159using namespace SCEVPatternMatch;
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
172 "llvm.loop.vectorize.followup_vectorized";
174 "llvm.loop.vectorize.followup_epilogue";
177STATISTIC(LoopsVectorized,
"Number of loops vectorized");
178STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
179STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
180STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
184 cl::desc(
"Enable vectorization of epilogue loops."));
188 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
189 "1 is specified, forces the given VF for all applicable epilogue "
193 "epilogue-vectorization-minimum-VF",
cl::Hidden,
194 cl::desc(
"Only loops with vectorization factor equal to or larger than "
195 "the specified value are considered for epilogue vectorization."));
201 cl::desc(
"Loops with a constant trip count that is smaller than this "
202 "value are vectorized only if no scalar iteration overheads "
207 cl::desc(
"The maximum allowed number of runtime memory checks"));
223 "prefer-predicate-over-epilogue",
226 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
230 "Don't tail-predicate loops, create scalar epilogue"),
232 "predicate-else-scalar-epilogue",
233 "prefer tail-folding, create scalar epilogue if tail "
236 "predicate-dont-vectorize",
237 "prefers tail-folding, don't attempt vectorization if "
238 "tail-folding fails.")));
241 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
244 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
246 TailFoldingStyle::Data,
"data",
247 "Create lane mask for data only, using active.lane.mask intrinsic"),
248 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
249 "data-without-lane-mask",
250 "Create lane mask with compare/stepvector"),
251 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
252 "Create lane mask using active.lane.mask intrinsic, and use "
253 "it for both data and control flow"),
254 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
255 "data-and-control-without-rt-check",
256 "Similar to data-and-control, but remove the runtime check"),
257 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
258 "Use predicated EVL instructions for tail folding. If EVL "
259 "is unsupported, fallback to data-without-lane-mask.")));
263 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
264 "will be determined by the smallest type in loop."));
268 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
274 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
278 cl::desc(
"A flag that overrides the target's number of scalar registers."));
282 cl::desc(
"A flag that overrides the target's number of vector registers."));
286 cl::desc(
"A flag that overrides the target's max interleave factor for "
291 cl::desc(
"A flag that overrides the target's max interleave factor for "
292 "vectorized loops."));
296 cl::desc(
"A flag that overrides the target's expected cost for "
297 "an instruction to a single constant value. Mostly "
298 "useful for getting consistent testing."));
303 "Pretend that scalable vectors are supported, even if the target does "
304 "not support them. This flag should only be used for testing."));
309 "The cost of a loop that is considered 'small' by the interleaver."));
313 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
314 "heuristics minimizing code growth in cold regions and being more "
315 "aggressive in hot regions."));
321 "Enable runtime interleaving until load/store ports are saturated"));
326 cl::desc(
"Max number of stores to be predicated behind an if."));
330 cl::desc(
"Count the induction variable only once when interleaving"));
334 cl::desc(
"Enable if predication of stores during vectorization."));
338 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
339 "reduction in a nested loop."));
344 cl::desc(
"Prefer in-loop vector reductions, "
345 "overriding the targets preference."));
349 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
355 "Prefer predicating a reduction operation over an after loop select."));
359 cl::desc(
"Enable VPlan-native vectorization path with "
360 "support for outer loop vectorization."));
364#ifdef EXPENSIVE_CHECKS
370 cl::desc(
"Verfiy VPlans after VPlan transforms."));
379 "Build VPlan for every supported loop nest in the function and bail "
380 "out right after the build (stress test the VPlan H-CFG construction "
381 "in the VPlan-native vectorization path)."));
385 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
388 cl::desc(
"Run the Loop vectorization passes"));
391 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
393 "Override cost based safe divisor widening for div/rem instructions"));
396 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
398 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
403 "Enable vectorization of early exit loops with uncountable exits."));
416 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
427 if (isa<SCEVCouldNotCompute>(BTC))
431 if (isa<SCEVVScale>(ExitCount))
451static std::optional<ElementCount>
453 bool CanUseConstantMax =
true) {
463 if (!CanUseConstantMax)
475class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
539 "Trying to access AdditionalBypassBlock but it has not been set");
637 "A high UF for the epilogue loop is likely not beneficial.");
688 EPI.MainLoopVF,
EPI.MainLoopUF) {}
723 EPI.EpilogueVF,
EPI.EpilogueUF) {
734 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
748 if (
I->getDebugLoc() != Empty)
749 return I->getDebugLoc();
751 for (
Use &
Op :
I->operands()) {
753 if (OpInst->getDebugLoc() != Empty)
754 return OpInst->getDebugLoc();
757 return I->getDebugLoc();
766 dbgs() <<
"LV: " << Prefix << DebugMsg;
788 if (
I &&
I->getDebugLoc())
789 DL =
I->getDebugLoc();
809 return B.CreateElementCount(Ty, VFxStep);
814 return B.CreateElementCount(Ty, VF);
825 <<
"loop not vectorized: " << OREMsg);
848 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
854 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
856 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
908 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI),
Legal(
Legal),
909 TTI(
TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(
F),
910 Hints(Hints), InterleaveInfo(IAI) {
912 initializeVScaleForTuning();
917 PGSOQueryType::IRPass);
927 bool runtimeChecksRequired();
932 collectNonVectorizedAndSetWideningDecisions(UserVF);
933 return expectedCost(UserVF).isValid();
946 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
965 void collectValuesToIgnore();
968 void collectElementTypesForWidening();
972 void collectInLoopReductions();
979 return !Hints->allowReordering() && RdxDesc.
isOrdered();
993 "Profitable to scalarize relevant only for VF > 1.");
996 "cost-model should not be used for outer loops (in VPlan-native path)");
998 auto Scalars = InstsToScalarize.find(VF);
999 assert(Scalars != InstsToScalarize.end() &&
1000 "VF not yet analyzed for scalarization profitability");
1001 return Scalars->second.contains(
I);
1008 "cost-model should not be used for outer loops (in VPlan-native path)");
1012 if (isa<PseudoProbeInst>(
I))
1018 auto UniformsPerVF = Uniforms.find(VF);
1019 assert(UniformsPerVF != Uniforms.end() &&
1020 "VF not yet analyzed for uniformity");
1021 return UniformsPerVF->second.count(
I);
1028 "cost-model should not be used for outer loops (in VPlan-native path)");
1032 auto ScalarsPerVF = Scalars.find(VF);
1033 assert(ScalarsPerVF != Scalars.end() &&
1034 "Scalar values are not calculated for VF");
1035 return ScalarsPerVF->second.count(
I);
1041 return VF.
isVector() && MinBWs.contains(
I) &&
1042 !isProfitableToScalarize(
I, VF) &&
1043 !isScalarAfterVectorization(
I, VF);
1063 WideningDecisions[{
I, VF}] = {W,
Cost};
1079 if (W != CM_Interleave)
1085 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1087 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1099 "cost-model should not be used for outer loops (in VPlan-native path)");
1101 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1102 auto Itr = WideningDecisions.find(InstOnVF);
1103 if (Itr == WideningDecisions.end())
1105 return Itr->second.first;
1112 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1113 assert(WideningDecisions.contains(InstOnVF) &&
1114 "The cost is not calculated");
1115 return WideningDecisions[InstOnVF].second;
1128 std::optional<unsigned> MaskPos,
1131 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1137 return CallWideningDecisions.at({CI, VF});
1145 auto *Trunc = dyn_cast<TruncInst>(
I);
1158 Value *
Op = Trunc->getOperand(0);
1163 return Legal->isInductionPhi(
Op);
1179 if (VF.
isScalar() || Uniforms.contains(VF))
1181 setCostBasedWideningDecision(VF);
1182 collectLoopUniforms(VF);
1183 setVectorizedCallDecision(VF);
1184 collectLoopScalars(VF);
1185 collectInstsToScalarize(VF);
1192 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1200 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1207 bool LI = isa<LoadInst>(V);
1208 bool SI = isa<StoreInst>(V);
1214 Ty = VectorType::get(Ty, VF);
1223 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1224 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1235 return ScalarCost < SafeDivisorCost;
1259 std::pair<InstructionCost, InstructionCost>
1274 return InterleaveInfo.isInterleaved(Instr);
1280 return InterleaveInfo.getInterleaveGroup(Instr);
1286 if (!isScalarEpilogueAllowed()) {
1287 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1295 "from latch block\n");
1298 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1300 "interleaved group requires scalar epilogue\n");
1303 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1315 if (!ChosenTailFoldingStyle)
1316 return TailFoldingStyle::None;
1317 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1318 : ChosenTailFoldingStyle->second;
1326 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1327 if (!
Legal->canFoldTailByMasking()) {
1328 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1333 ChosenTailFoldingStyle = {
1340 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1341 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1345 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1353 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1355 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1356 TailFoldingStyle::DataWithoutLaneMask};
1359 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1360 "not try to generate VP Intrinsics "
1362 ?
"since interleave count specified is greater than 1.\n"
1363 :
"due to non-interleaving reasons.\n"));
1370 return getTailFoldingStyle() != TailFoldingStyle::None;
1386 return foldTailByMasking() ||
Legal->blockNeedsPredication(BB);
1392 return getTailFoldingStyle() == TailFoldingStyle::DataWithEVL;
1397 return InLoopReductions.contains(Phi);
1405 if (foldTailWithEVL())
1423 WideningDecisions.clear();
1424 CallWideningDecisions.clear();
1442 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1443 const unsigned IC)
const;
1451 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1453 Type *VectorTy)
const;
1457 bool shouldConsiderInvariant(
Value *
Op);
1463 unsigned NumPredStores = 0;
1467 std::optional<unsigned> VScaleForTuning;
1472 void initializeVScaleForTuning() {
1477 auto Max = Attr.getVScaleRangeMax();
1478 if (Max && Min == Max) {
1479 VScaleForTuning = Max;
1494 bool FoldTailByMasking);
1499 bool FoldTailByMasking)
const;
1504 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1505 unsigned SmallestType,
1506 unsigned WidestType,
1508 bool FoldTailByMasking);
1512 bool isScalableVectorizationAllowed();
1516 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1562 PredicatedBBsAfterVectorization;
1575 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1576 ChosenTailFoldingStyle;
1579 std::optional<bool> IsScalableVectorizationAllowed;
1585 std::optional<unsigned> MaxSafeElements;
1619 ScalarCostsTy &ScalarCosts,
1645 std::pair<InstWidening, InstructionCost>>;
1647 DecisionList WideningDecisions;
1649 using CallDecisionList =
1652 CallDecisionList CallWideningDecisions;
1660 getWideningDecision(
I, VF) == CM_Scalarize)
1669 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1679 if (isa<Constant>(
Op) || !UniqueOperands.
insert(
Op).second ||
1680 !needsExtract(
Op, VF))
1752class GeneratedRTChecks {
1758 Value *SCEVCheckCond =
nullptr;
1765 Value *MemRuntimeCheckCond =
nullptr;
1774 bool CostTooHigh =
false;
1776 Loop *OuterLoop =
nullptr;
1787 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1788 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1817 nullptr,
"vector.scevcheck");
1821 if (isa<Constant>(SCEVCheckCond)) {
1825 SCEVCleaner.cleanup();
1830 if (RtPtrChecking.Need) {
1831 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1832 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1835 auto DiffChecks = RtPtrChecking.getDiffChecks();
1837 Value *RuntimeVF =
nullptr;
1842 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1848 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1851 assert(MemRuntimeCheckCond &&
1852 "no RT checks generated although RtPtrChecking "
1853 "claimed checks are required");
1856 if (!MemCheckBlock && !SCEVCheckBlock)
1866 if (SCEVCheckBlock) {
1873 if (MemCheckBlock) {
1882 if (MemCheckBlock) {
1886 if (SCEVCheckBlock) {
1892 OuterLoop =
L->getParentLoop();
1896 if (SCEVCheckBlock || MemCheckBlock)
1909 if (SCEVCheckBlock->getTerminator() == &
I)
1915 if (MemCheckBlock) {
1918 if (MemCheckBlock->getTerminator() == &
I)
1940 unsigned BestTripCount = 2;
1944 PSE, OuterLoop,
false))
1945 if (EstimatedTC->isFixed())
1946 BestTripCount = EstimatedTC->getFixedValue();
1951 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1954 if (BestTripCount > 1)
1956 <<
"We expect runtime memory checks to be hoisted "
1957 <<
"out of the outer loop. Cost reduced from "
1958 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1960 MemCheckCost = NewMemCheckCost;
1964 RTCheckCost += MemCheckCost;
1967 if (SCEVCheckBlock || MemCheckBlock)
1968 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1976 ~GeneratedRTChecks() {
1979 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1980 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1982 SCEVCleaner.markResultUsed();
1984 if (MemChecksUsed) {
1985 MemCheckCleaner.markResultUsed();
1987 auto &SE = *MemCheckExp.
getSE();
1994 I.eraseFromParent();
1997 MemCheckCleaner.cleanup();
1998 SCEVCleaner.cleanup();
2000 if (!SCEVChecksUsed)
2001 SCEVCheckBlock->eraseFromParent();
2003 MemCheckBlock->eraseFromParent();
2008 std::pair<Value *, BasicBlock *> getSCEVChecks() {
2011 return {
nullptr,
nullptr};
2013 return {SCEVCheckCond, SCEVCheckBlock};
2018 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() {
2020 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2021 return {
nullptr,
nullptr};
2022 return {MemRuntimeCheckCond, MemCheckBlock};
2026 bool hasChecks()
const {
2029 MemRuntimeCheckCond;
2072 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2078 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2098 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *
LI)) {
2108 for (
Loop *InnerL : L)
2131 ?
