159using namespace SCEVPatternMatch;
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
172 "llvm.loop.vectorize.followup_vectorized";
174 "llvm.loop.vectorize.followup_epilogue";
177STATISTIC(LoopsVectorized,
"Number of loops vectorized");
178STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
179STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
180STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
184 cl::desc(
"Enable vectorization of epilogue loops."));
188 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
189 "1 is specified, forces the given VF for all applicable epilogue "
193 "epilogue-vectorization-minimum-VF",
cl::Hidden,
194 cl::desc(
"Only loops with vectorization factor equal to or larger than "
195 "the specified value are considered for epilogue vectorization."));
201 cl::desc(
"Loops with a constant trip count that is smaller than this "
202 "value are vectorized only if no scalar iteration overheads "
207 cl::desc(
"The maximum allowed number of runtime memory checks"));
223 "prefer-predicate-over-epilogue",
226 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
230 "Don't tail-predicate loops, create scalar epilogue"),
232 "predicate-else-scalar-epilogue",
233 "prefer tail-folding, create scalar epilogue if tail "
236 "predicate-dont-vectorize",
237 "prefers tail-folding, don't attempt vectorization if "
238 "tail-folding fails.")));
241 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
244 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
246 TailFoldingStyle::Data,
"data",
247 "Create lane mask for data only, using active.lane.mask intrinsic"),
248 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
249 "data-without-lane-mask",
250 "Create lane mask with compare/stepvector"),
251 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
252 "Create lane mask using active.lane.mask intrinsic, and use "
253 "it for both data and control flow"),
254 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
255 "data-and-control-without-rt-check",
256 "Similar to data-and-control, but remove the runtime check"),
257 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
258 "Use predicated EVL instructions for tail folding. If EVL "
259 "is unsupported, fallback to data-without-lane-mask.")));
263 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
264 "will be determined by the smallest type in loop."));
268 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
274 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
278 cl::desc(
"A flag that overrides the target's number of scalar registers."));
282 cl::desc(
"A flag that overrides the target's number of vector registers."));
286 cl::desc(
"A flag that overrides the target's max interleave factor for "
291 cl::desc(
"A flag that overrides the target's max interleave factor for "
292 "vectorized loops."));
296 cl::desc(
"A flag that overrides the target's expected cost for "
297 "an instruction to a single constant value. Mostly "
298 "useful for getting consistent testing."));
303 "Pretend that scalable vectors are supported, even if the target does "
304 "not support them. This flag should only be used for testing."));
309 "The cost of a loop that is considered 'small' by the interleaver."));
313 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
314 "heuristics minimizing code growth in cold regions and being more "
315 "aggressive in hot regions."));
321 "Enable runtime interleaving until load/store ports are saturated"));
326 cl::desc(
"Max number of stores to be predicated behind an if."));
330 cl::desc(
"Count the induction variable only once when interleaving"));
334 cl::desc(
"Enable if predication of stores during vectorization."));
338 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
339 "reduction in a nested loop."));
344 cl::desc(
"Prefer in-loop vector reductions, "
345 "overriding the targets preference."));
349 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
355 "Prefer predicating a reduction operation over an after loop select."));
359 cl::desc(
"Enable VPlan-native vectorization path with "
360 "support for outer loop vectorization."));
364#ifdef EXPENSIVE_CHECKS
370 cl::desc(
"Verfiy VPlans after VPlan transforms."));
379 "Build VPlan for every supported loop nest in the function and bail "
380 "out right after the build (stress test the VPlan H-CFG construction "
381 "in the VPlan-native vectorization path)."));
385 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
388 cl::desc(
"Run the Loop vectorization passes"));
391 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
393 "Override cost based safe divisor widening for div/rem instructions"));
396 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
398 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
403 "Enable vectorization of early exit loops with uncountable exits."));
416 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
427 if (isa<SCEVCouldNotCompute>(BTC))
431 if (isa<SCEVVScale>(ExitCount))
451static std::optional<ElementCount>
453 bool CanUseConstantMax =
true) {
463 if (!CanUseConstantMax)
475class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
624 "A high UF for the epilogue loop is likely not beneficial.");
675 EPI.MainLoopVF,
EPI.MainLoopUF) {}
715 EPI.EpilogueVF,
EPI.EpilogueUF) {
725 assert(AdditionalBypassBlock &&
726 "Trying to access AdditionalBypassBlock but it has not been set");
727 return AdditionalBypassBlock;
734 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
748 if (
I->getDebugLoc() != Empty)
749 return I->getDebugLoc();
751 for (
Use &
Op :
I->operands()) {
753 if (OpInst->getDebugLoc() != Empty)
754 return OpInst->getDebugLoc();
757 return I->getDebugLoc();
766 dbgs() <<
"LV: " << Prefix << DebugMsg;
788 if (
I &&
I->getDebugLoc())
789 DL =
I->getDebugLoc();
809 return B.CreateElementCount(Ty, VFxStep);
814 return B.CreateElementCount(Ty, VF);
825 <<
"loop not vectorized: " << OREMsg);
848 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
854 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
856 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
912 initializeVScaleForTuning();
993 "Profitable to scalarize relevant only for VF > 1.");
996 "cost-model should not be used for outer loops (in VPlan-native path)");
998 auto Scalars = InstsToScalarize.find(VF);
999 assert(Scalars != InstsToScalarize.end() &&
1000 "VF not yet analyzed for scalarization profitability");
1001 return Scalars->second.contains(
I);
1008 "cost-model should not be used for outer loops (in VPlan-native path)");
1012 if (isa<PseudoProbeInst>(
I))
1018 auto UniformsPerVF = Uniforms.find(VF);
1019 assert(UniformsPerVF != Uniforms.end() &&
1020 "VF not yet analyzed for uniformity");
1021 return UniformsPerVF->second.count(
I);
1028 "cost-model should not be used for outer loops (in VPlan-native path)");
1032 auto ScalarsPerVF = Scalars.find(VF);
1033 assert(ScalarsPerVF != Scalars.end() &&
1034 "Scalar values are not calculated for VF");
1035 return ScalarsPerVF->second.count(
I);
1041 return VF.
isVector() && MinBWs.contains(
I) &&
1063 WideningDecisions[{
I, VF}] = {W,
Cost};
1085 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1087 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1099 "cost-model should not be used for outer loops (in VPlan-native path)");
1101 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1102 auto Itr = WideningDecisions.
find(InstOnVF);
1103 if (Itr == WideningDecisions.
end())
1105 return Itr->second.first;
1112 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1114 "The cost is not calculated");
1115 return WideningDecisions[InstOnVF].second;
1128 std::optional<unsigned> MaskPos,
1131 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1137 auto I = CallWideningDecisions.
find({CI, VF});
1138 if (
I == CallWideningDecisions.
end())
1148 auto *Trunc = dyn_cast<TruncInst>(
I);
1161 Value *
Op = Trunc->getOperand(0);
1182 if (VF.
isScalar() || Uniforms.contains(VF))
1185 collectLoopUniforms(VF);
1187 collectLoopScalars(VF);
1210 bool LI = isa<LoadInst>(V);
1211 bool SI = isa<StoreInst>(V);
1226 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1227 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1238 return ScalarCost < SafeDivisorCost;
1262 std::pair<InstructionCost, InstructionCost>
1290 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1297 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1298 "from latch block\n");
1303 "interleaved group requires scalar epilogue\n");
1306 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1318 if (!ChosenTailFoldingStyle)
1320 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1321 : ChosenTailFoldingStyle->second;
1329 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1336 ChosenTailFoldingStyle = {
1348 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1362 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1363 "not try to generate VP Intrinsics "
1365 ?
"since interleave count specified is greater than 1.\n"
1366 :
"due to non-interleaving reasons.\n"));
1400 return InLoopReductions.contains(Phi);
1426 WideningDecisions.
clear();
1427 CallWideningDecisions.
clear();
1446 const unsigned IC)
const;
1456 Type *VectorTy)
const;
1466 unsigned NumPredStores = 0;
1470 std::optional<unsigned> VScaleForTuning;
1475 void initializeVScaleForTuning() {
1480 auto Max = Attr.getVScaleRangeMax();
1481 if (Max && Min == Max) {
1482 VScaleForTuning = Max;
1497 bool FoldTailByMasking);
1502 bool FoldTailByMasking)
const;
1507 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1508 unsigned SmallestType,
1509 unsigned WidestType,
1511 bool FoldTailByMasking);
1515 bool isScalableVectorizationAllowed();
1519 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1565 PredicatedBBsAfterVectorization;
1578 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1579 ChosenTailFoldingStyle;
1582 std::optional<bool> IsScalableVectorizationAllowed;
1588 std::optional<unsigned> MaxSafeElements;
1622 ScalarCostsTy &ScalarCosts,
1648 std::pair<InstWidening, InstructionCost>>;
1650 DecisionList WideningDecisions;
1652 using CallDecisionList =
1655 CallDecisionList CallWideningDecisions;
1664 (isa<CallInst>(
I) &&
1684 if (isa<Constant>(
Op) || !UniqueOperands.
insert(
Op).second ||
1685 !needsExtract(
Op, VF))
1757class GeneratedRTChecks {
1763 Value *SCEVCheckCond =
nullptr;
1770 Value *MemRuntimeCheckCond =
nullptr;
1779 bool CostTooHigh =
false;
1781 Loop *OuterLoop =
nullptr;
1792 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1793 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1822 nullptr,
"vector.scevcheck");
1826 if (isa<Constant>(SCEVCheckCond)) {
1830 SCEVCleaner.cleanup();
1835 if (RtPtrChecking.Need) {
1836 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1837 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1840 auto DiffChecks = RtPtrChecking.getDiffChecks();
1842 Value *RuntimeVF =
nullptr;
1847 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1853 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1856 assert(MemRuntimeCheckCond &&
1857 "no RT checks generated although RtPtrChecking "
1858 "claimed checks are required");
1861 if (!MemCheckBlock && !SCEVCheckBlock)
1871 if (SCEVCheckBlock) {
1878 if (MemCheckBlock) {
1887 if (MemCheckBlock) {
1891 if (SCEVCheckBlock) {
1897 OuterLoop =
L->getParentLoop();
1901 if (SCEVCheckBlock || MemCheckBlock)
1914 if (SCEVCheckBlock->getTerminator() == &
I)
1920 if (MemCheckBlock) {
1923 if (MemCheckBlock->getTerminator() == &
I)
1945 unsigned BestTripCount = 2;
1949 PSE, OuterLoop,
false))
1950 if (EstimatedTC->isFixed())
1951 BestTripCount = EstimatedTC->getFixedValue();
1956 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1959 if (BestTripCount > 1)
1961 <<
"We expect runtime memory checks to be hoisted "
1962 <<
"out of the outer loop. Cost reduced from "
1963 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1965 MemCheckCost = NewMemCheckCost;
1969 RTCheckCost += MemCheckCost;
1972 if (SCEVCheckBlock || MemCheckBlock)
1973 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1981 ~GeneratedRTChecks() {
1984 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1985 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1987 SCEVCleaner.markResultUsed();
1989 if (MemChecksUsed) {
1990 MemCheckCleaner.markResultUsed();
1992 auto &SE = *MemCheckExp.
getSE();
1999 I.eraseFromParent();
2002 MemCheckCleaner.cleanup();
2003 SCEVCleaner.cleanup();
2005 if (!SCEVChecksUsed)
2006 SCEVCheckBlock->eraseFromParent();
2008 MemCheckBlock->eraseFromParent();
2013 std::pair<Value *, BasicBlock *> getSCEVChecks() {
2016 return {
nullptr,
nullptr};
2018 return {SCEVCheckCond, SCEVCheckBlock};
2023 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() {
2025 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2026 return {
nullptr,
nullptr};
2027 return {MemRuntimeCheckCond, MemCheckBlock};
2031 bool hasChecks()
const {
2034 MemRuntimeCheckCond;
2077 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2083 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2103 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2113 for (
Loop *InnerL : L)
2136 ?
