LLVM 22.0.0git
InstCombineShifts.cpp
Go to the documentation of this file.
1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitShl, visitLShr, and visitAShr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21#define DEBUG_TYPE "instcombine"
22
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
29
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
45}
46
47// Given pattern:
48// (x shiftopcode Q) shiftopcode K
49// we should rewrite it as
50// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
51//
52// This is valid for any shift, but they must be identical, and we must be
53// careful in case we have (zext(Q)+zext(K)) and look past extensions,
54// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
55//
56// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57// pattern has any 2 right-shifts that sum to 1 less than original bit width.
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
67
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
75 m_Instruction(Sh1)));
76
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
82
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
86
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
93
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
100
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
107
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
120
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
135 }
136
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
138
139 if (NewShAmt->getType() != X->getType()) {
140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt,
141 X->getType(), SQ.DL);
142 if (!NewShAmt)
143 return nullptr;
144 }
145
146 // All good, we can do this fold.
147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
148
149 // The flags can only be propagated if there wasn't a trunc.
150 if (!Trunc) {
151 // If the pattern did not involve trunc, and both of the original shifts
152 // had the same flag set, preserve the flag.
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
155 Sh1->hasNoUnsignedWrap());
156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
157 Sh1->hasNoSignedWrap());
158 } else {
159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
160 }
161 }
162
163 Instruction *Ret = NewShift;
164 if (Trunc) {
165 Builder.Insert(NewShift);
166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
167 }
168
169 return Ret;
170}
171
172// If we have some pattern that leaves only some low bits set, and then performs
173// left-shift of those bits, if none of the bits that are left after the final
174// shift are modified by the mask, we can omit the mask.
175//
176// There are many variants to this pattern:
177// a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
178// b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
179// c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
180// d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
181// e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
182// f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
183// All these patterns can be simplified to just:
184// x << ShiftShAmt
185// iff:
186// a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
187// c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
188static Instruction *
190 const SimplifyQuery &Q,
191 InstCombiner::BuilderTy &Builder) {
192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
193 "The input must be 'shl'!");
194
195 Value *Masked, *ShiftShAmt;
196 match(OuterShift,
197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
198
199 // *If* there is a truncation between an outer shift and a possibly-mask,
200 // then said truncation *must* be one-use, else we can't perform the fold.
201 Value *Trunc;
203 !Trunc->hasOneUse())
204 return nullptr;
205
206 Type *NarrowestTy = OuterShift->getType();
207 Type *WidestTy = Masked->getType();
208 bool HadTrunc = WidestTy != NarrowestTy;
209
210 // The mask must be computed in a type twice as wide to ensure
211 // that no bits are lost if the sum-of-shifts is wider than the base type.
212 Type *ExtendedTy = WidestTy->getExtendedType();
213
214 Value *MaskShAmt;
215
216 // ((1 << MaskShAmt) - 1)
217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
218 // (~(-1 << maskNbits))
219 auto MaskB = m_Not(m_Shl(m_AllOnes(), m_Value(MaskShAmt)));
220 // (-1 l>> MaskShAmt)
221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
222 // ((-1 << MaskShAmt) l>> MaskShAmt)
223 auto MaskD =
224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
225
226 Value *X;
227 Constant *NewMask;
228
229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
230 // Peek through an optional zext of the shift amount.
231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
232
233 // Verify that it would be safe to try to add those two shift amounts.
234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
235 MaskShAmt))
236 return nullptr;
237
238 // Can we simplify (MaskShAmt+ShiftShAmt) ?
239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
241 if (!SumOfShAmts)
242 return nullptr; // Did not simplify.
243 // In this pattern SumOfShAmts correlates with the number of low bits
244 // that shall remain in the root value (OuterShift).
245
246 // An extend of an undef value becomes zero because the high bits are never
247 // completely unknown. Replace the `undef` shift amounts with final
248 // shift bitwidth to ensure that the value remains undef when creating the
249 // subsequent shift op.
250 SumOfShAmts = Constant::replaceUndefsWith(
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
252 ExtendedTy->getScalarSizeInBits()));
253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand(
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL);
255 if (!ExtendedSumOfShAmts)
256 return nullptr;
257
258 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
260 Constant *ExtendedInvertedMask = ConstantFoldBinaryOpOperands(
261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.DL);
262 if (!ExtendedInvertedMask)
263 return nullptr;
264
265 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
266 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
267 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
268 m_Deferred(MaskShAmt)))) {
269 // Peek through an optional zext of the shift amount.
270 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
271
272 // Verify that it would be safe to try to add those two shift amounts.
273 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
274 MaskShAmt))
275 return nullptr;
276
277 // Can we simplify (ShiftShAmt-MaskShAmt) ?
278 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
279 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
280 if (!ShAmtsDiff)
281 return nullptr; // Did not simplify.
282 // In this pattern ShAmtsDiff correlates with the number of high bits that
283 // shall be unset in the root value (OuterShift).
284
285 // An extend of an undef value becomes zero because the high bits are never
286 // completely unknown. Replace the `undef` shift amounts with negated
287 // bitwidth of innermost shift to ensure that the value remains undef when
288 // creating the subsequent shift op.
289 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
290 ShAmtsDiff = Constant::replaceUndefsWith(
291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
292 -WidestTyBitWidth));
293 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand(
294 Instruction::ZExt,
295 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
296 WidestTyBitWidth,
297 /*isSigned=*/false),
298 ShAmtsDiff),
299 ExtendedTy, Q.DL);
300 if (!ExtendedNumHighBitsToClear)
301 return nullptr;
302
303 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
304 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
305 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes,
306 ExtendedNumHighBitsToClear, Q.DL);
307 if (!NewMask)
308 return nullptr;
309 } else
310 return nullptr; // Don't know anything about this pattern.
311
312 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
313
314 // Does this mask has any unset bits? If not then we can just not apply it.
315 bool NeedMask = !match(NewMask, m_AllOnes());
316
317 // If we need to apply a mask, there are several more restrictions we have.
318 if (NeedMask) {
319 // The old masking instruction must go away.
320 if (!Masked->hasOneUse())
321 return nullptr;
322 // The original "masking" instruction must not have been`ashr`.
323 if (match(Masked, m_AShr(m_Value(), m_Value())))
324 return nullptr;
325 }
326
327 // If we need to apply truncation, let's do it first, since we can.
328 // We have already ensured that the old truncation will go away.
329 if (HadTrunc)
330 X = Builder.CreateTrunc(X, NarrowestTy);
331
332 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
333 // We didn't change the Type of this outermost shift, so we can just do it.
334 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
335 OuterShift->getOperand(1));
336 if (!NeedMask)
337 return NewShift;
338
339 Builder.Insert(NewShift);
340 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
341}
342
343/// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/
344/// shl) that itself has a shift-by-constant operand with identical opcode, we
345/// may be able to convert that into 2 independent shifts followed by the logic
346/// op. This eliminates a use of an intermediate value (reduces dependency
347/// chain).
