
4012
4013 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
4014 FCmpInst::Predicate Pred = FCmp->getPredicate();
4015 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4016 // Are we selecting a value based on a comparison of the two values?
4017 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4018 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4019 // Canonicalize to use ordered comparisons by swapping the select
4020 // operands.
4021 //
4022 // e.g.
4023 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
4024 if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
4025 FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
4026 Value *NewCond = Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
4027 FCmp->getName() + ".inv");
4028 // Propagate ninf/nnan from fcmp to select.
4029 FastMathFlags FMF = SI.getFastMathFlags();
4030 if (FCmp->hasNoNaNs())
4031 FMF.setNoNaNs(true);
4032 if (FCmp->hasNoInfs())
4033 FMF.setNoInfs(true);
4034 Value *NewSel =
4035 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
4036 return replaceInstUsesWith(SI, NewSel);
4037 }
4038 }
4039
4040 if (SIFPOp) {
4041 // Fold out scale-if-equals-zero pattern.
4042 //
4043 // This pattern appears in code with denormal range checks after it's
4044 // assumed denormals are treated as zero. This drops a canonicalization.
4045
4046 // TODO: Could relax the signed zero logic. We just need to know the sign
4047 // of the result matches (fmul x, y has the same sign as x).
4048 //
4049 // TODO: Handle always-canonicalizing variant that selects some value or 1
4050 // scaling factor in the fmul visitor.
4051
4052 // TODO: Handle ldexp too
4053
4054 Value *MatchCmp0 = nullptr;
4055 Value *MatchCmp1 = nullptr;
4056
4057 // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
4058 // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
4059 if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
4060 MatchCmp0 = FalseVal;
4061 MatchCmp1 = TrueVal;
4062 } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
4063 MatchCmp0 = TrueVal;
4064 MatchCmp1 = FalseVal;
4065 }
4066
4067 if (Cmp0 == MatchCmp0 &&
4068 matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4069 SI, SIFPOp->hasNoSignedZeros()))
4070 return replaceInstUsesWith(SI, Cmp0);
4071 }
4072 }
4073
4074 if (SIFPOp) {
4075 // TODO: Try to forward-propagate FMF from select arms to the select.
4076
4077 auto *FCmp = dyn_cast<FCmpInst>(CondVal);
4078
4079 // Canonicalize select of FP values where NaN and -0.0 are not valid as
4080 // minnum/maxnum intrinsics.
4081 if (SIFPOp->hasNoNaNs() &&
4082 (SIFPOp->hasNoSignedZeros() ||
4083 (SIFPOp->hasOneUse() &&
4084 canIgnoreSignBitOfZero(*SIFPOp->use_begin())))) {
4085 Value *X, *Y;
4086 if (match(&SI, m_OrdOrUnordFMax(m_Value(X), m_Value(Y)))) {
4087 Value *BinIntr =
4088 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI);
4089 if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
4090 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4091 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4092 }
4093 return replaceInstUsesWith(SI, BinIntr);
4094 }
4095
4096 if (match(&SI, m_OrdOrUnordFMin(m_Value(X), m_Value(Y)))) {
4097 Value *BinIntr =
4098 Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI);
4099 if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) {
4100 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4101 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4102 }
4103 return replaceInstUsesWith(SI, BinIntr);
4104 }
4105 }
4106 }
4107
4108 // Fold selecting to fabs.
4109 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
4110 return Fabs;
4111
4112 // See if we are selecting two values based on a comparison of the two values.
4113 if (CmpInst *CI = dyn_cast<CmpInst>(CondVal))
4114 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *CI))
4115 return NewSel;
4116
4117 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
4118 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
4119 return Result;
4120
4121 if (Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal, Builder, SQ))
4122 return replaceInstUsesWith(SI, V);
4123
4124 if (Instruction *Add = foldAddSubSelect(SI, Builder))
4125 return Add;
4126 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
4127 return Add;
4129 return Or;
4130 if (Instruction *Mul = foldSelectZeroOrFixedOp(SI, *this))
4131 return Mul;
4132
4133 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
4134 auto *TI = dyn_cast<Instruction>(TrueVal);
4135 auto *FI = dyn_cast<Instruction>(FalseVal);
4136 if (TI && FI && TI->getOpcode() == FI->getOpcode())
4137 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
4138 return IV;
4139
4140 if (Instruction *I = foldSelectExtConst(SI))
4141 return I;
4142
4143 if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
4144 return I;
4145
4146 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
4147 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
4148 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
4149 bool Swap) -> GetElementPtrInst * {
4150 Value *Ptr = Gep->getPointerOperand();
4151 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
4152 !Gep->hasOneUse())
4153 return nullptr;
4154 Value *Idx = Gep->getOperand(1);
4155 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
4156 return nullptr;
4158 Value *NewT = Idx;
4159 Value *NewF = Constant::getNullValue(Idx->getType());
4160 if (Swap)
4161 std::swap(NewT, NewF);
4162 Value *NewSI =
4163 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
4164 return GetElementPtrInst::Create(ElementType, Ptr, NewSI,
4165 Gep->getNoWrapFlags());
4166 };
4167 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
4168 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
4169 return NewGep;
4170 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
4171 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
4172 return NewGep;
4173
4174 // See if we can fold the select into one of our operands.
