31#define DEBUG_TYPE "vectorutils"
39 cl::desc(
"Maximum factor for an interleaved access group (default = 8)"),
49 case Intrinsic::bswap:
50 case Intrinsic::bitreverse:
51 case Intrinsic::ctpop:
60 case Intrinsic::sadd_sat:
61 case Intrinsic::ssub_sat:
62 case Intrinsic::uadd_sat:
63 case Intrinsic::usub_sat:
64 case Intrinsic::smul_fix:
65 case Intrinsic::smul_fix_sat:
66 case Intrinsic::umul_fix:
67 case Intrinsic::umul_fix_sat:
72 case Intrinsic::atan2:
75 case Intrinsic::sincos:
76 case Intrinsic::sincospi:
82 case Intrinsic::exp10:
84 case Intrinsic::ldexp:
86 case Intrinsic::log10:
89 case Intrinsic::minnum:
90 case Intrinsic::maxnum:
91 case Intrinsic::minimum:
92 case Intrinsic::maximum:
93 case Intrinsic::minimumnum:
94 case Intrinsic::maximumnum:
96 case Intrinsic::copysign:
97 case Intrinsic::floor:
99 case Intrinsic::trunc:
100 case Intrinsic::rint:
101 case Intrinsic::nearbyint:
102 case Intrinsic::round:
103 case Intrinsic::roundeven:
106 case Intrinsic::fmuladd:
107 case Intrinsic::is_fpclass:
108 case Intrinsic::powi:
109 case Intrinsic::canonicalize:
110 case Intrinsic::fptosi_sat:
111 case Intrinsic::fptoui_sat:
112 case Intrinsic::lround:
113 case Intrinsic::llround:
114 case Intrinsic::lrint:
115 case Intrinsic::llrint:
116 case Intrinsic::ucmp:
117 case Intrinsic::scmp:
135 case Intrinsic::frexp:
136 case Intrinsic::uadd_with_overflow:
137 case Intrinsic::sadd_with_overflow:
138 case Intrinsic::ssub_with_overflow:
139 case Intrinsic::usub_with_overflow:
140 case Intrinsic::umul_with_overflow:
141 case Intrinsic::smul_with_overflow:
149 unsigned ScalarOpdIdx,
161 case Intrinsic::vp_abs:
162 case Intrinsic::ctlz:
163 case Intrinsic::vp_ctlz:
164 case Intrinsic::cttz:
165 case Intrinsic::vp_cttz:
166 case Intrinsic::is_fpclass:
167 case Intrinsic::vp_is_fpclass:
168 case Intrinsic::powi:
169 case Intrinsic::vector_extract:
170 return (ScalarOpdIdx == 1);
171 case Intrinsic::smul_fix:
172 case Intrinsic::smul_fix_sat:
173 case Intrinsic::umul_fix:
174 case Intrinsic::umul_fix_sat:
175 return (ScalarOpdIdx == 2);
176 case Intrinsic::experimental_vp_splice:
177 return ScalarOpdIdx == 2 || ScalarOpdIdx == 4;
191 return OpdIdx == -1 || OpdIdx == 0;
194 case Intrinsic::fptosi_sat:
195 case Intrinsic::fptoui_sat:
196 case Intrinsic::lround:
197 case Intrinsic::llround:
198 case Intrinsic::lrint:
199 case Intrinsic::llrint:
200 case Intrinsic::vp_lrint:
201 case Intrinsic::vp_llrint:
202 case Intrinsic::ucmp:
203 case Intrinsic::scmp:
204 case Intrinsic::vector_extract:
205 return OpdIdx == -1 || OpdIdx == 0;
206 case Intrinsic::modf:
207 case Intrinsic::sincos:
208 case Intrinsic::sincospi:
209 case Intrinsic::is_fpclass:
210 case Intrinsic::vp_is_fpclass:
212 case Intrinsic::powi:
213 case Intrinsic::ldexp:
214 return OpdIdx == -1 || OpdIdx == 1;
227 case Intrinsic::frexp:
228 return RetIdx == 0 || RetIdx == 1;
244 ID == Intrinsic::lifetime_end ||
ID == Intrinsic::assume ||
245 ID == Intrinsic::experimental_noalias_scope_decl ||
246 ID == Intrinsic::sideeffect ||
ID == Intrinsic::pseudoprobe)
253 case Intrinsic::vector_interleave2:
255 case Intrinsic::vector_interleave3:
257 case Intrinsic::vector_interleave4:
259 case Intrinsic::vector_interleave5:
261 case Intrinsic::vector_interleave6:
263 case Intrinsic::vector_interleave7:
265 case Intrinsic::vector_interleave8:
274 case Intrinsic::vector_deinterleave2:
276 case Intrinsic::vector_deinterleave3:
278 case Intrinsic::vector_deinterleave4:
280 case Intrinsic::vector_deinterleave5:
282 case Intrinsic::vector_deinterleave6:
284 case Intrinsic::vector_deinterleave7:
286 case Intrinsic::vector_deinterleave8:
294 [[maybe_unused]]
unsigned Factor =
297 assert(Factor && Factor == DISubtypes.
