56 "disable-i2p-p2i-opt",
cl::init(
false),
57 cl::desc(
"Disables inttoptr/ptrtoint roundtrip optimization"));
63std::optional<TypeSize>
70 assert(!
Size.isScalable() &&
"Array elements cannot have a scalable size");
80std::optional<TypeSize>
100 return "both values to select must have same type";
103 return "select values cannot have token type";
108 return "vector select condition element type must be i1";
111 return "selected values for vector select must be vectors";
113 return "vector select requires selected vectors to have "
114 "the same vector length as select condition";
116 return "select condition must be i1 or <n x i1>";
125PHINode::PHINode(
const PHINode &PN)
127 ReservedSpace(PN.getNumOperands()) {
149 Op<-1>().set(
nullptr);
162 bool DeletePHIIfEmpty) {
168 if (RemoveIndices.
empty())
173 return RemoveIndices.
contains(U.getOperandNo());
198void PHINode::growOperands() {
200 unsigned NumOps = e + e / 2;
201 if (NumOps < 2) NumOps = 2;
203 ReservedSpace = NumOps;
214 if (ConstantValue !=
this)
219 if (ConstantValue ==
this)
221 return ConstantValue;
230 Value *ConstantValue =
nullptr;
234 if (ConstantValue && ConstantValue !=
Incoming)
246LandingPadInst::LandingPadInst(
Type *
RetTy,
unsigned NumReservedValues,
247 const Twine &NameStr,
250 init(NumReservedValues, NameStr);
255 ReservedSpace(LP.getNumOperands()) {
260 for (
unsigned I = 0, E = ReservedSpace;
I != E; ++
I)
267 const Twine &NameStr,
272void LandingPadInst::init(
unsigned NumReservedValues,
const Twine &NameStr) {
273 ReservedSpace = NumReservedValues;
282void LandingPadInst::growOperands(
unsigned Size) {
284 if (ReservedSpace >= e +
Size)
return;
285 ReservedSpace = (std::max(e, 1U) +
Size / 2) * 2;
292 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
304 case Instruction::Call:
306 case Instruction::Invoke:
308 case Instruction::CallBr:
320 if (ChildOB.getTagName() != OpB.
getTag())
331 return cast<CallBrInst>(
this)->getNumIndirectDests() + 1;
336 if (isa<Function>(V) || isa<Constant>(V))
344 if (
auto *CI = dyn_cast<CallInst>(
this))
345 return CI->isMustTailCall();
351 if (
auto *CI = dyn_cast<CallInst>(
this))
352 return CI->isTailCall();
358 return F->getIntrinsicID();
366 Mask |=
F->getAttributes().getRetNoFPClass();
374 Mask |=
F->getAttributes().getParamNoFPClass(i);
402 if (
F->getAttributes().hasAttrSomewhere(Kind, &Index))
419 if (!
F->getAttributes().hasParamAttr(ArgNo, Kind))
424 case Attribute::ReadNone:
426 case Attribute::ReadOnly:
428 case Attribute::WriteOnly:
436 bool AllowUndefOrPoison)
const {
438 "Argument must be a pointer");
440 (AllowUndefOrPoison ||
paramHasAttr(ArgNo, Attribute::NoUndef)))
454 return F->getAttributes().hasFnAttr(Kind);
459bool CallBase::hasFnAttrOnCalledFunction(
StringRef Kind)
const {
461 return F->getAttributes().hasFnAttr(Kind);
466template <
typename AK>
467Attribute CallBase::getFnAttrOnCalledFunction(AK Kind)
const {
468 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
471 assert(Kind != Attribute::Memory &&
"Use getMemoryEffects() instead");
475 return F->getAttributes().getFnAttr(Kind);
484template <
typename AK>
485Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
489 if (
auto *
F = dyn_cast<Function>(V))
490 return F->getAttributes().getParamAttr(ArgNo, Kind);
495CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
497template Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
508 const unsigned BeginIndex) {
510 for (
auto &
B : Bundles)
511 It = std::copy(
B.input_begin(),
B.input_end(), It);
514 auto BI = Bundles.
begin();
515 unsigned CurrentIndex = BeginIndex;
518 assert(BI != Bundles.
end() &&
"Incorrect allocation?");
520 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
521 BOI.Begin = CurrentIndex;
522 BOI.End = CurrentIndex + BI->input_size();
523 CurrentIndex = BOI.End;
527 assert(BI == Bundles.
end() &&
"Incorrect allocation?");
538 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
544 assert(OpIdx >=
arg_size() &&
"the Idx is not in the operand bundles");
547 "The Idx isn't in the operand bundle");
551 constexpr unsigned NumberScaling = 1024;
557 while (Begin !=
End) {
558 unsigned ScaledOperandPerBundle =
559 NumberScaling * (std::prev(
End)->End - Begin->
Begin) / (
End - Begin);
560 Current = Begin + (((OpIdx - Begin->
Begin) * NumberScaling) /
561 ScaledOperandPerBundle);
563 Current = std::prev(
End);
564 assert(Current < End && Current >= Begin &&
565 "the operand bundle doesn't cover every value in the range");
566 if (OpIdx >= Current->
Begin && OpIdx < Current->
End)
568 if (OpIdx >= Current->
End)
575 "the operand bundle doesn't cover every value in the range");
588 return Create(CB, Bundles, InsertPt);
594 bool CreateNew =
false;
598 if (Bundle.getTagID() ==
ID) {
605 return CreateNew ?