349 InstCombiner::BuilderTy &Builder) {
350 assert(I.isShift() && "Expected a shift as input");
351 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0));
352 if (!BinInst ||
353 (!BinInst->isBitwiseLogicOp() &&
354 BinInst->getOpcode() != Instruction::Add &&
355 BinInst->getOpcode() != Instruction::Sub) ||
356 !BinInst->hasOneUse())
357 return nullptr;
358
359 Constant *C0, *C1;
360 if (!match(I.getOperand(1), m_Constant(C1)))
361 return nullptr;
362
363 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
364 // Transform for add/sub only works with shl.
365 if ((BinInst->getOpcode() == Instruction::Add ||
366 BinInst->getOpcode() == Instruction::Sub) &&
367 ShiftOpcode != Instruction::Shl)
368 return nullptr;
369
370 Type *Ty = I.getType();
371
372 // Find a matching shift by constant. The fold is not valid if the sum
373 // of the shift values equals or exceeds bitwidth.
374 Value *X, *Y;
375 auto matchFirstShift = [&](Value *V, Value *W) {
376 unsigned Size = Ty->getScalarSizeInBits();
377 APInt Threshold(Size, Size);
378 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) &&
379 (V->hasOneUse() || match(W, m_ImmConstant())) &&
382 };
383
384 // Logic ops and Add are commutative, so check each operand for a match. Sub
385 // is not so we cannot reoder if we match operand(1) and need to keep the
386 // operands in their original positions.
387 bool FirstShiftIsOp1 = false;
388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
389 Y = BinInst->getOperand(1);
390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
391 Y = BinInst->getOperand(0);
392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
393 } else
394 return nullptr;
395
396 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1)
397 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
398 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
399 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1);
400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
402 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2);
403}
404
407 return Phi;
408
409 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
410 assert(Op0->getType() == Op1->getType());
411 Type *Ty = I.getType();
412
413 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
414 Value *Y;
415 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
416 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
417 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
418 }
419
420 // See if we can fold away this shift.
422 return &I;
423
424 // Try to fold constant and into select arguments.
425 if (isa<Constant>(Op0))
426 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
427 if (Instruction *R = FoldOpIntoSelect(I, SI))
428 return R;
429
430 Constant *CUI;
431 if (match(Op1, m_ImmConstant(CUI)))
432 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
433 return Res;
434
435 if (auto *NewShift = cast_or_null<Instruction>(
437 return NewShift;
438
439 // Pre-shift a constant shifted by a variable amount with constant offset:
440 // C shift (A add nuw C1) --> (C shift C1) shift A
441 Value *A;
442 Constant *C, *C1;
443 if (match(Op0, m_Constant(C)) &&
444 match(Op1, m_NUWAddLike(m_Value(A), m_Constant(C1)))) {
445 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
446 BinaryOperator *NewShiftOp = BinaryOperator::Create(I.getOpcode(), NewC, A);
447 if (I.getOpcode() == Instruction::Shl) {
448 NewShiftOp->setHasNoSignedWrap(I.hasNoSignedWrap());
449 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
450 } else {
451 NewShiftOp->setIsExact(I.isExact());
452 }
453 return NewShiftOp;
454 }
455
456 unsigned BitWidth = Ty->getScalarSizeInBits();
457
458 const APInt *AC, *AddC;
459 // Try to pre-shift a constant shifted by a variable amount added with a
460 // negative number:
461 // C << (X - AddC) --> (C >> AddC) << X
462 // and
463 // C >> (X - AddC) --> (C << AddC) >> X
464 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
465 AddC->isNegative() && (-*AddC).ult(BitWidth)) {
466 assert(!AC->isZero() && "Expected simplify of shifted zero");
467 unsigned PosOffset = (-*AddC).getZExtValue();
468
469 auto isSuitableForPreShift = [PosOffset, &I, AC]() {
470 switch (I.getOpcode()) {
471 default:
472 return false;
473 case Instruction::Shl:
474 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
475 AC->eq(AC->lshr(PosOffset).shl(PosOffset));
476 case Instruction::LShr:
477 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
478 case Instruction::AShr:
479 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
480 }
481 };
482 if (isSuitableForPreShift()) {
483 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
484 ? AC->lshr(PosOffset)
485 : AC->shl(PosOffset));
486 BinaryOperator *NewShiftOp =
487 BinaryOperator::Create(I.getOpcode(), NewC, A);
488 if (I.getOpcode() == Instruction::Shl) {
489 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
490 } else {
491 NewShiftOp->setIsExact();
492 }
493 return NewShiftOp;
494 }
495 }
496
497 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
498 // Because shifts by negative values (which could occur if A were negative)
499 // are undefined.
500 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
501 match(C, m_Power2())) {
502 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
503 // demand the sign bit (and many others) here??
504 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
505 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
506 return replaceOperand(I, 1, Rem);
507 }
508
510 return Logic;
511
512 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1))))
513 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1));
514
515 Instruction *CmpIntr;
516 if ((I.getOpcode() == Instruction::LShr ||
517 I.getOpcode() == Instruction::AShr) &&
518 match(Op0, m_OneUse(m_Instruction(CmpIntr))) &&
519 isa<CmpIntrinsic>(CmpIntr) &&
520 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) {
521 Value *Cmp =
522 Builder.CreateICmp(cast<CmpIntrinsic>(CmpIntr)->getLTPredicate(),
523 CmpIntr->getOperand(0), CmpIntr->getOperand(1));
524 return CastInst::Create(I.getOpcode() == Instruction::LShr
525 ? Instruction::ZExt
526 : Instruction::SExt,
527 Cmp, Ty);
528 }
529
530 return nullptr;
531}
532
533/// Return true if we can simplify two logical (either left or right) shifts
534/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
535static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
536 Instruction *InnerShift,
537 InstCombinerImpl &IC, Instruction *CxtI) {
538 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
539
540 // We need constant scalar or constant splat shifts.
541 const APInt *InnerShiftConst;
542 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
543 return false;
544
545 // Two logical shifts in the same direction:
546 // shl (shl X, C1), C2 --> shl X, C1 + C2
547 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
548 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
549 if (IsInnerShl == IsOuterShl)
550 return true;
551
552 // Equal shift amounts in opposite directions become bitwise 'and':
553 // lshr (shl X, C), C --> and X, C'
554 // shl (lshr X, C), C --> and X, C'
555 if (*InnerShiftConst == OuterShAmt)
556 return true;
557
558 // If the 2nd shift is bigger than the 1st, we can fold:
559 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
560 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
561 // but it isn't profitable unless we know the and'd out bits are already zero.
562 // Also, check that the inner shift is valid (less than the type width) or
563 // we'll crash trying to produce the bit mask for the 'and'.