size() &&
298 "unexpected deinterleave factor or result type");
299 return cast<VectorType>(DISubtypes[0]);
306 assert(V->getType()->isVectorTy() &&
"Not looking at a vector?");
307 VectorType *VTy = cast<VectorType>(V->getType());
309 if (
auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
310 unsigned Width = FVTy->getNumElements();
316 return C->getAggregateElement(EltNo);
320 if (!isa<ConstantInt>(III->getOperand(2)))
322 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
327 return III->getOperand(1);
330 if (III == III->getOperand(0))
340 if (SVI && isa<FixedVectorType>(SVI->
getType())) {
346 if (InEl < (
int)LHSWidth)
355 if (
Constant *Elt =
C->getAggregateElement(EltNo))
356 if (Elt->isNullValue())
360 if (isa<ScalableVectorType>(VTy))
362 if (EltNo < VTy->getElementCount().getKnownMinValue())
377 if (SplatIndex != -1 && SplatIndex != M)
383 assert((SplatIndex == -1 || SplatIndex >= 0) &&
"Negative index?");
392 if (isa<VectorType>(V->getType()))
393 if (
auto *
C = dyn_cast<Constant>(V))
394 return C->getSplatValue();
409 if (isa<VectorType>(V->getType())) {
410 if (isa<UndefValue>(V))
414 if (
auto *
C = dyn_cast<Constant>(V))
415 return C->getSplatValue() !=
nullptr;
418 if (
auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
430 return Shuf->getMaskValue(Index) == Index;
453 const APInt &DemandedElts,
APInt &DemandedLHS,
454 APInt &DemandedRHS,
bool AllowUndefElts) {
458 if (DemandedElts.
isZero())
462 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
467 for (
unsigned I = 0, E = Mask.size();
I != E; ++
I) {
469 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
470 "Invalid shuffle mask constant");
472 if (!DemandedElts[
I] || (AllowUndefElts && (M < 0)))
483 DemandedRHS.
setBit(M - SrcWidth);
490 std::array<std::pair<int, int>, 2> &SrcInfo) {
491 const int SignalValue = NumElts * 2;
492 SrcInfo[0] = {-1, SignalValue};
493 SrcInfo[1] = {-1, SignalValue};
497 int Src = M >= (int)NumElts;
498 int Diff = (int)i - (M % NumElts);
500 for (
int j = 0; j < 2; j++) {
501 auto &[SrcE, DiffE] = SrcInfo[j];
503 assert(DiffE == SignalValue);
507 if (SrcE == Src && DiffE == Diff) {
516 return SrcInfo[0].first != -1;
521 assert(Scale > 0 &&
"Unexpected scaling factor");
525 ScaledMask.
assign(Mask.begin(), Mask.end());
530 for (
int MaskElt : Mask) {
533 "Overflowed 32-bits");
535 for (
int SliceElt = 0; SliceElt != Scale; ++SliceElt)
536 ScaledMask.
push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
542 assert(Scale > 0 &&
"Unexpected scaling factor");
546 ScaledMask.
assign(Mask.begin(), Mask.end());
551 int NumElts = Mask.size();
552 if (NumElts % Scale != 0)
556 ScaledMask.
reserve(NumElts / Scale);
561 assert((
int)MaskSlice.