B.CreateSExtOrTrunc(Index, StepTy)
2137 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2138 if (CastedIndex != Index) {
2140 Index = CastedIndex;
2150 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2155 return B.CreateAdd(
X,
Y);
2161 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2162 "Types don't match!");
2167 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2168 if (XVTy && !isa<VectorType>(
Y->getType()))
2169 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2170 return B.CreateMul(
X,
Y);
2173 switch (InductionKind) {
2175 assert(!isa<VectorType>(Index->getType()) &&
2176 "Vector indices not supported for integer inductions yet");
2178 "Index type does not match StartValue type");
2179 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2180 return B.CreateSub(StartValue, Index);
2185 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2187 assert(!isa<VectorType>(Index->getType()) &&
2188 "Vector indices not supported for FP inductions yet");
2191 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2192 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2193 "Original bin op should be defined for FP induction");
2195 Value *MulExp =
B.CreateFMul(Step, Index);
2196 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2210 if (
F.hasFnAttribute(Attribute::VScaleRange))
2211 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2213 return std::nullopt;
2222 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2224 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2232 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2235 std::optional<unsigned> MaxVScale =
2239 MaxVF *= *MaxVScale;
2242 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2269 PreVectorPH = CheckVPIRBB;
2276 for (
VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2277 assert(isa<VPPhi>(&R) &&
"Phi expected to be VPPhi");
2278 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2279 "must have incoming values for all operands");
2280 R.addOperand(R.getOperand(NumPredecessors - 2));
2286 unsigned UF)
const {
2307 auto CreateStep = [&]() ->
Value * {
2322 Value *Step = CreateStep();
2333 TripCountSCEV, SE.
getSCEV(Step))) {
2346 Value *MaxUIntTripCount =
2347 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->
getMask());
2353 return CheckMinIters;
2363 auto IP = IRVPBB->
begin();
2365 R.moveBefore(*IRVPBB, IP);
2369 R.moveBefore(*IRVPBB, IRVPBB->
end());
2381 "loops not exiting via the latch without required epilogue?");
2388 DT,
LI,
nullptr,
Twine(Prefix) +
"scalar.ph");
2394 const SCEV2ValueTy &ExpandedSCEVs) {
2395 const SCEV *Step =
ID.getStep();
2396 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2397 return C->getValue();
2398 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2399 return U->getValue();
2400 Value *V = ExpandedSCEVs.lookup(Step);
2401 assert(V &&
"SCEV must be expanded at this point");
2411 auto *Cmp = L->getLatchCmpInst();
2413 InstsToIgnore.
insert(Cmp);
2414 for (
const auto &KV : IL) {
2421 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2423 [&](
const User *U) { return U == IV || U == Cmp; }))
2424 InstsToIgnore.
insert(IVInst);
2436struct CSEDenseMapInfo {
2438 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2439 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2451 assert(canHandle(
I) &&
"Unknown instruction!");
2457 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2458 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2460 return LHS->isIdenticalTo(
RHS);
2471 if (!CSEDenseMapInfo::canHandle(&In))
2477 In.replaceAllUsesWith(V);
2478 In.eraseFromParent();
2491 std::optional<unsigned> VScale) {
2495 EstimatedVF *= *VScale;
2496 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2514 for (
auto &ArgOp : CI->
args())
2525 return ScalarCallCost;
2538 assert(
ID &&
"Expected intrinsic call!");
2541 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2542 FMF = FPMO->getFastMathFlags();
2548 std::back_inserter(ParamTys),
2549 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2552 dyn_cast<IntrinsicInst>(CI),
2587 unsigned EstimatedVFxUF =
2594 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
2608void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2613 "This function should not be visited twice for the same VF");
2638 "Widening decision should be ready at this moment");
2639 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
2640 if (
Ptr == Store->getValueOperand())
2643 "Ptr is neither a value or pointer operand");
2649 auto IsLoopVaryingGEP = [&](
Value *
V) {
2660 if (!IsLoopVaryingGEP(
Ptr))
2665 auto *
I = cast<Instruction>(
Ptr);
2672 if (IsScalarUse(MemAccess,
Ptr) &&
2673 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
2676 PossibleNonScalarPtrs.
insert(
I);
2693 for (
auto &
I : *BB) {
2694 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
2695 EvaluatePtrUse(Load,
Load->getPointerOperand());
2696 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
2697 EvaluatePtrUse(Store,
Store->getPointerOperand());
2698 EvaluatePtrUse(Store,
Store->getValueOperand());
2701 for (
auto *
I : ScalarPtrs)
2702 if (!PossibleNonScalarPtrs.
count(
I)) {
2710 auto ForcedScalar = ForcedScalars.
find(VF);
2711 if (ForcedScalar != ForcedScalars.
end())
2712 for (
auto *
I : ForcedScalar->second) {
2713 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2722 while (
Idx != Worklist.
size()) {
2724 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2726 auto *Src = cast<Instruction>(Dst->getOperand(0));
2728 auto *J = cast<Instruction>(U);
2729 return !TheLoop->contains(J) || Worklist.count(J) ||
2730 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2731 IsScalarUse(J, Src));
2734 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2741 auto *Ind = Induction.first;
2742 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2751 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2753 return Induction.second.getKind() ==
2755 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
2761 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
2762 auto *I = cast<Instruction>(U);
2763 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2764 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2772 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2778 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
2779 auto *I = cast<Instruction>(U);
2780 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2781 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2783 if (!ScalarIndUpdate)
2788 Worklist.
insert(IndUpdate);
2789 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2790 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2804 switch(
I->getOpcode()) {
2807 case Instruction::Call:
2811 case Instruction::Load:
2812 case Instruction::Store: {
2825 case Instruction::UDiv:
2826 case Instruction::SDiv:
2827 case Instruction::SRem:
2828 case Instruction::URem: {
2844 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
2861 switch(
I->getOpcode()) {
2864 "instruction should have been considered by earlier checks");
2865 case Instruction::Call:
2869 "should have returned earlier for calls not needing a mask");
2871 case Instruction::Load:
2874 case Instruction::Store: {
2882 case Instruction::UDiv:
2883 case Instruction::SDiv:
2884 case Instruction::SRem:
2885 case Instruction::URem:
2891std::pair<InstructionCost, InstructionCost>
2894 assert(
I->getOpcode() == Instruction::UDiv ||
2895 I->getOpcode() == Instruction::SDiv ||
2896 I->getOpcode() == Instruction::SRem ||
2897 I->getOpcode() == Instruction::URem);
2906 ScalarizationCost = 0;
2912 ScalarizationCost +=
2916 ScalarizationCost +=
2922 ScalarizationCost += getScalarizationOverhead(
I, VF);
2942 Value *Op2 =
I->getOperand(1);
2951 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2953 return {ScalarizationCost, SafeDivisorCost};
2960 "Decision should not be set yet.");
2962 assert(Group &&
"Must have a group.");
2963 unsigned InterleaveFactor = Group->getFactor();
2967 auto &
DL =
I->getDataLayout();
2979 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2980 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
2985 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
2987 if (MemberNI != ScalarNI)
2990 if (MemberNI && ScalarNI &&
2991 ScalarTy->getPointerAddressSpace() !=
2992 MemberTy->getPointerAddressSpace())
3001 bool PredicatedAccessRequiresMasking =
3004 bool LoadAccessWithGapsRequiresEpilogMasking =
3005 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3007 bool StoreAccessWithGapsRequiresMasking =
3008 isa<StoreInst>(
I) && !Group->isFull();
3009 if (!PredicatedAccessRequiresMasking &&
3010 !LoadAccessWithGapsRequiresEpilogMasking &&
3011 !StoreAccessWithGapsRequiresMasking)
3018 "Masked interleave-groups for predicated accesses are not enabled.");
3020 if (Group->isReverse())
3024 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3025 StoreAccessWithGapsRequiresMasking;
3039 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3055 auto &
DL =
I->getDataLayout();
3062void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3069 "This function should not be visited twice for the same VF");
3073 Uniforms[VF].
clear();
3081 auto IsOutOfScope = [&](
Value *V) ->
bool {
3093 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3094 if (IsOutOfScope(
I)) {
3101 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3105 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3118 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3120 AddToWorklistIfAllowed(Cmp);
3129 if (PrevVF.isVector()) {
3130 auto Iter = Uniforms.
find(PrevVF);
3131 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3136 if (isa<LoadInst>(
I))
3147 "Widening decision should be ready at this moment");
3149 if (IsUniformMemOpUse(
I))
3152 return (WideningDecision ==
CM_Widen ||
3161 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3177 for (
auto &
I : *BB) {
3179 switch (
II->getIntrinsicID()) {
3180 case Intrinsic::sideeffect:
3181 case Intrinsic::experimental_noalias_scope_decl:
3182 case Intrinsic::assume:
3183 case Intrinsic::lifetime_start:
3184 case Intrinsic::lifetime_end:
3186 AddToWorklistIfAllowed(&
I);
3193 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3194 if (IsOutOfScope(EVI->getAggregateOperand())) {
3195 AddToWorklistIfAllowed(EVI);
3200 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3201 "Expected aggregate value to be call return value");
3209 if (IsUniformMemOpUse(&
I))
3210 AddToWorklistIfAllowed(&
I);
3212 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3219 for (
auto *V : HasUniformUse) {
3220 if (IsOutOfScope(V))
3222 auto *
I = cast<Instruction>(V);
3223 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3224 auto *UI = cast<Instruction>(U);
3225 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3227 if (UsersAreMemAccesses)
3228 AddToWorklistIfAllowed(
I);
3235 while (
Idx != Worklist.