Create(CB, Bundles, InsertPt) : CB;
704 CI &= Fn->getAttributes().getParamAttrs(OpNo).getCaptureInfo();
722 "NumOperands not set up?");
727 "Calling a function with bad signature!");
729 for (
unsigned i = 0; i != Args.size(); ++i)
732 "Calling a function with a bad signature!");
767 "Wrong number of operands allocated");
782 Args, OpB, CI->
getName(), InsertPt);
796 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
797 "div by 0. Ignoring. Likely the function "
799 <<
" has 0 entry count, and contains call instructions "
800 "with non-zero prof info.");
813 const Twine &NameStr) {
818 "NumOperands not set up?");
823 "Invoking a function with bad signature");
825 for (
unsigned i = 0, e = Args.size(); i != e; i++)
828 "Invoking a function with a bad signature!");
848 "Wrong number of operands allocated");
851 std::copy(
II.bundle_op_info_begin(),
II.bundle_op_info_end(),
858 std::vector<Value *> Args(
II->arg_begin(),
II->arg_end());
861 II->getFunctionType(),
II->getCalledOperand(),
II->getNormalDest(),
862 II->getUnwindDest(), Args, OpB,
II->getName(), InsertPt);
863 NewII->setCallingConv(
II->getCallingConv());
864 NewII->SubclassOptionalData =
II->SubclassOptionalData;
865 NewII->setAttributes(
II->getAttributes());
866 NewII->setDebugLoc(
II->getDebugLoc());
871 return cast<LandingPadInst>(
getUnwindDest()->getFirstNonPHIIt());
876 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
877 "div by 0. Ignoring. Likely the function "
879 <<
" has 0 entry count, and contains call instructions "
880 "with non-zero prof info.");
894 const Twine &NameStr) {
898 IndirectDests.
size(),
900 "NumOperands not set up?");
905 "Calling a function with bad signature");
907 for (
unsigned i = 0, e = Args.size(); i != e; i++)
910 "Calling a function with a bad signature!");
915 std::copy(Args.begin(), Args.end(),
op_begin());
916 NumIndirectDests = IndirectDests.
size();
918 for (
unsigned i = 0; i != NumIndirectDests; ++i)
933 "Wrong number of operands allocated");
939 NumIndirectDests = CBI.NumIndirectDests;
953 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
965 "Wrong number of operands allocated");
991 AllocMarker, InsertBefore) {
1003 "Wrong number of operands allocated");
1004 setSubclassData<Instruction::OpaqueField>(
1011void CleanupReturnInst::init(
Value *CleanupPad,
BasicBlock *UnwindBB) {
1013 setSubclassData<UnwindDestField>(
true);
1015 Op<0>() = CleanupPad;
1020CleanupReturnInst::CleanupReturnInst(
Value *CleanupPad,
BasicBlock *UnwindBB,
1025 init(CleanupPad, UnwindBB);
1046 AllocMarker, InsertBefore) {
1054CatchSwitchInst::CatchSwitchInst(
Value *ParentPad,
BasicBlock *UnwindDest,
1055 unsigned NumReservedValues,
1056 const Twine &NameStr,
1061 ++NumReservedValues;
1062 init(ParentPad, UnwindDest, NumReservedValues + 1);
1073 for (
unsigned I = 1, E = ReservedSpace;
I != E; ++
I)
1078 unsigned NumReservedValues) {
1079 assert(ParentPad && NumReservedValues);
1081 ReservedSpace = NumReservedValues;
1085 Op<0>() = ParentPad;
1087 setSubclassData<UnwindDestField>(
true);
1094void CatchSwitchInst::growOperands(
unsigned Size) {
1096 assert(NumOperands >= 1);
1097 if (ReservedSpace >= NumOperands +
Size)
1099 ReservedSpace = (NumOperands +
Size / 2) * 2;
1106 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
1114 for (
Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1115 *CurDst = *(CurDst + 1);
1126 const Twine &NameStr) {
1136 "Wrong number of operands allocated");
1143 const Twine &NameStr,
1146 init(ParentPad, Args, NameStr);
1156 AllocMarker, InsertBefore) {}
1162void BranchInst::AssertOK() {
1165 "May only branch on boolean predicates!");
1172 assert(IfTrue &&
"Branch destination may not be null!");
1193 "Wrong number of operands allocated");
1197 Op<-3>() = BI.
Op<-3>();
1198 Op<-2>() = BI.
Op<-2>();
1200 Op<-1>() = BI.
Op<-1>();
1206 "Cannot swap successors of an unconditional branch");
1222 assert(!isa<BasicBlock>(Amt) &&
1223 "Passed basic block into allocation size parameter! Use other ctor");
1225 "Allocation array size is not an integer!");
1232 "Insertion position cannot be null when alignment not provided!");
1235 "BB must be in a Function when alignment not provided!");
1237 return DL.getPrefTypeAlign(Ty);
1254 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1263 return !CI->isOne();
1283void LoadInst::AssertOK() {
1285 "Ptr must have pointer type.");
1290 "Insertion position cannot be null when alignment not provided!");
1293 "BB must be in a Function when alignment not provided!");
1295 return DL.getABITypeAlign(Ty);
1310 SyncScope::System, InsertBef) {}
1327void StoreInst::AssertOK() {
1330 "Ptr must have pointer type!");
1345 SyncScope::System, InsertBefore) {}
1377 "All operands must be non-null!");
1379 "Ptr must have pointer type!");
1381 "Cmp type and NewVal type must be same!");
1392 AtomicCmpXchg, AllocMarker, InsertBefore) {
1393 Init(
Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1404 "atomicrmw instructions can only be atomic.");
1406 "atomicrmw instructions cannot be unordered.");
1416 "Ptr must have pointer type!");
1418 "AtomicRMW instructions must be atomic!");
1469 return "<invalid operation>";
1493 "NumOperands not initialized?");
1502 SourceElementType(GEPI.SourceElementType),
1503 ResultElementType(GEPI.ResultElementType) {
1505 "Wrong number of operands allocated");
1511 if (
auto *
Struct = dyn_cast<StructType>(Ty)) {
1516 if (!
Idx->getType()->isIntOrIntVectorTy())
1518 if (
auto *Array = dyn_cast<ArrayType>(Ty))
1519 return Array->getElementType();
1520 if (
auto *
Vector = dyn_cast<VectorType>(Ty))
1521 return Vector->getElementType();
1526 if (
auto *
Struct = dyn_cast<StructType>(Ty)) {
1531 if (
auto *Array = dyn_cast<ArrayType>(Ty))
1532 return Array->getElementType();
1533 if (
auto *
Vector = dyn_cast<VectorType>(Ty))
1534 return Vector->getElementType();
1538template <
typename IndexTy>
1540 if (IdxList.
empty())
1542 for (IndexTy V : IdxList.
slice(1)) {
1569 if (!CI->isZero())
return false;
1602 return cast<GEPOperator>(
this)->getNoWrapFlags();
1606 return cast<GEPOperator>(
this)->isInBounds();
1610 return cast<GEPOperator>(
this)->hasNoUnsignedSignedWrap();
1614 return cast<GEPOperator>(
this)->hasNoUnsignedWrap();
1620 return cast<GEPOperator>(
this)->accumulateConstantOffset(
DL,
Offset);
1626 APInt &ConstantOffset)
const {
1628 return cast<GEPOperator>(
this)->collectOffset(
DL,
BitWidth, VariableOffsets,
1636ExtractElementInst::ExtractElementInst(
Value *Val,
Value *Index,
1640 ExtractElement, AllocMarker, InsertBef) {
1641 assert(isValidOperands(Val, Index) &&
1642 "Invalid extractelement instruction operands!");
1658InsertElementInst::InsertElementInst(
Value *Vec,
Value *Elt,
Value *Index,
1663 "Invalid insertelement instruction operands!");
1671 const Value *Index) {
1675 if (Elt->
getType() != cast<VectorType>(Vec->
getType())->getElementType())
1678 if (!Index->getType()->isIntegerTy())
1688 assert(V &&
"Cannot create placeholder of nullptr V");
1709 ShuffleVector, AllocMarker, InsertBefore) {
1711 "Invalid shuffle vector instruction operands!");
1727 ShuffleVector, AllocMarker, InsertBefore) {
1729 "Invalid shuffle vector instruction operands!");
1737 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
1738 int NumMaskElts = ShuffleMask.
size();
1740 for (
int i = 0; i != NumMaskElts; ++i) {
1746 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts &&
"Out-of-range mask");
1747 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1748 NewMask[i] = MaskElt;
1757 if (!isa<VectorType>(V1->
getType()) || V1->
getType() != V2->getType())
1762 cast<VectorType>(V1->
getType())->getElementCount().getKnownMinValue();
1763 for (
int Elem : Mask)
1767 if (isa<ScalableVectorType>(V1->
getType()))
1775 const Value *Mask) {
1782 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1783 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1784 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->
getType()))
1788 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1793 if (isa<ScalableVectorType>(MaskTy))
1796 unsigned V1Size = cast<FixedVectorType>(V1->
getType())->getNumElements();
1798 if (
const auto *CI = dyn_cast<ConstantInt>(Mask))
1799 return !CI->uge(V1Size * 2);
1801 if (
const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1802 for (
Value *
Op : MV->operands()) {
1803 if (
auto *CI = dyn_cast<ConstantInt>(
Op)) {
1804 if (CI->uge(V1Size*2))
1806 }
else if (!isa<UndefValue>(
Op)) {
1813 if (
const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1814 for (
unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->
getNumElements();
1816 if (CDS->getElementAsInteger(i) >= V1Size*2)
1826 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1828 if (isa<ConstantAggregateZero>(Mask)) {
1829 Result.resize(EC.getKnownMinValue(), 0);
1833 Result.reserve(EC.getKnownMinValue());
1835 if (EC.isScalable()) {
1836 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
1837 "Scalable vector shuffle mask must be undef or zeroinitializer");
1838 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1839 for (
unsigned I = 0;
I < EC.getKnownMinValue(); ++
I)
1840 Result.emplace_back(MaskVal);
1844 unsigned NumElts = EC.getKnownMinValue();
1846 if (
auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1847 for (
unsigned i = 0; i != NumElts; ++i)
1848 Result.push_back(CDS->getElementAsInteger(i));
1851 for (
unsigned i = 0; i != NumElts; ++i) {
1852 Constant *
C = Mask->getAggregateElement(i);
1853 Result.push_back(isa<UndefValue>(
C) ? -1 :
1854 cast<ConstantInt>(
C)->getZExtValue());
1859 ShuffleMask.
assign(Mask.begin(), Mask.end());