4175 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
4176 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
4177 return FoldI;
4178
4179 Value *LHS, *RHS;
4180 Instruction::CastOps CastOp;
4181 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
4182 auto SPF = SPR.Flavor;
4183 if (SPF) {
4184 Value *LHS2, *RHS2;
4185 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
4186 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
4187 RHS2, SI, SPF, RHS))
4188 return R;
4189 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
4190 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
4191 RHS2, SI, SPF, LHS))
4192 return R;
4193 }
4194
4196 // Canonicalize so that
4197 // - type casts are outside select patterns.
4198 // - float clamp is transformed to min/max pattern
4199
4200 bool IsCastNeeded = LHS->getType() != SelType;
4201 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
4202 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
4203 if (IsCastNeeded ||
4204 (LHS->getType()->isFPOrFPVectorTy() &&
4205 ((CmpLHS != LHS && CmpLHS != RHS) ||
4206 (CmpRHS != LHS && CmpRHS != RHS)))) {
4207 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
4208
4209 Value *Cmp;
4210 if (CmpInst::isIntPredicate(MinMaxPred))
4211 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
4212 else
4213 Cmp = Builder.CreateFCmpFMF(MinMaxPred, LHS, RHS,
4214 cast<Instruction>(SI.getCondition()));
4215
4216 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
4217 if (!IsCastNeeded)
4218 return replaceInstUsesWith(SI, NewSI);
4219
4220 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
4221 return replaceInstUsesWith(SI, NewCast);
4222 }
4223 }
4224 }
4225
4226 // See if we can fold the select into a phi node if the condition is a select.
4227 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
4228 if (Instruction *NV = foldOpIntoPhi(SI, PN))
4229 return NV;
4230
4231 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
4232 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
4233 // Fold nested selects if the inner condition can be implied by the outer
4234 // condition.
4235 if (Value *V = simplifyNestedSelectsUsingImpliedCond(
4236 *TrueSI, CondVal, /*CondIsTrue=*/true, DL))
4237 return replaceOperand(SI, 1, V);
4238
4239 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
4240 // We choose this as normal form to enable folding on the And and
4241 // shortening paths for the values (this helps getUnderlyingObjects() for
4242 // example).
4243 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4244 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
4245 replaceOperand(SI, 0, And);
4246 replaceOperand(SI, 1, TrueSI->getTrueValue());
4247 return &SI;
4248 }
4249 }
4250 }
4251 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
4252 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
4253 // Fold nested selects if the inner condition can be implied by the outer
4254 // condition.
4255 if (Value *V = simplifyNestedSelectsUsingImpliedCond(
4256 *FalseSI, CondVal, /*CondIsTrue=*/false, DL))
4257 return replaceOperand(SI, 2, V);
4258
4259 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
4260 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4261 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
4262 replaceOperand(SI, 0, Or);
4263 replaceOperand(SI, 2, FalseSI->getFalseValue());
4264 return &SI;
4265 }
4266 }
4267 }
4268
4269 // Try to simplify a binop sandwiched between 2 selects with the same
4270 // condition. This is not valid for div/rem because the select might be
4271 // preventing a division-by-zero.
4272 // TODO: A div/rem restriction is conservative; use something like
4273 // isSafeToSpeculativelyExecute().
4274 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
4275 BinaryOperator *TrueBO;
4276 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
4277 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
4278 if (TrueBOSI->getCondition() == CondVal) {
4279 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
4280 Worklist.push(TrueBO);
4281 return &SI;
4282 }
4283 }
4284 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
4285 if (TrueBOSI->getCondition() == CondVal) {
4286 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
4287 Worklist.push(TrueBO);
4288 return &SI;
4289 }
4290 }
4291 }
4292
4293 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
4294 BinaryOperator *FalseBO;
4295 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
4296 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
4297 if (FalseBOSI->getCondition() == CondVal) {
4298 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
4299 Worklist.push(FalseBO);
4300 return &SI;
4301 }
4302 }
4303 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
4304 if (FalseBOSI->getCondition() == CondVal) {
4305 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
4306 Worklist.push(FalseBO);
4307 return &SI;
4308 }
4309 }
4310 }
4311
4312 Value *NotCond;
4313 if (match(CondVal, m_Not(m_Value(NotCond))) &&
4315 replaceOperand(SI, 0, NotCond);
4316 SI.swapValues();
4317 SI.swapProfMetadata();
4318 return &SI;
4319 }
4320
4321 if (Instruction *I = foldVectorSelect(SI))
4322 return I;
4323
4324 // If we can compute the condition, there's no need for a select.
4325 // Like the above fold, we are attempting to reduce compile-time cost by
4326 // putting this fold here with limitations rather than in InstSimplify.
4327 // The motivation for this call into value tracking is to take advantage of
4328 // the assumption cache, so make sure that is populated.
4329 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
4330 KnownBits Known(1);
4331 computeKnownBits(CondVal, Known, &SI);
4332 if (Known.One.isOne())
4333 return replaceInstUsesWith(SI, TrueVal);
4334 if (Known.Zero.isOne())
4335 return replaceInstUsesWith(SI, FalseVal);
4336 }
4337
4338 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
4339 return BitCastSel;
4340
4341 // Simplify selects that test the returned flag of cmpxchg instructions.
4342 if (Value *V = foldSelectCmpXchg(SI))
4343 return replaceInstUsesWith(SI, V);
4344
4345 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
4346 return Select;
4347
4348 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
4349 return Funnel;
4350
4351 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
4352 return Copysign;
4353
4354 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
4355 return replaceInstUsesWith(SI, PN);
4356
4357 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
4358 return replaceInstUsesWith(SI, Fr);
4359
4360 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
4361 return replaceInstUsesWith(SI, V);
4362
4363 if (Value *V = foldSelectIntoAddConstant(SI, Builder))
4364 return replaceInstUsesWith(SI, V);
4365
4366 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
4367 // Load inst is intentionally not checked for hasOneUse()
4368 if (match(FalseVal, m_Zero()) &&
4369 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
4370 m_CombineOr(m_Undef(), m_Zero()))) ||
4371 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
4372 m_CombineOr(m_Undef(), m_Zero()))))) {
4373 auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
4374 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
4375 MaskedInst->setArgOperand(3, FalseVal /* Zero */);
4376 return replaceInstUsesWith(SI, MaskedInst);
4377 }
4378
4379 Value *Mask;
4380 if (match(TrueVal, m_Zero()) &&
4381 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
4382 m_CombineOr(m_Undef(), m_Zero()))) ||
4383 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
4384 m_CombineOr(m_Undef(), m_Zero())))) &&
4385 (CondVal->getType() == Mask->getType())) {
4386 // We can remove the select by ensuring the load zeros all lanes the
4387 // select would have. We determine this by proving there is no overlap
4388 // between the load and select masks.
4389 // (i.e (load_mask & select_mask) == 0 == no overlap)
4390 bool CanMergeSelectIntoLoad = false;
4391 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
4392 CanMergeSelectIntoLoad = match(V, m_Zero());
4393
4394 if (CanMergeSelectIntoLoad) {
4395 auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
4396 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
4397 MaskedInst->setArgOperand(3, TrueVal /* Zero */);
4398 return replaceInstUsesWith(SI, MaskedInst);
4399 }
4400 }
4401
4402 if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder))
4403 return I;
4404
4405 if (Instruction *I = foldNestedSelects(SI, Builder))
4406 return I;
4407
4408 // Match logical variants of the pattern,
4409 // and transform them iff that gets rid of inversions.
4410 // (~x) | y --> ~(x & (~y))
4411 // (~x) & y --> ~(x | (~y))
4413 return &SI;
4414
4415 if (Instruction *I = foldBitCeil(SI, Builder, *this))
4416 return I;
4417
4418 if (Instruction *I = foldSelectToCmp(SI))
4419 return I;
4420
4422 return I;
4423
4424 // Fold:
4425 // (select A && B, T, F) -> (select A, (select B, T, F), F)
4426 // (select A || B, T, F) -> (select A, T, (select B, T, F))
4427 // if (select B, T, F) is foldable.
4428 // TODO: preserve FMF flags
4429 auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A,
4430 Value *B) -> Instruction * {
4431 if (Value *V = simplifySelectInst(B, TrueVal, FalseVal,
4432 SQ.getWithInstruction(&SI)))
4433 return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V);
4434
4435 // Is (select B, T, F) a SPF?
