LLVM 22.0.0git
LoopSimplifyCFG.cpp
Go to the documentation of this file.
1//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10// basic loop CFG cleanup, primarily to assist other loop passes. If you
11// encounter a noncanonical CFG construct that causes another loop pass to
12// perform suboptimally, this is the place to fix it up.
13//
14//===----------------------------------------------------------------------===//
15
18#include "llvm/ADT/Statistic.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/IRBuilder.h"
32#include <optional>
33using namespace llvm;
34
35#define DEBUG_TYPE "loop-simplifycfg"
36
37static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
38 cl::init(true));
39
40STATISTIC(NumTerminatorsFolded,
41 "Number of terminators folded to unconditional branches");
42STATISTIC(NumLoopBlocksDeleted,
43 "Number of loop blocks deleted");
44STATISTIC(NumLoopExitsDeleted,
45 "Number of loop exiting edges deleted");
46
47/// If \p BB is a switch or a conditional branch, but only one of its successors
48/// can be reached from this block in runtime, return this successor. Otherwise,
49/// return nullptr.
51 Instruction *TI = BB->getTerminator();
52 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
53 if (BI->isUnconditional())
54 return nullptr;
55 if (BI->getSuccessor(0) == BI->getSuccessor(1))
56 return BI->getSuccessor(0);
57 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
58 if (!Cond)
59 return nullptr;
60 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
61 }
62
63 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
64 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
65 if (!CI)
66 return nullptr;
67 for (auto Case : SI->cases())
68 if (Case.getCaseValue() == CI)
69 return Case.getCaseSuccessor();
70 return SI->getDefaultDest();
71 }
72
73 return nullptr;
74}
75
76/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
77static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
78 Loop *LastLoop = nullptr) {
79 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
80 "First loop is supposed to be inside of last loop!");
81 assert(FirstLoop->contains(BB) && "Must be a loop block!");
82 for (Loop *Current = FirstLoop; Current != LastLoop;
83 Current = Current->getParentLoop())
84 Current->removeBlockFromLoop(BB);
85}
86
87/// Find innermost loop that contains at least one block from \p BBs and
88/// contains the header of loop \p L.
90 Loop &L, LoopInfo &LI) {
91 Loop *Innermost = nullptr;
92 for (BasicBlock *BB : BBs) {
93 Loop *BBL = LI.getLoopFor(BB);
94 while (BBL && !BBL->contains(L.getHeader()))
95 BBL = BBL->getParentLoop();
96 if (BBL == &L)
97 BBL = BBL->getParentLoop();
98 if (!BBL)
99 continue;
100 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
101 Innermost = BBL;
102 }
103 return Innermost;
104}
105
106namespace {
107/// Helper class that can turn branches and switches with constant conditions
108/// into unconditional branches.
109class ConstantTerminatorFoldingImpl {
110private:
111 Loop &L;
112 LoopInfo &LI;
113 DominatorTree &DT;
114 ScalarEvolution &SE;
115 MemorySSAUpdater *MSSAU;
116 LoopBlocksDFS DFS;
117 DomTreeUpdater DTU;
119
120 // Whether or not the current loop has irreducible CFG.
121 bool HasIrreducibleCFG = false;
122 // Whether or not the current loop will still exist after terminator constant
123 // folding will be done. In theory, there are two ways how it can happen:
124 // 1. Loop's latch(es) become unreachable from loop header;
125 // 2. Loop's header becomes unreachable from method entry.
126 // In practice, the second situation is impossible because we only modify the
127 // current loop and its preheader and do not affect preheader's reachibility
128 // from any other block. So this variable set to true means that loop's latch
129 // has become unreachable from loop header.
130 bool DeleteCurrentLoop = false;
131 // Whether or not we enter the loop through an indirectbr.
132 bool HasIndirectEntry = false;
133
134 // The blocks of the original loop that will still be reachable from entry
135 // after the constant folding.
136 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
137 // The blocks of the original loop that will become unreachable from entry
138 // after the constant folding.
139 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
140 // The exits of the original loop that will still be reachable from entry
141 // after the constant folding.
142 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
143 // The exits of the original loop that will become unreachable from entry
144 // after the constant folding.
145 SmallVector<BasicBlock *, 8> DeadExitBlocks;
146 // The blocks that will still be a part of the current loop after folding.
147 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
148 // The blocks that have terminators with constant condition that can be
149 // folded. Note: fold candidates should be in L but not in any of its
150 // subloops to avoid complex LI updates.
151 SmallVector<BasicBlock *, 8> FoldCandidates;
152
153 void dump() const {
154 dbgs() << "Constant terminator folding for loop " << L << "\n";
155 dbgs() << "After terminator constant-folding, the loop will";
156 if (!DeleteCurrentLoop)
157 dbgs() << " not";
158 dbgs() << " be destroyed\n";
159 auto PrintOutVector = [&](const char *Message,
161 dbgs() << Message << "\n";
162 for (const BasicBlock *BB : S)
163 dbgs() << "\t" << BB->getName() << "\n";
164 };
165 auto PrintOutSet = [&](const char *Message,
167 dbgs() << Message << "\n";
168 for (const BasicBlock *BB : S)
169 dbgs() << "\t" << BB->getName() << "\n";
170 };
171 PrintOutVector("Blocks in which we can constant-fold terminator:",
172 FoldCandidates);
173 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
174 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
175 PrintOutSet("Live exit blocks:", LiveExitBlocks);
176 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
177 if (!DeleteCurrentLoop)
178 PrintOutSet("The following blocks will still be part of the loop:",
179 BlocksInLoopAfterFolding);
180 }
181
182 /// Whether or not the current loop has irreducible CFG.
183 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
184 assert(DFS.isComplete() && "DFS is expected to be finished");
185 // Index of a basic block in RPO traversal.
187 unsigned Current = 0;
188 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
189 RPO[*I] = Current++;
190
191 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
192 BasicBlock *BB = *I;
193 for (auto *Succ : successors(BB))
194 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
195 // If an edge goes from a block with greater order number into a block
196 // with lesses number, and it is not a loop backedge, then it can only
197 // be a part of irreducible non-loop cycle.
198 return true;
199 }
200 return false;
201 }
202
203 /// Fill all information about status of blocks and exits of the current loop
204 /// if constant folding of all branches will be done.
205 void analyze() {
206 DFS.perform(&LI);
207 assert(DFS.isComplete() && "DFS is expected to be finished");
208
209 // TODO: The algorithm below relies on both RPO and Postorder traversals.
210 // When the loop has only reducible CFG inside, then the invariant "all
211 // predecessors of X are processed before X in RPO" is preserved. However
212 // an irreducible loop can break this invariant (e.g. latch does not have to
213 // be the last block in the traversal in this case, and the algorithm relies
214 // on this). We can later decide to support such cases by altering the
215 // algorithms, but so far we just give up analyzing them.
216 if (hasIrreducibleCFG(DFS)) {
217 HasIrreducibleCFG = true;
218 return;
219 }
220
221 // We need a loop preheader to split in handleDeadExits(). If LoopSimplify
222 // wasn't able to form one because the loop can be entered through an
223 // indirectbr we cannot continue.
224 if (!L.getLoopPreheader()) {
225 assert(any_of(predecessors(L.getHeader()),
226 [&](BasicBlock *Pred) {
227 return isa<IndirectBrInst>(Pred->getTerminator());
228 }) &&
229 "Loop should have preheader if it is not entered indirectly");
230 HasIndirectEntry = true;
231 return;
232 }
233
234 // Collect live and dead loop blocks and exits.
235 LiveLoopBlocks.insert(L.getHeader());
236 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
237 BasicBlock *BB = *I;
238
239 // If a loop block wasn't marked as live so far, then it's dead.
240 if (!LiveLoopBlocks.count(BB)) {
241 DeadLoopBlocks.push_back(BB);
242 continue;
243 }
244
245 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
246
247 // If a block has only one live successor, it's a candidate on constant
248 // folding. Only handle blocks from current loop: branches in child loops
249 // are skipped because if they can be folded, they should be folded during
250 // the processing of child loops.
251 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
252 if (TakeFoldCandidate)
253 FoldCandidates.push_back(BB);
254
255 // Handle successors.
256 for (BasicBlock *Succ : successors(BB))
257 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
258 if (L.contains(Succ))
259 LiveLoopBlocks.insert(Succ);
260 else
261 LiveExitBlocks.insert(Succ);
262 }
263 }
264
265 // Amount of dead and live loop blocks should match the total number of
266 // blocks in loop.
267 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
268 "Malformed block sets?");
269
270 // Now, all exit blocks that are not marked as live are dead, if all their
271 // predecessors are in the loop. This may not be the case, as the input loop
272 // may not by in loop-simplify/canonical form.
274 L.getExitBlocks(ExitBlocks);
275 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
276 for (auto *ExitBlock : ExitBlocks)
277 if (!LiveExitBlocks.count(ExitBlock) &&
278 UniqueDeadExits.insert(ExitBlock).second &&
279 all_of(predecessors(ExitBlock),
280 [this](BasicBlock *Pred) { return L.contains(Pred); }))
281 DeadExitBlocks.push_back(ExitBlock);
282
283 // Whether or not the edge From->To will still be present in graph after the
284 // folding.
285 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
286 if (!LiveLoopBlocks.count(From))
287 return false;
288 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
289 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
290 };
291
292 // The loop will not be destroyed if its latch is live.
293 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
294
295 // If we are going to delete the current loop completely, no extra analysis
296 // is needed.
297 if (DeleteCurrentLoop)
298 return;
299
300 // Otherwise, we should check which blocks will still be a part of the
301 // current loop after the transform.
302 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
303 // If the loop is live, then we should compute what blocks are still in
304 // loop after all branch folding has been done. A block is in loop if
305 // it has a live edge to another block that is in the loop; by definition,
306 // latch is in the loop.
307 auto BlockIsInLoop = [&](BasicBlock *BB) {
308 return any_of(successors(BB), [&](BasicBlock *Succ) {
309 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
310 });
311 };
312 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
313 BasicBlock *BB = *I;
314 if (BlockIsInLoop(BB))
315 BlocksInLoopAfterFolding.insert(BB);
316 }
317
318 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
319 "Header not in loop?");
320 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
321 "All blocks that stay in loop should be live!");
322 }
323
324 /// We need to preserve static reachibility of all loop exit blocks (this is)
325 /// required by loop pass manager. In order to do it, we make the following
326 /// trick:
327 ///
328 /// preheader:
329 /// <preheader code>
330 /// br label %loop_header
331 ///
332 /// loop_header:
333 /// ...
334 /// br i1 false, label %dead_exit, label %loop_block
335 /// ...
336 ///
337 /// We cannot simply remove edge from the loop to dead exit because in this
338 /// case dead_exit (and its successors) may become unreachable. To avoid that,
339 /// we insert the following fictive preheader:
340 ///
341 /// preheader:
342 /// <preheader code>
343 /// switch i32 0, label %preheader-split,
344 /// [i32 1, label %dead_exit_1],
345 /// [i32 2, label %dead_exit_2],
346 /// ...
347 /// [i32 N, label %dead_exit_N],
348 ///
349 /// preheader-split:
350 /// br label %loop_header
351 ///
352 /// loop_header:
353 /// ...
354 /// br i1 false, label %dead_exit_N, label %loop_block
355 /// ...
356 ///
357 /// Doing so, we preserve static reachibility of all dead exits and can later
358 /// remove edges from the loop to these blocks.
359 void handleDeadExits() {
360 // If no dead exits, nothing to do.
361 if (DeadExitBlocks.empty())
362 return;
363
364 // Construct split preheader and the dummy switch to thread edges from it to
365 // dead exits.
366 BasicBlock *Preheader = L.getLoopPreheader();
367 BasicBlock *NewPreheader = llvm::SplitBlock(
368 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
369
370 IRBuilder<> Builder(Preheader->getTerminator());
371 SwitchInst *DummySwitch =
372 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
373 Preheader->getTerminator()->eraseFromParent();
374
375 unsigned DummyIdx = 1;
376 for (BasicBlock *BB : DeadExitBlocks) {
377 // Eliminate all Phis and LandingPads from dead exits.
378 // TODO: Consider removing all instructions in this dead block.
379 SmallVector<Instruction *, 4> DeadInstructions(
381
382 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHIIt()))
383 DeadInstructions.emplace_back(LandingPad);
384
385 for (Instruction *I : DeadInstructions) {
386 SE.forgetValue(I);
387 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
388 I->eraseFromParent();
389 }
390
391 assert(DummyIdx != 0 && "Too many dead exits!");
392 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
393 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
394 ++NumLoopExitsDeleted;
395 }
396
397 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
398 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
399 // When we break dead edges, the outer loop may become unreachable from
400 // the current loop. We need to fix loop info accordingly. For this, we
401 // find the most nested loop that still contains L and remove L from all
402 // loops that are inside of it.
403 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
404
405 // Okay, our loop is no longer in the outer loop (and maybe not in some of
406 // its parents as well). Make the fixup.
407 if (StillReachable != OuterLoop) {
408 LI.changeLoopFor(NewPreheader, StillReachable);
409 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
410 for (auto *BB : L.blocks())
411 removeBlockFromLoops(BB, OuterLoop, StillReachable);
412 OuterLoop->removeChildLoop(&L);
413 if (StillReachable)
414 StillReachable->addChildLoop(&L);
415 else
416 LI.addTopLevelLoop(&L);
417
418 // Some values from loops in [OuterLoop, StillReachable) could be used
419 // in the current loop. Now it is not their child anymore, so such uses
420 // require LCSSA Phis.
421 Loop *FixLCSSALoop = OuterLoop;
422 while (FixLCSSALoop->getParentLoop() != StillReachable)
423 FixLCSSALoop = FixLCSSALoop->getParentLoop();
424 assert(FixLCSSALoop && "Should be a loop!");
425 // We need all DT updates to be done before forming LCSSA.
426 if (MSSAU)
427 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
428 else
429 DTU.applyUpdates(DTUpdates);
430 DTUpdates.clear();
431 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
433 }
434 }
435
436 if (MSSAU) {
437 // Clear all updates now. Facilitates deletes that follow.
438 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
439 DTUpdates.clear();
440 if (VerifyMemorySSA)
441 MSSAU->getMemorySSA()->verifyMemorySSA();
442 }
443 }
444
445 /// Delete loop blocks that have become unreachable after folding. Make all
446 /// relevant updates to DT and LI.
447 void deleteDeadLoopBlocks() {
448 if (MSSAU) {
449 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
450 DeadLoopBlocks.end());
451 MSSAU->removeBlocks(DeadLoopBlocksSet);
452 }
453
454 // The function LI.erase has some invariants that need to be preserved when
455 // it tries to remove a loop which is not the top-level loop. In particular,
456 // it requires loop's preheader to be strictly in loop's parent. We cannot
457 // just remove blocks one by one, because after removal of preheader we may
458 // break this invariant for the dead loop. So we detatch and erase all dead
459 // loops beforehand.
460 for (auto *BB : DeadLoopBlocks)
461 if (LI.isLoopHeader(BB)) {
462 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
463 Loop *DL = LI.getLoopFor(BB);
464 if (!DL->isOutermost()) {
465 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
466 for (auto *BB : DL->getBlocks())
467 PL->removeBlockFromLoop(BB);
468 DL->getParentLoop()->removeChildLoop(DL);
470 }
471 LI.erase(DL);
472 }
473
474 for (auto *BB : DeadLoopBlocks) {
475 assert(BB != L.getHeader() &&
476 "Header of the current loop cannot be dead!");
477 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
478 << "\n");
479 LI.removeBlock(BB);
480 }
481
482 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
483 DTU.applyUpdates(DTUpdates);
484 DTUpdates.clear();
485 for (auto *BB : DeadLoopBlocks)
486 DTU.deleteBB(BB);
487
488 NumLoopBlocksDeleted += DeadLoopBlocks.size();
489 }
490
491 /// Constant-fold terminators of blocks accumulated in FoldCandidates into the
492 /// unconditional branches.
493 void foldTerminators() {
494 for (BasicBlock *BB : FoldCandidates) {
495 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
496 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
497 assert(TheOnlySucc && "Should have one live successor!");
498
499 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
500 << " with an unconditional branch to the block "
501 << TheOnlySucc->getName() << "\n");
502
503 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
504 // Remove all BB's successors except for the live one.
505 unsigned TheOnlySuccDuplicates = 0;
506 for (auto *Succ : successors(BB))
507 if (Succ != TheOnlySucc) {
508 DeadSuccessors.insert(Succ);
509 // If our successor lies in a different loop, we don't want to remove
510 // the one-input Phi because it is a LCSSA Phi.
511 bool PreserveLCSSAPhi = !L.contains(Succ);
512 Succ->removePredecessor(BB, PreserveLCSSAPhi);
513 if (MSSAU)
514 MSSAU->removeEdge(BB, Succ);
515 } else
516 ++TheOnlySuccDuplicates;
517
518 assert(TheOnlySuccDuplicates > 0 && "Should be!");
519 // If TheOnlySucc was BB's successor more than once, after transform it
520 // will be its successor only once. Remove redundant inputs from
521 // TheOnlySucc's Phis.
522 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
523 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
524 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
525 if (MSSAU && TheOnlySuccDuplicates > 1)
526 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
527
528 IRBuilder<> Builder(BB->getContext());
530 Builder.SetInsertPoint(Term);
531 Builder.CreateBr(TheOnlySucc);
532 Term->eraseFromParent();
533
534 for (auto *DeadSucc : DeadSuccessors)
535 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
536
537 ++NumTerminatorsFolded;
538 }
539 }
540
541public:
542 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
543 ScalarEvolution &SE,
544 MemorySSAUpdater *MSSAU)
545 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
546 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
547 bool run() {
548 assert(L.getLoopLatch() && "Should be single latch!");
549
550 // Collect all available information about status of blocks after constant
551 // folding.
552 analyze();
553 BasicBlock *Header = L.getHeader();
554 (void)Header;
555
556 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
557 << ": ");
558
559 if (HasIrreducibleCFG) {
560 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
561 return false;
562 }
563
564 if (HasIndirectEntry) {
565 LLVM_DEBUG(dbgs() << "Loops which can be entered indirectly are not"
566 " supported!\n");
567 return false;
568 }
569
570 // Nothing to constant-fold.
571 if (FoldCandidates.empty()) {
573 dbgs() << "No constant terminator folding candidates found in loop "
574 << Header->getName() << "\n");
575 return false;
576 }
577
578 // TODO: Support deletion of the current loop.
579 if (DeleteCurrentLoop) {
581 dbgs()
582 << "Give up constant terminator folding in loop " << Header->getName()
583 << ": we don't currently support deletion of the current loop.\n");
584 return false;
585 }
586
587 // TODO: Support blocks that are not dead, but also not in loop after the
588 // folding.
589 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
590 L.getNumBlocks()) {
592 dbgs() << "Give up constant terminator folding in loop "
593 << Header->getName() << ": we don't currently"
594 " support blocks that are not dead, but will stop "
595 "being a part of the loop after constant-folding.\n");
596 return false;
597 }
598
599 // TODO: Tokens may breach LCSSA form by default. However, the transform for
600 // dead exit blocks requires LCSSA form to be maintained for all values,
601 // tokens included, otherwise it may break use-def dominance (see PR56243).
602 if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
603 assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
604 "LCSSA broken not by tokens?");
605 LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
606 << Header->getName()
607 << ": tokens uses potentially break LCSSA form.\n");
608 return false;
609 }
610
611 SE.forgetTopmostLoop(&L);
612 // Dump analysis results.
613 LLVM_DEBUG(dump());
614
615 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
616 << " terminators in loop " << Header->getName() << "\n");
617
618 if (!DeadLoopBlocks.empty())
620
621 // Make the actual transforms.
622 handleDeadExits();
623 foldTerminators();
624
625 if (!DeadLoopBlocks.empty()) {
626 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
627 << " dead blocks in loop " << Header->getName() << "\n");
628 deleteDeadLoopBlocks();
629 } else {
630 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
631 DTU.applyUpdates(DTUpdates);
632 DTUpdates.clear();
633 }
634
635 if (MSSAU && VerifyMemorySSA)
636 MSSAU->getMemorySSA()->verifyMemorySSA();
637
638#ifndef NDEBUG
639 // Make sure that we have preserved all data structures after the transform.
640#if defined(EXPENSIVE_CHECKS)
641 assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
642 "DT broken after transform!");
643#else
644 assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
645 "DT broken after transform!");
646#endif
647 assert(DT.isReachableFromEntry(Header));
648 LI.verify(DT);
649#endif
650
651 return true;
652 }
653
654 bool foldingBreaksCurrentLoop() const {
655 return DeleteCurrentLoop;
656 }
657};
658} // namespace
659
660/// Turn branches and switches with known constant conditions into unconditional
661/// branches.
663 ScalarEvolution &SE,
664 MemorySSAUpdater *MSSAU,
665 bool &IsLoopDeleted) {
667 return false;
668
669 // To keep things simple, only process loops with single latch. We
670 // canonicalize most loops to this form. We can support multi-latch if needed.
671 if (!L.getLoopLatch())
672 return false;
673
674 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
675 bool Changed = BranchFolder.run();
676 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
677 return Changed;
678}
679
681 LoopInfo &LI, MemorySSAUpdater *MSSAU,
682 ScalarEvolution &SE) {
683 bool Changed = false;
684 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
685 // Copy blocks into a temporary array to avoid iterator invalidation issues
686 // as we remove them.
688
689 for (auto &Block : Blocks) {
690 // Attempt to merge blocks in the trivial case. Don't modify blocks which
691 // belong to other loops.
692 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
693 if (!Succ)
694 continue;
695
696 BasicBlock *Pred = Succ->getSinglePredecessor();
697 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
698 continue;
699
700 // Merge Succ into Pred and delete it.
701 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
702
703 if (MSSAU && VerifyMemorySSA)
704 MSSAU->getMemorySSA()->verifyMemorySSA();
705
706 Changed = true;
707 }
708
709 if (Changed)
711
712 return Changed;
713}
714
717 bool &IsLoopDeleted) {
718 bool Changed = false;
719
720 // Constant-fold terminators with known constant conditions.
721 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
722
723 if (IsLoopDeleted)
724 return true;
725
726 // Eliminate unconditional branches by merging blocks into their predecessors.
727 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
728
729 if (Changed)
730 SE.forgetTopmostLoop(&L);
731
732 return Changed;
733}
734
737 LPMUpdater &LPMU) {
738 std::optional<MemorySSAUpdater> MSSAU;
739 if (AR.MSSA)
740 MSSAU = MemorySSAUpdater(AR.MSSA);
741 bool DeleteCurrentLoop = false;
742 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
743 DeleteCurrentLoop))
744 return PreservedAnalyses::all();
745
746 if (DeleteCurrentLoop)
747 LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
748
750 if (AR.MSSA)
751 PA.preserve<MemorySSAAnalysis>();
752 return PA;
753}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
This header provides classes for managing a pipeline of passes over loops in LLVM IR.
static BasicBlock * getOnlyLiveSuccessor(BasicBlock *BB)
If BB is a switch or a conditional branch, but only one of its successors can be reached from this bl...
static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE, MemorySSAUpdater *MSSAU, bool &IsLoopDeleted)
Turn branches and switches with known constant conditions into unconditional branches.
static Loop * getInnermostLoopFor(SmallPtrSetImpl< BasicBlock * > &BBs, Loop &L, LoopInfo &LI)
Find innermost loop that contains at least one block from BBs and contains the header of loop L.
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE, MemorySSAUpdater *MSSAU, bool &IsLoopDeleted)
static cl::opt< bool > EnableTermFolding("enable-loop-simplifycfg-term-folding", cl::init(true))
static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, Loop *LastLoop=nullptr)
Removes BB from all loops from [FirstLoop, LastLoop) in parent chain.
#define I(x, y, z)
Definition: MD5.cpp:58
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:528
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:337
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:437
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:467
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:131
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
LLVM_ABI void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:494
Conditional or Unconditional Branch instruction.
This is the shared class of boolean and integer constants.
Definition: Constants.h:87
LLVM_ABI void deleteBB(BasicBlock *DelBB)
Delete DelBB.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:334
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
void markLoopAsDeleted(Loop &L, llvm::StringRef Name)
Loop passes should use this method to indicate they have deleted a loop from the nest.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Store the result of a depth first search within basic blocks contained by a single loop.
Definition: LoopIterator.h:97
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
Definition: LoopIterator.h:136
bool isComplete() const
Return true if postorder numbers are assigned to all loop blocks.
Definition: LoopIterator.h:126
POIterator beginPostorder() const
Iterate over the cached postorder blocks.
Definition: LoopIterator.h:129
POIterator endPostorder() const
Definition: LoopIterator.h:133
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopInfo.cpp:1276
RPOIterator endRPO() const
Definition: LoopIterator.h:140
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
bool isLoopHeader(const BlockT *BB) const
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition: LoopInfo.cpp:899
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:936
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
LLVM_ABI void removeEdge(BasicBlock *From, BasicBlock *To)
Update the MemoryPhi in To following an edge deletion between From and To.
LLVM_ABI void removeDuplicatePhiEdgesBetween(const BasicBlock *From, const BasicBlock *To)
Update the MemoryPhi in To to have a single incoming edge from From, following a CFG change that repl...
LLVM_ABI void removeBlocks(const SmallSetVector< BasicBlock *, 8 > &DeadBlocks)
Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
LLVM_ABI void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1905
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
The main scalar evolution driver.
LLVM_ABI void forgetTopmostLoop(const Loop *L)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
size_type size() const
Definition: SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Multiway switch.
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
LLVM_ABI void detachDeadBlocks(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< DominatorTree::UpdateType > *Updates, bool KeepOneInputPHIs=false)
Replace contents of every block in BBs with single unreachable instruction.
auto successors(const MachineBasicBlock *BB)
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition: LCSSA.cpp:449
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:84
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
LLVM_ABI PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition: iterator.h:363
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...