LLVM 22.0.0git
LoopAccessAnalysis.cpp
Go to the documentation of this file.
1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugLoc.h"
46#include "llvm/IR/Dominators.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
52#include "llvm/IR/PassManager.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueHandle.h"
58#include "llvm/Support/Debug.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <iterator>
65#include <utility>
66#include <variant>
67#include <vector>
68
69using namespace llvm;
70using namespace llvm::SCEVPatternMatch;
71
72#define DEBUG_TYPE "loop-accesses"
73
75VectorizationFactor("force-vector-width", cl::Hidden,
76 cl::desc("Sets the SIMD width. Zero is autoselect."),
79
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82 cl::desc("Sets the vectorization interleave count. "
83 "Zero is autoselect."),
87
89 "runtime-memory-check-threshold", cl::Hidden,
90 cl::desc("When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
94
95/// The maximum iterations used to merge memory checks
97 "memory-check-merge-threshold", cl::Hidden,
98 cl::desc("Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
100 cl::init(100));
101
102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105/// We collect dependences up to this threshold.
107 MaxDependences("max-dependences", cl::Hidden,
108 cl::desc("Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
110 cl::init(100));
111
112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114/// for (i = 0; i < N; ++i)
115/// A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118/// if (Stride1 == 1 && Stride2 == 1) {
119/// for (i = 0; i < N; i+=4)
120/// A[i:i+3] += ...
121/// } else
122/// ...
124 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125 cl::desc("Enable symbolic stride memory access versioning"));
126
127/// Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
130 "store-to-load-forwarding-conflict-detection", cl::Hidden,
131 cl::desc("Enable conflict detection in loop-access analysis"),
132 cl::init(true));
133
135 "max-forked-scev-depth", cl::Hidden,
136 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
137 cl::init(5));
138
140 "laa-speculate-unit-stride", cl::Hidden,
141 cl::desc("Speculate that non-constant strides are unit in LAA"),
142 cl::init(true));
143
145 "hoist-runtime-checks", cl::Hidden,
146 cl::desc(
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
150
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
153}
154
156 const DenseMap<Value *, const SCEV *> &PtrToStride,
157 Value *Ptr) {
158 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
159
160 // If there is an entry in the map return the SCEV of the pointer with the
161 // symbolic stride replaced by one.
162 const SCEV *StrideSCEV = PtrToStride.lookup(Ptr);
163 if (!StrideSCEV)
164 // For a non-symbolic stride, just return the original expression.
165 return OrigSCEV;
166
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172
173 ScalarEvolution *SE = PSE.getSE();
174 const SCEV *CT = SE->getOne(StrideSCEV->getType());
175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176 const SCEV *Expr = PSE.getSCEV(Ptr);
177
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr << "\n");
180 return Expr;
181}
182
184 unsigned Index, const RuntimePointerChecking &RtCheck)
185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186 AddressSpace(RtCheck.Pointers[Index]
187 .PointerValue->getType()
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190 Members.push_back(Index);
191}
192
193/// Returns \p A + \p B, if it is guaranteed not to unsigned wrap. Otherwise
194/// return nullptr. \p A and \p B must have the same type.
195static const SCEV *addSCEVNoOverflow(const SCEV *A, const SCEV *B,
196 ScalarEvolution &SE) {
197 if (!SE.willNotOverflow(Instruction::Add, /*IsSigned=*/false, A, B))
198 return nullptr;
199 return SE.getAddExpr(A, B);
200}
201
202/// Returns \p A * \p B, if it is guaranteed not to unsigned wrap. Otherwise
203/// return nullptr. \p A and \p B must have the same type.
204static const SCEV *mulSCEVOverflow(const SCEV *A, const SCEV *B,
205 ScalarEvolution &SE) {
206 if (!SE.willNotOverflow(Instruction::Mul, /*IsSigned=*/false, A, B))
207 return nullptr;
208 return SE.getMulExpr(A, B);
209}
210
211/// Return true, if evaluating \p AR at \p MaxBTC cannot wrap, because \p AR at
212/// \p MaxBTC is guaranteed inbounds of the accessed object.
214 const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize,
216 AssumptionCache *AC,
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
218 auto *PointerBase = SE.getPointerBase(AR->getStart());
219 auto *StartPtr = dyn_cast<SCEVUnknown>(PointerBase);
220 if (!StartPtr)
221 return false;
222 const Loop *L = AR->getLoop();
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
225 uint64_t DerefBytes = StartPtrV->getPointerDereferenceableBytes(
226 DL, CheckForNonNull, CheckForFreed);
227
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
229 return false;
230
231 const SCEV *Step = AR->getStepRecurrence(SE);
232 Type *WiderTy = SE.getWiderType(MaxBTC->getType(), Step->getType());
233 const SCEV *DerefBytesSCEV = SE.getConstant(WiderTy, DerefBytes);
234
235 // Check if we have a suitable dereferencable assumption we can use.
236 Instruction *CtxI = &*L->getHeader()->getFirstNonPHIIt();
237 if (BasicBlock *LoopPred = L->getLoopPredecessor()) {
238 if (isa<BranchInst>(LoopPred->getTerminator()))
239 CtxI = LoopPred->getTerminator();
240 }
241 RetainedKnowledge DerefRK;
242 getKnowledgeForValue(StartPtrV, {Attribute::Dereferenceable}, *AC,
243 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
244 if (!isValidAssumeForContext(Assume, CtxI, DT))
245 return false;
246 if (StartPtrV->canBeFreed() &&
247 !willNotFreeBetween(Assume, CtxI))
248 return false;
249 DerefRK = std::max(DerefRK, RK);
250 return true;
251 });
252 if (DerefRK) {
253 DerefBytesSCEV =
254 SE.getUMaxExpr(DerefBytesSCEV, SE.getSCEV(DerefRK.IRArgValue));
255 }
256
257 if (DerefBytesSCEV->isZero())
258 return false;
259
260 bool IsKnownNonNegative = SE.isKnownNonNegative(Step);
261 if (!IsKnownNonNegative && !SE.isKnownNegative(Step))
262 return false;
263
264 Step = SE.getNoopOrSignExtend(Step, WiderTy);
265 MaxBTC = SE.getNoopOrZeroExtend(MaxBTC, WiderTy);
266
267 // For the computations below, make sure they don't unsigned wrap.
268 if (!SE.isKnownPredicate(CmpInst::ICMP_UGE, AR->getStart(), StartPtr))
269 return false;
270 const SCEV *StartOffset = SE.getNoopOrZeroExtend(
271 SE.getMinusSCEV(AR->getStart(), StartPtr), WiderTy);
272
273 if (!LoopGuards)
274 LoopGuards.emplace(ScalarEvolution::LoopGuards::collect(AR->getLoop(), SE));
275 MaxBTC = SE.applyLoopGuards(MaxBTC, *LoopGuards);
276
277 const SCEV *OffsetAtLastIter =
278 mulSCEVOverflow(MaxBTC, SE.getAbsExpr(Step, /*IsNSW=*/false), SE);
279 if (!OffsetAtLastIter) {
280 // Re-try with constant max backedge-taken count if using the symbolic one
281 // failed.
282 MaxBTC = SE.getConstantMaxBackedgeTakenCount(AR->getLoop());
283 if (isa<SCEVCouldNotCompute>(MaxBTC))
284 return false;
285 MaxBTC = SE.getNoopOrZeroExtend(
286 MaxBTC, WiderTy);
287 OffsetAtLastIter =
288 mulSCEVOverflow(MaxBTC, SE.getAbsExpr(Step, /*IsNSW=*/false), SE);
289 if (!OffsetAtLastIter)
290 return false;
291 }
292
293 const SCEV *OffsetEndBytes = addSCEVNoOverflow(
294 OffsetAtLastIter, SE.getNoopOrZeroExtend(EltSize, WiderTy), SE);
295 if (!OffsetEndBytes)
296 return false;
297
298 if (IsKnownNonNegative) {
299 // For positive steps, check if
300 // (AR->getStart() - StartPtr) + (MaxBTC * Step) + EltSize <= DerefBytes,
301 // while making sure none of the computations unsigned wrap themselves.
302 const SCEV *EndBytes = addSCEVNoOverflow(StartOffset, OffsetEndBytes, SE);
303 if (!EndBytes)
304 return false;
305
306 DerefBytesSCEV = SE.applyLoopGuards(DerefBytesSCEV, *LoopGuards);
307 return SE.isKnownPredicate(CmpInst::ICMP_ULE, EndBytes, DerefBytesSCEV);
308 }
309
310 // For negative steps check if
311 // * StartOffset >= (MaxBTC * Step + EltSize)
312 // * StartOffset <= DerefBytes.
313 assert(SE.isKnownNegative(Step) && "must be known negative");
314 return SE.isKnownPredicate(CmpInst::ICMP_SGE, StartOffset, OffsetEndBytes) &&
315 SE.isKnownPredicate(CmpInst::ICMP_ULE, StartOffset, DerefBytesSCEV);
316}
317
318std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
319 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC,
320 const SCEV *MaxBTC, ScalarEvolution *SE,
321 DenseMap<std::pair<const SCEV *, Type *>,
322 std::pair<const SCEV *, const SCEV *>> *PointerBounds,
324 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
325 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
326 if (PointerBounds) {
327 auto [Iter, Ins] = PointerBounds->insert(
328 {{PtrExpr, AccessTy},
329 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
330 if (!Ins)
331 return Iter->second;
332 PtrBoundsPair = &Iter->second;
333 }
334
335 const SCEV *ScStart;
336 const SCEV *ScEnd;
337
338 auto &DL = Lp->getHeader()->getDataLayout();
339 Type *IdxTy = DL.getIndexType(PtrExpr->getType());
340 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
341 if (SE->isLoopInvariant(PtrExpr, Lp)) {
342 ScStart = ScEnd = PtrExpr;
343 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
344 ScStart = AR->getStart();
345 if (!isa<SCEVCouldNotCompute>(BTC))
346 // Evaluating AR at an exact BTC is safe: LAA separately checks that
347 // accesses cannot wrap in the loop. If evaluating AR at BTC wraps, then
348 // the loop either triggers UB when executing a memory access with a
349 // poison pointer or the wrapping/poisoned pointer is not used.
350 ScEnd = AR->evaluateAtIteration(BTC, *SE);
351 else {
352 // Evaluating AR at MaxBTC may wrap and create an expression that is less
353 // than the start of the AddRec due to wrapping (for example consider
354 // MaxBTC = -2). If that's the case, set ScEnd to -(EltSize + 1). ScEnd
355 // will get incremented by EltSize before returning, so this effectively
356 // sets ScEnd to the maximum unsigned value for the type. Note that LAA
357 // separately checks that accesses cannot not wrap, so unsigned max
358 // represents an upper bound.
359 if (evaluatePtrAddRecAtMaxBTCWillNotWrap(AR, MaxBTC, EltSizeSCEV, *SE, DL,
360 DT, AC, LoopGuards)) {
361 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
362 } else {
363 ScEnd = SE->getAddExpr(
364 SE->getNegativeSCEV(EltSizeSCEV),
366 ConstantInt::get(EltSizeSCEV->getType(), -1), AR->getType())));
367 }
368 }
369 const SCEV *Step = AR->getStepRecurrence(*SE);
370
371 // For expressions with negative step, the upper bound is ScStart and the
372 // lower bound is ScEnd.
373 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
374 if (CStep->getValue()->isNegative())
375 std::swap(ScStart, ScEnd);
376 } else {
377 // Fallback case: the step is not constant, but we can still
378 // get the upper and lower bounds of the interval by using min/max
379 // expressions.
380 ScStart = SE->getUMinExpr(ScStart, ScEnd);
381 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
382 }
383 } else
384 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
385
386 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
387 assert(SE->isLoopInvariant(ScEnd, Lp) && "ScEnd needs to be invariant");
388
389 // Add the size of the pointed element to ScEnd.
390 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
391
392 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
393 if (PointerBounds)
394 *PtrBoundsPair = Res;
395 return Res;
396}
397
398/// Calculate Start and End points of memory access using
399/// getStartAndEndForAccess.
401 Type *AccessTy, bool WritePtr,
402 unsigned DepSetId, unsigned ASId,
404 bool NeedsFreeze) {
405 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
406 const SCEV *BTC = PSE.getBackedgeTakenCount();
407 const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
408 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.getSE(),
409 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
411 !isa<SCEVCouldNotCompute>(ScEnd) &&
412 "must be able to compute both start and end expressions");
413 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
414 NeedsFreeze);
415}
416
417bool RuntimePointerChecking::tryToCreateDiffCheck(
418 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
419 // If either group contains multiple different pointers, bail out.
420 // TODO: Support multiple pointers by using the minimum or maximum pointer,
421 // depending on src & sink.