4436 if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) {
4437 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B))
4438 if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this))
4439 return SelectInst::Create(A, IsAnd ? V : TrueVal,
4440 IsAnd ? FalseVal : V);
4441 }
4442
4443 return nullptr;
4444 };
4445
4446 Value *LHS, *RHS;
4447 if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) {
4448 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
4449 return I;
4450 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS))
4451 return I;
4452 } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) {
4453 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
4454 return I;
4455 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS))
4456 return I;
4457 } else {
4458 // We cannot swap the operands of logical and/or.
4459 // TODO: Can we swap the operands by inserting a freeze?
4460 if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
4461 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS))
4462 return I;
4463 } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) {
4464 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS))
4465 return I;
4466 }
4467 }
4468
4469 // select Cond, !X, X -> xor Cond, X
4470 if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal))
4471 return BinaryOperator::CreateXor(CondVal, FalseVal);
4472
4473 // For vectors, this transform is only safe if the simplification does not
4474 // look through any lane-crossing operations. For now, limit to scalars only.
4475 if (SelType->isIntegerTy() &&
4476 (!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) {
4477 // Try to simplify select arms based on KnownBits implied by the condition.
4478 CondContext CC(CondVal);
4479 findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) {
4480 CC.AffectedValues.insert(V);
4481 });
4483 if (!CC.AffectedValues.empty()) {
4484 if (!isa<Constant>(TrueVal) &&
4485 hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) {
4486 KnownBits Known = llvm::computeKnownBits(TrueVal, Q);
4487 if (Known.isConstant())
4488 return replaceOperand(SI, 1,
4489 ConstantInt::get(SelType, Known.getConstant()));
4490 }
4491
4492 CC.Invert = true;
4493 if (!isa<Constant>(FalseVal) &&
4494 hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) {
4495 KnownBits Known = llvm::computeKnownBits(FalseVal, Q);
4496 if (Known.isConstant())
4497 return replaceOperand(SI, 2,
4498 ConstantInt::get(SelType, Known.getConstant()));
4499 }
4500 }
4501 }
4502
4503 // select (trunc nuw X to i1), X, Y --> select (trunc nuw X to i1), 1, Y
4504 // select (trunc nuw X to i1), Y, X --> select (trunc nuw X to i1), Y, 0
4505 // select (trunc nsw X to i1), X, Y --> select (trunc nsw X to i1), -1, Y
4506 // select (trunc nsw X to i1), Y, X --> select (trunc nsw X to i1), Y, 0
4507 Value *Trunc;
4508 if (match(CondVal, m_NUWTrunc(m_Value(Trunc)))) {
4509 if (TrueVal == Trunc)
4510 return replaceOperand(SI, 1, ConstantInt::get(TrueVal->getType(), 1));
4511 if (FalseVal == Trunc)
4512 return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0));
4513 }
4514 if (match(CondVal, m_NSWTrunc(m_Value(Trunc)))) {
4515 if (TrueVal == Trunc)
4516 return replaceOperand(SI, 1,
4518 if (FalseVal == Trunc)
4519 return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0));
4520 }
4521
4522 return nullptr;
4523}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:83
bool bitwiseIsEqual(const APFloat &RHS) const
Definition: APFloat.h:1414
bool isNegative() const
Definition: APFloat.h:1449
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:229
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1540
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:371
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1488
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:209
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:417
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
unsigned countLeadingZeros() const
Definition: APInt.h:1606
unsigned logBase2() const
Definition: APInt.h:1761
bool isMask(unsigned numBits) const
Definition: APInt.h:488
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:405
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:334
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:440
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
bool isOne() const
Determine if this is a value of 1.
Definition: APInt.h:389
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:399
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
MutableArrayRef< ResultElem > assumptions()
Access the list of assumption handles currently tracked for this function.
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:506
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
BinaryOps getOpcode() const
Definition: InstrTypes.h:374
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:666
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:685
@ ICMP_EQ
equal
Definition: InstrTypes.h:699
@ ICMP_NE
not equal
Definition: InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:691
bool isSigned() const
Definition: InstrTypes.h:932
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:829
bool isNonStrictPredicate() const
Definition: InstrTypes.h:854
bool isFPPredicate() const
Definition: InstrTypes.h:784
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:791
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:767
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
Definition: InstrTypes.h:895
bool isIntPredicate() const
Definition: InstrTypes.h:785
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
bool isUnsigned() const
Definition: InstrTypes.h:938
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Definition: InstrTypes.h:928
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:23
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2654
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2694
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
Definition: Constants.cpp:2635
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:868
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:875
This class represents a range of values.