B.CreateSExtOrTrunc(Index, StepTy)
2132 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2133 if (CastedIndex != Index) {
2135 Index = CastedIndex;
2145 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2150 return B.CreateAdd(
X,
Y);
2156 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2157 "Types don't match!");
2162 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2163 if (XVTy && !isa<VectorType>(
Y->getType()))
2164 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2165 return B.CreateMul(
X,
Y);
2168 switch (InductionKind) {
2170 assert(!isa<VectorType>(Index->getType()) &&
2171 "Vector indices not supported for integer inductions yet");
2173 "Index type does not match StartValue type");
2174 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2175 return B.CreateSub(StartValue, Index);
2180 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2182 assert(!isa<VectorType>(Index->getType()) &&
2183 "Vector indices not supported for FP inductions yet");
2186 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2187 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2188 "Original bin op should be defined for FP induction");
2190 Value *MulExp =
B.CreateFMul(Step, Index);
2191 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2205 if (
F.hasFnAttribute(Attribute::VScaleRange))
2206 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2208 return std::nullopt;
2219 unsigned MaxUF =
UF ? *
UF :
Cost->TTI.getMaxInterleaveFactor(
VF);
2227 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2230 std::optional<unsigned> MaxVScale =
2234 MaxVF *= *MaxVScale;
2237 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2264 PreVectorPH = CheckVPIRBB;
2271 for (
VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2272 assert(isa<VPPhi>(&R) &&
"Phi expected to be VPPhi");
2273 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2274 "must have incoming values for all operands");
2275 R.addOperand(R.getOperand(NumPredecessors - 2));
2281 unsigned UF)
const {
2302 auto CreateStep = [&]() ->
Value * {
2317 Value *Step = CreateStep();
2328 TripCountSCEV, SE.
getSCEV(Step))) {
2341 Value *MaxUIntTripCount =
2342 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->
getMask());
2348 return CheckMinIters;
2358 auto IP = IRVPBB->
begin();
2360 R.moveBefore(*IRVPBB, IP);
2364 R.moveBefore(*IRVPBB, IRVPBB->
end());
2376 "loops not exiting via the latch without required epilogue?");
2383 DT,
LI,
nullptr,
Twine(Prefix) +
"scalar.ph");
2389 const SCEV2ValueTy &ExpandedSCEVs) {
2390 const SCEV *Step =
ID.getStep();
2391 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2392 return C->getValue();
2393 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2394 return U->getValue();
2395 Value *V = ExpandedSCEVs.lookup(Step);
2396 assert(V &&
"SCEV must be expanded at this point");
2406 auto *Cmp = L->getLatchCmpInst();
2408 InstsToIgnore.
insert(Cmp);
2409 for (
const auto &KV : IL) {
2416 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2418 [&](
const User *U) { return U == IV || U == Cmp; }))
2419 InstsToIgnore.
insert(IVInst);
2431struct CSEDenseMapInfo {
2433 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2434 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2446 assert(canHandle(
I) &&
"Unknown instruction!");
2452 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2453 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2455 return LHS->isIdenticalTo(
RHS);
2466 if (!CSEDenseMapInfo::canHandle(&In))
2472 In.replaceAllUsesWith(V);
2473 In.eraseFromParent();
2486 std::optional<unsigned> VScale) {
2490 EstimatedVF *= *VScale;
2491 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2501 return getCallWideningDecision(CI,
VF).Cost;
2505 if (
auto RedCost = getReductionPatternCost(CI,
VF,
RetTy))
2509 for (
auto &ArgOp : CI->
args())
2520 return ScalarCallCost;
2533 assert(
ID &&
"Expected intrinsic call!");
2536 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2537 FMF = FPMO->getFastMathFlags();
2543 std::back_inserter(ParamTys),
2544 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2547 dyn_cast<IntrinsicInst>(CI),
2582 unsigned EstimatedVFxUF =
2589 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
2603void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2608 "This function should not be visited twice for the same VF");
2631 InstWidening WideningDecision = getWideningDecision(MemAccess,
VF);
2632 assert(WideningDecision != CM_Unknown &&
2633 "Widening decision should be ready at this moment");
2634 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
2635 if (
Ptr == Store->getValueOperand())
2636 return WideningDecision == CM_Scalarize;
2638 "Ptr is neither a value or pointer operand");
2639 return WideningDecision != CM_GatherScatter;
2644 auto IsLoopVaryingGEP = [&](
Value *
V) {
2655 if (!IsLoopVaryingGEP(
Ptr))
2660 auto *
I = cast<Instruction>(
Ptr);
2667 if (IsScalarUse(MemAccess,
Ptr) &&
2668 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
2671 PossibleNonScalarPtrs.
insert(
I);
2687 for (
auto *BB : TheLoop->
blocks())
2688 for (
auto &
I : *BB) {
2689 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
2690 EvaluatePtrUse(Load,
Load->getPointerOperand());
2691 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
2692 EvaluatePtrUse(Store,
Store->getPointerOperand());
2693 EvaluatePtrUse(Store,
Store->getValueOperand());
2696 for (
auto *
I : ScalarPtrs)
2697 if (!PossibleNonScalarPtrs.
count(
I)) {
2705 auto ForcedScalar = ForcedScalars.
find(
VF);
2706 if (ForcedScalar != ForcedScalars.
end())
2707 for (
auto *
I : ForcedScalar->second) {
2708 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2717 while (
Idx != Worklist.
size()) {
2719 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2721 auto *Src = cast<Instruction>(Dst->getOperand(0));
2723 auto *J = cast<Instruction>(U);
2724 return !TheLoop->contains(J) || Worklist.count(J) ||
2725 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2726 IsScalarUse(J, Src));
2729 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2735 for (
const auto &Induction :
Legal->getInductionVars()) {
2736 auto *Ind = Induction.first;
2737 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2741 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2746 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2748 return Induction.second.getKind() ==
2750 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
2756 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
2757 auto *I = cast<Instruction>(U);
2758 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2759 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2767 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2768 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2773 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
2774 auto *I = cast<Instruction>(U);
2775 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2776 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2778 if (!ScalarIndUpdate)
2783 Worklist.
insert(IndUpdate);
2784 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2785 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2794 if (!isPredicatedInst(
I))
2799 switch(
I->getOpcode()) {
2802 case Instruction::Call:
2805 return getCallWideningDecision(cast<CallInst>(
I),
VF).Kind == CM_Scalarize;
2806 case Instruction::Load:
2807 case Instruction::Store: {
2815 return isa<LoadInst>(
I) ? !(isLegalMaskedLoad(Ty,
Ptr, Alignment, AS) ||
2817 : !(isLegalMaskedStore(Ty,
Ptr, Alignment, AS) ||
2820 case Instruction::UDiv:
2821 case Instruction::SDiv:
2822 case Instruction::SRem:
2823 case Instruction::URem: {
2827 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(
I,
VF);
2828 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2838 (isa<LoadInst, StoreInst, CallInst>(
I) && !
Legal->isMaskRequired(
I)) ||
2839 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
2844 if (
Legal->blockNeedsPredication(
I->getParent()))
2848 if (!foldTailByMasking())
2856 switch(
I->getOpcode()) {
2859 "instruction should have been considered by earlier checks");
2860 case Instruction::Call:
2864 "should have returned earlier for calls not needing a mask");
2866 case Instruction::Load:
2869 case Instruction::Store: {
2877 case Instruction::UDiv:
2878 case Instruction::SDiv:
2879 case Instruction::SRem:
2880 case Instruction::URem:
2882 return !
Legal->isInvariant(
I->getOperand(1));
2886std::pair<InstructionCost, InstructionCost>
2889 assert(
I->getOpcode() == Instruction::UDiv ||
2890 I->getOpcode() == Instruction::SDiv ||
2891 I->getOpcode() == Instruction::SRem ||
2892 I->getOpcode() == Instruction::URem);
2901 ScalarizationCost = 0;
2907 ScalarizationCost +=
2911 ScalarizationCost +=
2937 Value *Op2 =
I->getOperand(1);
2940 Legal->isInvariant(Op2))
2946 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2948 return {ScalarizationCost, SafeDivisorCost};
2953 assert(isAccessInterleaved(
I) &&
"Expecting interleaved access.");
2954 assert(getWideningDecision(
I,
VF) == CM_Unknown &&
2955 "Decision should not be set yet.");
2956 auto *Group = getInterleavedAccessGroup(
I);
2957 assert(Group &&
"Must have a group.");
2958 unsigned InterleaveFactor = Group->getFactor();
2962 auto &
DL =
I->getDataLayout();
2974 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2975 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
2980 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
2982 if (MemberNI != ScalarNI)
2985 if (MemberNI && ScalarNI &&
2986 ScalarTy->getPointerAddressSpace() !=
2987 MemberTy->getPointerAddressSpace())
2996 bool PredicatedAccessRequiresMasking =
2997 blockNeedsPredicationForAnyReason(
I->getParent()) &&
2998 Legal->isMaskRequired(
I);
2999 bool LoadAccessWithGapsRequiresEpilogMasking =
3000 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3001 !isScalarEpilogueAllowed();
3002 bool StoreAccessWithGapsRequiresMasking =
3003 isa<StoreInst>(
I) && !Group->isFull();
3004 if (!PredicatedAccessRequiresMasking &&
3005 !LoadAccessWithGapsRequiresEpilogMasking &&
3006 !StoreAccessWithGapsRequiresMasking)
3013 "Masked interleave-groups for predicated accesses are not enabled.");
3015 if (Group->isReverse())
3019 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3020 StoreAccessWithGapsRequiresMasking;
3034 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3040 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3045 if (isScalarWithPredication(
I,
VF))
3050 auto &
DL =
I->getDataLayout();
3057void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3064 "This function should not be visited twice for the same VF");
3076 auto IsOutOfScope = [&](
Value *V) ->
bool {
3088 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3089 if (IsOutOfScope(
I)) {
3094 if (isPredicatedInst(
I)) {
3096 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3100 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3113 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3114 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3115 AddToWorklistIfAllowed(Cmp);
3124 if (PrevVF.isVector()) {
3125 auto Iter = Uniforms.
find(PrevVF);
3126 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3129 if (!