422 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
423 return false;
424
425 const PointerInfo *Src = &Pointers[CGI.Members[0]];
426 const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
427
428 // If either pointer is read and written, multiple checks may be needed. Bail
429 // out.
430 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
431 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
432 return false;
433
434 ArrayRef<unsigned> AccSrc =
435 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
436 ArrayRef<unsigned> AccSink =
437 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
438 // If either pointer is accessed multiple times, there may not be a clear
439 // src/sink relation. Bail out for now.
440 if (AccSrc.size() != 1 || AccSink.size() != 1)
441 return false;
442
443 // If the sink is accessed before src, swap src/sink.
444 if (AccSink[0] < AccSrc[0])
445 std::swap(Src, Sink);
446
447 const SCEVConstant *Step;
448 const SCEV *SrcStart;
449 const SCEV *SinkStart;
450 const Loop *InnerLoop = DC.getInnermostLoop();
451 if (!match(Src->Expr,
453 m_SpecificLoop(InnerLoop))) ||
454 !match(Sink->Expr,
456 m_SpecificLoop(InnerLoop))))
457 return false;
458
460 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
462 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
463 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
464 Type *DstTy = getLoadStoreType(SinkInsts[0]);
466 return false;
467
468 const DataLayout &DL = InnerLoop->getHeader()->getDataLayout();
469 unsigned AllocSize =
470 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
471
472 // Only matching constant steps matching the AllocSize are supported at the
473 // moment. This simplifies the difference computation. Can be extended in the
474 // future.
475 if (Step->getAPInt().abs() != AllocSize)
476 return false;
477
478 IntegerType *IntTy =
479 IntegerType::get(Src->PointerValue->getContext(),
480 DL.getPointerSizeInBits(CGI.AddressSpace));
481
482 // When counting down, the dependence distance needs to be swapped.
483 if (Step->getValue()->isNegative())
484 std::swap(SinkStart, SrcStart);
485
486 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkStart, IntTy);
487 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcStart, IntTy);
488 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
489 isa<SCEVCouldNotCompute>(SrcStartInt))
490 return false;
491
492 // If the start values for both Src and Sink also vary according to an outer
493 // loop, then it's probably better to avoid creating diff checks because
494 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
495 // do the expanded full range overlap checks, which can be hoisted.
496 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
497 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
498 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
499 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
500 const Loop *StartARLoop = SrcStartAR->getLoop();
501 if (StartARLoop == SinkStartAR->getLoop() &&
502 StartARLoop == InnerLoop->getParentLoop() &&
503 // If the diff check would already be loop invariant (due to the
504 // recurrences being the same), then we prefer to keep the diff checks
505 // because they are cheaper.
506 SrcStartAR->getStepRecurrence(*SE) !=
507 SinkStartAR->getStepRecurrence(*SE)) {
508 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
509 "cannot be hoisted out of the outer loop\n");
510 return false;
511 }
512 }
513
514 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
515 << "SrcStart: " << *SrcStartInt << '\n'
516 << "SinkStartInt: " << *SinkStartInt << '\n');
517 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
518 Src->NeedsFreeze || Sink->NeedsFreeze);
519 return true;
520}
521
523 SmallVector<RuntimePointerCheck, 4> Checks;
524
525 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
526 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
529
530 if (needsChecking(CGI, CGJ)) {
531 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
532 Checks.emplace_back(&CGI, &CGJ);
533 }
534 }
535 }
536 return Checks;
537}
538
540 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
541 assert(Checks.empty() && "Checks is not empty");
542 groupChecks(DepCands, UseDependencies);
543 Checks = generateChecks();
544}
545
547 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
548 for (const auto &I : M.Members)
549 for (const auto &J : N.Members)
550 if (needsChecking(I, J))
551 return true;
552 return false;
553}
554
555/// Compare \p I and \p J and return the minimum.
556/// Return nullptr in case we couldn't find an answer.
557static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
558 ScalarEvolution *SE) {
559 std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
560 if (!Diff)
561 return nullptr;
562 return Diff->isNegative() ? J : I;
563}
564
566 unsigned Index, const RuntimePointerChecking &RtCheck) {
567 return addPointer(
568 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
569 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
570 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
571}
572
573bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
574 const SCEV *End, unsigned AS,
575 bool NeedsFreeze,
576 ScalarEvolution &SE) {
577 assert(AddressSpace == AS &&
578 "all pointers in a checking group must be in the same address space");
579
580 // Compare the starts and ends with the known minimum and maximum
581 // of this set. We need to know how we compare against the min/max
582 // of the set in order to be able to emit memchecks.
583 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
584 if (!Min0)
585 return false;
586
587 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
588 if (!Min1)
589 return false;
590
591 // Update the low bound expression if we've found a new min value.
592 if (Min0 == Start)
593 Low = Start;
594
595 // Update the high bound expression if we've found a new max value.
596 if (Min1 != End)
597 High = End;
598
599 Members.push_back(Index);
600 this->NeedsFreeze |= NeedsFreeze;
601 return true;
602}
603
604void RuntimePointerChecking::groupChecks(
605 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
606 // We build the groups from dependency candidates equivalence classes
607 // because:
608 // - We know that pointers in the same equivalence class share
609 // the same underlying object and therefore there is a chance
610 // that we can compare pointers
611 // - We wouldn't be able to merge two pointers for which we need
612 // to emit a memcheck. The classes in DepCands are already
613 // conveniently built such that no two pointers in the same
614 // class need checking against each other.
615
616 // We use the following (greedy) algorithm to construct the groups
617 // For every pointer in the equivalence class:
618 // For each existing group:
619 // - if the difference between this pointer and the min/max bounds
620 // of the group is a constant, then make the pointer part of the
621 // group and update the min/max bounds of that group as required.
622
623 CheckingGroups.clear();
624
625 // If we need to check two pointers to the same underlying object
626 // with a non-constant difference, we shouldn't perform any pointer
627 // grouping with those pointers. This is because we can easily get
628 // into cases where the resulting check would return false, even when
629 // the accesses are safe.
630 //
631 // The following example shows this:
632 // for (i = 0; i < 1000; ++i)
633 // a[5000 + i * m] = a[i] + a[i + 9000]
634 //
635 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
636 // (0, 10000) which is always false. However, if m is 1, there is no
637 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
638 // us to perform an accurate check in this case.
639 //
640 // In the above case, we have a non-constant distance and an Unknown
641 // dependence between accesses to the same underlying object, and could retry
642 // with runtime checks. Therefore UseDependencies is false. In this case we
643 // will use the fallback path and create separate checking groups for all
644 // pointers.
645
646 // If we don't have the dependency partitions, construct a new
647 // checking pointer group for each pointer. This is also required
648 // for correctness, because in this case we can have checking between
649 // pointers to the same underlying object.
650 if (!UseDependencies) {
651 for (unsigned I = 0; I < Pointers.size(); ++I)
652 CheckingGroups.emplace_back(I, *this);
653 return;
654 }
655
656 unsigned TotalComparisons = 0;
657
659 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
660 PositionMap[Pointers[Index].PointerValue].push_back(Index);
661
662 // We need to keep track of what pointers we've already seen so we
663 // don't process them twice.
665
666 // Go through all equivalence classes, get the "pointer check groups"
667 // and add them to the overall solution. We use the order in which accesses
668 // appear in 'Pointers' to enforce determinism.
669 for (unsigned I = 0; I < Pointers.size(); ++I) {
670 // We've seen this pointer before, and therefore already processed
671 // its equivalence class.
672 if (Seen.contains(I))
673 continue;
674
676 Pointers[I].IsWritePtr);
677
679
680 // Because DepCands is constructed by visiting accesses in the order in
681 // which they appear in alias sets (which is deterministic) and the
682 // iteration order within an equivalence class member is only dependent on
683 // the order in which unions and insertions are performed on the
684 // equivalence class, the iteration order is deterministic.
685 for (auto M : DepCands.members(Access)) {
686 auto PointerI = PositionMap.find(M.getPointer());
687 // If we can't find the pointer in PositionMap that means we can't
688 // generate a memcheck for it.
689 if (PointerI == PositionMap.end())
690 continue;
691 for (unsigned Pointer : PointerI->second) {
692 bool Merged = false;
693 // Mark this pointer as seen.
694 Seen.insert(Pointer);
695
696 // Go through all the existing sets and see if we can find one
697 // which can include this pointer.
698 for (RuntimeCheckingPtrGroup &Group : Groups) {
699 // Don't perform more than a certain amount of comparisons.
700 // This should limit the cost of grouping the pointers to something
701 // reasonable. If we do end up hitting this threshold, the algorithm
702 // will create separate groups for all remaining pointers.
703 if (TotalComparisons > MemoryCheckMergeThreshold)
704 break;
705
706 TotalComparisons++;
707
708 if (Group.addPointer(Pointer, *this)) {
709 Merged = true;
710 break;
711 }
712 }
713
714 if (!Merged)
715 // We couldn't add this pointer to any existing set or the threshold
716 // for the number of comparisons has been reached. Create a new group
717 // to hold the current pointer.
718 Groups.emplace_back(Pointer, *this);
719 }
720 }
721
722 // We've computed the grouped checks for this partition.
723 // Save the results and continue with the next one.
725 }
726}
727
729 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
730 unsigned PtrIdx2) {
731 return (PtrToPartition[PtrIdx1] != -1 &&
732 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
733}
734
735bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
736 const PointerInfo &PointerI = Pointers[I];
737 const PointerInfo &PointerJ = Pointers[J];
738
739 // No need to check if two readonly pointers intersect.
740 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
741 return false;
742
743 // Only need to check pointers between two different dependency sets.
744 if (PointerI.DependencySetId == PointerJ.DependencySetId)
745 return false;
746
747 // Only need to check pointers in the same alias set.
748 return PointerI.AliasSetId == PointerJ.AliasSetId;
749}
750
751/// Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
755 for (const auto &[Idx, CG] : enumerate(CheckingGroups))
756 PtrIndices[&CG] = Idx;
757 return PtrIndices;
758}
759
762 unsigned Depth) const {
763 unsigned N = 0;
764 auto PtrIndices = getPtrToIdxMap(CheckingGroups);
765 for (const auto &[Check1, Check2] : Checks) {
766 const auto &First = Check1->Members, &Second = Check2->Members;
767 OS.indent(Depth) << "Check " << N++ << ":\n";
768 OS.indent(Depth + 2) << "Comparing group GRP" << PtrIndices.at(Check1)
769 << ":\n";
770 for (unsigned K : First)
771 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
772 OS.indent(Depth + 2) << "Against group GRP" << PtrIndices.at(Check2)
773 << ":\n";
774 for (unsigned K : Second)
775 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
776 }
777}
778
780
781 OS.indent(Depth) << "Run-time memory checks:\n";
782 printChecks(OS, Checks, Depth);
783
784 OS.indent(Depth) << "Grouped accesses:\n";
785 auto PtrIndices = getPtrToIdxMap(CheckingGroups);
786 for (const auto &CG : CheckingGroups) {
787 OS.indent(Depth + 2) << "Group GRP" << PtrIndices.at(&CG) << ":\n";
788 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
789 << ")\n";
790 for (unsigned Member : CG.Members) {
791 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
792 }
793 }
794}
795
796namespace {
797
798/// Analyses memory accesses in a loop.
799///
800/// Checks whether run time pointer checks are needed and builds sets for data
801/// dependence checking.
802class AccessAnalysis {
803public:
804 /// Read or write access location.
805 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
806 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
807
808 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
811 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
812 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
813 LoopAliasScopes(LoopAliasScopes) {
814 // We're analyzing dependences across loop iterations.
815 BAA.enableCrossIterationMode();
816 }
817
818 /// Register a load and whether it is only read from.
819 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
820 Value *Ptr = const_cast<Value *>(Loc.Ptr);
821 AST.add(adjustLoc(Loc));
822 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
823 if (IsReadOnly)
824 ReadOnlyPtr.insert(Ptr);
825 }
826
827 /// Register a store.
828 void addStore(const MemoryLocation &Loc, Type *AccessTy) {
829 Value *Ptr = const_cast<Value *>(Loc.Ptr);
830 AST.add(adjustLoc(Loc));
831 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
832 }
833
834 /// Check if we can emit a run-time no-alias check for \p Access.
835 ///
836 /// Returns true if we can emit a run-time no alias check for \p Access.
837 /// If we can check this access, this also adds it to a dependence set and
838 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
839 /// we will attempt to use additional run-time checks in order to get
840 /// the bounds of the pointer.
841 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
842 MemAccessInfo Access, Type *AccessTy,
843 const DenseMap<Value *, const SCEV *> &Strides,
844 DenseMap<Value *, unsigned> &DepSetId,
845 Loop *TheLoop, unsigned &RunningDepId,
846 unsigned ASId, bool Assume);
847
848 /// Check whether we can check the pointers at runtime for
849 /// non-intersection.
