47#define DEBUG_TYPE "instcombine"
127 const APInt *SelTC, *SelFC;
136 const APInt &TC = *SelTC;
137 const APInt &FC = *SelFC;
138 if (!TC.
isZero() && !FC.isZero()) {
150 Constant *TCC = ConstantInt::get(SelType, TC);
151 Constant *FCC = ConstantInt::get(SelType, FC);
152 Constant *MaskC = ConstantInt::get(SelType, AndMask);
153 for (
auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add,
158 V = Builder.CreateAnd(V, MaskC);
159 return Builder.CreateBinOp(
Opc, TCC, V);
173 unsigned ValZeros = ValC.
logBase2();
174 unsigned AndZeros = AndMask.
logBase2();
175 bool ShouldNotVal = !TC.
isZero();
176 bool NeedShift = ValZeros != AndZeros;
183 if (CreateAnd + ShouldNotVal + NeedShift + NeedZExtTrunc >
189 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
193 if (ValZeros > AndZeros) {
194 V = Builder.CreateZExtOrTrunc(V, SelType);
195 V = Builder.CreateShl(V, ValZeros - AndZeros);
196 }
else if (ValZeros < AndZeros) {
197 V = Builder.CreateLShr(V, AndZeros - ValZeros);
198 V = Builder.CreateZExtOrTrunc(V, SelType);
200 V = Builder.CreateZExtOrTrunc(V, SelType);
206 V = Builder.CreateXor(V, ValC);
222 switch (
I->getOpcode()) {
223 case Instruction::Add:
224 case Instruction::FAdd:
225 case Instruction::Mul:
226 case Instruction::FMul:
227 case Instruction::And:
228 case Instruction::Or:
229 case Instruction::Xor:
231 case Instruction::Sub:
232 case Instruction::FSub:
233 case Instruction::FDiv:
234 case Instruction::Shl:
235 case Instruction::LShr:
236 case Instruction::AShr:
268 CondVTy->getElementCount() !=
280 if (TI->
getOpcode() != Instruction::BitCast &&
293 SI.getName() +
".v", &
SI);
298 Value *OtherOpT, *OtherOpF;
301 bool Swapped =
false) ->
Value * {
302 assert(!(Commute && Swapped) &&
303 "Commute and Swapped can't set at the same time");
308 MatchIsOpZero =
true;
313 MatchIsOpZero =
false;
318 if (!Commute && !Swapped)
327 MatchIsOpZero =
true;
332 MatchIsOpZero =
false;
346 FMF |=
SI.getFastMathFlags();
350 NewSelI->setFastMathFlags(FMF);
351 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
362 if (
TII && FII &&
TII->getIntrinsicID() == FII->getIntrinsicID()) {
364 if (
Value *MatchOp = getCommonOp(TI, FI,
true)) {
366 Builder.CreateSelect(
Cond, OtherOpT, OtherOpF,
"minmaxop", &
SI);
376 if (
TII->getIntrinsicID() == Intrinsic::ldexp) {
377 Value *LdexpVal0 =
TII->getArgOperand(0);
378 Value *LdexpExp0 =
TII->getArgOperand(1);
379 Value *LdexpVal1 = FII->getArgOperand(0);
380 Value *LdexpExp1 = FII->getArgOperand(1);
391 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
398 auto CreateCmpSel = [&](std::optional<CmpPredicate>
P,
407 SI.getName() +
".v", &
SI);
461 if (BO->getOpcode() == Instruction::SDiv ||
462 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
468 SI.getName() +
".v", &
SI);
469 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
470 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
479 Type *ElementType = TGEP->getSourceElementType();
481 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags());
507 unsigned OpToFold = 0;
508 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
510 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
518 FMF =
SI.getFastMathFlags();
520 TVI->getOpcode(), TVI->getType(),
true, FMF.
noSignedZeros());
521 Value *OOp = TVI->getOperand(2 - OpToFold);
527 (!OOpIsAPInt || !
isSelect01(
C->getUniqueInteger(), *OOpC)))
540 Value *NewSel =
Builder.CreateSelect(
SI.getCondition(), Swapped ?
