LLVM 22.0.0git
LazyCallGraph.cpp
Go to the documentation of this file.
1//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include "llvm/ADT/ArrayRef.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/Sequence.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
22#include "llvm/IR/Instruction.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/PassManager.h"
27#include "llvm/Support/Debug.h"
30#include <algorithm>
31
32#ifdef EXPENSIVE_CHECKS
33#include "llvm/ADT/ScopeExit.h"
34#endif
35
36using namespace llvm;
37
38#define DEBUG_TYPE "lcg"
39
40template struct LLVM_EXPORT_TEMPLATE Any::TypeId<const LazyCallGraph::SCC *>;
41
42void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43 Edge::Kind EK) {
44 EdgeIndexMap.try_emplace(&TargetN, Edges.size());
45 Edges.emplace_back(TargetN, EK);
46}
47
48void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
50}
51
52bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53 auto IndexMapI = EdgeIndexMap.find(&TargetN);
54 if (IndexMapI == EdgeIndexMap.end())
55 return false;
56
57 Edges[IndexMapI->second] = Edge();
58 EdgeIndexMap.erase(IndexMapI);
59 return true;
60}
61
64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65 if (!EdgeIndexMap.try_emplace(&N, Edges.size()).second)
66 return;
67
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
70}
71
72LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73 assert(!Edges && "Must not have already populated the edges for this node!");
74
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
77
78 Edges = EdgeSequence();
79
83
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
88 // afterward.
89 //
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock &BB : *F)
101 for (Instruction &I : BB) {
102 if (auto *CB = dyn_cast<CallBase>(&I))
103 if (Function *Callee = CB->getCalledFunction())
104 if (!Callee->isDeclaration())
105 if (Callees.insert(Callee).second) {
106 Visited.insert(Callee);
107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108 LazyCallGraph::Edge::Call);
109 }
110
111 for (Value *Op : I.operand_values())
112 if (Constant *C = dyn_cast<Constant>(Op))
113 if (Visited.insert(C).second)
114 Worklist.push_back(C);
115 }
116
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist, Visited, [&](Function &F) {
121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122 LazyCallGraph::Edge::Ref);
123 });
124
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F : G->LibFunctions)
128 if (!Visited.count(F))
129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130 LazyCallGraph::Edge::Ref);
131
132 return *Edges;
133}
134
135void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136 assert(F != &NewF && "Must not replace a function with itself!");
137 F = &NewF;
138}
139
140#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
143}
144#endif
145
147 LibFunc LF;
148
149 // Either this is a normal library function or a "vectorizable"
150 // function. Not using the VFDatabase here because this query
151 // is related only to libraries handled via the TLI.
152 return TLI.getLibFunc(F, LF) ||
153 TLI.isKnownVectorFunctionInLibrary(F.getName());
154}
155
158 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
159 << "\n");
160 for (Function &F : M) {
161 if (F.isDeclaration())
162 continue;
163 // If this function is a known lib function to LLVM then we want to
164 // synthesize reference edges to it to model the fact that LLVM can turn
165 // arbitrary code into a library function call.
166 if (isKnownLibFunction(F, GetTLI(F)))
167 LibFunctions.insert(&F);
168
169 if (F.hasLocalLinkage())
170 continue;
171
172 // External linkage defined functions have edges to them from other
173 // modules.
174 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
175 << "' to entry set of the graph.\n");
176 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
177 }
178
179 // Externally visible aliases of internal functions are also viable entry
180 // edges to the module.
181 for (auto &A : M.aliases()) {
182 if (A.hasLocalLinkage())
183 continue;
184 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
185 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
186 << "' with alias '" << A.getName()
187 << "' to entry set of the graph.\n");
188 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
189 }
190 }
191
192 // Now add entry nodes for functions reachable via initializers to globals.
195 for (GlobalVariable &GV : M.globals())
196 if (GV.hasInitializer())
197 if (Visited.insert(GV.getInitializer()).second)
198 Worklist.push_back(GV.getInitializer());
199
201 dbgs() << " Adding functions referenced by global initializers to the "
202 "entry set.\n");
203 visitReferences(Worklist, Visited, [&](Function &F) {
204 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
205 LazyCallGraph::Edge::Ref);
206 });
207}
208
210 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
211 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
212 SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) {
213 updateGraphPtrs();
214}
215
216#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
218 for (RefSCC &RC : postorder_ref_sccs()) {
219 RC.verify();
220 }
221}
222#endif
223
226 // Check whether the analysis, all analyses on functions, or the function's
227 // CFG have been preserved.
229 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
230}
231
233 BPA = std::move(G.BPA);
234 NodeMap = std::move(G.NodeMap);
235 EntryEdges = std::move(G.EntryEdges);
236 SCCBPA = std::move(G.SCCBPA);
237 SCCMap = std::move(G.SCCMap);
238 LibFunctions = std::move(G.LibFunctions);
239 updateGraphPtrs();
240 return *this;
241}
242
243#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
244LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
245 dbgs() << *this << '\n';
246}
247#endif
248
249#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
250void LazyCallGraph::SCC::verify() {
251 assert(OuterRefSCC && "Can't have a null RefSCC!");
252 assert(!Nodes.empty() && "Can't have an empty SCC!");
253
254 for (Node *N : Nodes) {
255 assert(N && "Can't have a null node!");
256 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
257 "Node does not map to this SCC!");
258 assert(N->DFSNumber == -1 &&
259 "Must set DFS numbers to -1 when adding a node to an SCC!");
260 assert(N->LowLink == -1 &&
261 "Must set low link to -1 when adding a node to an SCC!");
262 for (Edge &E : **N)
263 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
264
265#ifdef EXPENSIVE_CHECKS
266 // Verify that all nodes in this SCC can reach all other nodes.
267 SmallVector<Node *, 4> Worklist;
269 Worklist.push_back(N);
270 while (!Worklist.empty()) {
271 Node *VisitingNode = Worklist.pop_back_val();
272 if (!Visited.insert(VisitingNode).second)
273 continue;
274 for (Edge &E : (*VisitingNode)->calls())
275 Worklist.push_back(&E.getNode());
276 }
277 for (Node *NodeToVisit : Nodes) {
278 assert(Visited.contains(NodeToVisit) &&
279 "Cannot reach all nodes within SCC");
280 }
281#endif
282 }
283}
284#endif
285
287 if (this == &C)
288 return false;
289
290 for (Node &N : *this)
291 for (Edge &E : N->calls())
292 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
293 return true;
294
295 // No edges found.
296 return false;
297}
298
299bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
300 if (this == &TargetC)
301 return false;
302
303 LazyCallGraph &G = *OuterRefSCC->G;
304
305 // Start with this SCC.
306 SmallPtrSet<const SCC *, 16> Visited = {this};
307 SmallVector<const SCC *, 16> Worklist = {this};
308
309 // Walk down the graph until we run out of edges or find a path to TargetC.
310 do {
311 const SCC &C = *Worklist.pop_back_val();
312 for (Node &N : C)
313 for (Edge &E : N->calls()) {
314 SCC *CalleeC = G.lookupSCC(E.getNode());
315 if (!CalleeC)
316 continue;
317
318 // If the callee's SCC is the TargetC, we're done.
319 if (CalleeC == &TargetC)
320 return true;
321
322 // If this is the first time we've reached this SCC, put it on the
323 // worklist to recurse through.
324 if (Visited.insert(CalleeC).second)
325 Worklist.push_back(CalleeC);
326 }
327 } while (!Worklist.empty());
328
329 // No paths found.
330 return false;
331}
332
333LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
334
335#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
336LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
337 dbgs() << *this << '\n';
338}
339#endif
340
341#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
342void LazyCallGraph::RefSCC::verify() {
343 assert(G && "Can't have a null graph!");
344 assert(!SCCs.empty() && "Can't have an empty SCC!");
345
346 // Verify basic properties of the SCCs.
348 for (SCC *C : SCCs) {
349 assert(C && "Can't have a null SCC!");
350 C->verify();
351 assert(&C->getOuterRefSCC() == this &&
352 "SCC doesn't think it is inside this RefSCC!");
353 bool Inserted = SCCSet.insert(C).second;
354 assert(Inserted && "Found a duplicate SCC!");
355 auto IndexIt = SCCIndices.find(C);
356 assert(IndexIt != SCCIndices.end() &&
357 "Found an SCC that doesn't have an index!");
358 }
359
360 // Check that our indices map correctly.
361 for (auto [C, I] : SCCIndices) {
362 assert(C && "Can't have a null SCC in the indices!");
363 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
364 assert(SCCs[I] == C && "Index doesn't point to SCC!");
365 }
366
367 // Check that the SCCs are in fact in post-order.
368 for (int I = 0, Size = SCCs.size(); I < Size; ++I) {
369 SCC &SourceSCC = *SCCs[I];
370 for (Node &N : SourceSCC)
371 for (Edge &E : *N) {
372 if (!E.isCall())
373 continue;
374 SCC &TargetSCC = *G->lookupSCC(E.getNode());
375 if (&TargetSCC.getOuterRefSCC() == this) {
376 assert(SCCIndices.find(&TargetSCC)->second <= I &&
377 "Edge between SCCs violates post-order relationship.");
378 continue;
379 }
380 }
381 }
382
383#ifdef EXPENSIVE_CHECKS
384 // Verify that all nodes in this RefSCC can reach all other nodes.
386 for (SCC *C : SCCs) {
387 for (Node &N : *C)
388 Nodes.push_back(&N);
389 }
390 for (Node *N : Nodes) {
391 SmallVector<Node *, 4> Worklist;
393 Worklist.push_back(N);
394 while (!Worklist.empty()) {
395 Node *VisitingNode = Worklist.pop_back_val();
396 if (!Visited.insert(VisitingNode).second)
397 continue;
398 for (Edge &E : **VisitingNode)
399 Worklist.push_back(&E.getNode());
400 }
401 for (Node *NodeToVisit : Nodes) {
402 assert(Visited.contains(NodeToVisit) &&
403 "Cannot reach all nodes within RefSCC");
404 }
405 }
406#endif
407}
408#endif
409
411 if (&RC == this)
412 return false;
413
414 // Search all edges to see if this is a parent.
415 for (SCC &C : *this)
416 for (Node &N : C)
417 for (Edge &E : *N)
418 if (G->lookupRefSCC(E.getNode()) == &RC)
419 return true;
420
421 return false;
422}
423
425 if (&RC == this)
426 return false;
427
428 // For each descendant of this RefSCC, see if one of its children is the
429 // argument. If not, add that descendant to the worklist and continue
430 // searching.
433 Worklist.push_back(this);
434 Visited.insert(this);
435 do {
436 const RefSCC &DescendantRC = *Worklist.pop_back_val();
437 for (SCC &C : DescendantRC)
438 for (Node &N : C)
439 for (Edge &E : *N) {
440 auto *ChildRC = G->lookupRefSCC(E.getNode());
441 if (ChildRC == &RC)
442 return true;
443 if (!ChildRC || !Visited.insert(ChildRC).second)
444 continue;
445 Worklist.push_back(ChildRC);
446 }
447 } while (!Worklist.empty());
448
449 return false;
450}
451
452/// Generic helper that updates a postorder sequence of SCCs for a potentially
453/// cycle-introducing edge insertion.
454///
455/// A postorder sequence of SCCs of a directed graph has one fundamental
456/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
457/// all edges in the SCC DAG point to prior SCCs in the sequence.
458///
459/// This routine both updates a postorder sequence and uses that sequence to
460/// compute the set of SCCs connected into a cycle. It should only be called to
461/// insert a "downward" edge which will require changing the sequence to
462/// restore it to a postorder.
463///
464/// When inserting an edge from an earlier SCC to a later SCC in some postorder
465/// sequence, all of the SCCs which may be impacted are in the closed range of
466/// those two within the postorder sequence. The algorithm used here to restore
467/// the state is as follows:
468///
469/// 1) Starting from the source SCC, construct a set of SCCs which reach the
470/// source SCC consisting of just the source SCC. Then scan toward the
471/// target SCC in postorder and for each SCC, if it has an edge to an SCC
472/// in the set, add it to the set. Otherwise, the source SCC is not
473/// a successor, move it in the postorder sequence to immediately before
474/// the source SCC, shifting the source SCC and all SCCs in the set one
475/// position toward the target SCC. Stop scanning after processing the
476/// target SCC.
477/// 2) If the source SCC is now past the target SCC in the postorder sequence,
478/// and thus the new edge will flow toward the start, we are done.
479/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
480/// SCC between the source and the target, and add them to the set of
481/// connected SCCs, then recurse through them. Once a complete set of the
482/// SCCs the target connects to is known, hoist the remaining SCCs between
483/// the source and the target to be above the target. Note that there is no
484/// need to process the source SCC, it is already known to connect.
485/// 4) At this point, all of the SCCs in the closed range between the source
486/// SCC and the target SCC in the postorder sequence are connected,
487/// including the target SCC and the source SCC. Inserting the edge from
488/// the source SCC to the target SCC will form a cycle out of precisely
489/// these SCCs. Thus we can merge all of the SCCs in this closed range into
490/// a single SCC.
491///
492/// This process has various important properties:
493/// - Only mutates the SCCs when adding the edge actually changes the SCC
494/// structure.
495/// - Never mutates SCCs which are unaffected by the change.
496/// - Updates the postorder sequence to correctly satisfy the postorder
497/// constraint after the edge is inserted.
498/// - Only reorders SCCs in the closed postorder sequence from the source to
499/// the target, so easy to bound how much has changed even in the ordering.
500/// - Big-O is the number of edges in the closed postorder range of SCCs from
501/// source to target.
502///
503/// This helper routine, in addition to updating the postorder sequence itself
504/// will also update a map from SCCs to indices within that sequence.
505///
506/// The sequence and the map must operate on pointers to the SCC type.
507///
508/// Two callbacks must be provided. The first computes the subset of SCCs in
509/// the postorder closed range from the source to the target which connect to
510/// the source SCC via some (transitive) set of edges. The second computes the
511/// subset of the same range which the target SCC connects to via some
512/// (transitive) set of edges. Both callbacks should populate the set argument
513/// provided.
514template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
515 typename ComputeSourceConnectedSetCallableT,
516 typename ComputeTargetConnectedSetCallableT>
519 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
520 SCCIndexMapT &SCCIndices,
521 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
522 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
523 int SourceIdx = SCCIndices[&SourceSCC];
524 int TargetIdx = SCCIndices[&TargetSCC];
525 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
526
527 SmallPtrSet<SCCT *, 4> ConnectedSet;
528
529 // Compute the SCCs which (transitively) reach the source.
530 ComputeSourceConnectedSet(ConnectedSet);
531
532 // Partition the SCCs in this part of the port-order sequence so only SCCs
533 // connecting to the source remain between it and the target. This is
534 // a benign partition as it preserves postorder.
535 auto SourceI = std::stable_partition(
536 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
537 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
538 for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I)
539 SCCIndices.find(SCCs[I])->second = I;
540
541 // If the target doesn't connect to the source, then we've corrected the
542 // post-order and there are no cycles formed.
543 if (!ConnectedSet.count(&TargetSCC)) {
544 assert(SourceI > (SCCs.begin() + SourceIdx) &&
545 "Must have moved the source to fix the post-order.");
546 assert(*std::prev(SourceI) == &TargetSCC &&
547 "Last SCC to move should have bene the target.");
548
549 // Return an empty range at the target SCC indicating there is nothing to
550 // merge.
551 return make_range(std::prev(SourceI), std::prev(SourceI));
552 }
553
554 assert(SCCs[TargetIdx] == &TargetSCC &&
555 "Should not have moved target if connected!");
556 SourceIdx = SourceI - SCCs.begin();
557 assert(SCCs[SourceIdx] == &SourceSCC &&
558 "Bad updated index computation for the source SCC!");
559
560 // See whether there are any remaining intervening SCCs between the source
561 // and target. If so we need to make sure they all are reachable form the
562 // target.
563 if (SourceIdx + 1 < TargetIdx) {
564 ConnectedSet.clear();
565 ComputeTargetConnectedSet(ConnectedSet);
566
567 // Partition SCCs so that only SCCs reached from the target remain between
568 // the source and the target. This preserves postorder.
569 auto TargetI = std::stable_partition(
570 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
571 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
572 for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I)
573 SCCIndices.find(SCCs[I])->second = I;
574 TargetIdx = std::prev(TargetI) - SCCs.begin();
575 assert(SCCs[TargetIdx] == &TargetSCC &&
576 "Should always end with the target!");
577 }
578
579 // At this point, we know that connecting source to target forms a cycle
580 // because target connects back to source, and we know that all the SCCs
581 // between the source and target in the postorder sequence participate in that
582 // cycle.
583 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
584}
585
587 Node &SourceN, Node &TargetN,
588 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
589 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
590 SmallVector<SCC *, 1> DeletedSCCs;
591
592#ifdef EXPENSIVE_CHECKS
593 verify();
594 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
595#endif
596
597 SCC &SourceSCC = *G->lookupSCC(SourceN);
598 SCC &TargetSCC = *G->lookupSCC(TargetN);
599
600 // If the two nodes are already part of the same SCC, we're also done as
601 // we've just added more connectivity.
602 if (&SourceSCC == &TargetSCC) {
603 SourceN->setEdgeKind(TargetN, Edge::Call);
604 return false; // No new cycle.
605 }
606
607 // At this point we leverage the postorder list of SCCs to detect when the
608 // insertion of an edge changes the SCC structure in any way.
609 //
610 // First and foremost, we can eliminate the need for any changes when the
611 // edge is toward the beginning of the postorder sequence because all edges
612 // flow in that direction already. Thus adding a new one cannot form a cycle.
613 int SourceIdx = SCCIndices[&SourceSCC];
614 int TargetIdx = SCCIndices[&TargetSCC];
615 if (TargetIdx < SourceIdx) {
616 SourceN->setEdgeKind(TargetN, Edge::Call);
617 return false; // No new cycle.
618 }
619
620 // Compute the SCCs which (transitively) reach the source.
621 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
622#ifdef EXPENSIVE_CHECKS
623 // Check that the RefSCC is still valid before computing this as the
624 // results will be nonsensical of we've broken its invariants.
