LLVM 22.0.0git
MCSchedule.h
Go to the documentation of this file.
1//===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the classes used to describe a subtarget's machine model
10// for scheduling and other instruction cost heuristics.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_MC_MCSCHEDULE_H
15#define LLVM_MC_MCSCHEDULE_H
16
17#include "llvm/ADT/StringRef.h"
19#include "llvm/MC/MCInstrDesc.h"
22#include <cassert>
23#include <optional>
24
25namespace llvm {
26
27template <typename T> class ArrayRef;
28struct InstrItinerary;
29class MCSubtargetInfo;
30class MCInstrInfo;
31class MCInst;
32class MCInstrDesc;
33class InstrItineraryData;
34
35/// Define a kind of processor resource that will be modeled by the scheduler.
37 const char *Name;
38 unsigned NumUnits; // Number of resource of this kind
39 unsigned SuperIdx; // Index of the resources kind that contains this kind.
40
41 // Number of resources that may be buffered.
42 //
43 // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
44 // cycle after dispatch. This should be used for out-of-order cpus when
45 // instructions that use this resource can be buffered in a reservaton
46 // station.
47 //
48 // Unbuffered resources (BufferSize == 0) always consume their resource some
49 // fixed number of cycles after dispatch. If a resource is unbuffered, then
50 // the scheduler will avoid scheduling instructions with conflicting resources
51 // in the same cycle. This is for in-order cpus, or the in-order portion of
52 // an out-of-order cpus.
54
55 // If the resource has sub-units, a pointer to the first element of an array
56 // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
57 // nullptr if the resource does not have sub-units.
58 const unsigned *SubUnitsIdxBegin;
59
60 bool operator==(const MCProcResourceDesc &Other) const {
61 return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
62 && BufferSize == Other.BufferSize;
63 }
64};
65
66/// Identify one of the processor resource kinds consumed by a
67/// particular scheduling class for the specified number of cycles.
70 /// Cycle at which the resource will be released by an instruction,
71 /// relatively to the cycle in which the instruction is issued
72 /// (assuming no stalls inbetween).
74 /// Cycle at which the resource will be aquired by an instruction,
75 /// relatively to the cycle in which the instruction is issued
76 /// (assuming no stalls inbetween).
78
80 return ProcResourceIdx == Other.ProcResourceIdx &&
81 ReleaseAtCycle == Other.ReleaseAtCycle &&
82 AcquireAtCycle == Other.AcquireAtCycle;
83 }
84};
85
86/// Specify the latency in cpu cycles for a particular scheduling class and def
87/// index. -1 indicates an invalid latency. Heuristics would typically consider
88/// an instruction with invalid latency to have infinite latency. Also identify
89/// the WriteResources of this def. When the operand expands to a sequence of
90/// writes, this ID is the last write in the sequence.
92 int16_t Cycles;
94
96 return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
97 }
98};
99
100/// Specify the number of cycles allowed after instruction issue before a
101/// particular use operand reads its registers. This effectively reduces the
102/// write's latency. Here we allow negative cycles for corner cases where
103/// latency increases. This rule only applies when the entry's WriteResource
104/// matches the write's WriteResource.
105///
106/// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
107/// WriteResourceIdx.
109 unsigned UseIdx;
112
114 return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
115 && Cycles == Other.Cycles;
116 }
117};
118
119/// Summarize the scheduling resources required for an instruction of a
120/// particular scheduling class.
121///
122/// Defined as an aggregate struct for creating tables with initializer lists.
124 static const unsigned short InvalidNumMicroOps = (1U << 13) - 1;
125 static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
126
127#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
129#endif
134 uint16_t WriteProcResIdx; // First index into WriteProcResTable.
136 uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
138 uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
140
141 bool isValid() const {
143 }
144 bool isVariant() const {
146 }
147};
148
149/// Specify the cost of a register definition in terms of number of physical
150/// register allocated at register renaming stage. For example, AMD Jaguar.
151/// natively supports 128-bit data types, and operations on 256-bit registers
152/// (i.e. YMM registers) are internally split into two COPs (complex operations)
153/// and each COP updates a physical register. Basically, on Jaguar, a YMM
154/// register write effectively consumes two physical registers. That means,
155/// the cost of a YMM write in the BtVer2 model is 2.
158 unsigned Cost;
160};
161
162/// A register file descriptor.
163///
164/// This struct allows to describe processor register files. In particular, it
165/// helps describing the size of the register file, as well as the cost of
166/// allocating a register file at register renaming stage.