1866 if (isa<ScalableVectorType>(ResultTy)) {
1874 for (
int Elem : Mask) {
1878 MaskConst.
push_back(ConstantInt::get(Int32Ty, Elem));
1884 assert(!Mask.empty() &&
"Shuffle mask must contain elements");
1885 bool UsesLHS =
false;
1886 bool UsesRHS =
false;
1887 for (
int I : Mask) {
1890 assert(
I >= 0 &&
I < (NumOpElts * 2) &&
1891 "Out-of-bounds shuffle mask element");
1892 UsesLHS |= (
I < NumOpElts);
1893 UsesRHS |= (
I >= NumOpElts);
1894 if (UsesLHS && UsesRHS)
1898 return UsesLHS || UsesRHS;
1910 for (
int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1913 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1920 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1928 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1937 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1940 if (Mask[
I] != (NumSrcElts - 1 -
I) &&
1941 Mask[
I] != (NumSrcElts + NumSrcElts - 1 -
I))
1948 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1952 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1955 if (Mask[
I] != 0 && Mask[
I] != NumSrcElts)
1962 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1967 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1970 if (Mask[
I] !=
I && Mask[
I] != (NumSrcElts +
I))
1983 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1986 int Sz = Mask.size();
1991 if (Mask[0] != 0 && Mask[0] != 1)
1996 if ((Mask[1] - Mask[0]) != NumSrcElts)
2001 for (
int I = 2;
I < Sz; ++
I) {
2002 int MaskEltVal = Mask[
I];
2003 if (MaskEltVal == -1)
2005 int MaskEltPrevVal = Mask[
I - 2];
2006 if (MaskEltVal - MaskEltPrevVal != 2)
2014 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
2017 int StartIndex = -1;
2018 for (
int I = 0, E = Mask.size();
I != E; ++
I) {
2019 int MaskEltVal = Mask[
I];
2020 if (MaskEltVal == -1)
2023 if (StartIndex == -1) {
2026 if (MaskEltVal <
I || NumSrcElts <= (MaskEltVal -
I))
2029 StartIndex = MaskEltVal -
I;
2034 if (MaskEltVal != (StartIndex +
I))
2038 if (StartIndex == -1)
2047 int NumSrcElts,
int &Index) {
2053 if (NumSrcElts <= (
int)Mask.size())
2058 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2062 int Offset = (M % NumSrcElts) - i;
2063 if (0 <= SubIndex && SubIndex !=
Offset)
2068 if (0 <= SubIndex && SubIndex + (
int)Mask.size() <= NumSrcElts) {
2076 int NumSrcElts,
int &NumSubElts,
2078 int NumMaskElts = Mask.size();
2081 if (NumMaskElts < NumSrcElts)
2092 bool Src0Identity =
true;
2093 bool Src1Identity =
true;
2095 for (
int i = 0; i != NumMaskElts; ++i) {
2101 if (M < NumSrcElts) {
2103 Src0Identity &= (M == i);
2107 Src1Identity &= (M == (i + NumSrcElts));
2109 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2110 "unknown shuffle elements");
2112 "2-source shuffle not found");
2118 int Src0Hi = NumMaskElts - Src0Elts.
countl_zero();
2119 int Src1Hi = NumMaskElts - Src1Elts.
countl_zero();
2124 int NumSub1Elts = Src1Hi - Src1Lo;
2127 NumSubElts = NumSub1Elts;
2136 int NumSub0Elts = Src0Hi - Src0Lo;
2139 NumSubElts = NumSub0Elts;
2151 if (isa<ScalableVectorType>(
getType()))
2154 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2155 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2156 if (NumMaskElts <= NumOpElts)
2165 for (
int i = NumOpElts; i < NumMaskElts; ++i)
2175 if (isa<ScalableVectorType>(
getType()))
2178 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2179 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2180 if (NumMaskElts >= NumOpElts)
2188 if (isa<UndefValue>(
Op<0>()) || isa<UndefValue>(
Op<1>()))
2193 if (isa<ScalableVectorType>(
getType()))
2196 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2197 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2198 if (NumMaskElts != NumOpElts * 2)
2209 int ReplicationFactor,
int VF) {
2210 assert(Mask.size() == (
unsigned)ReplicationFactor * VF &&
2211 "Unexpected mask size.");
2213 for (
int CurrElt :
seq(VF)) {
2214 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2215 assert(CurrSubMask.
size() == (
unsigned)ReplicationFactor &&
2216 "Run out of mask?");
2217 Mask = Mask.drop_front(ReplicationFactor);
2218 if (!
all_of(CurrSubMask, [CurrElt](
int MaskElt) {
2223 assert(Mask.empty() &&
"Did not consume the whole mask?");
2229 int &ReplicationFactor,
int &VF) {
2233 Mask.take_while([](
int MaskElt) {
return MaskElt == 0; }).
size();
2234 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2236 VF = Mask.size() / ReplicationFactor;
2248 for (
int MaskElt : Mask) {
2252 if (MaskElt < Largest)
2254 Largest = std::max(Largest, MaskElt);
2258 for (
int PossibleReplicationFactor :
2259 reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2260 if (Mask.size() % PossibleReplicationFactor != 0)
2262 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2266 ReplicationFactor = PossibleReplicationFactor;
2278 if (isa<ScalableVectorType>(
getType()))
2281 VF = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2282 if (ShuffleMask.
size() % VF != 0)
2284 ReplicationFactor = ShuffleMask.
size() / VF;
2290 if (VF <= 0 || Mask.size() <
static_cast<unsigned>(VF) ||
2291 Mask.size() % VF != 0)
2293 for (
unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2298 for (
int Idx : SubMask) {
2312 if (isa<ScalableVectorType>(
getType()))
2334 unsigned NumElts = Mask.size();
2335 if (NumElts % Factor)
2338 unsigned LaneLen = NumElts / Factor;