625 verify();
626#endif
627 ConnectedSet.insert(&SourceSCC);
628 auto IsConnected = [&](SCC &C) {
629 for (Node &N : C)
630 for (Edge &E : N->calls())
631 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
632 return true;
633
634 return false;
635 };
636
637 for (SCC *C :
638 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
639 if (IsConnected(*C))
640 ConnectedSet.insert(C);
641 };
642
643 // Use a normal worklist to find which SCCs the target connects to. We still
644 // bound the search based on the range in the postorder list we care about,
645 // but because this is forward connectivity we just "recurse" through the
646 // edges.
647 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
648#ifdef EXPENSIVE_CHECKS
649 // Check that the RefSCC is still valid before computing this as the
650 // results will be nonsensical of we've broken its invariants.
651 verify();
652#endif
653 ConnectedSet.insert(&TargetSCC);
654 SmallVector<SCC *, 4> Worklist;
655 Worklist.push_back(&TargetSCC);
656 do {
657 SCC &C = *Worklist.pop_back_val();
658 for (Node &N : C)
659 for (Edge &E : *N) {
660 if (!E.isCall())
661 continue;
662 SCC &EdgeC = *G->lookupSCC(E.getNode());
663 if (&EdgeC.getOuterRefSCC() != this)
664 // Not in this RefSCC...
665 continue;
666 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
667 // Not in the postorder sequence between source and target.
668 continue;
669
670 if (ConnectedSet.insert(&EdgeC).second)
671 Worklist.push_back(&EdgeC);
672 }
673 } while (!Worklist.empty());
674 };
675
676 // Use a generic helper to update the postorder sequence of SCCs and return
677 // a range of any SCCs connected into a cycle by inserting this edge. This
678 // routine will also take care of updating the indices into the postorder
679 // sequence.
681 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
682 ComputeTargetConnectedSet);
683
684 // Run the user's callback on the merged SCCs before we actually merge them.
685 if (MergeCB)
686 MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end()));
687
688 // If the merge range is empty, then adding the edge didn't actually form any
689 // new cycles. We're done.
690 if (MergeRange.empty()) {
691 // Now that the SCC structure is finalized, flip the kind to call.
692 SourceN->setEdgeKind(TargetN, Edge::Call);
693 return false; // No new cycle.
694 }
695
696#ifdef EXPENSIVE_CHECKS
697 // Before merging, check that the RefSCC remains valid after all the
698 // postorder updates.
699 verify();
700#endif
701
702 // Otherwise we need to merge all the SCCs in the cycle into a single result
703 // SCC.
704 //
705 // NB: We merge into the target because all of these functions were already
706 // reachable from the target, meaning any SCC-wide properties deduced about it
707 // other than the set of functions within it will not have changed.
708 for (SCC *C : MergeRange) {
709 assert(C != &TargetSCC &&
710 "We merge *into* the target and shouldn't process it here!");
711 SCCIndices.erase(C);
712 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
713 for (Node *N : C->Nodes)
714 G->SCCMap[N] = &TargetSCC;
715 C->clear();
716 DeletedSCCs.push_back(C);
717 }
718
719 // Erase the merged SCCs from the list and update the indices of the
720 // remaining SCCs.
721 int IndexOffset = MergeRange.end() - MergeRange.begin();
722 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
723 for (SCC *C : make_range(EraseEnd, SCCs.end()))
724 SCCIndices[C] -= IndexOffset;
725
726 // Now that the SCC structure is finalized, flip the kind to call.
727 SourceN->setEdgeKind(TargetN, Edge::Call);
728
729 // And we're done, but we did form a new cycle.
730 return true;
731}
732
734 Node &TargetN) {
735 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
736
737#ifdef EXPENSIVE_CHECKS
738 verify();
739 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
740#endif
741
742 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
743 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
744 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
745 "Source and Target must be in separate SCCs for this to be trivial!");
746
747 // Set the edge kind.
748 SourceN->setEdgeKind(TargetN, Edge::Ref);
749}
750
753 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
754
755#ifdef EXPENSIVE_CHECKS
756 verify();
757 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
758#endif
759
760 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
761 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
762
763 SCC &TargetSCC = *G->lookupSCC(TargetN);
764 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
765 "the same SCC to require the "
766 "full CG update.");
767
768 // Set the edge kind.
769 SourceN->setEdgeKind(TargetN, Edge::Ref);
770
771 // Otherwise we are removing a call edge from a single SCC. This may break
772 // the cycle. In order to compute the new set of SCCs, we need to do a small
773 // DFS over the nodes within the SCC to form any sub-cycles that remain as
774 // distinct SCCs and compute a postorder over the resulting SCCs.
775 //
776 // However, we specially handle the target node. The target node is known to
777 // reach all other nodes in the original SCC by definition. This means that
778 // we want the old SCC to be replaced with an SCC containing that node as it
779 // will be the root of whatever SCC DAG results from the DFS. Assumptions
780 // about an SCC such as the set of functions called will continue to hold,
781 // etc.
782
783 SCC &OldSCC = TargetSCC;
785 SmallVector<Node *, 16> PendingSCCStack;
786 SmallVector<SCC *, 4> NewSCCs;
787
788 // Prepare the nodes for a fresh DFS.
790 Worklist.swap(OldSCC.Nodes);
791 for (Node *N : Worklist) {
792 N->DFSNumber = N->LowLink = 0;
793 G->SCCMap.erase(N);
794 }
795
796 // Force the target node to be in the old SCC. This also enables us to take
797 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
798 // below: whenever we build an edge that reaches the target node, we know
799 // that the target node eventually connects back to all other nodes in our
800 // walk. As a consequence, we can detect and handle participants in that
801 // cycle without walking all the edges that form this connection, and instead
802 // by relying on the fundamental guarantee coming into this operation (all
803 // nodes are reachable from the target due to previously forming an SCC).
804 TargetN.DFSNumber = TargetN.LowLink = -1;
805 OldSCC.Nodes.push_back(&TargetN);
806 G->SCCMap[&TargetN] = &OldSCC;
807
808 // Scan down the stack and DFS across the call edges.
809 for (Node *RootN : Worklist) {
810 assert(DFSStack.empty() &&
811 "Cannot begin a new root with a non-empty DFS stack!");
812 assert(PendingSCCStack.empty() &&
813 "Cannot begin a new root with pending nodes for an SCC!");
814
815 // Skip any nodes we've already reached in the DFS.
816 if (RootN->DFSNumber != 0) {
817 assert(RootN->DFSNumber == -1 &&
818 "Shouldn't have any mid-DFS root nodes!");
819 continue;
820 }
821
822 RootN->DFSNumber = RootN->LowLink = 1;
823 int NextDFSNumber = 2;
824
825 DFSStack.emplace_back(RootN, (*RootN)->call_begin());
826 do {
827 auto [N, I] = DFSStack.pop_back_val();
828 auto E = (*N)->call_end();
829 while (I != E) {
830 Node &ChildN = I->getNode();
831 if (ChildN.DFSNumber == 0) {
832 // We haven't yet visited this child, so descend, pushing the current
833 // node onto the stack.
834 DFSStack.emplace_back(N, I);
835
836 assert(!G->SCCMap.count(&ChildN) &&
837 "Found a node with 0 DFS number but already in an SCC!");
838 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
839 N = &ChildN;
840 I = (*N)->call_begin();
841 E = (*N)->call_end();
842 continue;
843 }
844
845 // Check for the child already being part of some component.
846 if (ChildN.DFSNumber == -1) {
847 if (G->lookupSCC(ChildN) == &OldSCC) {
848 // If the child is part of the old SCC, we know that it can reach
849 // every other node, so we have formed a cycle. Pull the entire DFS
850 // and pending stacks into it. See the comment above about setting
851 // up the old SCC for why we do this.
852 int OldSize = OldSCC.size();
853 OldSCC.Nodes.push_back(N);
854 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
855 PendingSCCStack.clear();
856 while (!DFSStack.empty())
857 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
858 for (Node &N : drop_begin(OldSCC, OldSize)) {
859 N.DFSNumber = N.LowLink = -1;
860 G->SCCMap[&N] = &OldSCC;
861 }
862 N = nullptr;
863 break;
864 }
865
866 // If the child has already been added to some child component, it
867 // couldn't impact the low-link of this parent because it isn't
868 // connected, and thus its low-link isn't relevant so skip it.
869 ++I;
870 continue;
871 }
872
873 // Track the lowest linked child as the lowest link for this node.
874 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
875 if (ChildN.LowLink < N->LowLink)
876 N->LowLink = ChildN.LowLink;
877
878 // Move to the next edge.
879 ++I;
880 }
881 if (!N)
882 // Cleared the DFS early, start another round.
883 break;
884
885 // We've finished processing N and its descendants, put it on our pending
886 // SCC stack to eventually get merged into an SCC of nodes.
887 PendingSCCStack.push_back(N);
888
889 // If this node is linked to some lower entry, continue walking up the
890 // stack.
891 if (N->LowLink != N->DFSNumber)
892 continue;
893
894 // Otherwise, we've completed an SCC. Append it to our post order list of
895 // SCCs.
896 int RootDFSNumber = N->DFSNumber;
897 // Find the range of the node stack by walking down until we pass the
898 // root DFS number.
899 auto SCCNodes = make_range(
900 PendingSCCStack.rbegin(),
901 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
902 return N->DFSNumber < RootDFSNumber;
903 }));
904
905 // Form a new SCC out of these nodes and then clear them off our pending
906 // stack.