Legal->isUniformMemOp(*
I,
VF))
3131 if (isa<LoadInst>(
I))
3140 InstWidening WideningDecision = getWideningDecision(
I,
VF);
3141 assert(WideningDecision != CM_Unknown &&
3142 "Widening decision should be ready at this moment");
3144 if (IsUniformMemOpUse(
I))
3147 return (WideningDecision == CM_Widen ||
3148 WideningDecision == CM_Widen_Reverse ||
3149 WideningDecision == CM_Interleave);
3156 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3159 (IsUniformDecision(
I,
VF) ||
Legal->isInvariant(
Ptr));
3171 for (
auto *BB : TheLoop->
blocks())
3172 for (
auto &
I : *BB) {
3174 switch (
II->getIntrinsicID()) {
3175 case Intrinsic::sideeffect:
3176 case Intrinsic::experimental_noalias_scope_decl:
3177 case Intrinsic::assume:
3178 case Intrinsic::lifetime_start:
3179 case Intrinsic::lifetime_end:
3181 AddToWorklistIfAllowed(&
I);
3188 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3189 if (IsOutOfScope(EVI->getAggregateOperand())) {
3190 AddToWorklistIfAllowed(EVI);
3195 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3196 "Expected aggregate value to be call return value");
3204 if (IsUniformMemOpUse(&
I))
3205 AddToWorklistIfAllowed(&
I);
3207 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3214 for (
auto *V : HasUniformUse) {
3215 if (IsOutOfScope(V))
3217 auto *
I = cast<Instruction>(V);
3218 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3219 auto *UI = cast<Instruction>(U);
3220 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3222 if (UsersAreMemAccesses)
3223 AddToWorklistIfAllowed(
I);
3230 while (
Idx != Worklist.
size()) {
3233 for (
auto *OV :
I->operand_values()) {
3235 if (IsOutOfScope(OV))
3239 auto *
OP = dyn_cast<PHINode>(OV);
3240 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3244 auto *OI = cast<Instruction>(OV);
3246 auto *J = cast<Instruction>(U);
3247 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3249 AddToWorklistIfAllowed(OI);
3260 for (
const auto &Induction :
Legal->getInductionVars()) {
3261 auto *Ind = Induction.first;
3262 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3266 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3267 auto *I = cast<Instruction>(U);
3268 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3269 IsVectorizedMemAccessUse(I, Ind);
3276 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3277 auto *I = cast<Instruction>(U);
3278 return I == Ind || Worklist.count(I) ||
3279 IsVectorizedMemAccessUse(I, IndUpdate);
3281 if (!UniformIndUpdate)
3285 AddToWorklistIfAllowed(Ind);
3286 AddToWorklistIfAllowed(IndUpdate);
3295 if (
Legal->getRuntimePointerChecking()->Need) {
3297 "runtime pointer checks needed. Enable vectorization of this "
3298 "loop with '#pragma clang loop vectorize(enable)' when "
3299 "compiling with -Os/-Oz",
3300 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3306 "runtime SCEV checks needed. Enable vectorization of this "
3307 "loop with '#pragma clang loop vectorize(enable)' when "
3308 "compiling with -Os/-Oz",
3309 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3314 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3316 "runtime stride == 1 checks needed. Enable vectorization of "
3317 "this loop without such check by compiling with -Os/-Oz",
3318 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3325bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3326 if (IsScalableVectorizationAllowed)
3327 return *IsScalableVectorizationAllowed;
3329 IsScalableVectorizationAllowed =
false;
3333 if (Hints->isScalableVectorizationDisabled()) {
3335 "ScalableVectorizationDisabled", ORE, TheLoop);
3339 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3342 std::numeric_limits<ElementCount::ScalarTy>::max());
3351 if (!canVectorizeReductions(MaxScalableVF)) {
3353 "Scalable vectorization not supported for the reduction "
3354 "operations found in this loop.",
3355 "ScalableVFUnfeasible", ORE, TheLoop);
3361 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3366 "for all element types found in this loop.",
3367 "ScalableVFUnfeasible", ORE, TheLoop);
3373 "for safe distance analysis.",
3374 "ScalableVFUnfeasible", ORE, TheLoop);
3378 IsScalableVectorizationAllowed =
true;
3383LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3384 if (!isScalableVectorizationAllowed())
3388 std::numeric_limits<ElementCount::ScalarTy>::max());
3389 if (
Legal->isSafeForAnyVectorWidth())
3390 return MaxScalableVF;
3398 "Max legal vector width too small, scalable vectorization "
3400 "ScalableVFUnfeasible", ORE, TheLoop);
3402 return MaxScalableVF;
3406 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3408 unsigned SmallestType, WidestType;
3409 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3415 unsigned MaxSafeElementsPowerOf2 =
3417 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3418 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3419 MaxSafeElementsPowerOf2 =
3420 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3423 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3425 if (!
Legal->isSafeForAnyVectorWidth())
3426 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3428 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3430 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3435 auto MaxSafeUserVF =
3436 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3453 <<
" is unsafe, clamping to max safe VF="
3454 << MaxSafeFixedVF <<
".\n");
3459 <<
"User-specified vectorization factor "
3460 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3461 <<
" is unsafe, clamping to maximum safe vectorization factor "
3462 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3464 return MaxSafeFixedVF;
3469 <<
" is ignored because scalable vectors are not "
3475 <<
"User-specified vectorization factor "
3476 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3477 <<
" is ignored because the target does not support scalable "
3478 "vectors. The compiler will pick a more suitable value.";
3482 <<
" is unsafe. Ignoring scalable UserVF.\n");
3487 <<
"User-specified vectorization factor "
3488 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3489 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3490 "more suitable value.";
3495 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3496 <<
" / " << WidestType <<
" bits.\n");
3501 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3502 MaxSafeFixedVF, FoldTailByMasking))
3506 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3507 MaxSafeScalableVF, FoldTailByMasking))
3508 if (MaxVF.isScalable()) {
3509 Result.ScalableVF = MaxVF;
3510 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3523 "Not inserting runtime ptr check for divergent target",
3524 "runtime pointer checks needed. Not enabled for divergent target",
3525 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3534 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3537 "loop trip count is one, irrelevant for vectorization",
3538 "SingleIterationLoop", ORE, TheLoop);
3546 if (!isa<SCEVCouldNotCompute>(BTC) &&
3548 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3552 "Trip count computation wrapped",
3553 "backedge-taken count is -1, loop trip count wrapped to 0",
3554 "TripCountWrapped", ORE, TheLoop);
3558 switch (ScalarEpilogueStatus) {
3560 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3565 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3566 <<
"LV: Not allowing scalar epilogue, creating predicated "
3567 <<
"vector loop.\n");
3574 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3576 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3581 if (runtimeChecksRequired())
3593 "No decisions should have been taken at this point");
3596 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3603 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3608 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3609 *MaxPowerOf2RuntimeVF,
3612 MaxPowerOf2RuntimeVF = std::nullopt;
3615 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3619 !
Legal->hasUncountableEarlyExit())
3621 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3629 "Invalid loop count");
3631 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3638 if (MaxPowerOf2RuntimeVF > 0u) {
3640 "MaxFixedVF must be a power of 2");
3641 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3643 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3649 if (ExpectedTC && ExpectedTC->isFixed() &&
3650 ExpectedTC->getFixedValue() <=
3652 if (MaxPowerOf2RuntimeVF > 0u) {
3658 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3659 "remain for any chosen VF.\n");
3666 "The trip count is below the minial threshold value.",
3667 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3677 setTailFoldingStyles(ContainsScalableVF, UserIC);
3678 if (foldTailByMasking()) {
3682 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3683 "try to generate VP Intrinsics with scalable vector "
3688 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3698 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3699 "scalar epilogue instead.\n");
3705 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3711 "unable to calculate the loop count due to complex control flow",
3712 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3717 "Cannot optimize for size and vectorize at the same time.",
3718 "cannot optimize for size and vectorize at the same time. "
3719 "Enable vectorization of this loop with '#pragma clang loop "
3720 "vectorize(enable)' when compiling with -Os/-Oz",
3721 "NoTailLoopWithOptForSize", ORE, TheLoop);
3734 : MaxPermissibleVFWithoutMaxBW.FixedVF);
3742 Legal->hasVectorCallVariants())));
3745ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3746 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3748 if (
VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3749 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3750 auto Min = Attr.getVScaleRangeMin();
3757 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3760 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3768 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3769 "exceeding the constant trip count: "
3770 << ClampedUpperTripCount <<
"\n");
3777ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3778 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3780 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3788 "Scalable flags must match");
3796 ComputeScalableMaxVF);
3797 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3799 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3801 if (!MaxVectorElementCount) {
3803 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3804 <<
" vector registers.\n");
3808 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3809 MaxTripCount, FoldTailByMasking);
3812 if (MaxVF != MaxVectorElementCount)
3820 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3822 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3824 if (useMaxBandwidth(RegKind)) {
3827 ComputeScalableMaxVF);
3828 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3834 <<
") with target's minimum: " << MinVF <<
'\n');
3839 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3841 if (MaxVectorElementCount != MaxVF) {
3845 invalidateCostModelingDecisions();
3853 const unsigned MaxTripCount,
3854 bool HasTail)
const {
3859 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
3860 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3861 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3862 if (
A.Width.isScalable())
3863 EstimatedWidthA *= *VScale;
3864 if (
B.Width.isScalable())
3865 EstimatedWidthB *= *VScale;
3872 return CostA < CostB ||
3873 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3879 A.Width.isScalable() && !
B.Width.isScalable();
3890 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3892 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3904 return VectorCost * (MaxTripCount /
VF) +
3905 ScalarCost * (MaxTripCount %
VF);
3909 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3910 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3911 return CmpFn(RTCostA, RTCostB);
3916 bool HasTail)
const {
3918 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount,
3924 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3926 for (
const auto &
Plan : VPlans) {
3936 precomputeCosts(*
Plan,
VF, CostCtx);
3938 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3939 for (
auto &R : *VPBB) {
3940 if (!R.cost(
VF, CostCtx).isValid())
3946 if (InvalidCosts.
empty())
3954 for (
auto &Pair : InvalidCosts)
3959 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3960 unsigned NA = Numbering[
A.first];
3961 unsigned NB = Numbering[
B.first];
3976 Subset =
Tail.take_front(1);
3983 [](
const auto *R) {
return Instruction::PHI; })
3984 .Case<VPWidenSelectRecipe>(
3985 [](
const auto *R) {
return Instruction::Select; })
3986 .Case<VPWidenStoreRecipe>(
3987 [](
const auto *R) {
return Instruction::Store; })
3988 .Case<VPWidenLoadRecipe>(
3989 [](
const auto *R) {
return Instruction::Load; })
3990 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3991 [](
const auto *R) {
return Instruction::Call; })
3994 [](
const auto *R) {
return R->getOpcode(); })
3996 return R->getStoredValues().empty() ? Instruction::Load
3997 : Instruction::Store;
4005 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4006 std::string OutString;
4008 assert(!Subset.empty() &&
"Unexpected empty range");
4009 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4010 for (
const auto &Pair : Subset)
4011 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4013 if (Opcode == Instruction::Call) {
4015 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4016 Name =
Int->getIntrinsicName();
4018 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4020 WidenCall ? WidenCall->getCalledScalarFunction()
4021 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4022 ->getLiveInIRValue());
4025 OS <<
" call to " <<
Name;
4030 Tail =
Tail.drop_front(Subset.size());
4034 Subset =
Tail.take_front(Subset.size() + 1);
4035 }
while (!
Tail.empty());
4048 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4057 switch (R.getVPDefID()) {
4058 case VPDef::VPDerivedIVSC:
4059 case VPDef::VPScalarIVStepsSC:
4060 case VPDef::VPReplicateSC:
4061 case VPDef::VPInstructionSC:
4062 case VPDef::VPCanonicalIVPHISC:
4063 case VPDef::VPVectorPointerSC:
4064 case VPDef::VPVectorEndPointerSC:
4065 case VPDef::VPExpandSCEVSC:
4066 case VPDef::VPEVLBasedIVPHISC:
4067 case VPDef::VPPredInstPHISC:
4068 case VPDef::VPBranchOnMaskSC:
4070 case VPDef::VPReductionSC:
4071 case VPDef::VPActiveLaneMaskPHISC:
4072 case VPDef::VPWidenCallSC:
4073 case VPDef::VPWidenCanonicalIVSC:
4074 case VPDef::VPWidenCastSC:
4075 case VPDef::VPWidenGEPSC:
4076 case VPDef::VPWidenIntrinsicSC:
4077 case VPDef::VPWidenSC:
4078 case VPDef::VPWidenSelectSC:
4079 case VPDef::VPBlendSC:
4080 case VPDef::VPFirstOrderRecurrencePHISC:
4081 case VPDef::VPHistogramSC:
4082 case VPDef::VPWidenPHISC:
4083 case VPDef::VPWidenIntOrFpInductionSC:
4084 case VPDef::VPWidenPointerInductionSC:
4085 case VPDef::VPReductionPHISC:
4086 case VPDef::VPInterleaveSC:
4087 case VPDef::VPWidenLoadEVLSC:
4088 case VPDef::VPWidenLoadSC:
4089 case VPDef::VPWidenStoreEVLSC:
4090 case VPDef::VPWidenStoreSC:
4096 auto WillGenerateTargetVectors = [&
TTI,
VF](
Type *VectorTy) {
4113 if (R.getNumDefinedValues() == 0 &&
4114 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4123 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4125 if (!Visited.