850 ///
851 /// Returns true if we need no check or if we do and we can generate them
852 /// (i.e. the pointers have computable bounds). A return value of false means
853 /// we couldn't analyze and generate runtime checks for all pointers in the
854 /// loop, but if \p AllowPartial is set then we will have checks for those
855 /// pointers we could analyze.
856 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
857 const DenseMap<Value *, const SCEV *> &Strides,
858 Value *&UncomputablePtr, bool AllowPartial);
859
860 /// Goes over all memory accesses, checks whether a RT check is needed
861 /// and builds sets of dependent accesses.
862 void buildDependenceSets() {
863 processMemAccesses();
864 }
865
866 /// Initial processing of memory accesses determined that we need to
867 /// perform dependency checking.
868 ///
869 /// Note that this can later be cleared if we retry memcheck analysis without
870 /// dependency checking (i.e. ShouldRetryWithRuntimeChecks).
871 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
872
873 /// We decided that no dependence analysis would be used. Reset the state.
874 void resetDepChecks(MemoryDepChecker &DepChecker) {
875 CheckDeps.clear();
876 DepChecker.clearDependences();
877 }
878
879 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
880
881private:
882 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
883
884 /// Adjust the MemoryLocation so that it represents accesses to this
885 /// location across all iterations, rather than a single one.
886 MemoryLocation adjustLoc(MemoryLocation Loc) const {
887 // The accessed location varies within the loop, but remains within the
888 // underlying object.
890 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
891 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
892 return Loc;
893 }
894
895 /// Drop alias scopes that are only valid within a single loop iteration.
896 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
897 if (!ScopeList)
898 return nullptr;
899
900 // For the sake of simplicity, drop the whole scope list if any scope is
901 // iteration-local.
902 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
903 return LoopAliasScopes.contains(cast<MDNode>(Scope));
904 }))
905 return nullptr;
906
907 return ScopeList;
908 }
909
910 /// Go over all memory access and check whether runtime pointer checks
911 /// are needed and build sets of dependency check candidates.
912 void processMemAccesses();
913
914 /// Map of all accesses. Values are the types used to access memory pointed to
915 /// by the pointer.
916 PtrAccessMap Accesses;
917
918 /// The loop being checked.
919 const Loop *TheLoop;
920
921 /// List of accesses that need a further dependence check.
922 MemAccessInfoList CheckDeps;
923
924 /// Set of pointers that are read only.
925 SmallPtrSet<Value*, 16> ReadOnlyPtr;
926
927 /// Batched alias analysis results.
928 BatchAAResults BAA;
929
930 /// An alias set tracker to partition the access set by underlying object and
931 //intrinsic property (such as TBAA metadata).
932 AliasSetTracker AST;
933
934 /// The LoopInfo of the loop being checked.
935 const LoopInfo *LI;
936
937 /// Sets of potentially dependent accesses - members of one set share an
938 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
939 /// dependence check.
941
942 /// Initial processing of memory accesses determined that we may need
943 /// to add memchecks. Perform the analysis to determine the necessary checks.
944 ///
945 /// Note that, this is different from isDependencyCheckNeeded. When we retry
946 /// memcheck analysis without dependency checking
947 /// (i.e. ShouldRetryWithRuntimeChecks), isDependencyCheckNeeded is
948 /// cleared while this remains set if we have potentially dependent accesses.
949 bool IsRTCheckAnalysisNeeded = false;
950
951 /// The SCEV predicate containing all the SCEV-related assumptions.
952 PredicatedScalarEvolution &PSE;
953
954 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
955
956 /// Alias scopes that are declared inside the loop, and as such not valid
957 /// across iterations.
958 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
959};
960
961} // end anonymous namespace
962
963/// Try to compute a constant stride for \p AR. Used by getPtrStride and
964/// isNoWrap.
965static std::optional<int64_t>
966getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy,
968 if (isa<ScalableVectorType>(AccessTy)) {
969 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
970 << "\n");
971 return std::nullopt;
972 }
973
974 // The access function must stride over the innermost loop.
975 if (Lp != AR->getLoop()) {
976 LLVM_DEBUG({
977 dbgs() << "LAA: Bad stride - Not striding over innermost loop ";
978 if (Ptr)
979 dbgs() << *Ptr << " ";
980
981 dbgs() << "SCEV: " << *AR << "\n";
982 });
983 return std::nullopt;
984 }
985
986 // Check the step is constant.
987 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
988
989 // Calculate the pointer stride and check if it is constant.
990 const APInt *APStepVal;
991 if (!match(Step, m_scev_APInt(APStepVal))) {
992 LLVM_DEBUG({
993 dbgs() << "LAA: Bad stride - Not a constant strided ";
994 if (Ptr)
995 dbgs() << *Ptr << " ";
996 dbgs() << "SCEV: " << *AR << "\n";
997 });
998 return std::nullopt;
999 }
1000
1001 const auto &DL = Lp->getHeader()->getDataLayout();
1002 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1003 int64_t Size = AllocSize.getFixedValue();
1004
1005 // Huge step value - give up.
1006 std::optional<int64_t> StepVal = APStepVal->trySExtValue();
1007 if (!StepVal)
1008 return std::nullopt;
1009
1010 // Strided access.
1011 return *StepVal % Size ? std::nullopt : std::make_optional(*StepVal / Size);
1012}
1013
1014/// Check whether \p AR is a non-wrapping AddRec. If \p Ptr is not nullptr, use
1015/// informating from the IR pointer value to determine no-wrap.
1017 Value *Ptr, Type *AccessTy, const Loop *L, bool Assume,
1018 std::optional<int64_t> Stride = std::nullopt) {
1019 // FIXME: This should probably only return true for NUW.
1021 return true;
1022
1024 return true;
1025
1026 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1027 // the distance between the previously accessed location and the wrapped
1028 // location will be larger than half the pointer index type space. In that
1029 // case, the GEP would be poison and any memory access dependent on it would
1030 // be immediate UB when executed.
1032 GEP && GEP->hasNoUnsignedSignedWrap())
1033 return true;
1034
1035 if (!Stride)
1036 Stride = getStrideFromAddRec(AR, L, AccessTy, Ptr, PSE);
1037 if (Stride) {
1038 // If the null pointer is undefined, then a access sequence which would
1039 // otherwise access it can be assumed not to unsigned wrap. Note that this
1040 // assumes the object in memory is aligned to the natural alignment.
1041 unsigned AddrSpace = AR->getType()->getPointerAddressSpace();
1042 if (!NullPointerIsDefined(L->getHeader()->getParent(), AddrSpace) &&
1043 (Stride == 1 || Stride == -1))
1044 return true;
1045 }
1046
1047 if (Ptr && Assume) {
1049 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1050 << "LAA: Pointer: " << *Ptr << "\n"
1051 << "LAA: SCEV: " << *AR << "\n"
1052 << "LAA: Added an overflow assumption\n");
1053 return true;
1054 }
1055
1056 return false;
1057}
1058
1059static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
1060 function_ref<void(Value *)> AddPointer) {
1062 SmallVector<Value *> WorkList;
1063 WorkList.push_back(StartPtr);
1064
1065 while (!WorkList.empty()) {
1066 Value *Ptr = WorkList.pop_back_val();
1067 if (!Visited.insert(Ptr).second)
1068 continue;
1069 auto *PN = dyn_cast<PHINode>(Ptr);
1070 // SCEV does not look through non-header PHIs inside the loop. Such phis
1071 // can be analyzed by adding separate accesses for each incoming pointer
1072 // value.
1073 if (PN && InnermostLoop.contains(PN->getParent()) &&
1074 PN->getParent() != InnermostLoop.getHeader()) {
1075 llvm::append_range(WorkList, PN->incoming_values());
1076 } else
1077 AddPointer(Ptr);
1078 }
1079}
1080
1081// Walk back through the IR for a pointer, looking for a select like the
1082// following:
1083//
1084// %offset = select i1 %cmp, i64 %a, i64 %b
1085// %addr = getelementptr double, double* %base, i64 %offset
1086// %ld = load double, double* %addr, align 8
1087//
1088// We won't be able to form a single SCEVAddRecExpr from this since the
1089// address for each loop iteration depends on %cmp. We could potentially
1090// produce multiple valid SCEVAddRecExprs, though, and check all of them for
1091// memory safety/aliasing if needed.
1092//
1093// If we encounter some IR we don't yet handle, or something obviously fine
1094// like a constant, then we just add the SCEV for that term to the list passed
1095// in by the caller. If we have a node that may potentially yield a valid
1096// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
1097// ourselves before adding to the list.
1099 ScalarEvolution *SE, const Loop *L, Value *Ptr,
1101 unsigned Depth) {
1102 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
1103 // we've exceeded our limit on recursion, just return whatever we have
1104 // regardless of whether it can be used for a forked pointer or not, along
1105 // with an indication of whether it might be a poison or undef value.
1106 const SCEV *Scev = SE->getSCEV(Ptr);
1107 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
1108 !isa<Instruction>(Ptr) || Depth == 0) {
1109 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1110 return;
1111 }
1112
1113 Depth--;
1114
1115 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
1116 return get<1>(S);
1117 };
1118
1119 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
1120 switch (Opcode) {
1121 case Instruction::Add:
1122 return SE->getAddExpr(L, R);
1123 case Instruction::Sub:
1124 return SE->getMinusSCEV(L, R);
1125 default:
1126 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
1127 }
1128 };
1129
1131 unsigned Opcode = I->getOpcode();
1132 switch (Opcode) {
1133 case Instruction::GetElementPtr: {
1134 auto *GEP = cast<GetElementPtrInst>(I);
1135 Type *SourceTy = GEP->getSourceElementType();
1136 // We only handle base + single offset GEPs here for now.
1137 // Not dealing with preexisting gathers yet, so no vectors.
1138 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
1139 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
1140 break;
1141 }
1144 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
1145 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
1146
1147 // See if we need to freeze our fork...
1148 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
1149 any_of(OffsetScevs, UndefPoisonCheck);
1150
1151 // Check that we only have a single fork, on either the base or the offset.
1152 // Copy the SCEV across for the one without a fork in order to generate
1153 // the full SCEV for both sides of the GEP.
1154 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
1155 BaseScevs.push_back(BaseScevs[0]);
1156 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
1157 OffsetScevs.push_back(OffsetScevs[0]);
1158 else {
1159 ScevList.emplace_back(Scev, NeedsFreeze);
1160 break;
1161 }
1162
1163 Type *IntPtrTy = SE->getEffectiveSCEVType(GEP->getPointerOperandType());
1164
1165 // Find the size of the type being pointed to. We only have a single
1166 // index term (guarded above) so we don't need to index into arrays or
1167 // structures, just get the size of the scalar value.
1168 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
1169
1170 for (auto [B, O] : zip(BaseScevs, OffsetScevs)) {
1171 const SCEV *Base = get<0>(B);
1172 const SCEV *Offset = get<0>(O);
1173
1174 // Scale up the offsets by the size of the type, then add to the bases.
1175 const SCEV *Scaled =
1176 SE->getMulExpr(Size, SE->getTruncateOrSignExtend(Offset, IntPtrTy));
1177 ScevList.emplace_back(SE->getAddExpr(Base, Scaled), NeedsFreeze);
1178 }
1179 break;
1180 }
1181 case Instruction::Select: {
1183 // A select means we've found a forked pointer, but we currently only
1184 // support a single select per pointer so if there's another behind this
1185 // then we just bail out and return the generic SCEV.
1186 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
1187 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
1188 if (ChildScevs.size() == 2)
1189 append_range(ScevList, ChildScevs);
1190 else
1191 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1192 break;
1193 }
1194 case Instruction::PHI: {
1196 // A phi means we've found a forked pointer, but we currently only
1197 // support a single phi per pointer so if there's another behind this
1198 // then we just bail out and return the generic SCEV.
1199 if (I->getNumOperands() == 2) {
1200 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
1201 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
1202 }
1203 if (ChildScevs.size() == 2)
1204 append_range(ScevList, ChildScevs);
1205 else
1206 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1207 break;
1208 }
1209 case Instruction::Add:
1210 case Instruction::Sub: {
1213 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1214 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1215
1216 // See if we need to freeze our fork...
1217 bool NeedsFreeze =
1218 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1219
1220 // Check that we only have a single fork, on either the left or right side.
1221 // Copy the SCEV across for the one without a fork in order to generate
1222 // the full SCEV for both sides of the BinOp.
1223 if (LScevs.size() == 2 && RScevs.size() == 1)
1224 RScevs.push_back(RScevs[0]);
1225 else if (RScevs.size() == 2 && LScevs.size() == 1)
1226 LScevs.push_back(LScevs[0]);
1227 else {
1228 ScevList.emplace_back(Scev, NeedsFreeze);
1229 break;
1230 }
1231
1232 for (auto [L, R] : zip(LScevs, RScevs))
1233 ScevList.emplace_back(GetBinOpExpr(Opcode, get<0>(L), get<0>(R)),
1234 NeedsFreeze);
1235 break;
1236 }
1237 default:
1238 // Just return the current SCEV if we haven't handled the instruction yet.