907 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
908 for (Node &N : *NewSCCs.back()) {
909 N.DFSNumber = N.LowLink = -1;
910 G->SCCMap[&N] = NewSCCs.back();
911 }
912 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
913 } while (!DFSStack.empty());
914 }
915
916 // Insert the remaining SCCs before the old one. The old SCC can reach all
917 // other SCCs we form because it contains the target node of the removed edge
918 // of the old SCC. This means that we will have edges into all the new SCCs,
919 // which means the old one must come last for postorder.
920 int OldIdx = SCCIndices[&OldSCC];
921 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
922
923 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
924 // old SCC from the mapping.
925 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
926 SCCIndices[SCCs[Idx]] = Idx;
927
928 return make_range(SCCs.begin() + OldIdx,
929 SCCs.begin() + OldIdx + NewSCCs.size());
930}
931
933 Node &TargetN) {
934 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
935
936 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
937 assert(G->lookupRefSCC(TargetN) != this &&
938 "Target must not be in this RefSCC.");
939#ifdef EXPENSIVE_CHECKS
940 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
941 "Target must be a descendant of the Source.");
942#endif
943
944 // Edges between RefSCCs are the same regardless of call or ref, so we can
945 // just flip the edge here.
946 SourceN->setEdgeKind(TargetN, Edge::Call);
947
948#ifdef EXPENSIVE_CHECKS
949 verify();
950#endif
951}
952
954 Node &TargetN) {
955 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
956
957 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
958 assert(G->lookupRefSCC(TargetN) != this &&
959 "Target must not be in this RefSCC.");
960#ifdef EXPENSIVE_CHECKS
961 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
962 "Target must be a descendant of the Source.");
963#endif
964
965 // Edges between RefSCCs are the same regardless of call or ref, so we can
966 // just flip the edge here.
967 SourceN->setEdgeKind(TargetN, Edge::Ref);
968
969#ifdef EXPENSIVE_CHECKS
970 verify();
971#endif
972}
973
975 Node &TargetN) {
976 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
977 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
978
979 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
980
981#ifdef EXPENSIVE_CHECKS
982 verify();
983#endif
984}
985
987 Edge::Kind EK) {
988 // First insert it into the caller.
989 SourceN->insertEdgeInternal(TargetN, EK);
990
991 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
992
993 assert(G->lookupRefSCC(TargetN) != this &&
994 "Target must not be in this RefSCC.");
995#ifdef EXPENSIVE_CHECKS
996 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
997 "Target must be a descendant of the Source.");
998#endif
999
1000#ifdef EXPENSIVE_CHECKS
1001 verify();
1002#endif
1003}
1004
1007 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
1008 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
1009 assert(&SourceC != this && "Source must not be in this RefSCC.");
1010#ifdef EXPENSIVE_CHECKS
1011 assert(SourceC.isDescendantOf(*this) &&
1012 "Source must be a descendant of the Target.");
1013#endif
1014
1015 SmallVector<RefSCC *, 1> DeletedRefSCCs;
1016
1017#ifdef EXPENSIVE_CHECKS
1018 verify();
1019 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1020#endif
1021
1022 int SourceIdx = G->RefSCCIndices[&SourceC];
1023 int TargetIdx = G->RefSCCIndices[this];
1024 assert(SourceIdx < TargetIdx &&
1025 "Postorder list doesn't see edge as incoming!");
1026
1027 // Compute the RefSCCs which (transitively) reach the source. We do this by
1028 // working backwards from the source using the parent set in each RefSCC,
1029 // skipping any RefSCCs that don't fall in the postorder range. This has the
1030 // advantage of walking the sparser parent edge (in high fan-out graphs) but
1031 // more importantly this removes examining all forward edges in all RefSCCs
1032 // within the postorder range which aren't in fact connected. Only connected
1033 // RefSCCs (and their edges) are visited here.
1034 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1035 Set.insert(&SourceC);
1036 auto IsConnected = [&](RefSCC &RC) {
1037 for (SCC &C : RC)
1038 for (Node &N : C)
1039 for (Edge &E : *N)
1040 if (Set.count(G->lookupRefSCC(E.getNode())))
1041 return true;
1042
1043 return false;
1044 };
1045
1046 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1047 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1048 if (IsConnected(*C))
1049 Set.insert(C);
1050 };
1051
1052 // Use a normal worklist to find which SCCs the target connects to. We still
1053 // bound the search based on the range in the postorder list we care about,
1054 // but because this is forward connectivity we just "recurse" through the
1055 // edges.
1056 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1057 Set.insert(this);
1058 SmallVector<RefSCC *, 4> Worklist;
1059 Worklist.push_back(this);
1060 do {
1061 RefSCC &RC = *Worklist.pop_back_val();
1062 for (SCC &C : RC)
1063 for (Node &N : C)
1064 for (Edge &E : *N) {
1065 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1066 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1067 // Not in the postorder sequence between source and target.
1068 continue;
1069
1070 if (Set.insert(&EdgeRC).second)
1071 Worklist.push_back(&EdgeRC);
1072 }
1073 } while (!Worklist.empty());
1074 };
1075
1076 // Use a generic helper to update the postorder sequence of RefSCCs and return
1077 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1078 // routine will also take care of updating the indices into the postorder
1079 // sequence.
1082 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1083 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1084
1085 // Build a set, so we can do fast tests for whether a RefSCC will end up as
1086 // part of the merged RefSCC.
1087 SmallPtrSet<RefSCC *, 16> MergeSet(llvm::from_range, MergeRange);
1088
1089 // This RefSCC will always be part of that set, so just insert it here.
1090 MergeSet.insert(this);
1091
1092 // Now that we have identified all the SCCs which need to be merged into
1093 // a connected set with the inserted edge, merge all of them into this SCC.
1094 SmallVector<SCC *, 16> MergedSCCs;
1095 int SCCIndex = 0;
1096 for (RefSCC *RC : MergeRange) {
1097 assert(RC != this && "We're merging into the target RefSCC, so it "
1098 "shouldn't be in the range.");
1099
1100 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1101 // update any parent sets.
1102 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1103 // walk by updating the parent sets in some other manner.
1104 for (SCC &InnerC : *RC) {
1105 InnerC.OuterRefSCC = this;
1106 SCCIndices[&InnerC] = SCCIndex++;
1107 for (Node &N : InnerC)
1108 G->SCCMap[&N] = &InnerC;
1109 }
1110
1111 // Now merge in the SCCs. We can actually move here so try to reuse storage
1112 // the first time through.
1113 if (MergedSCCs.empty())
1114 MergedSCCs = std::move(RC->SCCs);
1115 else
1116 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1117 RC->SCCs.clear();
1118 DeletedRefSCCs.push_back(RC);
1119 }
1120
1121 // Append our original SCCs to the merged list and move it into place.
1122 for (SCC &InnerC : *this)
1123 SCCIndices[&InnerC] = SCCIndex++;
1124 MergedSCCs.append(SCCs.begin(), SCCs.end());
1125 SCCs = std::move(MergedSCCs);
1126
1127 // Remove the merged away RefSCCs from the post order sequence.
1128 for (RefSCC *RC : MergeRange)
1129 G->RefSCCIndices.erase(RC);
1130 int IndexOffset = MergeRange.end() - MergeRange.begin();
1131 auto EraseEnd =
1132 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1133 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1134 G->RefSCCIndices[RC] -= IndexOffset;
1135
1136 // At this point we have a merged RefSCC with a post-order SCCs list, just
1137 // connect the nodes to form the new edge.
1138 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1139
1140 // We return the list of SCCs which were merged so that callers can
1141 // invalidate any data they have associated with those SCCs. Note that these
1142 // SCCs are no longer in an interesting state (they are totally empty) but
1143 // the pointers will remain stable for the life of the graph itself.
1144 return DeletedRefSCCs;
1145}
1146
1148 assert(G->lookupRefSCC(SourceN) == this &&
1149 "The source must be a member of this RefSCC.");
1150 assert(G->lookupRefSCC(TargetN) != this &&
1151 "The target must not be a member of this RefSCC");
1152
1153#ifdef EXPENSIVE_CHECKS
1154 verify();
1155 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1156#endif
1157
1158 // First remove it from the node.
1159 bool Removed = SourceN->removeEdgeInternal(TargetN);
1160 (void)Removed;
1161 assert(Removed && "Target not in the edge set for this caller?");
1162}
1163
1166 ArrayRef<std::pair<Node *, Node *>> Edges) {
1167 // We return a list of the resulting *new* RefSCCs in post-order.
1169
1170#ifdef EXPENSIVE_CHECKS
1171 // Verify the RefSCC is valid to start with and that either we return an empty
1172 // list of result RefSCCs and this RefSCC remains valid, or we return new
1173 // RefSCCs and this RefSCC is dead.
1174 verify();
1175 auto VerifyOnExit = make_scope_exit([&]() {
1176 // If we didn't replace our RefSCC with new ones, check that this one
1177 // remains valid.
1178 if (G)
1179 verify();
1180 });
1181#endif
1182
1183 // First remove the actual edges.
1184 for (auto [SourceN, TargetN] : Edges) {
1185 assert(!(**SourceN)[*TargetN].isCall() &&
1186 "Cannot remove a call edge, it must first be made a ref edge");
1187
1188 bool Removed = (*SourceN)->removeEdgeInternal(*TargetN);
1189 (void)Removed;
1190 assert(Removed && "Target not in the edge set for this caller?");
1191 }
1192
1193 // Direct self references don't impact the ref graph at all.