insert({ScalarTy}).second)
4139 [](
auto *VPRB) { return VPRB->isReplicator(); });
4145 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4146 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4149 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4150 "Expected Scalar VF to be a candidate");
4157 if (ForceVectorization &&
4158 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4165 for (
auto &
P : VPlans) {
4167 P->vectorFactors().end());
4174 for (
unsigned I = 0;
I < VFs.size();
I++) {
4183 if (CM.shouldCalculateRegPressureForVF(
VF) &&
4193 assert(VectorRegion &&
"Expected to have a vector region!");
4194 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4197 auto *VPI = dyn_cast<VPInstruction>(&R);
4200 switch (VPI->getOpcode()) {
4203 case Instruction::Select: {
4204 VPValue *VPV = VPI->getVPSingleValue();
4206 if (
auto *WR = dyn_cast<VPWidenRecipe>(*VPV->
user_begin())) {
4207 switch (WR->getOpcode()) {
4208 case Instruction::UDiv:
4209 case Instruction::SDiv:
4210 case Instruction::URem:
4211 case Instruction::SRem:
4222 C += VPI->cost(
VF, CostCtx);
4234 <<
" costs: " << (Candidate.Cost / Width));
4237 << CM.getVScaleForTuning().value_or(1) <<
")");
4243 <<
"LV: Not considering vector loop of width " <<
VF
4244 <<
" because it will not generate any vector instructions.\n");
4251 <<
"LV: Not considering vector loop of width " <<
VF
4252 <<
" because it would cause replicated blocks to be generated,"
4253 <<
" which isn't allowed when optimizing for size.\n");
4257 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4258 ChosenFactor = Candidate;
4264 "There are conditional stores.",
4265 "store that is conditionally executed prevents vectorization",
4266 "ConditionalStore", ORE,
OrigLoop);
4267 ChosenFactor = ScalarCost;
4271 !isMoreProfitable(ChosenFactor, ScalarCost,
4272 !CM.foldTailByMasking()))
dbgs()
4273 <<
"LV: Vectorization seems to be not beneficial, "
4274 <<
"but was forced by a user.\n");
4275 return ChosenFactor;
4279bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4284 if (!Legal->isReductionVariable(&Phi))
4285 return Legal->isFixedOrderRecurrence(&Phi);
4286 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4287 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4293 for (
const auto &Entry :
Legal->getInductionVars()) {
4336 unsigned Multiplier =
VF.
isFixed() ? IC : 1;
4348 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4352 if (!CM.isScalarEpilogueAllowed()) {
4353 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4354 "epilogue is allowed.\n");
4360 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4361 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4362 "is not a supported candidate.\n");
4367 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4369 if (hasPlanWithVF(ForcedEC))
4370 return {ForcedEC, 0, 0};
4372 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4379 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4383 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4384 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4396 Type *TCType =
Legal->getWidestInductionType();
4397 const SCEV *RemainingIterations =
nullptr;
4398 unsigned MaxTripCount = 0;
4401 assert(!isa<SCEVCouldNotCompute>(TC) &&
"Trip count SCEV must be computable");
4402 RemainingIterations =
4406 if (RemainingIterations->
isZero())
4416 << MaxTripCount <<
"\n");
4419 for (
auto &NextVF : ProfitableVFs) {
4421 if (!hasPlanWithVF(NextVF.Width))
4426 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4428 (NextVF.Width.isScalable() &&
4430 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4436 if (RemainingIterations && !NextVF.Width.isScalable()) {
4439 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4440 RemainingIterations))
4444 if (Result.Width.isScalar() ||
4445 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking()))
4451 << Result.Width <<
"\n");
4455std::pair<unsigned, unsigned>
4457 unsigned MinWidth = -1U;
4458 unsigned MaxWidth = 8;
4463 if (ElementTypesInLoop.empty() && !
Legal->getReductionVars().empty()) {
4464 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4468 MinWidth = std::min(
4472 MaxWidth = std::max(MaxWidth,
4476 for (
Type *
T : ElementTypesInLoop) {
4477 MinWidth = std::min<unsigned>(
4478 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4479 MaxWidth = std::max<unsigned>(
4480 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4483 return {MinWidth, MaxWidth};
4487 ElementTypesInLoop.clear();
4491 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4495 if (ValuesToIgnore.count(&
I))
4499 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4504 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4505 if (!
Legal->isReductionVariable(PN))
4508 Legal->getRecurrenceDescriptor(PN);
4517 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4518 T = ST->getValueOperand()->getType();
4521 "Expected the load/store/recurrence type to be sized");
4523 ElementTypesInLoop.insert(
T);
4545 if (!CM.isScalarEpilogueAllowed())
4549 IsaPred<VPEVLBasedIVPHIRecipe>)) {
4550 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4551 "Unroll factor forced to be 1.\n");
4556 if (!
Legal->isSafeForAnyVectorWidth())
4565 const bool HasReductions =
4567 IsaPred<VPReductionPHIRecipe>);
4571 if (LoopCost == 0) {
4573 LoopCost = CM.expectedCost(
VF);
4575 LoopCost = cost(
Plan,
VF);
4576 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4587 for (
auto &Pair : R.MaxLocalUsers) {
4588 Pair.second = std::max(Pair.second, 1U);
4602 unsigned IC = UINT_MAX;
4604 for (
const auto &Pair : R.MaxLocalUsers) {
4609 <<
" register class\n");
4617 unsigned MaxLocalUsers = Pair.second;
4618 unsigned LoopInvariantRegs = 0;
4619 if (R.LoopInvariantRegs.contains(Pair.first))
4620 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4622 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4626 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4627 std::max(1U, (MaxLocalUsers - 1)));
4630 IC = std::min(IC, TmpIC);
4650 if (BestKnownTC && (BestKnownTC->isFixed() ||
VF.
isScalable())) {
4652 unsigned AvailableTC =
4658 if (CM.requiresScalarEpilogue(
VF.
isVector()))
4661 unsigned InterleaveCountLB =
bit_floor(std::max(
4662 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4676 unsigned InterleaveCountUB =
bit_floor(std::max(
4677 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4678 MaxInterleaveCount = InterleaveCountLB;
4680 if (InterleaveCountUB != InterleaveCountLB) {
4681 unsigned TailTripCountUB =
4682 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4683 unsigned TailTripCountLB =
4684 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4687 if (TailTripCountUB == TailTripCountLB)
4688 MaxInterleaveCount = InterleaveCountUB;
4696 MaxInterleaveCount = InterleaveCountLB;
4700 assert(MaxInterleaveCount > 0 &&
4701 "Maximum interleave count must be greater than 0");
4705 if (IC > MaxInterleaveCount)
4706 IC = MaxInterleaveCount;
4709 IC = std::max(1u, IC);
4711 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4716 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4724 bool ScalarInterleavingRequiresPredication =
4726 return Legal->blockNeedsPredication(BB);
4728 bool ScalarInterleavingRequiresRuntimePointerCheck =
4734 <<
"LV: IC is " << IC <<
'\n'
4735 <<
"LV: VF is " <<
VF <<
'\n');
4736 const bool AggressivelyInterleaveReductions =
4738 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4739 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4743 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
4748 unsigned NumStores = 0;
4749 unsigned NumLoads = 0;
4750 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4753 if (isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(&R)) {
4757 if (isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe>(&R)) {
4762 if (
auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4763 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4764 NumStores += StoreOps;
4766 NumLoads += InterleaveR->getNumDefinedValues();
4769 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4770 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4771 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4774 if (isa<VPHistogramRecipe>(&R)) {
4781 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4782 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4788 bool HasSelectCmpReductions =
4792 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4793 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4794 RedR->getRecurrenceKind()) ||
4795 RecurrenceDescriptor::isFindIVRecurrenceKind(
4796 RedR->getRecurrenceKind()));
4798 if (HasSelectCmpReductions) {
4799 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4809 bool HasOrderedReductions =
4812 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4814 return RedR && RedR->isOrdered();
4816 if (HasOrderedReductions) {
4818 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4823 SmallIC = std::min(SmallIC,
F);
4824 StoresIC = std::min(StoresIC,
F);
4825 LoadsIC = std::min(LoadsIC,
F);
4829 std::max(StoresIC, LoadsIC) > SmallIC) {
4831 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4832 return std::max(StoresIC, LoadsIC);
4837 if (
VF.
isScalar() && AggressivelyInterleaveReductions) {
4841 return std::max(IC / 2, SmallIC);
4844 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4850 if (AggressivelyInterleaveReductions) {
4859bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4869 assert((isPredicatedInst(
I)) &&
4870 "Expecting a scalar emulated instruction");
4871 return isa<LoadInst>(
I) ||
4872 (isa<StoreInst>(
I) &&
4884 PredicatedBBsAfterVectorization.
contains(
VF))
4896 if (!blockNeedsPredicationForAnyReason(BB))
4899 if (isScalarWithPredication(&
I,
VF)) {
4907 !useEmulatedMaskMemRefHack(&
I,
VF) &&
4908 computePredInstDiscount(&
I, ScalarCosts,
VF) >= 0) {
4909 for (
const auto &[
I, IC] : ScalarCosts)
4910 ScalarCostsVF.
insert({
I, IC});
4913 for (
const auto &[
I,
Cost] : ScalarCosts) {
4914 auto *CI = dyn_cast<CallInst>(
I);
4915 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4917 CallWideningDecisions[{CI,
VF}].Kind = CM_Scalarize;
4918 CallWideningDecisions[{CI,
VF}].Cost =
Cost;
4922 PredicatedBBsAfterVectorization[
VF].
insert(BB);
4924 if (Pred->getSingleSuccessor() == BB)
4925 PredicatedBBsAfterVectorization[
VF].
insert(Pred);
4933 assert(!isUniformAfterVectorization(PredInst,
VF) &&
4934 "Instruction marked uniform-after-vectorization will be predicated");
4952 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4953 isScalarAfterVectorization(
I,
VF))
4958 if (isScalarWithPredication(
I,
VF))
4971 for (
Use &U :
I->operands())
4972 if (
auto *J = dyn_cast<Instruction>(U.get()))
4973 if (isUniformAfterVectorization(J,
VF))
4984 while (!Worklist.
empty()) {
4988 if (ScalarCosts.contains(
I))
4992 if (isa<PHINode>(
I) &&
Legal->isFixedOrderRecurrence(cast<PHINode>(
I)))
5008 if (isScalarWithPredication(
I,
VF) && !
I->getType()->isVoidTy()) {
5024 for (
Use &U :
I->operands())
5025 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5027 "Instruction has non-scalar type");
5028 if (CanBeScalarized(J))
5030 else if (needsExtract(J,
VF)) {
5034 cast<VectorType>(VectorTy),
5046 Discount += VectorCost - ScalarCost;
5047 ScalarCosts[
I] = ScalarCost;
5061 if (TC ==
VF && !foldTailByMasking())
5063 ValuesToIgnoreForVF);
5070 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5072 if (ValuesToIgnore.count(&
I) || ValuesToIgnoreForVF.
count(&
I) ||
5083 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5084 <<
VF <<
" For instruction: " <<
I <<
'\n');
5112 const Loop *TheLoop) {
5114 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5121 unsigned NumOperands = Gep->getNumOperands();
5122 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5125 !
Legal->isInductionVariable(Opd))
5134LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5137 "Scalarization cost of instruction implies vectorization.");
5172 if (isPredicatedInst(
I)) {
5183 if (useEmulatedMaskMemRefHack(
I,
VF))
5193LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5196 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy,
VF));
5199 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5201 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5202 "Stride should be 1 or -1 for consecutive memory access");
5205 if (
Legal->isMaskRequired(
I)) {
5214 bool Reverse = ConsecutiveStride < 0;
5222LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5228 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy,
VF));
5231 if (isa<LoadInst>(
I)) {
5240 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5248 if (!IsLoopInvariantStoreValue)
5255LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5258 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy,
VF));
5265 Legal->isMaskRequired(
I), Alignment,
5270LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5272 const auto *Group = getInterleavedAccessGroup(
I);
5273 assert(Group &&
"Fail to get an interleaved access group.");
5277 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy,
VF));
5280 unsigned InterleaveFactor = Group->getFactor();
5285 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5286 if (Group->getMember(IF))
5290 bool UseMaskForGaps =
5291 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5292 (isa<StoreInst>(
I) && !Group->isFull());
5294 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5298 if (Group->isReverse()) {
5301 "Reverse masked interleaved access not supported.");
5302 Cost += Group->getNumMembers() *
5309std::optional<InstructionCost>
5315 if (InLoopReductions.
empty() ||
VF.
isScalar() || !isa<VectorType>(Ty))
5316 return std::nullopt;
5317 auto *VectorTy = cast<VectorType>(Ty);
5334 return std::nullopt;
5347 return std::nullopt;
5352 while (!isa<PHINode>(ReductionPhi))
5353 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5356 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5378 if (useOrderedReductions(RdxDesc))
5385 : dyn_cast<Instruction>(RetI->
getOperand(1));
5390 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5403 bool IsUnsigned = isa<ZExtInst>(Op0);
5420 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5421 return I == RetI ? RedCost : 0;
5425 bool IsUnsigned = isa<ZExtInst>(RedOp);
5434 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5435 return I == RetI ? RedCost : 0;
5436 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5441 bool IsUnsigned = isa<ZExtInst>(Op0);
5464 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5465 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5473 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5474 return I == RetI ? RedCost : 0;
5483 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5484 return I == RetI ? RedCost : 0;
5488 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5492LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5507 return getWideningCost(
I,
VF);
5511LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5524 if (!
RetTy->isVoidTy() &&
5550 for (
auto *V : filterExtractingOperands(Ops,
VF))
5570 if (isa<StoreInst>(&
I) && isScalarWithPredication(&
I,
VF))
5573 if (
Legal->isUniformMemOp(
I,
VF)) {
5574 auto IsLegalToScalarize = [&]() {
5583 if (!foldTailByMasking())
5588 if (isa<LoadInst>(
I))
5593 auto &SI = cast<StoreInst>(
I);
5598 isLegalGatherOrScatter(&
I,
VF) ?