size()) {
3238 for (
auto *OV :
I->operand_values()) {
3240 if (IsOutOfScope(OV))
3244 auto *
OP = dyn_cast<PHINode>(OV);
3249 auto *OI = cast<Instruction>(OV);
3251 auto *J = cast<Instruction>(U);
3252 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3254 AddToWorklistIfAllowed(OI);
3266 auto *Ind = Induction.first;
3267 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3271 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3272 auto *I = cast<Instruction>(U);
3273 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3274 IsVectorizedMemAccessUse(I, Ind);
3281 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3282 auto *I = cast<Instruction>(U);
3283 return I == Ind || Worklist.count(I) ||
3284 IsVectorizedMemAccessUse(I, IndUpdate);
3286 if (!UniformIndUpdate)
3290 AddToWorklistIfAllowed(Ind);
3291 AddToWorklistIfAllowed(IndUpdate);
3302 "runtime pointer checks needed. Enable vectorization of this "
3303 "loop with '#pragma clang loop vectorize(enable)' when "
3304 "compiling with -Os/-Oz",
3305 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3311 "runtime SCEV checks needed. Enable vectorization of this "
3312 "loop with '#pragma clang loop vectorize(enable)' when "
3313 "compiling with -Os/-Oz",
3314 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3321 "runtime stride == 1 checks needed. Enable vectorization of "
3322 "this loop without such check by compiling with -Os/-Oz",
3323 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3330bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3331 if (IsScalableVectorizationAllowed)
3332 return *IsScalableVectorizationAllowed;
3334 IsScalableVectorizationAllowed =
false;
3340 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3344 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3347 std::numeric_limits<ElementCount::ScalarTy>::max());
3358 "Scalable vectorization not supported for the reduction "
3359 "operations found in this loop.",
3371 "for all element types found in this loop.",
3378 "for safe distance analysis.",
3383 IsScalableVectorizationAllowed =
true;
3388LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3389 if (!isScalableVectorizationAllowed())
3393 std::numeric_limits<ElementCount::ScalarTy>::max());
3395 return MaxScalableVF;
3403 "Max legal vector width too small, scalable vectorization "
3407 return MaxScalableVF;
3411 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3413 unsigned SmallestType, WidestType;
3420 unsigned MaxSafeElementsPowerOf2 =
3424 MaxSafeElementsPowerOf2 =
3425 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3428 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3431 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3433 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3435 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3440 auto MaxSafeUserVF =
3441 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3458 <<
" is unsafe, clamping to max safe VF="
3459 << MaxSafeFixedVF <<
".\n");
3464 <<
"User-specified vectorization factor "
3465 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3466 <<
" is unsafe, clamping to maximum safe vectorization factor "
3467 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3469 return MaxSafeFixedVF;
3474 <<
" is ignored because scalable vectors are not "
3480 <<
"User-specified vectorization factor "
3481 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3482 <<
" is ignored because the target does not support scalable "
3483 "vectors. The compiler will pick a more suitable value.";
3487 <<
" is unsafe. Ignoring scalable UserVF.\n");
3492 <<
"User-specified vectorization factor "
3493 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3494 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3495 "more suitable value.";
3500 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3501 <<
" / " << WidestType <<
" bits.\n");
3506 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3507 MaxSafeFixedVF, FoldTailByMasking))
3511 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3512 MaxSafeScalableVF, FoldTailByMasking))
3513 if (MaxVF.isScalable()) {
3514 Result.ScalableVF = MaxVF;
3515 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3528 "Not inserting runtime ptr check for divergent target",
3529 "runtime pointer checks needed. Not enabled for divergent target",
3530 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3539 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3542 "loop trip count is one, irrelevant for vectorization",
3551 if (!isa<SCEVCouldNotCompute>(BTC) &&
3557 "Trip count computation wrapped",
3558 "backedge-taken count is -1, loop trip count wrapped to 0",
3563 switch (ScalarEpilogueStatus) {
3565 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3570 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3571 <<
"LV: Not allowing scalar epilogue, creating predicated "
3572 <<
"vector loop.\n");
3579 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3581 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3598 "No decisions should have been taken at this point");
3608 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3613 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3614 *MaxPowerOf2RuntimeVF,
3617 MaxPowerOf2RuntimeVF = std::nullopt;
3620 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3626 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3634 "Invalid loop count");
3636 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3643 if (MaxPowerOf2RuntimeVF > 0u) {
3645 "MaxFixedVF must be a power of 2");
3646 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3648 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3654 if (ExpectedTC && ExpectedTC->isFixed() &&
3655 ExpectedTC->getFixedValue() <=
3657 if (MaxPowerOf2RuntimeVF > 0u) {
3663 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3664 "remain for any chosen VF.\n");
3671 "The trip count is below the minial threshold value.",
3672 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3687 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3688 "try to generate VP Intrinsics with scalable vector "
3693 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3703 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3704 "scalar epilogue instead.\n");
3710 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3716 "unable to calculate the loop count due to complex control flow",
3722 "Cannot optimize for size and vectorize at the same time.",
3723 "cannot optimize for size and vectorize at the same time. "
3724 "Enable vectorization of this loop with '#pragma clang loop "
3725 "vectorize(enable)' when compiling with -Os/-Oz",
3750ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3751 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3765 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3773 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3774 "exceeding the constant trip count: "
3775 << ClampedUpperTripCount <<
"\n");
3777 FoldTailByMasking ? VF.
isScalable() :
false);
3782ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3783 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3785 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3793 "Scalable flags must match");
3801 ComputeScalableMaxVF);
3802 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3804 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3806 if (!MaxVectorElementCount) {
3808 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3809 <<
" vector registers.\n");
3813 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3814 MaxTripCount, FoldTailByMasking);
3817 if (MaxVF != MaxVectorElementCount)
3832 ComputeScalableMaxVF);
3833 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3839 <<
") with target's minimum: " << MinVF <<
'\n');
3844 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3846 if (MaxVectorElementCount != MaxVF) {
3858 const unsigned MaxTripCount,
3859 bool HasTail)
const {
3864 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
3865 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3867 if (
A.Width.isScalable())
3868 EstimatedWidthA *= *VScale;
3869 if (
B.Width.isScalable())
3870 EstimatedWidthB *= *VScale;
3877 return CostA < CostB ||
3878 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3884 A.Width.isScalable() && !
B.Width.isScalable();
3895 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3897 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3909 return VectorCost * (MaxTripCount / VF) +
3910 ScalarCost * (MaxTripCount % VF);
3911 return VectorCost *
divideCeil(MaxTripCount, VF);
3914 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3915 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3916 return CmpFn(RTCostA, RTCostB);
3921 bool HasTail)
const {
3923 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount,
3929 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3931 for (
const auto &Plan : VPlans) {
3941 precomputeCosts(*Plan, VF, CostCtx);
3943 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3944 for (
auto &R : *VPBB) {
3945 if (!R.cost(VF, CostCtx).isValid())
3951 if (InvalidCosts.
empty())
3959 for (
auto &Pair : InvalidCosts)
3964 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3965 unsigned NA = Numbering[
A.first];
3966 unsigned NB = Numbering[
B.first];
3981 Subset =
Tail.take_front(1);
3988 [](
const auto *R) {
return Instruction::PHI; })
3989 .Case<VPWidenSelectRecipe>(
3990 [](
const auto *R) {
return Instruction::Select; })
3991 .Case<VPWidenStoreRecipe>(
3992 [](
const auto *R) {
return Instruction::Store; })
3993 .Case<VPWidenLoadRecipe>(
3994 [](
const auto *R) {
return Instruction::Load; })
3995 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3996 [](
const auto *R) {
return Instruction::Call; })
3999 [](
const auto *R) {
return R->getOpcode(); })
4001 return R->getStoredValues().empty() ? Instruction::Load
4002 : Instruction::Store;
4010 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4011 std::string OutString;
4013 assert(!Subset.empty() &&
"Unexpected empty range");
4014 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4015 for (
const auto &Pair : Subset)
4016 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4018 if (Opcode == Instruction::Call) {
4020 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4021 Name =
Int->getIntrinsicName();
4023 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4025 WidenCall ? WidenCall->getCalledScalarFunction()
4026 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4027 ->getLiveInIRValue());
4030 OS <<
" call to " <<
Name;
4035 Tail =
Tail.drop_front(Subset.size());
4039 Subset =
Tail.take_front(Subset.size() + 1);
4040 }
while (!
Tail.empty());
4053 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4062 switch (R.getVPDefID()) {
4063 case VPDef::VPDerivedIVSC:
4064 case VPDef::VPScalarIVStepsSC:
4065 case VPDef::VPReplicateSC:
4066 case VPDef::VPInstructionSC:
4067 case VPDef::VPCanonicalIVPHISC:
4068 case VPDef::VPVectorPointerSC:
4069 case VPDef::VPVectorEndPointerSC:
4070 case VPDef::VPExpandSCEVSC:
4071 case VPDef::VPEVLBasedIVPHISC:
4072 case VPDef::VPPredInstPHISC:
4073 case VPDef::VPBranchOnMaskSC:
4075 case VPDef::VPReductionSC:
4076 case VPDef::VPActiveLaneMaskPHISC:
4077 case VPDef::VPWidenCallSC:
4078 case VPDef::VPWidenCanonicalIVSC:
4079 case VPDef::VPWidenCastSC:
4080 case VPDef::VPWidenGEPSC:
4081 case VPDef::VPWidenIntrinsicSC:
4082 case VPDef::VPWidenSC:
4083 case VPDef::VPWidenSelectSC:
4084 case VPDef::VPBlendSC:
4085 case VPDef::VPFirstOrderRecurrencePHISC:
4086 case VPDef::VPHistogramSC:
4087 case VPDef::VPWidenPHISC:
4088 case VPDef::VPWidenIntOrFpInductionSC:
4089 case VPDef::VPWidenPointerInductionSC:
4090 case VPDef::VPReductionPHISC:
4091 case VPDef::VPInterleaveEVLSC:
4092 case VPDef::VPInterleaveSC:
4093 case VPDef::VPWidenLoadEVLSC:
4094 case VPDef::VPWidenLoadSC:
4095 case VPDef::VPWidenStoreEVLSC:
4096 case VPDef::VPWidenStoreSC:
4102 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4119 if (R.getNumDefinedValues() == 0 &&
4120 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveBase>(&R))
4128 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4130 if (!Visited.
insert({ScalarTy}).second)
4144 [](
auto *VPRB) { return VPRB->isReplicator(); });
4150 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4151 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4154 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4155 "Expected Scalar VF to be a candidate");
4162 if (ForceVectorization &&
4163 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4170 for (
auto &
P : VPlans) {
4172 P->vectorFactors().end());
4179 for (
unsigned I = 0;
I < VFs.size();
I++) {
4198 assert(VectorRegion &&
"Expected to have a vector region!");
4199 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4202 auto *VPI = dyn_cast<VPInstruction>(&R);
4205 switch (VPI->getOpcode()) {
4208 case Instruction::Select: {
4209 VPValue *VPV = VPI->getVPSingleValue();
4211 if (
auto *WR = dyn_cast<VPWidenRecipe>(*VPV->
user_begin())) {
4212 switch (WR->getOpcode()) {
4213 case Instruction::UDiv:
4214 case Instruction::SDiv:
4215 case Instruction::URem:
4216 case Instruction::SRem:
4223 C += VPI->cost(VF, CostCtx);
4227 unsigned Multiplier =
4228 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4230 C += VPI->cost(VF * Multiplier, CostCtx);
4234 C += VPI->cost(VF, CostCtx);
4246 <<
" costs: " << (Candidate.Cost / Width));
4255 <<
"LV: Not considering vector loop of width " << VF
4256 <<
" because it will not generate any vector instructions.\n");
4263 <<
"LV: Not considering vector loop of width " << VF
4264 <<
" because it would cause replicated blocks to be generated,"
4265 <<
" which isn't allowed when optimizing for size.\n");
4269 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4270 ChosenFactor = Candidate;
4276 "There are conditional stores.",
4277 "store that is conditionally executed prevents vectorization",
4278 "ConditionalStore", ORE, OrigLoop);
4279 ChosenFactor = ScalarCost;
4283 !isMoreProfitable(ChosenFactor, ScalarCost,
4285 <<
"LV: Vectorization seems to be not beneficial, "
4286 <<
"but was forced by a user.\n");
4287 return ChosenFactor;
4291bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4296 if (!Legal->isReductionVariable(&Phi))
4297 return Legal->isFixedOrderRecurrence(&Phi);
4298 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4299 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4310 if (!OrigLoop->
contains(cast<Instruction>(U)))
4314 if (!OrigLoop->
contains(cast<Instruction>(U)))
4348 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4360 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4365 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4366 "epilogue is allowed.\n");
4372 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4373 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4374 "is not a supported candidate.\n");
4379 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4382 return {ForcedEC, 0, 0};
4384 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4391 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4396 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4409 const SCEV *RemainingIterations =
nullptr;
4410 unsigned MaxTripCount = 0;
4413 assert(!isa<SCEVCouldNotCompute>(TC) &&
"Trip count SCEV must be computable");
4414 RemainingIterations =
4418 if (RemainingIterations->
isZero())
4428 << MaxTripCount <<
"\n");
4431 for (
auto &NextVF : ProfitableVFs) {
4438 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4440 (NextVF.Width.isScalable() &&
4442 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4448 if (RemainingIterations && !NextVF.Width.isScalable()) {
4451 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4452 RemainingIterations))
4456 if (Result.Width.isScalar() ||
4463 << Result.Width <<
"\n");
4467std::pair<unsigned, unsigned>
4469 unsigned MinWidth = -1U;
4470 unsigned MaxWidth = 8;
4480 MinWidth = std::min(
4484 MaxWidth = std::max(MaxWidth,
4489 MinWidth = std::min<unsigned>(
4490 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4491 MaxWidth = std::max<unsigned>(
4492 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4495 return {MinWidth, MaxWidth};
4503 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4511 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4516 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4529 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4530 T = ST->getValueOperand()->getType();
4533 "Expected the load/store/recurrence type to be sized");
4561 IsaPred<VPEVLBasedIVPHIRecipe>)) {
4562 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4563 "Unroll factor forced to be 1.\n");
4577 const bool HasReductions =
4579 IsaPred<VPReductionPHIRecipe>);
4583 if (LoopCost == 0) {
4587 LoopCost = cost(Plan, VF);
4588 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4599 for (
auto &Pair : R.MaxLocalUsers) {
4600 Pair.second = std::max(Pair.second, 1U);
4614 unsigned IC = UINT_MAX;
4616 for (
const auto &Pair : R.MaxLocalUsers) {
4621 <<
" register class\n");
4629 unsigned MaxLocalUsers = Pair.second;
4630 unsigned LoopInvariantRegs = 0;
4631 if (R.LoopInvariantRegs.contains(Pair.first))
4632 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4634 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4638 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4639 std::max(1U, (MaxLocalUsers - 1)));
4642 IC = std::min(IC, TmpIC);
4662 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4664 unsigned AvailableTC =
4673 unsigned InterleaveCountLB =
bit_floor(std::max(
4674 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4688 unsigned InterleaveCountUB =
bit_floor(std::max(
4689 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4690 MaxInterleaveCount = InterleaveCountLB;
4692 if (InterleaveCountUB != InterleaveCountLB) {
4693 unsigned TailTripCountUB =
4694 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4695 unsigned TailTripCountLB =
4696 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4699 if (TailTripCountUB == TailTripCountLB)
4700 MaxInterleaveCount = InterleaveCountUB;
4708 MaxInterleaveCount = InterleaveCountLB;
4712 assert(MaxInterleaveCount > 0 &&
4713 "Maximum interleave count must be greater than 0");
4717 if (IC > MaxInterleaveCount)
4718 IC = MaxInterleaveCount;
4721 IC = std::max(1u, IC);
4723 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4727 if (VF.
isVector() && HasReductions) {
4728 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4736 bool ScalarInterleavingRequiresPredication =
4738 return Legal->blockNeedsPredication(BB);
4740 bool ScalarInterleavingRequiresRuntimePointerCheck =
4746 <<
"LV: IC is " << IC <<
'\n'
4747 <<
"LV: VF is " << VF <<
'\n');
4748 const bool AggressivelyInterleaveReductions =
4750 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4751 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4755 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
4760 unsigned NumStores = 0;
4761 unsigned NumLoads = 0;
4762 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4765 if (isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(&R)) {
4769 if (isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe>(&R)) {
4774 if (
auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4775 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4776 NumStores += StoreOps;
4778 NumLoads += InterleaveR->getNumDefinedValues();
4781 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4782 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4783 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4786 if (isa<VPHistogramRecipe>(&R)) {
4793 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4794 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4800 bool HasSelectCmpReductions =
4804 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4805 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4806 RedR->getRecurrenceKind()) ||
4807 RecurrenceDescriptor::isFindIVRecurrenceKind(
4808 RedR->getRecurrenceKind()));
4810 if (HasSelectCmpReductions) {
4811 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4821 bool HasOrderedReductions =
4824 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4826 return RedR && RedR->isOrdered();
4828 if (HasOrderedReductions) {
4830 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4835 SmallIC = std::min(SmallIC,
F);
4836 StoresIC = std::min(StoresIC,
F);
4837 LoadsIC = std::min(LoadsIC,
F);
4841 std::max(StoresIC, LoadsIC) > SmallIC) {
4843 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4844 return std::max(StoresIC, LoadsIC);
4849 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4853 return std::max(IC / 2, SmallIC);
4856 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4862 if (AggressivelyInterleaveReductions) {
4871bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4882 "Expecting a scalar emulated instruction");
4883 return isa<LoadInst>(
I) ||
4884 (isa<StoreInst>(
I) &&
4895 if (InstsToScalarize.
contains(VF) ||
4896 PredicatedBBsAfterVectorization.
contains(VF))
4919 !useEmulatedMaskMemRefHack(&
I, VF) &&
4920 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4921 for (
const auto &[
I, IC] : ScalarCosts)
4922 ScalarCostsVF.
insert({
I, IC});
4925 for (
const auto &[
I,
Cost] : ScalarCosts) {
4926 auto *CI = dyn_cast<CallInst>(
I);
4927 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4930 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4934 PredicatedBBsAfterVectorization[VF].
insert(BB);
4936 if (Pred->getSingleSuccessor() == BB)
4937 PredicatedBBsAfterVectorization[VF].
insert(Pred);
4946 "Instruction marked uniform-after-vectorization will be predicated");
4964 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4983 for (
Use &U :
I->operands())
4984 if (
auto *J = dyn_cast<Instruction>(U.get()))
4996 while (!Worklist.
empty()) {
5000 if (ScalarCosts.contains(
I))
5036 for (
Use &U :
I->operands())
5037 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5039 "Instruction has non-scalar type");
5040 if (CanBeScalarized(J))
5042 else if (needsExtract(J, VF)) {
5046 cast<VectorType>(VectorTy),
5058 Discount += VectorCost - ScalarCost;
5059 ScalarCosts[
I] = ScalarCost;
5075 ValuesToIgnoreForVF);
5082 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5095 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5096 << VF <<
" For instruction: " <<
I <<
'\n');
5124 const Loop *TheLoop) {
5126 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5132 auto *SE = PSE.
getSE();
5133 unsigned NumOperands = Gep->getNumOperands();
5134 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5137 !
Legal->isInductionVariable(Opd))
5146LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5149 "Scalarization cost of instruction implies vectorization.");
5179 Cost += getScalarizationOverhead(
I, VF);
5195 if (useEmulatedMaskMemRefHack(
I, VF))
5205LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5208 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5213 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5214 "Stride should be 1 or -1 for consecutive memory access");
5226 bool Reverse = ConsecutiveStride < 0;
5234LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5240 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5243 if (isa<LoadInst>(
I)) {
5260 if (!IsLoopInvariantStoreValue)
5267LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5270 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5285LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5288 assert(Group &&
"Fail to get an interleaved access group.");
5292 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5295 unsigned InterleaveFactor = Group->getFactor();
5300 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5301 if (Group->getMember(IF))
5305 bool UseMaskForGaps =
5307 (isa<StoreInst>(
I) && !Group->isFull());
5309 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5313 if (Group->isReverse()) {
5316 "Reverse masked interleaved access not supported.");
5317 Cost += Group->getNumMembers() *
5324std::optional<InstructionCost>
5330 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5331 return std::nullopt;
5332 auto *VectorTy = cast<VectorType>(Ty);
5349 return std::nullopt;
5362 return std::nullopt;
5367 while (!isa<PHINode>(ReductionPhi))
5368 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5400 : dyn_cast<Instruction>(RetI->
getOperand(1));
5405 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5418 bool IsUnsigned = isa<ZExtInst>(Op0);
5436 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5437 return I == RetI ? RedCost : 0;
5441 bool IsUnsigned = isa<ZExtInst>(RedOp);
5450 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5451 return I == RetI ? RedCost : 0;
5452 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5457 bool IsUnsigned = isa<ZExtInst>(Op0);
5481 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5482 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5490 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5491 return I == RetI ? RedCost : 0;
5501 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5502 return I == RetI ? RedCost : 0;
5506 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5510LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5529LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5542 if (!
RetTy->isVoidTy() &&
5568 for (
auto *V : filterExtractingOperands(Ops, VF))
5592 auto IsLegalToScalarize = [&]() {
5606 if (isa<LoadInst>(
I))
5611 auto &SI = cast<StoreInst>(
I);
5624 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5630 if (GatherScatterCost < ScalarizationCost)
5642 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5643 "Expected consecutive stride.");
5652 unsigned NumAccesses = 1;
5655 assert(Group &&
"Fail to get an interleaved access group.");
5661 NumAccesses = Group->getNumMembers();
5663 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5668 ? getGatherScatterCost(&
I, VF) * NumAccesses
5672 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5678 if (InterleaveCost <= GatherScatterCost &&
5679 InterleaveCost < ScalarizationCost) {
5681 Cost = InterleaveCost;
5682 }
else if (GatherScatterCost < ScalarizationCost) {
5684 Cost = GatherScatterCost;
5687 Cost = ScalarizationCost;
5721 while (!Worklist.
empty()) {
5723 for (
auto &
Op :
I->operands())
5724 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
5725 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
5726 AddrDefs.
insert(InstOp).second)
5730 for (
auto *
I : AddrDefs) {
5731 if (isa<LoadInst>(
I)) {
5745 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5767 "Trying to set a vectorization decision for a scalar VF");
5769 auto ForcedScalar = ForcedScalars.
find(VF);
5784 for (
auto &ArgOp : CI->
args())
5803 "Unexpected valid cost for scalarizing scalable vectors");
5810 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
5811 ForcedScalar->second.contains(CI)) ||
5822 for (
Type *ScalarTy : ScalarTys)
5831 std::nullopt, *RedCost);
5842 if (
Info.Shape.VF != VF)
5846 if (MaskRequired && !
Info.isMasked())
5850 bool ParamsOk =
true;
5852 switch (Param.ParamKind) {
5906 if (VectorCost <=
Cost) {
5927 auto *OpI = dyn_cast<Instruction>(
Op);
5944 return InstsToScalarize[VF][
I];
5947 auto ForcedScalar = ForcedScalars.
find(VF);
5948 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
5949 auto InstSet = ForcedScalar->second;
5950 if (InstSet.count(
I))
5962 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5967 auto Scalarized = InstsToScalarize.
find(VF);
5968 assert(Scalarized != InstsToScalarize.
end() &&
5969 "VF not yet analyzed for scalarization profitability");
5970 return !Scalarized->second.count(
I) &&
5972 auto *UI = cast<Instruction>(U);
5973 return !Scalarized->second.count(UI);
5982 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5983 I->getOpcode() == Instruction::PHI ||
5984 (
I->getOpcode() == Instruction::BitCast &&
5985 I->getType()->isPointerTy()) ||
5986 HasSingleCopyAfterVectorization(
I, VF));
5996 switch (
I->getOpcode()) {
5997 case Instruction::GetElementPtr:
6003 case Instruction::Br: {
6010 bool ScalarPredicatedBB =
false;
6016 ScalarPredicatedBB =
true;
6018 if (ScalarPredicatedBB) {
6042 case Instruction::Switch: {
6045 auto *Switch = cast<SwitchInst>(
I);
6046 return Switch->getNumCases() *
6049 toVectorTy(Switch->getCondition()->getType(), VF),
6053 case Instruction::PHI: {
6054 auto *Phi = cast<PHINode>(
I);
6061 cast<VectorType>(VectorTy),
6062 cast<VectorType>(VectorTy), Mask,
CostKind,
6070 Type *ResultTy = Phi->getType();
6074 auto *HeaderUser = cast_if_present<PHINode>(
6075 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6076 auto *Phi = dyn_cast<PHINode>(U);
6077 if (Phi && Phi->getParent() == TheLoop->getHeader())
6083 auto Iter = ReductionVars.
find(HeaderUser);
6084 if (Iter != ReductionVars.end() &&
6086 Iter->second.getRecurrenceKind()))
6089 return (Phi->getNumIncomingValues() - 1) *
6091 Instruction::Select,
toVectorTy(ResultTy, VF),
6101 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6102 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6108 case Instruction::UDiv:
6109 case Instruction::SDiv:
6110 case Instruction::URem:
6111 case Instruction::SRem:
6115 ScalarCost : SafeDivisorCost;
6119 case Instruction::Add:
6120 case Instruction::Sub: {
6128 if (!
RHS ||
RHS->getZExtValue() != 1)
6134 Type *ScalarTy =
I->getType();
6138 {PtrTy, ScalarTy, MaskTy});
6146 case Instruction::FAdd:
6147 case Instruction::FSub:
6148 case Instruction::Mul:
6149 case Instruction::FMul:
6150 case Instruction::FDiv:
6151 case Instruction::FRem:
6152 case Instruction::Shl:
6153 case Instruction::LShr:
6154 case Instruction::AShr:
6155 case Instruction::And:
6156 case Instruction::Or:
6157 case Instruction::Xor: {
6161 if (
I->getOpcode() == Instruction::Mul &&
6174 Value *Op2 =
I->getOperand(1);
6178 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6188 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6191 case Instruction::FNeg: {
6194 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6195 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6196 I->getOperand(0),
I);
6198 case Instruction::Select: {
6200 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6203 const Value *Op0, *Op1;
6216 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6219 Type *CondTy = SI->getCondition()->getType();
6224 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6225 Pred = Cmp->getPredicate();
6227 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6228 {TTI::OK_AnyValue, TTI::OP_None},
I);
6230 case Instruction::ICmp:
6231 case Instruction::FCmp: {
6232 Type *ValTy =
I->getOperand(0)->getType();
6236 dyn_cast<Instruction>(
I->getOperand(0));
6238 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6239 "if both the operand and the compare are marked for "
6240 "truncation, they must have the same bitwidth");
6247 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6248 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6250 case Instruction::Store:
6251 case Instruction::Load: {
6256 "CM decision should be taken at this point");
6263 return getMemoryInstructionCost(
I, VF);
6265 case Instruction::BitCast:
6266 if (
I->getType()->isPointerTy())
6269 case Instruction::ZExt:
6270 case Instruction::SExt:
6271 case Instruction::FPToUI:
6272 case Instruction::FPToSI:
6273 case Instruction::FPExt:
6274 case Instruction::PtrToInt:
6275 case Instruction::IntToPtr:
6276 case Instruction::SIToFP:
6277 case Instruction::UIToFP:
6278 case Instruction::Trunc:
6279 case Instruction::FPTrunc: {
6282 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6283 "Expected a load or a store!");
6309 unsigned Opcode =
I->getOpcode();
6312 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6314 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6315 CCH = ComputeCCH(Store);
6318 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6319 Opcode == Instruction::FPExt) {
6320 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6321 CCH = ComputeCCH(Load);
6328 auto *Trunc = cast<TruncInst>(
I);
6330 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6337 Type *SrcScalarTy =
I->getOperand(0)->getType();
6338 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6349 (
I->getOpcode() == Instruction::ZExt ||
6350 I->getOpcode() == Instruction::SExt))
6356 case Instruction::Call:
6358 case Instruction::ExtractValue:
6360 case Instruction::Alloca:
6383 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6384 return RequiresScalarEpilogue &&
6396 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6399 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6400 SI->getValueOperand());
6409 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6410 return VecValuesToIgnore.contains(U) ||
6411 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6420 if (Group->getInsertPos() == &
I)
6423 DeadInterleavePointerOps.
push_back(PointerOp);
6428 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6429 if (Br->isConditional())
6436 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6437 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6439 Instruction *UI = cast<Instruction>(U);
6440 return !VecValuesToIgnore.contains(U) &&
6441 (!isAccessInterleaved(UI) ||
6442 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6449 for (
const auto &[
_, Ops] : DeadInvariantStoreOps)
6462 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
6465 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6466 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
6469 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
6477 if ((ThenEmpty && ElseEmpty) ||
6479 ElseBB->
phis().empty()) ||
6481 ThenBB->
phis().empty())) {
6490 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
6493 return !VecValuesToIgnore.contains(U) &&
6494 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6502 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6527 if (!InLoopReductions.
empty())
6550 bool InLoop = !ReductionOperations.
empty();
6553 InLoopReductions.
insert(Phi);
6556 for (
auto *
I : ReductionOperations) {
6557 InLoopReductionImmediateChains[
I] = LastChain;
6561 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6562 <<
" reduction for phi: " << *Phi <<
"\n");
6575 unsigned WidestType;
6584 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6605 <<
"overriding computed VF.\n");
6610 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6611 <<
"not supported by the target.\n");
6613 "Scalable vectorization requested but not supported by the target",
6614 "the scalable user-specified vectorization width for outer-loop "
6615 "vectorization cannot be used because the target does not support "
6616 "scalable vectors.",
6617 "ScalableVFUnfeasible", ORE, OrigLoop);
6622 "VF needs to be a power of two");
6624 <<
"VF " << VF <<
" to build VPlans.\n");
6634 return {VF, 0 , 0 };
6638 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6639 "VPlan-native path.\n");
6657 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6658 "which requires masked-interleaved support.\n");
6674 "UserVF ignored because it may be larger than the maximal safe VF",
6675 "InvalidUserVF", ORE, OrigLoop);
6678 "VF needs to be a power of two");
6684 buildVPlansWithVPRecipes(UserVF, UserVF);
6689 "InvalidCost", ORE, OrigLoop);
6703 for (
const auto &VF : VFCandidates) {
6753 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6754 for (
Value *
Op : IVInsts[
I]->operands()) {
6755 auto *OpI = dyn_cast<Instruction>(
Op);
6756 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
6762 for (
User *U :
IV->users()) {
6763 auto *CI = cast<Instruction>(U);
6784 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6785 <<
": induction instruction " << *IVInst <<
"\n";
6787 Cost += InductionCost;
6801 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
6804 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
6805 ExitInstrs.
insert(CondI);
6809 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6816 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6817 <<
": exit condition instruction " << *CondI <<
"\n";
6821 auto *OpI = dyn_cast<Instruction>(
Op);
6823 any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
6824 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6825 !ExitInstrs.contains(cast<Instruction>(U));
6843 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6850 for (
Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6856 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6857 <<
": forced scalar " << *ForcedScalar <<
"\n";
6861 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6866 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6867 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6885 <<
" (Estimated cost per lane: ");
6887 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6907 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
6908 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6909 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6910 return &WidenMem->getIngredient();
6916 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
6918 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
6919 auto *IG =
IR->getInterleaveGroup();
6920 unsigned NumMembers = IG->getNumMembers();
6921 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6929 if (
auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
6931 auto *VPI = dyn_cast<VPInstruction>(U);
6932 return VPI && VPI->getOpcode() ==
6933 VPInstruction::FirstOrderRecurrenceSplice;
6939 if (isa<VPPartialReductionRecipe>(&R))
6945 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
6946 if (RepR->isSingleScalar() &&
6948 RepR->getUnderlyingInstr(), VF))
6951 if (
Instruction *UI = GetInstructionForCost(&R)) {
6954 using namespace VPlanPatternMatch;
6956 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6957 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
6958 cast<CmpInst>(UI)->getPredicate())
6968 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6970 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6973 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6974 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6976 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6986 VPlan &FirstPlan = *VPlans[0];
6992 ?
"Reciprocal Throughput\n"
6994 ?
"Instruction Latency\n"
6997 ?
"Code Size and Latency\n"
7002 "More than a single plan/VF w/o any plan having scalar VF");
7006 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7011 if (ForceVectorization) {
7018 for (
auto &
P : VPlans) {
7020 P->vectorFactors().end());
7027 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7034 <<
"LV: Not considering vector loop of width " << VF
7035 <<
" because it will not generate any vector instructions.\n");
7041 <<
"LV: Not considering vector loop of width " << VF
7042 <<
" because it would cause replicated blocks to be generated,"
7043 <<
" which isn't allowed when optimizing for size.\n");
7052 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7053 << VF <<
" because it uses too many registers\n");
7057 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7058 BestFactor = CurrentFactor;
7061 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7062 ProfitableVFs.push_back(CurrentFactor);
7079 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7086 BestFactor.
Width) ||
7089 " VPlan cost model and legacy cost model disagreed");
7091 "when vectorizing, the scalar cost must be computed.");
7102 bool IsUnrollMetadata =
false;
7103 MDNode *LoopID = L->getLoopID();
7107 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7109 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7111 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7117 if (!IsUnrollMetadata) {
7128 L->setLoopID(NewLoopID);
7133 using namespace VPlanPatternMatch;
7135 "RdxResult must be ComputeFindIVResult");
7152 auto *EpiRedResult = dyn_cast<VPInstruction>(
Incoming);
7153 if (!EpiRedResult ||
7159 auto *EpiRedHeaderPhi =
7160 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7161 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7162 Value *MainResumeValue;
7163 if (
auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7166 "unexpected start recipe");
7167 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7169 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7171 [[maybe_unused]]
Value *StartV =
7172 EpiRedResult->getOperand(1)->getLiveInIRValue();
7173 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7175 "AnyOf expected to start with ICMP_NE");
7176 assert(Cmp->getOperand(1) == StartV &&
7177 "AnyOf expected to start by comparing main resume value to original "
7179 MainResumeValue = Cmp->getOperand(0);
7182 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7184 Value *Cmp, *OrigResumeV, *CmpOp;
7185 [[maybe_unused]]
bool IsExpectedPattern =
7186 match(MainResumeValue,
7192 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7193 MainResumeValue = OrigResumeV;
7195 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7208 "Trying to execute plan with unsupported VF");
7210 "Trying to execute plan with unsupported UF");
7212 ++LoopsEarlyExitVectorized;
7219 bool HasBranchWeights =
7221 if (HasBranchWeights) {
7224 BestVPlan, BestVF, VScale);
7229 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7263 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7264 "count during epilogue vectorization");
7271#ifdef EXPENSIVE_CHECKS
7272 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7283 "final VPlan is invalid");
7290 if (!Exit->hasPredecessors())
7294 OrigLoop, cast<PHINode>(&cast<VPIRPhi>(PhiR).getInstruction()));
7319 std::optional<MDNode *> VectorizedLoopID =
7324 if (VectorizedLoopID) {
7325 L->setLoopID(*VectorizedLoopID);
7336 bool IsEVLVectorized =
7339 if (
const auto *VI = dyn_cast<VPInstruction>(&Recipe))
7343 if (IsEVLVectorized) {
7345 MDNode *LoopID = L->getLoopID();
7351 {IsEVLVectorizedMD});
7352 L->setLoopID(NewLoopID);
7367 return ExpandedSCEVs;
7397 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7407 dbgs() <<
"intermediate fn:\n"
7415 assert(Bypass &&
"Expected valid bypass basic block.");
7418 Value *CheckMinIters =
7424 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7429 nullptr,
"vector.ph");
7451 return TCCheckBlock;
7468 nullptr,
"vec.epilog.iter.check",
true);
7472 VecEpilogueIterationCountCheck);
7473 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7478 "expected this to be saved from the previous pass.");
7483 VecEpilogueIterationCountCheck, ScalarPH);
7490 VecEpilogueIterationCountCheck, ScalarPH);
7493 VecEpilogueIterationCountCheck, ScalarPH);
7503 for (
PHINode *Phi : PhisInBlock) {
7505 Phi->replaceIncomingBlockWith(
7507 VecEpilogueIterationCountCheck);
7514 return EPI.EpilogueIterationCountCheck == IncB;
7519 Phi->removeIncomingValue(SCEVCheckBlock);
7521 Phi->removeIncomingValue(MemCheckBlock);
7532 "Expected trip count to have been saved in the first pass.");
7543 Value *CheckMinIters =
7547 "min.epilog.iters.check");
7551 auto VScale =
Cost->getVScaleForTuning();
7552 unsigned MainLoopStep =
7554 unsigned EpilogueLoopStep =
7562 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7563 const uint32_t Weights[] = {EstimatedSkipCount,
7564 MainLoopStep - EstimatedSkipCount};
7581 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7596 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
7597 "Must be called with either a load or store");
7603 "CM decision should be taken at this point.");
7629 auto *
GEP = dyn_cast<GetElementPtrInst>(
7630 Ptr->getUnderlyingValue()->stripPointerCasts());
7642 -1, Flags,
I->getDebugLoc());
7645 GEP ?
GEP->getNoWrapFlags()
7649 Builder.
insert(VectorPtr);
7652 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
7671 "step must be loop invariant");
7675 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
7678 TruncI->getDebugLoc());
7680 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
7682 IndDesc, Phi->getDebugLoc());
7692 *PSE.
getSE(), *OrigLoop);
7701 return CM.isScalarAfterVectorization(Phi, VF);
7704 Phi->getDebugLoc());
7718 auto IsOptimizableIVTruncate =
7726 IsOptimizableIVTruncate(
I),
Range)) {
7728 auto *
Phi = cast<PHINode>(
I->getOperand(0));
7750 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7751 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7752 ID == Intrinsic::pseudoprobe ||
7753 ID == Intrinsic::experimental_noalias_scope_decl))
7759 bool ShouldUseVectorIntrinsic =
7766 if (ShouldUseVectorIntrinsic)
7771 std::optional<unsigned> MaskPos;
7793 Variant = Decision.Variant;
7794 MaskPos = Decision.MaskPos;
7801 if (ShouldUseVectorCall) {
7802 if (MaskPos.has_value()) {
7817 Ops.insert(Ops.
begin() + *MaskPos, Mask);
7828 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
7829 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7843 switch (
I->getOpcode()) {
7846 case Instruction::SDiv:
7847 case Instruction::UDiv:
7848 case Instruction::SRem:
7849 case Instruction::URem: {
7857 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
7863 case Instruction::Add:
7864 case Instruction::And:
7865 case Instruction::AShr:
7866 case Instruction::FAdd:
7867 case Instruction::FCmp:
7868 case Instruction::FDiv:
7869 case Instruction::FMul:
7870 case Instruction::FNeg:
7871 case Instruction::FRem:
7872 case Instruction::FSub:
7873 case Instruction::ICmp:
7874 case Instruction::LShr:
7875 case Instruction::Mul:
7876 case Instruction::Or:
7877 case Instruction::Select:
7878 case Instruction::Shl:
7879 case Instruction::Sub:
7880 case Instruction::Xor:
7881 case Instruction::Freeze: {
7888 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
7889 if (!
Op->isLiveIn())
7891 Value *
V =
Op->getUnderlyingValue();
7892 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
7894 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
7900 if (
I->getOpcode() == Instruction::Mul)
7901 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7903 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7907 case Instruction::ExtractValue: {
7910 auto *EVI = cast<ExtractValueInst>(
I);
7911 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7912 unsigned Idx = EVI->getIndices()[0];
7920VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7923 unsigned Opcode =
HI->Update->getOpcode();
7924 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7925 "Histogram update operation must be an Add or Sub");
7954 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
7956 case Intrinsic::assume:
7957 case Intrinsic::lifetime_start:
7958 case Intrinsic::lifetime_end:
7980 VPValue *BlockInMask =
nullptr;
7981 if (!IsPredicated) {
7985 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7996 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7997 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
7998 "Should not predicate a uniform recipe");
8009 PartialReductionChains;
8011 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
8012 PartialReductionChains);
8021 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
8022 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8024 auto ExtendIsOnlyUsedByPartialReductions =
8026 return all_of(Extend->users(), [&](
const User *U) {
8027 return PartialReductionOps.contains(U);
8033 for (
auto Pair : PartialReductionChains) {
8035 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
8036 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
8041bool VPRecipeBuilder::getScaledReductions(
8043 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8047 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8051 Value *
Op = Update->getOperand(0);
8052 Value *PhiOp = Update->getOperand(1);
8059 if (
auto *OpInst = dyn_cast<Instruction>(
Op)) {
8060 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8061 PHI = Chains.rbegin()->first.Reduction;
8063 Op = Update->getOperand(0);
8064 PhiOp = Update->getOperand(1);
8079 std::optional<unsigned> BinOpc;
8080 Type *ExtOpTypes[2] = {
nullptr};
8082 auto CollectExtInfo = [
this, &Exts,
8085 for (
Value *OpI : Ops) {
8089 Exts[
I] = cast<Instruction>(OpI);
8110 if (!CollectExtInfo(Ops))
8113 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8117 if (!CollectExtInfo(Ops))
8120 ExtendUser = Update;
8121 BinOpc = std::nullopt;
8131 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8140 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8141 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.
CostKind);
8145 Chains.emplace_back(Chain, TargetScaleFactor);
8159 if (
auto *PhiR = dyn_cast<VPPhi>(R)) {
8164 "Non-header phis should have been handled during predication");
8165 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8166 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8167 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8173 "can only widen reductions and fixed-order recurrences here");
8181 unsigned ScaleFactor =
8197 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8199 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8208 if (
auto *CI = dyn_cast<CallInst>(Instr))
8211 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8213 return tryToWidenHistogram(*HistInfo,
Operands);
8215 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8221 if (!shouldWiden(Instr,
Range))
8224 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8227 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8231 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8236 return tryToWiden(Instr,
Operands);
8242 unsigned ScaleFactor) {
8244 "Unexpected number of operands for partial reduction");
8249 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8250 isa<VPPartialReductionRecipe>(BinOpRecipe))
8253 unsigned ReductionOpcode =
Reduction->getOpcode();
8254 if (ReductionOpcode == Instruction::Sub) {
8255 auto *
const Zero = ConstantInt::get(
Reduction->getType(), 0);
8261 ReductionOpcode = Instruction::Add;
8266 assert((ReductionOpcode == Instruction::Add ||
8267 ReductionOpcode == Instruction::Sub) &&
8268 "Expected an ADD or SUB operation for predicated partial "
8269 "reductions (because the neutral element in the mask is zero)!");
8279void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8288 OrigLoop, LI, DT, PSE.
getSE());
8293 LVer.prepareNoAliasMetadata();
8302 auto MaxVFTimes2 = MaxVF * 2;
8304 VFRange SubRange = {VF, MaxVFTimes2};
8305 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8306 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8318 VPlans.push_back(std::move(Plan));
8330 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8333 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8340 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8342 ID.getKind(), dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
8343 Start, VectorTC, Step);
8356 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8357 return ResumePhiRecipe;
8368 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getPredecessors()[0]);
8372 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8375 auto *ScalarPhiIRI = cast<VPIRPhi>(&ScalarPhiR);
8380 cast<VPHeaderPHIRecipe>(Builder.
getRecipe(&ScalarPhiIRI->getIRPhi()));
8381 if (
auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8383 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8385 assert(isa<VPPhi>(ResumePhi) &&
"Expected a phi");
8386 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8387 ScalarPhiIRI->addOperand(ResumePhi);
8393 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8394 "should only skip truncated wide inductions");
8401 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8402 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8404 "Cannot handle loops with uncountable early exits");
8408 "vector.recur.extract");
8409 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8411 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
8424 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8425 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8432 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8437 "Cannot handle loops with uncountable early exits");
8509 for (
VPUser *U : FOR->users()) {
8523 {},
"vector.recur.extract.for.phi");
8529VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8540 bool RequiresScalarEpilogueCheck =
8556 bool IVUpdateMayOverflow =
false;
8567 auto *IVInc = Plan->getVectorLoopRegion()
8568 ->getExitingBasicBlock()
8571 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8573 "Did not find the canonical IV increment");
8574 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8594 "Unsupported interleave factor for scalable vectors");
8599 InterleaveGroups.
insert(IG);
8613 Builder, BlockMaskCache, LVer);
8614 RecipeBuilder.collectScaledReductions(
Range);
8623 auto *MiddleVPBB = Plan->getMiddleBlock();
8628 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8631 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8632 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8638 if (isa<VPCanonicalIVPHIRecipe, VPWidenCanonicalIVRecipe, VPBlendRecipe>(
8640 (isa<VPInstruction>(&R) && !UnderlyingValue))
8645 assert((isa<VPWidenPHIRecipe>(&R) || isa<VPInstruction>(&R)) &&
8646 UnderlyingValue &&
"unsupported recipe");
8657 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8664 Recipe->insertBefore(*MiddleVPBB, MBIP);
8666 R.eraseFromParent();
8671 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8673 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8675 RecipeBuilder.setRecipe(Instr, Recipe);
8676 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8688 "Unexpected multidef recipe");
8689 R.eraseFromParent();
8698 RecipeBuilder.updateBlockMaskCache(Old2New);
8700 Old->getDefiningRecipe()->eraseFromParent();
8702 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8703 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8704 "entry block must be set to a VPRegionBlock having a non-empty entry "
8711 auto *IVInc = cast<Instruction>(
8716 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
8731 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8751 Plan->setName(
"Initial VPlan");
8757 InterleaveGroups, RecipeBuilder,
8764 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8768 BlockNeedsPredication);
8780 bool WithoutRuntimeCheck =
8783 WithoutRuntimeCheck);
8824 Builder, BlockMaskCache,
nullptr );
8825 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8826 if (isa<VPCanonicalIVPHIRecipe>(&R))
8828 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8829 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8853void LoopVectorizationPlanner::adjustRecipesForReductions(
8855 using namespace VPlanPatternMatch;
8856 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8862 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8863 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8870 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8875 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8878 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8879 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8880 assert((UserRecipe->getParent() == MiddleVPBB ||
8881 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8882 "U must be either in the loop region, the middle block or the "
8883 "scalar preheader.");
8886 Worklist.
insert(UserRecipe);
8899 if (
auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8900 assert(Blend->getNumIncomingValues() == 2 &&
8901 "Blend must have 2 incoming values");
8902 if (Blend->getIncomingValue(0) == PhiR) {
8903 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8905 assert(Blend->getIncomingValue(1) == PhiR &&
8906 "PhiR must be an operand of the blend");
8907 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8912 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8915 unsigned IndexOfFirstOperand;
8923 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8924 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8925 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8926 CurrentLink->getOperand(2) == PreviousLink &&
8927 "expected a call where the previous link is the added operand");
8935 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8937 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8940 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8941 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8942 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8944 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8946 Sub->setUnderlyingValue(CurrentLinkI);
8947 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8951 if (isa<VPWidenRecipe>(CurrentLink)) {
8952 assert(isa<CmpInst>(CurrentLinkI) &&
8953 "need to have the compare of the select");
8956 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8957 "must be a select recipe");
8958 IndexOfFirstOperand = 1;
8961 "Expected to replace a VPWidenSC");
8962 IndexOfFirstOperand = 0;
8967 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8968 ? IndexOfFirstOperand + 1
8969 : IndexOfFirstOperand;
8970 VecOp = CurrentLink->getOperand(VecOpId);
8971 assert(VecOp != PreviousLink &&
8972 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8973 (VecOpId - IndexOfFirstOperand)) ==
8975 "PreviousLink must be the operand other than VecOp");
8984 cast<PHINode>(PhiR->getUnderlyingInstr()));
8990 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8997 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
9001 CurrentLink->replaceAllUsesWith(RedRecipe);
9003 PreviousLink = RedRecipe;
9010 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9027 !isa<VPPartialReductionRecipe>(OrigExitingVPV->getDefiningRecipe())) {
9029 std::optional<FastMathFlags> FMFs =
9036 return isa<VPInstruction>(&U) &&
9037 (cast<VPInstruction>(&U)->getOpcode() ==
9039 cast<VPInstruction>(&U)->getOpcode() ==
9041 cast<VPInstruction>(&U)->getOpcode() ==
9068 FinalReductionResult =
9070 {PhiR, Start,
Sentinel, NewExitingVPV}, ExitDL);
9073 FinalReductionResult =
9075 {PhiR, Start, NewExitingVPV}, ExitDL);
9081 FinalReductionResult =
9083 {PhiR, NewExitingVPV},
Flags, ExitDL);
9090 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9092 "Unexpected truncated min-max recurrence!");
9097 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9099 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9100 Extnd->insertAfter(Trunc);
9102 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9107 FinalReductionResult =
9113 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9114 auto *Parent = cast<VPRecipeBase>(U)->
getParent();
9115 if (FinalReductionResult == U || Parent->getParent())
9117 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9119 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
9128 return isa<VPWidenSelectRecipe>(U) ||
9129 (isa<VPReplicateRecipe>(U) &&
9130 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9131 Instruction::Select);
9142 if (
Select->getOperand(1) == PhiR)
9145 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9166 VPBuilder PHBuilder(Plan->getVectorPreheader());
9167 VPValue *Iden = Plan->getOrAddLiveIn(
9170 unsigned ScaleFactor =
9174 auto *ScaleFactorVPV =
9175 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9176 VPValue *StartV = PHBuilder.createNaryOp(
9185 R->eraseFromParent();
9190void LoopVectorizationPlanner::attachRuntimeChecks(
9191 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9192 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9193 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9196 "Cannot SCEV check stride or overflow when optimizing for size");
9200 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9201 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9205 "Runtime checks are not supported for outer loops yet");
9210 "Cannot emit memory checks when optimizing for size, unless forced "
9216 <<
"Code-size may be reduced by not forcing "
9217 "vectorization, or by source-code modifications "
9218 "eliminating the need for runtime checks "
9219 "(e.g., adding 'restrict').";
9233 bool IsIndvarOverflowCheckNeededForVF =
9243 Plan, VF, UF, MinProfitableTripCount,
9245 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9251 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9262 cast_if_present<BinaryOperator>(FPBinOp));
9329 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9333 Function *
F = L->getHeader()->getParent();
9339 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9340 &Hints, IAI, PSI, BFI);
9344 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9364 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9366 BFI, PSI, Checks, BestPlan);
9368 << L->getHeader()->getParent()->getName() <<
"\"\n");
9391 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9392 if (S->getValueOperand()->getType()->isFloatTy())
9402 while (!Worklist.
empty()) {
9404 if (!L->contains(
I))
9406 if (!Visited.
insert(
I).second)
9413 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
9416 I->getDebugLoc(), L->getHeader())
9417 <<
"floating point conversion changes vector width. "
9418 <<
"Mixed floating point precision requires an up/down "
9419 <<
"cast that will negatively impact performance.";
9422 for (
Use &
Op :
I->operands())
9423 if (
auto *OpI = dyn_cast<Instruction>(
Op))
9438 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9444 << PredVPBB->getName() <<
":\n");
9445 Cost += PredVPBB->cost(VF, CostCtx);
9464 std::optional<unsigned> VScale) {
9480 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9539 uint64_t MinTC = std::max(MinTC1, MinTC2);
9541 MinTC =
alignTo(MinTC, IntVF);
9545 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9552 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9553 "trip count < minimum profitable VF ("
9564 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9566 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9579 if (isa<VPCanonicalIVPHIRecipe>(&R))
9582 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9586 auto *VPIRInst = cast<VPIRPhi>(&R);
9587 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9599 using namespace VPlanPatternMatch;
9606 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9607 bool UpdateResumePhis) {
9610 auto *VPI = dyn_cast<VPInstruction>(&R);
9613 VPValue *OrigStart = VPI->getOperand(1);
9617 Builder.
createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9619 if (UpdateResumePhis)
9621 return Freeze != &U && isa<VPPhi>(&U);
9625 AddFreezeForFindLastIVReductions(MainPlan,
true);
9626 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9633 auto ResumePhiIter =
9635 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9638 VPPhi *ResumePhi =
nullptr;
9639 if (ResumePhiIter == MainScalarPH->
phis().end()) {
9643 "vec.epilog.resume.val");
9645 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9646 if (MainScalarPH->
begin() == MainScalarPH->
end())
9648 else if (&*MainScalarPH->
begin() != ResumePhi)
9660 const SCEV2ValueTy &ExpandedSCEVs,
9664 Header->setName(
"vec.epilog.vector.body");
9670 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
9678 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9683 "Must only have a single non-zero incoming value");
9695 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9696 "all incoming values must be 0");
9702 return isa<VPScalarIVStepsRecipe>(U) ||
9703 isa<VPDerivedIVRecipe>(U) ||
9704 cast<VPRecipeBase>(U)->isScalarCast() ||
9705 cast<VPInstruction>(U)->getOpcode() ==
9708 "the canonical IV should only be used by its increment or "
9709 "ScalarIVSteps when resetting the start value");
9710 IV->setOperand(0, VPV);
9714 Value *ResumeV =
nullptr;
9716 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9718 cast<VPInstruction>(*
find_if(ReductionPhi->users(), [](
VPUser *U) {
9719 auto *VPI = dyn_cast<VPInstruction>(U);
9721 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9722 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9723 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9725 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9726 ->getIncomingValueForBlock(L->getLoopPreheader());
9727 RecurKind RK = ReductionPhi->getRecurrenceKind();
9738 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9750 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9754 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9755 if (
auto *VPI = dyn_cast<VPInstruction>(PhiR->
getStartValue())) {
9757 "unexpected start value");
9758 VPI->setOperand(0, StartVal);
9765 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9770 assert(ResumeV &&
"Must have a resume value");
9772 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9783 auto *VPI = dyn_cast<VPInstruction>(&R);
9784 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9786 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9793 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9801 ExpandR->eraseFromParent();
9811 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9816 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9817 if (OrigPhi != OldInduction) {
9818 auto *BinOp =
II.getInductionBinOp();
9820 if (isa_and_nonnull<FPMathOperator>(BinOp))
9824 EndValueFromAdditionalBypass =
9826 II.getStartValue(), Step,
II.getKind(), BinOp);
9827 EndValueFromAdditionalBypass->
setName(
"ind.end");
9829 return EndValueFromAdditionalBypass;
9835 const SCEV2ValueTy &ExpandedSCEVs,
9836 Value *MainVectorTripCount) {
9841 if (Phi.getBasicBlockIndex(Pred) != -1)
9843 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9847 if (ScalarPH->hasPredecessors()) {
9850 for (
const auto &[R, IRPhi] :
9851 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9860 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9862 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9865 Inc->setIncomingValueForBlock(BypassBlock, V);
9871 "VPlan-native path is not enabled. Only process inner loops.");
9874 << L->getHeader()->getParent()->getName() <<
"' from "
9875 << L->getLocStr() <<
"\n");
9880 dbgs() <<
"LV: Loop hints:"
9891 Function *
F = L->getHeader()->getParent();
9913 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9920 "early exit is not enabled",
9921 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9930 if (!L->isInnermost())
9934 assert(L->isInnermost() &&
"Inner loop expected.");
9951 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9953 "requiring a scalar epilogue is unsupported",
9954 "UncountableEarlyExitUnsupported",
ORE, L);
9967 if (ExpectedTC && ExpectedTC->isFixed() &&
9969 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9970 <<
"This loop is worth vectorizing only if no scalar "
9971 <<
"iteration overheads are incurred.");
9973 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9989 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9991 "Can't vectorize when the NoImplicitFloat attribute is used",
9992 "loop not vectorized due to NoImplicitFloat attribute",
9993 "NoImplicitFloat",
ORE, L);
10005 "Potentially unsafe FP op prevents vectorization",
10006 "loop not vectorized due to unsafe FP support.",
10007 "UnsafeFP",
ORE, L);
10012 bool AllowOrderedReductions;
10022 ExactFPMathInst->getDebugLoc(),
10023 ExactFPMathInst->getParent())
10024 <<
"loop not vectorized: cannot prove it is safe to reorder "
10025 "floating-point operations";
10027 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10028 "reorder floating-point operations\n");
10034 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10037 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10045 LVP.
plan(UserVF, UserIC);
10052 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10057 unsigned SelectedIC = std::max(IC, UserIC);
10066 if (Checks.getSCEVChecks().first &&
10067 match(Checks.getSCEVChecks().first,
m_One()))
10069 if (Checks.getMemRuntimeChecks().first &&
10070 match(Checks.getMemRuntimeChecks().first,
m_One()))
10075 bool ForceVectorization =
10079 if (!ForceVectorization &&
10085 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10087 <<
"loop not vectorized: cannot prove it is safe to reorder "
10088 "memory operations";
10097 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10098 bool VectorizeLoop =
true, InterleaveLoop =
true;
10100 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10102 "VectorizationNotBeneficial",
10103 "the cost-model indicates that vectorization is not beneficial"};
10104 VectorizeLoop =
false;
10110 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10111 "interleaving should be avoided up front\n");
10112 IntDiagMsg = {
"InterleavingAvoided",
10113 "Ignoring UserIC, because interleaving was avoided up front"};
10114 InterleaveLoop =
false;
10115 }
else if (IC == 1 && UserIC <= 1) {
10119 "InterleavingNotBeneficial",
10120 "the cost-model indicates that interleaving is not beneficial"};
10121 InterleaveLoop =
false;
10123 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10124 IntDiagMsg.second +=
10125 " and is explicitly disabled or interleave count is set to 1";
10127 }
else if (IC > 1 && UserIC == 1) {
10129 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10131 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10132 "the cost-model indicates that interleaving is beneficial "
10133 "but is explicitly disabled or interleave count is set to 1"};
10134 InterleaveLoop =
false;
10140 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10141 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10142 <<
"to histogram operations.\n");
10144 "HistogramPreventsScalarInterleaving",
10145 "Unable to interleave without vectorization due to constraints on "
10146 "the order of histogram operations"};
10147 InterleaveLoop =
false;
10151 IC = UserIC > 0 ? UserIC : IC;
10155 if (!VectorizeLoop && !InterleaveLoop) {
10159 L->getStartLoc(), L->getHeader())
10160 << VecDiagMsg.second;
10164 L->getStartLoc(), L->getHeader())
10165 << IntDiagMsg.second;
10170 if (!VectorizeLoop && InterleaveLoop) {
10174 L->getStartLoc(), L->getHeader())
10175 << VecDiagMsg.second;
10177 }
else if (VectorizeLoop && !InterleaveLoop) {
10179 <<
") in " << L->getLocStr() <<
'\n');
10182 L->getStartLoc(), L->getHeader())
10183 << IntDiagMsg.second;
10185 }
else if (VectorizeLoop && InterleaveLoop) {
10187 <<
") in " << L->getLocStr() <<
'\n');
10191 bool DisableRuntimeUnroll =
false;
10192 MDNode *OrigLoopID = L->getLoopID();
10196 using namespace ore;
10201 <<
"interleaved loop (interleaved count: "
10202 << NV(
"InterleaveCount", IC) <<
")";
10219 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10230 PSI, Checks, *BestMainPlan);
10232 *BestMainPlan, MainILV,
DT,
false);
10238 BFI,
PSI, Checks, BestEpiPlan);
10246 BestEpiPlan, LVL, ExpandedSCEVs,
10248 ++LoopsEpilogueVectorized;
10250 if (!Checks.hasChecks())
10251 DisableRuntimeUnroll =
true;
10253 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10270 DisableRuntimeUnroll =
true;
10274 "DT not preserved correctly");
10276 std::optional<MDNode *> RemainderLoopID =
10279 if (RemainderLoopID) {
10280 L->setLoopID(*RemainderLoopID);
10282 if (DisableRuntimeUnroll)
10306 bool Changed =
false, CFGChanged =
false;
10313 for (
const auto &L : *
LI)
10314 Changed |= CFGChanged |=
10325 LoopsAnalyzed += Worklist.
size();
10328 while (!Worklist.
empty()) {
10373 if (!Result.MadeAnyChange)
10387 if (Result.MadeCFGChange) {
10403 OS, MapClassName2PassName);
10406 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10407 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static void addRuntimeUnrollDisableMetaData(Loop *L)
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
const char LLVMLoopVectorizeFollowupAll[]
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
const char VerboseDebug[]
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
Value * createIterationCountCheck(ElementCount VF, unsigned UF) const
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateElementCount(Type *Ty, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
LLVM_ABI void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPredecessor() const
If the given loop's header has exactly one unique predecessor outside the loop, return it.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool shouldCalculateRegPressureForVF(ElementCount VF)
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
const RecurrenceDescriptor & getRecurrenceDescriptor(PHINode *PN) const
Returns the recurrence descriptor associated with a given phi node PN, expecting one to exist.
uint64_t getMaxStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding and safe to ope...
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
IntegerType * getWidestInductionType()
Returns the widest induction type.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
bool isUniform(Value *V, ElementCount VF) const
Returns true if value V is uniform across VF lanes, when VF is provided, and otherwise if V is invari...
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there is store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool isLoopInvariant(const Value *V, bool HasCoroSuspendInst=false) const
Return true if the specified value is loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool hasLoopInvariantOperands(const Instruction *I, bool HasCoroSuspendInst=false) const
Return true if all the operands of the specified instruction are loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI void verify() const
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
LLVM_ABI unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPInstruction * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
VPInstruction * createNot(VPValue *Operand, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
void insert(VPRecipeBase *R)
Insert R at the current insertion point.
VPInstruction * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void setEntry(VPBasicBlock *VPBB)
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
int getNumOccurrences() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
cl::opt< unsigned > ForceTargetInstructionCost
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks