LLVM 22.0.0git
LiveVariables.cpp
Go to the documentation of this file.
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveVariable analysis pass. For each machine
10// instruction in the function, this pass calculates the set of registers that
11// are immediately dead after the instruction (i.e., the instruction calculates
12// the value, but it is never used) and the set of registers that are used by
13// the instruction, but are never used after the instruction (i.e., they are
14// killed).
15//
16// This class computes live variables using a sparse implementation based on
17// the machine code SSA form. This class computes live variable information for
18// each virtual and _register allocatable_ physical register in a function. It
19// uses the dominance properties of SSA form to efficiently compute live
20// variables for virtual registers, and assumes that physical registers are only
21// live within a single basic block (allowing it to do a single local analysis
22// to resolve physical register lifetimes in each basic block). If a physical
23// register is not register allocatable, it is not tracked. This is useful for
24// things like the stack pointer and condition codes.
25//
26//===----------------------------------------------------------------------===//
27
29#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/Config/llvm-config.h"
38#include "llvm/Support/Debug.h"
41using namespace llvm;
42
43AnalysisKey LiveVariablesAnalysis::Key;
44
50
54 OS << "Live variables in machine function: " << MF.getName() << '\n';
57}
58
62 "Live Variable Analysis", false, false)
63INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElimLegacy)
65 "Live Variable Analysis", false, false)
66
68 AU.addRequiredID(UnreachableMachineBlockElimID);
69 AU.setPreservesAll();
71}
72
73LiveVariables::LiveVariables(MachineFunction &MF)
74 : MF(&MF), MRI(&MF.getRegInfo()), TRI(MF.getSubtarget().getRegisterInfo()) {
75 analyze(MF);
76}
77
79 for (size_t I = 0, E = VirtRegInfo.size(); I != E; ++I) {
81 OS << "Virtual register '%" << I << "':\n";
82 VirtRegInfo[Reg].print(OS);
83 }
84}
85
88 for (MachineInstr *MI : Kills)
89 if (MI->getParent() == MBB)
90 return MI;
91 return nullptr;
92}
93
95 OS << " Alive in blocks: ";
96 for (unsigned AB : AliveBlocks)
97 OS << AB << ", ";
98 OS << "\n Killed by:";
99 if (Kills.empty())
100 OS << " No instructions.\n\n";
101 else {
102 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
103 OS << "\n #" << i << ": " << *Kills[i];
104 OS << "\n";
105 }
106}
107
108#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110#endif
111
112/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
114 assert(Reg.isVirtual() && "getVarInfo: not a virtual register!");
115 VirtRegInfo.grow(Reg);
116 return VirtRegInfo[Reg];
117}
118
120 VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB,
122 unsigned BBNum = MBB->getNumber();
123
124 // Check to see if this basic block is one of the killing blocks. If so,
125 // remove it.
126 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
127 if (VRInfo.Kills[i]->getParent() == MBB) {
128 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
129 break;
130 }
131
132 if (MBB == DefBlock) return; // Terminate recursion
133
134 if (VRInfo.AliveBlocks.test(BBNum))
135 return; // We already know the block is live
136
137 // Mark the variable known alive in this bb
138 VRInfo.AliveBlocks.set(BBNum);
139
140 assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
141 WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
142}
143
145 MachineBasicBlock *DefBlock,
148 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
149
150 while (!WorkList.empty()) {
151 MachineBasicBlock *Pred = WorkList.pop_back_val();
152 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
153 }
154}
155
157 MachineInstr &MI) {
158 assert(MRI->getVRegDef(Reg) && "Register use before def!");
159
160 unsigned BBNum = MBB->getNumber();
161
162 VarInfo &VRInfo = getVarInfo(Reg);
163
164 // Check to see if this basic block is already a kill block.
165 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
166 // Yes, this register is killed in this basic block already. Increase the
167 // live range by updating the kill instruction.
168 VRInfo.Kills.back() = &MI;
169 return;
170 }
171
172#ifndef NDEBUG
173 for (MachineInstr *Kill : VRInfo.Kills)
174 assert(Kill->getParent() != MBB && "entry should be at end!");
175#endif
176
177 // This situation can occur:
178 //
179 // ,------.
180 // | |
181 // | v
182 // | t2 = phi ... t1 ...
183 // | |
184 // | v
185 // | t1 = ...
186 // | ... = ... t1 ...
187 // | |
188 // `------'
189 //
190 // where there is a use in a PHI node that's a predecessor to the defining
191 // block. We don't want to mark all predecessors as having the value "alive"
192 // in this case.
193 if (MBB == MRI->getVRegDef(Reg)->getParent())
194 return;
195
196 // Add a new kill entry for this basic block. If this virtual register is
197 // already marked as alive in this basic block, that means it is alive in at
198 // least one of the successor blocks, it's not a kill.
199 if (!VRInfo.AliveBlocks.test(BBNum))
200 VRInfo.Kills.push_back(&MI);
201
202 // Update all dominating blocks to mark them as "known live".
203 for (MachineBasicBlock *Pred : MBB->predecessors())
204 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(Reg)->getParent(), Pred);
205}
206
208 VarInfo &VRInfo = getVarInfo(Reg);
209
210 if (VRInfo.AliveBlocks.empty())
211 // If vr is not alive in any block, then defaults to dead.
212 VRInfo.Kills.push_back(&MI);
213}
214
215/// FindLastPartialDef - Return the last partial def of the specified register.
216MachineInstr *LiveVariables::FindLastPartialDef(Register Reg) {
217 unsigned LastDefDist = 0;
218 MachineInstr *LastDef = nullptr;
219 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
220 MachineInstr *Def = PhysRegDef[SubReg];
221 if (!Def)
222 continue;
223 unsigned Dist = DistanceMap[Def];
224 if (Dist > LastDefDist) {
225 LastDef = Def;
226 LastDefDist = Dist;
227 }
228 }
229
230 if (!LastDef)
231 return nullptr;
232
233 return LastDef;
234}
235
236/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
237/// implicit defs to a machine instruction if there was an earlier def of its
238/// super-register.
239void LiveVariables::HandlePhysRegUse(Register Reg, MachineInstr &MI) {
240 MachineInstr *LastDef = PhysRegDef[Reg.id()];
241 // If there was a previous use or a "full" def all is well.
242 if (!LastDef && !PhysRegUse[Reg.id()]) {
243 // Otherwise, the last sub-register def implicitly defines this register.
244 // e.g.
245 // AH =
246 // AL = ... implicit-def EAX, implicit killed AH
247 // = AH
248 // ...
249 // = EAX
250 // All of the sub-registers must have been defined before the use of Reg!
251 MachineInstr *LastPartialDef = FindLastPartialDef(Reg);
252 // If LastPartialDef is NULL, it must be using a livein register.
253 if (LastPartialDef) {
254 LastPartialDef->addOperand(
255 MachineOperand::CreateReg(Reg, /*IsDef=*/true, /*IsImp=*/true));
256 }
257 } else if (LastDef && !PhysRegUse[Reg.id()] &&
258 !LastDef->findRegisterDefOperand(Reg, /*TRI=*/nullptr))
259 // Last def defines the super register, add an implicit def of reg.
260 LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
261 true/*IsImp*/));
262
263 // Remember this use.
264 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
265 PhysRegUse[SubReg] = &MI;
266}
267
268/// FindLastRefOrPartRef - Return the last reference or partial reference of
269/// the specified register.
270MachineInstr *LiveVariables::FindLastRefOrPartRef(Register Reg) {
271 MachineInstr *LastDef = PhysRegDef[Reg.id()];
272 MachineInstr *LastUse = PhysRegUse[Reg.id()];
273 if (!LastDef && !LastUse)
274 return nullptr;
275
276 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
277 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
278 unsigned LastPartDefDist = 0;
279 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
280 MachineInstr *Def = PhysRegDef[SubReg];
281 if (Def && Def != LastDef) {
282 // There was a def of this sub-register in between. This is a partial
283 // def, keep track of the last one.
284 unsigned Dist = DistanceMap[Def];
285 if (Dist > LastPartDefDist)
286 LastPartDefDist = Dist;
287 } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
288 unsigned Dist = DistanceMap[Use];
289 if (Dist > LastRefOrPartRefDist) {
290 LastRefOrPartRefDist = Dist;
291 LastRefOrPartRef = Use;
292 }
293 }
294 }
295
296 return LastRefOrPartRef;
297}
298
299bool LiveVariables::HandlePhysRegKill(Register Reg, MachineInstr *MI) {
300 MachineInstr *LastDef = PhysRegDef[Reg.id()];
301 MachineInstr *LastUse = PhysRegUse[Reg.id()];
302 if (!LastDef && !LastUse)
303 return false;
304
305 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
306 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
307 // The whole register is used.
308 // AL =
309 // AH =
310 //
311 // = AX
312 // = AL, implicit killed AX
313 // AX =
314 //
315 // Or whole register is defined, but not used at all.
316 // dead AX =
317 // ...
318 // AX =
319 //
320 // Or whole register is defined, but only partly used.
321 // dead AX = implicit-def AL
322 // = killed AL
323 // AX =
324 MachineInstr *LastPartDef = nullptr;
325 unsigned LastPartDefDist = 0;
326 SmallSet<unsigned, 8> PartUses;
327 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
328 MachineInstr *Def = PhysRegDef[SubReg];
329 if (Def && Def != LastDef) {
330 // There was a def of this sub-register in between. This is a partial
331 // def, keep track of the last one.
332 unsigned Dist = DistanceMap[Def];
333 if (Dist > LastPartDefDist) {
334 LastPartDefDist = Dist;
335 LastPartDef = Def;
336 }
337 continue;
338 }
339 if (MachineInstr *Use = PhysRegUse[SubReg]) {
340 PartUses.insert_range(TRI->subregs_inclusive(SubReg));
341 unsigned Dist = DistanceMap[Use];
342 if (Dist > LastRefOrPartRefDist) {
343 LastRefOrPartRefDist = Dist;
344 LastRefOrPartRef = Use;
345 }
346 }
347 }
348
349 if (!PhysRegUse[Reg.id()]) {
350 // Partial uses. Mark register def dead and add implicit def of
351 // sub-registers which are used.
352 // dead EAX = op implicit-def AL
353 // That is, EAX def is dead but AL def extends pass it.
354 PhysRegDef[Reg.id()]->addRegisterDead(Reg, TRI, true);
355 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
356 if (!PartUses.count(SubReg))
357 continue;
358 bool NeedDef = true;
359 if (PhysRegDef[Reg.id()] == PhysRegDef[SubReg]) {
360 MachineOperand *MO = PhysRegDef[Reg.id()]->findRegisterDefOperand(
361 SubReg, /*TRI=*/nullptr);
362 if (MO) {
363 NeedDef = false;
364 assert(!MO->isDead());
365 }
366 }
367 if (NeedDef)
368 PhysRegDef[Reg.id()]->addOperand(
369 MachineOperand::CreateReg(SubReg, true /*IsDef*/, true /*IsImp*/));
370 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
371 if (LastSubRef)
372 LastSubRef->addRegisterKilled(SubReg, TRI, true);
373 else {
374 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
375 for (MCPhysReg SS : TRI->subregs_inclusive(SubReg))
376 PhysRegUse[SS] = LastRefOrPartRef;
377 }
378 for (MCPhysReg SS : TRI->subregs(SubReg))
379 PartUses.erase(SS);
380 }
381 } else if (LastRefOrPartRef == PhysRegDef[Reg.id()] &&
382 LastRefOrPartRef != MI) {
383 if (LastPartDef)
384 // The last partial def kills the register.
385 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
386 true/*IsImp*/, true/*IsKill*/));
387 else {
388 MachineOperand *MO =
389 LastRefOrPartRef->findRegisterDefOperand(Reg, TRI, false, false);
390 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
391 // If the last reference is the last def, then it's not used at all.
392 // That is, unless we are currently processing the last reference itself.
393 LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
394 if (NeedEC) {
395 // If we are adding a subreg def and the superreg def is marked early
396 // clobber, add an early clobber marker to the subreg def.
397 MO = LastRefOrPartRef->findRegisterDefOperand(Reg, /*TRI=*/nullptr);
398 if (MO)
399 MO->setIsEarlyClobber();
400 }
401 }
402 } else
403 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
404 return true;
405}
406
407void LiveVariables::HandleRegMask(const MachineOperand &MO, unsigned NumRegs) {
408 // Call HandlePhysRegKill() for all live registers clobbered by Mask.
409 // Clobbered registers are always dead, sp there is no need to use
410 // HandlePhysRegDef().
411 for (unsigned Reg = 1; Reg != NumRegs; ++Reg) {
412 // Skip dead regs.
413 if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
414 continue;
415 // Skip mask-preserved regs.
416 if (!MO.clobbersPhysReg(Reg))
417 continue;
418 // Kill the largest clobbered super-register.
419 // This avoids needless implicit operands.
420 unsigned Super = Reg;
421 for (MCPhysReg SR : TRI->superregs(Reg))
422 if (SR < NumRegs && (PhysRegDef[SR] || PhysRegUse[SR]) &&
423 MO.clobbersPhysReg(SR))
424 Super = SR;
425 HandlePhysRegKill(Super, nullptr);
426 }
427}
428
429void LiveVariables::HandlePhysRegDef(Register Reg, MachineInstr *MI,
430 SmallVectorImpl<Register> &Defs) {
431 // What parts of the register are previously defined?
432 SmallSet<unsigned, 32> Live;
433 if (PhysRegDef[Reg.id()] || PhysRegUse[Reg.id()]) {
434 Live.insert_range(TRI->subregs_inclusive(Reg));
435 } else {
436 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
437 // If a register isn't itself defined, but all parts that make up of it
438 // are defined, then consider it also defined.
439 // e.g.
440 // AL =
441 // AH =
442 // = AX
443 if (Live.count(SubReg))
444 continue;
445 if (PhysRegDef[SubReg] || PhysRegUse[SubReg])
446 Live.insert_range(TRI->subregs_inclusive(SubReg));
447 }
448 }
449
450 // Start from the largest piece, find the last time any part of the register
451 // is referenced.
452 HandlePhysRegKill(Reg, MI);
453 // Only some of the sub-registers are used.
454 for (MCPhysReg SubReg : TRI->subregs(Reg)) {
455 if (!Live.count(SubReg))
456 // Skip if this sub-register isn't defined.
457 continue;
458 HandlePhysRegKill(SubReg, MI);
459 }
460
461 if (MI)
462 Defs.push_back(Reg); // Remember this def.
463}
464
465void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI,
466 SmallVectorImpl<Register> &Defs) {
467 while (!Defs.empty()) {
468 Register Reg = Defs.pop_back_val();
469 for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
470 PhysRegDef[SubReg] = &MI;
471 PhysRegUse[SubReg] = nullptr;
472 }
473 }
474}
475
476void LiveVariables::runOnInstr(MachineInstr &MI,
477 SmallVectorImpl<Register> &Defs,
478 unsigned NumRegs) {
479 assert(!MI.isDebugOrPseudoInstr());
480 // Process all of the operands of the instruction...
481 unsigned NumOperandsToProcess = MI.getNumOperands();
482
483 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
484 // of the uses. They will be handled in other basic blocks.
485 if (MI.isPHI())
486 NumOperandsToProcess = 1;
487
488 // Clear kill and dead markers. LV will recompute them.
492 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
493 MachineOperand &MO = MI.getOperand(i);
494 if (MO.isRegMask()) {
495 RegMasks.push_back(i);
496 continue;
497 }
498 if (!MO.isReg() || !MO.getReg())
499 continue;
500 Register MOReg = MO.getReg();
501 if (MO.isUse()) {
502 if (!(MOReg.isPhysical() && MRI->isReserved(MOReg)))
503 MO.setIsKill(false);
504 if (MO.readsReg())
505 UseRegs.push_back(MOReg);
506 } else {
507 assert(MO.isDef());
508 // FIXME: We should not remove any dead flags. However the MIPS RDDSP
509 // instruction needs it at the moment: http://llvm.org/PR27116.
510 if (MOReg.isPhysical() && !MRI->isReserved(MOReg))
511 MO.setIsDead(false);
512 DefRegs.push_back(MOReg);
513 }
514 }
515
516 MachineBasicBlock *MBB = MI.getParent();
517 // Process all uses.
518 for (Register MOReg : UseRegs) {
519 if (MOReg.isVirtual())
520 HandleVirtRegUse(MOReg, MBB, MI);
521 else if (!MRI->isReserved(MOReg))
522 HandlePhysRegUse(MOReg, MI);
523 }
524
525 // Process all masked registers. (Call clobbers).
526 for (unsigned Mask : RegMasks)
527 HandleRegMask(MI.getOperand(Mask), NumRegs);
528
529 // Process all defs.
530 for (Register MOReg : DefRegs) {
531 if (MOReg.isVirtual())
532 HandleVirtRegDef(MOReg, MI);
533 else if (!MRI->isReserved(MOReg))
534 HandlePhysRegDef(MOReg, &MI, Defs);
535 }
536 UpdatePhysRegDefs(MI, Defs);
537}
538
539void LiveVariables::runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs) {
540 // Mark live-in registers as live-in.
542 for (const auto &LI : MBB->liveins()) {
543 assert(LI.PhysReg.isPhysical() &&
544 "Cannot have a live-in virtual register!");
545 HandlePhysRegDef(LI.PhysReg, nullptr, Defs);
546 }
547
548 // Loop over all of the instructions, processing them.
549 DistanceMap.clear();
550 unsigned Dist = 0;
551 for (MachineInstr &MI : *MBB) {
552 if (MI.isDebugOrPseudoInstr())
553 continue;
554 DistanceMap.insert(std::make_pair(&MI, Dist++));
555
556 runOnInstr(MI, Defs, NumRegs);
557 }
558
559 // Handle any virtual assignments from PHI nodes which might be at the
560 // bottom of this basic block. We check all of our successor blocks to see
561 // if they have PHI nodes, and if so, we simulate an assignment at the end
562 // of the current block.
563 if (!PHIVarInfo[MBB->getNumber()].empty()) {
564 SmallVectorImpl<Register> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
565
566 for (Register I : VarInfoVec)
567 // Mark it alive only in the block we are representing.
568 MarkVirtRegAliveInBlock(getVarInfo(I), MRI->getVRegDef(I)->getParent(),
569 MBB);
570 }
571
572 // MachineCSE may CSE instructions which write to non-allocatable physical
573 // registers across MBBs. Remember if any reserved register is liveout.
574 SmallSet<unsigned, 4> LiveOuts;
575 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
576 if (SuccMBB->isEHPad())
577 continue;
578 for (const auto &LI : SuccMBB->liveins()) {
579 if (!TRI->isInAllocatableClass(LI.PhysReg))
580 // Ignore other live-ins, e.g. those that are live into landing pads.
581 LiveOuts.insert(LI.PhysReg);
582 }
583 }
584
585 // Loop over PhysRegDef / PhysRegUse, killing any registers that are
586 // available at the end of the basic block.
587 for (unsigned i = 0; i != NumRegs; ++i)
588 if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
589 HandlePhysRegDef(i, nullptr, Defs);
590}
591
592void LiveVariables::analyze(MachineFunction &mf) {
593 MF = &mf;
594 MRI = &mf.getRegInfo();
595 TRI = MF->getSubtarget().getRegisterInfo();
596
597 const unsigned NumRegs = TRI->getNumSupportedRegs(mf);
598 PhysRegDef.assign(NumRegs, nullptr);
599 PhysRegUse.assign(NumRegs, nullptr);
600 PHIVarInfo.resize(MF->getNumBlockIDs());
601
602 // FIXME: LiveIntervals will be updated to remove its dependence on
603 // LiveVariables to improve compilation time and eliminate bizarre pass
604 // dependencies. Until then, we can't change much in -O0.
605 if (!MRI->isSSA())
606 reportFatalUsageError("regalloc=... not currently supported with -O0");
607
608 analyzePHINodes(mf);
609
610 // Calculate live variable information in depth first order on the CFG of the
611 // function. This guarantees that we will see the definition of a virtual
612 // register before its uses due to dominance properties of SSA (except for PHI
613 // nodes, which are treated as a special case).
614 MachineBasicBlock *Entry = &MF->front();
615 df_iterator_default_set<MachineBasicBlock*,16> Visited;
616
617 for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
618 runOnBlock(MBB, NumRegs);
619
620 PhysRegDef.assign(NumRegs, nullptr);
621 PhysRegUse.assign(NumRegs, nullptr);
622 }
623
624 // Convert and transfer the dead / killed information we have gathered into
625 // VirtRegInfo onto MI's.
626 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
628 for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
629 if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
630 VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
631 else
632 VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
633 }
634
635 // Check to make sure there are no unreachable blocks in the MC CFG for the
636 // function. If so, it is due to a bug in the instruction selector or some
637 // other part of the code generator if this happens.
638#ifndef NDEBUG
639 for (const MachineBasicBlock &MBB : *MF)
640 assert(Visited.contains(&MBB) && "unreachable basic block found");
641#endif
642
643 PhysRegDef.clear();
644 PhysRegUse.clear();
645 PHIVarInfo.clear();
646}
647
649 assert(Reg.isVirtual());
650
651 VarInfo &VI = getVarInfo(Reg);
652 VI.AliveBlocks.clear();
653 VI.Kills.clear();
654
655 MachineInstr &DefMI = *MRI->getUniqueVRegDef(Reg);
656 MachineBasicBlock &DefBB = *DefMI.getParent();
657
658 // Initialize a worklist of BBs that Reg is live-to-end of. (Here
659 // "live-to-end" means Reg is live at the end of a block even if it is only
660 // live because of phi uses in a successor. This is different from isLiveOut()
661 // which does not consider phi uses.)
662 SmallVector<MachineBasicBlock *> LiveToEndBlocks;
663 SparseBitVector<> UseBlocks;
664 unsigned NumRealUses = 0;
665 for (auto &UseMO : MRI->use_nodbg_operands(Reg)) {
666 UseMO.setIsKill(false);
667 if (!UseMO.readsReg())
668 continue;
669 ++NumRealUses;
670 MachineInstr &UseMI = *UseMO.getParent();
671 MachineBasicBlock &UseBB = *UseMI.getParent();
672 UseBlocks.set(UseBB.getNumber());
673 if (UseMI.isPHI()) {
674 // If Reg is used in a phi then it is live-to-end of the corresponding
675 // predecessor.
676 unsigned Idx = UseMO.getOperandNo();
677 LiveToEndBlocks.push_back(UseMI.getOperand(Idx + 1).getMBB());
678 } else if (&UseBB == &DefBB) {
679 // A non-phi use in the same BB as the single def must come after the def.
680 } else {
681 // Otherwise Reg must be live-to-end of all predecessors.
682 LiveToEndBlocks.append(UseBB.pred_begin(), UseBB.pred_end());
683 }
684 }
685
686 // Handle the case where all uses have been removed.
687 if (NumRealUses == 0) {
688 VI.Kills.push_back(&DefMI);
689 DefMI.addRegisterDead(Reg, nullptr);
690 return;
691 }
692 DefMI.clearRegisterDeads(Reg);
693
694 // Iterate over the worklist adding blocks to AliveBlocks.
695 bool LiveToEndOfDefBB = false;
696 while (!LiveToEndBlocks.empty()) {
697 MachineBasicBlock &BB = *LiveToEndBlocks.pop_back_val();
698 if (&BB == &DefBB) {
699 LiveToEndOfDefBB = true;
700 continue;
701 }
702 if (VI.AliveBlocks.test(BB.getNumber()))
703 continue;
704 VI.AliveBlocks.set(BB.getNumber());
705 LiveToEndBlocks.append(BB.pred_begin(), BB.pred_end());
706 }
707
708 // Recompute kill flags. For each block in which Reg is used but is not
709 // live-through, find the last instruction that uses Reg. Ignore phi nodes
710 // because they should not be included in Kills.
711 for (unsigned UseBBNum : UseBlocks) {
712 if (VI.AliveBlocks.test(UseBBNum))
713 continue;
714 MachineBasicBlock &UseBB = *MF->getBlockNumbered(UseBBNum);
715 if (&UseBB == &DefBB && LiveToEndOfDefBB)
716 continue;
717 for (auto &MI : reverse(UseBB)) {
718 if (MI.isDebugOrPseudoInstr())
719 continue;
720 if (MI.isPHI())
721 break;
722 if (MI.readsVirtualRegister(Reg)) {
723 assert(!MI.killsRegister(Reg, /*TRI=*/nullptr));
724 MI.addRegisterKilled(Reg, nullptr);
725 VI.Kills.push_back(&MI);
726 break;
727 }
728 }
729 }
730}
731
732/// replaceKillInstruction - Update register kill info by replacing a kill
733/// instruction with a new one.
735 MachineInstr &NewMI) {
736 VarInfo &VI = getVarInfo(Reg);
737 llvm::replace(VI.Kills, &OldMI, &NewMI);
738}
739
740/// removeVirtualRegistersKilled - Remove all killed info for the specified
741/// instruction.
743 for (MachineOperand &MO : MI.operands()) {
744 if (MO.isReg() && MO.isKill()) {
745 MO.setIsKill(false);
746 Register Reg = MO.getReg();
747 if (Reg.isVirtual()) {
748 bool removed = getVarInfo(Reg).removeKill(MI);
749 assert(removed && "kill not in register's VarInfo?");
750 (void)removed;
751 }
752 }
753 }
754}
755
756/// analyzePHINodes - Gather information about the PHI nodes in here. In
757/// particular, we want to map the variable information of a virtual register
758/// which is used in a PHI node. We map that to the BB the vreg is coming from.
759///
760void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
761 for (const auto &MBB : Fn)
762 for (const auto &BBI : MBB) {
763 if (!BBI.isPHI())
764 break;
765 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
766 if (BBI.getOperand(i).readsReg())
767 PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()]
768 .push_back(BBI.getOperand(i).getReg());
769 }
770}
771
773 Register Reg, MachineRegisterInfo &MRI) {
774 unsigned Num = MBB.getNumber();
775
776 // Reg is live-through.
777 if (AliveBlocks.test(Num))
778 return true;
779
780 // Registers defined in MBB cannot be live in.
781 const MachineInstr *Def = MRI.getVRegDef(Reg);
782 if (Def && Def->getParent() == &MBB)
783 return false;
784
785 // Reg was not defined in MBB, was it killed here?
786 return findKill(&MBB);
787}
788
791
793 for (MachineInstr *MI : VI.Kills)
794 Kills.insert(MI->getParent());
795
796 // Loop over all of the successors of the basic block, checking to see if
797 // the value is either live in the block, or if it is killed in the block.
798 for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
799 // Is it alive in this successor?
800 unsigned SuccIdx = SuccMBB->getNumber();
801 if (VI.AliveBlocks.test(SuccIdx))
802 return true;
803 // Or is it live because there is a use in a successor that kills it?
804 if (Kills.count(SuccMBB))
805 return true;
806 }
807
808 return false;
809}
810
811/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
812/// variables that are live out of DomBB will be marked as passing live through
813/// BB.
815 MachineBasicBlock *DomBB,
816 MachineBasicBlock *SuccBB) {
817 const unsigned NumNew = BB->getNumber();
818
819 DenseSet<Register> Defs, Kills;
820
821 MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
822 for (; BBI != BBE && BBI->isPHI(); ++BBI) {
823 // Record the def of the PHI node.
824 Defs.insert(BBI->getOperand(0).getReg());
825
826 // All registers used by PHI nodes in SuccBB must be live through BB.
827 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
828 if (BBI->getOperand(i+1).getMBB() == BB)
829 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
830 }
831
832 // Record all vreg defs and kills of all instructions in SuccBB.
833 for (; BBI != BBE; ++BBI) {
834 for (const MachineOperand &Op : BBI->operands()) {
835 if (Op.isReg() && Op.getReg().isVirtual()) {
836 if (Op.isDef())
837 Defs.insert(Op.getReg());
838 else if (Op.isKill())
839 Kills.insert(Op.getReg());
840 }
841 }
842 }
843
844 // Update info for all live variables
845 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
847
848 // If the Defs is defined in the successor it can't be live in BB.
849 if (Defs.count(Reg))
850 continue;
851
852 // If the register is either killed in or live through SuccBB it's also live
853 // through BB.
854 VarInfo &VI = getVarInfo(Reg);
855 if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
856 VI.AliveBlocks.set(NumNew);
857 }
858}
859
860/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
861/// variables that are live out of DomBB will be marked as passing live through
862/// BB. LiveInSets[BB] is *not* updated (because it is not needed during
863/// PHIElimination).
865 MachineBasicBlock *DomBB,
866 MachineBasicBlock *SuccBB,
867 std::vector<SparseBitVector<>> &LiveInSets) {
868 const unsigned NumNew = BB->getNumber();
869
870 SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()];
871 for (unsigned R : BV) {
873 LiveVariables::VarInfo &VI = getVarInfo(VirtReg);
874 VI.AliveBlocks.set(NumNew);
875 }
876 // All registers used by PHI nodes in SuccBB must be live through BB.
877 for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
878 BBE = SuccBB->end();
879 BBI != BBE && BBI->isPHI(); ++BBI) {
880 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
881 if (BBI->getOperand(i + 1).getMBB() == BB &&
882 BBI->getOperand(i).readsReg())
883 getVarInfo(BBI->getOperand(i).getReg())
884 .AliveBlocks.set(NumNew);
885 }
886}
unsigned SubReg
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
This file defines the DenseSet and SmallDenseSet classes.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
Implements a dense probed hash-table based set.
Definition DenseSet.h:261
LLVM_ABI Result run(MachineFunction &MF, MachineFunctionAnalysisManager &)
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
LLVM_ABI void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
LLVM_ABI void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *BB)
LLVM_ABI void removeVirtualRegistersKilled(MachineInstr &MI)
removeVirtualRegistersKilled - Remove all killed info for the specified instruction.
LLVM_ABI bool isLiveOut(Register Reg, const MachineBasicBlock &MBB)
isLiveOut - Determine if Reg is live out from MBB, when not considering PHI nodes.
LLVM_ABI void HandleVirtRegDef(Register reg, MachineInstr &MI)
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI void recomputeForSingleDefVirtReg(Register Reg)
Recompute liveness from scratch for a virtual register Reg that is known to have a single def that do...
LLVM_ABI void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI)
LLVM_ABI VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
LLVM_ABI void addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB)
addNewBlock - Add a new basic block BB between DomBB and SuccBB.
iterator_range< livein_iterator > liveins() const
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
iterator_range< succ_iterator > successors()
MachineInstrBundleIterator< MachineInstr > iterator
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Representation of each machine instruction.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
LLVM_ABI bool addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI kills a register.
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
LLVM_ABI bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI defined a register without a use.
MachineOperand class - Representation of each machine instruction operand.
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
void setIsDead(bool Val=true)
void setIsKill(bool Val=true)
void setIsEarlyClobber(bool Val=true)
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
Wrapper class representing virtual and physical registers.
Definition Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition Register.h:67
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
constexpr unsigned id() const
Definition Register.h:95
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition SmallSet.h:175
void insert_range(Range &&R)
Definition SmallSet.h:193
bool erase(const T &V)
Definition SmallSet.h:197
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:181
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void set(unsigned Idx)
bool test(unsigned Idx) const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition DenseSet.h:174
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
@ Entry
Definition COFF.h:862
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
This is an optimization pass for GlobalISel generic memory operations.
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
auto reverse(ContainerTy &&C)
Definition STLExtras.h:420
LLVM_ABI char & UnreachableMachineBlockElimID
UnreachableMachineBlockElimination - This pass removes unreachable machine basic blocks.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
void replace(R &&Range, const T &OldValue, const T &NewValue)
Provide wrappers to std::replace which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1862
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
DWARFExpression::Operation Op
LLVM_ABI char & LiveVariablesID
LiveVariables pass - This pass computes the set of blocks in which each variable is life and sets mac...
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
VarInfo - This represents the regions where a virtual register is live in the program.
bool removeKill(MachineInstr &MI)
removeKill - Delete a kill corresponding to the specified machine instruction.
LLVM_ABI void dump() const
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction's which are the last use of this virtual register (kill it) in the...
SparseBitVector AliveBlocks
AliveBlocks - Set of blocks in which this value is alive completely through.
LLVM_ABI MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI bool isLiveIn(const MachineBasicBlock &MBB, Register Reg, MachineRegisterInfo &MRI)
isLiveIn - Is Reg live in to MBB?