44#define DEBUG_TYPE "instcombine"
50 "Number of aggregate reconstructions turned into reuse of the "
51 "original aggregate");
63 return CEI ||
C->getSplatValue();
102 SmallVector<Instruction *, 2> Extracts;
108 for (
auto *U : PN->
users()) {
114 }
else if (!PHIUser) {
142 if (PHIInVal == PHIUser) {
147 unsigned opId = (B0->
getOperand(0) == PN) ? 1 : 0;
174 for (
auto *
E : Extracts) {
190 ElementCount NumElts =
194 bool IsBigEndian =
DL.isBigEndian();
198 if (
X->getType()->isIntegerTy()) {
200 "Expected fixed vector type for bitcast from scalar integer");
207 unsigned ShiftAmountC = ExtIndexC * DestWidth;
208 if ((!ShiftAmountC ||
209 isDesirableIntType(
X->getType()->getPrimitiveSizeInBits())) &&
210 Ext.getVectorOperand()->hasOneUse()) {
212 X =
Builder.CreateLShr(
X, ShiftAmountC,
"extelt.offset");
216 return new BitCastInst(Trunc, DestTy);
218 return new TruncInst(
X, DestTy);
222 if (!
X->getType()->isVectorTy())
229 ElementCount NumSrcElts = SrcTy->getElementCount();
230 if (NumSrcElts == NumElts)
232 return new BitCastInst(Elt, DestTy);
235 "Src and Dst must be the same sort of vector type");
251 unsigned NarrowingRatio =
254 if (ExtIndexC / NarrowingRatio != InsIndexC) {
260 if (
X->hasOneUse() &&
Ext.getVectorOperand()->hasOneUse()) {
278 unsigned Chunk = ExtIndexC % NarrowingRatio;
280 Chunk = NarrowingRatio - 1 - Chunk;
285 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
287 if (NeedSrcBitcast && NeedDestBitcast)
290 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
291 unsigned ShAmt = Chunk * DestWidth;
296 if (!
X->hasOneUse() || !
Ext.getVectorOperand()->hasOneUse())
297 if (NeedSrcBitcast || NeedDestBitcast)
300 if (NeedSrcBitcast) {
307 if (!
Ext.getVectorOperand()->hasOneUse())
312 if (NeedDestBitcast) {
314 return new BitCastInst(
Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
316 return new TruncInst(Scalar, DestTy);
330 case Instruction::ExtractElement: {
334 if (EEIIndexC && EEIIndexC->
getValue().
ult(VWidth)) {
339 case Instruction::ShuffleVector: {
341 unsigned MaskNumElts =
344 UsedElts =
APInt(VWidth, 0);
345 for (
unsigned i = 0; i < MaskNumElts; i++) {
347 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
349 if (Shuffle->
getOperand(0) == V && (MaskVal < VWidth))
352 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
353 UsedElts.
setBit(MaskVal - VWidth);
370 APInt UnionUsedElts(VWidth, 0);
371 for (
const Use &U : V->
uses()) {
383 return UnionUsedElts;
402 SQ.getWithInstruction(&EI)))
414 if (
SI->getCondition()->getType()->isIntegerTy() &&
422 bool HasKnownValidIndex =
false;
429 unsigned NumElts = EC.getKnownMinValue();
430 HasKnownValidIndex = IndexC->getValue().ult(NumElts);
436 if (IID == Intrinsic::stepvector && IndexC->getValue().ult(NumElts)) {
438 unsigned BitWidth = Ty->getIntegerBitWidth();
442 if (IndexC->getValue().getActiveBits() <=
BitWidth)
443 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(
BitWidth));
452 if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
461 if (
Instruction *ScalarPHI = scalarizePHI(EI, Phi))
486 (HasKnownValidIndex ||
517 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
518 if (IndexC && IdxVal < EC.getKnownMinValue() &&
GEP->hasOneUse()) {
529 return isa<VectorType>(V->getType());
531 if (VectorOps == 1) {
532 Value *NewPtr =
GEP->getPointerOperand();
534 NewPtr =
Builder.CreateExtractElement(NewPtr, IndexC);
537 for (
unsigned I = 1;
I !=
GEP->getNumOperands(); ++
I) {
546 GEP->getSourceElementType(), NewPtr, NewOps);
560 std::optional<int> SrcIdx;
562 if (SplatIndex != -1)
565 SrcIdx = SVI->getMaskValue(CI->getZExtValue());
575 if (*SrcIdx < (
int)LHSWidth)
576 Src = SVI->getOperand(0);
579 Src = SVI->getOperand(1);
583 Src, ConstantInt::get(Int64Ty, *SrcIdx,
false));
590 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
591 Value *EE =
Builder.CreateExtractElement(CI->getOperand(0), Index);
602 unsigned NumElts = EC.getKnownMinValue();
