72#define DEBUG_TYPE "loop-accesses"
76 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
82 cl::desc(
"Sets the vectorization interleave count. "
83 "Zero is autoselect."),
90 cl::desc(
"When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
98 cl::desc(
"Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
108 cl::desc(
"Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
125 cl::desc(
"Enable symbolic stride memory access versioning"));
130 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
131 cl::desc(
"Enable conflict detection in loop-access analysis"),
136 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
141 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
179 <<
" by: " << *Expr <<
"\n");
185 :
High(RtCheck.Pointers[Index].End),
Low(RtCheck.Pointers[Index].Start),
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
226 DL, CheckForNonNull, CheckForFreed);
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
236 Instruction *CtxI = &*L->getHeader()->getFirstNonPHIIt();
237 if (
BasicBlock *LoopPred = L->getLoopPredecessor()) {
239 CtxI = LoopPred->getTerminator();
249 DerefRK = std::max(DerefRK, RK);
257 if (DerefBytesSCEV->
isZero())
277 const SCEV *OffsetAtLastIter =
279 if (!OffsetAtLastIter) {
289 if (!OffsetAtLastIter)
298 if (IsKnownNonNegative) {
321 DenseMap<std::pair<const SCEV *, Type *>,
324 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
325 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
328 {{PtrExpr, AccessTy},
332 PtrBoundsPair = &Iter->second;
342 ScStart = ScEnd = PtrExpr;
344 ScStart = AR->getStart();
350 ScEnd = AR->evaluateAtIteration(BTC, *SE);
360 DT, AC, LoopGuards)) {
361 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
366 ConstantInt::get(EltSizeSCEV->
getType(), -1), AR->getType())));
369 const SCEV *Step = AR->getStepRecurrence(*SE);
374 if (CStep->getValue()->isNegative())
392 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
394 *PtrBoundsPair = Res;
401 Type *AccessTy,
bool WritePtr,
402 unsigned DepSetId,
unsigned ASId,
408 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.
getSE(),
409 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
412 "must be able to compute both start and end expressions");
413 Pointers.emplace_back(
Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
417bool RuntimePointerChecking::tryToCreateDiffCheck(
440 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
444 if (AccSink[0] < AccSrc[0])
448 const SCEV *SrcStart;
449 const SCEV *SinkStart;
451 if (!
match(Src->Expr,
470 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
500 const Loop *StartARLoop = SrcStartAR->getLoop();
501 if (StartARLoop == SinkStartAR->getLoop() &&
506 SrcStartAR->getStepRecurrence(*SE) !=
507 SinkStartAR->getStepRecurrence(*SE)) {
508 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
509 "cannot be hoisted out of the outer loop\n");
515 <<
"SrcStart: " << *SrcStartInt <<
'\n'
516 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
517 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
518 Src->NeedsFreeze ||
Sink->NeedsFreeze);
523 SmallVector<RuntimePointerCheck, 4> Checks;
531 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
532 Checks.emplace_back(&CGI, &CGJ);
541 assert(Checks.empty() &&
"Checks is not empty");
542 groupChecks(DepCands, UseDependencies);
548 for (
const auto &
I : M.Members)
549 for (
const auto &J :
N.Members)
562 return Diff->isNegative() ? J :
I;
569 RtCheck.
Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
570 RtCheck.
Pointers[Index].NeedsFreeze, *RtCheck.SE);
574 const SCEV *End,
unsigned AS,
578 "all pointers in a checking group must be in the same address space");
604void RuntimePointerChecking::groupChecks(
650 if (!UseDependencies) {
656 unsigned TotalComparisons = 0;
659 for (
unsigned Index = 0; Index <
Pointers.size(); ++Index)
660 PositionMap[
Pointers[Index].PointerValue].push_back(Index);
686 auto PointerI = PositionMap.
find(M.getPointer());
689 if (PointerI == PositionMap.