2342 StartIndexes.
resize(Factor);
2348 for (;
I < Factor;
I++) {
2349 unsigned SavedLaneValue;
2350 unsigned SavedNoUndefs = 0;
2353 for (J = 0; J < LaneLen - 1; J++) {
2355 unsigned Lane = J * Factor +
I;
2356 unsigned NextLane = Lane + Factor;
2357 int LaneValue = Mask[Lane];
2358 int NextLaneValue = Mask[NextLane];
2361 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2362 LaneValue + 1 != NextLaneValue)
2366 if (LaneValue >= 0 && NextLaneValue < 0) {
2367 SavedLaneValue = LaneValue;
2376 if (SavedNoUndefs > 0 && LaneValue < 0) {
2378 if (NextLaneValue >= 0 &&
2379 SavedLaneValue + SavedNoUndefs != (
unsigned)NextLaneValue)
2384 if (J < LaneLen - 1)
2390 StartMask = Mask[
I];
2391 }
else if (Mask[(LaneLen - 1) * Factor +
I] >= 0) {
2393 StartMask = Mask[(LaneLen - 1) * Factor +
I] - J;
2394 }
else if (SavedNoUndefs > 0) {
2396 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2403 if (StartMask + LaneLen > NumInputElts)
2406 StartIndexes[
I] = StartMask;
2419 for (
unsigned Idx = 0;
Idx < Factor;
Idx++) {
2424 for (;
I < Mask.size();
I++)
2425 if (Mask[
I] >= 0 &&
static_cast<unsigned>(Mask[
I]) !=
Idx +
I * Factor)
2428 if (
I == Mask.size()) {
2442 int NumElts = Mask.size();
2443 assert((NumElts % NumSubElts) == 0 &&
"Illegal shuffle mask");
2446 for (
int i = 0; i != NumElts; i += NumSubElts) {
2447 for (
int j = 0; j != NumSubElts; ++j) {
2448 int M = Mask[i + j];
2451 if (M < i || M >= i + NumSubElts)
2453 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2454 if (0 <= RotateAmt &&
Offset != RotateAmt)
2463 ArrayRef<int> Mask,
unsigned EltSizeInBits,
unsigned MinSubElts,
2464 unsigned MaxSubElts,
unsigned &NumSubElts,
unsigned &RotateAmt) {
2465 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2467 if (EltRotateAmt < 0)
2469 RotateAmt = EltRotateAmt * EltSizeInBits;
2488 assert(!Idxs.
empty() &&
"InsertValueInst must have at least one index");
2491 Val->
getType() &&
"Inserted value must match indexed type!");
2501 Indices(IVI.Indices) {
2516 assert(!Idxs.
empty() &&
"ExtractValueInst must have at least one index");
2525 Indices(EVI.Indices) {
2537 for (
unsigned Index : Idxs) {
2544 if (
ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2545 if (Index >= AT->getNumElements())
2547 Agg = AT->getElementType();
2548 }
else if (
StructType *ST = dyn_cast<StructType>(Agg)) {
2549 if (Index >= ST->getNumElements())
2551 Agg = ST->getElementType(Index);
2557 return const_cast<Type*
>(Agg);
2577void UnaryOperator::AssertOK() {
2584 "Unary operation should return same type as operand!");
2586 "Tried to create a floating-point operation on a "
2587 "non-floating-point type!");
2600 :
Instruction(Ty, iType, AllocMarker, InsertBefore) {
2607void BinaryOperator::AssertOK() {
2609 (void)LHS; (void)RHS;
2611 "Binary operator operand types must match!");
2617 "Arithmetic operation should return same type as operands!");
2619 "Tried to create an integer operation on a non-integer type!");
2621 case FAdd:
case FSub:
2624 "Arithmetic operation should return same type as operands!");
2626 "Tried to create a floating-point operation on a "
2627 "non-floating-point type!");
2632 "Arithmetic operation should return same type as operands!");
2634 "Incorrect operand type (not integer) for S/UDIV");
2638 "Arithmetic operation should return same type as operands!");
2640 "Incorrect operand type (not floating point) for FDIV");
2645 "Arithmetic operation should return same type as operands!");
2647 "Incorrect operand type (not integer) for S/UREM");
2651 "Arithmetic operation should return same type as operands!");
2653 "Incorrect operand type (not floating point) for FREM");
2659 "Shift operation should return same type as operands!");
2661 "Tried to create a shift operation on a non-integral type!");
2666 "Logical operation should return same type as operands!");
2668 "Tried to create a logical operation on a non-integral type!");
2679 "Cannot create binary operator with two operands of differing type!");
2685 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2692 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2693 return BinaryOperator::CreateNSWSub(Zero,
Op,
Name, InsertBefore);
2700 Op->getType(),
Name, InsertBefore);
2720 cast<Instruction>(
this)->getMetadata(LLVMContext::MD_fpmath);
2734 default:
return false;
2735 case Instruction::ZExt:
2736 case Instruction::SExt:
2737 case Instruction::Trunc:
2739 case Instruction::BitCast:
2760 case Instruction::Trunc:
2761 case Instruction::ZExt:
2762 case Instruction::SExt:
2763 case Instruction::FPTrunc:
2764 case Instruction::FPExt:
2765 case Instruction::UIToFP:
2766 case Instruction::SIToFP:
2767 case Instruction::FPToUI:
2768 case Instruction::FPToSI:
2769 case Instruction::AddrSpaceCast:
2772 case Instruction::BitCast:
2774 case Instruction::PtrToInt:
2775 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2777 case Instruction::IntToPtr:
2778 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2798 Type *DstIntPtrTy) {
2829 const unsigned numCastOps =
2830 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2831 static const uint8_t CastResults[numCastOps][numCastOps] = {
2837 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2838 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0},
2839 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0},
2840 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2841 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2842 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2843 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2844 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2845 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0},
2846 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0},
2847 { 99,99,99,99,99,99,99,99,99,11,99,15, 0},
2848 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14},
2849 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12},
2856 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2857 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2858 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2861 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2862 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2863 if (!AreBothBitcasts)
2866 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2867 [secondOp-Instruction::CastOpsBegin];
2912 return Instruction::BitCast;
2915 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2918 if (MidSize >= PtrSize)
2919 return Instruction::BitCast;
2929 return Instruction::BitCast;
2930 if (SrcSize < DstSize)
2932 if (SrcSize > DstSize)
2938 return Instruction::ZExt;