564 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
565 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
566 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
567 unsigned MaskShift =
568 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
569 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
570 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, CxtI))
571 return true;
572 }
573
574 return false;
575}
576
577/// See if we can compute the specified value, but shifted logically to the left
578/// or right by some number of bits. This should return true if the expression
579/// can be computed for the same cost as the current expression tree. This is
580/// used to eliminate extraneous shifting from things like:
581/// %C = shl i128 %A, 64
582/// %D = shl i128 %B, 96
583/// %E = or i128 %C, %D
584/// %F = lshr i128 %E, 64
585/// where the client will ask if E can be computed shifted right by 64-bits. If
586/// this succeeds, getShiftedValue() will be called to produce the value.
587static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
588 InstCombinerImpl &IC, Instruction *CxtI) {
589 // We can always evaluate immediate constants.
590 if (match(V, m_ImmConstant()))
591 return true;
592
593 Instruction *I = dyn_cast<Instruction>(V);
594 if (!I) return false;
595
596 // We can't mutate something that has multiple uses: doing so would
597 // require duplicating the instruction in general, which isn't profitable.
598 if (!I->hasOneUse()) return false;
599
600 switch (I->getOpcode()) {
601 default: return false;
602 case Instruction::And:
603 case Instruction::Or:
604 case Instruction::Xor:
605 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
606 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
607 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
608
609 case Instruction::Shl:
610 case Instruction::LShr:
611 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
612
613 case Instruction::Select: {
614 SelectInst *SI = cast<SelectInst>(I);
615 Value *TrueVal = SI->getTrueValue();
616 Value *FalseVal = SI->getFalseValue();
617 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
618 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
619 }
620 case Instruction::PHI: {
621 // We can change a phi if we can change all operands. Note that we never
622 // get into trouble with cyclic PHIs here because we only consider
623 // instructions with a single use.
624 PHINode *PN = cast<PHINode>(I);
625 for (Value *IncValue : PN->incoming_values())
626 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
627 return false;
628 return true;
629 }
630 case Instruction::Mul: {
631 const APInt *MulConst;
632 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
633 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
634 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits;
635 }
636 }
637}
638
639/// Fold OuterShift (InnerShift X, C1), C2.
640/// See canEvaluateShiftedShift() for the constraints on these instructions.
641static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
642 bool IsOuterShl,
643 InstCombiner::BuilderTy &Builder) {
644 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
645 Type *ShType = InnerShift->getType();
646 unsigned TypeWidth = ShType->getScalarSizeInBits();
647
648 // We only accept shifts-by-a-constant in canEvaluateShifted().
649 const APInt *C1;
650 match(InnerShift->getOperand(1), m_APInt(C1));
651 unsigned InnerShAmt = C1->getZExtValue();
652
653 // Change the shift amount and clear the appropriate IR flags.
654 auto NewInnerShift = [&](unsigned ShAmt) {
655 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
656 if (IsInnerShl) {
657 InnerShift->setHasNoUnsignedWrap(false);
658 InnerShift->setHasNoSignedWrap(false);
659 } else {
660 InnerShift->setIsExact(false);
661 }
662 return InnerShift;
663 };
664
665 // Two logical shifts in the same direction:
666 // shl (shl X, C1), C2 --> shl X, C1 + C2
667 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
668 if (IsInnerShl == IsOuterShl) {
669 // If this is an oversized composite shift, then unsigned shifts get 0.
670 if (InnerShAmt + OuterShAmt >= TypeWidth)
671 return Constant::getNullValue(ShType);
672
673 return NewInnerShift(InnerShAmt + OuterShAmt);
674 }
675
676 // Equal shift amounts in opposite directions become bitwise 'and':
677 // lshr (shl X, C), C --> and X, C'
678 // shl (lshr X, C), C --> and X, C'
679 if (InnerShAmt == OuterShAmt) {
680 APInt Mask = IsInnerShl
681 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
682 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
683 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
684 ConstantInt::get(ShType, Mask));
685 if (auto *AndI = dyn_cast<Instruction>(And)) {
686 AndI->moveBefore(InnerShift->getIterator());
687 AndI->takeName(InnerShift);
688 }
689 return And;
690 }
691
692 assert(InnerShAmt > OuterShAmt &&
693 "Unexpected opposite direction logical shift pair");
694
695 // In general, we would need an 'and' for this transform, but
696 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
697 // lshr (shl X, C1), C2 --> shl X, C1 - C2
698 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
699 return NewInnerShift(InnerShAmt - OuterShAmt);
700}
701
702/// When canEvaluateShifted() returns true for an expression, this function
703/// inserts the new computation that produces the shifted value.
704static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
705 InstCombinerImpl &IC, const DataLayout &DL) {
706 // We can always evaluate constants shifted.
707 if (Constant *C = dyn_cast<Constant>(V)) {
708 if (isLeftShift)
709 return IC.Builder.CreateShl(C, NumBits);
710 else
711 return IC.Builder.CreateLShr(C, NumBits);
712 }
713
714 Instruction *I = cast<Instruction>(V);
715 IC.addToWorklist(I);
716
717 switch (I->getOpcode()) {
718 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
719 case Instruction::And:
720 case Instruction::Or:
721 case Instruction::Xor:
722 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
723 I->setOperand(
724 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
725 I->setOperand(
726 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
727 return I;
728
729 case Instruction::Shl:
730 case Instruction::LShr:
731 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
732 IC.Builder);
733
734 case Instruction::Select:
735 I->setOperand(
736 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
737 I->setOperand(
738 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
739 return I;
740 case Instruction::PHI: {
741 // We can change a phi if we can change all operands. Note that we never
742 // get into trouble with cyclic PHIs here because we only consider
743 // instructions with a single use.
744 PHINode *PN = cast<PHINode>(I);
745 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
747 isLeftShift, IC, DL));
748 return PN;
749 }
750 case Instruction::Mul: {
751 assert(!isLeftShift && "Unexpected shift direction!");
752 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
753 IC.InsertNewInstWith(Neg, I->getIterator());
754 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
755 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
756 auto *And = BinaryOperator::CreateAnd(Neg,
757 ConstantInt::get(I->getType(), Mask));
758 And->takeName(I);
759 return IC.InsertNewInstWith(And, I->getIterator());
760 }
761 }
762}
763
764// If this is a bitwise operator or add with a constant RHS we might be able
765// to pull it through a shift.
767 BinaryOperator *BO) {
768 switch (BO->getOpcode()) {
769 default:
770 return false; // Do not perform transform!
771 case Instruction::Add:
772 return Shift.getOpcode() == Instruction::Shl;
773 case Instruction::Or:
774 case Instruction::And:
775 return true;
776 case Instruction::Xor:
777 // Do not change a 'not' of logical shift because that would create a normal
778 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
779 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
780 }
781}
782
784 BinaryOperator &I) {
785 // (C2 << X) << C1 --> (C2 << C1) << X
786 // (C2 >> X) >> C1 --> (C2 >> C1) >> X
787 Constant *C2;
788 Value *X;
789 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
790 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X)))) {
792 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
793 BinaryOperator *BO0 = cast<BinaryOperator>(Op0);
794 if (IsLeftShift) {
795 R->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
796 BO0->hasNoUnsignedWrap());
797 R->setHasNoSignedWrap(I.hasNoSignedWrap() && BO0->hasNoSignedWrap());
798 } else
799 R->setIsExact(I.isExact() && BO0->isExact());
800 return R;
801 }
802
803 Type *Ty = I.getType();
804 unsigned TypeBits = Ty->getScalarSizeInBits();
805
806 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
807 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
808 const APInt *DivC;
809 if (!IsLeftShift && match(C1, m_SpecificIntAllowPoison(TypeBits - 1)) &&
810 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
811 !DivC->isMinSignedValue()) {
812 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
815 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
816 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
817 : Instruction::ZExt;
818 return CastInst::Create(ExtOpcode, Cmp, Ty);
819 }
820
821 const APInt *Op1C;
822 if (!match(C1, m_APInt(Op1C)))
823 return nullptr;
824
825 assert(!Op1C->uge(TypeBits) &&
826 "Shift over the type width should have been removed already");
827
828 // See if we can propagate this shift into the input, this covers the trivial
829 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
830 if (I.getOpcode() != Instruction::AShr &&
831 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
833 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
834 " to eliminate shift:\n IN: "
835 << *Op0 << "\n SH: " << I << "\n");
836
837 return replaceInstUsesWith(
838 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
839 }
840
841 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
842 return FoldedShift;
843
844 if (!Op0->hasOneUse())
845 return nullptr;
846
847 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
848 // If the operand is a bitwise operator with a constant RHS, and the
849 // shift is the only use, we can pull it out of the shift.
850 const APInt *Op0C;
851 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
852 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
853 Value *NewRHS =
854 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
855
856 Value *NewShift =
857 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
858 NewShift->takeName(Op0BO);
859
860 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
861 }
862 }
863 }
864
865 // If we have a select that conditionally executes some binary operator,
866 // see if we can pull it the select and operator through the shift.
867 //
868 // For example, turning:
869 // shl (select C, (add X, C1), X), C2
870 // Into:
871 // Y = shl X, C2
872 // select C, (add Y, C1 << C2), Y
873 Value *Cond;
874 BinaryOperator *TBO;
875 Value *FalseVal;
876 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
877 m_Value(FalseVal)))) {
878 const APInt *C;
879 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
880 match(TBO->getOperand(1), m_APInt(C)) &&
882 Value *NewRHS =
883 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
884
885 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
886 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
887 return SelectInst::Create(Cond, NewOp, NewShift);
888 }
889 }
890
891 BinaryOperator *FBO;
892 Value *TrueVal;
893 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
894 m_OneUse(m_BinOp(FBO))))) {
895 const APInt *C;
896 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
897 match(FBO->getOperand(1), m_APInt(C)) &&
899 Value *NewRHS =
900 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
901
902 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
903 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
904 return SelectInst::Create(Cond, NewShift, NewOp);
905 }
906 }
907
908 return nullptr;
909}
910
911// Tries to perform
912// (lshr (add (zext X), (zext Y)), K)
913// -> (icmp ult (add X, Y), X)
914// where
915// - The add's operands are zexts from a K-bits integer to a bigger type.
916// - The add is only used by the shr, or by iK (or narrower) truncates.
917// - The lshr type has more than 2 bits (other types are boolean math).
918// - K > 1
919// note that
920// - The resulting add cannot have nuw/nsw, else on overflow we get a
921// poison value and the transform isn't legal anymore.
922Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) {
923 assert(I.getOpcode() == Instruction::LShr);
924
925 Value *Add = I.getOperand(0);
926 Value *ShiftAmt = I.getOperand(1);
927 Type *Ty = I.getType();
928
929 if (Ty->getScalarSizeInBits() < 3)
930 return nullptr;
931
932 const APInt *ShAmtAPInt = nullptr;
933 Value *X = nullptr, *Y = nullptr;
934 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) ||
935 !match(Add,
937 return nullptr;
938
939 const unsigned ShAmt = ShAmtAPInt->getZExtValue();
940 if (ShAmt == 1)
941 return nullptr;
942
943 // X/Y are zexts from `ShAmt`-sized ints.
944 if (X->getType()->getScalarSizeInBits() != ShAmt ||
945 Y->getType()->getScalarSizeInBits() != ShAmt)
946 return nullptr;
947
948 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates.
949 if (!Add->hasOneUse()) {
950 for (User *U : Add->users()) {
951 if (U == &I)
952 continue;
953
954 TruncInst *Trunc = dyn_cast<TruncInst>(U);
955 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt)
956 return nullptr;
957 }
958 }
959
960 // Insert at Add so that the newly created `NarrowAdd` will dominate it's
961 // users (i.e. `Add`'s users).
962 Instruction *AddInst = cast<Instruction>(Add);
963 Builder.SetInsertPoint(AddInst);
964
965 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed");
966 Value *Overflow =
967 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow");
968
969 // Replace the uses of the original add with a zext of the
970 // NarrowAdd's result. Note that all users at this stage are known to
971 // be ShAmt-sized truncs, or the lshr itself.
972 if (!Add->hasOneUse()) {
973 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty));
974 eraseInstFromFunction(*AddInst);
975 }
976
977 // Replace the LShr with a zext of the overflow check.
978 return new ZExtInst(Overflow, Ty);
979}
980
981// Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits.
983 assert(I.isShift() && "Expected a shift as input");
984 // We already have all the flags.
985 if (I.getOpcode() == Instruction::Shl) {
986 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap())
987 return false;
988 } else {
989 if (I.isExact())
990 return false;
991
992 // shr (shl X, Y), Y
993 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) {
994 I.setIsExact();
995 return true;
996 }
997 // Infer 'exact' flag if shift amount is cttz(x) on the same operand.
998 if (match(I.getOperand(1), m_Intrinsic<Intrinsic::cttz>(
999 m_Specific(I.getOperand(0)), m_Value()))) {
1000 I.setIsExact();
1001 return true;
1002 }
1003 }
1004
1005 // Compute what we know about shift count.
1006 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), Q);
1007 unsigned BitWidth = KnownCnt.getBitWidth();
1008 // Since shift produces a poison value if RHS is equal to or larger than the
1009 // bit width, we can safely assume that RHS is less than the bit width.
1010 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1);
1011
1012 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), Q);
1013 bool Changed = false;
1014
1015 if (I.getOpcode() == Instruction::Shl) {
1016 // If we have as many leading zeros than maximum shift cnt we have nuw.
1017 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) {
1018 I.setHasNoUnsignedWrap();
1019 Changed = true;
1020 }
1021 // If we have more sign bits than maximum shift cnt we have nsw.
1022 if (!I.hasNoSignedWrap()) {
1023 if (MaxCnt < KnownAmt.countMinSignBits() ||
1024 MaxCnt <
1025 ComputeNumSignBits(I.getOperand(0), Q.DL, Q.AC, Q.CxtI, Q.DT)) {
1026 I.setHasNoSignedWrap();
1027 Changed = true;
1028 }
1029 }
1030 return Changed;
1031 }
1032
1033 // If we have at least as many trailing zeros as maximum count then we have
1034 // exact.
1035 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros();
1036 I.setIsExact(Changed);
1037
1038 return Changed;
1039}
1040
1043
1044 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
1045 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
1046 return replaceInstUsesWith(I, V);
1047
1049 return X;
1050
1052 return V;
1053
1055 return V;
1056
1057 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1058 Type *Ty = I.getType();
1059 unsigned BitWidth = Ty->getScalarSizeInBits();
1060
1061 const APInt *C;
1062 if (match(Op1, m_APInt(C))) {
1063 unsigned ShAmtC = C->getZExtValue();
1064
1065 // shl (zext X), C --> zext (shl X, C)
1066 // This is only valid if X would have zeros shifted out.
1067 Value *X;
1068 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
1069 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1070 if (ShAmtC < SrcWidth &&
1071 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), &I))
1072 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
1073 }
1074
1075 // (X >> C) << C --> X & (-1 << C)
1076 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
1078 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1079 }
1080
1081 const APInt *C1;
1082 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
1083 C1->ult(BitWidth)) {
1084 unsigned ShrAmt = C1->getZExtValue();
1085 if (ShrAmt < ShAmtC) {
1086 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
1087 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1088 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1089 NewShl->setHasNoUnsignedWrap(
1090 I.hasNoUnsignedWrap() ||
1091 (ShrAmt &&
1092 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1093 I.hasNoSignedWrap()));
1094 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1095 return NewShl;
1096 }
1097 if (ShrAmt > ShAmtC) {
1098 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
1099 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1100 auto *NewShr = BinaryOperator::Create(
1101 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
1102 NewShr->setIsExact(true);
1103 return NewShr;
1104 }
1105 }
1106
1107 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
1108 C1->ult(BitWidth)) {
1109 unsigned ShrAmt = C1->getZExtValue();
1110 if (ShrAmt < ShAmtC) {
1111 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
1112 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1113 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1114 NewShl->setHasNoUnsignedWrap(
1115 I.hasNoUnsignedWrap() ||
1116 (ShrAmt &&
1117 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1118 I.hasNoSignedWrap()));
1119 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1120 Builder.Insert(NewShl);
1122 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1123 }
1124 if (ShrAmt > ShAmtC) {
1125 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
1126 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1127 auto *OldShr = cast<BinaryOperator>(Op0);
1128 auto *NewShr =
1129 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
1130 NewShr->setIsExact(OldShr->isExact());
1131 Builder.Insert(NewShr);
1133 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1134 }
1135 }
1136
1137 // Similar to above, but look through an intermediate trunc instruction.
1138 BinaryOperator *Shr;
1139 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
1140 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
1141 // The larger shift direction survives through the transform.
1142 unsigned ShrAmtC = C1->getZExtValue();
1143 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1144 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
1145 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
1146
1147 // If C1 > C:
1148 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
1149 // If C > C1:
1150 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
1151 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
1152 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
1154 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1155 }
1156
1157 // If we have an opposite shift by the same amount, we may be able to
1158 // reorder binops and shifts to eliminate math/logic.
1159 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1160 switch (BinOpcode) {
1161 default:
1162 return false;
1163 case Instruction::Add:
1164 case Instruction::And:
1165 case Instruction::Or:
1166 case Instruction::Xor:
1167 case Instruction::Sub:
1168 // NOTE: Sub is not commutable and the tranforms below may not be valid
1169 // when the shift-right is operand 1 (RHS) of the sub.
1170 return true;
1171 }
1172 };
1173 BinaryOperator *Op0BO;
1174 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
1175 isSuitableBinOpcode(Op0BO->getOpcode())) {
1176 // Commute so shift-right is on LHS of the binop.
1177 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
1178 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
1179 Value *Shr = Op0BO->getOperand(0);
1180 Value *Y = Op0BO->getOperand(1);
1181 Value *X;
1182 const APInt *CC;
1183 if (Op0BO->isCommutative() && Y->hasOneUse() &&
1184 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
1186 m_APInt(CC)))))
1187 std::swap(Shr, Y);
1188
1189 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
1190 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1191 // Y << C
1192 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1193 // (X bop (Y << C))
1194 Value *B =
1195 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
1196 unsigned Op1Val = C->getLimitedValue(BitWidth);
1197 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
1198 Constant *Mask = ConstantInt::get(Ty, Bits);
1199 return BinaryOperator::CreateAnd(B, Mask);
1200 }
1201
1202 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
1203 if (match(Shr,
1205 m_APInt(CC))))) {
1206 // Y << C
1207 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1208 // X & (CC << C)
1209 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
1210 X->getName() + ".mask");
1211 auto *NewOp = BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1212 if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO);
1213 Disjoint && Disjoint->isDisjoint())
1214 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(true);
1215 return NewOp;
1216 }
1217 }
1218
1219 // (C1 - X) << C --> (C1 << C) - (X << C)
1220 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1221 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1222 Value *NewShift = Builder.CreateShl(X, Op1);
1223 return BinaryOperator::CreateSub(NewLHS, NewShift);
1224 }
1225 }
1226
1227 if (setShiftFlags(I, Q))
1228 return &I;
1229
1230 // Transform (x >> y) << y to x & (-1 << y)
1231 // Valid for any type of right-shift.
1232 Value *X;
1233 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1235 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1236 return BinaryOperator::CreateAnd(Mask, X);
1237 }
1238
1239 // Transform (-1 >> y) << y to -1 << y
1240 if (match(Op0, m_LShr(m_AllOnes(), m_Specific(Op1)))) {
1242 return BinaryOperator::CreateShl(AllOnes, Op1);
1243 }
1244
1245 Constant *C1;
1246 if (match(Op1, m_ImmConstant(C1))) {
1247 Constant *C2;
1248 Value *X;
1249 // (X * C2) << C1 --> X * (C2 << C1)
1250 if (match(Op0, m_Mul(m_Value(X), m_ImmConstant(C2))))
1251 return BinaryOperator::CreateMul(X, Builder.CreateShl(C2, C1));
1252
1253 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1254 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1255 auto *NewC = Builder.CreateShl(ConstantInt::get(Ty, 1), C1);
1257 }
1258 }
1259
1260 if (match(Op0, m_One())) {
1261 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1262 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1263 return BinaryOperator::CreateLShr(
1264 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1265
1266 // Canonicalize "extract lowest set bit" using cttz to and-with-negate:
1267 // 1 << (cttz X) --> -X & X
1268 if (match(Op1,
1269 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) {
1270 Value *NegX = Builder.CreateNeg(X, "neg");
1271 return BinaryOperator::CreateAnd(NegX, X);
1272 }
1273 }
1274
1275 return nullptr;
1276}
1277
1279 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1281 return replaceInstUsesWith(I, V);
1282
1284 return X;
1285
1287 return R;
1288
1289 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1290 Type *Ty = I.getType();
1291 Value *X;
1292 const APInt *C;
1293 unsigned BitWidth = Ty->getScalarSizeInBits();
1294
1295 // (iN (~X) u>> (N - 1)) --> zext (X > -1)
1296 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
1298 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
1299
1300 // ((X << nuw Z) sub nuw Y) >>u exact Z --> X sub nuw (Y >>u exact Z)
1301 Value *Y;
1302 if (I.isExact() &&
1304 m_Value(Y))))) {
1305 Value *NewLshr = Builder.CreateLShr(Y, Op1, "", /*isExact=*/true);
1306 auto *NewSub = BinaryOperator::CreateNUWSub(X, NewLshr);
1307 NewSub->setHasNoSignedWrap(
1308 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1309 return NewSub;
1310 }
1311
1312 // Fold (X + Y) / 2 --> (X & Y) iff (X u<= 1) && (Y u<= 1)
1313 if (match(Op0, m_Add(m_Value(X), m_Value(Y))) && match(Op1, m_One()) &&
1314 computeKnownBits(X, &I).countMaxActiveBits() <= 1 &&
1315 computeKnownBits(Y, &I).countMaxActiveBits() <= 1)
1316 return BinaryOperator::CreateAnd(X, Y);
1317
1318 // (sub nuw X, (Y << nuw Z)) >>u exact Z --> (X >>u exact Z) sub nuw Y
1319 if (I.isExact() &&
1321 m_NUWShl(m_Value(Y), m_Specific(Op1)))))) {
1322 Value *NewLshr = Builder.CreateLShr(X, Op1, "", /*isExact=*/true);
1323 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr, Y);
1324 NewSub->setHasNoSignedWrap(
1325 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1326 return NewSub;
1327 }
1328
1329 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1330 switch (BinOpcode) {
1331 default:
1332 return false;
1333 case Instruction::Add:
1334 case Instruction::And:
1335 case Instruction::Or:
1336 case Instruction::Xor:
1337 // Sub is handled separately.
1338 return true;
1339 }
1340 };
1341
1342 // If both the binop and the shift are nuw, then:
1343 // ((X << nuw Z) binop nuw Y) >>u Z --> X binop nuw (Y >>u Z)
1345 m_Value(Y))))) {
1346 BinaryOperator *Op0OB = cast<BinaryOperator>(Op0);
1347 if (isSuitableBinOpcode(Op0OB->getOpcode())) {
1348 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0);
1349 !OBO || OBO->hasNoUnsignedWrap()) {
1350 Value *NewLshr = Builder.CreateLShr(
1351 Y, Op1, "", I.isExact() && Op0OB->getOpcode() != Instruction::And);
1352 auto *NewBinOp = BinaryOperator::Create(Op0OB->getOpcode(), NewLshr, X);
1353 if (OBO) {
1354 NewBinOp->setHasNoUnsignedWrap(true);
1355 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1356 } else if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) {
1357 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint(
1358 Disjoint->isDisjoint());
1359 }
1360 return NewBinOp;
1361 }
1362 }
1363 }
1364
1365 if (match(Op1, m_APInt(C))) {
1366 unsigned ShAmtC = C->getZExtValue();
1367 auto *II = dyn_cast<IntrinsicInst>(Op0);
1368 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1369 (II->getIntrinsicID() == Intrinsic::ctlz ||
1370 II->getIntrinsicID() == Intrinsic::cttz ||
1371 II->getIntrinsicID() == Intrinsic::ctpop)) {
1372 // ctlz.i32(x)>>5 --> zext(x == 0)
1373 // cttz.i32(x)>>5 --> zext(x == 0)
1374 // ctpop.i32(x)>>5 --> zext(x == -1)
1375 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1376 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1377 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1378 return new ZExtInst(Cmp, Ty);
1379 }
1380
1381 const APInt *C1;
1382 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1383 if (C1->ult(ShAmtC)) {
1384 unsigned ShlAmtC = C1->getZExtValue();
1385 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1386 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1387 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1388 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1389 NewLShr->setIsExact(I.isExact());
1390 return NewLShr;
1391 }
1392 if (Op0->hasOneUse()) {
1393 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1394 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1396 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1397 }
1398 } else if (C1->ugt(ShAmtC)) {
1399 unsigned ShlAmtC = C1->getZExtValue();
1400 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1401 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1402 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C)
1403 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1404 NewShl->setHasNoUnsignedWrap(true);
1405 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1406 return NewShl;
1407 }
1408 if (Op0->hasOneUse()) {
1409 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1410 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1412 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1413 }
1414 } else {
1415 assert(*C1 == ShAmtC);
1416 // (X << C) >>u C --> X & (-1 >>u C)
1418 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1419 }
1420 }
1421
1422 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1423 // TODO: Consolidate with the more general transform that starts from shl
1424 // (the shifts are in the opposite order).
1425 if (match(Op0,
1427 m_Value(Y))))) {
1428 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1429 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1430 unsigned Op1Val = C->getLimitedValue(BitWidth);
1431 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1432 Constant *Mask = ConstantInt::get(Ty, Bits);
1433 return BinaryOperator::CreateAnd(NewAdd, Mask);
1434 }
1435
1436 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1437 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1438 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1439 "Big shift not simplified to zero?");
1440 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1441 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1442 return new ZExtInst(NewLShr, Ty);
1443 }
1444
1445 if (match(Op0, m_SExt(m_Value(X)))) {
1446 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1447 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1448 if (SrcTyBitWidth == 1) {
1449 auto *NewC = ConstantInt::get(
1450 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1452 }
1453
1454 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1455 Op0->hasOneUse()) {
1456 // Are we moving the sign bit to the low bit and widening with high
1457 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1458 if (ShAmtC == BitWidth - 1) {
1459 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1460 return new ZExtInst(NewLShr, Ty);
1461 }
1462
1463 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1464 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1465 // The new shift amount can't be more than the narrow source type.
1466 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1467 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1468 return new ZExtInst(AShr, Ty);
1469 }
1470 }
1471 }
1472
1473 if (ShAmtC == BitWidth - 1) {
1474 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1475 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1476 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1477
1478 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1479 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1480 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1481
1482 // Check if a number is negative and odd:
1483 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1484 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1485 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1486 return BinaryOperator::CreateAnd(Signbit, X);
1487 }
1488
1489 // lshr iN (X - 1) & ~X, N-1 --> zext (X == 0)
1491 m_Not(m_Deferred(X))))))
1492 return new ZExtInst(Builder.CreateIsNull(X), Ty);
1493 }
1494
1495 Instruction *TruncSrc;
1496 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1497 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1498 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1499 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1500
1501 // If the combined shift fits in the source width:
1502 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1503 //
1504 // If the first shift covers the number of bits truncated, then the
1505 // mask instruction is eliminated (and so the use check is relaxed).
1506 if (AmtSum < SrcWidth &&
1507 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1508 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1509 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1510
1511 // If the first shift does not cover the number of bits truncated, then
1512 // we require a mask to get rid of high bits in the result.
1513 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1514 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1515 }
1516 }
1517
1518 const APInt *MulC;
1519 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1520 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1521 MulC->logBase2() == ShAmtC) {
1522 // Look for a "splat" mul pattern - it replicates bits across each half
1523 // of a value, so a right shift simplifies back to just X:
1524 // lshr i[2N] (mul nuw X, (2^N)+1), N --> X
1525 if (ShAmtC * 2 == BitWidth)
1526 return replaceInstUsesWith(I, X);
1527
1528 // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
1529 if (Op0->hasOneUse()) {
1530 auto *NewAdd = BinaryOperator::CreateNUWAdd(
1531 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
1532 I.isExact()));
1533 NewAdd->setHasNoSignedWrap(
1534 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1535 return NewAdd;
1536 }
1537 }
1538
1539 // The one-use check is not strictly necessary, but codegen may not be
1540 // able to invert the transform and perf may suffer with an extra mul
1541 // instruction.
1542 if (Op0->hasOneUse()) {
1543 APInt NewMulC = MulC->lshr(ShAmtC);
1544 // if c is divisible by (1 << ShAmtC):
1545 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
1546 if (MulC->eq(NewMulC.shl(ShAmtC))) {
1547 auto *NewMul =
1548 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1549 assert(ShAmtC != 0 &&
1550 "lshr X, 0 should be handled by simplifyLShrInst.");
1551 NewMul->setHasNoSignedWrap(true);
1552 return NewMul;
1553 }
1554 }
1555 }
1556
1557 // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
1558 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
1559 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1560 MulC->logBase2() == ShAmtC) {
1561 return BinaryOperator::CreateNSWAdd(
1562 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
1563 I.isExact()));
1564 }
1565 }
1566
1567 // Try to narrow bswap.
1568 // In the case where the shift amount equals the bitwidth difference, the
1569 // shift is eliminated.
1570 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1571 m_OneUse(m_ZExt(m_Value(X))))))) {
1572 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1573 unsigned WidthDiff = BitWidth - SrcWidth;
1574 if (SrcWidth % 16 == 0) {
1575 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1576 if (ShAmtC >= WidthDiff) {
1577 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1578 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1579 return new ZExtInst(NewShift, Ty);
1580 } else {
1581 // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1582 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1583 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1584 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1585 }
1586 }
1587 }
1588
1589 // Reduce add-carry of bools to logic:
1590 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
1591 Value *BoolX, *BoolY;
1592 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
1593 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
1594 BoolX->getType()->isIntOrIntVectorTy(1) &&
1595 BoolY->getType()->isIntOrIntVectorTy(1) &&
1596 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
1597 Value *And = Builder.CreateAnd(BoolX, BoolY);
1598 return new ZExtInst(And, Ty);
1599 }
1600 }
1601
1603 if (setShiftFlags(I, Q))
1604 return &I;
1605
1606 // Transform (x << y) >> y to x & (-1 >> y)
1607 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1609 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1610 return BinaryOperator::CreateAnd(Mask, X);
1611 }
1612
1613 // Transform (-1 << y) >> y to -1 >> y
1614 if (match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) {
1616 return BinaryOperator::CreateLShr(AllOnes, Op1);
1617 }
1618
1619 if (Instruction *Overflow = foldLShrOverflowBit(I))
1620 return Overflow;
1621
1622 // Transform ((pow2 << x) >> cttz(pow2 << y)) -> ((1 << x) >> y)
1623 Value *Shl0_Op0, *Shl0_Op1, *Shl1_Op1;
1624 BinaryOperator *Shl1;
1625 if (match(Op0, m_Shl(m_Value(Shl0_Op0), m_Value(Shl0_Op1))) &&
1626 match(Op1, m_Intrinsic<Intrinsic::cttz>(m_BinOp(Shl1))) &&
1627 match(Shl1, m_Shl(m_Specific(Shl0_Op0), m_Value(Shl1_Op1))) &&
1628 isKnownToBeAPowerOfTwo(Shl0_Op0, /*OrZero=*/true, &I)) {
1629 auto *Shl0 = cast<BinaryOperator>(Op0);
1630 bool HasNUW = Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap();
1631 bool HasNSW = Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap();
1632 if (HasNUW || HasNSW) {
1633 Value *NewShl = Builder.CreateShl(ConstantInt::get(Shl1->getType(), 1),
1634 Shl0_Op1, "", HasNUW, HasNSW);
1635 return BinaryOperator::CreateLShr(NewShl, Shl1_Op1);
1636 }
1637 }
1638 return nullptr;
1639}
1640
1643 BinaryOperator &OldAShr) {
1644 assert(OldAShr.getOpcode() == Instruction::AShr &&
1645 "Must be called with arithmetic right-shift instruction only.");
1646
1647 // Check that constant C is a splat of the element-wise bitwidth of V.
1648 auto BitWidthSplat = [](Constant *C, Value *V) {
1649 return match(
1651 APInt(C->getType()->getScalarSizeInBits(),
1652 V->getType()->getScalarSizeInBits())));
1653 };
1654
1655 // It should look like variable-length sign-extension on the outside:
1656 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1657 Value *NBits;
1658 Instruction *MaybeTrunc;
1659 Constant *C1, *C2;
1660 if (!match(&OldAShr,
1661 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1663 m_ZExtOrSelf(m_Value(NBits))))),
1665 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1666 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1667 return nullptr;
1668
1669 // There may or may not be a truncation after outer two shifts.
1670 Instruction *HighBitExtract;
1671 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1672 bool HadTrunc = MaybeTrunc != HighBitExtract;
1673
1674 // And finally, the innermost part of the pattern must be a right-shift.
1675 Value *X, *NumLowBitsToSkip;
1676 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1677 return nullptr;
1678
1679 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1680 Constant *C0;
1681 if (!match(NumLowBitsToSkip,
1683 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1684 !BitWidthSplat(C0, HighBitExtract))
1685 return nullptr;
1686
1687 // Since the NBits is identical for all shifts, if the outermost and
1688 // innermost shifts are identical, then outermost shifts are redundant.
1689 // If we had truncation, do keep it though.
1690 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1691 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1692
1693 // Else, if there was a truncation, then we need to ensure that one
1694 // instruction will go away.
1695 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1696 return nullptr;
1697
1698 // Finally, bypass two innermost shifts, and perform the outermost shift on
1699 // the operands of the innermost shift.
1700 Instruction *NewAShr =
1701 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1702 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1703 if (!HadTrunc)
1704 return NewAShr;
1705
1706 Builder.Insert(NewAShr);
1707 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1708}
1709
1711 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1713 return replaceInstUsesWith(I, V);
1714
1716 return X;
1717
1719 return R;
1720
1721 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1722 Type *Ty = I.getType();
1723 unsigned BitWidth = Ty->getScalarSizeInBits();
1724 const APInt *ShAmtAPInt;
1725 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1726 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1727
1728 // If the shift amount equals the difference in width of the destination
1729 // and source scalar types:
1730 // ashr (shl (zext X), C), C --> sext X
1731 Value *X;
1732 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1733 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1734 return new SExtInst(X, Ty);
1735
1736 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1737 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1738 const APInt *ShOp1;
1739 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1740 ShOp1->ult(BitWidth)) {
1741 unsigned ShlAmt = ShOp1->getZExtValue();
1742 if (ShlAmt < ShAmt) {
1743 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1744 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1745 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1746 NewAShr->setIsExact(I.isExact());
1747 return NewAShr;
1748 }
1749 if (ShlAmt > ShAmt) {
1750 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1751 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1752 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1753 NewShl->setHasNoSignedWrap(true);
1754 return NewShl;
1755 }
1756 }
1757
1758 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1759 ShOp1->ult(BitWidth)) {
1760 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1761 // Oversized arithmetic shifts replicate the sign bit.
1762 AmtSum = std::min(AmtSum, BitWidth - 1);
1763 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1764 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1765 }
1766
1767 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1768 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1769 // ashr (sext X), C --> sext (ashr X, C')
1770 Type *SrcTy = X->getType();
1771 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1772 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1773 return new SExtInst(NewSh, Ty);
1774 }
1775
1776 if (ShAmt == BitWidth - 1) {
1777 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1778 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1779 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1780
1781 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1782 Value *Y;
1783 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1784 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1785
1786 // ashr iN (X - 1) & ~X, N-1 --> sext (X == 0)
1788 m_Not(m_Deferred(X))))))
1789 return new SExtInst(Builder.CreateIsNull(X), Ty);
1790 }
1791
1792 const APInt *MulC;
1793 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) &&
1794 (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1795 MulC->logBase2() == ShAmt &&
1796 (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {
1797
1798 // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
1799 auto *NewAdd = BinaryOperator::CreateNSWAdd(
1800 X,
1801 Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact()));
1802 NewAdd->setHasNoUnsignedWrap(
1803 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
1804 return NewAdd;
1805 }
1806 }
1807
1809 if (setShiftFlags(I, Q))
1810 return &I;
1811
1812 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1813 // as the pattern to splat the lowest bit.
1814 // FIXME: iff X is already masked, we don't need the one-use check.
1815 Value *X;
1816 if (match(Op1, m_SpecificIntAllowPoison(BitWidth - 1)) &&
1819 Constant *Mask = ConstantInt::get(Ty, 1);
1820 // Retain the knowledge about the ignored lanes.
1822 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1823 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1824 X = Builder.CreateAnd(X, Mask);
1826 }
1827
1829 return R;
1830
1831 // See if we can turn a signed shr into an unsigned shr.
1833 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
1834 Lshr->setIsExact(I.isExact());
1835 return Lshr;
1836 }
1837
1838 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1839 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1840 // Note that we must drop 'exact'-ness of the shift!
1841 // Note that we can't keep undef's in -1 vector constant!
1842 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1843 return BinaryOperator::CreateNot(NewAShr);
1844 }
1845
1846 return nullptr;
1847}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
uint64_t Size
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q)
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
static Instruction * foldShiftOfShiftedBinOp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ shl) that itself has a shi...
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
static const MCExpr * MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift, MCContext &Ctx)
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static unsigned getScalarSizeInBits(Type *Ty)
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:247
Value * RHS
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:449
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:229
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1540
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1111
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:329
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1079
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1639
unsigned logBase2() const
Definition: APInt.h:1761
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:475
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:873
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:306
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:296
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1221
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition: InstrTypes.h:374
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:678
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:708
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:703
@ ICMP_EQ
equal
Definition: InstrTypes.h:699
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:706
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2654
static LLVM_ABI Constant * getNot(Constant *C)
Definition: Constants.cpp:2641
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2647
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2272
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.h:131
This is an important base class in LLVM.
Definition: Constant.h:43
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
Definition: Constants.cpp:784
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
Definition: Constants.cpp:808
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:420
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2345
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1513
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Definition: IRBuilder.h:2661
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1781
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2329
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:172
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:815
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1492
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2082
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1551
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Definition: IRBuilder.h:2651
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2068
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1708
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2361
Value * CreateIsNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg == 0.
Definition: IRBuilder.h:2646
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1532
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2439
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitLShr(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * visitAShr(BinaryOperator &I)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitShl(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Instruction * commonShiftTransforms(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
SimplifyQuery SQ
Definition: InstCombiner.h:77
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
Definition: InstCombiner.h:377
const DataLayout & DL
Definition: InstCombiner.h:76
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Definition: InstCombiner.h:433
AssumptionCache & AC
Definition: InstCombiner.h:73
void addToWorklist(Instruction *I)
Definition: InstCombiner.h:332
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Definition: InstCombiner.h:450
BuilderTy & Builder
Definition: InstCombiner.h:61
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
Definition: InstCombiner.h:443
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
Definition: Instruction.h:356
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:312
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
op_range incoming_values()
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:273
LLVM_ABI Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:246
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
void setOperand(unsigned i, Value *Val)
Definition: User.h:237
Value * getOperand(unsigned i) const
Definition: User.h:232
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
This class represents zero extension of integer types.
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:524
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:619
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:862
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:245
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:980
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:931
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
Definition: PatternMatch.h:700
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:336
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:288
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
@ Add
Sum of integers.
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:223
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:858
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition: KnownBits.h:248
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition: KnownBits.h:235
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:44
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition: KnownBits.h:241
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:138
Matching combinators.
const DataLayout & DL
Definition: SimplifyQuery.h:72
const Instruction * CxtI
Definition: SimplifyQuery.h:76
const DominatorTree * DT
Definition: SimplifyQuery.h:74
SimplifyQuery getWithInstruction(const Instruction *I) const
AssumptionCache * AC
Definition: SimplifyQuery.h:75