1194 // If all targets are in the same SCC as the source, because no call edges
1195 // were removed there is no RefSCC structure change.
1196 if (llvm::all_of(Edges, [&](std::pair<Node *, Node *> E) {
1197 return E.first == E.second ||
1198 G->lookupSCC(*E.first) == G->lookupSCC(*E.second);
1199 }))
1200 return Result;
1201
1202 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1203 // for each inner SCC. We store these inside the low-link field of the nodes
1204 // rather than associated with SCCs because this saves a round-trip through
1205 // the node->SCC map and in the common case, SCCs are small. We will verify
1206 // that we always give the same number to every node in the SCC such that
1207 // these are equivalent.
1208 int PostOrderNumber = 0;
1209
1210 // Reset all the other nodes to prepare for a DFS over them, and add them to
1211 // our worklist.
1212 SmallVector<Node *, 8> Worklist;
1213 for (SCC *C : SCCs) {
1214 for (Node &N : *C)
1215 N.DFSNumber = N.LowLink = 0;
1216
1217 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1218 }
1219
1220 // Track the number of nodes in this RefSCC so that we can quickly recognize
1221 // an important special case of the edge removal not breaking the cycle of
1222 // this RefSCC.
1223 const int NumRefSCCNodes = Worklist.size();
1224
1226 SmallVector<Node *, 4> PendingRefSCCStack;
1227 do {
1228 assert(DFSStack.empty() &&
1229 "Cannot begin a new root with a non-empty DFS stack!");
1230 assert(PendingRefSCCStack.empty() &&
1231 "Cannot begin a new root with pending nodes for an SCC!");
1232
1233 Node *RootN = Worklist.pop_back_val();
1234 // Skip any nodes we've already reached in the DFS.
1235 if (RootN->DFSNumber != 0) {
1236 assert(RootN->DFSNumber == -1 &&
1237 "Shouldn't have any mid-DFS root nodes!");
1238 continue;
1239 }
1240
1241 RootN->DFSNumber = RootN->LowLink = 1;
1242 int NextDFSNumber = 2;
1243
1244 DFSStack.emplace_back(RootN, (*RootN)->begin());
1245 do {
1246 auto [N, I] = DFSStack.pop_back_val();
1247 auto E = (*N)->end();
1248
1249 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1250 "before processing a node.");
1251
1252 while (I != E) {
1253 Node &ChildN = I->getNode();
1254 if (ChildN.DFSNumber == 0) {
1255 // Mark that we should start at this child when next this node is the
1256 // top of the stack. We don't start at the next child to ensure this
1257 // child's lowlink is reflected.
1258 DFSStack.emplace_back(N, I);
1259
1260 // Continue, resetting to the child node.
1261 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1262 N = &ChildN;
1263 I = ChildN->begin();
1264 E = ChildN->end();
1265 continue;
1266 }
1267 if (ChildN.DFSNumber == -1) {
1268 // If this child isn't currently in this RefSCC, no need to process
1269 // it.
1270 ++I;
1271 continue;
1272 }
1273
1274 // Track the lowest link of the children, if any are still in the stack.
1275 // Any child not on the stack will have a LowLink of -1.
1276 assert(ChildN.LowLink != 0 &&
1277 "Low-link must not be zero with a non-zero DFS number.");
1278 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1279 N->LowLink = ChildN.LowLink;
1280 ++I;
1281 }
1282
1283 // We've finished processing N and its descendants, put it on our pending
1284 // stack to eventually get merged into a RefSCC.
1285 PendingRefSCCStack.push_back(N);
1286
1287 // If this node is linked to some lower entry, continue walking up the
1288 // stack.
1289 if (N->LowLink != N->DFSNumber) {
1290 assert(!DFSStack.empty() &&
1291 "We never found a viable root for a RefSCC to pop off!");
1292 continue;
1293 }
1294
1295 // Otherwise, form a new RefSCC from the top of the pending node stack.
1296 int RefSCCNumber = PostOrderNumber++;
1297 int RootDFSNumber = N->DFSNumber;
1298
1299 // Find the range of the node stack by walking down until we pass the
1300 // root DFS number. Update the DFS numbers and low link numbers in the
1301 // process to avoid re-walking this list where possible.
1302 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1303 if (N->DFSNumber < RootDFSNumber)
1304 // We've found the bottom.
1305 return true;
1306
1307 // Update this node and keep scanning.
1308 N->DFSNumber = -1;
1309 // Save the post-order number in the lowlink field so that we can use
1310 // it to map SCCs into new RefSCCs after we finish the DFS.
1311 N->LowLink = RefSCCNumber;
1312 return false;
1313 });
1314 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1315
1316 // If we find a cycle containing all nodes originally in this RefSCC then
1317 // the removal hasn't changed the structure at all. This is an important
1318 // special case, and we can directly exit the entire routine more
1319 // efficiently as soon as we discover it.
1320 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1321 // Clear out the low link field as we won't need it.
1322 for (Node *N : RefSCCNodes)
1323 N->LowLink = -1;
1324 // Return the empty result immediately.
1325 return Result;
1326 }
1327
1328 // We've already marked the nodes internally with the RefSCC number so
1329 // just clear them off the stack and continue.
1330 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1331 } while (!DFSStack.empty());
1332
1333 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1334 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1335 } while (!Worklist.empty());
1336
1337 assert(PostOrderNumber > 1 &&
1338 "Should never finish the DFS when the existing RefSCC remains valid!");
1339
1340 // Otherwise we create a collection of new RefSCC nodes and build
1341 // a radix-sort style map from postorder number to these new RefSCCs. We then
1342 // append SCCs to each of these RefSCCs in the order they occurred in the
1343 // original SCCs container.
1344 for (int I = 0; I < PostOrderNumber; ++I)
1345 Result.push_back(G->createRefSCC(*G));
1346
1347 // Insert the resulting postorder sequence into the global graph postorder
1348 // sequence before the current RefSCC in that sequence, and then remove the
1349 // current one.
1350 //
1351 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1352 // range over the global postorder sequence and generally use that sequence
1353 // rather than building a separate result vector here.
1354 int Idx = G->getRefSCCIndex(*this);
1355 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1356 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1357 Result.end());
1358 for (int I : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1359 G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I;
1360
1361 for (SCC *C : SCCs) {
1362 // We store the SCC number in the node's low-link field above.
1363 int SCCNumber = C->begin()->LowLink;
1364 // Clear out all the SCC's node's low-link fields now that we're done
1365 // using them as side-storage.
1366 for (Node &N : *C) {
1367 assert(N.LowLink == SCCNumber &&
1368 "Cannot have different numbers for nodes in the same SCC!");
1369 N.LowLink = -1;
1370 }
1371
1372 RefSCC &RC = *Result[SCCNumber];
1373 int SCCIndex = RC.SCCs.size();
1374 RC.SCCs.push_back(C);
1375 RC.SCCIndices[C] = SCCIndex;
1376 C->OuterRefSCC = &RC;
1377 }
1378
1379 // Now that we've moved things into the new RefSCCs, clear out our current
1380 // one.
1381 G = nullptr;
1382 SCCs.clear();
1383 SCCIndices.clear();
1384
1385#ifdef EXPENSIVE_CHECKS
1386 // Verify the new RefSCCs we've built.
1387 for (RefSCC *RC : Result)
1388 RC->verify();
1389#endif
1390
1391 // Return the new list of SCCs.
1392 return Result;
1393}
1394
1396 Node &TargetN) {
1397#ifdef EXPENSIVE_CHECKS
1398 auto ExitVerifier = make_scope_exit([this] { verify(); });
1399
1400 // Check that we aren't breaking some invariants of the SCC graph. Note that
1401 // this is quadratic in the number of edges in the call graph!
1402 SCC &SourceC = *G->lookupSCC(SourceN);
1403 SCC &TargetC = *G->lookupSCC(TargetN);
1404 if (&SourceC != &TargetC)
1405 assert(SourceC.isAncestorOf(TargetC) &&
1406 "Call edge is not trivial in the SCC graph!");
1407#endif
1408
1409 // First insert it into the source or find the existing edge.
1410 auto [Iterator, Inserted] =
1411 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1412 if (!Inserted) {
1413 // Already an edge, just update it.
1414 Edge &E = SourceN->Edges[Iterator->second];
1415 if (E.isCall())
1416 return; // Nothing to do!
1417 E.setKind(Edge::Call);
1418 } else {
1419 // Create the new edge.
1420 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1421 }
1422}
1423
1425#ifdef EXPENSIVE_CHECKS
1426 auto ExitVerifier = make_scope_exit([this] { verify(); });
1427
1428 // Check that we aren't breaking some invariants of the RefSCC graph.
1429 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1430 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1431 if (&SourceRC != &TargetRC)
1432 assert(SourceRC.isAncestorOf(TargetRC) &&
1433 "Ref edge is not trivial in the RefSCC graph!");
1434#endif
1435
1436 // First insert it into the source or find the existing edge.
1437 auto [Iterator, Inserted] =
1438 SourceN->EdgeIndexMap.try_emplace(&TargetN, SourceN->Edges.size());
1439 (void)Iterator;
1440 if (!Inserted)
1441 // Already an edge, we're done.
1442 return;
1443
1444 // Create the new edge.
1445 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1446}
1447
1449 Function &OldF = N.getFunction();
1450
1451#ifdef EXPENSIVE_CHECKS
1452 auto ExitVerifier = make_scope_exit([this] { verify(); });
1453
1454 assert(G->lookupRefSCC(N) == this &&
1455 "Cannot replace the function of a node outside this RefSCC.");
1456
1457 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1458 "Must not have already walked the new function!'");
1459
1460 // It is important that this replacement not introduce graph changes so we
1461 // insist that the caller has already removed every use of the original
1462 // function and that all uses of the new function correspond to existing
1463 // edges in the graph. The common and expected way to use this is when
1464 // replacing the function itself in the IR without changing the call graph
1465 // shape and just updating the analysis based on that.
1466 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1467 assert(OldF.use_empty() &&
1468 "Must have moved all uses from the old function to the new!");
1469#endif
1470
1471 N.replaceFunction(NewF);
1472
1473 // Update various call graph maps.
1474 G->NodeMap.erase(&OldF);
1475 G->NodeMap[&NewF] = &N;
1476
1477 // Update lib functions.
1478 if (G->isLibFunction(OldF)) {
1479 G->LibFunctions.remove(&OldF);
1480 G->LibFunctions.insert(&NewF);
1481 }
1482}
1483
1484void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1485 assert(SCCMap.empty() &&
1486 "This method cannot be called after SCCs have been formed!");
1487
1488 return SourceN->insertEdgeInternal(TargetN, EK);
1489}
1490
1491void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1492 assert(SCCMap.empty() &&
1493 "This method cannot be called after SCCs have been formed!");
1494
1495 bool Removed = SourceN->removeEdgeInternal(TargetN);
1496 (void)Removed;
1497 assert(Removed && "Target not in the edge set for this caller?");
1498}
1499
1501 // FIXME: This is unnecessarily restrictive. We should be able to remove
1502 // functions which recursively call themselves.
1503 assert(F.hasZeroLiveUses() &&
1504 "This routine should only be called on trivially dead functions!");
1505
1506 // We shouldn't remove library functions as they are never really dead while
1507 // the call graph is in use -- every function definition refers to them.
1509 "Must not remove lib functions from the call graph!");
1510
1511 auto NI = NodeMap.find(&F);
1512 assert(NI != NodeMap.end() && "Removed function should be known!");
1513
1514 Node &N = *NI->second;
1515
1516 // Remove all call edges out of dead function.
1517 for (Edge E : *N) {
1518 if (E.isCall())
1519 N->setEdgeKind(E.getNode(), Edge::Ref);
1520 }
1521}
1522
1524 if (DeadFs.empty())
1525 return;
1526
1527 // Group dead functions by the RefSCC they're in.
1529 for (Function *DeadF : DeadFs) {
1530 Node *N = lookup(*DeadF);
1531#ifndef NDEBUG
1532 for (Edge &E : **N) {
1533 assert(!E.isCall() &&
1534 "dead function shouldn't have any outgoing call edges");
1535 }
1536#endif
1537 RefSCC *RC = lookupRefSCC(*N);
1538 RCs[RC].push_back(N);
1539 }
1540 // Remove outgoing edges from all dead functions. Dead functions should
1541 // already have had their call edges removed in markDeadFunction(), so we only
1542 // need to worry about spurious ref edges.
1543 for (auto [RC, DeadNs] : RCs) {
1544 SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove;
1545 for (Node *DeadN : DeadNs) {
1546 for (Edge &E : **DeadN) {
1547 if (lookupRefSCC(E.getNode()) == RC)
1548 InternalEdgesToRemove.push_back({DeadN, &E.getNode()});
1549 else
1550 RC->removeOutgoingEdge(*DeadN, E.getNode());
1551 }
1552 }
1553 // We ignore the returned RefSCCs since at this point we're done with CGSCC
1554 // iteration and don't need to add it to any worklists.
1555 (void)RC->removeInternalRefEdges(InternalEdgesToRemove);
1556 for (Node *DeadN : DeadNs) {
1557 RefSCC *DeadRC = lookupRefSCC(*DeadN);
1558 assert(DeadRC->size() == 1);
1559 assert(DeadRC->begin()->size() == 1);
1560 DeadRC->clear();
1561 DeadRC->G = nullptr;
1562 }
1563 }
1564 // Clean up data structures.
1565 for (Function *DeadF : DeadFs) {
1566 Node &N = *lookup(*DeadF);
1567
1568 EntryEdges.removeEdgeInternal(N);
1569 SCCMap.erase(SCCMap.find(&N));
1570 NodeMap.erase(NodeMap.find(DeadF));
1571
1572 N.clear();
1573 N.G = nullptr;
1574 N.F = nullptr;
1575 }
1576}
1577
1578// Gets the Edge::Kind from one function to another by looking at the function's
1579// instructions. Asserts if there is no edge.
1580// Useful for determining what type of edge should exist between functions when
1581// the edge hasn't been created yet.
1582static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction,
1583 Function &NewFunction) {
1584 // In release builds, assume that if there are no direct calls to the new
1585 // function, then there is a ref edge. In debug builds, keep track of
1586 // references to assert that there is actually a ref edge if there is no call
1587 // edge.
1588#ifndef NDEBUG
1591#endif
1592
1593 for (Instruction &I : instructions(OriginalFunction)) {
1594 if (auto *CB = dyn_cast<CallBase>(&I)) {
1595 if (Function *Callee = CB->getCalledFunction()) {
1596 if (Callee == &NewFunction)
1597 return LazyCallGraph::Edge::Kind::Call;
1598 }
1599 }
1600#ifndef NDEBUG
1601 for (Value *Op : I.operand_values()) {
1602 if (Constant *C = dyn_cast<Constant>(Op)) {
1603 if (Visited.insert(C).second)
1604 Worklist.push_back(C);
1605 }
1606 }
1607#endif
1608 }
1609
1610#ifndef NDEBUG
1611 bool FoundNewFunction = false;
1612 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) {
1613 if (&F == &NewFunction)
1614 FoundNewFunction = true;
1615 });
1616 assert(FoundNewFunction && "No edge from original function to new function");
1617#endif
1618
1619 return LazyCallGraph::Edge::Kind::Ref;
1620}
1621
1623 Function &NewFunction) {
1624 assert(lookup(OriginalFunction) &&
1625 "Original function's node should already exist");
1626 Node &OriginalN = get(OriginalFunction);
1627 SCC *OriginalC = lookupSCC(OriginalN);
1628 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1629
1630#ifdef EXPENSIVE_CHECKS
1631 OriginalRC->verify();
1632 auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); });
1633#endif
1634
1635 assert(!lookup(NewFunction) &&
1636 "New function's node should not already exist");
1637 Node &NewN = initNode(NewFunction);
1638
1639 Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction);
1640
1641 SCC *NewC = nullptr;
1642 for (Edge &E : *NewN) {
1643 Node &EN = E.getNode();
1644 if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) {
1645 // If the edge to the new function is a call edge and there is a call edge
1646 // from the new function to any function in the original function's SCC,
1647 // it is in the same SCC (and RefSCC) as the original function.
1648 NewC = OriginalC;
1649 NewC->Nodes.push_back(&NewN);
1650 break;
1651 }
1652 }
1653
1654 if (!NewC) {
1655 for (Edge &E : *NewN) {
1656 Node &EN = E.getNode();
1657 if (lookupRefSCC(EN) == OriginalRC) {
1658 // If there is any edge from the new function to any function in the
1659 // original function's RefSCC, it is in the same RefSCC as the original
1660 // function but a new SCC.
1661 RefSCC *NewRC = OriginalRC;
1662 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1663
1664 // The new function's SCC is not the same as the original function's
1665 // SCC, since that case was handled earlier. If the edge from the
1666 // original function to the new function was a call edge, then we need
1667 // to insert the newly created function's SCC before the original
1668 // function's SCC. Otherwise, either the new SCC comes after the
1669 // original function's SCC, or it doesn't matter, and in both cases we
1670 // can add it to the very end.
1671 int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC]
1672 : NewRC->SCCIndices.size();
1673 NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC);
1674 for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I)
1675 NewRC->SCCIndices[NewRC->SCCs[I]] = I;
1676
1677 break;
1678 }
1679 }
1680 }
1681
1682 if (!NewC) {
1683 // We didn't find any edges back to the original function's RefSCC, so the
1684 // new function belongs in a new RefSCC. The new RefSCC goes before the
1685 // original function's RefSCC.
1686 RefSCC *NewRC = createRefSCC(*this);
1687 NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1688 NewRC->SCCIndices[NewC] = 0;
1689 NewRC->SCCs.push_back(NewC);
1690 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1691 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1692 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1693 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1694 }
1695
1696 SCCMap[&NewN] = NewC;
1697
1698 OriginalN->insertEdgeInternal(NewN, EK);
1699}
1700
1702 Function &OriginalFunction, ArrayRef<Function *> NewFunctions) {
1703 assert(!NewFunctions.empty() && "Can't add zero functions");
1704 assert(lookup(OriginalFunction) &&
1705 "Original function's node should already exist");
1706 Node &OriginalN = get(OriginalFunction);
1707 RefSCC *OriginalRC = lookupRefSCC(OriginalN);
1708
1709#ifdef EXPENSIVE_CHECKS
1710 OriginalRC->verify();
1711 auto VerifyOnExit = make_scope_exit([&]() {
1712 OriginalRC->verify();
1713 for (Function *NewFunction : NewFunctions)
1714 lookupRefSCC(get(*NewFunction))->verify();
1715 });
1716#endif
1717
1718 bool ExistsRefToOriginalRefSCC = false;
1719
1720 for (Function *NewFunction : NewFunctions) {
1721 Node &NewN = initNode(*NewFunction);
1722
1723 OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref);
1724
1725 // Check if there is any edge from any new function back to any function in
1726 // the original function's RefSCC.
1727 for (Edge &E : *NewN) {
1728 if (lookupRefSCC(E.getNode()) == OriginalRC) {
1729 ExistsRefToOriginalRefSCC = true;
1730 break;
1731 }
1732 }
1733 }
1734
1735 RefSCC *NewRC;
1736 if (ExistsRefToOriginalRefSCC) {
1737 // If there is any edge from any new function to any function in the
1738 // original function's RefSCC, all new functions will be in the same RefSCC
1739 // as the original function.
1740 NewRC = OriginalRC;
1741 } else {
1742 // Otherwise the new functions are in their own RefSCC.
1743 NewRC = createRefSCC(*this);
1744 // The new RefSCC goes before the original function's RefSCC in postorder
1745 // since there are only edges from the original function's RefSCC to the new
1746 // RefSCC.
1747 auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second;
1748 PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC);
1749 for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I)
1750 RefSCCIndices[PostOrderRefSCCs[I]] = I;
1751 }
1752
1753 for (Function *NewFunction : NewFunctions) {
1754 Node &NewN = get(*NewFunction);
1755 // Each new function is in its own new SCC. The original function can only
1756 // have a ref edge to new functions, and no other existing functions can
1757 // have references to new functions. Each new function only has a ref edge
1758 // to the other new functions.
1759 SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN}));
1760 // The new SCCs are either sibling SCCs or parent SCCs to all other existing
1761 // SCCs in the RefSCC. Either way, they can go at the back of the postorder
1762 // SCC list.
1763 auto Index = NewRC->SCCIndices.size();
1764 NewRC->SCCIndices[NewC] = Index;
1765 NewRC->SCCs.push_back(NewC);
1766 SCCMap[&NewN] = NewC;
1767 }
1768
1769#ifndef NDEBUG
1770 for (Function *F1 : NewFunctions) {
1771 assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref &&
1772 "Expected ref edges from original function to every new function");
1773 Node &N1 = get(*F1);
1774 for (Function *F2 : NewFunctions) {
1775 if (F1 == F2)
1776 continue;
1777 Node &N2 = get(*F2);
1778 assert(!N1->lookup(N2)->isCall() &&
1779 "Edges between new functions must be ref edges");
1780 }
1781 }
1782#endif
1783}
1784
1785LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1786 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1787}
1788
1789void LazyCallGraph::updateGraphPtrs() {
1790 // Walk the node map to update their graph pointers. While this iterates in
1791 // an unstable order, the order has no effect, so it remains correct.
1792 for (auto &FunctionNodePair : NodeMap)
1793 FunctionNodePair.second->G = this;
1794
1795 for (auto *RC : PostOrderRefSCCs)
1796 RC->G = this;
1797}
1798
1799LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) {
1800 Node &N = get(F);
1801 N.DFSNumber = N.LowLink = -1;
1802 N.populate();
1803 NodeMap[&F] = &N;
1804 return N;
1805}
1806
1807template <typename RootsT, typename GetBeginT, typename GetEndT,
1808 typename GetNodeT, typename FormSCCCallbackT>
1809void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1810 GetEndT &&GetEnd, GetNodeT &&GetNode,
1811 FormSCCCallbackT &&FormSCC) {
1812 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1813
1815 SmallVector<Node *, 16> PendingSCCStack;
1816
1817 // Scan down the stack and DFS across the call edges.
1818 for (Node *RootN : Roots) {
1819 assert(DFSStack.empty() &&
1820 "Cannot begin a new root with a non-empty DFS stack!");
1821 assert(PendingSCCStack.empty() &&
1822 "Cannot begin a new root with pending nodes for an SCC!");
1823
1824 // Skip any nodes we've already reached in the DFS.
1825 if (RootN->DFSNumber != 0) {
1826 assert(RootN->DFSNumber == -1 &&
1827 "Shouldn't have any mid-DFS root nodes!");
1828 continue;
1829 }
1830
1831 RootN->DFSNumber = RootN->LowLink = 1;
1832 int NextDFSNumber = 2;
1833
1834 DFSStack.emplace_back(RootN, GetBegin(*RootN));
1835 do {
1836 auto [N, I] = DFSStack.pop_back_val();
1837 auto E = GetEnd(*N);
1838 while (I != E) {
1839 Node &ChildN = GetNode(I);
1840 if (ChildN.DFSNumber == 0) {
1841 // We haven't yet visited this child, so descend, pushing the current
1842 // node onto the stack.
1843 DFSStack.emplace_back(N, I);
1844
1845 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1846 N = &ChildN;
1847 I = GetBegin(*N);
1848 E = GetEnd(*N);
1849 continue;
1850 }
1851
1852 // If the child has already been added to some child component, it
1853 // couldn't impact the low-link of this parent because it isn't
1854 // connected, and thus its low-link isn't relevant so skip it.
1855 if (ChildN.DFSNumber == -1) {
1856 ++I;
1857 continue;
1858 }
1859
1860 // Track the lowest linked child as the lowest link for this node.
1861 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1862 if (ChildN.LowLink < N->LowLink)
1863 N->LowLink = ChildN.LowLink;
1864
1865 // Move to the next edge.
1866 ++I;
1867 }
1868
1869 // We've finished processing N and its descendants, put it on our pending
1870 // SCC stack to eventually get merged into an SCC of nodes.
1871 PendingSCCStack.push_back(N);
1872
1873 // If this node is linked to some lower entry, continue walking up the
1874 // stack.
1875 if (N->LowLink != N->DFSNumber)
1876 continue;
1877
1878 // Otherwise, we've completed an SCC. Append it to our post order list of
1879 // SCCs.
1880 int RootDFSNumber = N->DFSNumber;
1881 // Find the range of the node stack by walking down until we pass the
1882 // root DFS number.
1883 auto SCCNodes = make_range(
1884 PendingSCCStack.rbegin(),
1885 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1886 return N->DFSNumber < RootDFSNumber;
1887 }));
1888 // Form a new SCC out of these nodes and then clear them off our pending
1889 // stack.
1890 FormSCC(SCCNodes);
1891 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1892 } while (!DFSStack.empty());
1893 }
1894}
1895
1896/// Build the internal SCCs for a RefSCC from a sequence of nodes.
1897///
1898/// Appends the SCCs to the provided vector and updates the map with their
1899/// indices. Both the vector and map must be empty when passed into this
1900/// routine.
1901void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1902 assert(RC.SCCs.empty() && "Already built SCCs!");
1903 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1904
1905 for (Node *N : Nodes) {
1906 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1907 "We cannot have a low link in an SCC lower than its root on the "
1908 "stack!");
1909
1910 // This node will go into the next RefSCC, clear out its DFS and low link
1911 // as we scan.
1912 N->DFSNumber = N->LowLink = 0;
1913 }
1914
1915 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1916 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1917 // internal storage as we won't need it for the outer graph's DFS any longer.
1918 buildGenericSCCs(
1919 Nodes, [](Node &N) { return N->call_begin(); },
1920 [](Node &N) { return N->call_end(); },
1921 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1922 [this, &RC](node_stack_range Nodes) {
1923 RC.SCCs.push_back(createSCC(RC, Nodes));
1924 for (Node &N : *RC.SCCs.back()) {
1925 N.DFSNumber = N.LowLink = -1;
1926 SCCMap[&N] = RC.SCCs.back();
1927 }
1928 });
1929
1930 // Wire up the SCC indices.
1931 for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I)
1932 RC.SCCIndices[RC.SCCs[I]] = I;
1933}
1934
1936 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1937 // RefSCCs are either non-existent or already built!
1938 return;
1939
1940 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1941
1943 for (Edge &E : *this)
1944 Roots.push_back(&E.getNode());
1945
1946 // The roots will be iterated in order.
1947 buildGenericSCCs(
1948 Roots,
1949 [](Node &N) {
1950 // We need to populate each node as we begin to walk its edges.
1951 N.populate();
1952 return N->begin();
1953 },
1954 [](Node &N) { return N->end(); },
1955 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1956 [this](node_stack_range Nodes) {
1957 RefSCC *NewRC = createRefSCC(*this);
1958 buildSCCs(*NewRC, Nodes);
1959
1960 // Push the new node into the postorder list and remember its position
1961 // in the index map.
1962 bool Inserted =
1963 RefSCCIndices.try_emplace(NewRC, PostOrderRefSCCs.size()).second;
1964 (void)Inserted;
1965 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1966 PostOrderRefSCCs.push_back(NewRC);
1967#ifdef EXPENSIVE_CHECKS
1968 NewRC->verify();
1969#endif
1970 });
1971}
1972
1975 function_ref<void(Function &)> Callback) {
1976 while (!Worklist.empty()) {
1977 Constant *C = Worklist.pop_back_val();
1978
1979 if (Function *F = dyn_cast<Function>(C)) {
1980 if (!F->isDeclaration())
1981 Callback(*F);
1982 continue;
1983 }
1984
1985 // blockaddresses are weird and don't participate in the call graph anyway,
1986 // skip them.
1987 if (isa<BlockAddress>(C))
1988 continue;
1989
1990 for (Value *Op : C->operand_values())
1991 if (Visited.insert(cast<Constant>(Op)).second)
1992 Worklist.push_back(cast<Constant>(Op));
1993 }
1994}
1995
1996AnalysisKey LazyCallGraphAnalysis::Key;
1997
1999
2001 OS << " Edges in function: " << N.getFunction().getName() << "\n";
2002 for (LazyCallGraph::Edge &E : N.populate())
2003 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
2004 << E.getFunction().getName() << "\n";
2005
2006 OS << "\n";
2007}
2008
2010 OS << " SCC with " << C.size() << " functions:\n";
2011
2012 for (LazyCallGraph::Node &N : C)
2013 OS << " " << N.getFunction().getName() << "\n";
2014}
2015
2017 OS << " RefSCC with " << C.size() << " call SCCs:\n";
2018
2019 for (LazyCallGraph::SCC &InnerC : C)
2020 printSCC(OS, InnerC);
2021
2022 OS << "\n";
2023}
2024
2028
2029 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
2030 << "\n\n";
2031
2032 for (Function &F : M)
2033 printNode(OS, G.get(F));
2034
2035 G.buildRefSCCs();
2036 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
2037 printRefSCC(OS, C);
2038
2039 return PreservedAnalyses::all();
2040}
2041
2043 : OS(OS) {}
2044
2046 std::string Name =
2047 "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\"";
2048
2049 for (LazyCallGraph::Edge &E : N.populate()) {
2050 OS << " " << Name << " -> \""
2051 << DOT::EscapeString(std::string(E.getFunction().getName())) << "\"";
2052 if (!E.isCall()) // It is a ref edge.
2053 OS << " [style=dashed,label=\"ref\"]";
2054 OS << ";\n";
2055 }
2056
2057 OS << "\n";
2058}
2059
2063
2064 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
2065
2066 for (Function &F : M)
2067 printNodeDOT(OS, G.get(F));
2068
2069 OS << "}\n";
2070
2071 return PreservedAnalyses::all();
2072}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Expand Atomic instructions
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:638
#define LLVM_EXPORT_TEMPLATE
Definition: Compiler.h:215
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
uint64_t Size
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
static void printNode(raw_ostream &OS, LazyCallGraph::Node &N)
static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C)
static iterator_range< typename PostorderSequenceT::iterator > updatePostorderSequenceForEdgeInsertion(SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, SCCIndexMapT &SCCIndices, ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet)
Generic helper that updates a postorder sequence of SCCs for a potentially cycle-introducing edge ins...
static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N)
static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, Function &NewFunction)
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C)
static void addEdge(SmallVectorImpl< LazyCallGraph::Edge > &Edges, DenseMap< LazyCallGraph::Node *, int > &EdgeIndexMap, LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK)
static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI)
Implements a lazy call graph analysis and related passes for the new pass manager.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
static StringRef getName(Value *V)
std::pair< BasicBlock *, BasicBlock * > Edge
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
Provides some synthesis utilities to produce sequences of values.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
This templated class represents "all analyses that operate over <a particular IR unit>" (e....
Definition: Analysis.h:50
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:294
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:142
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
This is an important base class in LLVM.
Definition: Constant.h:43
This class represents an Operation in the Expression.
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:245
An analysis pass which computes the call graph for a module.
LLVM_ABI LazyCallGraphDOTPrinterPass(raw_ostream &OS)
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
LLVM_ABI LazyCallGraphPrinterPass(raw_ostream &OS)
An iterator used for the edges to both entry nodes and child nodes.
The edge sequence object.
A class used to represent edges in the call graph.
bool isCall() const
Test whether the edge represents a direct call to a function.
Node & getNode() const
Get the call graph node referenced by this edge.
A node in the call graph.
A RefSCC of the call graph.
LLVM_ABI SmallVector< RefSCC *, 1 > insertIncomingRefEdge(Node &SourceN, Node &TargetN)
Insert an edge whose source is in a descendant RefSCC and target is in this RefSCC.
LLVM_ABI bool switchInternalEdgeToCall(Node &SourceN, Node &TargetN, function_ref< void(ArrayRef< SCC * > MergedSCCs)> MergeCB={})
Make an existing internal ref edge into a call edge.
LLVM_ABI bool isAncestorOf(const RefSCC &RC) const
Test if this RefSCC is an ancestor of RC.
LLVM_ABI void insertTrivialRefEdge(Node &SourceN, Node &TargetN)
A convenience wrapper around the above to handle trivial cases of inserting a new ref edge.
bool isDescendantOf(const RefSCC &RC) const
Test if this RefSCC is a descendant of RC.
LLVM_ABI void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN)
Make an existing outgoing ref edge into a call edge.
LLVM_ABI void replaceNodeFunction(Node &N, Function &NewF)
Directly replace a node's function with a new function.
LLVM_ABI void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK)
Insert an edge whose parent is in this RefSCC and child is in some child RefSCC.
LLVM_ABI SmallVector< RefSCC *, 1 > removeInternalRefEdges(ArrayRef< std::pair< Node *, Node * > > Edges)
Remove a list of ref edges which are entirely within this RefSCC.
LLVM_ABI iterator_range< iterator > switchInternalEdgeToRef(Node &SourceN, Node &TargetN)
Make an existing internal call edge within a single SCC into a ref edge.
LLVM_ABI void insertInternalRefEdge(Node &SourceN, Node &TargetN)
Insert a ref edge from one node in this RefSCC to another in this RefSCC.
LLVM_ABI void insertTrivialCallEdge(Node &SourceN, Node &TargetN)
A convenience wrapper around the above to handle trivial cases of inserting a new call edge.
LLVM_ABI void removeOutgoingEdge(Node &SourceN, Node &TargetN)
Remove an edge whose source is in this RefSCC and target is not.
LLVM_ABI void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN)
Make an existing outgoing call edge into a ref edge.
LLVM_ABI void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN)
Make an existing internal call edge between separate SCCs into a ref edge.
LLVM_ABI bool isParentOf(const RefSCC &RC) const
Test if this RefSCC is a parent of RC.
An SCC of the call graph.
bool isAncestorOf(const SCC &C) const
Test if this SCC is an ancestor of C.
bool isParentOf(const SCC &C) const
Test if this SCC is a parent of C.
RefSCC & getOuterRefSCC() const
A lazily constructed view of the call graph of a module.
bool isLibFunction(Function &F) const
Test whether a function is a known and defined library function tracked by the call graph.
RefSCC * lookupRefSCC(Node &N) const
Lookup a function's RefSCC in the graph.
LLVM_ABI void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK)
Update the call graph after inserting a new edge.
LLVM_ABI LazyCallGraph(Module &M, function_ref< TargetLibraryInfo &(Function &)> GetTLI)
Construct a graph for the given module.
LLVM_ABI void buildRefSCCs()
static LLVM_ABI void visitReferences(SmallVectorImpl< Constant * > &Worklist, SmallPtrSetImpl< Constant * > &Visited, function_ref< void(Function &)> Callback)
Recursively visits the defined functions whose address is reachable from every constant in the Workli...
LLVM_ABI void markDeadFunction(Function &F)
Mark a function as dead to be removed later by removeDeadFunctions().
LLVM_ABI void addSplitFunction(Function &OriginalFunction, Function &NewFunction)
Add a new function split/outlined from an existing function.
LLVM_ABI void addSplitRefRecursiveFunctions(Function &OriginalFunction, ArrayRef< Function * > NewFunctions)
Add new ref-recursive functions split/outlined from an existing function.
LLVM_ABI void removeDeadFunctions(ArrayRef< Function * > DeadFs)
Remove dead functions from the call graph.
LLVM_ABI void removeEdge(Node &SourceN, Node &TargetN)
Update the call graph after deleting an edge.
Node & get(Function &F)
Get a graph node for a given function, scanning it to populate the graph data as necessary.
SCC * lookupSCC(Node &N) const
Lookup a function's SCC in the graph.
iterator_range< postorder_ref_scc_iterator > postorder_ref_sccs()
LLVM_ABI LazyCallGraph & operator=(LazyCallGraph &&RHS)
LLVM_ABI bool invalidate(Module &, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &)
void verify()
Verify that every RefSCC is valid.
Node * lookup(const Function &F) const
Lookup a function in the graph which has already been scanned and added.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Definition: Analysis.h:275
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:476
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
iterator erase(const_iterator CI)
Definition: SmallVector.h:738
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:684
void swap(SmallVectorImpl &RHS)
Definition: SmallVector.h:969
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Provides information about what library functions are available for the current target.
bool isKnownVectorFunctionInLibrary(StringRef F) const
Check if the function "F" is listed in a library known to LLVM.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
LLVM Value Representation.
Definition: Value.h:75
bool use_empty() const
Definition: Value.h:346
An efficient, type-erasing, non-owning reference to a callable.
A range adaptor for a pair of iterators.
IteratorT end() const
IteratorT begin() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
LLVM_ABI std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:338
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1702
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
constexpr from_range_t from_range
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1886
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:856
#define N
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:29