1239 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1240 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1241 break;
1242 }
1243}
1244
1245bool AccessAnalysis::createCheckForAccess(
1246 RuntimePointerChecking &RtCheck, MemAccessInfo Access, Type *AccessTy,
1247 const DenseMap<Value *, const SCEV *> &StridesMap,
1248 DenseMap<Value *, unsigned> &DepSetId, Loop *TheLoop,
1249 unsigned &RunningDepId, unsigned ASId, bool Assume) {
1250 Value *Ptr = Access.getPointer();
1251 ScalarEvolution *SE = PSE.getSE();
1252 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1253
1255 findForkedSCEVs(SE, TheLoop, Ptr, RTCheckPtrs, MaxForkedSCEVDepth);
1256 assert(!RTCheckPtrs.empty() &&
1257 "Must have some runtime-check pointer candidates");
1258
1259 // RTCheckPtrs must have size 2 if there are forked pointers. Otherwise, there
1260 // are no forked pointers; replaceSymbolicStridesSCEV in this case.
1261 auto IsLoopInvariantOrAR =
1262 [&SE, &TheLoop](const PointerIntPair<const SCEV *, 1, bool> &P) {
1263 return SE->isLoopInvariant(P.getPointer(), TheLoop) ||
1264 isa<SCEVAddRecExpr>(P.getPointer());
1265 };
1266 if (RTCheckPtrs.size() == 2 && all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1267 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n";
1268 for (const auto &[Idx, Q] : enumerate(RTCheckPtrs)) dbgs()
1269 << "\t(" << Idx << ") " << *Q.getPointer() << "\n");
1270 } else {
1271 RTCheckPtrs = {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1272 }
1273
1274 /// Check whether all pointers can participate in a runtime bounds check. They
1275 /// must either be invariant or non-wrapping affine AddRecs.
1276 for (auto &P : RTCheckPtrs) {
1277 // The bounds for loop-invariant pointer is trivial.
1278 if (SE->isLoopInvariant(P.getPointer(), TheLoop))
1279 continue;
1280
1281 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(P.getPointer());
1282 if (!AR && Assume)
1283 AR = PSE.getAsAddRec(Ptr);
1284 if (!AR || !AR->isAffine())
1285 return false;
1286
1287 // If there's only one option for Ptr, look it up after bounds and wrap
1288 // checking, because assumptions might have been added to PSE.
1289 if (RTCheckPtrs.size() == 1) {
1290 AR =
1292 P.setPointer(AR);
1293 }
1294
1295 if (!isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ? Ptr : nullptr, AccessTy,
1296 TheLoop, Assume))
1297 return false;
1298 }
1299
1300 for (const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1301 // The id of the dependence set.
1302 unsigned DepId;
1303
1304 if (isDependencyCheckNeeded()) {
1305 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1306 unsigned &LeaderId = DepSetId[Leader];
1307 if (!LeaderId)
1308 LeaderId = RunningDepId++;
1309 DepId = LeaderId;
1310 } else
1311 // Each access has its own dependence set.
1312 DepId = RunningDepId++;
1313
1314 bool IsWrite = Access.getInt();
1315 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1316 NeedsFreeze);
1317 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1318 }
1319
1320 return true;
1321}
1322
1323bool AccessAnalysis::canCheckPtrAtRT(
1324 RuntimePointerChecking &RtCheck, Loop *TheLoop,
1325 const DenseMap<Value *, const SCEV *> &StridesMap, Value *&UncomputablePtr,
1326 bool AllowPartial) {
1327 // Find pointers with computable bounds. We are going to use this information
1328 // to place a runtime bound check.
1329 bool CanDoRT = true;
1330
1331 bool MayNeedRTCheck = false;
1332 if (!IsRTCheckAnalysisNeeded) return true;
1333
1334 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1335
1336 // We assign a consecutive id to access from different alias sets.
1337 // Accesses between different groups doesn't need to be checked.
1338 unsigned ASId = 0;
1339 for (const auto &AS : AST) {
1340 int NumReadPtrChecks = 0;
1341 int NumWritePtrChecks = 0;
1342 bool CanDoAliasSetRT = true;
1343 ++ASId;
1344 auto ASPointers = AS.getPointers();
1345
1346 // We assign consecutive id to access from different dependence sets.
1347 // Accesses within the same set don't need a runtime check.
1348 unsigned RunningDepId = 1;
1350
1352
1353 // First, count how many write and read accesses are in the alias set. Also
1354 // collect MemAccessInfos for later.
1356 for (const Value *ConstPtr : ASPointers) {
1357 Value *Ptr = const_cast<Value *>(ConstPtr);
1358 bool IsWrite = Accesses.contains(MemAccessInfo(Ptr, true));
1359 if (IsWrite)
1360 ++NumWritePtrChecks;
1361 else
1362 ++NumReadPtrChecks;
1363 AccessInfos.emplace_back(Ptr, IsWrite);
1364 }
1365
1366 // We do not need runtime checks for this alias set, if there are no writes
1367 // or a single write and no reads.
1368 if (NumWritePtrChecks == 0 ||
1369 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1370 assert((ASPointers.size() <= 1 ||
1371 all_of(ASPointers,
1372 [this](const Value *Ptr) {
1373 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1374 true);
1375 return !DepCands.contains(AccessWrite);
1376 })) &&
1377 "Can only skip updating CanDoRT below, if all entries in AS "
1378 "are reads or there is at most 1 entry");
1379 continue;
1380 }
1381
1382 for (auto &Access : AccessInfos) {
1383 for (const auto &AccessTy : Accesses[Access]) {
1384 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1385 DepSetId, TheLoop, RunningDepId, ASId,
1386 false)) {
1387 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1388 << *Access.getPointer() << '\n');
1389 Retries.emplace_back(Access, AccessTy);
1390 CanDoAliasSetRT = false;
1391 }
1392 }
1393 }
1394
1395 // Note that this function computes CanDoRT and MayNeedRTCheck
1396 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1397 // we have a pointer for which we couldn't find the bounds but we don't
1398 // actually need to emit any checks so it does not matter.
1399 //
1400 // We need runtime checks for this alias set, if there are at least 2
1401 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1402 // any bound checks (because in that case the number of dependence sets is
1403 // incomplete).
1404 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1405
1406 // We need to perform run-time alias checks, but some pointers had bounds
1407 // that couldn't be checked.
1408 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1409 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1410 // We know that we need these checks, so we can now be more aggressive
1411 // and add further checks if required (overflow checks).
1412 CanDoAliasSetRT = true;
1413 for (const auto &[Access, AccessTy] : Retries) {
1414 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1415 DepSetId, TheLoop, RunningDepId, ASId,
1416 /*Assume=*/true)) {
1417 CanDoAliasSetRT = false;
1418 UncomputablePtr = Access.getPointer();
1419 if (!AllowPartial)
1420 break;
1421 }
1422 }
1423 }
1424
1425 CanDoRT &= CanDoAliasSetRT;
1426 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1427 ++ASId;
1428 }
1429
1430 // If the pointers that we would use for the bounds comparison have different
1431 // address spaces, assume the values aren't directly comparable, so we can't
1432 // use them for the runtime check. We also have to assume they could
1433 // overlap. In the future there should be metadata for whether address spaces
1434 // are disjoint.
1435 unsigned NumPointers = RtCheck.Pointers.size();
1436 for (unsigned i = 0; i < NumPointers; ++i) {
1437 for (unsigned j = i + 1; j < NumPointers; ++j) {
1438 // Only need to check pointers between two different dependency sets.
1439 if (RtCheck.Pointers[i].DependencySetId ==
1440 RtCheck.Pointers[j].DependencySetId)
1441 continue;
1442 // Only need to check pointers in the same alias set.
1443 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1444 continue;
1445
1446 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1447 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1448
1449 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1450 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1451 if (ASi != ASj) {
1452 LLVM_DEBUG(
1453 dbgs() << "LAA: Runtime check would require comparison between"
1454 " different address spaces\n");
1455 return false;
1456 }
1457 }
1458 }
1459
1460 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1461 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1462
1463 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1464 << " pointer comparisons.\n");
1465
1466 // If we can do run-time checks, but there are no checks, no runtime checks
1467 // are needed. This can happen when all pointers point to the same underlying
1468 // object for example.
1469 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1470
1471 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1472 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1473 "CanDoRTIfNeeded depends on RtCheck.Need");
1474 if (!CanDoRTIfNeeded && !AllowPartial)
1475 RtCheck.reset();
1476 return CanDoRTIfNeeded;
1477}
1478
1479void AccessAnalysis::processMemAccesses() {
1480 // We process the set twice: first we process read-write pointers, last we
1481 // process read-only pointers. This allows us to skip dependence tests for
1482 // read-only pointers.
1483
1484 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1485 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1486 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1487 LLVM_DEBUG({
1488 for (const auto &[A, _] : Accesses)
1489 dbgs() << "\t" << *A.getPointer() << " ("
1490 << (A.getInt()
1491 ? "write"
1492 : (ReadOnlyPtr.contains(A.getPointer()) ? "read-only"
1493 : "read"))
1494 << ")\n";
1495 });
1496
1497 // The AliasSetTracker has nicely partitioned our pointers by metadata
1498 // compatibility and potential for underlying-object overlap. As a result, we
1499 // only need to check for potential pointer dependencies within each alias
1500 // set.
1501 for (const auto &AS : AST) {
1502 // Note that both the alias-set tracker and the alias sets themselves used
1503 // ordered collections internally and so the iteration order here is
1504 // deterministic.
1505 auto ASPointers = AS.getPointers();
1506
1507 bool SetHasWrite = false;
1508
1509 // Map of (pointer to underlying objects, accessed address space) to last
1510 // access encountered.
1511 typedef DenseMap<std::pair<const Value *, unsigned>, MemAccessInfo>
1512 UnderlyingObjToAccessMap;
1513 UnderlyingObjToAccessMap ObjToLastAccess;
1514
1515 // Set of access to check after all writes have been processed.
1516 PtrAccessMap DeferredAccesses;
1517
1518 // Iterate over each alias set twice, once to process read/write pointers,
1519 // and then to process read-only pointers.
1520 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1521 bool UseDeferred = SetIteration > 0;
1522 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1523
1524 for (const Value *ConstPtr : ASPointers) {
1525 Value *Ptr = const_cast<Value *>(ConstPtr);
1526
1527 // For a single memory access in AliasSetTracker, Accesses may contain
1528 // both read and write, and they both need to be handled for CheckDeps.
1529 for (const auto &[AC, _] : S) {
1530 if (AC.getPointer() != Ptr)
1531 continue;
1532
1533 bool IsWrite = AC.getInt();
1534
1535 // If we're using the deferred access set, then it contains only
1536 // reads.
1537 bool IsReadOnlyPtr = ReadOnlyPtr.contains(Ptr) && !IsWrite;
1538 if (UseDeferred && !IsReadOnlyPtr)
1539 continue;
1540 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1541 // read or a write.
1542 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1543 S.contains(MemAccessInfo(Ptr, false))) &&
1544 "Alias-set pointer not in the access set?");
1545
1546 MemAccessInfo Access(Ptr, IsWrite);
1547 DepCands.insert(Access);
1548
1549 // Memorize read-only pointers for later processing and skip them in
1550 // the first round (they need to be checked after we have seen all
1551 // write pointers). Note: we also mark pointer that are not
1552 // consecutive as "read-only" pointers (so that we check
1553 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1554 if (!UseDeferred && IsReadOnlyPtr) {
1555 // We only use the pointer keys, the types vector values don't
1556 // matter.
1557 DeferredAccesses.insert({Access, {}});
1558 continue;
1559 }
1560
1561 // If this is a write - check other reads and writes for conflicts. If
1562 // this is a read only check other writes for conflicts (but only if
1563 // there is no other write to the ptr - this is an optimization to
1564 // catch "a[i] = a[i] + " without having to do a dependence check).
1565 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1566 CheckDeps.push_back(Access);
1567 IsRTCheckAnalysisNeeded = true;
1568 }
1569
1570 if (IsWrite)
1571 SetHasWrite = true;
1572
1573 // Create sets of pointers connected by a shared alias set and
1574 // underlying object.
1575 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1576 UOs = {};
1577 ::getUnderlyingObjects(Ptr, UOs, LI);
1579 << "Underlying objects for pointer " << *Ptr << "\n");
1580 for (const Value *UnderlyingObj : UOs) {
1581 // nullptr never alias, don't join sets for pointer that have "null"
1582 // in their UnderlyingObjects list.
1583 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1585 TheLoop->getHeader()->getParent(),
1586 UnderlyingObj->getType()->getPointerAddressSpace()))
1587 continue;
1588
1589 auto [It, Inserted] = ObjToLastAccess.try_emplace(
1590 {UnderlyingObj,
1591 cast<PointerType>(Ptr->getType())->getAddressSpace()},
1592 Access);
1593 if (!Inserted) {
1594 DepCands.unionSets(Access, It->second);
1595 It->second = Access;
1596 }
1597
1598 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1599 }
1600 }
1601 }
1602 }
1603 }
1604}
1605
1606/// Check whether the access through \p Ptr has a constant stride.
1607std::optional<int64_t>
1609 const Loop *Lp,
1610 const DenseMap<Value *, const SCEV *> &StridesMap,
1611 bool Assume, bool ShouldCheckWrap) {
1612 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1613 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1614 return 0;
1615
1616 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1617
1618 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1619 if (Assume && !AR)
1620 AR = PSE.getAsAddRec(Ptr);
1621
1622 if (!AR) {
1623 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1624 << " SCEV: " << *PtrScev << "\n");
1625 return std::nullopt;
1626 }
1627
1628 std::optional<int64_t> Stride =
1629 getStrideFromAddRec(AR, Lp, AccessTy, Ptr, PSE);
1630 if (!ShouldCheckWrap || !Stride)
1631 return Stride;
1632
1633 if (isNoWrap(PSE, AR, Ptr, AccessTy, Lp, Assume, Stride))
1634 return Stride;
1635
1636 LLVM_DEBUG(
1637 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1638 << *Ptr << " SCEV: " << *AR << "\n");
1639 return std::nullopt;
1640}
1641
1642std::optional<int64_t> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1643 Type *ElemTyB, Value *PtrB,
1644 const DataLayout &DL,
1645 ScalarEvolution &SE,
1646 bool StrictCheck, bool CheckType) {
1647 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1648
1649 // Make sure that A and B are different pointers.
1650 if (PtrA == PtrB)
1651 return 0;
1652
1653 // Make sure that the element types are the same if required.
1654 if (CheckType && ElemTyA != ElemTyB)
1655 return std::nullopt;
1656
1657 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1658 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1659
1660 // Check that the address spaces match.
1661 if (ASA != ASB)
1662 return std::nullopt;
1663 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1664
1665 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1666 const Value *PtrA1 = PtrA->stripAndAccumulateConstantOffsets(
1667 DL, OffsetA, /*AllowNonInbounds=*/true);
1668 const Value *PtrB1 = PtrB->stripAndAccumulateConstantOffsets(
1669 DL, OffsetB, /*AllowNonInbounds=*/true);
1670
1671 std::optional<int64_t> Val;
1672 if (PtrA1 == PtrB1) {
1673 // Retrieve the address space again as pointer stripping now tracks through
1674 // `addrspacecast`.
1675 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1676 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1677 // Check that the address spaces match and that the pointers are valid.
1678 if (ASA != ASB)
1679 return std::nullopt;
1680
1681 IdxWidth = DL.getIndexSizeInBits(ASA);
1682 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1683 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1684
1685 OffsetB -= OffsetA;
1686 Val = OffsetB.trySExtValue();
1687 } else {
1688 // Otherwise compute the distance with SCEV between the base pointers.
1689 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1690 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1691 std::optional<APInt> Diff =
1692 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1693 if (!Diff)
1694 return std::nullopt;
1695 Val = Diff->trySExtValue();
1696 }
1697
1698 if (!Val)
1699 return std::nullopt;
1700
1701 int64_t Size = DL.getTypeStoreSize(ElemTyA);
1702 int64_t Dist = *Val / Size;
1703
1704 // Ensure that the calculated distance matches the type-based one after all
1705 // the bitcasts removal in the provided pointers.
1706 if (!StrictCheck || Dist * Size == Val)
1707 return Dist;
1708 return std::nullopt;
1709}
1710
1712 const DataLayout &DL, ScalarEvolution &SE,
1713 SmallVectorImpl<unsigned> &SortedIndices) {
1715 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1716 "Expected list of pointer operands.");
1717 // Walk over the pointers, and map each of them to an offset relative to
1718 // first pointer in the array.
1719 Value *Ptr0 = VL[0];
1720
1721 using DistOrdPair = std::pair<int64_t, unsigned>;
1722 auto Compare = llvm::less_first();
1723 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1724 Offsets.emplace(0, 0);
1725 bool IsConsecutive = true;
1726 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1727 std::optional<int64_t> Diff =
1728 getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1729 /*StrictCheck=*/true);
1730 if (!Diff)
1731 return false;
1732
1733 // Check if the pointer with the same offset is found.
1734 int64_t Offset = *Diff;
1735 auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1736 if (!IsInserted)
1737 return false;
1738 // Consecutive order if the inserted element is the last one.
1739 IsConsecutive &= std::next(It) == Offsets.end();
1740 }
1741 SortedIndices.clear();
1742 if (!IsConsecutive) {
1743 // Fill SortedIndices array only if it is non-consecutive.
1744 SortedIndices.resize(VL.size());
1745 for (auto [Idx, Off] : enumerate(Offsets))
1746 SortedIndices[Idx] = Off.second;
1747 }
1748 return true;
1749}
1750
1751/// Returns true if the memory operations \p A and \p B are consecutive.
1753 ScalarEvolution &SE, bool CheckType) {
1756 if (!PtrA || !PtrB)
1757 return false;
1758 Type *ElemTyA = getLoadStoreType(A);
1759 Type *ElemTyB = getLoadStoreType(B);
1760 std::optional<int64_t> Diff =
1761 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1762 /*StrictCheck=*/true, CheckType);
1763 return Diff == 1;
1764}
1765
1767 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1768 [this, SI](Value *Ptr) {
1769 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1770 InstMap.push_back(SI);
1771 ++AccessIdx;
1772 });
1773}
1774
1776 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1777 [this, LI](Value *Ptr) {
1778 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1779 InstMap.push_back(LI);
1780 ++AccessIdx;
1781 });
1782}
1783
1802
1804 switch (Type) {
1805 case NoDep:
1806 case Forward:
1808 case Unknown:
1809 case IndirectUnsafe:
1810 return false;
1811
1813 case Backward:
1815 return true;
1816 }
1817 llvm_unreachable("unexpected DepType!");
1818}
1819
1823
1825 switch (Type) {
1826 case Forward:
1828 return true;
1829
1830 case NoDep:
1831 case Unknown:
1833 case Backward:
1835 case IndirectUnsafe:
1836 return false;
1837 }
1838 llvm_unreachable("unexpected DepType!");
1839}
1840
1841bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1842 uint64_t TypeByteSize,
1843 unsigned CommonStride) {
1844 // If loads occur at a distance that is not a multiple of a feasible vector
1845 // factor store-load forwarding does not take place.
1846 // Positive dependences might cause troubles because vectorizing them might
1847 // prevent store-load forwarding making vectorized code run a lot slower.
1848 // a[i] = a[i-3] ^ a[i-8];
1849 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1850 // hence on your typical architecture store-load forwarding does not take
1851 // place. Vectorizing in such cases does not make sense.
1852 // Store-load forwarding distance.
1853
1854 // After this many iterations store-to-load forwarding conflicts should not
1855 // cause any slowdowns.
1856 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1857 // Maximum vector factor.
1858 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1859 std::min(VectorizerParams::MaxVectorWidth * TypeByteSize,
1860 MaxStoreLoadForwardSafeDistanceInBits);
1861
1862 // Compute the smallest VF at which the store and load would be misaligned.
1863 for (uint64_t VF = 2 * TypeByteSize;
1864 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1865 // If the number of vector iteration between the store and the load are
1866 // small we could incur conflicts.
1867 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1868 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1869 break;
1870 }
1871 }
1872
1873 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1874 LLVM_DEBUG(
1875 dbgs() << "LAA: Distance " << Distance
1876 << " that could cause a store-load forwarding conflict\n");
1877 return true;
1878 }
1879
1880 if (CommonStride &&
1881 MaxVFWithoutSLForwardIssuesPowerOf2 <
1882 MaxStoreLoadForwardSafeDistanceInBits &&
1883 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1884 VectorizerParams::MaxVectorWidth * TypeByteSize) {
1885 uint64_t MaxVF =
1886 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1887 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1888 MaxStoreLoadForwardSafeDistanceInBits =
1889 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1890 }
1891 return false;
1892}
1893
1894void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1895 if (Status < S)
1896 Status = S;
1897}
1898
1899/// Given a dependence-distance \p Dist between two memory accesses, that have
1900/// strides in the same direction whose absolute value of the maximum stride is
1901/// given in \p MaxStride, in a loop whose maximum backedge taken count is \p
1902/// MaxBTC, check if it is possible to prove statically that the dependence
1903/// distance is larger than the range that the accesses will travel through the
1904/// execution of the loop. If so, return true; false otherwise. This is useful
1905/// for example in loops such as the following (PR31098):
1906///
1907/// for (i = 0; i < D; ++i) {
1908/// = out[i];
1909/// out[i+D] =
1910/// }
1912 const SCEV &MaxBTC, const SCEV &Dist,
1913 uint64_t MaxStride) {
1914
1915 // If we can prove that
1916 // (**) |Dist| > MaxBTC * Step
1917 // where Step is the absolute stride of the memory accesses in bytes,
1918 // then there is no dependence.
1919 //
1920 // Rationale:
1921 // We basically want to check if the absolute distance (|Dist/Step|)
1922 // is >= the loop iteration count (or > MaxBTC).
1923 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1924 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1925 // that the dependence distance is >= VF; This is checked elsewhere.
1926 // But in some cases we can prune dependence distances early, and
1927 // even before selecting the VF, and without a runtime test, by comparing
1928 // the distance against the loop iteration count. Since the vectorized code
1929 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1930 // also guarantees that distance >= VF.
1931 //
1932 const SCEV *Step = SE.getConstant(MaxBTC.getType(), MaxStride);
1933 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1934
1935 const SCEV *CastedDist = &Dist;
1936 const SCEV *CastedProduct = Product;
1937 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1938 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1939
1940 // The dependence distance can be positive/negative, so we sign extend Dist;
1941 // The multiplication of the absolute stride in bytes and the
1942 // backedgeTakenCount is non-negative, so we zero extend Product.
1943 if (DistTypeSizeBits > ProductTypeSizeBits)
1944 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1945 else
1946 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1947
1948 // Is Dist - (MaxBTC * Step) > 0 ?
1949 // (If so, then we have proven (**) because |Dist| >= Dist)
1950 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1951 if (SE.isKnownPositive(Minus))
1952 return true;
1953
1954 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1955 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1956 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1957 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1958 return SE.isKnownPositive(Minus);
1959}
1960
1961/// Check the dependence for two accesses with the same stride \p Stride.
1962/// \p Distance is the positive distance in bytes, and \p TypeByteSize is type
1963/// size in bytes.
1964///
1965/// \returns true if they are independent.
1967 uint64_t TypeByteSize) {
1968 assert(Stride > 1 && "The stride must be greater than 1");
1969 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1970 assert(Distance > 0 && "The distance must be non-zero");
1971
1972 // Skip if the distance is not multiple of type byte size.
1973 if (Distance % TypeByteSize)
1974 return false;
1975
1976 // No dependence if the distance is not multiple of the stride.
1977 // E.g.
1978 // for (i = 0; i < 1024 ; i += 4)
1979 // A[i+2] = A[i] + 1;
1980 //
1981 // Two accesses in memory (distance is 2, stride is 4):
1982 // | A[0] | | | | A[4] | | | |
1983 // | | | A[2] | | | | A[6] | |
1984 //
1985 // E.g.
1986 // for (i = 0; i < 1024 ; i += 3)
1987 // A[i+4] = A[i] + 1;
1988 //
1989 // Two accesses in memory (distance is 4, stride is 3):
1990 // | A[0] | | | A[3] | | | A[6] | | |
1991 // | | | | | A[4] | | | A[7] | |
1992 return Distance % Stride;
1993}
1994
1995bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(const SCEV *Src,
1996 Type *SrcTy,
1997 const SCEV *Sink,
1998 Type *SinkTy) {
1999 const SCEV *BTC = PSE.getBackedgeTakenCount();
2000 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
2001 ScalarEvolution &SE = *PSE.getSE();
2002 const auto &[SrcStart_, SrcEnd_] =
2003 getStartAndEndForAccess(InnermostLoop, Src, SrcTy, BTC, SymbolicMaxBTC,
2004 &SE, &PointerBounds, DT, AC, LoopGuards);
2005 if (isa<SCEVCouldNotCompute>(SrcStart_) || isa<SCEVCouldNotCompute>(SrcEnd_))
2006 return false;
2007
2008 const auto &[SinkStart_, SinkEnd_] =
2009 getStartAndEndForAccess(InnermostLoop, Sink, SinkTy, BTC, SymbolicMaxBTC,
2010 &SE, &PointerBounds, DT, AC, LoopGuards);
2011 if (isa<SCEVCouldNotCompute>(SinkStart_) ||
2012 isa<SCEVCouldNotCompute>(SinkEnd_))
2013 return false;
2014
2015 if (!LoopGuards)
2016 LoopGuards.emplace(ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2017
2018 auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards);
2019 auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards);
2020 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
2021 return true;
2022
2023 auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards);
2024 auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards);
2025 return SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart);
2026}
2027
2029 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2030MemoryDepChecker::getDependenceDistanceStrideAndSize(
2031 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
2032 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
2033 const auto &DL = InnermostLoop->getHeader()->getDataLayout();
2034 auto &SE = *PSE.getSE();
2035 const auto &[APtr, AIsWrite] = A;
2036 const auto &[BPtr, BIsWrite] = B;
2037
2038 // Two reads are independent.
2039 if (!AIsWrite && !BIsWrite)
2041
2042 Type *ATy = getLoadStoreType(AInst);
2043 Type *BTy = getLoadStoreType(BInst);
2044
2045 // We cannot check pointers in different address spaces.
2046 if (APtr->getType()->getPointerAddressSpace() !=
2047 BPtr->getType()->getPointerAddressSpace())
2049
2050 std::optional<int64_t> StrideAPtr =
2051 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
2052 std::optional<int64_t> StrideBPtr =
2053 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
2054
2055 const SCEV *Src = PSE.getSCEV(APtr);
2056 const SCEV *Sink = PSE.getSCEV(BPtr);
2057
2058 // If the induction step is negative we have to invert source and sink of the
2059 // dependence when measuring the distance between them. We should not swap
2060 // AIsWrite with BIsWrite, as their uses expect them in program order.
2061 if (StrideAPtr && *StrideAPtr < 0) {
2062 std::swap(Src, Sink);
2063 std::swap(AInst, BInst);
2064 std::swap(ATy, BTy);
2065 std::swap(StrideAPtr, StrideBPtr);
2066 }
2067
2068 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
2069
2070 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
2071 << "\n");
2072 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
2073 << ": " << *Dist << "\n");
2074
2075 // Need accesses with constant strides and the same direction for further
2076 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
2077 // similar code or pointer arithmetic that could wrap in the address space.
2078
2079 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
2080 // not loop-invariant (stride will be 0 in that case), we cannot analyze the
2081 // dependence further and also cannot generate runtime checks.
2082 if (!StrideAPtr || !StrideBPtr) {
2083 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
2085 }
2086
2087 int64_t StrideAPtrInt = *StrideAPtr;
2088 int64_t StrideBPtrInt = *StrideBPtr;
2089 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt
2090 << " Sink induction step: " << StrideBPtrInt << "\n");
2091 // At least Src or Sink are loop invariant and the other is strided or
2092 // invariant. We can generate a runtime check to disambiguate the accesses.
2093 if (!StrideAPtrInt || !StrideBPtrInt)
2095
2096 // Both Src and Sink have a constant stride, check if they are in the same
2097 // direction.
2098 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2099 LLVM_DEBUG(
2100 dbgs() << "Pointer access with strides in different directions\n");
2102 }
2103
2104 TypeSize AStoreSz = DL.getTypeStoreSize(ATy);
2105 TypeSize BStoreSz = DL.getTypeStoreSize(BTy);
2106
2107 // If store sizes are not the same, set TypeByteSize to zero, so we can check
2108 // it in the caller isDependent.
2109 uint64_t ASz = DL.getTypeAllocSize(ATy);
2110 uint64_t BSz = DL.getTypeAllocSize(BTy);
2111 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2112
2113 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2114 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2115
2116 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2117
2118 std::optional<uint64_t> CommonStride;
2119 if (StrideAScaled == StrideBScaled)
2120 CommonStride = StrideAScaled;
2121
2122 // TODO: Historically, we didn't retry with runtime checks when (unscaled)
2123 // strides were different but there is no inherent reason to.
2124 if (!isa<SCEVConstant>(Dist))
2125 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2126
2127 // If distance is a SCEVCouldNotCompute, return Unknown immediately.
2128 if (isa<SCEVCouldNotCompute>(Dist)) {
2129 LLVM_DEBUG(dbgs() << "LAA: Uncomputable distance.\n");
2130 return Dependence::Unknown;
2131 }
2132
2133 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2134 TypeByteSize, AIsWrite, BIsWrite);
2135}
2136
2138MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2139 const MemAccessInfo &B, unsigned BIdx) {
2140 assert(AIdx < BIdx && "Must pass arguments in program order");
2141
2142 // Check if we can prove that Sink only accesses memory after Src's end or
2143 // vice versa. The helper is used to perform the checks only on the exit paths
2144 // where it helps to improve the analysis result.
2145 auto CheckCompletelyBeforeOrAfter = [&]() {
2146 auto *APtr = A.getPointer();
2147 auto *BPtr = B.getPointer();
2148 Type *ATy = getLoadStoreType(InstMap[AIdx]);
2149 Type *BTy = getLoadStoreType(InstMap[BIdx]);
2150 const SCEV *Src = PSE.getSCEV(APtr);
2151 const SCEV *Sink = PSE.getSCEV(BPtr);
2152 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2153 };
2154
2155 // Get the dependence distance, stride, type size and what access writes for
2156 // the dependence between A and B.
2157 auto Res =
2158 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2159 if (std::holds_alternative<Dependence::DepType>(Res)) {
2160 if (std::get<Dependence::DepType>(Res) == Dependence::Unknown &&
2161 CheckCompletelyBeforeOrAfter())
2162 return Dependence::NoDep;
2163 return std::get<Dependence::DepType>(Res);
2164 }
2165
2166 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2167 std::get<DepDistanceStrideAndSizeInfo>(Res);
2168 bool HasSameSize = TypeByteSize > 0;
2169
2170 ScalarEvolution &SE = *PSE.getSE();
2171 auto &DL = InnermostLoop->getHeader()->getDataLayout();
2172
2173 // If the distance between the acecsses is larger than their maximum absolute
2174 // stride multiplied by the symbolic maximum backedge taken count (which is an
2175 // upper bound of the number of iterations), the accesses are independet, i.e.
2176 // they are far enough appart that accesses won't access the same location
2177 // across all loop ierations.
2178 if (HasSameSize &&
2180 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2181 return Dependence::NoDep;
2182
2183 // The rest of this function relies on ConstDist being at most 64-bits, which
2184 // is checked earlier. Will assert if the calling code changes.
2185 const APInt *APDist = nullptr;
2186 uint64_t ConstDist =
2187 match(Dist, m_scev_APInt(APDist)) ? APDist->abs().getZExtValue() : 0;
2188
2189 // Attempt to prove strided accesses independent.
2190 if (APDist) {
2191 // If the distance between accesses and their strides are known constants,
2192 // check whether the accesses interlace each other.
2193 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2194 areStridedAccessesIndependent(ConstDist, *CommonStride, TypeByteSize)) {
2195 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2196 return Dependence::NoDep;
2197 }
2198 } else {
2199 if (!LoopGuards)
2200 LoopGuards.emplace(
2201 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2202 Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2203 }
2204
2205 // Negative distances are not plausible dependencies.
2206 if (SE.isKnownNonPositive(Dist)) {
2207 if (SE.isKnownNonNegative(Dist)) {
2208 if (HasSameSize) {
2209 // Write to the same location with the same size.
2210 return Dependence::Forward;
2211 }
2212 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2213 "different type sizes\n");
2214 return Dependence::Unknown;
2215 }
2216
2217 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2218 // Check if the first access writes to a location that is read in a later
2219 // iteration, where the distance between them is not a multiple of a vector
2220 // factor and relatively small.
2221 //
2222 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2223 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2224 // forward dependency will allow vectorization using any width.
2225
2226 if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2227 if (!ConstDist) {
2228 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2230 }
2231 if (!HasSameSize ||
2232 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2233 LLVM_DEBUG(
2234 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2236 }
2237 }
2238
2239 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2240 return Dependence::Forward;
2241 }
2242
2243 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2244 // Below we only handle strictly positive distances.
2245 if (MinDistance <= 0) {
2246 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2248 }
2249
2250 if (!HasSameSize) {
2251 if (CheckCompletelyBeforeOrAfter())
2252 return Dependence::NoDep;
2253 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2254 "different type sizes\n");
2255 return Dependence::Unknown;
2256 }
2257 // Bail out early if passed-in parameters make vectorization not feasible.
2258 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2260 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2262 // The minimum number of iterations for a vectorized/unrolled version.
2263 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2264
2265 // It's not vectorizable if the distance is smaller than the minimum distance
2266 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2267 // front needs MaxStride. Vectorizing the last iteration needs TypeByteSize.
2268 // (No need to plus the last gap distance).
2269 //
2270 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2271 // foo(int *A) {
2272 // int *B = (int *)((char *)A + 14);
2273 // for (i = 0 ; i < 1024 ; i += 2)
2274 // B[i] = A[i] + 1;
2275 // }
2276 //
2277 // Two accesses in memory (stride is 4 * 2):
2278 // | A[0] | | A[2] | | A[4] | | A[6] | |
2279 // | B[0] | | B[2] | | B[4] |
2280 //
2281 // MinDistance needs for vectorizing iterations except the last iteration:
2282 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2283 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2284 //
2285 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2286 // 12, which is less than distance.
2287 //
2288 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2289 // the minimum distance needed is 28, which is greater than distance. It is
2290 // not safe to do vectorization.
2291 //
2292 // We use MaxStride (maximum of src and sink strides) to get a conservative
2293 // lower bound on the MinDistanceNeeded in case of different strides.
2294
2295 // We know that Dist is positive, but it may not be constant. Use the signed
2296 // minimum for computations below, as this ensures we compute the closest
2297 // possible dependence distance.
2298 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2299 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2300 if (!ConstDist) {
2301 // For non-constant distances, we checked the lower bound of the
2302 // dependence distance and the distance may be larger at runtime (and safe
2303 // for vectorization). Classify it as Unknown, so we re-try with runtime
2304 // checks, unless we can prove both accesses cannot overlap.
2305 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2307 }
2308 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2309 << MinDistance << '\n');
2310 return Dependence::Backward;
2311 }
2312
2313 // Unsafe if the minimum distance needed is greater than smallest dependence
2314 // distance distance.
2315 if (MinDistanceNeeded > MinDepDistBytes) {
2316 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2317 << MinDistanceNeeded << " size in bytes\n");
2318 return Dependence::Backward;
2319 }
2320
2321 MinDepDistBytes =
2322 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2323
2324 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2325 if (IsTrueDataDependence && EnableForwardingConflictDetection && ConstDist &&
2326 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2328
2329 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2330 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2331 << " with max VF = " << MaxVF << '\n');
2332
2333 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2334 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2335 // For non-constant distances, we checked the lower bound of the dependence
2336 // distance and the distance may be larger at runtime (and safe for
2337 // vectorization). Classify it as Unknown, so we re-try with runtime checks,
2338 // unless we can prove both accesses cannot overlap.
2339 return CheckCompletelyBeforeOrAfter() ? Dependence::NoDep
2341 }
2342
2343 if (CheckCompletelyBeforeOrAfter())
2344 return Dependence::NoDep;
2345
2346 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2348}
2349
2351 const MemAccessInfoList &CheckDeps) {
2352
2353 MinDepDistBytes = -1;
2355 for (MemAccessInfo CurAccess : CheckDeps) {
2356 if (Visited.contains(CurAccess))
2357 continue;
2358
2359 // Check accesses within this set.
2361 DepCands.findLeader(CurAccess);
2363 DepCands.member_end();
2364
2365 // Check every access pair.
2366 while (AI != AE) {
2367 Visited.insert(*AI);
2368 bool AIIsWrite = AI->getInt();
2369 // Check loads only against next equivalent class, but stores also against
2370 // other stores in the same equivalence class - to the same address.
2372 (AIIsWrite ? AI : std::next(AI));
2373 while (OI != AE) {
2374 // Check every accessing instruction pair in program order.
2375 auto &Acc = Accesses[*AI];
2376 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2377 I1 != I1E; ++I1)
2378 // Scan all accesses of another equivalence class, but only the next
2379 // accesses of the same equivalent class.
2380 for (std::vector<unsigned>::iterator
2381 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2382 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2383 I2 != I2E; ++I2) {
2384 auto A = std::make_pair(&*AI, *I1);
2385 auto B = std::make_pair(&*OI, *I2);
2386
2387 assert(*I1 != *I2);
2388 if (*I1 > *I2)
2389 std::swap(A, B);
2390
2392 isDependent(*A.first, A.second, *B.first, B.second);
2394
2395 // Gather dependences unless we accumulated MaxDependences
2396 // dependences. In that case return as soon as we find the first
2397 // unsafe dependence. This puts a limit on this quadratic
2398 // algorithm.