end())
691 for (
unsigned Pointer : PointerI->second) {
708 if (Group.addPointer(Pointer, *
this)) {
718 Groups.emplace_back(Pointer, *
this);
731 return (PtrToPartition[PtrIdx1] != -1 &&
732 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
755 for (
const auto &[Idx, CG] :
enumerate(CheckingGroups))
756 PtrIndices[&CG] = Idx;
762 unsigned Depth)
const {
765 for (
const auto &[Check1, Check2] : Checks) {
766 const auto &
First = Check1->Members, &Second = Check2->Members;
768 OS.
indent(
Depth + 2) <<
"Comparing group GRP" << PtrIndices.at(Check1)
770 for (
unsigned K :
First)
772 OS.
indent(
Depth + 2) <<
"Against group GRP" << PtrIndices.at(Check2)
774 for (
unsigned K : Second)
787 OS.
indent(
Depth + 2) <<
"Group GRP" << PtrIndices.at(&CG) <<
":\n";
788 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
790 for (
unsigned Member : CG.Members) {
802class AccessAnalysis {
812 : TheLoop(TheLoop), BAA(*
AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
813 LoopAliasScopes(LoopAliasScopes) {
815 BAA.enableCrossIterationMode();
821 AST.add(adjustLoc(
Loc));
822 Accesses[MemAccessInfo(
Ptr,
false)].insert(AccessTy);
824 ReadOnlyPtr.insert(
Ptr);
828 void addStore(
const MemoryLocation &Loc,
Type *AccessTy) {
830 AST.add(adjustLoc(Loc));
831 Accesses[MemAccessInfo(
Ptr,
true)].insert(AccessTy);
841 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
843 const DenseMap<Value *, const SCEV *> &Strides,
844 DenseMap<Value *, unsigned> &DepSetId,
845 Loop *TheLoop,
unsigned &RunningDepId,
846 unsigned ASId,
bool Assume);
856 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
857 const DenseMap<Value *, const SCEV *> &Strides,
858 Value *&UncomputablePtr,
bool AllowPartial);
862 void buildDependenceSets() {
863 processMemAccesses();
871 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
874 void resetDepChecks(MemoryDepChecker &DepChecker) {
879 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
882 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
886 MemoryLocation adjustLoc(MemoryLocation Loc)
const {
896 MDNode *adjustAliasScopeList(MDNode *ScopeList)
const {
903 return LoopAliasScopes.contains(cast<MDNode>(Scope));
912 void processMemAccesses();
922 MemAccessInfoList CheckDeps;
925 SmallPtrSet<Value*, 16> ReadOnlyPtr;
949 bool IsRTCheckAnalysisNeeded =
false;
952 PredicatedScalarEvolution &PSE;
954 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
958 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
965static std::optional<int64_t>
969 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
977 dbgs() <<
"LAA: Bad stride - Not striding over innermost loop ";
981 dbgs() <<
"SCEV: " << *AR <<
"\n";
990 const APInt *APStepVal;
993 dbgs() <<
"LAA: Bad stride - Not a constant strided ";
996 dbgs() <<
"SCEV: " << *AR <<
"\n";
1002 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
1006 std::optional<int64_t> StepVal = APStepVal->
trySExtValue();
1008 return std::nullopt;
1011 return *StepVal %
Size ? std::nullopt : std::make_optional(*StepVal /
Size);
1018 std::optional<int64_t> Stride = std::nullopt) {
1032 GEP &&
GEP->hasNoUnsignedSignedWrap())
1043 (Stride == 1 || Stride == -1))
1047 if (
Ptr && Assume) {
1050 <<
"LAA: Pointer: " << *
Ptr <<
"\n"
1051 <<
"LAA: SCEV: " << *AR <<
"\n"
1052 <<
"LAA: Added an overflow assumption\n");
1065 while (!WorkList.
empty()) {
1073 if (PN && InnermostLoop.