Definition: ConstantRange.h:47
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
Definition: Constant.h:43
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
Definition: Constants.cpp:808
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:420
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
Definition: Constants.cpp:124
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:90
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
unsigned size() const
Definition: DenseMap.h:120
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
Tagged union holding either a T or a Error.
Definition: Error.h:485
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:200
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:333
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:22
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
Definition: FMF.h:112
bool noSignedZeros() const
Definition: FMF.h:67
bool noInfs() const
Definition: FMF.h:66
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
Definition: FMF.h:120
void setNoSignedZeros(bool B=true)
Definition: FMF.h:84
void setNoNaNs(bool B=true)
Definition: FMF.h:78
bool noNaNs() const
Definition: FMF.h:65
void setNoInfs(bool B=true)
Definition: FMF.h:81
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:949
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:973
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
uint64_t getType(const MachineInstr &MI) const
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2100
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1613
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1010
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1115
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:502
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2357
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1005
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition: IRBuilder.h:2637
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1513
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
Definition: IRBuilder.h:2238
Value * CreateFCmpFMF(CmpInst::Predicate P, Value *LHS, Value *RHS, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2457
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1781
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:823
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:834
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2494
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1805
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Definition: IRBuilder.h:2656
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:815
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1492
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2082
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1551
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:507
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Definition: IRBuilder.h:2651
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2068
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1708
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition: IRBuilder.h:1725
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2361
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1532
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1599
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2439
Value * CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition: IRBuilder.h:1731
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1790
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition: IRBuilder.h:1573
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Constant * getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
Definition: InstCombiner.h:48
SimplifyQuery SQ
Definition: InstCombiner.h:77
const DataLayout & getDataLayout() const
Definition: InstCombiner.h:337
TargetLibraryInfo & TLI
Definition: InstCombiner.h:74
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Definition: InstCombiner.h:368
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
Definition: InstCombiner.h:187
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombiner.h:420
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
Definition: InstCombiner.h:160
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:65
const DataLayout & DL
Definition: InstCombiner.h:76
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Definition: InstCombiner.h:433
AssumptionCache & AC
Definition: InstCombiner.h:73
void addToWorklist(Instruction *I)
Definition: InstCombiner.h:332
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
DominatorTree & DT
Definition: InstCombiner.h:75
BuilderTy & Builder
Definition: InstCombiner.h:61
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
Definition: InstCombiner.h:209
const SimplifyQuery & getSimplifyQuery() const
Definition: InstCombiner.h:338
static Constant * AddOne(Constant *C)
Add one to a Constant.
Definition: InstCombiner.h:178
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
Definition: InstCombiner.h:443
void add(Instruction *I)
Add instruction to the worklist.
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
bool isCast() const
Definition: Instruction.h:321
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:78
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:312
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:86
bool isIntDivRem() const
Definition: Instruction.h:318
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:49
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:168
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:476
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:273
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:246
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:270
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:225
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition: InstrTypes.h:147
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
op_range operands()
Definition: User.h:292
Value * getOperand(unsigned i) const
Definition: User.h:232
unsigned getNumOperands() const
Definition: User.h:254
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:1090
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
Definition: ilist_node.h:34
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:126
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:751
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:524
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:619
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:862
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:766
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
Definition: PatternMatch.h:186
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:245
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
Definition: PatternMatch.h:507
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
Definition: PatternMatch.h:876
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:980
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedLoad Intrinsic.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apint_match m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
Definition: PatternMatch.h:310
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:105
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:931
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:775
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
Definition: PatternMatch.h:189
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedGather Intrinsic.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
Definition: PatternMatch.h:700
ElementType
The element type of an SRV or UAV resource.
Definition: DXILABI.h:59
DiagnosticInfoOptimizationBase::Argument NV
@ FalseVal
Definition: TGLexer.h:59
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1563
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:47
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:288
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:223
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:858
Evaluate query assuming this condition holds.
Definition: SimplifyQuery.h:63
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition: KnownBits.h:54
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:138
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition: KnownBits.h:60
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
Definition: KnownFPClass.h:51
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
Definition: KnownFPClass.h:45
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
Definition: KnownFPClass.h:159
Matching combinators.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithCondContext(const CondContext &CC) const
SimplifyQuery getWithInstruction(const Instruction *I) const
AssumptionCache * AC
Definition: SimplifyQuery.h:75