2946 if (SrcSize <= PtrSize && SrcSize == DstSize)
2947 return Instruction::BitCast;
2954 return Instruction::AddrSpaceCast;
2955 return Instruction::BitCast;
2966 "Illegal addrspacecast, bitcast sequence!");
2971 return Instruction::AddrSpaceCast;
2981 "Illegal inttoptr, bitcast sequence!");
2993 "Illegal bitcast, ptrtoint sequence!");
2998 return Instruction::UIToFP;
3013 case Trunc:
return new TruncInst (S, Ty,
Name, InsertBefore);
3014 case ZExt:
return new ZExtInst (S, Ty,
Name, InsertBefore);
3015 case SExt:
return new SExtInst (S, Ty,
Name, InsertBefore);
3017 case FPExt:
return new FPExtInst (S, Ty,
Name, InsertBefore);
3036 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3037 return Create(Instruction::ZExt, S, Ty,
Name, InsertBefore);
3043 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3044 return Create(Instruction::SExt, S, Ty,
Name, InsertBefore);
3050 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3051 return Create(Instruction::Trunc, S, Ty,
Name, InsertBefore);
3062 cast<VectorType>(Ty)->getElementCount() ==
3063 cast<VectorType>(S->
getType())->getElementCount()) &&
3067 return Create(Instruction::PtrToInt, S, Ty,
Name, InsertBefore);
3078 return Create(Instruction::AddrSpaceCast, S, Ty,
Name, InsertBefore);
3080 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3087 return Create(Instruction::PtrToInt, S, Ty,
Name, InsertBefore);
3089 return Create(Instruction::IntToPtr, S, Ty,
Name, InsertBefore);
3091 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3098 "Invalid integer cast");
3099 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3102 (SrcBits == DstBits ? Instruction::BitCast :
3103 (SrcBits > DstBits ? Instruction::Trunc :
3104 (
isSigned ? Instruction::SExt : Instruction::ZExt)));
3112 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3114 assert((
C->getType() == Ty || SrcBits != DstBits) &&
"Invalid cast");
3116 (SrcBits == DstBits ? Instruction::BitCast :
3117 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3125 if (SrcTy == DestTy)
3128 if (
VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3129 if (
VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3130 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3132 SrcTy = SrcVecTy->getElementType();
3133 DestTy = DestVecTy->getElementType();
3138 if (
PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3139 if (
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3140 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3152 if (SrcBits != DestBits)
3161 if (
auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3162 if (
auto *IntTy = dyn_cast<IntegerType>(DestTy))
3163 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3164 !
DL.isNonIntegralPointerType(PtrTy));
3165 if (
auto *PtrTy = dyn_cast<PointerType>(DestTy))
3166 if (
auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3167 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3168 !
DL.isNonIntegralPointerType(PtrTy));
3181 const Value *Src,
bool SrcIsSigned,
Type *DestTy,
bool DestIsSigned) {
3182 Type *SrcTy = Src->getType();
3185 "Only first class types are castable!");
3187 if (SrcTy == DestTy)
3191 if (
VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3192 if (
VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3193 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3196 SrcTy = SrcVecTy->getElementType();
3197 DestTy = DestVecTy->getElementType();
3207 if (DestBits < SrcBits)
3209 else if (DestBits > SrcBits) {
3223 assert(DestBits == SrcBits &&
3224 "Casting vector to integer of different width");
3228 "Casting from a value that is not first-class type");
3238 if (DestBits < SrcBits) {
3240 }
else if (DestBits > SrcBits) {
3246 assert(DestBits == SrcBits &&
3247 "Casting vector to floating point of different width");
3252 assert(DestBits == SrcBits &&
3253 "Illegal cast to vector (wrong type or size)");
3258 return AddrSpaceCast;
3284 bool SrcIsVec = isa<VectorType>(SrcTy);
3285 bool DstIsVec = isa<VectorType>(DstTy);
3292 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3294 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3299 default:
return false;
3300 case Instruction::Trunc:
3302 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3303 case Instruction::ZExt:
3305 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3306 case Instruction::SExt:
3308 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3309 case Instruction::FPTrunc:
3311 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3312 case Instruction::FPExt:
3314 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3315 case Instruction::UIToFP:
3316 case Instruction::SIToFP:
3319 case Instruction::FPToUI:
3320 case Instruction::FPToSI:
3323 case Instruction::PtrToInt:
3327 case Instruction::IntToPtr:
3331 case Instruction::BitCast: {
3337 if (!SrcPtrTy != !DstPtrTy)
3350 if (SrcIsVec && DstIsVec)
3351 return SrcEC == DstEC;
3359 case Instruction::AddrSpaceCast: {
3371 return SrcEC == DstEC;
3472 if (
Op == Instruction::ICmp) {
3500 if (
ICmpInst *IC = dyn_cast<ICmpInst>(
this))
3503 cast<FCmpInst>(
this)->swapOperands();
3507 if (
const ICmpInst *IC = dyn_cast<ICmpInst>(
this))
3508 return IC->isCommutative();
3509 return cast<FCmpInst>(
this)->isCommutative();
3523 auto *
LHS = dyn_cast<Constant>(Cmp->getOperand(0));
3524 auto *
RHS = dyn_cast<Constant>(Cmp->getOperand(1));
3585 default:
return "unknown";
3766 switch (predicate) {
3767 default:
return false;
3774 switch (predicate) {
3775 default:
return false;
3892 switch (predicate) {
3893 default:
return false;
3901 switch (predicate) {
3902 default:
return false;
3911 default:
return false;
3921 default:
return false;
3967 return std::nullopt;
3976 if (
A.Pred ==
B.Pred)
3980 if (
A.HasSameSign &&
3983 if (
B.HasSameSign &&
3994 if (
auto *ICI = dyn_cast<ICmpInst>(Cmp))
3995 return ICI->getCmpPredicate();
3996 return Cmp->getPredicate();
4013 ReservedSpace = NumReserved;
4028 AllocMarker, InsertBefore) {
4034 init(
SI.getCondition(),
SI.getDefaultDest(),
SI.getNumOperands());
4035 setNumHungOffUseOperands(
SI.getNumOperands());
4036 Use *OL = getOperandList();
4037 const Use *InOL =
SI.getOperandList();
4038 for (
unsigned i = 2, E =
SI.getNumOperands(); i != E; i += 2) {
4040 OL[i+1] = InOL[i+1];
4042 SubclassOptionalData =
SI.SubclassOptionalData;
4050 if (OpNo+2 > ReservedSpace)
4053 assert(OpNo+1 < ReservedSpace &&
"Growing didn't work!");
4063 unsigned idx =
I->getCaseIndex();
4071 if (2 + (idx + 1) * 2 != NumOps) {
4072 OL[2 + idx * 2] = OL[NumOps - 2];
4073 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4077 OL[NumOps-2].