contains(PN->getParent()) &&
1074 PN->getParent() != InnermostLoop.
getHeader()) {
1119 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
1121 case Instruction::Add:
1123 case Instruction::Sub:
1131 unsigned Opcode =
I->getOpcode();
1133 case Instruction::GetElementPtr: {
1135 Type *SourceTy =
GEP->getSourceElementType();
1138 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
1148 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
1149 any_of(OffsetScevs, UndefPoisonCheck);
1154 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
1156 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
1159 ScevList.emplace_back(Scev, NeedsFreeze);
1170 for (
auto [
B, O] :
zip(BaseScevs, OffsetScevs)) {
1181 case Instruction::Select: {
1188 if (ChildScevs.
size() == 2)
1194 case Instruction::PHI: {
1199 if (
I->getNumOperands() == 2) {
1203 if (ChildScevs.
size() == 2)
1209 case Instruction::Add:
1210 case Instruction::Sub: {
1218 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
1223 if (LScevs.
size() == 2 && RScevs.
size() == 1)
1225 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1228 ScevList.emplace_back(Scev, NeedsFreeze);
1232 for (
auto [L, R] :
zip(LScevs, RScevs))
1233 ScevList.emplace_back(GetBinOpExpr(Opcode,
get<0>(L),
get<0>(R)),
1239 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1245bool AccessAnalysis::createCheckForAccess(
1249 unsigned &RunningDepId,
unsigned ASId,
bool Assume) {
1257 "Must have some runtime-check pointer candidates");
1261 auto IsLoopInvariantOrAR =
1266 if (RTCheckPtrs.
size() == 2 &&
all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1269 <<
"\t(" << Idx <<
") " << *Q.getPointer() <<
"\n");
1276 for (
auto &
P : RTCheckPtrs) {
1289 if (RTCheckPtrs.size() == 1) {
1295 if (!
isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ?
Ptr :
nullptr, AccessTy,
1300 for (
const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1304 if (isDependencyCheckNeeded()) {
1306 unsigned &LeaderId = DepSetId[Leader];
1308 LeaderId = RunningDepId++;
1312 DepId = RunningDepId++;
1314 bool IsWrite =
Access.getInt();
1315 RtCheck.
insert(TheLoop,
Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1323bool AccessAnalysis::canCheckPtrAtRT(
1326 bool AllowPartial) {
1329 bool CanDoRT =
true;
1331 bool MayNeedRTCheck =
false;
1332 if (!IsRTCheckAnalysisNeeded)
return true;
1334 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1339 for (
const auto &AS : AST) {
1340 int NumReadPtrChecks = 0;
1341 int NumWritePtrChecks = 0;
1342 bool CanDoAliasSetRT =
true;
1344 auto ASPointers = AS.getPointers();
1348 unsigned RunningDepId = 1;
1356 for (
const Value *ConstPtr : ASPointers) {
1358 bool IsWrite =
Accesses.contains(MemAccessInfo(
Ptr,
true));
1360 ++NumWritePtrChecks;
1368 if (NumWritePtrChecks == 0 ||
1369 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1370 assert((ASPointers.size() <= 1 ||
1373 MemAccessInfo AccessWrite(
const_cast<Value *
>(
Ptr),
1375 return !DepCands.
contains(AccessWrite);
1377 "Can only skip updating CanDoRT below, if all entries in AS "
1378 "are reads or there is at most 1 entry");
1382 for (
auto &
Access : AccessInfos) {
1384 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1385 DepSetId, TheLoop, RunningDepId, ASId,
1388 << *
Access.getPointer() <<
'\n');
1390 CanDoAliasSetRT =
false;
1404 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1408 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1412 CanDoAliasSetRT =
true;
1413 for (
const auto &[
Access, AccessTy] : Retries) {
1414 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1415 DepSetId, TheLoop, RunningDepId, ASId,
1417 CanDoAliasSetRT =
false;
1418 UncomputablePtr =
Access.getPointer();
1425 CanDoRT &= CanDoAliasSetRT;
1426 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1435 unsigned NumPointers = RtCheck.
Pointers.size();
1436 for (
unsigned i = 0; i < NumPointers; ++i) {
1437 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1439 if (RtCheck.