C : OOp,
541 Swapped ? OOp :
C,
"", &
SI);
559 if (
Instruction *R = TryFoldSelectIntoOp(
SI, TrueVal, FalseVal,
false))
562 if (
Instruction *R = TryFoldSelectIntoOp(
SI, FalseVal, TrueVal,
true))
575 const Value *CmpLHS = Cmp->getOperand(0);
576 const Value *CmpRHS = Cmp->getOperand(1);
583 if (CmpRHS == TVal) {
596 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, TVal, FVal);
602 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, TVal, FVal);
608 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, TVal, FVal);
618 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, TVal, FVal);
635 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
667 Constant *One = ConstantInt::get(SelType, 1);
668 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
669 Value *FullMask = Builder.CreateOr(
Y, MaskB);
670 Value *MaskedX = Builder.CreateAnd(
X, FullMask);
671 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
672 return new ZExtInst(ICmpNeZero, SelType);
694 const APInt *C2, *C1;
708 FI->setHasNoSignedWrap(
false);
709 FI->setHasNoUnsignedWrap(
false);
747 return Builder.CreateAShr(
X,
Y, IC->
getName(), IsExact);
775 const APInt &AndMask,
bool CreateAnd,
778 if (!TrueVal->getType()->isIntOrIntVectorTy())
781 unsigned C1Log = AndMask.
logBase2();
802 if (IdentityC ==
nullptr || !IdentityC->isNullValue())
807 bool NeedShift = C1Log != C2Log;
808 bool NeedZExtTrunc =
Y->getType()->getScalarSizeInBits() !=
809 V->getType()->getScalarSizeInBits();
812 if ((NeedShift + NeedXor + NeedZExtTrunc + CreateAnd) >
818 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
822 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
823 V = Builder.CreateShl(V, C2Log - C1Log);
824 }
else if (C1Log > C2Log) {
825 V = Builder.CreateLShr(V, C1Log - C2Log);
826 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
828 V = Builder.CreateZExtOrTrunc(V,
Y->getType());
831 V = Builder.CreateXor(V, *C2);
833 auto *Res = Builder.CreateBinOp(BinOp->
getOpcode(),
Y, V);
835 BO->copyIRFlags(BinOp);
854 Constant *OrC = ConstantInt::get(Ty, *
C);
855 Value *NewSel = Builder.CreateSelect(
Cond, Zero, OrC,
"masksel", &Sel);
856 return BinaryOperator::CreateOr(
T, NewSel);
863 Constant *OrC = ConstantInt::get(Ty, *
C);
864 Value *NewSel = Builder.CreateSelect(
Cond, OrC, Zero,
"masksel", &Sel);
865 return BinaryOperator::CreateOr(
F, NewSel);
886 auto *CondVal =
SI.getCondition();
887 auto *TrueVal =
SI.getTrueValue();
888 auto *FalseVal =
SI.getFalseValue();
938 FalseValI->getOperand(0) ==
Y
940 : (FalseValI->getOperand(1) ==
Y ? 1 : 2),
949 const Value *TrueVal,
950 const Value *FalseVal,
970 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
971 ConstantInt::get(
A->getType(), 1));
985 "Unexpected isUnsigned predicate!");
991 bool IsNegative =
false;
1004 if (IsNegative && !TrueVal->hasOneUse() && !ICI->
hasOneUse())
1009 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat,
A,
B);
1011 Result = Builder.CreateNeg(Result);
1017 if (!Cmp->hasOneUse())
1021 Value *Cmp0 = Cmp->getOperand(0);
1022 Value *Cmp1 = Cmp->getOperand(1);
1042 return Builder.CreateBinaryIntrinsic(
1043 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->
getType(), 1));
1053 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1054 ConstantInt::get(Cmp0->
getType(), *
C));
1063 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1064 ConstantInt::get(Cmp0->
getType(), *
C));
1073 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0,
1074 ConstantInt::get(Cmp0->
getType(), *
C));
1092 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat,
X,
Y);
1102 return Builder.CreateBinaryIntrinsic(
1112 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1,
Y);
1128 Value *
A = Cmp->getOperand(0);
1129 Value *
B = Cmp->getOperand(1);
1142 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1143 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1150 TI->setHasNoUnsignedWrap(
false);
1151 if (!TI->hasNoSignedWrap())
1152 TI->setHasNoSignedWrap(TI->hasOneUse());
1153 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1160 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1161 Builder.getFalse());
1168 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1169 Builder.getFalse());
1176 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, FI,
1177 Builder.getFalse());
1184 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI,
1185 Builder.getFalse());
1212 if (!
match(FalseVal,
1228 II->getModule(), Intrinsic::cttz,
II->getType());
1284 unsigned SizeOfInBits =
Count->getType()->getScalarSizeInBits();
1290 II->dropPoisonGeneratingAnnotations();
1302 II->dropUBImplyingAttrsAndMetadata();
1313 if (!
TrueVal->getType()->isIntOrIntVectorTy())
1353 if (!
I || !
I->hasOneUse() ||
1362 for (Use &U :
I->operands()) {
1395 bool Swapped =
false;
1396 if (
Cmp.isEquivalence(
true)) {
1399 }
else if (!