set(
nullptr);
4078 OL[NumOps-2+1].
set(
nullptr);
4081 return CaseIt(
this, idx);
4087void SwitchInst::growOperands() {
4089 unsigned NumOps = e*3;
4091 ReservedSpace = NumOps;
4096 assert(Changed &&
"called only if metadata has changed");
4101 assert(SI.getNumSuccessors() == Weights->size() &&
4102 "num of prof branch_weights must accord with num of successors");
4104 bool AllZeroes =
all_of(*Weights, [](
uint32_t W) {
return W == 0; });
4106 if (AllZeroes || Weights->size() < 2)
4119 "not correspond to number of succesors");
4125 this->Weights = std::move(Weights);
4131 assert(SI.getNumSuccessors() == Weights->size() &&
4132 "num of prof branch_weights must accord with num of successors");
4137 (*Weights)[
I->getCaseIndex() + 1] = Weights->back();
4138 Weights->pop_back();
4140 return SI.removeCase(
I);
4146 SI.addCase(OnVal, Dest);
4148 if (!Weights && W && *W) {
4151 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4152 }
else if (Weights) {
4154 Weights->push_back(W.value_or(0));
4157 assert(SI.getNumSuccessors() == Weights->size() &&
4158 "num of prof branch_weights must accord with num of successors");
4167 return SI.eraseFromParent();
4173 return std::nullopt;
4174 return (*Weights)[idx];
4186 auto &OldW = (*Weights)[idx];
4198 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4199 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4203 return std::nullopt;
4210void IndirectBrInst::init(
Value *
Address,
unsigned NumDests) {
4212 "Address of indirectbr must be a pointer");
4213 ReservedSpace = 1+NumDests;
4224void IndirectBrInst::growOperands() {
4226 unsigned NumOps = e*2;
4228 ReservedSpace = NumOps;
4232IndirectBrInst::IndirectBrInst(
Value *
Address,
unsigned NumCases,
4235 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4244 Use *OL = getOperandList();
4255 if (OpNo+1 > ReservedSpace)
4258 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
4272 OL[idx+1] = OL[NumOps-1];
4275 OL[NumOps-1].
set(
nullptr);
4347 Result->setWeak(
isWeak());
4420 return new (AllocMarker)
CallInst(*
this, AllocMarker);
4423 return new (AllocMarker)
CallInst(*
this, AllocMarker);
4454 return new (AllocMarker)
ReturnInst(*
this, AllocMarker);
4459 return new (AllocMarker)
BranchInst(*
this, AllocMarker);
4473 return new (AllocMarker)
InvokeInst(*
this, AllocMarker);
4476 return new (AllocMarker)
InvokeInst(*
this, AllocMarker);
4484 return new (AllocMarker)
CallBrInst(*
this, AllocMarker);
4487 return new (AllocMarker)
CallBrInst(*
this, AllocMarker);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static bool isSigned(unsigned int Opcode)
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
static Value * createPlaceholderForShuffleVector(Value *V)
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static Value * getAISize(LLVMContext &Context, Value *Amt)
static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
float convertToFloat() const
Converts this APFloat to host float value.
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This class represents a conversion between pointers from one address space to another.
AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
an instruction to allocate memory on the stack
std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
An instruction that atomically checks whether a specified value is in a memory location,...
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
AtomicRMWInst * cloneImpl() const
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
BinOp getOperation() const
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index=nullptr) const
Return true if the specified attribute is set for at least one parameter or for the return value.
FPClassTest getRetNoFPClass() const
Get the disallowed floating-point classes of the return value.
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
FPClassTest getParamNoFPClass(unsigned ArgNo) const
Get the disallowed floating-point classes of the argument value.
MemoryEffects getMemoryEffects() const
Returns memory effects of the function.
CaptureInfo getCaptureInfo() const
const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
static Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Function * getParent() const
Return the enclosing method, or null if none.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
bool swapOperands()
Exchange the two operands to this instruction.
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
BinaryOperator * cloneImpl() const
This class represents a no-op cast from one type to another.
BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
void swapSuccessors()
Swap the successors of this branch instruction.
BranchInst * cloneImpl() const
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
bool isInlineAsm() const
Check if this call is an inline asm statement.
BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
Attribute getRetAttr(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind for the return value.
void setCallingConv(CallingConv::ID CC)
FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
bool paramHasNonNullAttr(unsigned ArgNo, bool AllowUndefOrPoison) const
Return true if this argument has the nonnull attribute on either the CallBase instruction or the call...
MemoryEffects getMemoryEffects() const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
bool doesNotAccessMemory() const
Determine if the call does not access memory.