606 if (!EC.isScalable() && NumElts != 1) {
610 APInt PoisonElts(NumElts, 0);
611 APInt DemandedElts(NumElts, 0);
612 DemandedElts.
setBit(IndexC->getZExtValue());
621 APInt PoisonElts(NumElts, 0);
623 SrcVec, DemandedElts, PoisonElts, 0 ,
643 "Invalid CollectSingleShuffleElements");
647 Mask.assign(NumElts, -1);
652 for (
unsigned i = 0; i != NumElts; ++i)
658 for (
unsigned i = 0; i != NumElts; ++i)
659 Mask.push_back(i + NumElts);
665 Value *VecOp = IEI->getOperand(0);
666 Value *ScalarOp = IEI->getOperand(1);
667 Value *IdxOp = IEI->getOperand(2);
678 Mask[InsertedIdx] = -1;
683 unsigned ExtractedIdx =
685 unsigned NumLHSElts =
695 Mask[InsertedIdx % NumElts] = ExtractedIdx;
698 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
718 unsigned NumInsElts = InsVecType->getNumElements();
719 unsigned NumExtElts = ExtVecType->getNumElements();
722 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
723 NumExtElts >= NumInsElts)
736 for (
unsigned i = 0; i < NumExtElts; ++i)
738 for (
unsigned i = NumExtElts; i < NumInsElts; ++i)
755 if (InsertionBlock != InsElt->
getParent())
773 WideVec->insertAfter(ExtVecOpInst->getIterator());
781 if (!OldExt || OldExt->
getParent() != WideVec->getParent())
807 assert(V->getType()->isVectorTy() &&
"Invalid shuffle!");
811 Mask.assign(NumElts, -1);
812 return std::make_pair(
817 Mask.assign(NumElts, 0);
818 return std::make_pair(V,
nullptr);
823 Value *VecOp = IEI->getOperand(0);
824 Value *ScalarOp = IEI->getOperand(1);
825 Value *IdxOp = IEI->getOperand(2);
829 unsigned ExtractedIdx =
835 if (EI->
getOperand(0) == PermittedRHS || PermittedRHS ==
nullptr) {
838 assert(LR.second ==
nullptr || LR.second ==
RHS);
840 if (LR.first->getType() !=
RHS->getType()) {
848 for (
unsigned i = 0; i < NumElts; ++i)
850 return std::make_pair(V,
nullptr);
853 unsigned NumLHSElts =
855 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
856 return std::make_pair(LR.first,
RHS);
859 if (VecOp == PermittedRHS) {
862 unsigned NumLHSElts =
865 for (
unsigned i = 0; i != NumElts; ++i)
866 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
867 return std::make_pair(EI->
getOperand(0), PermittedRHS);
875 return std::make_pair(EI->
getOperand(0), PermittedRHS);
881 for (
unsigned i = 0; i != NumElts; ++i)
883 return std::make_pair(V,
nullptr);
909 assert(NumAggElts > 0 &&
"Aggregate should have elements.");
913 static constexpr auto NotFound = std::nullopt;
914 static constexpr auto FoundMismatch =
nullptr;
921 auto KnowAllElts = [&AggElts]() {
929 static const int DepthLimit = 2 * NumAggElts;
934 Depth < DepthLimit && CurrIVI && !KnowAllElts();
937 auto *InsertedValue =
945 if (Indices.
size() != 1)
951 std::optional<Instruction *> &Elt = AggElts[Indices.
front()];
952 Elt = Elt.value_or(InsertedValue);
965 enum class AggregateDescription {
981 auto Describe = [](std::optional<Value *> SourceAggregate) {
982 if (SourceAggregate == NotFound)
983 return AggregateDescription::NotFound;
984 if (*SourceAggregate == FoundMismatch)
985 return AggregateDescription::FoundMismatch;
986 return AggregateDescription::Found;
990 bool EltDefinedInUseBB =
false;
997 auto FindSourceAggregate =
998 [&](
Instruction *Elt,
unsigned EltIdx, std::optional<BasicBlock *> UseBB,
999 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1001 if (UseBB && PredBB) {
1004 EltDefinedInUseBB =
true;
1013 Value *SourceAggregate = EVI->getAggregateOperand();
1016 if (SourceAggregate->
getType() != AggTy)
1017 return FoundMismatch;
1019 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
1020 return FoundMismatch;
1022 return SourceAggregate;
1028 auto FindCommonSourceAggregate =
1029 [&](std::optional<BasicBlock *> UseBB,
1030 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1031 std::optional<Value *> SourceAggregate;
1034 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1035 "We don't store nullptr in SourceAggregate!");
1036 assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1038 "SourceAggregate should be valid after the first element,");
1043 std::optional<Value *> SourceAggregateForElement =
1044 FindSourceAggregate(*
I.value(),
I.index(), UseBB, PredBB);
1051 if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1052 return SourceAggregateForElement;
1056 switch (Describe(SourceAggregate)) {
1057 case AggregateDescription::NotFound:
1059 SourceAggregate = SourceAggregateForElement;
1061 case AggregateDescription::Found:
1064 if (*SourceAggregateForElement != *SourceAggregate)
1065 return FoundMismatch;
1067 case AggregateDescription::FoundMismatch:
1072 assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1073 "Must be a valid Value");
1074 return *SourceAggregate;
1077 std::optional<Value *> SourceAggregate;
1080 SourceAggregate = FindCommonSourceAggregate(std::nullopt,
1082 if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1083 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1085 ++NumAggregateReconstructionsSimplified;
1098 for (
const std::optional<Instruction *> &
I : AggElts) {
1122 static const int PredCountLimit = 64;
1129 if (Preds.
size() >= PredCountLimit)
1138 bool FoundSrcAgg =
false;
1140 std::pair<
decltype(SourceAggregates)
::iterator,
bool>
IV =
1149 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1150 if (Describe(SourceAggregate) == AggregateDescription::Found) {
1152 IV.first->second = *SourceAggregate;
1157 if (!BI || !BI->isUnconditional())
1167 for (
auto &It : SourceAggregates) {
1168 if (Describe(It.second) == AggregateDescription::Found)
1172 if (EltDefinedInUseBB)
1180 if (UseBB != OrigBB)
1185 bool ConstAgg =
true;
1186 for (
auto Val : AggElts) {
1199 for (
auto &It : SourceAggregates) {
1200 if (Describe(It.second) == AggregateDescription::Found)
1204 Builder.SetInsertPoint(Pred->getTerminator());
1206 for (
auto [Idx, Val] :
enumerate(AggElts)) {
1208 V =
Builder.CreateInsertValue(V, Elt, Idx);
1220 Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1224 PHI->addIncoming(SourceAggregates[Pred], Pred);
1226 ++NumAggregateReconstructionsSimplified;
1239 I.getAggregateOperand(),
I.getInsertedValueOperand(),
I.getIndices(),
1240 SQ.getWithInstruction(&
I)))
1243 bool IsRedundant =
false;
1252 while (V->hasOneUse() &&
Depth < 10) {
1255 if (!UserInsInst || U->getOperand(0) != V)
1257 if (UserInsInst->getIndices() == FirstIndices) {
1285 if (MaskSize != VecSize)
1290 for (
int i = 0; i != MaskSize; ++i) {
1292 if (Elt != -1 && Elt != i && Elt != i + VecSize)
1317 if (NumElements == 1)
1329 if (!Idx || CurrIE->
getOperand(1) != SplatVal)
1336 if (CurrIE != &InsElt &&
1337 (!CurrIE->
hasOneUse() && (NextIE !=
nullptr || !Idx->isZero())))
1340 ElementPresent[Idx->getZExtValue()] =
true;
1346 if (FirstIE == &InsElt)
1354 if (!ElementPresent.
all())
1360 Constant *Zero = ConstantInt::get(Int64Ty, 0);
1367 for (
unsigned i = 0; i != NumElements; ++i)
1368 if (!ElementPresent[i])
1379 if (!Shuf || !Shuf->isZeroEltSplat())
1394 Value *Op0 = Shuf->getOperand(0);
1402 unsigned NumMaskElts =
1405 for (
unsigned i = 0; i != NumMaskElts; ++i)
1406 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1417 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1433 Value *
X = Shuf->getOperand(0);
1441 unsigned NumMaskElts =
1445 for (
unsigned i = 0; i != NumMaskElts; ++i) {
1448 NewMask[i] = OldMask[i];
1449 }
else if (OldMask[i] == (
int)IdxC) {
1455 "Unexpected shuffle mask element for identity shuffle");
1475 if (!InsElt1 || !InsElt1->hasOneUse())
1486 Value *NewInsElt1 = Builder.CreateInsertElement(
X, ScalarC, IdxC2);
1499 if (!Inst || !Inst->hasOneUse())
1504 Constant *ShufConstVec, *InsEltScalar;
1528 unsigned NumElts = Mask.size();
1531 for (
unsigned I = 0;
I != NumElts; ++
I) {
1532 if (
I == InsEltIndex) {
1533 NewShufElts[
I] = InsEltScalar;
1534 NewMaskElts[
I] = InsEltIndex + NumElts;
1538 NewMaskElts[
I] = Mask[
I];
1542 if (!NewShufElts[
I])
1569 auto ValI = std::begin(Val);
1576 Mask[
I] = NumElts +
I;
1581 for (
unsigned I = 0;
I < NumElts; ++
I) {
1613 CastOpcode = Instruction::FPExt;
1615 CastOpcode = Instruction::SExt;
1617 CastOpcode = Instruction::ZExt;
1622 if (
X->getType()->getScalarType() !=
Y->getType())
1650 Value *Scalar0, *BaseVec;
1652 if (!VTy || (VTy->getNumElements() & 1) ||
1661 if (Index0 + 1 != Index1 || Index0 & 1)
1678 Type *SrcTy =
X->getType();
1679 unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1680 unsigned VecEltWidth = VTy->getScalarSizeInBits();
1681 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1686 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1690 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1691 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec,
X, NewIndex);
1696 Value *VecOp = IE.getOperand(0);
1697 Value *ScalarOp = IE.getOperand(1);
1698 Value *IdxOp = IE.getOperand(2);
1701 VecOp, ScalarOp, IdxOp,
SQ.getWithInstruction(&IE)))
1709 Value *BaseVec, *OtherScalar;
1714 !
isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1715 Value *NewIns =
Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1717 Builder.getInt64(OtherIndexVal));
1735 Value *NewInsElt =
Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1750 Value *NewInsElt =
Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1758 uint64_t InsertedIdx, ExtractedIdx;
1782 if (!Insert.hasOneUse())
1791 if (isShuffleRootCandidate(IE)) {
1802 if (LR.first != &IE && LR.second != &IE) {
1804 if (LR.second ==
nullptr)
1813 unsigned VWidth = VecTy->getNumElements();
1814 APInt PoisonElts(VWidth, 0);
1837 return IdentityShuf;
1851 unsigned Depth = 5) {
1858 if (!
I)
return false;
1861 if (!
I->hasOneUse())
1864 if (
Depth == 0)
return false;
1866 switch (
I->getOpcode()) {
1867 case Instruction::UDiv:
1868 case Instruction::SDiv:
1869 case Instruction::URem:
1870 case Instruction::SRem:
1877 case Instruction::Add:
1878 case Instruction::FAdd:
1879 case Instruction::Sub:
1880 case Instruction::FSub:
1881 case Instruction::Mul:
1882 case Instruction::FMul:
1883 case Instruction::FDiv:
1884 case Instruction::FRem:
1885 case Instruction::Shl:
1886 case Instruction::LShr:
1887 case Instruction::AShr:
1888 case Instruction::And:
1889 case Instruction::Or:
1890 case Instruction::Xor:
1891 case Instruction::ICmp:
1892 case Instruction::FCmp:
1893 case Instruction::Trunc:
1894 case Instruction::ZExt:
1895 case Instruction::SExt:
1896 case Instruction::FPToUI:
1897 case Instruction::FPToSI:
1898 case Instruction::UIToFP:
1899 case Instruction::SIToFP:
1900 case Instruction::FPTrunc:
1901 case Instruction::FPExt:
1902 case Instruction::GetElementPtr: {
1905 Type *ITy =
I->getType();
1909 for (
Value *Operand :
I->operands()) {
1915 case Instruction::InsertElement: {
1917 if (!CI)
return false;
1922 bool SeenOnce =
false;
1923 for (
int I : Mask) {
1924 if (
I == ElementNumber) {
1940 Builder.SetInsertPoint(
I);
1941 switch (
I->getOpcode()) {
1942 case Instruction::Add:
1943 case Instruction::FAdd:
1944 case Instruction::Sub:
1945 case Instruction::FSub:
1946 case Instruction::Mul:
1947 case Instruction::FMul:
1948 case Instruction::UDiv:
1949 case Instruction::SDiv:
1950 case Instruction::FDiv:
1951 case Instruction::URem:
1952 case Instruction::SRem:
1953 case Instruction::FRem:
1954 case Instruction::Shl:
1955 case Instruction::LShr:
1956 case Instruction::AShr:
1957 case Instruction::And:
1958 case Instruction::Or:
1959 case Instruction::Xor: {
1961 assert(NewOps.
size() == 2 &&
"binary operator with #ops != 2");
1963 NewOps[0], NewOps[1]);
1970 NewI->setIsExact(BO->
isExact());
1973 NewI->copyFastMathFlags(
I);
1977 case Instruction::ICmp:
1978 assert(NewOps.
size() == 2 &&
"icmp with #ops != 2");
1979 return Builder.CreateICmp(
cast<ICmpInst>(
I)->getPredicate(), NewOps[0],
1981 case Instruction::FCmp:
1982 assert(NewOps.
size() == 2 &&
"fcmp with #ops != 2");
1983 return Builder.CreateFCmp(
cast<FCmpInst>(
I)->getPredicate(), NewOps[0],
1985 case Instruction::Trunc:
1986 case Instruction::ZExt:
1987 case Instruction::SExt:
1988 case Instruction::FPToUI:
1989 case Instruction::FPToSI:
1990 case Instruction::UIToFP:
1991 case Instruction::SIToFP:
1992 case Instruction::FPTrunc:
1993 case Instruction::FPExt: {
1997 I->getType()->getScalarType(),
1999 assert(NewOps.
size() == 1 &&
"cast with #ops != 1");
2003 case Instruction::GetElementPtr: {
2018 assert(V->getType()->isVectorTy() &&
"can't reorder non-vector elements");
2035 switch (
I->getOpcode()) {
2036 case Instruction::Add:
2037 case Instruction::FAdd:
2038 case Instruction::Sub:
2039 case Instruction::FSub:
2040 case Instruction::Mul:
2041 case Instruction::FMul:
2042 case Instruction::UDiv:
2043 case Instruction::SDiv:
2044 case Instruction::FDiv:
2045 case Instruction::URem:
2046 case Instruction::SRem:
2047 case Instruction::FRem:
2048 case Instruction::Shl:
2049 case Instruction::LShr:
2050 case Instruction::AShr:
2051 case Instruction::And:
2052 case Instruction::Or:
2053 case Instruction::Xor:
2054 case Instruction::ICmp:
2055 case Instruction::FCmp:
2056 case Instruction::Trunc:
2057 case Instruction::ZExt:
2058 case Instruction::SExt:
2059 case Instruction::FPToUI:
2060 case Instruction::FPToSI:
2061 case Instruction::UIToFP:
2062 case Instruction::SIToFP:
2063 case Instruction::FPTrunc:
2064 case Instruction::FPExt:
2065 case Instruction::Select:
2066 case Instruction::GetElementPtr: {
2071 for (
int i = 0, e =
I->getNumOperands(); i != e; ++i) {
2076 if (
I->getOperand(i)->getType()->isVectorTy())
2079 V =
I->getOperand(i);
2081 NeedsRebuild |= (V !=
I->getOperand(i));
2087 case Instruction::InsertElement: {
2095 for (
int e = Mask.size(); Index != e; ++Index) {
2096 if (Mask[Index] == Element) {
2109 Builder.SetInsertPoint(
I);
2110 return Builder.CreateInsertElement(V,
I->getOperand(1), Index);
2126 unsigned MaskElems = Mask.size();
2127 unsigned BegIdx = Mask.front();
2128 unsigned EndIdx = Mask.back();
2129 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2131 for (
unsigned I = 0;
I != MaskElems; ++
I)
2132 if (
static_cast<unsigned>(Mask[
I]) != BegIdx +
I)
2157 case Instruction::Shl: {
2162 Instruction::Shl, ConstantInt::get(Ty, 1),
C,
DL);
2163 assert(ShlOne &&
"Constant folding of immediate constants failed");
2164 return {Instruction::Mul, BO0, ShlOne};
2168 case Instruction::Or: {
2171 return {Instruction::Add, BO0, BO1};
2174 case Instruction::Sub:
2189 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2194 unsigned NumElts = Mask.size();
2198 if (ShufOp && ShufOp->isSelect() &&
2199 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2205 if (!ShufOp || !ShufOp->isSelect() ||
2206 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2209 Value *
X = ShufOp->getOperand(0), *
Y = ShufOp->getOperand(1);
2211 ShufOp->getShuffleMask(Mask1);
2212 assert(Mask1.
size() == NumElts &&
"Vector size changed with select shuffle");
2225 for (
unsigned i = 0; i != NumElts; ++i)
2226 NewMask[i] = Mask[i] < (
signed)NumElts ? Mask[i] : Mask1[i];
2231 "Unexpected shuffle mask");
2237 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2260 Value *
X = Op0IsBinop ? Op1 : Op0;
2281 bool MightCreatePoisonOrUB =
2284 if (MightCreatePoisonOrUB)
2319 Value *NewIns = Builder.CreateInsertElement(PoisonVec,
X, (
uint64_t)0);
2325 unsigned NumMaskElts =
2328 for (
unsigned i = 0; i != NumMaskElts; ++i)
2330 NewMask[i] = Mask[i];
2367 Constant *C0 =
nullptr, *C1 =
nullptr;
2368 bool ConstantsAreOp1;
2371 ConstantsAreOp1 =
false;
2376 ConstantsAreOp1 =
true;
2383 bool DropNSW =
false;
2384 if (ConstantsAreOp1 && Opc0 != Opc1) {
2388 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2392 Opc0 = AltB0.Opcode;
2396 Opc1 = AltB1.Opcode;
2401 if (Opc0 != Opc1 || !C0 || !C1)
2414 bool MightCreatePoisonOrUB =
2417 if (MightCreatePoisonOrUB)
2440 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2450 V =
Builder.CreateShuffleVector(
X,
Y, Mask);
2453 Value *NewBO = ConstantsAreOp1 ?
Builder.CreateBinOp(BOpc, V, NewC) :
2454 Builder.CreateBinOp(BOpc, NewC, V);
2462 NewI->copyIRFlags(B0);
2463 NewI->andIRFlags(B1);
2465 NewI->setHasNoSignedWrap(
false);
2467 NewI->dropPoisonGeneratingFlags();
2486 Type *SrcType =
X->getType();
2487 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2494 "Expected a shuffle that decreases length");
2501 for (
unsigned i = 0, e = Mask.size(); i != e; ++i) {
2504 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2505 assert(LSBIndex <= INT32_MAX &&
"Overflowed 32-bits");
2506 if (Mask[i] != (
int)LSBIndex)
2532 unsigned NarrowNumElts =
2557 bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2563 S0->getOpcode() !=
S1->getOpcode() ||
2564 (!S0->hasOneUse() && !
S1->hasOneUse()))
2571 NewF = UnaryOperator::CreateFNeg(NewShuf);
2592 switch (CastOpcode) {
2593 case Instruction::SExt:
2594 case Instruction::ZExt:
2595 case Instruction::FPToSI:
2596 case Instruction::FPToUI:
2597 case Instruction::SIToFP:
2598 case Instruction::UIToFP:
2609 if (ShufTy->getElementCount().getKnownMinValue() >
2610 ShufOpTy->getElementCount().getKnownMinValue())
2617 auto *NewIns = Builder.CreateShuffleVector(Cast0->getOperand(0),
2625 if (!Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2626 Cast0->getSrcTy() != Cast1->getSrcTy())
2631 "Expected fixed vector operands for casts and binary shuffle");
2632 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2636 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2640 Value *
X = Cast0->getOperand(0);
2641 Value *
Y = Cast1->getOperand(0);
2656 X->getType()->getPrimitiveSizeInBits() ==
2684 assert(NumElts < Mask.size() &&
2685 "Identity with extract must have less elements than its inputs");
2687 for (
unsigned i = 0; i != NumElts; ++i) {
2689 int MaskElt = Mask[i];
2690 NewMask[i] = ExtractMaskElt ==
PoisonMaskElem ? ExtractMaskElt : MaskElt;
2703 int NumElts = Mask.size();
2729 if (NumElts != InpNumElts)
2733 auto isShufflingScalarIntoOp1 = [&](
Value *&Scalar,
ConstantInt *&IndexC) {
2741 int NewInsIndex = -1;
2742 for (
int i = 0; i != NumElts; ++i) {
2748 if (Mask[i] == NumElts + i)
2752 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2759 assert(NewInsIndex != -1 &&
"Did not fold shuffle with unused operand?");
2762 IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2771 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2779 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2791 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2792 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2800 Value *
X = Shuffle0->getOperand(0);
2801 Value *
Y = Shuffle1->getOperand(0);
2802 if (
X->getType() !=
Y->getType() ||
2811 "Unexpected operand for identity shuffle");
2819 assert(WideElts > NarrowElts &&
"Unexpected types for identity with padding");
2823 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2829 if (Mask[i] < WideElts) {
2830 if (Shuffle0->getMaskValue(Mask[i]) == -1)
2833 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2840 if (Mask[i] < WideElts) {
2841 assert(Mask[i] < NarrowElts &&
"Unexpected shuffle mask");
2842 NewMask[i] = Mask[i];
2844 assert(Mask[i] < (WideElts + NarrowElts) &&
"Unexpected shuffle mask");
2845 NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2867 if (
X->getType() !=
Y->getType())
2876 NewBOI->copyIRFlags(BinOp);
2912 X->getType()->isVectorTy() &&
X->getType() ==
Y->getType() &&
2913 X->getType()->getScalarSizeInBits() ==
2915 (LHS->hasOneUse() || RHS->hasOneUse())) {
2930 X->getType()->isVectorTy() && VWidth == LHSWidth) {
2933 unsigned XNumElts = XType->getNumElements();
2939 ScaledMask, XType, ShufQuery))
2947 "Shuffle with 2 undef ops not simplified?");
2975 APInt PoisonElts(VWidth, 0);
2997 if (
SI->getCondition()->getType()->isIntegerTy() &&
3044 bool MadeChange =
false;
3047 unsigned MaskElems = Mask.size();
3049 unsigned VecBitWidth =
DL.getTypeSizeInBits(SrcTy);
3050 unsigned SrcElemBitWidth =
DL.getTypeSizeInBits(SrcTy->getElementType());
3051 assert(SrcElemBitWidth &&
"vector elements must have a bitwidth");
3052 unsigned SrcNumElems = SrcTy->getNumElements();
3058 if (BC->use_empty())
3061 if (BC->hasOneUse()) {
3063 if (BC2 && isEliminableCastPair(BC, BC2))
3069 unsigned BegIdx = Mask.front();
3070 Type *TgtTy = BC->getDestTy();
3071 unsigned TgtElemBitWidth =
DL.getTypeSizeInBits(TgtTy);
3072 if (!TgtElemBitWidth)
3074 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
3075 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
3076 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
3077 if (!VecBitWidthsEqual)
3082 if (!BegIsAligned) {
3086 for (
unsigned I = 0, E = MaskElems, Idx = BegIdx;
I != E; ++Idx, ++
I)
3087 ShuffleMask[
I] = Idx;
3088 V =
Builder.CreateShuffleVector(V, ShuffleMask,
3092 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
3093 assert(SrcElemsPerTgtElem);
3094 BegIdx /= SrcElemsPerTgtElem;
3095 auto [It, Inserted] = NewBCs.
try_emplace(CastSrcTy);
3097 It->second =
Builder.CreateBitCast(V, CastSrcTy, SVI.
getName() +
".bc");
3098 auto *Ext =
Builder.CreateExtractElement(It->second, BegIdx,
3155 LHSShuffle =
nullptr;
3158 RHSShuffle =
nullptr;
3159 if (!LHSShuffle && !RHSShuffle)
3160 return MadeChange ? &SVI :
nullptr;
3162 Value* LHSOp0 =
nullptr;
3163 Value* LHSOp1 =
nullptr;
3164 Value* RHSOp0 =
nullptr;
3165 unsigned LHSOp0Width = 0;
3166 unsigned RHSOp0Width = 0;
3176 Value* newLHS = LHS;
3177 Value* newRHS = RHS;
3185 else if (LHSOp0Width == LHSWidth) {
3190 if (RHSShuffle && RHSOp0Width == LHSWidth) {
3194 if (LHSOp0 == RHSOp0) {
3199 if (newLHS == LHS && newRHS == RHS)
3200 return MadeChange ? &SVI :
nullptr;
3206 if (RHSShuffle && newRHS != RHS)
3209 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3215 for (
unsigned i = 0; i < VWidth; ++i) {
3220 }
else if (Mask[i] < (
int)LHSWidth) {
3225 if (newLHS != LHS) {
3226 eltMask = LHSMask[Mask[i]];
3242 else if (newRHS != RHS) {
3243 eltMask = RHSMask[Mask[i]-LHSWidth];
3246 if (eltMask >= (
int)RHSOp0Width) {
3248 "should have been check above");
3252 eltMask = Mask[i]-LHSWidth;
3260 if (eltMask >= 0 && newRHS !=
nullptr && newLHS != newRHS)
3261 eltMask += newLHSWidth;
3266 if (SplatElt >= 0 && SplatElt != eltMask)
3276 if (
isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3282 return MadeChange ? &SVI :
nullptr;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file provides internal interfaces used to implement the InstCombine.
static Instruction * foldConstantInsEltIntoShuffle(InsertElementInst &InsElt)
insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex --> shufflevector X,...
static Value * evaluateInDifferentElementOrder(Value *V, ArrayRef< int > Mask, IRBuilderBase &Builder)
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, SmallVectorImpl< int > &Mask)
If V is a shuffle of values that ONLY returns elements from either LHS or RHS, return the shuffle mas...
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl< int > &Mask, Value *PermittedRHS, InstCombinerImpl &IC, bool &Rerun)
static APInt findDemandedEltsByAllUsers(Value *V)
Find union of elements of V demanded by all its users.
static Instruction * foldTruncInsEltPair(InsertElementInst &InsElt, bool IsBigEndian, InstCombiner::BuilderTy &Builder)
If we are inserting 2 halves of a value into adjacent elements of a vector, try to convert to a singl...
static Instruction * foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf, const SimplifyQuery &SQ)
static Instruction * foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf)
static Instruction * foldIdentityExtractShuffle(ShuffleVectorInst &Shuf)
Try to fold an extract subvector operation.
static Instruction * foldInsEltIntoSplat(InsertElementInst &InsElt)
Try to fold an insert element into an existing splat shuffle by changing the shuffle's mask to includ...
std::pair< Value *, Value * > ShuffleOps
We are building a shuffle to create V, which is a sequence of insertelement, extractelement pairs.
static Instruction * foldShuffleWithInsert(ShuffleVectorInst &Shuf, InstCombinerImpl &IC)
Try to replace a shuffle with an insertelement or try to replace a shuffle operand with the operand o...
static Instruction * canonicalizeInsertSplat(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
If we have an insert of a scalar to a non-zero element of an undefined vector and then shuffle that v...
static Instruction * foldTruncShuffle(ShuffleVectorInst &Shuf, bool IsBigEndian)
Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
static bool replaceExtractElements(InsertElementInst *InsElt, ExtractElementInst *ExtElt, InstCombinerImpl &IC)
If we have insertion into a vector that is wider than the vector that we are extracting from,...
static bool cheapToScalarize(Value *V, Value *EI)
Return true if the value is cheaper to scalarize than it is to leave as a vector operation.
static Value * buildNew(Instruction *I, ArrayRef< Value * > NewOps, IRBuilderBase &Builder)
Rebuild a new instruction just like 'I' but with the new operands given.
static bool canEvaluateShuffled(Value *V, ArrayRef< int > Mask, unsigned Depth=5)
Return true if we can evaluate the specified expression tree if the vector elements were shuffled in ...
static Instruction * foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf)
A select shuffle of a select shuffle with a shared operand can be reduced to a single select shuffle.
static Instruction * hoistInsEltConst(InsertElementInst &InsElt2, InstCombiner::BuilderTy &Builder)
If we have an insertelement instruction feeding into another insertelement and the 2nd is inserting a...
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr)
Find elements of V demanded by UserInstr.
static Instruction * foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize FP negate/abs after shuffle.
static Instruction * foldCastShuffle(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize casts after shuffle.
static Instruction * narrowInsElt(InsertElementInst &InsElt, InstCombiner::BuilderTy &Builder)
If both the base vector and the inserted element are extended from the same type, do the insert eleme...
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf)
static Instruction * foldInsSequenceIntoSplat(InsertElementInst &InsElt)
Turn a chain of inserts that splats a value into an insert + shuffle: insertelt(insertelt(insertelt(i...
static Instruction * foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt)
Try to fold an extract+insert element into an existing identity shuffle by changing the shuffle's mas...
static ConstantInt * getPreferredVectorIndex(ConstantInt *IndexC)
Given a constant index for a extractelement or insertelement instruction, return it with the canonica...
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, ArrayRef< int > Mask)
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL)
Binops may be transformed into binops with different opcodes and operands.
This file provides the interface for the instcombine pass implementation.
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SDValue narrowVectorSelect(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, const X86Subtarget &Subtarget)
If both arms of a vector select are concatenated vectors, split the select, and concatenate the resul...
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
OtherOps getOpcode() const
Get the opcode casted to the right type.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
A parsed version of the target data layout string in and methods for querying it.
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
Common base class shared among various IRBuilders.
This instruction inserts a single (scalar) element into a VectorType value.
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
This instruction inserts a struct field of array element value into an aggregate value.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSelectShuffle(ShuffleVectorInst &Shuf)
Try to fold shuffles that are the equivalent of a vector select.
Instruction * visitInsertValueInst(InsertValueInst &IV)
Try to find redundant insertvalue instructions, like the following ones: %0 = insertvalue { i8,...
Instruction * visitInsertElementInst(InsertElementInst &IE)
Instruction * visitExtractElementInst(ExtractElementInst &EI)
Instruction * simplifyBinOpSplats(ShuffleVectorInst &SVI)
Instruction * foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI)
Look for chain of insertvalue's that fully define an aggregate, and trace back the values inserted,...
Instruction * visitShuffleVectorInst(ShuffleVectorInst &SVI)
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
const SimplifyQuery & getSimplifyQuery() const
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
A wrapper class for inspecting calls to intrinsic functions.
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
VectorType * getType() const
Overload to return most specific vector type.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool all() const
Returns true if all bits are set.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getStructNumElements() const
LLVM_ABI uint64_t getArrayNumElements() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
UnaryOps getOpcode() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Type * getElementType() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
auto m_Undef()
Match an arbitrary undef constant.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
auto dyn_cast_or_null(const Y &Val)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
constexpr int PoisonMaskElem
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
These are the ingredients in an alternate form binary operator as described below.
BinopElts(BinaryOperator::BinaryOps Opc=(BinaryOperator::BinaryOps) 0, Value *V0=nullptr, Value *V1=nullptr)
BinaryOperator::BinaryOps Opcode
A MapVector that performs no allocations if smaller than a certain size.