167/// FIXME: this struct can be extended to provide information about the number
168/// of read/write ports to the register file. A value of zero for field
169/// 'NumPhysRegs' means: this register file has an unbounded number of physical
170/// registers.
172 const char *Name;
175 // Index of the first cost entry in MCExtraProcessorInfo::RegisterCostTable.
177 // A value of zero means: there is no limit in the number of moves that can be
178 // eliminated every cycle.
180 // Ture if this register file only knows how to optimize register moves from
181 // known zero registers.
183};
184
185/// Provide extra details about the machine processor.
186///
187/// This is a collection of "optional" processor information that is not
188/// normally used by the LLVM machine schedulers, but that can be consumed by
189/// external tools like llvm-mca to improve the quality of the peformance
190/// analysis.
192 // Actual size of the reorder buffer in hardware.
194 // Number of instructions retired per cycle.
200 unsigned LoadQueueID;
201 unsigned StoreQueueID;
202};
203
204/// Machine model for scheduling, bundling, and heuristics.
205///
206/// The machine model directly provides basic information about the
207/// microarchitecture to the scheduler in the form of properties. It also
208/// optionally refers to scheduler resource tables and itinerary
209/// tables. Scheduler resource tables model the latency and cost for each
210/// instruction type. Itinerary tables are an independent mechanism that
211/// provides a detailed reservation table describing each cycle of instruction
212/// execution. Subtargets may define any or all of the above categories of data
213/// depending on the type of CPU and selected scheduler.
214///
215/// The machine independent properties defined here are used by the scheduler as
216/// an abstract machine model. A real micro-architecture has a number of
217/// buffers, queues, and stages. Declaring that a given machine-independent
218/// abstract property corresponds to a specific physical property across all
219/// subtargets can't be done. Nonetheless, the abstract model is
220/// useful. Futhermore, subtargets typically extend this model with processor
221/// specific resources to model any hardware features that can be exploited by
222/// scheduling heuristics and aren't sufficiently represented in the abstract.
223///
224/// The abstract pipeline is built around the notion of an "issue point". This
225/// is merely a reference point for counting machine cycles. The physical
226/// machine will have pipeline stages that delay execution. The scheduler does
227/// not model those delays because they are irrelevant as long as they are
228/// consistent. Inaccuracies arise when instructions have different execution
229/// delays relative to each other, in addition to their intrinsic latency. Those
230/// special cases can be handled by TableGen constructs such as, ReadAdvance,
231/// which reduces latency when reading data, and ReleaseAtCycles, which consumes
232/// a processor resource when writing data for a number of abstract
233/// cycles.
234///
235/// TODO: One tool currently missing is the ability to add a delay to
236/// ReleaseAtCycles. That would be easy to add and would likely cover all cases
237/// currently handled by the legacy itinerary tables.
238///
239/// A note on out-of-order execution and, more generally, instruction
240/// buffers. Part of the CPU pipeline is always in-order. The issue point, which
241/// is the point of reference for counting cycles, only makes sense as an
242/// in-order part of the pipeline. Other parts of the pipeline are sometimes
243/// falling behind and sometimes catching up. It's only interesting to model
244/// those other, decoupled parts of the pipeline if they may be predictably
245/// resource constrained in a way that the scheduler can exploit.
246///
247/// The LLVM machine model distinguishes between in-order constraints and
248/// out-of-order constraints so that the target's scheduling strategy can apply
249/// appropriate heuristics. For a well-balanced CPU pipeline, out-of-order
250/// resources would not typically be treated as a hard scheduling
251/// constraint. For example, in the GenericScheduler, a delay caused by limited
252/// out-of-order resources is not directly reflected in the number of cycles
253/// that the scheduler sees between issuing an instruction and its dependent
254/// instructions. In other words, out-of-order resources don't directly increase
255/// the latency between pairs of instructions. However, they can still be used
256/// to detect potential bottlenecks across a sequence of instructions and bias
257/// the scheduling heuristics appropriately.
259 // IssueWidth is the maximum number of instructions that may be scheduled in
260 // the same per-cycle group. This is meant to be a hard in-order constraint
261 // (a.k.a. "hazard"). In the GenericScheduler strategy, no more than
262 // IssueWidth micro-ops can ever be scheduled in a particular cycle.
263 //
264 // In practice, IssueWidth is useful to model any bottleneck between the
265 // decoder (after micro-op expansion) and the out-of-order reservation
266 // stations or the decoder bandwidth itself. If the total number of
267 // reservation stations is also a bottleneck, or if any other pipeline stage
268 // has a bandwidth limitation, then that can be naturally modeled by adding an
269 // out-of-order processor resource.
270 unsigned IssueWidth;
271 static const unsigned DefaultIssueWidth = 1;
272
273 // MicroOpBufferSize is the number of micro-ops that the processor may buffer
274 // for out-of-order execution.
275 //
276 // "0" means operations that are not ready in this cycle are not considered
277 // for scheduling (they go in the pending queue). Latency is paramount. This
278 // may be more efficient if many instructions are pending in a schedule.
279 //
280 // "1" means all instructions are considered for scheduling regardless of
281 // whether they are ready in this cycle. Latency still causes issue stalls,
282 // but we balance those stalls against other heuristics.
283 //
284 // "> 1" means the processor is out-of-order. This is a machine independent
285 // estimate of highly machine specific characteristics such as the register
286 // renaming pool and reorder buffer.
288 static const unsigned DefaultMicroOpBufferSize = 0;
289
290 // LoopMicroOpBufferSize is the number of micro-ops that the processor may
291 // buffer for optimized loop execution. More generally, this represents the
292 // optimal number of micro-ops in a loop body. A loop may be partially
293 // unrolled to bring the count of micro-ops in the loop body closer to this
294 // number.
296 static const unsigned DefaultLoopMicroOpBufferSize = 0;
297
298 // LoadLatency is the expected latency of load instructions.
299 unsigned LoadLatency;
300 static const unsigned DefaultLoadLatency = 4;
301
302 // HighLatency is the expected latency of "very high latency" operations.
303 // See TargetInstrInfo::isHighLatencyDef().
304 // By default, this is set to an arbitrarily high number of cycles
305 // likely to have some impact on scheduling heuristics.
306 unsigned HighLatency;
307 static const unsigned DefaultHighLatency = 10;
308
309 // MispredictPenalty is the typical number of extra cycles the processor
310 // takes to recover from a branch misprediction.
312 static const unsigned DefaultMispredictPenalty = 10;
313
314 bool PostRAScheduler; // default value is false
315
317
318 // Tells the MachineScheduler whether or not to track resource usage
319 // using intervals via ResourceSegments (see
320 // llvm/include/llvm/CodeGen/MachineScheduler.h).
322
323 unsigned ProcID;
329 // Instruction itinerary tables used by InstrItineraryData.
330 friend class InstrItineraryData;
332
334
336
337 unsigned getProcessorID() const { return ProcID; }
338
339 /// Does this machine model include instruction-level scheduling.
340 bool hasInstrSchedModel() const { return SchedClassTable; }
341
344 "No extra information available for this model");
345 return *ExtraProcessorInfo;
346 }
347
348 /// Return true if this machine model data for all instructions with a
349 /// scheduling class (itinerary class or SchedRW list).
350 bool isComplete() const { return CompleteModel; }
351
352 /// Return true if machine supports out of order execution.
353 bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
354
355 unsigned getNumProcResourceKinds() const {
357 }
358
359 const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
360 assert(hasInstrSchedModel() && "No scheduling machine model");
361
362 assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
363 return &ProcResourceTable[ProcResourceIdx];
364 }
365
366 const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
367 assert(hasInstrSchedModel() && "No scheduling machine model");
368
369 assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
370 return &SchedClassTable[SchedClassIdx];
371 }
372
373 StringRef getSchedClassName(unsigned SchedClassIdx) const {
374#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
375 return (*SchedClassNames)[SchedClassTable[SchedClassIdx].NameOff];
376#else
377 return "<unknown>";
378#endif
379 }
380
381 /// Returns the latency value for the scheduling class.
382 LLVM_ABI static int computeInstrLatency(const MCSubtargetInfo &STI,
383 const MCSchedClassDesc &SCDesc);
384
386 unsigned SClass) const;
387
389 const MCInstrInfo &MCII,
390 const MCInst &Inst) const;
391
392 template <typename MCSubtargetInfo, typename MCInstrInfo,
393 typename InstrItineraryData, typename MCInstOrMachineInstr>
395 const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
396 const MCInstOrMachineInstr &Inst,
398 ResolveVariantSchedClass =
399 [](const MCSchedClassDesc *SCDesc) { return SCDesc; }) const;
400
401 // Returns the reciprocal throughput information from a MCSchedClassDesc.
402 LLVM_ABI static double
403 getReciprocalThroughput(const MCSubtargetInfo &STI,
404 const MCSchedClassDesc &SCDesc);
405
406 LLVM_ABI static double getReciprocalThroughput(unsigned SchedClass,
407 const InstrItineraryData &IID);
408
409 LLVM_ABI double getReciprocalThroughput(const MCSubtargetInfo &STI,
410 const MCInstrInfo &MCII,
411 const MCInst &Inst) const;
412
413 /// Returns the maximum forwarding delay for register reads dependent on
414 /// writes of scheduling class WriteResourceIdx.
415 LLVM_ABI static unsigned
416 getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
417 unsigned WriteResourceIdx = 0);
418
419 /// Returns the bypass delay cycle for the maximum latency write cycle
420 LLVM_ABI static unsigned getBypassDelayCycles(const MCSubtargetInfo &STI,
421 const MCSchedClassDesc &SCDesc);
422
423 /// Returns the default initialized model.
425};
426
427// The first three are only template'd arguments so we can get away with leaving
428// them as incomplete types below. The third is a template over
429// MCInst/MachineInstr so as to avoid a layering violation here that would make
430// the MC layer depend on CodeGen.
431template <typename MCSubtargetInfo, typename MCInstrInfo,
432 typename InstrItineraryData, typename MCInstOrMachineInstr>
434 const MCSubtargetInfo &STI, const MCInstrInfo &MCII,
435 const MCInstOrMachineInstr &Inst,
437 ResolveVariantSchedClass) const {
438 static const int NoInformationAvailable = -1;
439 // Check if we have a scheduling model for instructions.
440 if (!hasInstrSchedModel()) {
441 // Try to fall back to the itinerary model if the scheduling model doesn't
442 // have a scheduling table. Note the default does not have a table.
443
444 llvm::StringRef CPU = STI.getCPU();
445
446 // Check if we have a CPU to get the itinerary information.
447 if (CPU.empty())
448 return NoInformationAvailable;
449
450 // Get itinerary information.
452 // Get the scheduling class of the requested instruction.
453 const MCInstrDesc &Desc = MCII.get(Inst.getOpcode());
454 unsigned SCClass = Desc.getSchedClass();
455
456 unsigned Latency = 0;
457
458 for (unsigned Idx = 0, IdxEnd = Inst.getNumOperands(); Idx != IdxEnd; ++Idx)
459 if (std::optional<unsigned> OperCycle = IID.getOperandCycle(SCClass, Idx))
460 Latency = std::max(Latency, *OperCycle);
461
462 return int(Latency);
463 }
464
465 unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
466 const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
467 SCDesc = ResolveVariantSchedClass(SCDesc);
468
469 if (!SCDesc || !SCDesc->isValid())
470 return NoInformationAvailable;
471
472 return MCSchedModel::computeInstrLatency(STI, *SCDesc);
473}
474
475} // namespace llvm
476
477#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define LLVM_ABI
Definition: Compiler.h:213
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Itinerary data supplied by a subtarget to be used by a target.
std::optional< unsigned > getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
Return the cycle for the given class and operand.
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:188
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:199
unsigned getSchedClass() const
Return the scheduling class for this instruction.
Definition: MCInstrDesc.h:603
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:64
Generic base class for all target subtargets.
StringRef getCPU() const
InstrItineraryData getInstrItineraryForCPU(StringRef CPU) const
Get scheduling itinerary of a CPU.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:151
A table of densely packed, null-terminated strings indexed by offset.
Definition: StringTable.h:33
An efficient, type-erasing, non-owning reference to a callable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Other
Any other memory.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Description of the encoding of one expression Op.
An itinerary represents the scheduling information for an instruction.
Provide extra details about the machine processor.
Definition: MCSchedule.h:191
const MCRegisterFileDesc * RegisterFiles
Definition: MCSchedule.h:196
const MCRegisterCostEntry * RegisterCostTable
Definition: MCSchedule.h:198
Define a kind of processor resource that will be modeled by the scheduler.
Definition: MCSchedule.h:36
bool operator==(const MCProcResourceDesc &Other) const
Definition: MCSchedule.h:60
const unsigned * SubUnitsIdxBegin
Definition: MCSchedule.h:58
Specify the number of cycles allowed after instruction issue before a particular use operand reads it...
Definition: MCSchedule.h:108
bool operator==(const MCReadAdvanceEntry &Other) const
Definition: MCSchedule.h:113
Specify the cost of a register definition in terms of number of physical register allocated at regist...
Definition: MCSchedule.h:156
A register file descriptor.
Definition: MCSchedule.h:171
uint16_t NumRegisterCostEntries
Definition: MCSchedule.h:174
uint16_t MaxMovesEliminatedPerCycle
Definition: MCSchedule.h:179
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Definition: MCSchedule.h:123
bool isValid() const
Definition: MCSchedule.h:141
bool isVariant() const
Definition: MCSchedule.h:144
static const unsigned short InvalidNumMicroOps
Definition: MCSchedule.h:124
uint16_t NumWriteLatencyEntries
Definition: MCSchedule.h:137
uint16_t NumReadAdvanceEntries
Definition: MCSchedule.h:139
uint16_t NumWriteProcResEntries
Definition: MCSchedule.h:135
static const unsigned short VariantNumMicroOps
Definition: MCSchedule.h:125
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:258
unsigned LoadLatency
Definition: MCSchedule.h:299
static LLVM_ABI const MCSchedModel Default
Returns the default initialized model.
Definition: MCSchedule.h:424
bool isOutOfOrder() const
Return true if machine supports out of order execution.
Definition: MCSchedule.h:353
bool hasExtraProcessorInfo() const
Definition: MCSchedule.h:335
unsigned HighLatency
Definition: MCSchedule.h:306
static LLVM_ABI unsigned getForwardingDelayCycles(ArrayRef< MCReadAdvanceEntry > Entries, unsigned WriteResourceIdx=0)
Returns the maximum forwarding delay for register reads dependent on writes of scheduling class Write...
Definition: MCSchedule.cpp:167
static const unsigned DefaultLoopMicroOpBufferSize
Definition: MCSchedule.h:296
const InstrItinerary * InstrItineraries
Definition: MCSchedule.h:331
static const unsigned DefaultHighLatency
Definition: MCSchedule.h:307
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
Definition: MCSchedule.h:366
unsigned getProcessorID() const
Definition: MCSchedule.h:337
const MCExtraProcessorInfo & getExtraProcessorInfo() const
Definition: MCSchedule.h:342
unsigned getNumProcResourceKinds() const
Definition: MCSchedule.h:355
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
Definition: MCSchedule.h:340
static const unsigned DefaultLoadLatency
Definition: MCSchedule.h:300
unsigned LoopMicroOpBufferSize
Definition: MCSchedule.h:295
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
Definition: MCSchedule.cpp:43
static const unsigned DefaultMicroOpBufferSize
Definition: MCSchedule.h:288
friend class InstrItineraryData
Definition: MCSchedule.h:330
const StringTable * SchedClassNames
Definition: MCSchedule.h:328
const MCSchedClassDesc * SchedClassTable
Definition: MCSchedule.h:325
const MCProcResourceDesc * ProcResourceTable
Definition: MCSchedule.h:324
static const unsigned DefaultMispredictPenalty
Definition: MCSchedule.h:312
unsigned MicroOpBufferSize
Definition: MCSchedule.h:287
unsigned NumSchedClasses
Definition: MCSchedule.h:327
unsigned IssueWidth
Definition: MCSchedule.h:270
const MCExtraProcessorInfo * ExtraProcessorInfo
Definition: MCSchedule.h:333
const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const
Definition: MCSchedule.h:359
static LLVM_ABI unsigned getBypassDelayCycles(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the bypass delay cycle for the maximum latency write cycle.
Definition: MCSchedule.cpp:182
static LLVM_ABI double getReciprocalThroughput(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Definition: MCSchedule.cpp:98
StringRef getSchedClassName(unsigned SchedClassIdx) const
Definition: MCSchedule.h:373
static const unsigned DefaultIssueWidth
Definition: MCSchedule.h:271
unsigned NumProcResourceKinds
Definition: MCSchedule.h:326
bool isComplete() const
Return true if this machine model data for all instructions with a scheduling class (itinerary class ...
Definition: MCSchedule.h:350
unsigned MispredictPenalty
Definition: MCSchedule.h:311
Specify the latency in cpu cycles for a particular scheduling class and def index.
Definition: MCSchedule.h:91
bool operator==(const MCWriteLatencyEntry &Other) const
Definition: MCSchedule.h:95
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
Definition: MCSchedule.h:68
bool operator==(const MCWriteProcResEntry &Other) const
Definition: MCSchedule.h:79
uint16_t AcquireAtCycle
Cycle at which the resource will be aquired by an instruction, relatively to the cycle in which the i...
Definition: MCSchedule.h:77
uint16_t ReleaseAtCycle
Cycle at which the resource will be released by an instruction, relatively to the cycle in which the ...
Definition: MCSchedule.h:73