2399 if (RecordDependences) {
2400 if (Type != Dependence::NoDep)
2401 Dependences.emplace_back(A.second, B.second, Type);
2402
2403 if (Dependences.size() >= MaxDependences) {
2404 RecordDependences = false;
2405 Dependences.clear();
2407 << "Too many dependences, stopped recording\n");
2408 }
2409 }
2410 if (!RecordDependences && !isSafeForVectorization())
2411 return false;
2412 }
2413 ++OI;
2414 }
2415 ++AI;
2416 }
2417 }
2418
2419 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2420 return isSafeForVectorization();
2421}
2422
2425 MemAccessInfo Access(Ptr, IsWrite);
2426 auto I = Accesses.find(Access);
2428 if (I != Accesses.end()) {
2429 transform(I->second, std::back_inserter(Insts),
2430 [&](unsigned Idx) { return this->InstMap[Idx]; });
2431 }
2432
2433 return Insts;
2434}
2435
2437 "NoDep",
2438 "Unknown",
2439 "IndirectUnsafe",
2440 "Forward",
2441 "ForwardButPreventsForwarding",
2442 "Backward",
2443 "BackwardVectorizable",
2444 "BackwardVectorizableButPreventsForwarding"};
2445
2447 raw_ostream &OS, unsigned Depth,
2448 const SmallVectorImpl<Instruction *> &Instrs) const {
2449 OS.indent(Depth) << DepName[Type] << ":\n";
2450 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2451 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2452}
2453
2454bool LoopAccessInfo::canAnalyzeLoop() {
2455 // We need to have a loop header.
2456 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2457 << TheLoop->getHeader()->getParent()->getName() << "' from "
2458 << TheLoop->getLocStr() << "\n");
2459
2460 // We can only analyze innermost loops.
2461 if (!TheLoop->isInnermost()) {
2462 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2463 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2464 return false;
2465 }
2466
2467 // We must have a single backedge.
2468 if (TheLoop->getNumBackEdges() != 1) {
2469 LLVM_DEBUG(
2470 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2471 recordAnalysis("CFGNotUnderstood")
2472 << "loop control flow is not understood by analyzer";
2473 return false;
2474 }
2475
2476 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2477 // count, which is an upper bound on the number of loop iterations. The loop
2478 // may execute fewer iterations, if it exits via an uncountable exit.
2479 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2480 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2481 recordAnalysis("CantComputeNumberOfIterations")
2482 << "could not determine number of loop iterations";
2483 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2484 return false;
2485 }
2486
2487 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2488 << TheLoop->getHeader()->getName() << "\n");
2489 return true;
2490}
2491
2492bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2493 const TargetLibraryInfo *TLI,
2494 DominatorTree *DT) {
2495 // Holds the Load and Store instructions.
2498 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2499
2500 // Holds all the different accesses in the loop.
2501 unsigned NumReads = 0;
2502 unsigned NumReadWrites = 0;
2503
2504 bool HasComplexMemInst = false;
2505
2506 // A runtime check is only legal to insert if there are no convergent calls.
2507 HasConvergentOp = false;
2508
2509 PtrRtChecking->Pointers.clear();
2510 PtrRtChecking->Need = false;
2511
2512 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2513
2514 const bool EnableMemAccessVersioningOfLoop =
2516 !TheLoop->getHeader()->getParent()->hasOptSize();
2517
2518 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2519 // loop info, as it may be arbitrary.
2520 LoopBlocksRPO RPOT(TheLoop);
2521 RPOT.perform(LI);
2522 for (BasicBlock *BB : RPOT) {
2523 // Scan the BB and collect legal loads and stores. Also detect any
2524 // convergent instructions.
2525 for (Instruction &I : *BB) {
2526 if (auto *Call = dyn_cast<CallBase>(&I)) {
2527 if (Call->isConvergent())
2528 HasConvergentOp = true;
2529 }
2530
2531 // With both a non-vectorizable memory instruction and a convergent
2532 // operation, found in this loop, no reason to continue the search.
2533 if (HasComplexMemInst && HasConvergentOp)
2534 return false;
2535
2536 // Avoid hitting recordAnalysis multiple times.
2537 if (HasComplexMemInst)
2538 continue;
2539
2540 // Record alias scopes defined inside the loop.
2541 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2542 for (Metadata *Op : Decl->getScopeList()->operands())
2543 LoopAliasScopes.insert(cast<MDNode>(Op));
2544
2545 // Many math library functions read the rounding mode. We will only
2546 // vectorize a loop if it contains known function calls that don't set
2547 // the flag. Therefore, it is safe to ignore this read from memory.
2548 auto *Call = dyn_cast<CallInst>(&I);
2550 continue;
2551
2552 // If this is a load, save it. If this instruction can read from memory
2553 // but is not a load, we only allow it if it's a call to a function with a
2554 // vector mapping and no pointer arguments.
2555 if (I.mayReadFromMemory()) {
2556 auto hasPointerArgs = [](CallBase *CB) {
2557 return any_of(CB->args(), [](Value const *Arg) {
2558 return Arg->getType()->isPointerTy();
2559 });
2560 };
2561
2562 // If the function has an explicit vectorized counterpart, and does not
2563 // take output/input pointers, we can safely assume that it can be
2564 // vectorized.
2565 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2566 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty())
2567 continue;
2568
2569 auto *Ld = dyn_cast<LoadInst>(&I);
2570 if (!Ld) {
2571 recordAnalysis("CantVectorizeInstruction", Ld)
2572 << "instruction cannot be vectorized";
2573 HasComplexMemInst = true;
2574 continue;
2575 }
2576 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2577 recordAnalysis("NonSimpleLoad", Ld)
2578 << "read with atomic ordering or volatile read";
2579 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2580 HasComplexMemInst = true;
2581 continue;
2582 }
2583 NumLoads++;
2584 Loads.push_back(Ld);
2585 DepChecker->addAccess(Ld);
2586 if (EnableMemAccessVersioningOfLoop)
2587 collectStridedAccess(Ld);
2588 continue;
2589 }
2590
2591 // Save 'store' instructions. Abort if other instructions write to memory.
2592 if (I.mayWriteToMemory()) {
2593 auto *St = dyn_cast<StoreInst>(&I);
2594 if (!St) {
2595 recordAnalysis("CantVectorizeInstruction", St)
2596 << "instruction cannot be vectorized";
2597 HasComplexMemInst = true;
2598 continue;
2599 }
2600 if (!St->isSimple() && !IsAnnotatedParallel) {
2601 recordAnalysis("NonSimpleStore", St)
2602 << "write with atomic ordering or volatile write";
2603 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2604 HasComplexMemInst = true;
2605 continue;
2606 }
2607 NumStores++;
2608 Stores.push_back(St);
2609 DepChecker->addAccess(St);
2610 if (EnableMemAccessVersioningOfLoop)
2611 collectStridedAccess(St);
2612 }
2613 } // Next instr.
2614 } // Next block.
2615
2616 if (HasComplexMemInst)
2617 return false;
2618
2619 // Now we have two lists that hold the loads and the stores.
2620 // Next, we find the pointers that they use.
2621
2622 // Check if we see any stores. If there are no stores, then we don't
2623 // care if the pointers are *restrict*.
2624 if (!Stores.size()) {
2625 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2626 return true;
2627 }
2628
2630 AccessAnalysis Accesses(TheLoop, AA, LI, DepCands, *PSE, LoopAliasScopes);
2631
2632 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2633 // multiple times on the same object. If the ptr is accessed twice, once
2634 // for read and once for write, it will only appear once (on the write
2635 // list). This is okay, since we are going to check for conflicts between
2636 // writes and between reads and writes, but not between reads and reads.
2637 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2638
2639 // Record uniform store addresses to identify if we have multiple stores
2640 // to the same address.
2641 SmallPtrSet<Value *, 16> UniformStores;
2642
2643 for (StoreInst *ST : Stores) {
2644 Value *Ptr = ST->getPointerOperand();
2645
2646 if (isInvariant(Ptr)) {
2647 // Record store instructions to loop invariant addresses
2648 StoresToInvariantAddresses.push_back(ST);
2649 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2650 !UniformStores.insert(Ptr).second;
2651 }
2652
2653 // If we did *not* see this pointer before, insert it to the read-write
2654 // list. At this phase it is only a 'write' list.
2655 Type *AccessTy = getLoadStoreType(ST);
2656 if (Seen.insert({Ptr, AccessTy}).second) {
2657 ++NumReadWrites;
2658
2659 MemoryLocation Loc = MemoryLocation::get(ST);
2660 // The TBAA metadata could have a control dependency on the predication
2661 // condition, so we cannot rely on it when determining whether or not we
2662 // need runtime pointer checks.
2663 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2664 Loc.AATags.TBAA = nullptr;
2665
2666 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2667 [&Accesses, AccessTy, Loc](Value *Ptr) {
2668 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2669 Accesses.addStore(NewLoc, AccessTy);
2670 });
2671 }
2672 }
2673
2674 if (IsAnnotatedParallel) {
2675 LLVM_DEBUG(
2676 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2677 << "checks.\n");
2678 return true;
2679 }
2680
2681 for (LoadInst *LD : Loads) {
2682 Value *Ptr = LD->getPointerOperand();
2683 // If we did *not* see this pointer before, insert it to the
2684 // read list. If we *did* see it before, then it is already in
2685 // the read-write list. This allows us to vectorize expressions
2686 // such as A[i] += x; Because the address of A[i] is a read-write
2687 // pointer. This only works if the index of A[i] is consecutive.
2688 // If the address of i is unknown (for example A[B[i]]) then we may
2689 // read a few words, modify, and write a few words, and some of the
2690 // words may be written to the same address.
2691 bool IsReadOnlyPtr = false;
2692 Type *AccessTy = getLoadStoreType(LD);
2693 if (Seen.insert({Ptr, AccessTy}).second ||
2694 !getPtrStride(*PSE, AccessTy, Ptr, TheLoop, SymbolicStrides)) {
2695 ++NumReads;
2696 IsReadOnlyPtr = true;
2697 }
2698
2699 // See if there is an unsafe dependency between a load to a uniform address and
2700 // store to the same uniform address.
2701 if (UniformStores.contains(Ptr)) {
2702 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2703 "load and uniform store to the same address!\n");
2704 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2705 }
2706
2707 MemoryLocation Loc = MemoryLocation::get(LD);
2708 // The TBAA metadata could have a control dependency on the predication
2709 // condition, so we cannot rely on it when determining whether or not we
2710 // need runtime pointer checks.
2711 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2712 Loc.AATags.TBAA = nullptr;
2713
2714 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2715 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2716 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2717 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2718 });
2719 }
2720
2721 // If we write (or read-write) to a single destination and there are no
2722 // other reads in this loop then is it safe to vectorize.
2723 if (NumReadWrites == 1 && NumReads == 0) {
2724 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2725 return true;
2726 }
2727
2728 // Build dependence sets and check whether we need a runtime pointer bounds
2729 // check.
2730 Accesses.buildDependenceSets();
2731
2732 // Find pointers with computable bounds. We are going to use this information
2733 // to place a runtime bound check.
2734 Value *UncomputablePtr = nullptr;
2735 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2736 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2737 if (!HasCompletePtrRtChecking) {
2738 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2739 recordAnalysis("CantIdentifyArrayBounds", I)
2740 << "cannot identify array bounds";
2741 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2742 << "the array bounds.\n");
2743 return false;
2744 }
2745
2746 LLVM_DEBUG(
2747 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2748
2749 bool DepsAreSafe = true;
2750 if (Accesses.isDependencyCheckNeeded()) {
2751 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2752 DepsAreSafe =
2753 DepChecker->areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2754
2755 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeChecks()) {
2756 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2757
2758 // Clear the dependency checks. We assume they are not needed.
2759 Accesses.resetDepChecks(*DepChecker);
2760
2761 PtrRtChecking->reset();
2762 PtrRtChecking->Need = true;
2763
2764 UncomputablePtr = nullptr;
2765 HasCompletePtrRtChecking =
2766 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2767 UncomputablePtr, AllowPartial);
2768
2769 // Check that we found the bounds for the pointer.
2770 if (!HasCompletePtrRtChecking) {
2771 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2772 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2773 << "cannot check memory dependencies at runtime";
2774 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2775 return false;
2776 }
2777 DepsAreSafe = true;
2778 }
2779 }
2780
2781 if (HasConvergentOp) {
2782 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2783 << "cannot add control dependency to convergent operation";
2784 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2785 "would be needed with a convergent operation\n");
2786 return false;
2787 }
2788
2789 if (DepsAreSafe) {
2790 LLVM_DEBUG(
2791 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2792 << (PtrRtChecking->Need ? "" : " don't")
2793 << " need runtime memory checks.\n");
2794 return true;
2795 }
2796
2797 emitUnsafeDependenceRemark();
2798 return false;
2799}
2800
2801void LoopAccessInfo::emitUnsafeDependenceRemark() {
2802 const auto *Deps = getDepChecker().getDependences();
2803 if (!Deps)
2804 return;
2805 const auto *Found =
2806 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2809 });
2810 if (Found == Deps->end())
2811 return;
2812 MemoryDepChecker::Dependence Dep = *Found;
2813
2814 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2815
2816 // Emit remark for first unsafe dependence
2817 bool HasForcedDistribution = false;
2818 std::optional<const MDOperand *> Value =
2819 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2820 if (Value) {
2821 const MDOperand *Op = *Value;
2822 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2823 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2824 }
2825
2826 const std::string Info =
2827 HasForcedDistribution
2828 ? "unsafe dependent memory operations in loop."
2829 : "unsafe dependent memory operations in loop. Use "
2830 "#pragma clang loop distribute(enable) to allow loop distribution "
2831 "to attempt to isolate the offending operations into a separate "
2832 "loop";
2833 OptimizationRemarkAnalysis &R =
2834 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2835
2836 switch (Dep.Type) {
2840 llvm_unreachable("Unexpected dependence");
2842 R << "\nBackward loop carried data dependence.";
2843 break;
2845 R << "\nForward loop carried data dependence that prevents "
2846 "store-to-load forwarding.";
2847 break;
2849 R << "\nBackward loop carried data dependence that prevents "
2850 "store-to-load forwarding.";
2851 break;
2853 R << "\nUnsafe indirect dependence.";
2854 break;
2856 R << "\nUnknown data dependence.";
2857 break;
2858 }
2859
2860 if (Instruction *I = Dep.getSource(getDepChecker())) {
2861 DebugLoc SourceLoc = I->getDebugLoc();
2863 SourceLoc = DD->getDebugLoc();
2864 if (SourceLoc)
2865 R << " Memory location is the same as accessed at "
2866 << ore::NV("Location", SourceLoc);
2867 }
2868}
2869
2871 const Loop *TheLoop,
2872 const DominatorTree *DT) {
2873 assert(TheLoop->contains(BB) && "Unknown block used");
2874
2875 // Blocks that do not dominate the latch need predication.
2876 const BasicBlock *Latch = TheLoop->getLoopLatch();
2877 return !DT->dominates(BB, Latch);
2878}
2879
2881LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2882 assert(!Report && "Multiple reports generated");
2883
2884 const BasicBlock *CodeRegion = TheLoop->getHeader();
2885 DebugLoc DL = TheLoop->getStartLoc();
2886
2887 if (I) {
2888 CodeRegion = I->getParent();
2889 // If there is no debug location attached to the instruction, revert back to
2890 // using the loop's.
2891 if (I->getDebugLoc())
2892 DL = I->getDebugLoc();
2893 }
2894
2895 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName,
2896 DL, CodeRegion);
2897 return *Report;
2898}
2899
2901 auto *SE = PSE->getSE();
2902 if (TheLoop->isLoopInvariant(V))
2903 return true;
2904 if (!SE->isSCEVable(V->getType()))
2905 return false;
2906 const SCEV *S = SE->getSCEV(V);
2907 return SE->isLoopInvariant(S, TheLoop);
2908}
2909
2910/// If \p Ptr is a GEP, which has a loop-variant operand, return that operand.
2911/// Otherwise, return \p Ptr.
2913 Loop *Lp) {
2915 if (!GEP)
2916 return Ptr;
2917
2918 Value *V = Ptr;
2919 for (const Use &U : GEP->operands()) {
2920 if (!SE->isLoopInvariant(SE->getSCEV(U), Lp)) {
2921 if (V == Ptr)
2922 V = U;
2923 else
2924 // There must be exactly one loop-variant operand.
2925 return Ptr;
2926 }
2927 }
2928 return V;
2929}
2930
2931/// Get the stride of a pointer access in a loop. Looks for symbolic
2932/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2934 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2935 if (!PtrTy)
2936 return nullptr;
2937
2938 // Try to remove a gep instruction to make the pointer (actually index at this
2939 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2940 // pointer, otherwise, we are analyzing the index.
2941 Value *OrigPtr = Ptr;
2942
2943 Ptr = getLoopVariantGEPOperand(Ptr, SE, Lp);
2944 const SCEV *V = SE->getSCEV(Ptr);
2945
2946 if (Ptr != OrigPtr)
2947 // Strip off casts.
2948 while (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2949 V = C->getOperand();
2950
2952 return nullptr;
2953
2954 // Note that the restriction after this loop invariant check are only
2955 // profitability restrictions.
2956 if (!SE->isLoopInvariant(V, Lp))
2957 return nullptr;
2958
2959 // Look for the loop invariant symbolic value.
2960 if (isa<SCEVUnknown>(V))
2961 return V;
2962
2963 if (auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2964 if (isa<SCEVUnknown>(C->getOperand()))
2965 return V;
2966
2967 return nullptr;
2968}
2969
2970void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2971 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2972 if (!Ptr)
2973 return;
2974
2975 // Note: getStrideFromPointer is a *profitability* heuristic. We
2976 // could broaden the scope of values returned here - to anything
2977 // which happens to be loop invariant and contributes to the
2978 // computation of an interesting IV - but we chose not to as we
2979 // don't have a cost model here, and broadening the scope exposes
2980 // far too many unprofitable cases.
2981 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2982 if (!StrideExpr)
2983 return;
2984
2985 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2986 "versioning:");
2987 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2988
2989 if (!SpeculateUnitStride) {
2990 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2991 return;
2992 }
2993
2994 // Avoid adding the "Stride == 1" predicate when we know that
2995 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2996 // or zero iteration loop, as Trip-Count <= Stride == 1.
2997 //
2998 // TODO: We are currently not making a very informed decision on when it is
2999 // beneficial to apply stride versioning. It might make more sense that the
3000 // users of this analysis (such as the vectorizer) will trigger it, based on
3001 // their specific cost considerations; For example, in cases where stride
3002 // versioning does not help resolving memory accesses/dependences, the
3003 // vectorizer should evaluate the cost of the runtime test, and the benefit
3004 // of various possible stride specializations, considering the alternatives
3005 // of using gather/scatters (if available).
3006
3007 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3008
3009 // Match the types so we can compare the stride and the MaxBTC.
3010 // The Stride can be positive/negative, so we sign extend Stride;
3011 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
3012 const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
3013 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
3014 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
3015 const SCEV *CastedStride = StrideExpr;
3016 const SCEV *CastedBECount = MaxBTC;
3017 ScalarEvolution *SE = PSE->getSE();
3018 if (BETypeSizeBits >= StrideTypeSizeBits)
3019 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
3020 else
3021 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
3022 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
3023 // Since TripCount == BackEdgeTakenCount + 1, checking:
3024 // "Stride >= TripCount" is equivalent to checking:
3025 // Stride - MaxBTC> 0
3026 if (SE->isKnownPositive(StrideMinusBETaken)) {
3027 LLVM_DEBUG(
3028 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
3029 "Stride==1 predicate will imply that the loop executes "
3030 "at most once.\n");
3031 return;
3032 }
3033 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
3034
3035 // Strip back off the integer cast, and check that our result is a
3036 // SCEVUnknown as we expect.
3037 const SCEV *StrideBase = StrideExpr;
3038 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
3039 StrideBase = C->getOperand();
3040 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3041}
3042
3044 const TargetTransformInfo *TTI,
3045 const TargetLibraryInfo *TLI, AAResults *AA,
3046 DominatorTree *DT, LoopInfo *LI,
3047 AssumptionCache *AC, bool AllowPartial)
3048 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3049 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3050 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3051 if (TTI && !TTI->enableScalableVectorization())
3052 // Scale the vector width by 2 as rough estimate to also consider
3053 // interleaving.
3054 MaxTargetVectorWidthInBits =
3055 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) * 2;
3056
3057 DepChecker = std::make_unique<MemoryDepChecker>(
3058 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3059 PtrRtChecking =
3060 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3061 if (canAnalyzeLoop())
3062 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3063}
3064
3065void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3066 if (CanVecMem) {
3067 OS.indent(Depth) << "Memory dependences are safe";
3068 const MemoryDepChecker &DC = getDepChecker();
3069 if (!DC.isSafeForAnyVectorWidth())
3070 OS << " with a maximum safe vector width of "
3071 << DC.getMaxSafeVectorWidthInBits() << " bits";
3074 OS << ", with a maximum safe store-load forward width of " << SLDist
3075 << " bits";
3076 }
3077 if (PtrRtChecking->Need)
3078 OS << " with run-time checks";
3079 OS << "\n";
3080 }
3081
3082 if (HasConvergentOp)
3083 OS.indent(Depth) << "Has convergent operation in loop\n";
3084
3085 if (Report)
3086 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3087
3088 if (auto *Dependences = DepChecker->getDependences()) {
3089 OS.indent(Depth) << "Dependences:\n";
3090 for (const auto &Dep : *Dependences) {
3091 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3092 OS << "\n";
3093 }
3094 } else
3095 OS.indent(Depth) << "Too many dependences, not recorded\n";
3096
3097 // List the pair of accesses need run-time checks to prove independence.
3098 PtrRtChecking->print(OS, Depth);
3099 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3100 OS.indent(Depth) << "Generated run-time checks are incomplete\n";
3101 OS << "\n";
3102
3103 OS.indent(Depth)
3104 << "Non vectorizable stores to invariant address were "
3105 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3106 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3107 ? ""
3108 : "not ")
3109 << "found in loop.\n";
3110
3111 OS.indent(Depth) << "SCEV assumptions:\n";
3112 PSE->getPredicate().print(OS, Depth);
3113
3114 OS << "\n";
3115
3116 OS.indent(Depth) << "Expressions re-written:\n";
3117 PSE->print(OS, Depth);
3118}
3119
3121 bool AllowPartial) {
3122 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3123
3124 // We need to create the LoopAccessInfo if either we don't already have one,
3125 // or if it was created with a different value of AllowPartial.
3126 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3127 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3128 &LI, AC, AllowPartial);
3129
3130 return *It->second;
3131}
3133 // Collect LoopAccessInfo entries that may keep references to IR outside the
3134 // analyzed loop or SCEVs that may have been modified or invalidated. At the
3135 // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3136 // SCEVs, e.g. for pointer expressions.
3137 for (const auto &[L, LAI] : LoopAccessInfoMap) {
3138 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3139 LAI->getPSE().getPredicate().isAlwaysTrue())
3140 continue;
3141 LoopAccessInfoMap.erase(L);
3142 }
3143}
3144
3146 Function &F, const PreservedAnalyses &PA,
3147 FunctionAnalysisManager::Invalidator &Inv) {
3148 // Check whether our analysis is preserved.
3149 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3150 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3151 // If not, give up now.
3152 return true;
3153
3154 // Check whether the analyses we depend on became invalid for any reason.
3155 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3156 // invalid.
3157 return Inv.invalidate<AAManager>(F, PA) ||
3158 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3159 Inv.invalidate<LoopAnalysis>(F, PA) ||
3160 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3161}
3162
3165 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3166 auto &AA = FAM.getResult<AAManager>(F);
3167 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3168 auto &LI = FAM.getResult<LoopAnalysis>(F);
3169 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3170 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3171 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3172 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI, &AC);
3173}
3174
3175AnalysisKey LoopAccessAnalysis::Key;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
@ Scaled
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
DXIL Resource Access
dxil translate DXIL Translate Metadata
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
#define DEBUG_TYPE
Hexagon Common GEP
#define _
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file provides utility analysis objects describing memory locations.
#define P(N)
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition APInt.h:1574
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
Definition Analysis.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
bool isNegative() const
Definition Constants.h:209
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
iterator end()
Definition DenseMap.h:81
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition Function.h:706
bool empty() const
Definition Function.h:857
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
Definition LoopInfo.cpp:667
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
Definition LoopInfo.cpp:565
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
Diagnostic information for optimization analysis remarks.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Definition Analysis.h:275
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
bool contains(const T &V) const
Check if the SmallSet contains the given element.
Definition SmallSet.h:228
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
Definition Value.cpp:816
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
Definition Metadata.h:650
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
LLVM_ABI RetainedKnowledge getKnowledgeForValue(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, function_ref< bool(RetainedKnowledge, Instruction *, const CallBase::BundleOpInfo *)> Filter=[](auto...) { return true;})
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and it match...
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:342
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:733
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1948
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
TargetTransformInfo TTI
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:316
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
Definition Metadata.h:784
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
MDNode * NoAlias
The tag specifying the noalias scope.
Definition Metadata.h:787
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...
Definition STLExtras.h:1427