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
void setOnlyAccessesArgMemory()
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
OperandBundleUse operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const
Simple helper function to map a BundleOpInfo to an OperandBundleUse.
void setOnlyAccessesInaccessibleMemOrArgMem()
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setDoesNotAccessMemory()
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
void setOnlyReadsMemory()
static CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
CaptureInfo getCaptureInfo(unsigned OpNo) const
Return which pointer components this operand may capture.
Value * getCalledOperand() const
void setOnlyWritesMemory()
op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
bool isReturnNonNull() const
Return true if the return value is known to be not null.
Value * getArgOperand(unsigned i) const
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
void setOnlyAccessesInaccessibleMemory()
static CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
void setCalledOperand(Value *V)
static CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void setMemoryEffects(MemoryEffects ME)
bool hasOperandBundles() const
Return true if this User has any operand bundles.
bool isTailCall() const
Tests if this call site is marked as a tail call.
Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
TailCallKind getTailCallKind() const
CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents which components of the pointer may be captured in which location.
static CaptureInfo none()
Create CaptureInfo that does not capture any components of the pointer.
static CaptureInfo all()
Create CaptureInfo that may capture all components of the pointer.
This is the base class for all instructions that perform data casts.
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
static CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
CatchReturnInst * cloneImpl() const
void setUnwindDest(BasicBlock *UnwindDest)
void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
CatchSwitchInst * cloneImpl() const
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
void removeHandler(handler_iterator HI)
bool hasUnwindDest() const
CleanupReturnInst * cloneImpl() const
This class is the base class for the comparison instructions.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isEquality() const
Determine if this is an equals/not equals predicate.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
bool isNonStrictPredicate() const
bool isFPPredicate() const
void swapOperands()
This is just a convenience that dispatches to the subclasses.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static StringRef getPredicateName(Predicate P)
Predicate getPredicate() const
Return the predicate for this instruction.
bool isStrictPredicate() const
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
bool isIntPredicate() const
static bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
CmpPredicate()
Default constructor.
static CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
bool hasSameSign() const
Query samesign information, for optimizations.
static CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
This class represents an extension of floating point types.
FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
This class represents a cast from floating point to signed integer.
FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
This class represents a cast from floating point to unsigned integer.
FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a truncation of floating point types.
FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
An instruction for ordering other memory operations.
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
FenceInst * cloneImpl() const
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
This class represents a freeze function that returns random concrete value if an operand is either a ...
FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
FuncletPadInst * cloneImpl() const
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
GetElementPtrInst * cloneImpl() const
bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
void addDestination(BasicBlock *Dest)
Add a destination.
void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
IndirectBrInst * cloneImpl() const
This instruction inserts a single (scalar) element into a VectorType value.
InsertElementInst * cloneImpl() const
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
BasicBlock * getBasicBlock()
This instruction inserts a struct field of array element value into an aggregate value.
InsertValueInst * cloneImpl() const
BitfieldElement::Type getSubclassData() const
bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
This class represents a cast from an integer to a pointer.
IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
InvokeInst * cloneImpl() const
LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
void setUnwindDest(BasicBlock *B)
void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LandingPadInst * cloneImpl() const
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
An instruction for reading from memory.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
const MDOperand & getOperand(unsigned I) const
static MemoryEffectsBase readOnly()
Create MemoryEffectsBase that can read any memory.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access argument memory.
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access inaccessible memory.
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static MemoryEffectsBase writeOnly()
Create MemoryEffectsBase that can write any memory.
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access inaccessible or argument memory.
static MemoryEffectsBase none()
Create MemoryEffectsBase that cannot read or write any memory.
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
A container for an operand bundle being viewed as a set of values rather than a set of uses.
iterator_range< const_block_iterator > blocks() const
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
PHINode * cloneImpl() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
ResumeInst * cloneImpl() const
Return a value (possibly void), from a function.
ReturnInst * cloneImpl() const
This class represents a sign extension of integer types.
SExtInst * cloneImpl() const
Clone an identical SExtInst.
SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a cast from signed integer to floating point.
SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Class to represent scalable SIMD vectors.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
SelectInst * cloneImpl() const
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
ArrayRef< int > getShuffleMask() const
static bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
VectorType * getType() const
Overload to return most specific vector type.
bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
static bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
ShuffleVectorInst * cloneImpl() const
static bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
void setShuffleMask(ArrayRef< int > Mask)
bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
static bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
static bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
static bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
StoreInst * cloneImpl() const
StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
CaseWeightOpt getSuccessorWeight(unsigned idx)
MDNode * buildProfBranchWeightsMD()
std::optional< uint32_t > CaseWeightOpt
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
SwitchInst * cloneImpl() const
void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
CaseIteratorImpl< CaseHandle > CaseIt
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
This class represents a truncation of integer types.
TruncInst * cloneImpl() const
Clone an identical TruncInst.
TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
bool isAggregateType() const
Return true if the type is an aggregate type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This class represents a cast unsigned integer to floating point.
UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
static UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
UnaryOperator * cloneImpl() const
UnaryOps getOpcode() const
This function has undefined behavior.
UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
const Use * getOperandList() const
void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
void growHungoffUses(unsigned N, bool IsPhi=false)
Grow the number of hung off uses.
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
VAArgInst * cloneImpl() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
base_list_type::iterator iterator
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
unsigned getPointerAddressSpace(const Type *T)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto reverse(ContainerTy &&C)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
auto remove_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly.
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Default
The result values are uniform if and only if all operands are uniform.
void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Summary of memprof metadata on allocations.
Describes an element of a Bitfield.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
A MapVector that performs no allocations if smaller than a certain size.
Indicates this User has operands co-allocated.
Indicates this User has operands and a descriptor co-allocated .