Pointers[i].DependencySetId ==
1440 RtCheck.
Pointers[j].DependencySetId)
1453 dbgs() <<
"LAA: Runtime check would require comparison between"
1454 " different address spaces\n");
1460 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1464 <<
" pointer comparisons.\n");
1471 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1472 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1473 "CanDoRTIfNeeded depends on RtCheck.Need");
1474 if (!CanDoRTIfNeeded && !AllowPartial)
1476 return CanDoRTIfNeeded;
1479void AccessAnalysis::processMemAccesses() {
1489 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1492 : (ReadOnlyPtr.contains(
A.getPointer()) ?
"read-only"
1501 for (
const auto &AS : AST) {
1505 auto ASPointers = AS.getPointers();
1507 bool SetHasWrite =
false;
1512 UnderlyingObjToAccessMap;
1513 UnderlyingObjToAccessMap ObjToLastAccess;
1516 PtrAccessMap DeferredAccesses;
1520 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1521 bool UseDeferred = SetIteration > 0;
1522 PtrAccessMap &S = UseDeferred ? DeferredAccesses :
Accesses;
1524 for (
const Value *ConstPtr : ASPointers) {
1529 for (
const auto &[AC,
_] : S) {
1530 if (AC.getPointer() !=
Ptr)
1533 bool IsWrite = AC.getInt();
1537 bool IsReadOnlyPtr = ReadOnlyPtr.contains(
Ptr) && !IsWrite;
1538 if (UseDeferred && !IsReadOnlyPtr)
1542 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1543 S.contains(MemAccessInfo(
Ptr,
false))) &&
1544 "Alias-set pointer not in the access set?");
1554 if (!UseDeferred && IsReadOnlyPtr) {
1557 DeferredAccesses.insert({
Access, {}});
1565 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1566 CheckDeps.push_back(
Access);
1567 IsRTCheckAnalysisNeeded =
true;
1579 <<
"Underlying objects for pointer " << *
Ptr <<
"\n");
1580 for (
const Value *UnderlyingObj : UOs) {
1589 auto [It,
Inserted] = ObjToLastAccess.try_emplace(
1607std::optional<int64_t>
1611 bool Assume,
bool ShouldCheckWrap) {
1616 assert(
Ptr->getType()->isPointerTy() &&
"Unexpected non-ptr");
1624 <<
" SCEV: " << *PtrScev <<
"\n");
1625 return std::nullopt;
1628 std::optional<int64_t> Stride =
1630 if (!ShouldCheckWrap || !Stride)
1633 if (
isNoWrap(PSE, AR,
Ptr, AccessTy, Lp, Assume, Stride))
1637 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1638 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1639 return std::nullopt;
1647 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1655 return std::nullopt;
1662 return std::nullopt;
1663 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1665 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1671 std::optional<int64_t> Val;
1672 if (PtrA1 == PtrB1) {
1679 return std::nullopt;
1681 IdxWidth =
DL.getIndexSizeInBits(ASA);
1682 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1691 std::optional<APInt> Diff =
1694 return std::nullopt;
1695 Val = Diff->trySExtValue();
1699 return std::nullopt;
1701 int64_t
Size =
DL.getTypeStoreSize(ElemTyA);
1702 int64_t Dist = *Val /
Size;
1706 if (!StrictCheck || Dist *
Size == Val)
1708 return std::nullopt;
1715 VL, [](
const Value *V) {
return V->getType()->isPointerTy(); }) &&
1716 "Expected list of pointer operands.");
1719 Value *Ptr0 = VL[0];
1721 using DistOrdPair = std::pair<int64_t, unsigned>;
1723 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1724 Offsets.emplace(0, 0);
1725 bool IsConsecutive =
true;
1727 std::optional<int64_t> Diff =
1735 auto [It, IsInserted] = Offsets.emplace(
Offset, Idx);
1739 IsConsecutive &= std::next(It) == Offsets.end();
1741 SortedIndices.
clear();
1742 if (!IsConsecutive) {
1745 for (
auto [Idx, Off] :
enumerate(Offsets))
1746 SortedIndices[Idx] = Off.second;
1760 std::optional<int64_t> Diff =
1769 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1770 InstMap.push_back(SI);
1778 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1779 InstMap.push_back(LI);
1841bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1843 unsigned CommonStride) {
1856 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1858 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1860 MaxStoreLoadForwardSafeDistanceInBits);
1863 for (
uint64_t VF = 2 * TypeByteSize;
1864 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1867 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1868 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1873 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1875 dbgs() <<
"LAA: Distance " << Distance
1876 <<
" that could cause a store-load forwarding conflict\n");
1881 MaxVFWithoutSLForwardIssuesPowerOf2 <
1882 MaxStoreLoadForwardSafeDistanceInBits &&
1883 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1886 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1887 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1888 MaxStoreLoadForwardSafeDistanceInBits =
1889 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1912 const SCEV &MaxBTC,
const SCEV &Dist,
1935 const SCEV *CastedDist = &Dist;
1936 const SCEV *CastedProduct = Product;
1943 if (DistTypeSizeBits > ProductTypeSizeBits)
1968 assert(Stride > 1 &&
"The stride must be greater than 1");
1969 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1970 assert(Distance > 0 &&
"The distance must be non-zero");
1973 if (Distance % TypeByteSize)
1992 return Distance % Stride;
1995bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(
const SCEV *Src,
1999 const SCEV *BTC = PSE.getBackedgeTakenCount();
2000 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
2001 ScalarEvolution &SE = *PSE.getSE();
2002 const auto &[SrcStart_, SrcEnd_] =
2004 &SE, &PointerBounds, DT, AC, LoopGuards);
2008 const auto &[SinkStart_, SinkEnd_] =
2010 &SE, &PointerBounds, DT, AC, LoopGuards);
2029 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2030MemoryDepChecker::getDependenceDistanceStrideAndSize(
2031 const AccessAnalysis::MemAccessInfo &
A, Instruction *AInst,
2032 const AccessAnalysis::MemAccessInfo &
B, Instruction *BInst) {
2033 const auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2034 auto &SE = *PSE.getSE();
2035 const auto &[APtr, AIsWrite] =
A;
2036 const auto &[BPtr, BIsWrite] =
B;
2039 if (!AIsWrite && !BIsWrite)
2046 if (APtr->getType()->getPointerAddressSpace() !=
2047 BPtr->getType()->getPointerAddressSpace())
2050 std::optional<int64_t> StrideAPtr =
2051 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides,
true,
true);
2052 std::optional<int64_t> StrideBPtr =
2053 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides,
true,
true);
2055 const SCEV *Src = PSE.getSCEV(APtr);
2056 const SCEV *
Sink = PSE.getSCEV(BPtr);
2061 if (StrideAPtr && *StrideAPtr < 0) {
2070 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
2072 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
2073 <<
": " << *Dist <<
"\n");
2082 if (!StrideAPtr || !StrideBPtr) {
2083 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
2087 int64_t StrideAPtrInt = *StrideAPtr;
2088 int64_t StrideBPtrInt = *StrideBPtr;
2089 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
2090 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
2093 if (!StrideAPtrInt || !StrideBPtrInt)
2098 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2100 dbgs() <<
"Pointer access with strides in different directions\n");
2104 TypeSize AStoreSz =
DL.getTypeStoreSize(ATy);
2105 TypeSize BStoreSz =
DL.getTypeStoreSize(BTy);
2109 uint64_t ASz =
DL.getTypeAllocSize(ATy);
2110 uint64_t BSz =
DL.getTypeAllocSize(BTy);
2111 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2113 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2114 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2116 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2118 std::optional<uint64_t> CommonStride;
2119 if (StrideAScaled == StrideBScaled)
2120 CommonStride = StrideAScaled;
2125 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2133 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2134 TypeByteSize, AIsWrite, BIsWrite);
2138MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2140 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2145 auto CheckCompletelyBeforeOrAfter = [&]() {
2146 auto *APtr =
A.getPointer();
2147 auto *BPtr =
B.getPointer();
2150 const SCEV *Src = PSE.getSCEV(APtr);
2151 const SCEV *
Sink = PSE.getSCEV(BPtr);
2152 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2158 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2159 if (std::holds_alternative<Dependence::DepType>(Res)) {
2161 CheckCompletelyBeforeOrAfter())
2163 return std::get<Dependence::DepType>(Res);
2166 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2167 std::get<DepDistanceStrideAndSizeInfo>(Res);
2168 bool HasSameSize = TypeByteSize > 0;
2170 ScalarEvolution &SE = *PSE.getSE();
2171 auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2180 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2185 const APInt *APDist =
nullptr;
2186 uint64_t ConstDist =
2193 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2212 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2213 "different type sizes\n");
2217 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2232 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2234 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2245 if (MinDistance <= 0) {
2251 if (CheckCompletelyBeforeOrAfter())
2253 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2254 "different type sizes\n");
2263 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2298 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2299 if (MinDistanceNeeded >
static_cast<uint64_t
>(MinDistance)) {
2308 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2309 << MinDistance <<
'\n');
2315 if (MinDistanceNeeded > MinDepDistBytes) {
2317 << MinDistanceNeeded <<
" size in bytes\n");
2322 std::min(
static_cast<uint64_t
>(MinDistance), MinDepDistBytes);
2324 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2326 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2329 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2330 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2331 <<
" with max VF = " << MaxVF <<
'\n');
2333 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2334 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2343 if (CheckCompletelyBeforeOrAfter())
2346 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2353 MinDepDistBytes = -1;
2368 bool AIIsWrite = AI->getInt();
2372 (AIIsWrite ? AI : std::next(AI));
2375 auto &Acc = Accesses[*AI];
2376 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2380 for (std::vector<unsigned>::iterator
2381 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2382 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2384 auto A = std::make_pair(&*AI, *I1);
2385 auto B = std::make_pair(&*OI, *I2);
2392 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2399 if (RecordDependences) {
2401 Dependences.emplace_back(
A.second,
B.second,
Type);
2404 RecordDependences =
false;
2405 Dependences.clear();
2407 <<
"Too many dependences, stopped recording\n");
2419 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2426 auto I = Accesses.find(
Access);
2428 if (
I != Accesses.end()) {
2429 transform(
I->second, std::back_inserter(Insts),
2430 [&](
unsigned Idx) { return this->InstMap[Idx]; });
2441 "ForwardButPreventsForwarding",
2443 "BackwardVectorizable",
2444 "BackwardVectorizableButPreventsForwarding"};
2454bool LoopAccessInfo::canAnalyzeLoop() {
2463 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2470 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2471 recordAnalysis(
"CFGNotUnderstood")
2472 <<
"loop control flow is not understood by analyzer";
2481 recordAnalysis(
"CantComputeNumberOfIterations")
2482 <<
"could not determine number of loop iterations";
2483 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2492bool LoopAccessInfo::analyzeLoop(AAResults *AA,
const LoopInfo *LI,
2493 const TargetLibraryInfo *TLI,
2494 DominatorTree *DT) {
2498 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2501 unsigned NumReads = 0;
2502 unsigned NumReadWrites = 0;
2504 bool HasComplexMemInst =
false;
2507 HasConvergentOp =
false;
2509 PtrRtChecking->Pointers.
clear();
2510 PtrRtChecking->Need =
false;
2514 const bool EnableMemAccessVersioningOfLoop =
2520 LoopBlocksRPO RPOT(TheLoop);
2522 for (BasicBlock *BB : RPOT) {
2525 for (Instruction &
I : *BB) {
2528 HasConvergentOp =
true;
2533 if (HasComplexMemInst && HasConvergentOp)
2537 if (HasComplexMemInst)
2542 for (
Metadata *
Op : Decl->getScopeList()->operands())
2555 if (
I.mayReadFromMemory()) {
2556 auto hasPointerArgs = [](CallBase *CB) {
2558 return Arg->getType()->isPointerTy();
2571 recordAnalysis(
"CantVectorizeInstruction", Ld)
2572 <<
"instruction cannot be vectorized";
2573 HasComplexMemInst =
true;
2576 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2577 recordAnalysis(
"NonSimpleLoad", Ld)
2578 <<
"read with atomic ordering or volatile read";
2580 HasComplexMemInst =
true;
2586 if (EnableMemAccessVersioningOfLoop)
2587 collectStridedAccess(Ld);
2592 if (
I.mayWriteToMemory()) {
2595 recordAnalysis(
"CantVectorizeInstruction", St)
2596 <<
"instruction cannot be vectorized";
2597 HasComplexMemInst =
true;
2600 if (!St->isSimple() && !IsAnnotatedParallel) {
2601 recordAnalysis(
"NonSimpleStore", St)
2602 <<
"write with atomic ordering or volatile write";
2604 HasComplexMemInst =
true;
2610 if (EnableMemAccessVersioningOfLoop)
2611 collectStridedAccess(St);
2616 if (HasComplexMemInst)
2624 if (!Stores.
size()) {
2630 AccessAnalysis
Accesses(TheLoop, AA, LI, DepCands, *PSE, LoopAliasScopes);
2637 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2641 SmallPtrSet<Value *, 16> UniformStores;
2643 for (StoreInst *ST : Stores) {
2646 if (isInvariant(
Ptr)) {
2648 StoresToInvariantAddresses.push_back(ST);
2649 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2656 if (Seen.
insert({Ptr, AccessTy}).second) {
2663 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2667 [&Accesses, AccessTy, Loc](
Value *
Ptr) {
2668 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2669 Accesses.addStore(NewLoc, AccessTy);
2674 if (IsAnnotatedParallel) {
2676 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2681 for (LoadInst *LD : Loads) {
2691 bool IsReadOnlyPtr =
false;
2693 if (Seen.
insert({Ptr, AccessTy}).second ||
2696 IsReadOnlyPtr =
true;
2702 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2703 "load and uniform store to the same address!\n");
2704 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2711 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2715 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *
Ptr) {
2716 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2717 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2723 if (NumReadWrites == 1 && NumReads == 0) {
2730 Accesses.buildDependenceSets();
2734 Value *UncomputablePtr =
nullptr;
2735 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2736 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2737 if (!HasCompletePtrRtChecking) {
2739 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2740 <<
"cannot identify array bounds";
2741 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2742 <<
"the array bounds.\n");
2747 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2749 bool DepsAreSafe =
true;
2750 if (Accesses.isDependencyCheckNeeded()) {
2753 DepChecker->
areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2759 Accesses.resetDepChecks(*DepChecker);
2761 PtrRtChecking->reset();
2762 PtrRtChecking->Need =
true;
2764 UncomputablePtr =
nullptr;
2765 HasCompletePtrRtChecking =
2766 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2767 UncomputablePtr, AllowPartial);
2770 if (!HasCompletePtrRtChecking) {
2772 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2773 <<
"cannot check memory dependencies at runtime";
2774 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2781 if (HasConvergentOp) {
2782 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2783 <<
"cannot add control dependency to convergent operation";
2784 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2785 "would be needed with a convergent operation\n");
2791 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2792 << (PtrRtChecking->Need ?
"" :
" don't")
2793 <<
" need runtime memory checks.\n");
2797 emitUnsafeDependenceRemark();
2801void LoopAccessInfo::emitUnsafeDependenceRemark() {
2802 const auto *Deps = getDepChecker().getDependences();
2810 if (Found == Deps->end())
2812 MemoryDepChecker::Dependence Dep = *Found;
2814 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2817 bool HasForcedDistribution =
false;
2818 std::optional<const MDOperand *>
Value =
2826 const std::string
Info =
2827 HasForcedDistribution
2828 ?
"unsafe dependent memory operations in loop."
2829 :
"unsafe dependent memory operations in loop. Use "
2830 "#pragma clang loop distribute(enable) to allow loop distribution "
2831 "to attempt to isolate the offending operations into a separate "
2833 OptimizationRemarkAnalysis &
R =
2842 R <<
"\nBackward loop carried data dependence.";
2845 R <<
"\nForward loop carried data dependence that prevents "
2846 "store-to-load forwarding.";
2849 R <<
"\nBackward loop carried data dependence that prevents "
2850 "store-to-load forwarding.";
2853 R <<
"\nUnsafe indirect dependence.";
2856 R <<
"\nUnknown data dependence.";
2860 if (Instruction *
I = Dep.
getSource(getDepChecker())) {
2863 SourceLoc = DD->getDebugLoc();
2865 R <<
" Memory location is the same as accessed at "
2866 <<
ore::NV(
"Location", SourceLoc);
2871 const Loop *TheLoop,
2873 assert(TheLoop->contains(BB) &&
"Unknown block used");
2876 const BasicBlock *Latch = TheLoop->getLoopLatch();
2882 assert(!Report &&
"Multiple reports generated");
2888 CodeRegion =
I->getParent();
2891 if (
I->getDebugLoc())
2892 DL =
I->getDebugLoc();
2895 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
2901 auto *SE = PSE->getSE();
2902 if (TheLoop->isLoopInvariant(V))
2919 for (
const Use &U :
GEP->operands()) {
2949 V =
C->getOperand();
2970void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
2985 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
2990 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
3007 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3013 uint64_t StrideTypeSizeBits =
DL.getTypeSizeInBits(StrideExpr->
getType());
3014 uint64_t BETypeSizeBits =
DL.getTypeSizeInBits(MaxBTC->
getType());
3015 const SCEV *CastedStride = StrideExpr;
3016 const SCEV *CastedBECount = MaxBTC;
3017 ScalarEvolution *SE = PSE->getSE();
3018 if (BETypeSizeBits >= StrideTypeSizeBits)
3022 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
3028 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
3029 "Stride==1 predicate will imply that the loop executes "
3033 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
3037 const SCEV *StrideBase = StrideExpr;
3039 StrideBase =
C->getOperand();
3049 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3050 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3051 if (
TTI && !
TTI->enableScalableVectorization())
3054 MaxTargetVectorWidthInBits =
3057 DepChecker = std::make_unique<MemoryDepChecker>(
3058 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3060 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3061 if (canAnalyzeLoop())
3062 CanVecMem = analyzeLoop(
AA, LI, TLI, DT);
3067 OS.
indent(
Depth) <<
"Memory dependences are safe";
3070 OS <<
" with a maximum safe vector width of "
3074 OS <<
", with a maximum safe store-load forward width of " << SLDist
3077 if (PtrRtChecking->Need)
3078 OS <<
" with run-time checks";
3082 if (HasConvergentOp)
3083 OS.
indent(
Depth) <<
"Has convergent operation in loop\n";
3086 OS.
indent(
Depth) <<
"Report: " << Report->getMsg() <<
"\n";
3088 if (
auto *Dependences = DepChecker->getDependences()) {
3090 for (
const auto &Dep : *Dependences) {
3091 Dep.
print(OS,
Depth + 2, DepChecker->getMemoryInstructions());
3095 OS.
indent(
Depth) <<
"Too many dependences, not recorded\n";
3098 PtrRtChecking->print(OS,
Depth);
3099 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3100 OS.
indent(
Depth) <<
"Generated run-time checks are incomplete\n";
3104 <<
"Non vectorizable stores to invariant address were "
3105 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3106 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3109 <<
"found in loop.\n";
3112 PSE->getPredicate().print(OS,
Depth);
3117 PSE->print(OS,
Depth);
3121 bool AllowPartial) {
3122 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3126 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3127 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3128 &LI, AC, AllowPartial);
3137 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3138 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3139 LAI->getPSE().getPredicate().isAlwaysTrue())
3141 LoopAccessInfoMap.erase(L);
3147 FunctionAnalysisManager::Invalidator &Inv) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
friend struct RuntimeCheckingPtrGroup
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
bool contains(const T &V) const
Check if the SmallSet contains the given element.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI RetainedKnowledge getKnowledgeForValue(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, function_ref< bool(RetainedKnowledge, Instruction *, const CallBase::BundleOpInfo *)> Filter=[](auto...) { return true;})
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and it match...
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...