size() == Scale &&
"Expected Scale-sized slice.");
564 int SliceFront = MaskSlice.
front();
565 if (SliceFront < 0) {
573 if (SliceFront % Scale != 0)
576 for (
int i = 1; i < Scale; ++i)
577 if (MaskSlice[i] != SliceFront + i)
579 ScaledMask.
push_back(SliceFront / Scale);
581 Mask = Mask.drop_front(Scale);
582 }
while (!Mask.empty());
584 assert((
int)ScaledMask.
size() * Scale == NumElts &&
"Unexpected scaled mask");
593 unsigned NumElts = M.size();
594 if (NumElts % 2 != 0)
598 for (
unsigned i = 0; i < NumElts; i += 2) {
603 if (
M0 == -1 &&
M1 == -1) {
608 if (
M0 == -1 &&
M1 != -1 && (
M1 % 2) == 1) {
613 if (
M0 != -1 && (
M0 % 2) == 0 && ((
M0 + 1) ==
M1 ||
M1 == -1)) {
622 assert(NewMask.
size() == NumElts / 2 &&
"Incorrect size for mask!");
628 unsigned NumSrcElts = Mask.size();
629 assert(NumSrcElts > 0 && NumDstElts > 0 &&
"Unexpected scaling factor");
632 if (NumSrcElts == NumDstElts) {
633 ScaledMask.
assign(Mask.begin(), Mask.end());
638 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
639 "Unexpected scaling factor");
641 if (NumSrcElts > NumDstElts) {
642 int Scale = NumSrcElts / NumDstElts;
646 int Scale = NumDstElts / NumSrcElts;
653 std::array<SmallVector<int, 16>, 2> TmpMasks;
656 for (
unsigned Scale = 2; Scale <= InputMask.
size(); ++Scale) {
666 ArrayRef<int> Mask,
unsigned NumOfSrcRegs,
unsigned NumOfDestRegs,
667 unsigned NumOfUsedRegs,
function_ref<
void()> NoInputAction,
676 int Sz = Mask.size();
677 unsigned SzDest = Sz / NumOfDestRegs;
678 unsigned SzSrc = Sz / NumOfSrcRegs;
679 for (
unsigned I = 0;
I < NumOfDestRegs; ++
I) {
680 auto &RegMasks = Res[
I];
681 RegMasks.
assign(2 * NumOfSrcRegs, {});
684 for (
unsigned K = 0; K < SzDest; ++K) {
685 int Idx =
I * SzDest + K;
690 int MaskIdx = Mask[
Idx] % Sz;
691 int SrcRegIdx = MaskIdx / SzSrc + (Mask[
Idx] >= Sz ? NumOfSrcRegs : 0);
694 if (RegMasks[SrcRegIdx].empty())
696 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc;
700 for (
unsigned I : seq<unsigned>(NumOfUsedRegs)) {
704 switch (NumSrcRegs) {
713 unsigned SrcReg = std::distance(Dest.begin(), It);
714 SingleInputAction(*It, SrcReg,
I);
729 "Expected undefined mask element.");
730 FirstMask[
Idx] = SecondMask[
Idx] + VF;
735 for (
int Idx = 0, VF = Mask.size();
Idx < VF; ++
Idx) {
746 for (
unsigned I : seq<unsigned>(2 * NumOfSrcRegs)) {
751 if (FirstIdx == SecondIdx) {
757 SecondMask = RegMask;
758 CombineMasks(FirstMask, SecondMask);
759 ManyInputsAction(FirstMask, FirstIdx, SecondIdx, NewReg);
761 NormalizeMask(FirstMask);
763 SecondMask = FirstMask;
764 SecondIdx = FirstIdx;
766 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
767 CombineMasks(SecondMask, FirstMask);
768 ManyInputsAction(SecondMask, SecondIdx, FirstIdx, NewReg);
770 Dest[FirstIdx].clear();
771 NormalizeMask(SecondMask);
773 }
while (SecondIdx >= 0);
781 const APInt &DemandedElts,
783 APInt &DemandedRHS) {
784 assert(VectorBitWidth >= 128 &&
"Vectors smaller than 128 bit not supported");
785 int NumLanes = VectorBitWidth / 128;
787 int NumEltsPerLane = NumElts / NumLanes;
788 int HalfEltsPerLane = NumEltsPerLane / 2;
794 for (
int Idx = 0;
Idx != NumElts; ++
Idx) {
795 if (!DemandedElts[
Idx])
797 int LaneIdx = (
Idx / NumEltsPerLane) * NumEltsPerLane;
798 int LocalIdx =
Idx % NumEltsPerLane;
799 if (LocalIdx < HalfEltsPerLane) {
800 DemandedLHS.
setBit(LaneIdx + 2 * LocalIdx);
802 LocalIdx -= HalfEltsPerLane;
803 DemandedRHS.
setBit(LaneIdx + 2 * LocalIdx);
824 bool SeenExtFromIllegalType =
false;
826 for (
auto &
I : *BB) {
829 if (
TTI && (isa<ZExtInst>(&
I) || isa<SExtInst>(&
I)) &&
831 SeenExtFromIllegalType =
true;
834 if ((isa<TruncInst>(&
I) || isa<ICmpInst>(&
I)) &&
835 !
I.getType()->isVectorTy() &&
836 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
847 if (Worklist.
empty() || (
TTI && !SeenExtFromIllegalType))
851 while (!Worklist.
empty()) {
860 if (DB.getDemandedBits(
I).getBitWidth() > 64)
863 uint64_t V = DB.getDemandedBits(
I).getZExtValue();
869 if (isa<SExtInst>(
I) || isa<ZExtInst>(
I) || isa<LoadInst>(
I) ||
876 if (isa<BitCastInst>(
I) || isa<PtrToIntInst>(
I) || isa<IntToPtrInst>(
I) ||
877 !
I->getType()->isIntegerTy()) {
878 DBits[Leader] |= ~0ULL;
890 if (isa<CallBase>(
I))
893 if (DBits[Leader] == ~0ULL)
897 for (
Value *O :
I->operands()) {
899 if (
auto *OI = dyn_cast<Instruction>(O))
907 for (
auto &
I : DBits)
908 for (
auto *U :
I.first->users())
909 if (U->getType()->isIntegerTy() && DBits.
count(U) == 0)
912 for (
const auto &E : ECs) {
917 LeaderDemandedBits |= DBits[M];
937 auto *
MI = dyn_cast<Instruction>(M);
940 Type *Ty = M->getType();
942 Ty =
MI->getOperand(0)->getType();
949 auto *Call = dyn_cast<CallBase>(
MI);
950 auto Ops = Call ? Call->args() :
MI->operands();
952 auto *CI = dyn_cast<ConstantInt>(U);
956 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
957 U.getOperandNo() == 1)
958 return CI->uge(MinBW);
972template <
typename ListT>
977 List.insert(AccGroups);
981 for (
const auto &AccGroupListOp : AccGroups->
operands()) {
982 auto *Item = cast<MDNode>(AccGroupListOp.get());
993 if (AccGroups1 == AccGroups2)
1000 if (Union.size() == 0)
1002 if (Union.size() == 1)
1003 return cast<MDNode>(Union.front());
1014 if (!MayAccessMem1 && !MayAccessMem2)
1017 return Inst2->
getMetadata(LLVMContext::MD_access_group);
1019 return Inst1->
getMetadata(LLVMContext::MD_access_group);
1035 if (AccGroupSet2.
count(MD1))
1039 auto *Item = cast<MDNode>(Node.get());
1041 if (AccGroupSet2.
count(Item))
1046 if (Intersection.
size() == 0)
1048 if (Intersection.
size() == 1)
1049 return cast<MDNode>(Intersection.
front());
1061 static const unsigned SupportedIDs[] = {
1062 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1063 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
1064 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
1065 LLVMContext::MD_access_group, LLVMContext::MD_mmra};
1086 for (
auto &[Kind, MD] :
Metadata) {
1087 for (
int J = 1, E = VL.
size(); MD && J != E; ++J) {
1092 case LLVMContext::MD_mmra: {
1096 case LLVMContext::MD_tbaa:
1099 case LLVMContext::MD_alias_scope:
1102 case LLVMContext::MD_fpmath:
1105 case LLVMContext::MD_noalias:
1106 case LLVMContext::MD_nontemporal:
1107 case LLVMContext::MD_invariant_load:
1110 case LLVMContext::MD_access_group:
1135 for (
unsigned i = 0; i < VF; i++)
1136 for (
unsigned j = 0; j < Group.
getFactor(); ++j) {
1137 unsigned HasMember = Group.
getMember(j) ? 1 : 0;
1138 Mask.push_back(Builder.
getInt1(HasMember));
1147 for (
unsigned i = 0; i < VF; i++)
1148 for (
unsigned j = 0; j < ReplicationFactor; j++)
1157 for (
unsigned i = 0; i < VF; i++)
1158 for (
unsigned j = 0; j < NumVecs; j++)
1159 Mask.push_back(j * VF + i);
1167 for (
unsigned i = 0; i < VF; i++)
1168 Mask.push_back(Start + i * Stride);
1175 unsigned NumUndefs) {
1177 for (
unsigned i = 0; i < NumInts; i++)
1178 Mask.push_back(Start + i);
1180 for (
unsigned i = 0; i < NumUndefs; i++)
1189 int NumEltsSigned = NumElts;
1190 assert(NumEltsSigned > 0 &&
"Expected smaller or non-zero element count");
1195 for (
int MaskElt : Mask) {
1196 assert((MaskElt < NumEltsSigned * 2) &&
"Expected valid shuffle mask");
1197 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1210 assert(VecTy1 && VecTy2 &&
1211 VecTy1->getScalarType() == VecTy2->getScalarType() &&
1212 "Expect two vectors with the same element type");
1214 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1215 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1216 assert(NumElts1 >= NumElts2 &&
"Unexpect the first vector has less elements");
1218 if (NumElts1 > NumElts2) {
1230 unsigned NumVecs = Vecs.
size();
1231 assert(NumVecs > 1 &&
"Should be at least two vectors");
1237 for (
unsigned i = 0; i < NumVecs - 1; i += 2) {
1238 Value *V0 = ResList[i], *V1 = ResList[i + 1];
1239 assert((V0->
getType() == V1->getType() || i == NumVecs - 2) &&
1240 "Only the last vector may have a different type");
1246 if (NumVecs % 2 != 0)
1247 TmpList.
push_back(ResList[NumVecs - 1]);
1250 NumVecs = ResList.
size();
1251 }
while (NumVecs > 1);
1257 assert(isa<VectorType>(Mask->getType()) &&
1258 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1259 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1261 "Mask must be a vector of i1");
1263 auto *ConstMask = dyn_cast<Constant>(Mask);
1266 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1268 if (isa<ScalableVectorType>(ConstMask->getType()))
1272 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1274 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1275 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1283 assert(isa<VectorType>(Mask->getType()) &&
1284 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1285 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1287 "Mask must be a vector of i1");
1289 auto *ConstMask = dyn_cast<Constant>(Mask);
1292 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1294 if (isa<ScalableVectorType>(ConstMask->getType()))
1298 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1300 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1301 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1309 assert(isa<VectorType>(Mask->getType()) &&
1310 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1311 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1313 "Mask must be a vector of i1");
1315 auto *ConstMask = dyn_cast<Constant>(Mask);
1318 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1320 if (isa<ScalableVectorType>(ConstMask->getType()))
1324 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1326 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1327 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1336 assert(isa<FixedVectorType>(Mask->getType()) &&
1337 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1338 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1340 "Mask must be a fixed width vector of i1");
1342 const unsigned VWidth =
1343 cast<FixedVectorType>(Mask->getType())->getNumElements();
1345 if (
auto *CV = dyn_cast<ConstantVector>(Mask))
1346 for (
unsigned i = 0; i < VWidth; i++)
1347 if (CV->getAggregateElement(i)->isNullValue())
1349 return DemandedElts;
1352bool InterleavedAccessInfo::isStrided(
int Stride) {
1353 unsigned Factor = std::abs(Stride);
1357void InterleavedAccessInfo::collectConstStrideAccesses(
1371 for (
auto &
I : *BB) {
1380 if (
Size * 8 !=
DL.getTypeSizeInBits(ElementTy))
1392 true,
false).value_or(0);
1395 AccessStrideInfo[&
I] = StrideDescriptor(Stride, Scev,
Size,
1437 bool EnablePredicatedInterleavedMemAccesses) {
1443 collectConstStrideAccesses(AccessStrideInfo, Strides);
1445 if (AccessStrideInfo.
empty())
1449 collectDependences();
1470 for (
auto BI = AccessStrideInfo.
rbegin(), E = AccessStrideInfo.
rend();
1473 StrideDescriptor DesB = BI->second;
1479 if (isStrided(DesB.Stride) &&
1480 (!isPredicated(
B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1485 GroupB = createInterleaveGroup(
B, DesB.Stride, DesB.Alignment);
1486 if (
B->mayWriteToMemory())
1487 StoreGroups.
insert(GroupB);
1489 LoadGroups.
insert(GroupB);
1493 for (
auto AI = std::next(BI); AI != E; ++AI) {
1495 StrideDescriptor DesA = AI->second;
1520 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1521 A, &*AccessStrideInfo.
find(MemberOfGroupB)))
1522 return MemberOfGroupB;
1532 if (
A->mayWriteToMemory() && GroupA != GroupB) {
1540 if (GroupB && LoadGroups.
contains(GroupB))
1541 DependentInst = DependentMember(GroupB, &*AI);
1542 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1545 if (DependentInst) {
1550 if (GroupA && StoreGroups.
contains(GroupA)) {
1552 "dependence between "
1553 << *
A <<
" and " << *DependentInst <<
'\n');
1554 StoreGroups.
remove(GroupA);
1555 releaseGroup(GroupA);
1561 if (GroupB && LoadGroups.
contains(GroupB)) {
1563 <<
" as complete.\n");
1564 CompletedLoadGroups.
insert(GroupB);
1568 if (CompletedLoadGroups.
contains(GroupB)) {
1576 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1586 (
A->mayReadFromMemory() !=
B->mayReadFromMemory()) ||
1587 (
A->mayWriteToMemory() !=
B->mayWriteToMemory()))
1592 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1609 if (DistanceToB %
static_cast<int64_t
>(DesB.Size))
1616 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1617 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1623 GroupB->
getIndex(
B) + DistanceToB /
static_cast<int64_t
>(DesB.Size);
1628 <<
" into the interleave group with" << *
B
1630 InterleaveGroupMap[
A] = GroupB;
1633 if (
A->mayReadFromMemory())
1641 const char *FirstOrLast) ->
bool {
1643 assert(Member &&
"Group member does not exist");
1646 if (
getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1647 false,
true).value_or(0))
1649 LLVM_DEBUG(
dbgs() <<
"LV: Invalidate candidate interleaved group due to "
1651 <<
" group member potentially pointer-wrapping.\n");
1652 releaseGroup(Group);
1670 for (
auto *Group : LoadGroups) {
1682 if (InvalidateGroupIfMemberMayWrap(Group, 0,
"first"))
1685 InvalidateGroupIfMemberMayWrap(Group, Group->
getFactor() - 1,
"last");
1694 dbgs() <<
"LV: Invalidate candidate interleaved group due to "
1695 "a reverse access with gaps.\n");
1696 releaseGroup(Group);
1700 dbgs() <<
"LV: Interleaved group requires epilogue iteration.\n");
1701 RequiresScalarEpilogue =
true;
1705 for (
auto *Group : StoreGroups) {
1715 if (!EnablePredicatedInterleavedMemAccesses) {
1717 dbgs() <<
"LV: Invalidate candidate interleaved store group due "
1719 releaseGroup(Group);
1729 if (InvalidateGroupIfMemberMayWrap(Group, 0,
"first"))
1731 for (
int Index = Group->
getFactor() - 1; Index > 0; Index--)
1733 InvalidateGroupIfMemberMayWrap(Group, Index,
"last");
1747 bool ReleasedGroup = InterleaveGroups.remove_if([&](
auto *Group) {
1748 if (!Group->requiresScalarEpilogue())
1752 <<
"LV: Invalidate candidate interleaved group due to gaps that "
1753 "require a scalar epilogue (not allowed under optsize) and cannot "
1754 "be masked (not enabled). \n");
1755 releaseGroupWithoutRemovingFromSet(Group);
1758 assert(ReleasedGroup &&
"At least one group must be invalidated, as a "
1759 "scalar epilogue was required");
1760 (void)ReleasedGroup;
1761 RequiresScalarEpilogue =
false;
1764template <
typename InstT>
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
DenseMap< Block *, BlockRelaxAux > Blocks
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static Value * concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, Value *V2)
A helper function for concatenating vectors.
static cl::opt< unsigned > MaxInterleaveGroupFactor("max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8))
Maximum factor for an interleaved memory access.
static void addToAccessGroupList(ListT &List, MDNode *AccGroups)
Add all access groups in AccGroups to List.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
int64_t getSExtValue() const
Get sign extended value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM Basic Block Representation.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator_range< member_iterator > members(const ECValue &ECV) const
const ElemTy & getOrInsertLeaderValue(const ElemTy &V)
getOrInsertLeaderValue - Return the leader for the specified value that is in the set.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
Common base class shared among various IRBuilders.
ConstantInt * getInt1(bool V)
Get a constant value representing either true or false.
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
This instruction inserts a single (scalar) element into a VectorType value.
bool mayReadOrWriteMemory() const
Return true if this instruction may read or write memory.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
void getAllMetadataOtherThanDebugLoc(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
This does the same thing as getAllMetadata, except that it filters out the debug location.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isFull() const
Return true if this group is full, i.e. it has no gaps.
uint32_t getIndex(const InstTy *Instr) const
Get the index for the given member.
void setInsertPos(InstTy *Inst)
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign)
Try to insert a new member Instr with index Index and alignment NewAlign.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
LLVM_ABI void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
BlockT * getHeader() const
Store the result of a depth first search within basic blocks contained by a single loop.
static LLVM_ABI MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
static LLVM_ABI MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
ArrayRef< MDOperand > operands() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
unsigned getNumOperands() const
Return number of MDNode operands.
static LLVM_ABI MDNode * intersect(MDNode *A, MDNode *B)
LLVMContext & getContext() const
Tracking metadata reference owned by Metadata.
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
reverse_iterator rbegin()
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
bool remove(const value_type &X)
Remove an item from the set vector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
ArrayRef< Type * > subtypes() const
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPCast(Intrinsic::ID ID)
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
Type * getElementType() const
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool isTriviallyScalarizable(Intrinsic::ID ID, const TargetTransformInfo *TTI)
Identify if the intrinsic is trivially scalarizable.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
LLVM_ABI void getMetadataToPropagate(Instruction *Inst, SmallVectorImpl< std::pair< unsigned, MDNode * > > &Metadata)
Add metadata from Inst to Metadata, if it can be preserved after vectorization.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
LLVM_ABI Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI MDNode * intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2)
Compute the access-group list of access groups that Inst1 and Inst2 are both in.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI unsigned getDeinterleaveIntrinsicFactor(Intrinsic::ID ID)
Returns the corresponding factor of llvm.vector.deinterleaveN intrinsics.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
LLVM_ABI unsigned getInterleaveIntrinsicFactor(Intrinsic::ID ID)
Returns the corresponding factor of llvm.vector.interleaveN intrinsics.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
constexpr int PoisonMaskElem
LLVM_ABI bool isValidAsAccessGroup(MDNode *AccGroup)
Return whether an MDNode might represent an access group.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
LLVM_ABI bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI bool isMaskedSlidePair(ArrayRef< int > Mask, int NumElts, std::array< std::pair< int, int >, 2 > &SrcInfo)
Does this shuffle mask represent either one slide shuffle or a pair of two slide shuffles,...
LLVM_ABI VectorType * getDeinterleavedVectorType(IntrinsicInst *DI)
Given a deinterleaveN intrinsic, return the (narrow) vector type of each factor.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI MDNode * uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2)
Compute the union of two access-group lists.
unsigned M0(unsigned Val)
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned, bool)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
LLVM_ABI bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.