Cmp.isEquivalence()) {
1403 Value *CmpLHS =
Cmp.getOperand(0), *CmpRHS =
Cmp.getOperand(1);
1404 auto ReplaceOldOpWithNewOp = [&](
Value *OldOp,
1405 Value *NewOp) -> Instruction * {
1451 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS))
1453 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS))
1471 &DropFlags) == TrueVal ||
1474 &DropFlags) == TrueVal) {
1475 for (Instruction *
I : DropFlags) {
1476 I->dropPoisonGeneratingAnnotations();
1597 if (Cmp00->
getType() !=
X->getType() &&
X->hasOneUse())
1605 else if (!
match(Cmp00,
1613 Value *ReplacementLow, *ReplacementHigh;
1650 std::swap(ReplacementLow, ReplacementHigh);
1656 "Unexpected predicate type.");
1664 "Unexpected predicate type.");
1666 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1682 if (
X->getType() != Sel0.
getType()) {
1692 assert(ReplacementLow && ReplacementHigh &&
1693 "Constant folding of ImmConstant cannot fail");
1699 Value *MaybeReplacedLow =
1705 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1749 Value *SelVal0, *SelVal1;
1758 auto MatchesSelectValue = [SelVal0, SelVal1](
Constant *
C) {
1759 return C->isElementWiseEqual(SelVal0) ||
C->isElementWiseEqual(SelVal1);
1763 if (MatchesSelectValue(C0))
1768 if (!FlippedStrictness)
1772 if (!MatchesSelectValue(FlippedStrictness->second))
1781 Cmp.getName() +
".inv");
1792 if (!
Cmp->hasOneUse())
1822 Value *TVal =
SI.getTrueValue();
1823 Value *FVal =
SI.getFalseValue();
1857 Op->dropPoisonGeneratingFlags();
1862 MMI && MMI->getLHS() == V &&
match(MMI->getRHS(),
m_APInt(OpC))) {
1864 {InvDomCR, ConstantRange(*OpC)});
1866 MMI->dropPoisonGeneratingAnnotations();
1929 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal))
1961 Opcode = BOp->getOpcode();
1962 IsIntrinsic =
false;
1976 Opcode =
II->getIntrinsicID();
1984 const DataLayout &
DL =
Cmp->getDataLayout();
1993 if (C3 == FoldBinaryOpOrIntrinsic(C1, C2)) {
1996 }
else if (Flipped && C3 == FoldBinaryOpOrIntrinsic(Flipped->second, C2)) {
1998 RHS = Flipped->second;
2006 return Builder.CreateBinaryIntrinsic(Opcode, MinMax, C2);
2009 Value *BinOp =
Builder.CreateBinOp(BinOpc, MinMax, C2);
2014 if (BinOpc == Instruction::Add || BinOpc == Instruction::Sub ||
2015 BinOpc == Instruction::Mul) {
2018 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
true))
2019 BinOpInst->setHasNoSignedWrap();
2021 willNotOverflow(BinOpc,
RHS, C2, *BinOpInst,
false))
2022 BinOpInst->setHasNoUnsignedWrap();
2040static Instruction *foldICmpUSubSatWithAndForMostSignificantBitCmp(
2046 const APInt *Constant1, *Constant2;
2064 auto *Ty =
A->getType();
2072 APInt AdjAP1 = *Constant1 - MostSignificantBit + 1;
2073 APInt AdjAP2 = *Constant2 - MostSignificantBit + 1;
2075 auto *Adj1 = ConstantInt::get(Ty, AdjAP1);
2076 auto *Adj2 = ConstantInt::get(Ty, AdjAP2);
2081 Constant *MSBConst = ConstantInt::get(Ty, MostSignificantBit);
2082 return BinaryOperator::CreateAnd(
Or, MSBConst);
2089 canonicalizeSPF(*ICI,
SI.getTrueValue(),
SI.getFalseValue(), *
this))
2092 if (
Value *V = foldSelectInstWithICmpConst(SI, ICI,
Builder))
2095 if (
Value *V = canonicalizeClampLike(SI, *ICI,
Builder, *
this))
2098 if (Instruction *NewSel =
2099 tryToReuseConstantFromSelectInComparison(SI, *ICI, *
this))
2101 if (Instruction *Folded =
2102 foldICmpUSubSatWithAndForMostSignificantBitCmp(SI, ICI,
Builder))
2113 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *
this))
2123 InstCombiner::BuilderTy::InsertPointGuard Guard(
Builder);
2128 SI.swapProfMetadata();
2135 if (Instruction *V =
2142 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal,
Builder))
2145 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal,
Builder))
2151 if (
Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *
this))
2179 if (
C ==
A ||
C ==
B) {
2194 Value *CondVal =
SI.getCondition();
2199 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
2203 if ((TI->getOpcode() == Instruction::Sub &&
2204 FI->getOpcode() == Instruction::Add) ||
2205 (TI->getOpcode() == Instruction::FSub &&
2206 FI->getOpcode() == Instruction::FAdd)) {
2209 }
else if ((FI->getOpcode() == Instruction::Sub &&
2210 TI->getOpcode() == Instruction::Add) ||
2211 (FI->getOpcode() == Instruction::FSub &&
2212 TI->getOpcode() == Instruction::FAdd)) {
2218 Value *OtherAddOp =
nullptr;
2219 if (SubOp->getOperand(0) == AddOp->
getOperand(0)) {
2221 }
else if (SubOp->getOperand(0) == AddOp->
getOperand(1)) {
2229 if (
SI.getType()->isFPOrFPVectorTy()) {
2230 NegVal = Builder.
CreateFNeg(SubOp->getOperand(1));
2233 Flags &= SubOp->getFastMathFlags();
2234 NegInst->setFastMathFlags(Flags);
2237 NegVal = Builder.
CreateNeg(SubOp->getOperand(1));
2240 Value *NewTrueOp = OtherAddOp;
2241 Value *NewFalseOp = NegVal;
2245 SI.getName() +
".p", &
SI);
2247 if (
SI.getType()->isFPOrFPVectorTy()) {
2249 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
2252 Flags &= SubOp->getFastMathFlags();
2256 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
2269 Value *CondVal =
SI.getCondition();
2281 auto IsSignedSaturateLimit = [&](
Value *Limit,
bool IsAdd) {
2291 auto IsZeroOrOne = [](
const APInt &
C) {
return C.isZero() ||
C.isOne(); };
2308 IsMinMax(TrueVal, FalseVal))
2315 IsMinMax(FalseVal, TrueVal))
2321 IsMinMax(TrueVal, FalseVal))
2326 IsMinMax(FalseVal, TrueVal))
2331 IsMinMax(FalseVal, TrueVal))
2336 IsMinMax(TrueVal, FalseVal))
2344 if (
II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2347 NewIntrinsicID = Intrinsic::uadd_sat;
2348 else if (
II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2351 NewIntrinsicID = Intrinsic::usub_sat;
2352 else if (
II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2353 IsSignedSaturateLimit(TrueVal,
true))
2362 NewIntrinsicID = Intrinsic::sadd_sat;
2363 else if (
II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2364 IsSignedSaturateLimit(TrueVal,
false))
2373 NewIntrinsicID = Intrinsic::ssub_sat;
2378 NewIntrinsicID,
SI.getType());
2394 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2404 (!Cmp ||
Cmp->getOperand(0)->getType() != SmallType))
2428 Value *CondVal =
SI.getCondition();
2434 unsigned NumElts = CondValTy->getNumElements();
2436 Mask.reserve(NumElts);
2437 for (
unsigned i = 0; i != NumElts; ++i) {
2447 Mask.push_back(i + NumElts);
2500 if (TVal ==
A || TVal ==
B || FVal ==
A || FVal ==
B)
2517 if (TSrc ==
C && FSrc ==
D) {
2521 }
else if (TSrc ==
D && FSrc ==
C) {
2563 if (Extract->getIndices()[0] !=
I)
2572 if (
Select->getCondition() ==
SI.getCondition())
2573 if (
Select->getFalseValue() ==
SI.getTrueValue() ||
2574 Select->getTrueValue() ==
SI.getFalseValue())
2578 auto *CmpXchg = isExtractFromCmpXchg(
SI.getCondition(), 1);
2585 if (
auto *
X = isExtractFromCmpXchg(
SI.getTrueValue(), 0))
2586 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getFalseValue())
2587 return SI.getFalseValue();
2592 if (
auto *
X = isExtractFromCmpXchg(
SI.getFalseValue(), 0))
2593 if (
X == CmpXchg &&
X->getCompareOperand() ==
SI.getTrueValue())
2594 return SI.getFalseValue();
2618 Value *SV0, *SV1, *SA0, *SA1;
2627 if (Or0->
getOpcode() == BinaryOperator::LShr) {
2633 Or1->
getOpcode() == BinaryOperator::LShr &&
2634 "Illegal or(shift,shift) pair");
2649 bool IsFshl = (ShAmt == SA0);
2651 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2671 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2693 assert(TC != FC &&
"Expected equal select arms to simplify");
2697 bool IsTrueIfSignSet;
2715 Value *MagArg = ConstantFP::get(SelType,
abs(*TC));
2734 I->copyIRFlags(&Sel);
2737 M, Intrinsic::vector_reverse,
V->getType());
2745 return createSelReverse(
C,
X,
Y);
2749 return createSelReverse(
C,
X, FVal);
2754 return createSelReverse(
C, TVal,
Y);
2761 unsigned NumElts = VecTy->getNumElements();
2762 APInt PoisonElts(NumElts, 0);
2780 return new ShuffleVectorInst(
X, NewSel, Mask);
2785 return new ShuffleVectorInst(NewSel,
Y, Mask);
2794 return new ShuffleVectorInst(
X, NewSel, Mask);
2799 return new ShuffleVectorInst(NewSel,
Y, Mask);
2811 auto *IDomNode = DT[BB]->getIDom();
2817 Value *IfTrue, *IfFalse;
2833 if (TrueSucc == FalseSucc)
2855 if (!DT.
dominates(Insn, Pred->getTerminator()))
2874 CandidateBlocks.
insert(
I->getParent());
2877 if (
auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2890 Value *CondVal =
SI.getCondition();
2895 Value *
Op, *RemRes, *Remainder;
2897 bool TrueIfSigned =
false;
2911 return BinaryOperator::CreateAnd(
Op,
Add);
2923 return FoldToBitwiseAnd(Remainder);
2932 return FoldToBitwiseAnd(ConstantInt::get(RemRes->
getType(), 2));
2968 Value *InnerCondVal =
SI.getCondition();
2969 Value *InnerTrueVal =
SI.getTrueValue();
2970 Value *InnerFalseVal =
SI.getFalseValue();
2972 "The type of inner condition must match with the outer.");
2974 return *Implied ? InnerTrueVal : InnerFalseVal;
2981 assert(
Op->getType()->isIntOrIntVectorTy(1) &&
2982 "Op must be either i1 or vector of i1.");
2983 if (
SI.getCondition()->getType() !=
Op->getType())
2985 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(SI,
Op, IsAnd,
DL))
2996 Value *CondVal =
SI.getCondition();
2998 bool ChangedFMF =
false;
2999 for (
bool Swap : {
false,
true}) {
3037 if (FMF.
noNaNs() && !
SI.hasNoNaNs()) {
3038 SI.setHasNoNaNs(
true);
3041 if (FMF.
noInfs() && !
SI.hasNoInfs()) {
3042 SI.setHasNoInfs(
true);
3049 SI.setHasNoNaNs(
true);
3063 if (!
SI.hasNoSignedZeros() &&
3066 if (!
SI.hasNoNaNs() &&
3084 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
3093 for (
bool Swap : {
false,
true}) {
3109 if (Swap == TrueIfSigned && !CondVal->
hasOneUse() && !
TrueVal->hasOneUse())
3115 if (Swap != TrueIfSigned)
3120 return ChangedFMF ? &
SI :
nullptr;
3142 Value *XBiasedHighBits =
SI.getFalseValue();
3155 const APInt *LowBitMaskCst;
3160 const APInt *BiasCst, *HighBitMaskCst;
3161 if (!
match(XBiasedHighBits,
3164 !
match(XBiasedHighBits,
3169 if (!LowBitMaskCst->
isMask())
3172 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
3173 if (InvertedLowBitMaskCst != *HighBitMaskCst)
3176 APInt AlignmentCst = *LowBitMaskCst + 1;
3178 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
3183 if (*BiasCst == *LowBitMaskCst &&
impliesPoison(XBiasedHighBits,
X))
3184 return XBiasedHighBits;
3189 Type *Ty =
X->getType();
3190 Value *XOffset = Builder.
CreateAdd(
X, ConstantInt::get(Ty, *LowBitMaskCst),
3191 X->getName() +
".biased");
3192 Value *
R = Builder.
CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
3198struct DecomposedSelect {
3210foldSelectOfSymmetricSelect(
SelectInst &OuterSelVal,
3213 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal;
3241 DecomposedSelect OuterSel;
3248 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
3256 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
3260 [](
Value *
V) {
return V->hasOneUse(); }))
3264 DecomposedSelect InnerSel;
3265 if (!
match(InnerSelVal,
3272 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3274 Value *AltCond =
nullptr;
3275 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](
auto m_InnerCond) {
3280 return IsAndVariant ?
match(OuterSel.Cond,
3290 if (matchOuterCond(
m_Specific(InnerSel.Cond))) {
3295 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
3296 InnerSel.Cond = NotInnerCond;
3301 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
3302 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
3305 IsAndVariant ? SelInner : InnerSel.TrueVal,
3306 !IsAndVariant ? SelInner : InnerSel.FalseVal);
3312static bool impliesPoisonOrCond(
const Value *ValAssumedPoison,
const Value *V,
3324 if (ICmp->hasSameSign() &&
3343 Value *CondVal =
SI.getCondition();
3346 Type *SelType =
SI.getType();
3363 if (impliesPoisonOrCond(FalseVal, CondVal,
false)) {
3365 return BinaryOperator::CreateOr(CondVal, FalseVal);
3369 impliesPoisonOrCond(FalseVal,
B,
false)) {
3381 auto AndFactorization = [&](
Value *Common,
Value *InnerCond,
3383 bool SelFirst =
false) -> Instruction * {
3384 Value *InnerSel =
Builder.CreateSelect(InnerCond, One, InnerVal);
3387 if (FalseLogicAnd || (CondLogicAnd && Common ==
A))
3390 return BinaryOperator::CreateAnd(Common, InnerSel);
3394 return AndFactorization(
A,
B,
D);
3396 return AndFactorization(
A,
B,
C);
3398 return AndFactorization(
B,
A,
D);
3400 return AndFactorization(
B,
A,
C, CondLogicAnd && FalseLogicAnd);
3405 if (impliesPoisonOrCond(TrueVal, CondVal,
true)) {
3407 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3411 impliesPoisonOrCond(TrueVal,
B,
true)) {
3423 auto OrFactorization = [&](
Value *Common,
Value *InnerCond,
3425 bool SelFirst =
false) -> Instruction * {
3426 Value *InnerSel =
Builder.CreateSelect(InnerCond, InnerVal, Zero);
3429 if (TrueLogicOr || (CondLogicOr && Common ==
A))
3432 return BinaryOperator::CreateOr(Common, InnerSel);
3436 return OrFactorization(
A,
B,
D);
3438 return OrFactorization(
A,
B,
C);
3440 return OrFactorization(
B,
A,
D);
3442 return OrFactorization(
B,
A,
C, CondLogicOr && TrueLogicOr);
3485 return BinaryOperator::CreateXor(
A,
B);
3503 Value *AndV =
Builder.CreateSelect(NotC, FalseVal, Zero);
3519 auto *FI =
new FreezeInst(*
Y, (*Y)->getName() +
".fr");
3525 if (
auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd,
3536 if (Res && *Res ==
false)
3542 if (Res && *Res ==
false)
3551 if (Res && *Res ==
true)
3557 if (Res && *Res ==
true)
3572 bool MayNeedFreeze = SelCond && SelFVal &&
3573 match(SelFVal->getTrueValue(),
3588 bool MayNeedFreeze = SelCond && SelFVal &&
3589 match(SelCond->getTrueValue(),
3605 bool &ShouldDropNoWrap) {
3628 ShouldDropNoWrap =
false;
3634 auto MatchForward = [&](
Value *CommonAncestor) {
3635 const APInt *
C =
nullptr;
3636 if (CtlzOp == CommonAncestor)
3639 ShouldDropNoWrap =
true;
3644 ShouldDropNoWrap =
true;
3655 const APInt *
C =
nullptr;
3656 Value *CommonAncestor;
3657 if (MatchForward(Cond0)) {
3661 if (!MatchForward(CommonAncestor))
3699 Type *SelType =
SI.getType();
3706 Value *Cond0, *Ctlz, *CtlzOp;
3715 bool ShouldDropNoWrap;
3722 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp,
BitWidth,
3726 if (ShouldDropNoWrap) {
3756 Value *TV =
SI.getTrueValue();
3757 Value *FV =
SI.getFalseValue();
3778 auto FlippedPredAndConst =
3780 if (!FlippedPredAndConst)
3782 Pred = FlippedPredAndConst->first;
3783 RHS = FlippedPredAndConst->second;
3800 bool Replace =
false;
3801 CmpPredicate ExtendedCmpPredicate;
3821 CmpPredicate FalseBranchSelectPredicate;
3822 const APInt *InnerTV, *InnerFV;
3828 FalseBranchSelectPredicate =
3833 if (!InnerTV->
isOne()) {
3845 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp;
3848 SI,
Builder.CreateIntrinsic(
SI.getType(), IID, {LHS, RHS}));
3896 return Op->getType()->isIntOrIntVectorTy() &&
3897 hasAffectedValue(Op, Affected, Depth + 1);
3911 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs())
3914 auto TryFoldIntoAddConstant =
3926 Swapped ?
X : Z,
"", &
SI);
3957 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
false);
3961 return TryFoldIntoAddConstant(Pred,
X, Z,
FAdd,
C,
true);
3977 bool CreateAnd =
false;
3979 Value *CmpLHS, *CmpRHS;
3987 const APInt *AndRHS;
3994 AndMask = Res->Mask;
4007 V = Trunc->getOperand(0);
4008 AndMask =
APInt(
V->getType()->getScalarSizeInBits(), 1);
4010 CreateAnd = !Trunc->hasNoUnsignedWrap();
4019 CreateAnd, Builder))
4023 CreateAnd, Builder))
4030 Value *CondVal =
SI.getCondition();
4033 Type *SelType =
SI.getType();
4036 SQ.getWithInstruction(&SI)))
4039 if (Instruction *
I = canonicalizeSelectToShuffle(SI))
4042 if (Instruction *
I = canonicalizeScalarSelectOfVecs(SI, *
this))
4084 return new ZExtInst(CondVal, SelType);
4088 return new SExtInst(CondVal, SelType);
4093 return new ZExtInst(NotCond, SelType);
4099 return new SExtInst(NotCond, SelType);
4107 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
4109 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
4110 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
4118 Value *NewCond =
Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp,
4119 FCmp->getName() +
".inv");
4121 FastMathFlags FMF =
SI.getFastMathFlags();
4122 if (FCmp->hasNoNaNs())
4124 if (FCmp->hasNoInfs())
4127 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FMF);
4146 Value *MatchCmp0 =
nullptr;
4147 Value *MatchCmp1 =
nullptr;
4159 if (Cmp0 == MatchCmp0 &&
4160 matchFMulByZeroIfResultEqZero(*
this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
4161 SI, SIFPOp->hasNoSignedZeros()))
4173 if (SIFPOp->hasNoNaNs() &&
4174 (SIFPOp->hasNoSignedZeros() ||
4175 (SIFPOp->hasOneUse() &&
4180 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum,
X,
Y, &SI);
4182 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4183 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4190 Builder.CreateBinaryIntrinsic(Intrinsic::minnum,
X,
Y, &SI);
4192 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs());
4193 BinIntrInst->setHasNoInfs(FCmp->hasNoInfs());
4201 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *
this))
4213 if (
Value *V = foldSelectBitTest(SI, CondVal, TrueVal, FalseVal,
Builder,
SQ))
4216 if (Instruction *
Add = foldAddSubSelect(SI,
Builder))
4218 if (Instruction *
Add = foldOverflowingAddSubSelect(SI,
Builder))
4228 if (TI && FI && TI->getOpcode() == FI->
getOpcode())
4235 if (Instruction *
I = foldSelectWithSRem(SI, *
this,
Builder))
4240 auto SelectGepWithBase = [&](GetElementPtrInst *Gep,
Value *
Base,
4241 bool Swap) -> GetElementPtrInst * {
4255 Builder.CreateSelect(CondVal, NewT, NewF,
SI.getName() +
".idx", &SI);
4260 if (
auto *NewGep = SelectGepWithBase(TrueGep, FalseVal,
false))
4263 if (
auto *NewGep = SelectGepWithBase(FalseGep, TrueVal,
true))
4279 RHS2, SI, SPF,
RHS))
4283 RHS2, SI, SPF,
LHS))
4292 bool IsCastNeeded =
LHS->
getType() != SelType;
4297 ((CmpLHS !=
LHS && CmpLHS !=
RHS) ||
4298 (CmpRHS !=
LHS && CmpRHS !=
RHS)))) {
4312 Value *NewCast =
Builder.CreateCast(CastOp, NewSI, SelType);
4324 if (TrueSI->getCondition()->getType() == CondVal->
getType()) {
4327 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4328 *TrueSI, CondVal,
true,
DL))
4335 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
4336 Value *
And =
Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
4344 if (FalseSI->getCondition()->getType() == CondVal->
getType()) {
4347 if (
Value *V = simplifyNestedSelectsUsingImpliedCond(
4348 *FalseSI, CondVal,
false,
DL))
4352 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
4353 Value *
Or =
Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
4367 BinaryOperator *TrueBO;
4370 if (TrueBOSI->getCondition() == CondVal) {
4377 if (TrueBOSI->getCondition() == CondVal) {
4386 BinaryOperator *FalseBO;
4389 if (FalseBOSI->getCondition() == CondVal) {
4396 if (FalseBOSI->getCondition() == CondVal) {
4409 SI.swapProfMetadata();
4430 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI,
Builder))
4434 if (
Value *V = foldSelectCmpXchg(SI))
4440 if (Instruction *Funnel = foldSelectFunnelShift(SI,
Builder))
4443 if (Instruction *Copysign = foldSelectToCopysign(SI,
Builder))
4446 if (Instruction *PN = foldSelectToPhi(SI,
DT,
Builder))
4452 if (
Value *V = foldRoundUpIntegerWithPow2Alignment(SI,
Builder))
4467 MaskedInst->setArgOperand(3, FalseVal );
4482 bool CanMergeSelectIntoLoad =
false;
4486 if (CanMergeSelectIntoLoad) {
4489 MaskedInst->setArgOperand(3, TrueVal );
4494 if (Instruction *
I = foldSelectOfSymmetricSelect(SI,
Builder))
4497 if (Instruction *
I = foldNestedSelects(SI,
Builder))
4507 if (Instruction *
I = foldBitCeil(SI,
Builder, *
this))
4521 auto FoldSelectWithAndOrCond = [&](
bool IsAnd,
Value *
A,
4522 Value *
B) -> Instruction * {
4524 SQ.getWithInstruction(&SI)))
4530 if (
Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *
this))
4532 IsAnd ? FalseVal : V);
4540 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4542 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
RHS,
LHS))
4545 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4547 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
RHS,
LHS))
4553 if (Instruction *
I = FoldSelectWithAndOrCond(
true,
LHS,
RHS))
4556 if (Instruction *
I = FoldSelectWithAndOrCond(
false,
LHS,
RHS))
4563 return BinaryOperator::CreateXor(CondVal, FalseVal);
4570 CondContext CC(CondVal);
4572 CC.AffectedValues.insert(V);
4574 SimplifyQuery Q =
SQ.getWithInstruction(&SI).getWithCondContext(CC);
4575 if (!CC.AffectedValues.empty()) {
4577 hasAffectedValue(TrueVal, CC.AffectedValues, 0)) {
4586 hasAffectedValue(FalseVal, CC.AffectedValues, 0)) {
4601 if (TrueVal == Trunc)
4603 if (FalseVal == Trunc)
4607 if (TrueVal == Trunc)
4610 if (FalseVal == Trunc)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const HexagonInstrInfo * TII
This file provides internal interfaces used to implement the InstCombine.
static Value * foldSelectICmpMinMax(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Try to fold a select to a min/max intrinsic.
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
static Instruction * foldSetClearBits(SelectInst &Sel, InstCombiner::BuilderTy &Builder)
Canonicalize a set or clear of a masked set of constant bits to select-of-constants form.
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond,...
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ?
static Value * foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
Try to match patterns with select and subtract as absolute difference.
static Instruction * foldSelectZeroOrFixedOp(SelectInst &SI, InstCombinerImpl &IC)
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI, InstCombinerImpl &IC)
Replace a select operand based on an equality comparison with the identity constant of a binop.
static Value * foldSelectICmpAnd(SelectInst &Sel, Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
static Value * foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); iff C1 is a mask and th...
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static Value * foldSelectICmpAndBinOp(Value *CondVal, Value *TrueVal, Value *FalseVal, Value *V, const APInt &AndMask, bool CreateAnd, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) into: IF C2 u>= C1 (BinOp Y,...
This file provides the interface for the instcombine pass implementation.
Machine Check Debug Module
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static const uint32_t IV[8]
bool bitwiseIsEqual(const APFloat &RHS) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isMinValue() const
Determine if this is the smallest unsigned value.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned logBase2() const
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
bool isMaxValue() const
Determine if this is the largest unsigned value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
An instruction that atomically checks whether a specified value is in a memory location,...
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
bool isNonStrictPredicate() const
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Tagged union holding either a T or a Error.
Utility class for floating point operations which can have information about relaxed accuracy require...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
bool noSignedZeros() const
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
void setNoInfs(bool B=true)
This class represents a freeze function that returns random concrete value if an operand is either a ...
Value * getPointerOperand()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Type * getSourceElementType() const
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static CmpPredicate getSwappedCmpPredicate(CmpPredicate Pred)
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Common base class shared among various IRBuilders.
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Instruction * foldSelectToCmp(SelectInst &SI)
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, const Instruction *CtxI) const
Check if fmul MulVal, +0.0 will yield +0.0 (or signed zero is ignorable).
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldSelectEqualityTest(SelectInst &SI)
Instruction * foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldVectorSelect(SelectInst &Sel)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
Instruction * foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
We have (select c, TI, FI), and we know that TI and FI have the same opcode.
bool replaceInInstruction(Value *V, Value *Old, Value *New, unsigned Depth=0)
Instruction * foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I)
Instruction * foldSelectIntoOp(SelectInst &SI, Value *, Value *)
Try to fold the select into one of the operands to allow further optimization.
Value * foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, Value *FalseVal)
Instruction * visitSelectInst(SelectInst &SI)
Instruction * foldSelectOfBools(SelectInst &SI)
Instruction * foldSelectExtConst(SelectInst &Sel)
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool isSameOperationAs(const Instruction *I, unsigned flags=0) const LLVM_READONLY
This function determines if the specified instruction executes the same operation as the current one.
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
LLVM_ABI void setHasNoNaNs(bool B)
Set or clear the no-nans flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getFalseValue() const
void swapValues()
Swap the true and false values of the select instruction.
const Value * getCondition() const
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool contains(ConstPtrType Ptr) const
A SetVector that performs no allocations if smaller than a certain size.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
match_combine_or< typename m_Intrinsic_Ty< T0, T1 >::Ty, typename m_Intrinsic_Ty< T1, T0 >::Ty > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedLoad Intrinsic.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apint_match m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedGather Intrinsic.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
ElementType
The element type of an SRV or UAV resource.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr unsigned MaxAnalysisRecursionDepth
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
FunctionAddr VTableAddr Count
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithInstruction(const Instruction *I) const