5606 IsLegalToScalarize() ? getUniformMemOpCost(&
I,
VF)
5612 if (GatherScatterCost < ScalarizationCost)
5613 setWideningDecision(&
I,
VF, CM_GatherScatter, GatherScatterCost);
5615 setWideningDecision(&
I,
VF, CM_Scalarize, ScalarizationCost);
5620 if (memoryInstructionCanBeWidened(&
I,
VF)) {
5622 int ConsecutiveStride =
Legal->isConsecutivePtr(
5624 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5625 "Expected consecutive stride.");
5627 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5628 setWideningDecision(&
I,
VF, Decision,
Cost);
5634 unsigned NumAccesses = 1;
5635 if (isAccessInterleaved(&
I)) {
5636 const auto *Group = getInterleavedAccessGroup(&
I);
5637 assert(Group &&
"Fail to get an interleaved access group.");
5640 if (getWideningDecision(&
I,
VF) != CM_Unknown)
5643 NumAccesses = Group->getNumMembers();
5644 if (interleavedAccessCanBeWidened(&
I,
VF))
5645 InterleaveCost = getInterleaveGroupCost(&
I,
VF);
5649 isLegalGatherOrScatter(&
I,
VF)
5650 ? getGatherScatterCost(&
I,
VF) * NumAccesses
5654 getMemInstScalarizationCost(&
I,
VF) * NumAccesses;
5660 if (InterleaveCost <= GatherScatterCost &&
5661 InterleaveCost < ScalarizationCost) {
5662 Decision = CM_Interleave;
5663 Cost = InterleaveCost;
5664 }
else if (GatherScatterCost < ScalarizationCost) {
5665 Decision = CM_GatherScatter;
5666 Cost = GatherScatterCost;
5668 Decision = CM_Scalarize;
5669 Cost = ScalarizationCost;
5674 if (
const auto *Group = getInterleavedAccessGroup(&
I))
5675 setWideningDecision(Group,
VF, Decision,
Cost);
5677 setWideningDecision(&
I,
VF, Decision,
Cost);
5695 if (PtrDef && TheLoop->
contains(PtrDef) &&
5696 getWideningDecision(&
I,
VF) != CM_GatherScatter)
5703 while (!Worklist.
empty()) {
5705 for (
auto &
Op :
I->operands())
5706 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
5707 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
5708 AddrDefs.
insert(InstOp).second)
5712 for (
auto *
I : AddrDefs) {
5713 if (isa<LoadInst>(
I)) {
5719 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
5721 setWideningDecision(
5722 I,
VF, CM_Scalarize,
5725 else if (
const auto *Group = getInterleavedAccessGroup(
I)) {
5727 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5729 setWideningDecision(
5730 Member,
VF, CM_Scalarize,
5737 if (isa<PHINode>(
I) &&
Legal->isFixedOrderRecurrence(cast<PHINode>(
I)))
5749 "Trying to set a vectorization decision for a scalar VF");
5751 auto ForcedScalar = ForcedScalars.
find(
VF);
5766 for (
auto &ArgOp : CI->
args())
5785 "Unexpected valid cost for scalarizing scalable vectors");
5792 if (
VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
5793 ForcedScalar->second.contains(CI)) ||
5794 isUniformAfterVectorization(CI,
VF))) {
5795 setCallWideningDecision(CI,
VF, CM_Scalarize,
nullptr,
5801 bool MaskRequired =
Legal->isMaskRequired(CI);
5804 for (
Type *ScalarTy : ScalarTys)
5810 if (
auto RedCost = getReductionPatternCost(CI,
VF,
RetTy)) {
5811 setCallWideningDecision(CI,
VF, CM_IntrinsicCall,
nullptr,
5813 std::nullopt, *RedCost);
5828 if (MaskRequired && !
Info.isMasked())
5832 bool ParamsOk =
true;
5834 switch (Param.ParamKind) {
5888 if (VectorCost <=
Cost) {
5890 Decision = CM_VectorCall;
5895 Decision = CM_IntrinsicCall;
5898 setCallWideningDecision(CI,
VF, Decision, VecFunc, IID,
5909 auto *OpI = dyn_cast<Instruction>(
Op);
5910 return !OpI || !TheLoop->
contains(OpI) ||
5911 (!isPredicatedInst(OpI) &&
5912 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->
getHeader()) &&
5914 [
this](
Value *
Op) {
return shouldConsiderInvariant(
Op); }));
5922 if (isUniformAfterVectorization(
I,
VF))
5926 return InstsToScalarize[
VF][
I];
5929 auto ForcedScalar = ForcedScalars.
find(
VF);
5931 auto InstSet = ForcedScalar->second;
5932 if (InstSet.count(
I))
5938 if (canTruncateToMinimalBitwidth(
I,
VF))
5943 if (isScalarAfterVectorization(
I,
VF)) {
5944 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5949 auto Scalarized = InstsToScalarize.
find(
VF);
5950 assert(Scalarized != InstsToScalarize.
end() &&
5951 "VF not yet analyzed for scalarization profitability");
5952 return !Scalarized->second.count(
I) &&
5954 auto *UI = cast<Instruction>(U);
5955 return !Scalarized->second.count(UI);
5964 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5965 I->getOpcode() == Instruction::PHI ||
5966 (
I->getOpcode() == Instruction::BitCast &&
5967 I->getType()->isPointerTy()) ||
5968 HasSingleCopyAfterVectorization(
I,
VF));
5978 switch (
I->getOpcode()) {
5979 case Instruction::GetElementPtr:
5985 case Instruction::Br: {
5992 bool ScalarPredicatedBB =
false;
5998 ScalarPredicatedBB =
true;
6000 if (ScalarPredicatedBB) {
6024 case Instruction::Switch: {
6027 auto *Switch = cast<SwitchInst>(
I);
6028 return Switch->getNumCases() *
6035 case Instruction::PHI: {
6036 auto *Phi = cast<PHINode>(
I);
6043 cast<VectorType>(VectorTy),
6044 cast<VectorType>(VectorTy), Mask,
CostKind,
6052 Type *ResultTy = Phi->getType();
6056 auto *HeaderUser = cast_if_present<PHINode>(
6057 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6058 auto *Phi = dyn_cast<PHINode>(U);
6059 if (Phi && Phi->getParent() == TheLoop->getHeader())
6064 auto &ReductionVars =
Legal->getReductionVars();
6065 auto Iter = ReductionVars.find(HeaderUser);
6066 if (Iter != ReductionVars.end() &&
6068 Iter->second.getRecurrenceKind()))
6071 return (Phi->getNumIncomingValues() - 1) *
6081 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6084 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6090 case Instruction::UDiv:
6091 case Instruction::SDiv:
6092 case Instruction::URem:
6093 case Instruction::SRem:
6095 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(
I,
VF);
6096 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6097 ScalarCost : SafeDivisorCost;
6101 case Instruction::Add:
6102 case Instruction::Sub: {
6110 if (!
RHS ||
RHS->getZExtValue() != 1)
6116 Type *ScalarTy =
I->getType();
6120 {PtrTy, ScalarTy, MaskTy});
6128 case Instruction::FAdd:
6129 case Instruction::FSub:
6130 case Instruction::Mul:
6131 case Instruction::FMul:
6132 case Instruction::FDiv:
6133 case Instruction::FRem:
6134 case Instruction::Shl:
6135 case Instruction::LShr:
6136 case Instruction::AShr:
6137 case Instruction::And:
6138 case Instruction::Or:
6139 case Instruction::Xor: {
6143 if (
I->getOpcode() == Instruction::Mul &&
6151 if (
auto RedCost = getReductionPatternCost(
I,
VF, VectorTy))
6156 Value *Op2 =
I->getOperand(1);
6160 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6164 shouldConsiderInvariant(Op2))
6170 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6173 case Instruction::FNeg: {
6176 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6177 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6178 I->getOperand(0),
I);
6180 case Instruction::Select: {
6182 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6185 const Value *Op0, *Op1;
6202 Type *CondTy = SI->getCondition()->getType();
6207 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6208 Pred = Cmp->getPredicate();
6210 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6211 {TTI::OK_AnyValue, TTI::OP_None},
I);
6213 case Instruction::ICmp:
6214 case Instruction::FCmp: {
6215 Type *ValTy =
I->getOperand(0)->getType();
6217 if (canTruncateToMinimalBitwidth(
I,
VF)) {
6219 dyn_cast<Instruction>(
I->getOperand(0));
6220 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction,
VF) ||
6221 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6222 "if both the operand and the compare are marked for "
6223 "truncation, they must have the same bitwidth");
6230 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6231 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6233 case Instruction::Store:
6234 case Instruction::Load: {
6238 assert(Decision != CM_Unknown &&
6239 "CM decision should be taken at this point");
6242 if (Decision == CM_Scalarize)
6246 return getMemoryInstructionCost(
I,
VF);
6248 case Instruction::BitCast:
6249 if (
I->getType()->isPointerTy())
6252 case Instruction::ZExt:
6253 case Instruction::SExt:
6254 case Instruction::FPToUI:
6255 case Instruction::FPToSI:
6256 case Instruction::FPExt:
6257 case Instruction::PtrToInt:
6258 case Instruction::IntToPtr:
6259 case Instruction::SIToFP:
6260 case Instruction::UIToFP:
6261 case Instruction::Trunc:
6262 case Instruction::FPTrunc: {
6265 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6266 "Expected a load or a store!");
6271 switch (getWideningDecision(
I,
VF)) {
6292 unsigned Opcode =
I->getOpcode();
6295 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6297 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6298 CCH = ComputeCCH(Store);
6301 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6302 Opcode == Instruction::FPExt) {
6303 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6304 CCH = ComputeCCH(Load);
6310 if (isOptimizableIVTruncate(
I,
VF)) {
6311 auto *Trunc = cast<TruncInst>(
I);
6313 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6317 if (
auto RedCost = getReductionPatternCost(
I,
VF, VectorTy))
6320 Type *SrcScalarTy =
I->getOperand(0)->getType();
6321 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6322 if (canTruncateToMinimalBitwidth(Op0AsInstruction,
VF))
6328 if (canTruncateToMinimalBitwidth(
I,
VF)) {
6332 (
I->getOpcode() == Instruction::ZExt ||
6333 I->getOpcode() == Instruction::SExt))
6339 case Instruction::Call:
6340 return getVectorCallCost(cast<CallInst>(
I),
VF);
6341 case Instruction::ExtractValue:
6343 case Instruction::Alloca:
6365 bool RequiresScalarEpilogue = requiresScalarEpilogue(
true);
6366 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6367 return RequiresScalarEpilogue &&
6368 !TheLoop->
contains(cast<Instruction>(U)->getParent());
6379 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6380 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
6381 ValuesToIgnore.insert(&
I);
6382 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6383 SI->getValueOperand());
6386 if (VecValuesToIgnore.contains(&
I) || ValuesToIgnore.contains(&
I))
6392 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6393 return VecValuesToIgnore.contains(U) ||
6394 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6401 if (isAccessInterleaved(&
I)) {
6402 auto *Group = getInterleavedAccessGroup(&
I);
6403 if (Group->getInsertPos() == &
I)
6406 DeadInterleavePointerOps.
push_back(PointerOp);
6411 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6412 if (Br->isConditional())
6419 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6420 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6422 Instruction *UI = cast<Instruction>(U);
6423 return !VecValuesToIgnore.contains(U) &&
6424 (!isAccessInterleaved(UI) ||
6425 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6428 VecValuesToIgnore.insert(
Op);
6429 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
6432 for (
const auto &[
_, Ops] : DeadInvariantStoreOps)
6444 return ValuesToIgnore.contains(&
I) || VecValuesToIgnore.contains(&
I) ||
6445 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
6448 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6449 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
6452 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
6460 if ((ThenEmpty && ElseEmpty) ||
6462 ElseBB->
phis().empty()) ||
6464 ThenBB->
phis().empty())) {
6465 VecValuesToIgnore.insert(Br);
6473 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
6476 return !VecValuesToIgnore.contains(U) &&
6477 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6485 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6486 ValuesToIgnore.insert(
Op);
6488 VecValuesToIgnore.insert(
Op);
6489 DeadOps.
append(
Op->op_begin(),
Op->op_end());
6497 VecValuesToIgnore.insert_range(Casts);
6501 for (
const auto &Induction :
Legal->getInductionVars()) {
6504 VecValuesToIgnore.insert_range(Casts);
6510 if (!InLoopReductions.
empty())
6533 bool InLoop = !ReductionOperations.
empty();
6536 InLoopReductions.
insert(Phi);
6539 for (
auto *
I : ReductionOperations) {
6540 InLoopReductionImmediateChains[
I] = LastChain;
6544 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6545 <<
" reduction for phi: " << *Phi <<
"\n");
6558 unsigned WidestType;
6567 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6588 <<
"overriding computed VF.\n");
6593 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6594 <<
"not supported by the target.\n");
6596 "Scalable vectorization requested but not supported by the target",
6597 "the scalable user-specified vectorization width for outer-loop "
6598 "vectorization cannot be used because the target does not support "
6599 "scalable vectors.",
6600 "ScalableVFUnfeasible", ORE,
OrigLoop);
6605 "VF needs to be a power of two");
6607 <<
"VF " <<
VF <<
" to build VPlans.\n");
6608 buildVPlans(
VF,
VF);
6617 return {
VF, 0 , 0 };
6621 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6622 "VPlan-native path.\n");
6628 CM.collectValuesToIgnore();
6629 CM.collectElementTypesForWidening();
6640 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6641 "which requires masked-interleaved support.\n");
6642 if (CM.InterleaveInfo.invalidateGroups())
6646 CM.invalidateCostModelingDecisions();
6649 if (CM.foldTailByMasking())
6650 Legal->prepareToFoldTailByMasking();
6657 "UserVF ignored because it may be larger than the maximal safe VF",
6661 "VF needs to be a power of two");
6664 CM.collectInLoopReductions();
6665 if (CM.selectUserVectorizationFactor(UserVF)) {
6667 buildVPlansWithVPRecipes(UserVF, UserVF);
6685 CM.collectInLoopReductions();
6686 for (
const auto &
VF : VFCandidates) {
6688 CM.collectNonVectorizedAndSetWideningDecisions(
VF);
6707 return CM.isUniformAfterVectorization(
I,
VF);
6711 return CM.ValuesToIgnore.contains(UI) ||
6712 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6713 SkipCostComputation.contains(UI);
6732 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6736 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6737 for (
Value *
Op : IVInsts[
I]->operands()) {
6738 auto *OpI = dyn_cast<Instruction>(
Op);
6745 for (
User *U :
IV->users()) {
6746 auto *CI = cast<Instruction>(U);
6758 if (TC ==
VF && !CM.foldTailByMasking())
6767 dbgs() <<
"Cost of " << InductionCost <<
" for VF " <<
VF
6768 <<
": induction instruction " << *IVInst <<
"\n";
6770 Cost += InductionCost;
6780 CM.TheLoop->getExitingBlocks(Exiting);
6784 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
6787 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
6788 ExitInstrs.
insert(CondI);
6792 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6799 dbgs() <<
"Cost of " << CondICost <<
" for VF " <<
VF
6800 <<
": exit condition instruction " << *CondI <<
"\n";
6804 auto *OpI = dyn_cast<Instruction>(
Op);
6806 any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
6807 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6808 !ExitInstrs.contains(cast<Instruction>(U));
6839 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " <<
VF
6840 <<
": forced scalar " << *ForcedScalar <<
"\n";
6844 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[
VF]) {
6849 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " <<
VF
6850 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6868 <<
" (Estimated cost per lane: ");
6870 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6890 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
6891 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6892 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6893 return &WidenMem->getIngredient();
6899 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
6901 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
6902 auto *IG =
IR->getInterleaveGroup();
6903 unsigned NumMembers = IG->getNumMembers();
6904 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6912 if (
auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
6914 auto *VPI = dyn_cast<VPInstruction>(U);
6915 return VPI && VPI->getOpcode() ==
6916 VPInstruction::FirstOrderRecurrenceSplice;
6922 if (isa<VPPartialReductionRecipe>(&R))
6928 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
6929 if (RepR->isSingleScalar() &&
6931 RepR->getUnderlyingInstr(),
VF))
6934 if (
Instruction *UI = GetInstructionForCost(&R)) {
6937 using namespace VPlanPatternMatch;
6939 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6940 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
6941 cast<CmpInst>(UI)->getPredicate())
6951 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6953 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6956 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6957 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6959 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6969 VPlan &FirstPlan = *VPlans[0];
6975 ?
"Reciprocal Throughput\n"
6977 ?
"Instruction Latency\n"
6980 ?
"Code Size and Latency\n"
6984 assert(hasPlanWithVF(ScalarVF) &&
6985 "More than a single plan/VF w/o any plan having scalar VF");
6989 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
6994 if (ForceVectorization) {
7001 for (
auto &
P : VPlans) {
7003 P->vectorFactors().end());
7010 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7017 <<
"LV: Not considering vector loop of width " <<
VF
7018 <<
" because it will not generate any vector instructions.\n");
7024 <<
"LV: Not considering vector loop of width " <<
VF
7025 <<
" because it would cause replicated blocks to be generated,"
7026 <<
" which isn't allowed when optimizing for size.\n");
7033 if (CM.shouldCalculateRegPressureForVF(
VF) &&
7035 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7036 <<
VF <<
" because it uses too many registers\n");
7040 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7041 BestFactor = CurrentFactor;
7044 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7045 ProfitableVFs.push_back(CurrentFactor);
7055 VPlan &BestPlan = getPlanFor(BestFactor.
Width);
7061 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7062 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7069 BestFactor.
Width) ||
7072 " VPlan cost model and legacy cost model disagreed");
7074 "when vectorizing, the scalar cost must be computed.");
7085 bool IsUnrollMetadata =
false;
7086 MDNode *LoopID = L->getLoopID();
7090 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7092 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7094 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7100 if (!IsUnrollMetadata) {
7111 L->setLoopID(NewLoopID);
7116 using namespace VPlanPatternMatch;
7118 "RdxResult must be ComputeFindIVResult");
7135 auto *EpiRedResult = dyn_cast<VPInstruction>(
Incoming);
7136 if (!EpiRedResult ||
7142 auto *EpiRedHeaderPhi =
7143 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7144 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7145 Value *MainResumeValue;
7146 if (
auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7149 "unexpected start recipe");
7150 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7152 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7154 [[maybe_unused]]
Value *StartV =
7155 EpiRedResult->getOperand(1)->getLiveInIRValue();
7156 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7158 "AnyOf expected to start with ICMP_NE");
7159 assert(Cmp->getOperand(1) == StartV &&
7160 "AnyOf expected to start by comparing main resume value to original "
7162 MainResumeValue = Cmp->getOperand(0);
7165 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7167 Value *Cmp, *OrigResumeV, *CmpOp;
7168 [[maybe_unused]]
bool IsExpectedPattern =
7169 match(MainResumeValue,
7175 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7176 MainResumeValue = OrigResumeV;
7178 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7183 auto *EpiResumePhi = cast<PHINode>(State.
get(EpiResumePhiR,
true));
7184 EpiResumePhi->setIncomingValueForBlock(
7192 "Trying to execute plan with unsupported VF");
7194 "Trying to execute plan with unsupported UF");
7196 ++LoopsEarlyExitVectorized;
7203 bool HasBranchWeights =
7205 if (HasBranchWeights) {
7206 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7208 BestVPlan, BestVF, VScale);
7211 if (!VectorizingEpilogue) {
7214 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7236 BestVPlan, VectorPH, CM.foldTailByMasking(),
7237 CM.requiresScalarEpilogue(BestVF.
isVector()));
7248 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7249 "count during epilogue vectorization");
7254 Legal->getWidestInductionType());
7256#ifdef EXPENSIVE_CHECKS
7263 cast<VPIRBasicBlock>(BestVPlan.
getEntry())->getIRBasicBlock();
7270 "final VPlan is invalid");
7277 if (Exit->getNumPredecessors() == 0)
7281 OrigLoop, cast<PHINode>(&cast<VPIRPhi>(PhiR).getInstruction()));
7300 MemCheckBlock->moveAfter(EntryBB);
7302 SCEVCheckBlock->moveAfter(EntryBB);
7308 if (VectorizingEpilogue) {
7310 "Epilogue vectorisation not yet supported with early exits");
7315 if (Phi.getBasicBlockIndex(Pred) != -1)
7317 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
7338 std::optional<MDNode *> VectorizedLoopID =
7343 if (VectorizedLoopID) {
7344 L->setLoopID(*VectorizedLoopID);
7355 bool IsEVLVectorized =
7358 if (
const auto *VI = dyn_cast<VPInstruction>(&Recipe))
7362 if (IsEVLVectorized) {
7364 MDNode *LoopID = L->getLoopID();
7370 {IsEVLVectorizedMD});
7371 L->setLoopID(NewLoopID);
7386 return ExpandedSCEVs;
7416 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7426 dbgs() <<
"intermediate fn:\n"
7434 assert(Bypass &&
"Expected valid bypass basic block.");
7437 Value *CheckMinIters =
7443 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7448 nullptr,
"vector.ph");
7470 return TCCheckBlock;
7487 nullptr,
"vec.epilog.iter.check",
true);
7490 emitMinimumVectorEpilogueIterCountCheck(ScalarPH,
7491 VecEpilogueIterationCountCheck);
7497 "expected this to be saved from the previous pass.");
7502 VecEpilogueIterationCountCheck, ScalarPH);
7509 VecEpilogueIterationCountCheck, ScalarPH);
7512 VecEpilogueIterationCountCheck, ScalarPH);
7522 for (
PHINode *Phi : PhisInBlock) {
7524 Phi->replaceIncomingBlockWith(
7526 VecEpilogueIterationCountCheck);
7533 return EPI.EpilogueIterationCountCheck == IncB;
7538 Phi->removeIncomingValue(SCEVCheckBlock);
7540 Phi->removeIncomingValue(MemCheckBlock);
7551 "Expected trip count to have been saved in the first pass.");
7562 Value *CheckMinIters =
7566 "min.epilog.iters.check");
7571 auto VScale =
Cost->getVScaleForTuning();
7572 unsigned MainLoopStep =
7574 unsigned EpilogueLoopStep =
7580 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7581 const uint32_t Weights[] = {EstimatedSkipCount,
7582 MainLoopStep - EstimatedSkipCount};
7600 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7615 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
7616 "Must be called with either a load or store");
7620 CM.getWideningDecision(
I,
VF);
7622 "CM decision should be taken at this point.");
7625 if (CM.isScalarAfterVectorization(
I,
VF) ||
7626 CM.isProfitableToScalarize(
I,
VF))
7635 if (
Legal->isMaskRequired(
I))
7636 Mask = getBlockInMask(
Builder.getInsertBlock());
7641 CM.getWideningDecision(
I,
Range.Start);
7648 auto *
GEP = dyn_cast<GetElementPtrInst>(
7649 Ptr->getUnderlyingValue()->stripPointerCasts());
7656 (CM.foldTailByMasking() || !
GEP || !
GEP->isInBounds())
7661 -1, Flags,
I->getDebugLoc());
7664 GEP ?
GEP->getNoWrapFlags()
7671 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
7690 "step must be loop invariant");
7694 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
7697 TruncI->getDebugLoc());
7699 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
7701 IndDesc, Phi->getDebugLoc());
7709 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7714 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7720 return CM.isScalarAfterVectorization(Phi, VF);
7723 Phi->getDebugLoc());
7737 auto IsOptimizableIVTruncate =
7740 return CM.isOptimizableIVTruncate(K,
VF);
7745 IsOptimizableIVTruncate(
I),
Range)) {
7747 auto *
Phi = cast<PHINode>(
I->getOperand(0));
7761 return CM.isScalarWithPredication(CI,
VF);
7769 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7770 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7771 ID == Intrinsic::pseudoprobe ||
7772 ID == Intrinsic::experimental_noalias_scope_decl))
7778 bool ShouldUseVectorIntrinsic =
7781 return CM.getCallWideningDecision(CI,
VF).Kind ==
7785 if (ShouldUseVectorIntrinsic)
7790 std::optional<unsigned> MaskPos;
7810 CM.getCallWideningDecision(CI,
VF);
7812 Variant = Decision.Variant;
7813 MaskPos = Decision.MaskPos;
7820 if (ShouldUseVectorCall) {
7821 if (MaskPos.has_value()) {
7830 if (
Legal->isMaskRequired(CI))
7836 Ops.insert(Ops.
begin() + *MaskPos, Mask);
7847 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
7848 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7852 return CM.isScalarAfterVectorization(
I,
VF) ||
7853 CM.isProfitableToScalarize(
I,
VF) ||
7854 CM.isScalarWithPredication(
I,
VF);
7862 switch (
I->getOpcode()) {
7865 case Instruction::SDiv:
7866 case Instruction::UDiv:
7867 case Instruction::SRem:
7868 case Instruction::URem: {
7871 if (CM.isPredicatedInst(
I)) {
7876 auto *SafeRHS =
Builder.createSelect(Mask, Ops[1], One,
I->getDebugLoc());
7882 case Instruction::Add:
7883 case Instruction::And:
7884 case Instruction::AShr:
7885 case Instruction::FAdd:
7886 case Instruction::FCmp:
7887 case Instruction::FDiv:
7888 case Instruction::FMul:
7889 case Instruction::FNeg:
7890 case Instruction::FRem:
7891 case Instruction::FSub:
7892 case Instruction::ICmp:
7893 case Instruction::LShr:
7894 case Instruction::Mul:
7895 case Instruction::Or:
7896 case Instruction::Select:
7897 case Instruction::Shl:
7898 case Instruction::Sub:
7899 case Instruction::Xor:
7900 case Instruction::Freeze: {
7907 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
7908 if (!
Op->isLiveIn())
7910 Value *
V =
Op->getUnderlyingValue();
7911 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
7913 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
7919 if (
I->getOpcode() == Instruction::Mul)
7920 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7922 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7926 case Instruction::ExtractValue: {
7929 auto *EVI = cast<ExtractValueInst>(
I);
7930 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7931 unsigned Idx = EVI->getIndices()[0];
7939VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7942 unsigned Opcode =
HI->Update->getOpcode();
7943 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7944 "Histogram update operation must be an Add or Sub");
7950 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7954 if (
Legal->isMaskRequired(
HI->Store))
7967 bool IsPredicated = CM.isPredicatedInst(
I);
7973 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
7975 case Intrinsic::assume:
7976 case Intrinsic::lifetime_start:
7977 case Intrinsic::lifetime_end:
7999 VPValue *BlockInMask =
nullptr;
8000 if (!IsPredicated) {
8004 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8009 BlockInMask = getBlockInMask(
Builder.getInsertBlock());
8015 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8016 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8017 "Should not predicate a uniform recipe");
8028 PartialReductionChains;
8029 for (
const auto &[Phi, RdxDesc] :
Legal->getReductionVars()) {
8030 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
8031 PartialReductionChains);
8040 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
8041 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8043 auto ExtendIsOnlyUsedByPartialReductions =
8045 return all_of(Extend->users(), [&](
const User *U) {
8046 return PartialReductionOps.contains(U);
8052 for (
auto Pair : PartialReductionChains) {
8054 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
8055 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
8056 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
8060bool VPRecipeBuilder::getScaledReductions(
8062 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8063 if (!CM.TheLoop->contains(RdxExitInstr))
8066 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8070 Value *
Op = Update->getOperand(0);
8071 Value *PhiOp = Update->getOperand(1);
8078 if (
auto *OpInst = dyn_cast<Instruction>(
Op)) {
8079 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8080 PHI = Chains.rbegin()->first.Reduction;
8082 Op = Update->getOperand(0);
8083 PhiOp = Update->getOperand(1);
8098 std::optional<unsigned> BinOpc;
8099 Type *ExtOpTypes[2] = {
nullptr};
8101 auto CollectExtInfo = [
this, &Exts,
8104 for (
Value *OpI : Ops) {
8108 Exts[
I] = cast<Instruction>(OpI);
8111 if (!CM.TheLoop->contains(Exts[
I]))
8129 if (!CollectExtInfo(Ops))
8132 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8136 if (!CollectExtInfo(Ops))
8139 ExtendUser = Update;
8140 BinOpc = std::nullopt;
8150 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8159 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8160 PHI->getType(),
VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8164 Chains.emplace_back(Chain, TargetScaleFactor);
8178 if (
auto *PhiR = dyn_cast<VPPhi>(R)) {
8183 "Non-header phis should have been handled during predication");
8184 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8185 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8186 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8191 Legal->isFixedOrderRecurrence(Phi)) &&
8192 "can only widen reductions and fixed-order recurrences here");
8194 if (
Legal->isReductionVariable(Phi)) {
8200 unsigned ScaleFactor =
8204 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8216 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8218 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8227 if (
auto *CI = dyn_cast<CallInst>(Instr))
8230 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8231 if (
auto HistInfo =
Legal->getHistogramInfo(SI))
8232 return tryToWidenHistogram(*HistInfo,
Operands);
8234 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8237 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8238 return tryToCreatePartialReduction(Instr,
Operands, ScaleFactor.value());
8240 if (!shouldWiden(Instr,
Range))
8243 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8246 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8250 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8255 return tryToWiden(Instr,
Operands);
8261 unsigned ScaleFactor) {
8263 "Unexpected number of operands for partial reduction");
8268 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8269 isa<VPPartialReductionRecipe>(BinOpRecipe))
8272 unsigned ReductionOpcode =
Reduction->getOpcode();
8273 if (ReductionOpcode == Instruction::Sub) {
8274 auto *
const Zero = ConstantInt::get(
Reduction->getType(), 0);
8280 ReductionOpcode = Instruction::Add;
8284 if (CM.blockNeedsPredicationForAnyReason(
Reduction->getParent())) {
8285 assert((ReductionOpcode == Instruction::Add ||
8286 ReductionOpcode == Instruction::Sub) &&
8287 "Expected an ADD or SUB operation for predicated partial "
8288 "reductions (because the neutral element in the mask is zero)!");
8298void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8312 LVer.prepareNoAliasMetadata();
8321 auto MaxVFTimes2 = MaxVF * 2;
8324 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8325 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8330 *
Plan, CM.getMinimalBitwidths());
8333 if (CM.foldTailWithEVL() && !HasScalarVF)
8335 *
Plan, CM.getMaxSafeElements());
8337 VPlans.push_back(std::move(
Plan));
8349 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8352 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8359 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8361 ID.getKind(), dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
8362 Start, VectorTC, Step);
8375 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8376 return ResumePhiRecipe;
8387 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getPredecessors()[0]);
8391 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8394 auto *ScalarPhiIRI = cast<VPIRPhi>(&ScalarPhiR);
8399 cast<VPHeaderPHIRecipe>(
Builder.getRecipe(&ScalarPhiIRI->getIRPhi()));
8400 if (
auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8402 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8404 assert(isa<VPPhi>(ResumePhi) &&
"Expected a phi");
8405 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8406 ScalarPhiIRI->addOperand(ResumePhi);
8412 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8413 "should only skip truncated wide inductions");
8420 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8421 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8423 "Cannot handle loops with uncountable early exits");
8427 "vector.recur.extract");
8428 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8430 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
8443 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8444 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8451 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8456 "Cannot handle loops with uncountable early exits");
8528 for (
VPUser *U : FOR->users()) {
8542 {},
"vector.recur.extract.for.phi");
8548VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8559 bool RequiresScalarEpilogueCheck =
8562 return !CM.requiresScalarEpilogue(
VF.
isVector());
8567 CM.foldTailByMasking());
8575 bool IVUpdateMayOverflow =
false;
8590 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8592 "Did not find the canonical IV increment");
8593 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8608 CM.getWideningDecision(IG->getInsertPos(),
VF) ==
8613 "Unsupported interleave factor for scalable vectors");
8616 if (!getDecisionAndClampRange(ApplyIG,
Range))
8618 InterleaveGroups.
insert(IG);
8625 *
Plan, CM.foldTailByMasking());
8632 Builder, BlockMaskCache, LVer);
8633 RecipeBuilder.collectScaledReductions(
Range);
8647 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8650 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8651 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8657 if (isa<VPCanonicalIVPHIRecipe, VPWidenCanonicalIVRecipe, VPBlendRecipe>(
8659 (isa<VPInstruction>(&R) && !UnderlyingValue))
8664 assert((isa<VPWidenPHIRecipe>(&R) || isa<VPInstruction>(&R)) &&
8665 UnderlyingValue &&
"unsupported recipe");
8670 Builder.setInsertPoint(SingleDef);
8676 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8677 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8679 if (
Legal->isInvariantStoreOfReduction(SI)) {
8683 Recipe->insertBefore(*MiddleVPBB, MBIP);
8685 R.eraseFromParent();
8690 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8693 Recipe = RecipeBuilder.handleReplication(Instr,
Operands,
Range);
8696 RecipeBuilder.setRecipe(Instr, Recipe);
8697 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8709 "Unexpected multidef recipe");
8710 R.eraseFromParent();
8719 RecipeBuilder.updateBlockMaskCache(Old2New);
8721 Old->getDefiningRecipe()->eraseFromParent();
8725 "entry block must be set to a VPRegionBlock having a non-empty entry "
8731 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8732 auto *IVInc = cast<Instruction>(
8737 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
8752 adjustRecipesForReductions(
Plan, RecipeBuilder,
Range.Start);
8764 if (!CM.foldTailWithEVL()) {
8778 InterleaveGroups, RecipeBuilder,
8779 CM.isScalarEpilogueAllowed());
8784 auto *
R = cast<VPRecipeBase>(&U);
8785 return R->getParent()->getParent() ||
8789 for (
auto [
_, Stride] :
Legal->getLAI()->getSymbolicStrides()) {
8790 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
8791 auto *ScevStride = dyn_cast<SCEVConstant>(
PSE.
getSCEV(StrideV));
8797 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
8804 if (!isa<SExtInst, ZExtInst>(U))
8809 unsigned BW =
U->getType()->getScalarSizeInBits();
8810 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
8811 : ScevStride->getAPInt().zext(BW);
8817 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8818 return Legal->blockNeedsPredication(BB);
8821 BlockNeedsPredication);
8833 bool WithoutRuntimeCheck =
8836 WithoutRuntimeCheck);
8868 return Legal->getIntOrFpInductionDescriptor(
P);
8877 Builder, BlockMaskCache,
nullptr );
8879 if (isa<VPCanonicalIVPHIRecipe>(&R))
8881 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8882 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8906void LoopVectorizationPlanner::adjustRecipesForReductions(
8908 using namespace VPlanPatternMatch;
8915 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8916 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8923 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8928 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8931 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8932 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8933 assert((UserRecipe->getParent() == MiddleVPBB ||
8935 "U must be either in the loop region, the middle block or the "
8936 "scalar preheader.");
8939 Worklist.
insert(UserRecipe);
8952 if (
auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8953 assert(Blend->getNumIncomingValues() == 2 &&
8954 "Blend must have 2 incoming values");
8955 if (Blend->getIncomingValue(0) == PhiR) {
8956 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8958 assert(Blend->getIncomingValue(1) == PhiR &&
8959 "PhiR must be an operand of the blend");
8960 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8965 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8968 unsigned IndexOfFirstOperand;
8976 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8977 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8978 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8979 CurrentLink->getOperand(2) == PreviousLink &&
8980 "expected a call where the previous link is the added operand");
8988 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8990 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8993 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8994 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8997 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8999 Sub->setUnderlyingValue(CurrentLinkI);
9000 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
9004 if (isa<VPWidenRecipe>(CurrentLink)) {
9005 assert(isa<CmpInst>(CurrentLinkI) &&
9006 "need to have the compare of the select");
9009 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9010 "must be a select recipe");
9011 IndexOfFirstOperand = 1;
9014 "Expected to replace a VPWidenSC");
9015 IndexOfFirstOperand = 0;
9020 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9021 ? IndexOfFirstOperand + 1
9022 : IndexOfFirstOperand;
9023 VecOp = CurrentLink->getOperand(VecOpId);
9024 assert(VecOp != PreviousLink &&
9025 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9026 (VecOpId - IndexOfFirstOperand)) ==
9028 "PreviousLink must be the operand other than VecOp");
9032 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
9037 cast<PHINode>(PhiR->getUnderlyingInstr()));
9043 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
9050 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
9054 CurrentLink->replaceAllUsesWith(RedRecipe);
9056 PreviousLink = RedRecipe;
9060 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
9079 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
9080 !isa<VPPartialReductionRecipe>(OrigExitingVPV->getDefiningRecipe())) {
9082 std::optional<FastMathFlags> FMFs =
9087 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
9088 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](
VPUser &U,
unsigned) {
9089 return isa<VPInstruction>(&U) &&
9090 (cast<VPInstruction>(&U)->getOpcode() ==
9092 cast<VPInstruction>(&U)->getOpcode() ==
9094 cast<VPInstruction>(&U)->getOpcode() ==
9097 if (CM.usePredicatedReductionSelect())
9116 Builder.setInsertPoint(MiddleVPBB, IP);
9121 FinalReductionResult =
9123 {PhiR, Start,
Sentinel, NewExitingVPV}, ExitDL);
9126 FinalReductionResult =
9128 {PhiR, Start, NewExitingVPV}, ExitDL);
9134 FinalReductionResult =
9136 {PhiR, NewExitingVPV},
Flags, ExitDL);
9143 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9145 "Unexpected truncated min-max recurrence!");
9150 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9152 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9153 Extnd->insertAfter(Trunc);
9155 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9160 FinalReductionResult =
9161 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9166 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9167 auto *Parent = cast<VPRecipeBase>(U)->getParent();
9168 if (FinalReductionResult == U || Parent->getParent())
9170 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9172 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
9181 return isa<VPWidenSelectRecipe>(U) ||
9182 (isa<VPReplicateRecipe>(U) &&
9183 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9184 Instruction::Select);
9195 if (
Select->getOperand(1) == PhiR)
9198 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9223 unsigned ScaleFactor =
9227 auto *ScaleFactorVPV =
9229 VPValue *StartV = PHBuilder.createNaryOp(
9238 R->eraseFromParent();
9243void LoopVectorizationPlanner::attachRuntimeChecks(
9245 const auto &[SCEVCheckCond, SCEVCheckBlock] =
RTChecks.getSCEVChecks();
9246 if (SCEVCheckBlock) {
9247 assert((!CM.OptForSize ||
9249 "Cannot SCEV check stride or overflow when optimizing for size");
9253 const auto &[MemCheckCond, MemCheckBlock] =
RTChecks.getMemRuntimeChecks();
9254 if (MemCheckBlock) {
9258 "Runtime checks are not supported for outer loops yet");
9260 if (CM.OptForSize) {
9263 "Cannot emit memory checks when optimizing for size, unless forced "
9269 <<
"Code-size may be reduced by not forcing "
9270 "vectorization, or by source-code modifications "
9271 "eliminating the need for runtime checks "
9272 "(e.g., adding 'restrict').";
9286 bool IsIndvarOverflowCheckNeededForVF =
9289 CM.getTailFoldingStyle() !=
9297 CM.requiresScalarEpilogue(
VF.
isVector()), CM.foldTailByMasking(),
9298 IsIndvarOverflowCheckNeededForVF,
OrigLoop, BranchWeigths,
9304 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9314 State.
Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9315 cast_if_present<BinaryOperator>(FPBinOp));
9382 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9386 Function *
F = L->getHeader()->getParent();
9392 LoopVectorizationCostModel CM(
SEL, L,
PSE,
LI, LVL, *
TTI, TLI, DB,
AC, ORE,
F,
9397 LoopVectorizationPlanner LVP(L,
LI,
DT, TLI, *
TTI, LVL, CM, IAI,
PSE, Hints,
9419 BFI,
PSI, Checks, BestPlan);
9421 << L->getHeader()->getParent()->getName() <<
"\"\n");
9423 VF.MinProfitableTripCount);
9444 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9445 if (S->getValueOperand()->getType()->isFloatTy())
9455 while (!Worklist.
empty()) {
9457 if (!L->contains(
I))
9459 if (!Visited.
insert(
I).second)
9466 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
9469 I->getDebugLoc(), L->getHeader())
9470 <<
"floating point conversion changes vector width. "
9471 <<
"Mixed floating point precision requires an up/down "
9472 <<
"cast that will negatively impact performance.";
9475 for (
Use &
Op :
I->operands())
9476 if (
auto *OpI = dyn_cast<Instruction>(
Op))
9491 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9497 << PredVPBB->getName() <<
":\n");
9498 Cost += PredVPBB->cost(
VF, CostCtx);
9517 std::optional<unsigned> VScale) {
9533 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9577 uint64_t Div = ScalarC * IntVF -
VF.Cost.getValue();
9592 uint64_t MinTC = std::max(MinTC1, MinTC2);
9594 MinTC =
alignTo(MinTC, IntVF);
9598 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9599 <<
VF.MinProfitableTripCount <<
"\n");
9605 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9606 "trip count < minimum profitable VF ("
9607 << *ExpectedTC <<
" < " <<
VF.MinProfitableTripCount
9617 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9619 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9632 if (isa<VPCanonicalIVPHIRecipe>(&R))
9635 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9639 auto *VPIRInst = cast<VPIRPhi>(&R);
9640 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9652 using namespace VPlanPatternMatch;
9659 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9660 bool UpdateResumePhis) {
9663 auto *VPI = dyn_cast<VPInstruction>(&R);
9666 VPValue *OrigStart = VPI->getOperand(1);
9670 Builder.
createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9672 if (UpdateResumePhis)
9674 return Freeze != &U && isa<VPPhi>(&U);
9678 AddFreezeForFindLastIVReductions(MainPlan,
true);
9679 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9686 auto ResumePhiIter =
9688 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9691 VPPhi *ResumePhi =
nullptr;
9692 if (ResumePhiIter == MainScalarPH->
phis().end()) {
9696 "vec.epilog.resume.val");
9698 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9699 if (MainScalarPH->
begin() == MainScalarPH->
end())
9701 else if (&*MainScalarPH->
begin() != ResumePhi)
9713 const SCEV2ValueTy &ExpandedSCEVs,
9717 Header->setName(
"vec.epilog.vector.body");
9723 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
9731 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9736 "Must only have a single non-zero incoming value");
9748 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9749 "all incoming values must be 0");
9755 return isa<VPScalarIVStepsRecipe>(U) ||
9756 isa<VPDerivedIVRecipe>(U) ||
9757 cast<VPRecipeBase>(U)->isScalarCast() ||
9758 cast<VPInstruction>(U)->getOpcode() ==
9761 "the canonical IV should only be used by its increment or "
9762 "ScalarIVSteps when resetting the start value");
9763 IV->setOperand(0, VPV);
9767 Value *ResumeV =
nullptr;
9769 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9771 cast<VPInstruction>(*
find_if(ReductionPhi->users(), [](
VPUser *U) {
9772 auto *VPI = dyn_cast<VPInstruction>(U);
9774 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9775 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9776 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9778 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9779 ->getIncomingValueForBlock(L->getLoopPreheader());
9780 RecurKind RK = ReductionPhi->getRecurrenceKind();
9791 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9803 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9807 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9808 if (
auto *VPI = dyn_cast<VPInstruction>(PhiR->
getStartValue())) {
9810 "unexpected start value");
9811 VPI->setOperand(0, StartVal);
9818 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9823 assert(ResumeV &&
"Must have a resume value");
9825 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9836 auto *VPI = dyn_cast<VPInstruction>(&R);
9837 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9839 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9846 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9854 ExpandR->eraseFromParent();
9864 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9869 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9870 if (OrigPhi != OldInduction) {
9871 auto *BinOp =
II.getInductionBinOp();
9873 if (isa_and_nonnull<FPMathOperator>(BinOp))
9877 EndValueFromAdditionalBypass =
9879 II.getStartValue(), Step,
II.getKind(), BinOp);
9880 EndValueFromAdditionalBypass->
setName(
"ind.end");
9882 return EndValueFromAdditionalBypass;
9887 "VPlan-native path is not enabled. Only process inner loops.");
9890 << L->getHeader()->getParent()->getName() <<
"' from "
9891 << L->getLocStr() <<
"\n");
9896 dbgs() <<
"LV: Loop hints:"
9907 Function *
F = L->getHeader()->getParent();
9929 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9936 "early exit is not enabled",
9937 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9946 if (!L->isInnermost())
9950 assert(L->isInnermost() &&
"Inner loop expected.");
9967 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9969 "requiring a scalar epilogue is unsupported",
9970 "UncountableEarlyExitUnsupported",
ORE, L);
9983 if (ExpectedTC && ExpectedTC->isFixed() &&
9985 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9986 <<
"This loop is worth vectorizing only if no scalar "
9987 <<
"iteration overheads are incurred.");
9989 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10005 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10007 "Can't vectorize when the NoImplicitFloat attribute is used",
10008 "loop not vectorized due to NoImplicitFloat attribute",
10009 "NoImplicitFloat",
ORE, L);
10021 "Potentially unsafe FP op prevents vectorization",
10022 "loop not vectorized due to unsafe FP support.",
10023 "UnsafeFP",
ORE, L);
10028 bool AllowOrderedReductions;
10038 ExactFPMathInst->getDebugLoc(),
10039 ExactFPMathInst->getParent())
10040 <<
"loop not vectorized: cannot prove it is safe to reorder "
10041 "floating-point operations";
10043 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10044 "reorder floating-point operations\n");
10050 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10053 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10061 LVP.
plan(UserVF, UserIC);
10068 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10073 unsigned SelectedIC = std::max(IC, UserIC);
10082 if (Checks.getSCEVChecks().first &&
10083 match(Checks.getSCEVChecks().first,
m_One()))
10085 if (Checks.getMemRuntimeChecks().first &&
10086 match(Checks.getMemRuntimeChecks().first,
m_One()))
10091 bool ForceVectorization =
10095 if (!ForceVectorization &&
10101 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10103 <<
"loop not vectorized: cannot prove it is safe to reorder "
10104 "memory operations";
10113 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10114 bool VectorizeLoop =
true, InterleaveLoop =
true;
10116 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10118 "VectorizationNotBeneficial",
10119 "the cost-model indicates that vectorization is not beneficial"};
10120 VectorizeLoop =
false;
10126 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10127 "interleaving should be avoided up front\n");
10128 IntDiagMsg = {
"InterleavingAvoided",
10129 "Ignoring UserIC, because interleaving was avoided up front"};
10130 InterleaveLoop =
false;
10131 }
else if (IC == 1 && UserIC <= 1) {
10135 "InterleavingNotBeneficial",
10136 "the cost-model indicates that interleaving is not beneficial"};
10137 InterleaveLoop =
false;
10139 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10140 IntDiagMsg.second +=
10141 " and is explicitly disabled or interleave count is set to 1";
10143 }
else if (IC > 1 && UserIC == 1) {
10145 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10147 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10148 "the cost-model indicates that interleaving is beneficial "
10149 "but is explicitly disabled or interleave count is set to 1"};
10150 InterleaveLoop =
false;
10156 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10157 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10158 <<
"to histogram operations.\n");
10160 "HistogramPreventsScalarInterleaving",
10161 "Unable to interleave without vectorization due to constraints on "
10162 "the order of histogram operations"};
10163 InterleaveLoop =
false;
10167 IC = UserIC > 0 ? UserIC : IC;
10171 if (!VectorizeLoop && !InterleaveLoop) {
10175 L->getStartLoc(), L->getHeader())
10176 << VecDiagMsg.second;
10180 L->getStartLoc(), L->getHeader())
10181 << IntDiagMsg.second;
10186 if (!VectorizeLoop && InterleaveLoop) {
10190 L->getStartLoc(), L->getHeader())
10191 << VecDiagMsg.second;
10193 }
else if (VectorizeLoop && !InterleaveLoop) {
10195 <<
") in " << L->getLocStr() <<
'\n');
10198 L->getStartLoc(), L->getHeader())
10199 << IntDiagMsg.second;
10201 }
else if (VectorizeLoop && InterleaveLoop) {
10203 <<
") in " << L->getLocStr() <<
'\n');
10207 bool DisableRuntimeUnroll =
false;
10208 MDNode *OrigLoopID = L->getLoopID();
10217 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10228 PSI, Checks, *BestMainPlan);
10230 *BestMainPlan, MainILV,
DT,
false);
10236 BFI,
PSI, Checks, BestEpiPlan);
10248 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
10253 Inc->setIncomingValueForBlock(BypassBlock, V);
10255 ++LoopsEpilogueVectorized;
10257 if (!Checks.hasChecks())
10258 DisableRuntimeUnroll =
true;
10260 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10277 DisableRuntimeUnroll =
true;
10280 using namespace ore;
10285 <<
"interleaved loop (interleaved count: "
10286 << NV(
"InterleaveCount", IC) <<
")";
10297 "DT not preserved correctly");
10299 std::optional<MDNode *> RemainderLoopID =
10302 if (RemainderLoopID) {
10303 L->setLoopID(*RemainderLoopID);
10305 if (DisableRuntimeUnroll)
10329 bool Changed =
false, CFGChanged =
false;
10336 for (
const auto &L : *
LI)
10337 Changed |= CFGChanged |=
10348 LoopsAnalyzed += Worklist.
size();
10351 while (!Worklist.
empty()) {
10396 if (!Result.MadeAnyChange)
10410 if (Result.MadeCFGChange) {
10426 OS, MapClassName2PassName);
10429 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10430 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static void addRuntimeUnrollDisableMetaData(Loop *L)
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
const char LLVMLoopVectorizeFollowupAll[]
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
const char VerboseDebug[]
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, VPTransformState &State, BasicBlock *BypassBlock)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
Value * createIterationCountCheck(ElementCount VF, unsigned UF) const
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI Value * CreateElementCount(Type *Ty, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPredecessor() const
If the given loop's header has exactly one unique predecessor outside the loop, return it.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool shouldCalculateRegPressureForVF(ElementCount VF)
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool isLoopInvariant(const Value *V, bool HasCoroSuspendInst=false) const
Return true if the specified value is loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool hasLoopInvariantOperands(const Instruction *I, bool HasCoroSuspendInst=false) const
Return true if all the operands of the specified instruction are loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI void verify() const
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
LLVM_ABI unsigned getIntegerBitWidth() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
void setName(const Twine &newName)
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void setEntry(VPBasicBlock *VPBB)
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
void addVF(ElementCount VF)
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
int getNumOccurrences() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
cl::opt< unsigned > ForceTargetInstructionCost
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
LLVM_ABI void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks