LLVM 21.0.0git
MIParser.cpp
Go to the documentation of this file.
1//===- MIParser.cpp - Machine instructions parser implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the parsing of machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
14#include "MILexer.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
43#include "llvm/IR/BasicBlock.h"
44#include "llvm/IR/Constants.h"
45#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/DebugLoc.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Intrinsics.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/Value.h"
58#include "llvm/MC/LaneBitmask.h"
59#include "llvm/MC/MCContext.h"
60#include "llvm/MC/MCDwarf.h"
61#include "llvm/MC/MCInstrDesc.h"
67#include "llvm/Support/SMLoc.h"
70#include <cassert>
71#include <cctype>
72#include <cstddef>
73#include <cstdint>
74#include <limits>
75#include <string>
76#include <utility>
77
78using namespace llvm;
79
81 const TargetSubtargetInfo &NewSubtarget) {
82
83 // If the subtarget changed, over conservatively assume everything is invalid.
84 if (&Subtarget == &NewSubtarget)
85 return;
86
87 Names2InstrOpCodes.clear();
88 Names2Regs.clear();
89 Names2RegMasks.clear();
90 Names2SubRegIndices.clear();
91 Names2TargetIndices.clear();
92 Names2DirectTargetFlags.clear();
93 Names2BitmaskTargetFlags.clear();
94 Names2MMOTargetFlags.clear();
95
96 initNames2RegClasses();
97 initNames2RegBanks();
98}
99
100void PerTargetMIParsingState::initNames2Regs() {
101 if (!Names2Regs.empty())
102 return;
103
104 // The '%noreg' register is the register 0.
105 Names2Regs.insert(std::make_pair("noreg", 0));
106 const auto *TRI = Subtarget.getRegisterInfo();
107 assert(TRI && "Expected target register info");
108
109 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
110 bool WasInserted =
111 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
112 .second;
113 (void)WasInserted;
114 assert(WasInserted && "Expected registers to be unique case-insensitively");
115 }
116}
117
119 Register &Reg) {
120 initNames2Regs();
121 auto RegInfo = Names2Regs.find(RegName);
122 if (RegInfo == Names2Regs.end())
123 return true;
124 Reg = RegInfo->getValue();
125 return false;
126}
127
129 uint8_t &FlagValue) const {
130 const auto *TRI = Subtarget.getRegisterInfo();
131 std::optional<uint8_t> FV = TRI->getVRegFlagValue(FlagName);
132 if (!FV)
133 return true;
134 FlagValue = *FV;
135 return false;
136}
137
138void PerTargetMIParsingState::initNames2InstrOpCodes() {
139 if (!Names2InstrOpCodes.empty())
140 return;
141 const auto *TII = Subtarget.getInstrInfo();
142 assert(TII && "Expected target instruction info");
143 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
144 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
145}
146
148 unsigned &OpCode) {
149 initNames2InstrOpCodes();
150 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
151 if (InstrInfo == Names2InstrOpCodes.end())
152 return true;
153 OpCode = InstrInfo->getValue();
154 return false;
155}
156
157void PerTargetMIParsingState::initNames2RegMasks() {
158 if (!Names2RegMasks.empty())
159 return;
160 const auto *TRI = Subtarget.getRegisterInfo();
161 assert(TRI && "Expected target register info");
162 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
163 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
164 assert(RegMasks.size() == RegMaskNames.size());
165 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
166 Names2RegMasks.insert(
167 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
168}
169
171 initNames2RegMasks();
172 auto RegMaskInfo = Names2RegMasks.find(Identifier);
173 if (RegMaskInfo == Names2RegMasks.end())
174 return nullptr;
175 return RegMaskInfo->getValue();
176}
177
178void PerTargetMIParsingState::initNames2SubRegIndices() {
179 if (!Names2SubRegIndices.empty())
180 return;
181 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
182 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
183 Names2SubRegIndices.insert(
184 std::make_pair(TRI->getSubRegIndexName(I), I));
185}
186
188 initNames2SubRegIndices();
189 auto SubRegInfo = Names2SubRegIndices.find(Name);
190 if (SubRegInfo == Names2SubRegIndices.end())
191 return 0;
192 return SubRegInfo->getValue();
193}
194
195void PerTargetMIParsingState::initNames2TargetIndices() {
196 if (!Names2TargetIndices.empty())
197 return;
198 const auto *TII = Subtarget.getInstrInfo();
199 assert(TII && "Expected target instruction info");
200 auto Indices = TII->getSerializableTargetIndices();
201 for (const auto &I : Indices)
202 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
203}
204
206 initNames2TargetIndices();
207 auto IndexInfo = Names2TargetIndices.find(Name);
208 if (IndexInfo == Names2TargetIndices.end())
209 return true;
210 Index = IndexInfo->second;
211 return false;
212}
213
214void PerTargetMIParsingState::initNames2DirectTargetFlags() {
215 if (!Names2DirectTargetFlags.empty())
216 return;
217
218 const auto *TII = Subtarget.getInstrInfo();
219 assert(TII && "Expected target instruction info");
221 for (const auto &I : Flags)
222 Names2DirectTargetFlags.insert(
223 std::make_pair(StringRef(I.second), I.first));
224}
225
227 unsigned &Flag) {
228 initNames2DirectTargetFlags();
229 auto FlagInfo = Names2DirectTargetFlags.find(Name);
230 if (FlagInfo == Names2DirectTargetFlags.end())
231 return true;
232 Flag = FlagInfo->second;
233 return false;
234}
235
236void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
237 if (!Names2BitmaskTargetFlags.empty())
238 return;
239
240 const auto *TII = Subtarget.getInstrInfo();
241 assert(TII && "Expected target instruction info");
243 for (const auto &I : Flags)
244 Names2BitmaskTargetFlags.insert(
245 std::make_pair(StringRef(I.second), I.first));
246}
247
249 unsigned &Flag) {
250 initNames2BitmaskTargetFlags();
251 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
252 if (FlagInfo == Names2BitmaskTargetFlags.end())
253 return true;
254 Flag = FlagInfo->second;
255 return false;
256}
257
258void PerTargetMIParsingState::initNames2MMOTargetFlags() {
259 if (!Names2MMOTargetFlags.empty())
260 return;
261
262 const auto *TII = Subtarget.getInstrInfo();
263 assert(TII && "Expected target instruction info");
264 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
265 for (const auto &I : Flags)
266 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
267}
268
271 initNames2MMOTargetFlags();
272 auto FlagInfo = Names2MMOTargetFlags.find(Name);
273 if (FlagInfo == Names2MMOTargetFlags.end())
274 return true;
275 Flag = FlagInfo->second;
276 return false;
277}
278
279void PerTargetMIParsingState::initNames2RegClasses() {
280 if (!Names2RegClasses.empty())
281 return;
282
283 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
284 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
285 const auto *RC = TRI->getRegClass(I);
286 Names2RegClasses.insert(
287 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
288 }
289}
290
291void PerTargetMIParsingState::initNames2RegBanks() {
292 if (!Names2RegBanks.empty())
293 return;
294
295 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
296 // If the target does not support GlobalISel, we may not have a
297 // register bank info.
298 if (!RBI)
299 return;
300
301 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
302 const auto &RegBank = RBI->getRegBank(I);
303 Names2RegBanks.insert(
304 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
305 }
306}
307
310 auto RegClassInfo = Names2RegClasses.find(Name);
311 if (RegClassInfo == Names2RegClasses.end())
312 return nullptr;
313 return RegClassInfo->getValue();
314}
315
317 auto RegBankInfo = Names2RegBanks.find(Name);
318 if (RegBankInfo == Names2RegBanks.end())
319 return nullptr;
320 return RegBankInfo->getValue();
321}
322
324 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
325 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
326}
327
329 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
330 if (I.second) {
333 Info->VReg = MRI.createIncompleteVirtualRegister();
334 I.first->second = Info;
335 }
336 return *I.first->second;
337}
338
340 assert(RegName != "" && "Expected named reg.");
341
342 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
343 if (I.second) {
346 I.first->second = Info;
347 }
348 return *I.first->second;
349}
350
351static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
352 DenseMap<unsigned, const Value *> &Slots2Values) {
353 int Slot = MST.getLocalSlot(V);
354 if (Slot == -1)
355 return;
356 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
357}
358
359/// Creates the mapping from slot numbers to function's unnamed IR values.
360static void initSlots2Values(const Function &F,
361 DenseMap<unsigned, const Value *> &Slots2Values) {
362 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
364 for (const auto &Arg : F.args())
365 mapValueToSlot(&Arg, MST, Slots2Values);
366 for (const auto &BB : F) {
367 mapValueToSlot(&BB, MST, Slots2Values);
368 for (const auto &I : BB)
369 mapValueToSlot(&I, MST, Slots2Values);
370 }
371}
372
374 if (Slots2Values.empty())
376 return Slots2Values.lookup(Slot);
377}
378
379namespace {
380
381/// A wrapper struct around the 'MachineOperand' struct that includes a source
382/// range and other attributes.
383struct ParsedMachineOperand {
384 MachineOperand Operand;
387 std::optional<unsigned> TiedDefIdx;
388
389 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
391 std::optional<unsigned> &TiedDefIdx)
392 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
393 if (TiedDefIdx)
394 assert(Operand.isReg() && Operand.isUse() &&
395 "Only used register operands can be tied");
396 }
397};
398
399class MIParser {
400 MachineFunction &MF;
402 StringRef Source, CurrentSource;
403 SMRange SourceRange;
404 MIToken Token;
406 /// Maps from slot numbers to function's unnamed basic blocks.
408
409public:
411 StringRef Source);
413 StringRef Source, SMRange SourceRange);
414
415 /// \p SkipChar gives the number of characters to skip before looking
416 /// for the next token.
417 void lex(unsigned SkipChar = 0);
418
419 /// Report an error at the current location with the given message.
420 ///
421 /// This function always return true.
422 bool error(const Twine &Msg);
423
424 /// Report an error at the given location with the given message.
425 ///
426 /// This function always return true.
427 bool error(StringRef::iterator Loc, const Twine &Msg);
428
429 bool
430 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
431 bool parseBasicBlocks();
432 bool parse(MachineInstr *&MI);
433 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
434 bool parseStandaloneNamedRegister(Register &Reg);
435 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
436 bool parseStandaloneRegister(Register &Reg);
437 bool parseStandaloneStackObject(int &FI);
438 bool parseStandaloneMDNode(MDNode *&Node);
440 bool parseMDTuple(MDNode *&MD, bool IsDistinct);
441 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
442 bool parseMetadata(Metadata *&MD);
443
444 bool
445 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
446 bool parseBasicBlock(MachineBasicBlock &MBB,
447 MachineBasicBlock *&AddFalthroughFrom);
448 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
449 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
450
451 bool parseNamedRegister(Register &Reg);
452 bool parseVirtualRegister(VRegInfo *&Info);
453 bool parseNamedVirtualRegister(VRegInfo *&Info);
454 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
455 bool parseRegisterFlag(unsigned &Flags);
456 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
457 bool parseSubRegisterIndex(unsigned &SubReg);
458 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
459 bool parseRegisterOperand(MachineOperand &Dest,
460 std::optional<unsigned> &TiedDefIdx,
461 bool IsDef = false);
462 bool parseImmediateOperand(MachineOperand &Dest);
463 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
464 const Constant *&C);
466 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
467 bool parseTypedImmediateOperand(MachineOperand &Dest);
468 bool parseFPImmediateOperand(MachineOperand &Dest);
470 bool parseMBBOperand(MachineOperand &Dest);
471 bool parseStackFrameIndex(int &FI);
472 bool parseStackObjectOperand(MachineOperand &Dest);
473 bool parseFixedStackFrameIndex(int &FI);
474 bool parseFixedStackObjectOperand(MachineOperand &Dest);
475 bool parseGlobalValue(GlobalValue *&GV);
476 bool parseGlobalAddressOperand(MachineOperand &Dest);
477 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
478 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
479 bool parseJumpTableIndexOperand(MachineOperand &Dest);
480 bool parseExternalSymbolOperand(MachineOperand &Dest);
481 bool parseMCSymbolOperand(MachineOperand &Dest);
482 [[nodiscard]] bool parseMDNode(MDNode *&Node);
483 bool parseDIExpression(MDNode *&Expr);
484 bool parseDILocation(MDNode *&Expr);
485 bool parseMetadataOperand(MachineOperand &Dest);
486 bool parseCFIOffset(int &Offset);
487 bool parseCFIRegister(unsigned &Reg);
488 bool parseCFIAddressSpace(unsigned &AddressSpace);
489 bool parseCFIEscapeValues(std::string& Values);
490 bool parseCFIOperand(MachineOperand &Dest);
491 bool parseIRBlock(BasicBlock *&BB, const Function &F);
492 bool parseBlockAddressOperand(MachineOperand &Dest);
493 bool parseIntrinsicOperand(MachineOperand &Dest);
494 bool parsePredicateOperand(MachineOperand &Dest);
495 bool parseShuffleMaskOperand(MachineOperand &Dest);
496 bool parseTargetIndexOperand(MachineOperand &Dest);
497 bool parseDbgInstrRefOperand(MachineOperand &Dest);
498 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
499 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
500 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
501 MachineOperand &Dest,
502 std::optional<unsigned> &TiedDefIdx);
503 bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
504 const unsigned OpIdx,
505 MachineOperand &Dest,
506 std::optional<unsigned> &TiedDefIdx);
507 bool parseOffset(int64_t &Offset);
508 bool parseIRBlockAddressTaken(BasicBlock *&BB);
509 bool parseAlignment(uint64_t &Alignment);
510 bool parseAddrspace(unsigned &Addrspace);
511 bool parseSectionID(std::optional<MBBSectionID> &SID);
512 bool parseBBID(std::optional<UniqueBBID> &BBID);
513 bool parseCallFrameSize(unsigned &CallFrameSize);
514 bool parseOperandsOffset(MachineOperand &Op);
515 bool parseIRValue(const Value *&V);
516 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
517 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
518 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
519 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
520 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
521 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
522 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
523 bool parseHeapAllocMarker(MDNode *&Node);
524 bool parsePCSections(MDNode *&Node);
525
526 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
527 MachineOperand &Dest, const MIRFormatter &MF);
528
529private:
530 /// Convert the integer literal in the current token into an unsigned integer.
531 ///
532 /// Return true if an error occurred.
533 bool getUnsigned(unsigned &Result);
534
535 /// Convert the integer literal in the current token into an uint64.
536 ///
537 /// Return true if an error occurred.
538 bool getUint64(uint64_t &Result);
539
540 /// Convert the hexadecimal literal in the current token into an unsigned
541 /// APInt with a minimum bitwidth required to represent the value.
542 ///
543 /// Return true if the literal does not represent an integer value.
544 bool getHexUint(APInt &Result);
545
546 /// If the current token is of the given kind, consume it and return false.
547 /// Otherwise report an error and return true.
548 bool expectAndConsume(MIToken::TokenKind TokenKind);
549
550 /// If the current token is of the given kind, consume it and return true.
551 /// Otherwise return false.
552 bool consumeIfPresent(MIToken::TokenKind TokenKind);
553
554 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
555
556 bool assignRegisterTies(MachineInstr &MI,
558
559 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
560 const MCInstrDesc &MCID);
561
562 const BasicBlock *getIRBlock(unsigned Slot);
563 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
564
565 /// Get or create an MCSymbol for a given name.
566 MCSymbol *getOrCreateMCSymbol(StringRef Name);
567
568 /// parseStringConstant
569 /// ::= StringConstant
570 bool parseStringConstant(std::string &Result);
571
572 /// Map the location in the MI string to the corresponding location specified
573 /// in `SourceRange`.
574 SMLoc mapSMLoc(StringRef::iterator Loc);
575};
576
577} // end anonymous namespace
578
579MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
580 StringRef Source)
581 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
582{}
583
584MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
585 StringRef Source, SMRange SourceRange)
586 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
587 SourceRange(SourceRange), PFS(PFS) {}
588
589void MIParser::lex(unsigned SkipChar) {
590 CurrentSource = lexMIToken(
591 CurrentSource.substr(SkipChar), Token,
592 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
593}
594
595bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
596
597bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
598 const SourceMgr &SM = *PFS.SM;
599 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
600 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
601 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
602 // Create an ordinary diagnostic when the source manager's buffer is the
603 // source string.
605 return true;
606 }
607 // Create a diagnostic for a YAML string literal.
608 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
609 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
610 Source, {}, {});
611 return true;
612}
613
614SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
615 assert(SourceRange.isValid() && "Invalid source range");
616 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
617 return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
618 (Loc - Source.data()));
619}
620
621typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
623
624static const char *toString(MIToken::TokenKind TokenKind) {
625 switch (TokenKind) {
626 case MIToken::comma:
627 return "','";
628 case MIToken::equal:
629 return "'='";
630 case MIToken::colon:
631 return "':'";
632 case MIToken::lparen:
633 return "'('";
634 case MIToken::rparen:
635 return "')'";
636 default:
637 return "<unknown token>";
638 }
639}
640
641bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
642 if (Token.isNot(TokenKind))
643 return error(Twine("expected ") + toString(TokenKind));
644 lex();
645 return false;
646}
647
648bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
649 if (Token.isNot(TokenKind))
650 return false;
651 lex();
652 return true;
653}
654
655// Parse Machine Basic Block Section ID.
656bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) {
658 lex();
659 if (Token.is(MIToken::IntegerLiteral)) {
660 unsigned Value = 0;
661 if (getUnsigned(Value))
662 return error("Unknown Section ID");
663 SID = MBBSectionID{Value};
664 } else {
665 const StringRef &S = Token.stringValue();
666 if (S == "Exception")
668 else if (S == "Cold")
670 else
671 return error("Unknown Section ID");
672 }
673 lex();
674 return false;
675}
676
677// Parse Machine Basic Block ID.
678bool MIParser::parseBBID(std::optional<UniqueBBID> &BBID) {
679 assert(Token.is(MIToken::kw_bb_id));
680 lex();
681 unsigned BaseID = 0;
682 unsigned CloneID = 0;
683 if (getUnsigned(BaseID))
684 return error("Unknown BB ID");
685 lex();
686 if (Token.is(MIToken::IntegerLiteral)) {
687 if (getUnsigned(CloneID))
688 return error("Unknown Clone ID");
689 lex();
690 }
691 BBID = {BaseID, CloneID};
692 return false;
693}
694
695// Parse basic block call frame size.
696bool MIParser::parseCallFrameSize(unsigned &CallFrameSize) {
698 lex();
699 unsigned Value = 0;
700 if (getUnsigned(Value))
701 return error("Unknown call frame size");
702 CallFrameSize = Value;
703 lex();
704 return false;
705}
706
707bool MIParser::parseBasicBlockDefinition(
710 unsigned ID = 0;
711 if (getUnsigned(ID))
712 return true;
713 auto Loc = Token.location();
714 auto Name = Token.stringValue();
715 lex();
716 bool MachineBlockAddressTaken = false;
717 BasicBlock *AddressTakenIRBlock = nullptr;
718 bool IsLandingPad = false;
719 bool IsInlineAsmBrIndirectTarget = false;
720 bool IsEHFuncletEntry = false;
721 std::optional<MBBSectionID> SectionID;
722 uint64_t Alignment = 0;
723 std::optional<UniqueBBID> BBID;
724 unsigned CallFrameSize = 0;
725 BasicBlock *BB = nullptr;
726 if (consumeIfPresent(MIToken::lparen)) {
727 do {
728 // TODO: Report an error when multiple same attributes are specified.
729 switch (Token.kind()) {
731 MachineBlockAddressTaken = true;
732 lex();
733 break;
735 if (parseIRBlockAddressTaken(AddressTakenIRBlock))
736 return true;
737 break;
739 IsLandingPad = true;
740 lex();
741 break;
743 IsInlineAsmBrIndirectTarget = true;
744 lex();
745 break;
747 IsEHFuncletEntry = true;
748 lex();
749 break;
751 if (parseAlignment(Alignment))
752 return true;
753 break;
754 case MIToken::IRBlock:
756 // TODO: Report an error when both name and ir block are specified.
757 if (parseIRBlock(BB, MF.getFunction()))
758 return true;
759 lex();
760 break;
762 if (parseSectionID(SectionID))
763 return true;
764 break;
766 if (parseBBID(BBID))
767 return true;
768 break;
770 if (parseCallFrameSize(CallFrameSize))
771 return true;
772 break;
773 default:
774 break;
775 }
776 } while (consumeIfPresent(MIToken::comma));
777 if (expectAndConsume(MIToken::rparen))
778 return true;
779 }
780 if (expectAndConsume(MIToken::colon))
781 return true;
782
783 if (!Name.empty()) {
784 BB = dyn_cast_or_null<BasicBlock>(
785 MF.getFunction().getValueSymbolTable()->lookup(Name));
786 if (!BB)
787 return error(Loc, Twine("basic block '") + Name +
788 "' is not defined in the function '" +
789 MF.getName() + "'");
790 }
791 auto *MBB = MF.CreateMachineBasicBlock(BB, BBID);
792 MF.insert(MF.end(), MBB);
793 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
794 if (!WasInserted)
795 return error(Loc, Twine("redefinition of machine basic block with id #") +
796 Twine(ID));
797 if (Alignment)
798 MBB->setAlignment(Align(Alignment));
799 if (MachineBlockAddressTaken)
801 if (AddressTakenIRBlock)
802 MBB->setAddressTakenIRBlock(AddressTakenIRBlock);
803 MBB->setIsEHPad(IsLandingPad);
804 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
805 MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
806 if (SectionID) {
807 MBB->setSectionID(*SectionID);
808 MF.setBBSectionsType(BasicBlockSection::List);
809 }
810 MBB->setCallFrameSize(CallFrameSize);
811 return false;
812}
813
814bool MIParser::parseBasicBlockDefinitions(
816 lex();
817 // Skip until the first machine basic block.
818 while (Token.is(MIToken::Newline))
819 lex();
820 if (Token.isErrorOrEOF())
821 return Token.isError();
822 if (Token.isNot(MIToken::MachineBasicBlockLabel))
823 return error("expected a basic block definition before instructions");
824 unsigned BraceDepth = 0;
825 do {
826 if (parseBasicBlockDefinition(MBBSlots))
827 return true;
828 bool IsAfterNewline = false;
829 // Skip until the next machine basic block.
830 while (true) {
831 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
832 Token.isErrorOrEOF())
833 break;
834 else if (Token.is(MIToken::MachineBasicBlockLabel))
835 return error("basic block definition should be located at the start of "
836 "the line");
837 else if (consumeIfPresent(MIToken::Newline)) {
838 IsAfterNewline = true;
839 continue;
840 }
841 IsAfterNewline = false;
842 if (Token.is(MIToken::lbrace))
843 ++BraceDepth;
844 if (Token.is(MIToken::rbrace)) {
845 if (!BraceDepth)
846 return error("extraneous closing brace ('}')");
847 --BraceDepth;
848 }
849 lex();
850 }
851 // Verify that we closed all of the '{' at the end of a file or a block.
852 if (!Token.isError() && BraceDepth)
853 return error("expected '}'"); // FIXME: Report a note that shows '{'.
854 } while (!Token.isErrorOrEOF());
855 return Token.isError();
856}
857
858bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
859 assert(Token.is(MIToken::kw_liveins));
860 lex();
861 if (expectAndConsume(MIToken::colon))
862 return true;
863 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
864 return false;
865 do {
866 if (Token.isNot(MIToken::NamedRegister))
867 return error("expected a named register");
869 if (parseNamedRegister(Reg))
870 return true;
871 lex();
873 if (consumeIfPresent(MIToken::colon)) {
874 // Parse lane mask.
875 if (Token.isNot(MIToken::IntegerLiteral) &&
876 Token.isNot(MIToken::HexLiteral))
877 return error("expected a lane mask");
878 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
879 "Use correct get-function for lane mask");
881 if (getUint64(V))
882 return error("invalid lane mask value");
883 Mask = LaneBitmask(V);
884 lex();
885 }
886 MBB.addLiveIn(Reg, Mask);
887 } while (consumeIfPresent(MIToken::comma));
888 return false;
889}
890
891bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
893 lex();
894 if (expectAndConsume(MIToken::colon))
895 return true;
896 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
897 return false;
898 do {
899 if (Token.isNot(MIToken::MachineBasicBlock))
900 return error("expected a machine basic block reference");
901 MachineBasicBlock *SuccMBB = nullptr;
902 if (parseMBBReference(SuccMBB))
903 return true;
904 lex();
905 unsigned Weight = 0;
906 if (consumeIfPresent(MIToken::lparen)) {
907 if (Token.isNot(MIToken::IntegerLiteral) &&
908 Token.isNot(MIToken::HexLiteral))
909 return error("expected an integer literal after '('");
910 if (getUnsigned(Weight))
911 return true;
912 lex();
913 if (expectAndConsume(MIToken::rparen))
914 return true;
915 }
917 } while (consumeIfPresent(MIToken::comma));
919 return false;
920}
921
922bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
923 MachineBasicBlock *&AddFalthroughFrom) {
924 // Skip the definition.
926 lex();
927 if (consumeIfPresent(MIToken::lparen)) {
928 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
929 lex();
930 consumeIfPresent(MIToken::rparen);
931 }
932 consumeIfPresent(MIToken::colon);
933
934 // Parse the liveins and successors.
935 // N.B: Multiple lists of successors and liveins are allowed and they're
936 // merged into one.
937 // Example:
938 // liveins: $edi
939 // liveins: $esi
940 //
941 // is equivalent to
942 // liveins: $edi, $esi
943 bool ExplicitSuccessors = false;
944 while (true) {
945 if (Token.is(MIToken::kw_successors)) {
946 if (parseBasicBlockSuccessors(MBB))
947 return true;
948 ExplicitSuccessors = true;
949 } else if (Token.is(MIToken::kw_liveins)) {
950 if (parseBasicBlockLiveins(MBB))
951 return true;
952 } else if (consumeIfPresent(MIToken::Newline)) {
953 continue;
954 } else
955 break;
956 if (!Token.isNewlineOrEOF())
957 return error("expected line break at the end of a list");
958 lex();
959 }
960
961 // Parse the instructions.
962 bool IsInBundle = false;
963 MachineInstr *PrevMI = nullptr;
964 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
965 !Token.is(MIToken::Eof)) {
966 if (consumeIfPresent(MIToken::Newline))
967 continue;
968 if (consumeIfPresent(MIToken::rbrace)) {
969 // The first parsing pass should verify that all closing '}' have an
970 // opening '{'.
971 assert(IsInBundle);
972 IsInBundle = false;
973 continue;
974 }
975 MachineInstr *MI = nullptr;
976 if (parse(MI))
977 return true;
978 MBB.insert(MBB.end(), MI);
979 if (IsInBundle) {
982 }
983 PrevMI = MI;
984 if (Token.is(MIToken::lbrace)) {
985 if (IsInBundle)
986 return error("nested instruction bundles are not allowed");
987 lex();
988 // This instruction is the start of the bundle.
990 IsInBundle = true;
991 if (!Token.is(MIToken::Newline))
992 // The next instruction can be on the same line.
993 continue;
994 }
995 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
996 lex();
997 }
998
999 // Construct successor list by searching for basic block machine operands.
1000 if (!ExplicitSuccessors) {
1002 bool IsFallthrough;
1003 guessSuccessors(MBB, Successors, IsFallthrough);
1004 for (MachineBasicBlock *Succ : Successors)
1005 MBB.addSuccessor(Succ);
1006
1007 if (IsFallthrough) {
1008 AddFalthroughFrom = &MBB;
1009 } else {
1011 }
1012 }
1013
1014 return false;
1015}
1016
1017bool MIParser::parseBasicBlocks() {
1018 lex();
1019 // Skip until the first machine basic block.
1020 while (Token.is(MIToken::Newline))
1021 lex();
1022 if (Token.isErrorOrEOF())
1023 return Token.isError();
1024 // The first parsing pass should have verified that this token is a MBB label
1025 // in the 'parseBasicBlockDefinitions' method.
1027 MachineBasicBlock *AddFalthroughFrom = nullptr;
1028 do {
1029 MachineBasicBlock *MBB = nullptr;
1031 return true;
1032 if (AddFalthroughFrom) {
1033 if (!AddFalthroughFrom->isSuccessor(MBB))
1034 AddFalthroughFrom->addSuccessor(MBB);
1035 AddFalthroughFrom->normalizeSuccProbs();
1036 AddFalthroughFrom = nullptr;
1037 }
1038 if (parseBasicBlock(*MBB, AddFalthroughFrom))
1039 return true;
1040 // The method 'parseBasicBlock' should parse the whole block until the next
1041 // block or the end of file.
1042 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
1043 } while (Token.isNot(MIToken::Eof));
1044 return false;
1045}
1046
1047bool MIParser::parse(MachineInstr *&MI) {
1048 // Parse any register operands before '='
1051 while (Token.isRegister() || Token.isRegisterFlag()) {
1052 auto Loc = Token.location();
1053 std::optional<unsigned> TiedDefIdx;
1054 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
1055 return true;
1056 Operands.push_back(
1057 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1058 if (Token.isNot(MIToken::comma))
1059 break;
1060 lex();
1061 }
1062 if (!Operands.empty() && expectAndConsume(MIToken::equal))
1063 return true;
1064
1065 unsigned OpCode, Flags = 0;
1066 if (Token.isError() || parseInstruction(OpCode, Flags))
1067 return true;
1068
1069 // Parse the remaining machine operands.
1070 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1071 Token.isNot(MIToken::kw_post_instr_symbol) &&
1072 Token.isNot(MIToken::kw_heap_alloc_marker) &&
1073 Token.isNot(MIToken::kw_pcsections) &&
1074 Token.isNot(MIToken::kw_cfi_type) &&
1075 Token.isNot(MIToken::kw_debug_location) &&
1076 Token.isNot(MIToken::kw_debug_instr_number) &&
1077 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1078 auto Loc = Token.location();
1079 std::optional<unsigned> TiedDefIdx;
1080 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1081 return true;
1082 Operands.push_back(
1083 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1084 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1085 Token.is(MIToken::lbrace))
1086 break;
1087 if (Token.isNot(MIToken::comma))
1088 return error("expected ',' before the next machine operand");
1089 lex();
1090 }
1091
1092 MCSymbol *PreInstrSymbol = nullptr;
1093 if (Token.is(MIToken::kw_pre_instr_symbol))
1094 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1095 return true;
1096 MCSymbol *PostInstrSymbol = nullptr;
1097 if (Token.is(MIToken::kw_post_instr_symbol))
1098 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1099 return true;
1100 MDNode *HeapAllocMarker = nullptr;
1101 if (Token.is(MIToken::kw_heap_alloc_marker))
1102 if (parseHeapAllocMarker(HeapAllocMarker))
1103 return true;
1104 MDNode *PCSections = nullptr;
1105 if (Token.is(MIToken::kw_pcsections))
1106 if (parsePCSections(PCSections))
1107 return true;
1108
1109 unsigned CFIType = 0;
1110 if (Token.is(MIToken::kw_cfi_type)) {
1111 lex();
1112 if (Token.isNot(MIToken::IntegerLiteral))
1113 return error("expected an integer literal after 'cfi-type'");
1114 // getUnsigned is sufficient for 32-bit integers.
1115 if (getUnsigned(CFIType))
1116 return true;
1117 lex();
1118 // Lex past trailing comma if present.
1119 if (Token.is(MIToken::comma))
1120 lex();
1121 }
1122
1123 unsigned InstrNum = 0;
1124 if (Token.is(MIToken::kw_debug_instr_number)) {
1125 lex();
1126 if (Token.isNot(MIToken::IntegerLiteral))
1127 return error("expected an integer literal after 'debug-instr-number'");
1128 if (getUnsigned(InstrNum))
1129 return true;
1130 lex();
1131 // Lex past trailing comma if present.
1132 if (Token.is(MIToken::comma))
1133 lex();
1134 }
1135
1136 DebugLoc DebugLocation;
1137 if (Token.is(MIToken::kw_debug_location)) {
1138 lex();
1139 MDNode *Node = nullptr;
1140 if (Token.is(MIToken::exclaim)) {
1141 if (parseMDNode(Node))
1142 return true;
1143 } else if (Token.is(MIToken::md_dilocation)) {
1144 if (parseDILocation(Node))
1145 return true;
1146 } else
1147 return error("expected a metadata node after 'debug-location'");
1148 if (!isa<DILocation>(Node))
1149 return error("referenced metadata is not a DILocation");
1150 DebugLocation = DebugLoc(Node);
1151 }
1152
1153 // Parse the machine memory operands.
1155 if (Token.is(MIToken::coloncolon)) {
1156 lex();
1157 while (!Token.isNewlineOrEOF()) {
1158 MachineMemOperand *MemOp = nullptr;
1159 if (parseMachineMemoryOperand(MemOp))
1160 return true;
1161 MemOperands.push_back(MemOp);
1162 if (Token.isNewlineOrEOF())
1163 break;
1164 if (Token.isNot(MIToken::comma))
1165 return error("expected ',' before the next machine memory operand");
1166 lex();
1167 }
1168 }
1169
1170 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1171 if (!MCID.isVariadic()) {
1172 // FIXME: Move the implicit operand verification to the machine verifier.
1173 if (verifyImplicitOperands(Operands, MCID))
1174 return true;
1175 }
1176
1177 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1178 MI->setFlags(Flags);
1179
1180 // Don't check the operands make sense, let the verifier catch any
1181 // improprieties.
1182 for (const auto &Operand : Operands)
1183 MI->addOperand(MF, Operand.Operand);
1184
1185 if (assignRegisterTies(*MI, Operands))
1186 return true;
1187 if (PreInstrSymbol)
1188 MI->setPreInstrSymbol(MF, PreInstrSymbol);
1189 if (PostInstrSymbol)
1190 MI->setPostInstrSymbol(MF, PostInstrSymbol);
1191 if (HeapAllocMarker)
1192 MI->setHeapAllocMarker(MF, HeapAllocMarker);
1193 if (PCSections)
1194 MI->setPCSections(MF, PCSections);
1195 if (CFIType)
1196 MI->setCFIType(MF, CFIType);
1197 if (!MemOperands.empty())
1198 MI->setMemRefs(MF, MemOperands);
1199 if (InstrNum)
1200 MI->setDebugInstrNum(InstrNum);
1201 return false;
1202}
1203
1204bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1205 lex();
1206 if (Token.isNot(MIToken::MachineBasicBlock))
1207 return error("expected a machine basic block reference");
1209 return true;
1210 lex();
1211 if (Token.isNot(MIToken::Eof))
1212 return error(
1213 "expected end of string after the machine basic block reference");
1214 return false;
1215}
1216
1217bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1218 lex();
1219 if (Token.isNot(MIToken::NamedRegister))
1220 return error("expected a named register");
1221 if (parseNamedRegister(Reg))
1222 return true;
1223 lex();
1224 if (Token.isNot(MIToken::Eof))
1225 return error("expected end of string after the register reference");
1226 return false;
1227}
1228
1229bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1230 lex();
1231 if (Token.isNot(MIToken::VirtualRegister))
1232 return error("expected a virtual register");
1233 if (parseVirtualRegister(Info))
1234 return true;
1235 lex();
1236 if (Token.isNot(MIToken::Eof))
1237 return error("expected end of string after the register reference");
1238 return false;
1239}
1240
1241bool MIParser::parseStandaloneRegister(Register &Reg) {
1242 lex();
1243 if (Token.isNot(MIToken::NamedRegister) &&
1244 Token.isNot(MIToken::VirtualRegister))
1245 return error("expected either a named or virtual register");
1246
1247 VRegInfo *Info;
1248 if (parseRegister(Reg, Info))
1249 return true;
1250
1251 lex();
1252 if (Token.isNot(MIToken::Eof))
1253 return error("expected end of string after the register reference");
1254 return false;
1255}
1256
1257bool MIParser::parseStandaloneStackObject(int &FI) {
1258 lex();
1259 if (Token.isNot(MIToken::StackObject))
1260 return error("expected a stack object");
1261 if (parseStackFrameIndex(FI))
1262 return true;
1263 if (Token.isNot(MIToken::Eof))
1264 return error("expected end of string after the stack object reference");
1265 return false;
1266}
1267
1268bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1269 lex();
1270 if (Token.is(MIToken::exclaim)) {
1271 if (parseMDNode(Node))
1272 return true;
1273 } else if (Token.is(MIToken::md_diexpr)) {
1274 if (parseDIExpression(Node))
1275 return true;
1276 } else if (Token.is(MIToken::md_dilocation)) {
1277 if (parseDILocation(Node))
1278 return true;
1279 } else
1280 return error("expected a metadata node");
1281 if (Token.isNot(MIToken::Eof))
1282 return error("expected end of string after the metadata node");
1283 return false;
1284}
1285
1286bool MIParser::parseMachineMetadata() {
1287 lex();
1288 if (Token.isNot(MIToken::exclaim))
1289 return error("expected a metadata node");
1290
1291 lex();
1292 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1293 return error("expected metadata id after '!'");
1294 unsigned ID = 0;
1295 if (getUnsigned(ID))
1296 return true;
1297 lex();
1298 if (expectAndConsume(MIToken::equal))
1299 return true;
1300 bool IsDistinct = Token.is(MIToken::kw_distinct);
1301 if (IsDistinct)
1302 lex();
1303 if (Token.isNot(MIToken::exclaim))
1304 return error("expected a metadata node");
1305 lex();
1306
1307 MDNode *MD;
1308 if (parseMDTuple(MD, IsDistinct))
1309 return true;
1310
1311 auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1312 if (FI != PFS.MachineForwardRefMDNodes.end()) {
1313 FI->second.first->replaceAllUsesWith(MD);
1314 PFS.MachineForwardRefMDNodes.erase(FI);
1315
1316 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1317 } else {
1318 auto [It, Inserted] = PFS.MachineMetadataNodes.try_emplace(ID);
1319 if (!Inserted)
1320 return error("Metadata id is already used");
1321 It->second.reset(MD);
1322 }
1323
1324 return false;
1325}
1326
1327bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1329 if (parseMDNodeVector(Elts))
1330 return true;
1331 MD = (IsDistinct ? MDTuple::getDistinct
1332 : MDTuple::get)(MF.getFunction().getContext(), Elts);
1333 return false;
1334}
1335
1336bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1337 if (Token.isNot(MIToken::lbrace))
1338 return error("expected '{' here");
1339 lex();
1340
1341 if (Token.is(MIToken::rbrace)) {
1342 lex();
1343 return false;
1344 }
1345
1346 do {
1347 Metadata *MD;
1348 if (parseMetadata(MD))
1349 return true;
1350
1351 Elts.push_back(MD);
1352
1353 if (Token.isNot(MIToken::comma))
1354 break;
1355 lex();
1356 } while (true);
1357
1358 if (Token.isNot(MIToken::rbrace))
1359 return error("expected end of metadata node");
1360 lex();
1361
1362 return false;
1363}
1364
1365// ::= !42
1366// ::= !"string"
1367bool MIParser::parseMetadata(Metadata *&MD) {
1368 if (Token.isNot(MIToken::exclaim))
1369 return error("expected '!' here");
1370 lex();
1371
1372 if (Token.is(MIToken::StringConstant)) {
1373 std::string Str;
1374 if (parseStringConstant(Str))
1375 return true;
1376 MD = MDString::get(MF.getFunction().getContext(), Str);
1377 return false;
1378 }
1379
1380 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1381 return error("expected metadata id after '!'");
1382
1383 SMLoc Loc = mapSMLoc(Token.location());
1384
1385 unsigned ID = 0;
1386 if (getUnsigned(ID))
1387 return true;
1388 lex();
1389
1390 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1391 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1392 MD = NodeInfo->second.get();
1393 return false;
1394 }
1395 // Check machine metadata.
1396 NodeInfo = PFS.MachineMetadataNodes.find(ID);
1397 if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1398 MD = NodeInfo->second.get();
1399 return false;
1400 }
1401 // Forward reference.
1402 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1403 FwdRef = std::make_pair(
1404 MDTuple::getTemporary(MF.getFunction().getContext(), {}), Loc);
1405 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1406 MD = FwdRef.first.get();
1407
1408 return false;
1409}
1410
1411static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1412 assert(MO.isImplicit());
1413 return MO.isDef() ? "implicit-def" : "implicit";
1414}
1415
1416static std::string getRegisterName(const TargetRegisterInfo *TRI,
1417 Register Reg) {
1418 assert(Reg.isPhysical() && "expected phys reg");
1419 return StringRef(TRI->getName(Reg)).lower();
1420}
1421
1422/// Return true if the parsed machine operands contain a given machine operand.
1423static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1425 for (const auto &I : Operands) {
1426 if (ImplicitOperand.isIdenticalTo(I.Operand))
1427 return true;
1428 }
1429 return false;
1430}
1431
1432bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1433 const MCInstrDesc &MCID) {
1434 if (MCID.isCall())
1435 // We can't verify call instructions as they can contain arbitrary implicit
1436 // register and register mask operands.
1437 return false;
1438
1439 // Gather all the expected implicit operands.
1440 SmallVector<MachineOperand, 4> ImplicitOperands;
1441 for (MCPhysReg ImpDef : MCID.implicit_defs())
1442 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpDef, true, true));
1443 for (MCPhysReg ImpUse : MCID.implicit_uses())
1444 ImplicitOperands.push_back(MachineOperand::CreateReg(ImpUse, false, true));
1445
1446 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1447 assert(TRI && "Expected target register info");
1448 for (const auto &I : ImplicitOperands) {
1450 continue;
1451 return error(Operands.empty() ? Token.location() : Operands.back().End,
1452 Twine("missing implicit register operand '") +
1454 getRegisterName(TRI, I.getReg()) + "'");
1455 }
1456 return false;
1457}
1458
1459bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1460 // Allow frame and fast math flags for OPCODE
1461 // clang-format off
1462 while (Token.is(MIToken::kw_frame_setup) ||
1463 Token.is(MIToken::kw_frame_destroy) ||
1464 Token.is(MIToken::kw_nnan) ||
1465 Token.is(MIToken::kw_ninf) ||
1466 Token.is(MIToken::kw_nsz) ||
1467 Token.is(MIToken::kw_arcp) ||
1468 Token.is(MIToken::kw_contract) ||
1469 Token.is(MIToken::kw_afn) ||
1470 Token.is(MIToken::kw_reassoc) ||
1471 Token.is(MIToken::kw_nuw) ||
1472 Token.is(MIToken::kw_nsw) ||
1473 Token.is(MIToken::kw_exact) ||
1474 Token.is(MIToken::kw_nofpexcept) ||
1475 Token.is(MIToken::kw_noconvergent) ||
1476 Token.is(MIToken::kw_unpredictable) ||
1477 Token.is(MIToken::kw_nneg) ||
1478 Token.is(MIToken::kw_disjoint) ||
1479 Token.is(MIToken::kw_samesign)) {
1480 // clang-format on
1481 // Mine frame and fast math flags
1482 if (Token.is(MIToken::kw_frame_setup))
1484 if (Token.is(MIToken::kw_frame_destroy))
1486 if (Token.is(MIToken::kw_nnan))
1488 if (Token.is(MIToken::kw_ninf))
1490 if (Token.is(MIToken::kw_nsz))
1492 if (Token.is(MIToken::kw_arcp))
1494 if (Token.is(MIToken::kw_contract))
1496 if (Token.is(MIToken::kw_afn))
1498 if (Token.is(MIToken::kw_reassoc))
1500 if (Token.is(MIToken::kw_nuw))
1502 if (Token.is(MIToken::kw_nsw))
1504 if (Token.is(MIToken::kw_exact))
1506 if (Token.is(MIToken::kw_nofpexcept))
1508 if (Token.is(MIToken::kw_unpredictable))
1510 if (Token.is(MIToken::kw_noconvergent))
1512 if (Token.is(MIToken::kw_nneg))
1514 if (Token.is(MIToken::kw_disjoint))
1516 if (Token.is(MIToken::kw_samesign))
1518
1519 lex();
1520 }
1521 if (Token.isNot(MIToken::Identifier))
1522 return error("expected a machine instruction");
1523 StringRef InstrName = Token.stringValue();
1524 if (PFS.Target.parseInstrName(InstrName, OpCode))
1525 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1526 lex();
1527 return false;
1528}
1529
1530bool MIParser::parseNamedRegister(Register &Reg) {
1531 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1532 StringRef Name = Token.stringValue();
1533 if (PFS.Target.getRegisterByName(Name, Reg))
1534 return error(Twine("unknown register name '") + Name + "'");
1535 return false;
1536}
1537
1538bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1539 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1540 StringRef Name = Token.stringValue();
1541 // TODO: Check that the VReg name is not the same as a physical register name.
1542 // If it is, then print a warning (when warnings are implemented).
1543 Info = &PFS.getVRegInfoNamed(Name);
1544 return false;
1545}
1546
1547bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1548 if (Token.is(MIToken::NamedVirtualRegister))
1549 return parseNamedVirtualRegister(Info);
1550 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1551 unsigned ID;
1552 if (getUnsigned(ID))
1553 return true;
1554 Info = &PFS.getVRegInfo(ID);
1555 return false;
1556}
1557
1558bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1559 switch (Token.kind()) {
1561 Reg = 0;
1562 return false;
1564 return parseNamedRegister(Reg);
1567 if (parseVirtualRegister(Info))
1568 return true;
1569 Reg = Info->VReg;
1570 return false;
1571 // TODO: Parse other register kinds.
1572 default:
1573 llvm_unreachable("The current token should be a register");
1574 }
1575}
1576
1577bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1578 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1579 return error("expected '_', register class, or register bank name");
1580 StringRef::iterator Loc = Token.location();
1581 StringRef Name = Token.stringValue();
1582
1583 // Was it a register class?
1584 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1585 if (RC) {
1586 lex();
1587
1588 switch (RegInfo.Kind) {
1589 case VRegInfo::UNKNOWN:
1590 case VRegInfo::NORMAL:
1592 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1593 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1594 return error(Loc, Twine("conflicting register classes, previously: ") +
1595 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1596 }
1597 RegInfo.D.RC = RC;
1598 RegInfo.Explicit = true;
1599 return false;
1600
1601 case VRegInfo::GENERIC:
1602 case VRegInfo::REGBANK:
1603 return error(Loc, "register class specification on generic register");
1604 }
1605 llvm_unreachable("Unexpected register kind");
1606 }
1607
1608 // Should be a register bank or a generic register.
1609 const RegisterBank *RegBank = nullptr;
1610 if (Name != "_") {
1611 RegBank = PFS.Target.getRegBank(Name);
1612 if (!RegBank)
1613 return error(Loc, "expected '_', register class, or register bank name");
1614 }
1615
1616 lex();
1617
1618 switch (RegInfo.Kind) {
1619 case VRegInfo::UNKNOWN:
1620 case VRegInfo::GENERIC:
1621 case VRegInfo::REGBANK:
1623 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1624 return error(Loc, "conflicting generic register banks");
1625 RegInfo.D.RegBank = RegBank;
1626 RegInfo.Explicit = true;
1627 return false;
1628
1629 case VRegInfo::NORMAL:
1630 return error(Loc, "register bank specification on normal register");
1631 }
1632 llvm_unreachable("Unexpected register kind");
1633}
1634
1635bool MIParser::parseRegisterFlag(unsigned &Flags) {
1636 const unsigned OldFlags = Flags;
1637 switch (Token.kind()) {
1640 break;
1643 break;
1644 case MIToken::kw_def:
1646 break;
1647 case MIToken::kw_dead:
1649 break;
1650 case MIToken::kw_killed:
1652 break;
1653 case MIToken::kw_undef:
1655 break;
1658 break;
1661 break;
1664 break;
1667 break;
1668 default:
1669 llvm_unreachable("The current token should be a register flag");
1670 }
1671 if (OldFlags == Flags)
1672 // We know that the same flag is specified more than once when the flags
1673 // weren't modified.
1674 return error("duplicate '" + Token.stringValue() + "' register flag");
1675 lex();
1676 return false;
1677}
1678
1679bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1680 assert(Token.is(MIToken::dot));
1681 lex();
1682 if (Token.isNot(MIToken::Identifier))
1683 return error("expected a subregister index after '.'");
1684 auto Name = Token.stringValue();
1685 SubReg = PFS.Target.getSubRegIndex(Name);
1686 if (!SubReg)
1687 return error(Twine("use of unknown subregister index '") + Name + "'");
1688 lex();
1689 return false;
1690}
1691
1692bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1693 if (!consumeIfPresent(MIToken::kw_tied_def))
1694 return true;
1695 if (Token.isNot(MIToken::IntegerLiteral))
1696 return error("expected an integer literal after 'tied-def'");
1697 if (getUnsigned(TiedDefIdx))
1698 return true;
1699 lex();
1700 if (expectAndConsume(MIToken::rparen))
1701 return true;
1702 return false;
1703}
1704
1705bool MIParser::assignRegisterTies(MachineInstr &MI,
1707 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1708 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1709 if (!Operands[I].TiedDefIdx)
1710 continue;
1711 // The parser ensures that this operand is a register use, so we just have
1712 // to check the tied-def operand.
1713 unsigned DefIdx = *Operands[I].TiedDefIdx;
1714 if (DefIdx >= E)
1715 return error(Operands[I].Begin,
1716 Twine("use of invalid tied-def operand index '" +
1717 Twine(DefIdx) + "'; instruction has only ") +
1718 Twine(E) + " operands");
1719 const auto &DefOperand = Operands[DefIdx].Operand;
1720 if (!DefOperand.isReg() || !DefOperand.isDef())
1721 // FIXME: add note with the def operand.
1722 return error(Operands[I].Begin,
1723 Twine("use of invalid tied-def operand index '") +
1724 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1725 " isn't a defined register");
1726 // Check that the tied-def operand wasn't tied elsewhere.
1727 for (const auto &TiedPair : TiedRegisterPairs) {
1728 if (TiedPair.first == DefIdx)
1729 return error(Operands[I].Begin,
1730 Twine("the tied-def operand #") + Twine(DefIdx) +
1731 " is already tied with another register operand");
1732 }
1733 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1734 }
1735 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1736 // indices must be less than tied max.
1737 for (const auto &TiedPair : TiedRegisterPairs)
1738 MI.tieOperands(TiedPair.first, TiedPair.second);
1739 return false;
1740}
1741
1742bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1743 std::optional<unsigned> &TiedDefIdx,
1744 bool IsDef) {
1745 unsigned Flags = IsDef ? RegState::Define : 0;
1746 while (Token.isRegisterFlag()) {
1747 if (parseRegisterFlag(Flags))
1748 return true;
1749 }
1750 if (!Token.isRegister())
1751 return error("expected a register after register flags");
1752 Register Reg;
1754 if (parseRegister(Reg, RegInfo))
1755 return true;
1756 lex();
1757 unsigned SubReg = 0;
1758 if (Token.is(MIToken::dot)) {
1759 if (parseSubRegisterIndex(SubReg))
1760 return true;
1761 if (!Reg.isVirtual())
1762 return error("subregister index expects a virtual register");
1763 }
1764 if (Token.is(MIToken::colon)) {
1765 if (!Reg.isVirtual())
1766 return error("register class specification expects a virtual register");
1767 lex();
1768 if (parseRegisterClassOrBank(*RegInfo))
1769 return true;
1770 }
1771 MachineRegisterInfo &MRI = MF.getRegInfo();
1772 if ((Flags & RegState::Define) == 0) {
1773 if (consumeIfPresent(MIToken::lparen)) {
1774 unsigned Idx;
1775 if (!parseRegisterTiedDefIndex(Idx))
1776 TiedDefIdx = Idx;
1777 else {
1778 // Try a redundant low-level type.
1779 LLT Ty;
1780 if (parseLowLevelType(Token.location(), Ty))
1781 return error("expected tied-def or low-level type after '('");
1782
1783 if (expectAndConsume(MIToken::rparen))
1784 return true;
1785
1786 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1787 return error("inconsistent type for generic virtual register");
1788
1789 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1790 MRI.setType(Reg, Ty);
1791 MRI.noteNewVirtualRegister(Reg);
1792 }
1793 }
1794 } else if (consumeIfPresent(MIToken::lparen)) {
1795 // Virtual registers may have a tpe with GlobalISel.
1796 if (!Reg.isVirtual())
1797 return error("unexpected type on physical register");
1798
1799 LLT Ty;
1800 if (parseLowLevelType(Token.location(), Ty))
1801 return true;
1802
1803 if (expectAndConsume(MIToken::rparen))
1804 return true;
1805
1806 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1807 return error("inconsistent type for generic virtual register");
1808
1809 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1810 MRI.setType(Reg, Ty);
1811 } else if (Reg.isVirtual()) {
1812 // Generic virtual registers must have a type.
1813 // If we end up here this means the type hasn't been specified and
1814 // this is bad!
1815 if (RegInfo->Kind == VRegInfo::GENERIC ||
1817 return error("generic virtual registers must have a type");
1818 }
1819
1820 if (Flags & RegState::Define) {
1821 if (Flags & RegState::Kill)
1822 return error("cannot have a killed def operand");
1823 } else {
1824 if (Flags & RegState::Dead)
1825 return error("cannot have a dead use operand");
1826 }
1827
1829 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1830 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1833
1834 return false;
1835}
1836
1837bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1839 const APSInt &Int = Token.integerValue();
1840 if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value())
1841 Dest = MachineOperand::CreateImm(*SImm);
1842 else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value())
1843 Dest = MachineOperand::CreateImm(*UImm);
1844 else
1845 return error("integer literal is too large to be an immediate operand");
1846 lex();
1847 return false;
1848}
1849
1850bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1851 const unsigned OpIdx,
1852 MachineOperand &Dest,
1853 const MIRFormatter &MF) {
1854 assert(Token.is(MIToken::dot));
1855 auto Loc = Token.location(); // record start position
1856 size_t Len = 1; // for "."
1857 lex();
1858
1859 // Handle the case that mnemonic starts with number.
1860 if (Token.is(MIToken::IntegerLiteral)) {
1861 Len += Token.range().size();
1862 lex();
1863 }
1864
1865 StringRef Src;
1866 if (Token.is(MIToken::comma))
1867 Src = StringRef(Loc, Len);
1868 else {
1869 assert(Token.is(MIToken::Identifier));
1870 Src = StringRef(Loc, Len + Token.stringValue().size());
1871 }
1872 int64_t Val;
1873 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1874 [this](StringRef::iterator Loc, const Twine &Msg)
1875 -> bool { return error(Loc, Msg); }))
1876 return true;
1877
1878 Dest = MachineOperand::CreateImm(Val);
1879 if (!Token.is(MIToken::comma))
1880 lex();
1881 return false;
1882}
1883
1884static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1885 PerFunctionMIParsingState &PFS, const Constant *&C,
1886 ErrorCallbackType ErrCB) {
1887 auto Source = StringValue.str(); // The source has to be null terminated.
1888 SMDiagnostic Err;
1889 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1890 &PFS.IRSlots);
1891 if (!C)
1892 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1893 return false;
1894}
1895
1896bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1897 const Constant *&C) {
1898 return ::parseIRConstant(
1899 Loc, StringValue, PFS, C,
1900 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1901 return error(Loc, Msg);
1902 });
1903}
1904
1905bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1906 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1907 return true;
1908 lex();
1909 return false;
1910}
1911
1912// See LLT implementation for bit size limits.
1914 return Size != 0 && isUInt<16>(Size);
1915}
1916
1918 return NumElts != 0 && isUInt<16>(NumElts);
1919}
1920
1921static bool verifyAddrSpace(uint64_t AddrSpace) {
1922 return isUInt<24>(AddrSpace);
1923}
1924
1925bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1926 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1927 StringRef SizeStr = Token.range().drop_front();
1928 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1929 return error("expected integers after 's'/'p' type character");
1930 }
1931
1932 if (Token.range().front() == 's') {
1933 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1934 if (ScalarSize) {
1935 if (!verifyScalarSize(ScalarSize))
1936 return error("invalid size for scalar type");
1937 Ty = LLT::scalar(ScalarSize);
1938 } else {
1939 Ty = LLT::token();
1940 }
1941 lex();
1942 return false;
1943 } else if (Token.range().front() == 'p') {
1944 const DataLayout &DL = MF.getDataLayout();
1945 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1946 if (!verifyAddrSpace(AS))
1947 return error("invalid address space number");
1948
1949 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1950 lex();
1951 return false;
1952 }
1953
1954 // Now we're looking for a vector.
1955 if (Token.isNot(MIToken::less))
1956 return error(Loc, "expected sN, pA, <M x sN>, <M x pA>, <vscale x M x sN>, "
1957 "or <vscale x M x pA> for GlobalISel type");
1958 lex();
1959
1960 bool HasVScale =
1961 Token.is(MIToken::Identifier) && Token.stringValue() == "vscale";
1962 if (HasVScale) {
1963 lex();
1964 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1965 return error("expected <vscale x M x sN> or <vscale x M x pA>");
1966 lex();
1967 }
1968
1969 auto GetError = [this, &HasVScale, Loc]() {
1970 if (HasVScale)
1971 return error(
1972 Loc, "expected <vscale x M x sN> or <vscale M x pA> for vector type");
1973 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1974 };
1975
1976 if (Token.isNot(MIToken::IntegerLiteral))
1977 return GetError();
1978 uint64_t NumElements = Token.integerValue().getZExtValue();
1979 if (!verifyVectorElementCount(NumElements))
1980 return error("invalid number of vector elements");
1981
1982 lex();
1983
1984 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1985 return GetError();
1986 lex();
1987
1988 if (Token.range().front() != 's' && Token.range().front() != 'p')
1989 return GetError();
1990
1991 StringRef SizeStr = Token.range().drop_front();
1992 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1993 return error("expected integers after 's'/'p' type character");
1994
1995 if (Token.range().front() == 's') {
1996 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1997 if (!verifyScalarSize(ScalarSize))
1998 return error("invalid size for scalar element in vector");
1999 Ty = LLT::scalar(ScalarSize);
2000 } else if (Token.range().front() == 'p') {
2001 const DataLayout &DL = MF.getDataLayout();
2002 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
2003 if (!verifyAddrSpace(AS))
2004 return error("invalid address space number");
2005
2006 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
2007 } else
2008 return GetError();
2009 lex();
2010
2011 if (Token.isNot(MIToken::greater))
2012 return GetError();
2013
2014 lex();
2015
2016 Ty = LLT::vector(ElementCount::get(NumElements, HasVScale), Ty);
2017 return false;
2018}
2019
2020bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
2021 assert(Token.is(MIToken::Identifier));
2022 StringRef TypeStr = Token.range();
2023 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
2024 TypeStr.front() != 'p')
2025 return error(
2026 "a typed immediate operand should start with one of 'i', 's', or 'p'");
2027 StringRef SizeStr = Token.range().drop_front();
2028 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
2029 return error("expected integers after 'i'/'s'/'p' type character");
2030
2031 auto Loc = Token.location();
2032 lex();
2033 if (Token.isNot(MIToken::IntegerLiteral)) {
2034 if (Token.isNot(MIToken::Identifier) ||
2035 !(Token.range() == "true" || Token.range() == "false"))
2036 return error("expected an integer literal");
2037 }
2038 const Constant *C = nullptr;
2039 if (parseIRConstant(Loc, C))
2040 return true;
2041 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
2042 return false;
2043}
2044
2045bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
2046 auto Loc = Token.location();
2047 lex();
2048 if (Token.isNot(MIToken::FloatingPointLiteral) &&
2049 Token.isNot(MIToken::HexLiteral))
2050 return error("expected a floating point literal");
2051 const Constant *C = nullptr;
2052 if (parseIRConstant(Loc, C))
2053 return true;
2054 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
2055 return false;
2056}
2057
2058static bool getHexUint(const MIToken &Token, APInt &Result) {
2060 StringRef S = Token.range();
2061 assert(S[0] == '0' && tolower(S[1]) == 'x');
2062 // This could be a floating point literal with a special prefix.
2063 if (!isxdigit(S[2]))
2064 return true;
2065 StringRef V = S.substr(2);
2066 APInt A(V.size()*4, V, 16);
2067
2068 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2069 // sure it isn't the case before constructing result.
2070 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2071 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2072 return false;
2073}
2074
2075static bool getUnsigned(const MIToken &Token, unsigned &Result,
2076 ErrorCallbackType ErrCB) {
2077 if (Token.hasIntegerValue()) {
2078 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
2079 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
2080 if (Val64 == Limit)
2081 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2082 Result = Val64;
2083 return false;
2084 }
2085 if (Token.is(MIToken::HexLiteral)) {
2086 APInt A;
2087 if (getHexUint(Token, A))
2088 return true;
2089 if (A.getBitWidth() > 32)
2090 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2091 Result = A.getZExtValue();
2092 return false;
2093 }
2094 return true;
2095}
2096
2097bool MIParser::getUnsigned(unsigned &Result) {
2098 return ::getUnsigned(
2099 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2100 return error(Loc, Msg);
2101 });
2102}
2103
2104bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
2107 unsigned Number;
2108 if (getUnsigned(Number))
2109 return true;
2110 auto MBBInfo = PFS.MBBSlots.find(Number);
2111 if (MBBInfo == PFS.MBBSlots.end())
2112 return error(Twine("use of undefined machine basic block #") +
2113 Twine(Number));
2114 MBB = MBBInfo->second;
2115 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
2116 // we drop the <irname> from the bb.<id>.<irname> format.
2117 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
2118 return error(Twine("the name of machine basic block #") + Twine(Number) +
2119 " isn't '" + Token.stringValue() + "'");
2120 return false;
2121}
2122
2123bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2126 return true;
2128 lex();
2129 return false;
2130}
2131
2132bool MIParser::parseStackFrameIndex(int &FI) {
2133 assert(Token.is(MIToken::StackObject));
2134 unsigned ID;
2135 if (getUnsigned(ID))
2136 return true;
2137 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2138 if (ObjectInfo == PFS.StackObjectSlots.end())
2139 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2140 "'");
2142 if (const auto *Alloca =
2143 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2144 Name = Alloca->getName();
2145 if (!Token.stringValue().empty() && Token.stringValue() != Name)
2146 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2147 "' isn't '" + Token.stringValue() + "'");
2148 lex();
2149 FI = ObjectInfo->second;
2150 return false;
2151}
2152
2153bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2154 int FI;
2155 if (parseStackFrameIndex(FI))
2156 return true;
2157 Dest = MachineOperand::CreateFI(FI);
2158 return false;
2159}
2160
2161bool MIParser::parseFixedStackFrameIndex(int &FI) {
2163 unsigned ID;
2164 if (getUnsigned(ID))
2165 return true;
2166 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2167 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2168 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2169 Twine(ID) + "'");
2170 lex();
2171 FI = ObjectInfo->second;
2172 return false;
2173}
2174
2175bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2176 int FI;
2177 if (parseFixedStackFrameIndex(FI))
2178 return true;
2179 Dest = MachineOperand::CreateFI(FI);
2180 return false;
2181}
2182
2183static bool parseGlobalValue(const MIToken &Token,
2185 ErrorCallbackType ErrCB) {
2186 switch (Token.kind()) {
2188 const Module *M = PFS.MF.getFunction().getParent();
2189 GV = M->getNamedValue(Token.stringValue());
2190 if (!GV)
2191 return ErrCB(Token.location(), Twine("use of undefined global value '") +
2192 Token.range() + "'");
2193 break;
2194 }
2195 case MIToken::GlobalValue: {
2196 unsigned GVIdx;
2197 if (getUnsigned(Token, GVIdx, ErrCB))
2198 return true;
2199 GV = PFS.IRSlots.GlobalValues.get(GVIdx);
2200 if (!GV)
2201 return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2202 Twine(GVIdx) + "'");
2203 break;
2204 }
2205 default:
2206 llvm_unreachable("The current token should be a global value");
2207 }
2208 return false;
2209}
2210
2211bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2212 return ::parseGlobalValue(
2213 Token, PFS, GV,
2214 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2215 return error(Loc, Msg);
2216 });
2217}
2218
2219bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2220 GlobalValue *GV = nullptr;
2221 if (parseGlobalValue(GV))
2222 return true;
2223 lex();
2224 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2225 if (parseOperandsOffset(Dest))
2226 return true;
2227 return false;
2228}
2229
2230bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2232 unsigned ID;
2233 if (getUnsigned(ID))
2234 return true;
2235 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2236 if (ConstantInfo == PFS.ConstantPoolSlots.end())
2237 return error("use of undefined constant '%const." + Twine(ID) + "'");
2238 lex();
2239 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2240 if (parseOperandsOffset(Dest))
2241 return true;
2242 return false;
2243}
2244
2245bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2247 unsigned ID;
2248 if (getUnsigned(ID))
2249 return true;
2250 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2251 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2252 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2253 lex();
2254 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2255 return false;
2256}
2257
2258bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2260 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2261 lex();
2262 Dest = MachineOperand::CreateES(Symbol);
2263 if (parseOperandsOffset(Dest))
2264 return true;
2265 return false;
2266}
2267
2268bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2269 assert(Token.is(MIToken::MCSymbol));
2270 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2271 lex();
2272 Dest = MachineOperand::CreateMCSymbol(Symbol);
2273 if (parseOperandsOffset(Dest))
2274 return true;
2275 return false;
2276}
2277
2278bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2280 StringRef Name = Token.stringValue();
2281 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2282 if (SubRegIndex == 0)
2283 return error(Twine("unknown subregister index '") + Name + "'");
2284 lex();
2285 Dest = MachineOperand::CreateImm(SubRegIndex);
2286 return false;
2287}
2288
2289bool MIParser::parseMDNode(MDNode *&Node) {
2290 assert(Token.is(MIToken::exclaim));
2291
2292 auto Loc = Token.location();
2293 lex();
2294 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2295 return error("expected metadata id after '!'");
2296 unsigned ID;
2297 if (getUnsigned(ID))
2298 return true;
2299 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2300 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2301 NodeInfo = PFS.MachineMetadataNodes.find(ID);
2302 if (NodeInfo == PFS.MachineMetadataNodes.end())
2303 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2304 }
2305 lex();
2306 Node = NodeInfo->second.get();
2307 return false;
2308}
2309
2310bool MIParser::parseDIExpression(MDNode *&Expr) {
2311 unsigned Read;
2313 CurrentSource, Read, Error, *PFS.MF.getFunction().getParent(),
2314 &PFS.IRSlots);
2315 CurrentSource = CurrentSource.substr(Read);
2316 lex();
2317 if (!Expr)
2318 return error(Error.getMessage());
2319 return false;
2320}
2321
2322bool MIParser::parseDILocation(MDNode *&Loc) {
2323 assert(Token.is(MIToken::md_dilocation));
2324 lex();
2325
2326 bool HaveLine = false;
2327 unsigned Line = 0;
2328 unsigned Column = 0;
2329 MDNode *Scope = nullptr;
2330 MDNode *InlinedAt = nullptr;
2331 bool ImplicitCode = false;
2332
2333 if (expectAndConsume(MIToken::lparen))
2334 return true;
2335
2336 if (Token.isNot(MIToken::rparen)) {
2337 do {
2338 if (Token.is(MIToken::Identifier)) {
2339 if (Token.stringValue() == "line") {
2340 lex();
2341 if (expectAndConsume(MIToken::colon))
2342 return true;
2343 if (Token.isNot(MIToken::IntegerLiteral) ||
2344 Token.integerValue().isSigned())
2345 return error("expected unsigned integer");
2346 Line = Token.integerValue().getZExtValue();
2347 HaveLine = true;
2348 lex();
2349 continue;
2350 }
2351 if (Token.stringValue() == "column") {
2352 lex();
2353 if (expectAndConsume(MIToken::colon))
2354 return true;
2355 if (Token.isNot(MIToken::IntegerLiteral) ||
2356 Token.integerValue().isSigned())
2357 return error("expected unsigned integer");
2358 Column = Token.integerValue().getZExtValue();
2359 lex();
2360 continue;
2361 }
2362 if (Token.stringValue() == "scope") {
2363 lex();
2364 if (expectAndConsume(MIToken::colon))
2365 return true;
2366 if (parseMDNode(Scope))
2367 return error("expected metadata node");
2368 if (!isa<DIScope>(Scope))
2369 return error("expected DIScope node");
2370 continue;
2371 }
2372 if (Token.stringValue() == "inlinedAt") {
2373 lex();
2374 if (expectAndConsume(MIToken::colon))
2375 return true;
2376 if (Token.is(MIToken::exclaim)) {
2377 if (parseMDNode(InlinedAt))
2378 return true;
2379 } else if (Token.is(MIToken::md_dilocation)) {
2380 if (parseDILocation(InlinedAt))
2381 return true;
2382 } else
2383 return error("expected metadata node");
2384 if (!isa<DILocation>(InlinedAt))
2385 return error("expected DILocation node");
2386 continue;
2387 }
2388 if (Token.stringValue() == "isImplicitCode") {
2389 lex();
2390 if (expectAndConsume(MIToken::colon))
2391 return true;
2392 if (!Token.is(MIToken::Identifier))
2393 return error("expected true/false");
2394 // As far as I can see, we don't have any existing need for parsing
2395 // true/false in MIR yet. Do it ad-hoc until there's something else
2396 // that needs it.
2397 if (Token.stringValue() == "true")
2398 ImplicitCode = true;
2399 else if (Token.stringValue() == "false")
2400 ImplicitCode = false;
2401 else
2402 return error("expected true/false");
2403 lex();
2404 continue;
2405 }
2406 }
2407 return error(Twine("invalid DILocation argument '") +
2408 Token.stringValue() + "'");
2409 } while (consumeIfPresent(MIToken::comma));
2410 }
2411
2412 if (expectAndConsume(MIToken::rparen))
2413 return true;
2414
2415 if (!HaveLine)
2416 return error("DILocation requires line number");
2417 if (!Scope)
2418 return error("DILocation requires a scope");
2419
2420 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2421 InlinedAt, ImplicitCode);
2422 return false;
2423}
2424
2425bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2426 MDNode *Node = nullptr;
2427 if (Token.is(MIToken::exclaim)) {
2428 if (parseMDNode(Node))
2429 return true;
2430 } else if (Token.is(MIToken::md_diexpr)) {
2431 if (parseDIExpression(Node))
2432 return true;
2433 }
2435 return false;
2436}
2437
2438bool MIParser::parseCFIOffset(int &Offset) {
2439 if (Token.isNot(MIToken::IntegerLiteral))
2440 return error("expected a cfi offset");
2441 if (Token.integerValue().getSignificantBits() > 32)
2442 return error("expected a 32 bit integer (the cfi offset is too large)");
2443 Offset = (int)Token.integerValue().getExtValue();
2444 lex();
2445 return false;
2446}
2447
2448bool MIParser::parseCFIRegister(unsigned &Reg) {
2449 if (Token.isNot(MIToken::NamedRegister))
2450 return error("expected a cfi register");
2451 Register LLVMReg;
2452 if (parseNamedRegister(LLVMReg))
2453 return true;
2454 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2455 assert(TRI && "Expected target register info");
2456 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2457 if (DwarfReg < 0)
2458 return error("invalid DWARF register");
2459 Reg = (unsigned)DwarfReg;
2460 lex();
2461 return false;
2462}
2463
2464bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2465 if (Token.isNot(MIToken::IntegerLiteral))
2466 return error("expected a cfi address space literal");
2467 if (Token.integerValue().isSigned())
2468 return error("expected an unsigned integer (cfi address space)");
2469 AddressSpace = Token.integerValue().getZExtValue();
2470 lex();
2471 return false;
2472}
2473
2474bool MIParser::parseCFIEscapeValues(std::string &Values) {
2475 do {
2476 if (Token.isNot(MIToken::HexLiteral))
2477 return error("expected a hexadecimal literal");
2478 unsigned Value;
2479 if (getUnsigned(Value))
2480 return true;
2481 if (Value > UINT8_MAX)
2482 return error("expected a 8-bit integer (too large)");
2483 Values.push_back(static_cast<uint8_t>(Value));
2484 lex();
2485 } while (consumeIfPresent(MIToken::comma));
2486 return false;
2487}
2488
2489bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2490 auto Kind = Token.kind();
2491 lex();
2492 int Offset;
2493 unsigned Reg;
2494 unsigned AddressSpace;
2495 unsigned CFIIndex;
2496 switch (Kind) {
2498 if (parseCFIRegister(Reg))
2499 return true;
2500 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2501 break;
2503 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2504 parseCFIOffset(Offset))
2505 return true;
2506 CFIIndex =
2507 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2508 break;
2510 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2511 parseCFIOffset(Offset))
2512 return true;
2513 CFIIndex = MF.addFrameInst(
2515 break;
2517 if (parseCFIRegister(Reg))
2518 return true;
2519 CFIIndex =
2520 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2521 break;
2523 if (parseCFIOffset(Offset))
2524 return true;
2525 CFIIndex =
2526 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2527 break;
2529 if (parseCFIOffset(Offset))
2530 return true;
2531 CFIIndex = MF.addFrameInst(
2533 break;
2535 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2536 parseCFIOffset(Offset))
2537 return true;
2538 CFIIndex =
2539 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2540 break;
2542 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2543 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2544 parseCFIAddressSpace(AddressSpace))
2545 return true;
2546 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2547 nullptr, Reg, Offset, AddressSpace, SMLoc()));
2548 break;
2550 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2551 break;
2553 if (parseCFIRegister(Reg))
2554 return true;
2555 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2556 break;
2558 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2559 break;
2561 if (parseCFIRegister(Reg))
2562 return true;
2563 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2564 break;
2566 unsigned Reg2;
2567 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2568 parseCFIRegister(Reg2))
2569 return true;
2570
2571 CFIIndex =
2572 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2573 break;
2574 }
2576 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2577 break;
2579 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2580 break;
2582 CFIIndex =
2583 MF.addFrameInst(MCCFIInstruction::createNegateRAStateWithPC(nullptr));
2584 break;
2586 std::string Values;
2587 if (parseCFIEscapeValues(Values))
2588 return true;
2589 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2590 break;
2591 }
2592 default:
2593 // TODO: Parse the other CFI operands.
2594 llvm_unreachable("The current token should be a cfi operand");
2595 }
2596 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2597 return false;
2598}
2599
2600bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2601 switch (Token.kind()) {
2602 case MIToken::NamedIRBlock: {
2603 BB = dyn_cast_or_null<BasicBlock>(
2604 F.getValueSymbolTable()->lookup(Token.stringValue()));
2605 if (!BB)
2606 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2607 break;
2608 }
2609 case MIToken::IRBlock: {
2610 unsigned SlotNumber = 0;
2611 if (getUnsigned(SlotNumber))
2612 return true;
2613 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2614 if (!BB)
2615 return error(Twine("use of undefined IR block '%ir-block.") +
2616 Twine(SlotNumber) + "'");
2617 break;
2618 }
2619 default:
2620 llvm_unreachable("The current token should be an IR block reference");
2621 }
2622 return false;
2623}
2624
2625bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2627 lex();
2628 if (expectAndConsume(MIToken::lparen))
2629 return true;
2630 if (Token.isNot(MIToken::GlobalValue) &&
2631 Token.isNot(MIToken::NamedGlobalValue))
2632 return error("expected a global value");
2633 GlobalValue *GV = nullptr;
2634 if (parseGlobalValue(GV))
2635 return true;
2636 auto *F = dyn_cast<Function>(GV);
2637 if (!F)
2638 return error("expected an IR function reference");
2639 lex();
2640 if (expectAndConsume(MIToken::comma))
2641 return true;
2642 BasicBlock *BB = nullptr;
2643 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2644 return error("expected an IR block reference");
2645 if (parseIRBlock(BB, *F))
2646 return true;
2647 lex();
2648 if (expectAndConsume(MIToken::rparen))
2649 return true;
2650 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2651 if (parseOperandsOffset(Dest))
2652 return true;
2653 return false;
2654}
2655
2656bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2657 assert(Token.is(MIToken::kw_intrinsic));
2658 lex();
2659 if (expectAndConsume(MIToken::lparen))
2660 return error("expected syntax intrinsic(@llvm.whatever)");
2661
2662 if (Token.isNot(MIToken::NamedGlobalValue))
2663 return error("expected syntax intrinsic(@llvm.whatever)");
2664
2665 std::string Name = std::string(Token.stringValue());
2666 lex();
2667
2668 if (expectAndConsume(MIToken::rparen))
2669 return error("expected ')' to terminate intrinsic name");
2670
2671 // Find out what intrinsic we're dealing with.
2674 return error("unknown intrinsic name");
2676
2677 return false;
2678}
2679
2680bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2681 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2682 bool IsFloat = Token.is(MIToken::kw_floatpred);
2683 lex();
2684
2685 if (expectAndConsume(MIToken::lparen))
2686 return error("expected syntax intpred(whatever) or floatpred(whatever");
2687
2688 if (Token.isNot(MIToken::Identifier))
2689 return error("whatever");
2690
2691 CmpInst::Predicate Pred;
2692 if (IsFloat) {
2693 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2694 .Case("false", CmpInst::FCMP_FALSE)
2695 .Case("oeq", CmpInst::FCMP_OEQ)
2696 .Case("ogt", CmpInst::FCMP_OGT)
2697 .Case("oge", CmpInst::FCMP_OGE)
2698 .Case("olt", CmpInst::FCMP_OLT)
2699 .Case("ole", CmpInst::FCMP_OLE)
2700 .Case("one", CmpInst::FCMP_ONE)
2701 .Case("ord", CmpInst::FCMP_ORD)
2702 .Case("uno", CmpInst::FCMP_UNO)
2703 .Case("ueq", CmpInst::FCMP_UEQ)
2704 .Case("ugt", CmpInst::FCMP_UGT)
2705 .Case("uge", CmpInst::FCMP_UGE)
2706 .Case("ult", CmpInst::FCMP_ULT)
2707 .Case("ule", CmpInst::FCMP_ULE)
2708 .Case("une", CmpInst::FCMP_UNE)
2709 .Case("true", CmpInst::FCMP_TRUE)
2711 if (!CmpInst::isFPPredicate(Pred))
2712 return error("invalid floating-point predicate");
2713 } else {
2714 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2715 .Case("eq", CmpInst::ICMP_EQ)
2716 .Case("ne", CmpInst::ICMP_NE)
2717 .Case("sgt", CmpInst::ICMP_SGT)
2718 .Case("sge", CmpInst::ICMP_SGE)
2719 .Case("slt", CmpInst::ICMP_SLT)
2720 .Case("sle", CmpInst::ICMP_SLE)
2721 .Case("ugt", CmpInst::ICMP_UGT)
2722 .Case("uge", CmpInst::ICMP_UGE)
2723 .Case("ult", CmpInst::ICMP_ULT)
2724 .Case("ule", CmpInst::ICMP_ULE)
2726 if (!CmpInst::isIntPredicate(Pred))
2727 return error("invalid integer predicate");
2728 }
2729
2730 lex();
2732 if (expectAndConsume(MIToken::rparen))
2733 return error("predicate should be terminated by ')'.");
2734
2735 return false;
2736}
2737
2738bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2740
2741 lex();
2742 if (expectAndConsume(MIToken::lparen))
2743 return error("expected syntax shufflemask(<integer or undef>, ...)");
2744
2745 SmallVector<int, 32> ShufMask;
2746 do {
2747 if (Token.is(MIToken::kw_undef)) {
2748 ShufMask.push_back(-1);
2749 } else if (Token.is(MIToken::IntegerLiteral)) {
2750 const APSInt &Int = Token.integerValue();
2751 ShufMask.push_back(Int.getExtValue());
2752 } else
2753 return error("expected integer constant");
2754
2755 lex();
2756 } while (consumeIfPresent(MIToken::comma));
2757
2758 if (expectAndConsume(MIToken::rparen))
2759 return error("shufflemask should be terminated by ')'.");
2760
2761 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2762 Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2763 return false;
2764}
2765
2766bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) {
2768
2769 lex();
2770 if (expectAndConsume(MIToken::lparen))
2771 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2772
2773 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2774 return error("expected unsigned integer for instruction index");
2775 uint64_t InstrIdx = Token.integerValue().getZExtValue();
2776 assert(InstrIdx <= std::numeric_limits<unsigned>::max() &&
2777 "Instruction reference's instruction index is too large");
2778 lex();
2779
2780 if (expectAndConsume(MIToken::comma))
2781 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2782
2783 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2784 return error("expected unsigned integer for operand index");
2785 uint64_t OpIdx = Token.integerValue().getZExtValue();
2786 assert(OpIdx <= std::numeric_limits<unsigned>::max() &&
2787 "Instruction reference's operand index is too large");
2788 lex();
2789
2790 if (expectAndConsume(MIToken::rparen))
2791 return error("expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2792
2793 Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx);
2794 return false;
2795}
2796
2797bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2799 lex();
2800 if (expectAndConsume(MIToken::lparen))
2801 return true;
2802 if (Token.isNot(MIToken::Identifier))
2803 return error("expected the name of the target index");
2804 int Index = 0;
2805 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2806 return error("use of undefined target index '" + Token.stringValue() + "'");
2807 lex();
2808 if (expectAndConsume(MIToken::rparen))
2809 return true;
2810 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2811 if (parseOperandsOffset(Dest))
2812 return true;
2813 return false;
2814}
2815
2816bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2817 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2818 lex();
2819 if (expectAndConsume(MIToken::lparen))
2820 return true;
2821
2822 uint32_t *Mask = MF.allocateRegMask();
2823 do {
2824 if (Token.isNot(MIToken::rparen)) {
2825 if (Token.isNot(MIToken::NamedRegister))
2826 return error("expected a named register");
2827 Register Reg;
2828 if (parseNamedRegister(Reg))
2829 return true;
2830 lex();
2831 Mask[Reg / 32] |= 1U << (Reg % 32);
2832 }
2833
2834 // TODO: Report an error if the same register is used more than once.
2835 } while (consumeIfPresent(MIToken::comma));
2836
2837 if (expectAndConsume(MIToken::rparen))
2838 return true;
2839 Dest = MachineOperand::CreateRegMask(Mask);
2840 return false;
2841}
2842
2843bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2844 assert(Token.is(MIToken::kw_liveout));
2845 uint32_t *Mask = MF.allocateRegMask();
2846 lex();
2847 if (expectAndConsume(MIToken::lparen))
2848 return true;
2849 while (true) {
2850 if (Token.isNot(MIToken::NamedRegister))
2851 return error("expected a named register");
2852 Register Reg;
2853 if (parseNamedRegister(Reg))
2854 return true;
2855 lex();
2856 Mask[Reg / 32] |= 1U << (Reg % 32);
2857 // TODO: Report an error if the same register is used more than once.
2858 if (Token.isNot(MIToken::comma))
2859 break;
2860 lex();
2861 }
2862 if (expectAndConsume(MIToken::rparen))
2863 return true;
2865 return false;
2866}
2867
2868bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2869 MachineOperand &Dest,
2870 std::optional<unsigned> &TiedDefIdx) {
2871 switch (Token.kind()) {
2874 case MIToken::kw_def:
2875 case MIToken::kw_dead:
2876 case MIToken::kw_killed:
2877 case MIToken::kw_undef:
2886 return parseRegisterOperand(Dest, TiedDefIdx);
2888 return parseImmediateOperand(Dest);
2889 case MIToken::kw_half:
2890 case MIToken::kw_bfloat:
2891 case MIToken::kw_float:
2892 case MIToken::kw_double:
2894 case MIToken::kw_fp128:
2896 return parseFPImmediateOperand(Dest);
2898 return parseMBBOperand(Dest);
2900 return parseStackObjectOperand(Dest);
2902 return parseFixedStackObjectOperand(Dest);
2905 return parseGlobalAddressOperand(Dest);
2907 return parseConstantPoolIndexOperand(Dest);
2909 return parseJumpTableIndexOperand(Dest);
2911 return parseExternalSymbolOperand(Dest);
2912 case MIToken::MCSymbol:
2913 return parseMCSymbolOperand(Dest);
2915 return parseSubRegisterIndexOperand(Dest);
2916 case MIToken::md_diexpr:
2917 case MIToken::exclaim:
2918 return parseMetadataOperand(Dest);
2936 return parseCFIOperand(Dest);
2938 return parseBlockAddressOperand(Dest);
2940 return parseIntrinsicOperand(Dest);
2942 return parseTargetIndexOperand(Dest);
2944 return parseLiveoutRegisterMaskOperand(Dest);
2947 return parsePredicateOperand(Dest);
2949 return parseShuffleMaskOperand(Dest);
2951 return parseDbgInstrRefOperand(Dest);
2952 case MIToken::Error:
2953 return true;
2955 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2956 Dest = MachineOperand::CreateRegMask(RegMask);
2957 lex();
2958 break;
2959 } else if (Token.stringValue() == "CustomRegMask") {
2960 return parseCustomRegisterMaskOperand(Dest);
2961 } else
2962 return parseTypedImmediateOperand(Dest);
2963 case MIToken::dot: {
2964 const auto *TII = MF.getSubtarget().getInstrInfo();
2965 if (const auto *Formatter = TII->getMIRFormatter()) {
2966 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2967 }
2968 [[fallthrough]];
2969 }
2970 default:
2971 // FIXME: Parse the MCSymbol machine operand.
2972 return error("expected a machine operand");
2973 }
2974 return false;
2975}
2976
2977bool MIParser::parseMachineOperandAndTargetFlags(
2978 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2979 std::optional<unsigned> &TiedDefIdx) {
2980 unsigned TF = 0;
2981 bool HasTargetFlags = false;
2982 if (Token.is(MIToken::kw_target_flags)) {
2983 HasTargetFlags = true;
2984 lex();
2985 if (expectAndConsume(MIToken::lparen))
2986 return true;
2987 if (Token.isNot(MIToken::Identifier))
2988 return error("expected the name of the target flag");
2989 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2990 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2991 return error("use of undefined target flag '" + Token.stringValue() +
2992 "'");
2993 }
2994 lex();
2995 while (Token.is(MIToken::comma)) {
2996 lex();
2997 if (Token.isNot(MIToken::Identifier))
2998 return error("expected the name of the target flag");
2999 unsigned BitFlag = 0;
3000 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
3001 return error("use of undefined target flag '" + Token.stringValue() +
3002 "'");
3003 // TODO: Report an error when using a duplicate bit target flag.
3004 TF |= BitFlag;
3005 lex();
3006 }
3007 if (expectAndConsume(MIToken::rparen))
3008 return true;
3009 }
3010 auto Loc = Token.location();
3011 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
3012 return true;
3013 if (!HasTargetFlags)
3014 return false;
3015 if (Dest.isReg())
3016 return error(Loc, "register operands can't have target flags");
3017 Dest.setTargetFlags(TF);
3018 return false;
3019}
3020
3021bool MIParser::parseOffset(int64_t &Offset) {
3022 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
3023 return false;
3024 StringRef Sign = Token.range();
3025 bool IsNegative = Token.is(MIToken::minus);
3026 lex();
3027 if (Token.isNot(MIToken::IntegerLiteral))
3028 return error("expected an integer literal after '" + Sign + "'");
3029 if (Token.integerValue().getSignificantBits() > 64)
3030 return error("expected 64-bit integer (too large)");
3031 Offset = Token.integerValue().getExtValue();
3032 if (IsNegative)
3033 Offset = -Offset;
3034 lex();
3035 return false;
3036}
3037
3038bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) {
3040 lex();
3041 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
3042 return error("expected basic block after 'ir_block_address_taken'");
3043
3044 if (parseIRBlock(BB, MF.getFunction()))
3045 return true;
3046
3047 lex();
3048 return false;
3049}
3050
3051bool MIParser::parseAlignment(uint64_t &Alignment) {
3052 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
3053 lex();
3054 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3055 return error("expected an integer literal after 'align'");
3056 if (getUint64(Alignment))
3057 return true;
3058 lex();
3059
3060 if (!isPowerOf2_64(Alignment))
3061 return error("expected a power-of-2 literal after 'align'");
3062
3063 return false;
3064}
3065
3066bool MIParser::parseAddrspace(unsigned &Addrspace) {
3067 assert(Token.is(MIToken::kw_addrspace));
3068 lex();
3069 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3070 return error("expected an integer literal after 'addrspace'");
3071 if (getUnsigned(Addrspace))
3072 return true;
3073 lex();
3074 return false;
3075}
3076
3077bool MIParser::parseOperandsOffset(MachineOperand &Op) {
3078 int64_t Offset = 0;
3079 if (parseOffset(Offset))
3080 return true;
3081 Op.setOffset(Offset);
3082 return false;
3083}
3084
3085static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
3086 const Value *&V, ErrorCallbackType ErrCB) {
3087 switch (Token.kind()) {
3088 case MIToken::NamedIRValue: {
3089 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
3090 break;
3091 }
3092 case MIToken::IRValue: {
3093 unsigned SlotNumber = 0;
3094 if (getUnsigned(Token, SlotNumber, ErrCB))
3095 return true;
3096 V = PFS.getIRValue(SlotNumber);
3097 break;
3098 }
3100 case MIToken::GlobalValue: {
3101 GlobalValue *GV = nullptr;
3102 if (parseGlobalValue(Token, PFS, GV, ErrCB))
3103 return true;
3104 V = GV;
3105 break;
3106 }
3108 const Constant *C = nullptr;
3109 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
3110 return true;
3111 V = C;
3112 break;
3113 }
3115 V = nullptr;
3116 return false;
3117 default:
3118 llvm_unreachable("The current token should be an IR block reference");
3119 }
3120 if (!V)
3121 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
3122 return false;
3123}
3124
3125bool MIParser::parseIRValue(const Value *&V) {
3126 return ::parseIRValue(
3127 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3128 return error(Loc, Msg);
3129 });
3130}
3131
3132bool MIParser::getUint64(uint64_t &Result) {
3133 if (Token.hasIntegerValue()) {
3134 if (Token.integerValue().getActiveBits() > 64)
3135 return error("expected 64-bit integer (too large)");
3136 Result = Token.integerValue().getZExtValue();
3137 return false;
3138 }
3139 if (Token.is(MIToken::HexLiteral)) {
3140 APInt A;
3141 if (getHexUint(A))
3142 return true;
3143 if (A.getBitWidth() > 64)
3144 return error("expected 64-bit integer (too large)");
3145 Result = A.getZExtValue();
3146 return false;
3147 }
3148 return true;
3149}
3150
3151bool MIParser::getHexUint(APInt &Result) {
3152 return ::getHexUint(Token, Result);
3153}
3154
3155bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3156 const auto OldFlags = Flags;
3157 switch (Token.kind()) {
3160 break;
3163 break;
3166 break;
3169 break;
3172 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3173 return error("use of undefined target MMO flag '" + Token.stringValue() +
3174 "'");
3175 Flags |= TF;
3176 break;
3177 }
3178 default:
3179 llvm_unreachable("The current token should be a memory operand flag");
3180 }
3181 if (OldFlags == Flags)
3182 // We know that the same flag is specified more than once when the flags
3183 // weren't modified.
3184 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3185 lex();
3186 return false;
3187}
3188
3189bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3190 switch (Token.kind()) {
3191 case MIToken::kw_stack:
3192 PSV = MF.getPSVManager().getStack();
3193 break;
3194 case MIToken::kw_got:
3195 PSV = MF.getPSVManager().getGOT();
3196 break;
3198 PSV = MF.getPSVManager().getJumpTable();
3199 break;
3201 PSV = MF.getPSVManager().getConstantPool();
3202 break;
3204 int FI;
3205 if (parseFixedStackFrameIndex(FI))
3206 return true;
3207 PSV = MF.getPSVManager().getFixedStack(FI);
3208 // The token was already consumed, so use return here instead of break.
3209 return false;
3210 }
3211 case MIToken::StackObject: {
3212 int FI;
3213 if (parseStackFrameIndex(FI))
3214 return true;
3215 PSV = MF.getPSVManager().getFixedStack(FI);
3216 // The token was already consumed, so use return here instead of break.
3217 return false;
3218 }
3220 lex();
3221 switch (Token.kind()) {
3224 GlobalValue *GV = nullptr;
3225 if (parseGlobalValue(GV))
3226 return true;
3227 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3228 break;
3229 }
3231 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3232 MF.createExternalSymbolName(Token.stringValue()));
3233 break;
3234 default:
3235 return error(
3236 "expected a global value or an external symbol after 'call-entry'");
3237 }
3238 break;
3239 case MIToken::kw_custom: {
3240 lex();
3241 const auto *TII = MF.getSubtarget().getInstrInfo();
3242 if (const auto *Formatter = TII->getMIRFormatter()) {
3243 if (Formatter->parseCustomPseudoSourceValue(
3244 Token.stringValue(), MF, PFS, PSV,
3245 [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3246 return error(Loc, Msg);
3247 }))
3248 return true;
3249 } else
3250 return error("unable to parse target custom pseudo source value");
3251 break;
3252 }
3253 default:
3254 llvm_unreachable("The current token should be pseudo source value");
3255 }
3256 lex();
3257 return false;
3258}
3259
3260bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3261 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3262 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3263 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3264 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3265 const PseudoSourceValue *PSV = nullptr;
3266 if (parseMemoryPseudoSourceValue(PSV))
3267 return true;
3268 int64_t Offset = 0;
3269 if (parseOffset(Offset))
3270 return true;
3271 Dest = MachinePointerInfo(PSV, Offset);
3272 return false;
3273 }
3274 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3275 Token.isNot(MIToken::GlobalValue) &&
3276 Token.isNot(MIToken::NamedGlobalValue) &&
3277 Token.isNot(MIToken::QuotedIRValue) &&
3278 Token.isNot(MIToken::kw_unknown_address))
3279 return error("expected an IR value reference");
3280 const Value *V = nullptr;
3281 if (parseIRValue(V))
3282 return true;
3283 if (V && !V->getType()->isPointerTy())
3284 return error("expected a pointer IR value");
3285 lex();
3286 int64_t Offset = 0;
3287 if (parseOffset(Offset))
3288 return true;
3289 Dest = MachinePointerInfo(V, Offset);
3290 return false;
3291}
3292
3293bool MIParser::parseOptionalScope(LLVMContext &Context,
3294 SyncScope::ID &SSID) {
3295 SSID = SyncScope::System;
3296 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3297 lex();
3298 if (expectAndConsume(MIToken::lparen))
3299 return error("expected '(' in syncscope");
3300
3301 std::string SSN;
3302 if (parseStringConstant(SSN))
3303 return true;
3304
3305 SSID = Context.getOrInsertSyncScopeID(SSN);
3306 if (expectAndConsume(MIToken::rparen))
3307 return error("expected ')' in syncscope");
3308 }
3309
3310 return false;
3311}
3312
3313bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3315 if (Token.isNot(MIToken::Identifier))
3316 return false;
3317
3318 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3319 .Case("unordered", AtomicOrdering::Unordered)
3320 .Case("monotonic", AtomicOrdering::Monotonic)
3321 .Case("acquire", AtomicOrdering::Acquire)
3322 .Case("release", AtomicOrdering::Release)
3326
3327 if (Order != AtomicOrdering::NotAtomic) {
3328 lex();
3329 return false;
3330 }
3331
3332 return error("expected an atomic scope, ordering or a size specification");
3333}
3334
3335bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3336 if (expectAndConsume(MIToken::lparen))
3337 return true;
3339 while (Token.isMemoryOperandFlag()) {
3340 if (parseMemoryOperandFlag(Flags))
3341 return true;
3342 }
3343 if (Token.isNot(MIToken::Identifier) ||
3344 (Token.stringValue() != "load" && Token.stringValue() != "store"))
3345 return error("expected 'load' or 'store' memory operation");
3346 if (Token.stringValue() == "load")
3348 else
3350 lex();
3351
3352 // Optional 'store' for operands that both load and store.
3353 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3355 lex();
3356 }
3357
3358 // Optional synchronization scope.
3359 SyncScope::ID SSID;
3360 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3361 return true;
3362
3363 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3364 AtomicOrdering Order, FailureOrder;
3365 if (parseOptionalAtomicOrdering(Order))
3366 return true;
3367
3368 if (parseOptionalAtomicOrdering(FailureOrder))
3369 return true;
3370
3371 if (Token.isNot(MIToken::IntegerLiteral) &&
3372 Token.isNot(MIToken::kw_unknown_size) &&
3373 Token.isNot(MIToken::lparen))
3374 return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3375 "memory operation");
3376
3378 if (Token.is(MIToken::IntegerLiteral)) {
3379 uint64_t Size;
3380 if (getUint64(Size))
3381 return true;
3382
3383 // Convert from bytes to bits for storage.
3385 lex();
3386 } else if (Token.is(MIToken::kw_unknown_size)) {
3387 lex();
3388 } else {
3389 if (expectAndConsume(MIToken::lparen))
3390 return true;
3391 if (parseLowLevelType(Token.location(), MemoryType))
3392 return true;
3393 if (expectAndConsume(MIToken::rparen))
3394 return true;
3395 }
3396
3398 if (Token.is(MIToken::Identifier)) {
3399 const char *Word =
3402 ? "on"
3403 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3404 if (Token.stringValue() != Word)
3405 return error(Twine("expected '") + Word + "'");
3406 lex();
3407
3408 if (parseMachinePointerInfo(Ptr))
3409 return true;
3410 }
3411 uint64_t BaseAlignment =
3412 MemoryType.isValid()
3413 ? PowerOf2Ceil(MemoryType.getSizeInBytes().getKnownMinValue())
3414 : 1;
3415 AAMDNodes AAInfo;
3416 MDNode *Range = nullptr;
3417 while (consumeIfPresent(MIToken::comma)) {
3418 switch (Token.kind()) {
3419 case MIToken::kw_align: {
3420 // align is printed if it is different than size.
3421 uint64_t Alignment;
3422 if (parseAlignment(Alignment))
3423 return true;
3424 if (Ptr.Offset & (Alignment - 1)) {
3425 // MachineMemOperand::getAlign never returns a value greater than the
3426 // alignment of offset, so this just guards against hand-written MIR
3427 // that specifies a large "align" value when it should probably use
3428 // "basealign" instead.
3429 return error("specified alignment is more aligned than offset");
3430 }
3431 BaseAlignment = Alignment;
3432 break;
3433 }
3435 // basealign is printed if it is different than align.
3436 if (parseAlignment(BaseAlignment))
3437 return true;
3438 break;
3440 if (parseAddrspace(Ptr.AddrSpace))
3441 return true;
3442 break;
3443 case MIToken::md_tbaa:
3444 lex();
3445 if (parseMDNode(AAInfo.TBAA))
3446 return true;
3447 break;
3449 lex();
3450 if (parseMDNode(AAInfo.Scope))
3451 return true;
3452 break;
3454 lex();
3455 if (parseMDNode(AAInfo.NoAlias))
3456 return true;
3457 break;
3458 case MIToken::md_range:
3459 lex();
3460 if (parseMDNode(Range))
3461 return true;
3462 break;
3463 // TODO: Report an error on duplicate metadata nodes.
3464 default:
3465 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3466 "'!noalias' or '!range'");
3467 }
3468 }
3469 if (expectAndConsume(MIToken::rparen))
3470 return true;
3471 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3472 AAInfo, Range, SSID, Order, FailureOrder);
3473 return false;
3474}
3475
3476bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3478 Token.is(MIToken::kw_post_instr_symbol)) &&
3479 "Invalid token for a pre- post-instruction symbol!");
3480 lex();
3481 if (Token.isNot(MIToken::MCSymbol))
3482 return error("expected a symbol after 'pre-instr-symbol'");
3483 Symbol = getOrCreateMCSymbol(Token.stringValue());
3484 lex();
3485 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3486 Token.is(MIToken::lbrace))
3487 return false;
3488 if (Token.isNot(MIToken::comma))
3489 return error("expected ',' before the next machine operand");
3490 lex();
3491 return false;
3492}
3493
3494bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3496 "Invalid token for a heap alloc marker!");
3497 lex();
3498 if (parseMDNode(Node))
3499 return true;
3500 if (!Node)
3501 return error("expected a MDNode after 'heap-alloc-marker'");
3502 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3503 Token.is(MIToken::lbrace))
3504 return false;
3505 if (Token.isNot(MIToken::comma))
3506 return error("expected ',' before the next machine operand");
3507 lex();
3508 return false;
3509}
3510
3511bool MIParser::parsePCSections(MDNode *&Node) {
3512 assert(Token.is(MIToken::kw_pcsections) &&
3513 "Invalid token for a PC sections!");
3514 lex();
3515 if (parseMDNode(Node))
3516 return true;
3517 if (!Node)
3518 return error("expected a MDNode after 'pcsections'");
3519 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3520 Token.is(MIToken::lbrace))
3521 return false;
3522 if (Token.isNot(MIToken::comma))
3523 return error("expected ',' before the next machine operand");
3524 lex();
3525 return false;
3526}
3527
3529 const Function &F,
3530 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3531 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3533 for (const auto &BB : F) {
3534 if (BB.hasName())
3535 continue;
3536 int Slot = MST.getLocalSlot(&BB);
3537 if (Slot == -1)
3538 continue;
3539 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3540 }
3541}
3542
3544 unsigned Slot,
3545 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3546 return Slots2BasicBlocks.lookup(Slot);
3547}
3548
3549const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3550 if (Slots2BasicBlocks.empty())
3551 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3552 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3553}
3554
3555const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3556 if (&F == &MF.getFunction())
3557 return getIRBlock(Slot);
3558 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3559 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3560 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3561}
3562
3563MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3564 // FIXME: Currently we can't recognize temporary or local symbols and call all
3565 // of the appropriate forms to create them. However, this handles basic cases
3566 // well as most of the special aspects are recognized by a prefix on their
3567 // name, and the input names should already be unique. For test cases, keeping
3568 // the symbol name out of the symbol table isn't terribly important.
3569 return MF.getContext().getOrCreateSymbol(Name);
3570}
3571
3572bool MIParser::parseStringConstant(std::string &Result) {
3573 if (Token.isNot(MIToken::StringConstant))
3574 return error("expected string constant");
3575 Result = std::string(Token.stringValue());
3576 lex();
3577 return false;
3578}
3579
3581 StringRef Src,
3583 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3584}
3585
3588 return MIParser(PFS, Error, Src).parseBasicBlocks();
3589}
3590
3594 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3595}
3596
3598 Register &Reg, StringRef Src,
3600 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3601}
3602
3604 Register &Reg, StringRef Src,
3606 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3607}
3608
3610 VRegInfo *&Info, StringRef Src,
3612 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3613}
3614
3616 int &FI, StringRef Src,
3618 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3619}
3620
3622 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3623 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3624}
3625
3627 SMRange SrcRange, SMDiagnostic &Error) {
3628 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3629}
3630
3632 PerFunctionMIParsingState &PFS, const Value *&V,
3633 ErrorCallbackType ErrorCallback) {
3634 MIToken Token;
3635 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3636 ErrorCallback(Loc, Msg);
3637 });
3638 V = nullptr;
3639
3640 return ::parseIRValue(Token, PFS, V, ErrorCallback);
3641}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
This file defines the StringMap class.
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static Error parseAlignment(StringRef Str, Align &Alignment, StringRef Name, bool AllowZero=false)
Attempts to parse an alignment component of a specification.
Definition: DataLayout.cpp:310
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
std::string Name
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
#define RegName(no)
A common definition of LaneBitmask for use in TableGen and CodeGen.
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static const char * printImplicitRegisterFlag(const MachineOperand &MO)
Definition: MIParser.cpp:1411
static const BasicBlock * getIRBlockFromSlot(unsigned Slot, const DenseMap< unsigned, const BasicBlock * > &Slots2BasicBlocks)
Definition: MIParser.cpp:3543
static std::string getRegisterName(const TargetRegisterInfo *TRI, Register Reg)
Definition: MIParser.cpp:1416
static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, PerFunctionMIParsingState &PFS, const Constant *&C, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:1884
static void initSlots2Values(const Function &F, DenseMap< unsigned, const Value * > &Slots2Values)
Creates the mapping from slot numbers to function's unnamed IR values.
Definition: MIParser.cpp:360
static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, const Value *&V, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:3085
static bool verifyScalarSize(uint64_t Size)
Definition: MIParser.cpp:1913
static bool getUnsigned(const MIToken &Token, unsigned &Result, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:2075
static bool getHexUint(const MIToken &Token, APInt &Result)
Definition: MIParser.cpp:2058
static bool verifyVectorElementCount(uint64_t NumElts)
Definition: MIParser.cpp:1917
static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, DenseMap< unsigned, const Value * > &Slots2Values)
Definition: MIParser.cpp:351
static void initSlots2BasicBlocks(const Function &F, DenseMap< unsigned, const BasicBlock * > &Slots2BasicBlocks)
Definition: MIParser.cpp:3528
function_ref< bool(StringRef::iterator Loc, const Twine &)> ErrorCallbackType
Definition: MIParser.cpp:622
static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, ArrayRef< ParsedMachineOperand > Operands)
Return true if the parsed machine operands contain a given machine operand.
Definition: MIParser.cpp:1423
static bool parseGlobalValue(const MIToken &Token, PerFunctionMIParsingState &PFS, GlobalValue *&GV, ErrorCallbackType ErrCB)
Definition: MIParser.cpp:2183
static bool verifyAddrSpace(uint64_t AddrSpace)
Definition: MIParser.cpp:1921
mir Rename Register Operands
unsigned const TargetRegisterInfo * TRI
unsigned Reg
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash, uint32_t &Attributes)
Parse Input that contains metadata.
This file defines the SmallVector class.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
#define error(X)
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:475
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1897
static BranchProbability getRaw(uint32_t N)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:676
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:690
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:702
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:703
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:679
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:688
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:677
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:678
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:697
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:696
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:700
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:687
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:681
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:684
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:698
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:685
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:680
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:682
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
@ ICMP_NE
not equal
Definition: InstrTypes.h:695
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:701
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:689
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:699
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:686
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:675
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:683
bool isFPPredicate() const
Definition: InstrTypes.h:780
bool isIntPredicate() const
Definition: InstrTypes.h:781
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition: TypeSize.h:317
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
ValueSymbolTable * getValueSymbolTable()
getSymbolTable() - Return the symbol table if any, otherwise nullptr.
Definition: Function.h:823
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:657
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Return an array that contains the direct target flag values and their names.
ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const override
Return an array that contains the bitmask target flag values and their names.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
Definition: LowLevelType.h:64
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
static constexpr LLT token()
Get a low-level token; just a scalar with zero bits (or no size).
Definition: LowLevelType.h:49
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
static MCCFIInstruction createDefCfaRegister(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_def_cfa_register modifies a rule for computing CFA.
Definition: MCDwarf.h:582
static MCCFIInstruction createUndefined(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_undefined From now on the previous value of Register can't be restored anymore.
Definition: MCDwarf.h:663
static MCCFIInstruction createRestore(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_restore says that the rule for Register is now the same as it was at the beginning of the functi...
Definition: MCDwarf.h:656
static MCCFIInstruction createLLVMDefAspaceCfa(MCSymbol *L, unsigned Register, int64_t Offset, unsigned AddressSpace, SMLoc Loc)
.cfi_llvm_def_aspace_cfa defines the rule for computing the CFA to be the result of evaluating the DW...
Definition: MCDwarf.h:607
static MCCFIInstruction createRegister(MCSymbol *L, unsigned Register1, unsigned Register2, SMLoc Loc={})
.cfi_register Previous value of Register1 is saved in register Register2.
Definition: MCDwarf.h:632
static MCCFIInstruction cfiDefCfa(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa defines a rule for computing CFA as: take address from Register and add Offset to it.
Definition: MCDwarf.h:575
static MCCFIInstruction createOffset(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_offset Previous value of Register is saved at offset Offset from CFA.
Definition: MCDwarf.h:617
static MCCFIInstruction createNegateRAStateWithPC(MCSymbol *L, SMLoc Loc={})
.cfi_negate_ra_state_with_pc AArch64 negate RA state with PC.
Definition: MCDwarf.h:648
static MCCFIInstruction createNegateRAState(MCSymbol *L, SMLoc Loc={})
.cfi_negate_ra_state AArch64 negate RA state.
Definition: MCDwarf.h:643
static MCCFIInstruction createRememberState(MCSymbol *L, SMLoc Loc={})
.cfi_remember_state Save all current rules for all registers.
Definition: MCDwarf.h:676
static MCCFIInstruction cfiDefCfaOffset(MCSymbol *L, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa_offset modifies a rule for computing CFA.
Definition: MCDwarf.h:590
static MCCFIInstruction createEscape(MCSymbol *L, StringRef Vals, SMLoc Loc={}, StringRef Comment="")
.cfi_escape Allows the user to add arbitrary bytes to the unwind info.
Definition: MCDwarf.h:687
static MCCFIInstruction createWindowSave(MCSymbol *L, SMLoc Loc={})
.cfi_window_save SPARC register window is saved.
Definition: MCDwarf.h:638
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int64_t Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Definition: MCDwarf.h:598
static MCCFIInstruction createRestoreState(MCSymbol *L, SMLoc Loc={})
.cfi_restore_state Restore the previously saved state.
Definition: MCDwarf.h:681
static MCCFIInstruction createSameValue(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_same_value Current value of Register is the same as in the previous frame.
Definition: MCDwarf.h:670
static MCCFIInstruction createRelOffset(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_rel_offset Previous value of Register is saved at offset Offset from the current CFA register.
Definition: MCDwarf.h:625
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
Definition: MCInstrDesc.h:579
bool isCall() const
Return true if the instruction is a call.
Definition: MCInstrDesc.h:288
ArrayRef< MCPhysReg > implicit_uses() const
Return a list of registers that are potentially read by any instance of this machine instruction.
Definition: MCInstrDesc.h:565
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Metadata node.
Definition: Metadata.h:1073
void replaceAllUsesWith(Metadata *MD)
RAUW a temporary.
Definition: Metadata.h:1270
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1549
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:606
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a distinct node.
Definition: Metadata.h:1517
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1506
static TempMDTuple getTemporary(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a temporary node.
Definition: Metadata.h:1526
MIRFormater - Interface to format MIR operand based on target.
Definition: MIRFormatter.h:32
virtual bool parseImmMnemonic(const unsigned OpCode, const unsigned OpIdx, StringRef Src, int64_t &Imm, ErrorCallbackType ErrorCallback) const
Implement target specific parsing of immediate mnemonics.
Definition: MIRFormatter.h:50
static bool parseIRValue(StringRef Src, MachineFunction &MF, PerFunctionMIParsingState &PFS, const Value *&V, ErrorCallbackType ErrorCallback)
Helper functions to parse IR value from MIR serialization format which will be useful for target spec...
Definition: MIParser.cpp:3631
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
void setAddressTakenIRBlock(BasicBlock *BB)
Set this block to reflect that it corresponds to an IR-level basic block with a BlockAddress.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
void setAlignment(Align A)
Set alignment of the basic block.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void setSectionID(MBBSectionID V)
Sets the section ID for this basic block.
void setIsInlineAsmBrIndirectTarget(bool V=true)
Indicates if this is the indirect dest of an INLINEASM_BR.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
void setIsEHPad(bool V=true)
Indicates the block is a landing pad.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:71
void setFlag(MIFlag Flag)
Set a MI flag.
Definition: MachineInstr.h:406
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateMCSymbol(MCSymbol *Sym, unsigned TargetFlags=0)
static MachineOperand CreateES(const char *SymName, unsigned TargetFlags=0)
static MachineOperand CreateFPImm(const ConstantFP *CFP)
bool isImplicit() const
static MachineOperand CreateCFIIndex(unsigned CFIIndex)
static MachineOperand CreateRegMask(const uint32_t *Mask)
CreateRegMask - Creates a register mask operand referencing Mask.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
static MachineOperand CreateCImm(const ConstantInt *CI)
static MachineOperand CreateMetadata(const MDNode *Meta)
static MachineOperand CreatePredicate(unsigned Pred)
static MachineOperand CreateImm(int64_t Val)
static MachineOperand CreateShuffleMask(ArrayRef< int > Mask)
static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags=0)
static MachineOperand CreateDbgInstrRef(unsigned InstrIdx, unsigned OpIdx)
static MachineOperand CreateRegLiveOut(const uint32_t *Mask)
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset, unsigned TargetFlags=0)
void setTargetFlags(unsigned F)
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0)
static MachineOperand CreateIntrinsicID(Intrinsic::ID ID)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createIncompleteVirtualRegister(StringRef Name="")
Creates a new virtual register that has no register class, register bank or size assigned yet.
This interface provides simple read-only access to a block of memory, and provides simple methods for...
Definition: MemoryBuffer.h:51
virtual StringRef getBufferIdentifier() const
Return an identifier for this buffer, typically the filename it was read from.
Definition: MemoryBuffer.h:76
const char * getBufferEnd() const
Definition: MemoryBuffer.h:67
const char * getBufferStart() const
Definition: MemoryBuffer.h:66
Root of the metadata hierarchy.
Definition: Metadata.h:62
Manage lifetime of a slot tracker for printing IR.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
Definition: AsmWriter.cpp:918
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:904
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Special value supplied for machine level alias analysis.
Holds all the information related to register banks.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getNumRegBanks() const
Get the total number of register banks.
This class implements the register bank concept.
Definition: RegisterBank.h:28
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Instances of this class encapsulate one diagnostic report, allowing printing to a raw_ostream as a ca...
Definition: SourceMgr.h:281
Represents a location in source code.
Definition: SMLoc.h:23
static SMLoc getFromPointer(const char *Ptr)
Definition: SMLoc.h:36
Represents a range in source code.
Definition: SMLoc.h:48
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
This owns the files read by a parser, handles include stacks, and handles diagnostic wrangling.
Definition: SourceMgr.h:31
unsigned getMainFileID() const
Definition: SourceMgr.h:132
const MemoryBuffer * getMemoryBuffer(unsigned i) const
Definition: SourceMgr.h:125
SMDiagnostic GetMessage(SMLoc Loc, DiagKind Kind, const Twine &Msg, ArrayRef< SMRange > Ranges={}, ArrayRef< SMFixIt > FixIts={}) const
Return an SMDiagnostic at the specified location with the specified string.
Definition: SourceMgr.cpp:274
bool empty() const
Definition: StringMap.h:103
iterator end()
Definition: StringMap.h:220
iterator find(StringRef Key)
Definition: StringMap.h:233
bool insert(MapEntryTy *KeyValue)
insert - Insert the specified key/value pair into the map.
Definition: StringMap.h:308
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:229
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:571
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition: StringRef.h:609
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
char front() const
front - Get the first character in the string.
Definition: StringRef.h:153
std::string lower() const
Definition: StringRef.cpp:113
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:43
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:68
R Default(T Value)
Definition: StringSwitch.h:177
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const RegisterBankInfo * getRegBankInfo() const
If the information for the register banks is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
Target - Wrapper for Target specific information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
Value * lookup(StringRef Name) const
This method finds the value with the given Name in the the symbol table.
LLVM Value Representation.
Definition: Value.h:74
bool hasName() const
Definition: Value.h:261
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
ID lookupIntrinsicID(StringRef Name)
This does the actual lookup of an intrinsic ID which matches the given function name.
Definition: Intrinsics.cpp:731
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Debug
Register 'use' is for debugging purpose.
@ Dead
Unused definition.
@ Renamable
Register that may be renamed.
@ Define
Register definition.
@ InternalRead
Register reads a value that is defined inside the same instruction or bundle.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ EarlyClobber
Register definition happens before uses.
@ System
Synchronized with respect to all concurrently executing threads.
Definition: LLVMContext.h:57
Reg
All possible values of the reg field in the ModR/M byte.
support::ulittle32_t Word
Definition: IRSymtab.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool parseStackObjectReference(PerFunctionMIParsingState &PFS, int &FI, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3615
bool parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3621
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
@ Read
Definition: CodeGenData.h:107
StringRef lexMIToken(StringRef Source, MIToken &Token, function_ref< void(StringRef::iterator, const Twine &)> ErrorCallback)
Consume a single machine instruction token in the given source and return the remaining source string...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:297
bool parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error)
Parse the machine basic block definitions, and skip the machine instructions.
Definition: MIParser.cpp:3580
void guessSuccessors(const MachineBasicBlock &MBB, SmallVectorImpl< MachineBasicBlock * > &Result, bool &IsFallthrough)
Determine a possible list of successors of a basic block based on the basic block machine operand bei...
Definition: MIRPrinter.cpp:675
bool parseMBBReference(PerFunctionMIParsingState &PFS, MachineBasicBlock *&MBB, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3591
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition: MathExtras.h:395
DIExpression * parseDIExpressionBodyAtBeginning(StringRef Asm, unsigned &Read, SMDiagnostic &Err, const Module &M, const SlotMapping *Slots)
Definition: Parser.cpp:229
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool parseMachineInstructions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error)
Parse the machine instructions.
Definition: MIParser.cpp:3586
bool parseRegisterReference(PerFunctionMIParsingState &PFS, Register &Reg, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3597
Constant * parseConstantValue(StringRef Asm, SMDiagnostic &Err, const Module &M, const SlotMapping *Slots=nullptr)
Parse a type and a constant value in the given string.
Definition: Parser.cpp:188
const char * toString(DWARFSectionKind Kind)
bool parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, SMRange SourceRange, SMDiagnostic &Error)
Definition: MIParser.cpp:3626
bool parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, VRegInfo *&Info, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3609
bool parseNamedRegisterReference(PerFunctionMIParsingState &PFS, Register &Reg, StringRef Src, SMDiagnostic &Error)
Definition: MIParser.cpp:3603
RegisterKind Kind
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:764
MDNode * Scope
The tag for alias scope specification (used with noalias).
Definition: Metadata.h:787
MDNode * TBAA
The tag for type-based alias analysis.
Definition: Metadata.h:781
MDNode * NoAlias
The tag specifying the noalias scope.
Definition: Metadata.h:790
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static constexpr LaneBitmask getAll()
Definition: LaneBitmask.h:82
static const MBBSectionID ExceptionSectionID
static const MBBSectionID ColdSectionID
A token produced by the machine instruction lexer.
Definition: MILexer.h:26
TokenKind kind() const
Definition: MILexer.h:204
bool hasIntegerValue() const
Definition: MILexer.h:244
bool is(TokenKind K) const
Definition: MILexer.h:231
StringRef stringValue() const
Return the token's string value.
Definition: MILexer.h:240
@ kw_target_flags
Definition: MILexer.h:111
@ kw_landing_pad
Definition: MILexer.h:125
@ kw_blockaddress
Definition: MILexer.h:101
@ kw_pre_instr_symbol
Definition: MILexer.h:133
@ md_alias_scope
Definition: MILexer.h:152
@ NamedGlobalValue
Definition: MILexer.h:166
@ kw_call_frame_size
Definition: MILexer.h:144
@ SubRegisterIndex
Definition: MILexer.h:184
@ kw_frame_setup
Definition: MILexer.h:63
@ kw_cfi_aarch64_negate_ra_sign_state
Definition: MILexer.h:99
@ ConstantPoolItem
Definition: MILexer.h:177
@ kw_cfi_llvm_def_aspace_cfa
Definition: MILexer.h:92
@ MachineBasicBlock
Definition: MILexer.h:163
@ kw_dbg_instr_ref
Definition: MILexer.h:83
@ NamedVirtualRegister
Definition: MILexer.h:161
@ kw_early_clobber
Definition: MILexer.h:59
@ kw_cfi_offset
Definition: MILexer.h:85
@ kw_unpredictable
Definition: MILexer.h:77
@ FloatingPointLiteral
Definition: MILexer.h:173
@ kw_debug_use
Definition: MILexer.h:60
@ kw_cfi_window_save
Definition: MILexer.h:98
@ kw_constant_pool
Definition: MILexer.h:121
@ kw_frame_destroy
Definition: MILexer.h:64
@ kw_cfi_undefined
Definition: MILexer.h:97
@ StringConstant
Definition: MILexer.h:185
@ MachineBasicBlockLabel
Definition: MILexer.h:162
@ kw_cfi_restore
Definition: MILexer.h:95
@ kw_non_temporal
Definition: MILexer.h:113
@ kw_cfi_register
Definition: MILexer.h:93
@ kw_inlineasm_br_indirect_target
Definition: MILexer.h:126
@ kw_cfi_rel_offset
Definition: MILexer.h:86
@ kw_ehfunclet_entry
Definition: MILexer.h:127
@ kw_cfi_aarch64_negate_ra_sign_state_with_pc
Definition: MILexer.h:100
@ kw_cfi_def_cfa_register
Definition: MILexer.h:87
@ FixedStackObject
Definition: MILexer.h:165
@ kw_cfi_same_value
Definition: MILexer.h:84
@ kw_target_index
Definition: MILexer.h:103
@ kw_cfi_adjust_cfa_offset
Definition: MILexer.h:89
@ kw_dereferenceable
Definition: MILexer.h:55
@ kw_implicit_define
Definition: MILexer.h:52
@ kw_cfi_def_cfa
Definition: MILexer.h:91
@ kw_cfi_escape
Definition: MILexer.h:90
@ VirtualRegister
Definition: MILexer.h:176
@ kw_cfi_def_cfa_offset
Definition: MILexer.h:88
@ kw_machine_block_address_taken
Definition: MILexer.h:143
@ kw_renamable
Definition: MILexer.h:61
@ ExternalSymbol
Definition: MILexer.h:168
@ kw_unknown_size
Definition: MILexer.h:140
@ IntegerLiteral
Definition: MILexer.h:172
@ kw_cfi_remember_state
Definition: MILexer.h:94
@ kw_debug_instr_number
Definition: MILexer.h:82
@ kw_post_instr_symbol
Definition: MILexer.h:134
@ kw_cfi_restore_state
Definition: MILexer.h:96
@ kw_nofpexcept
Definition: MILexer.h:76
@ kw_ir_block_address_taken
Definition: MILexer.h:142
@ kw_unknown_address
Definition: MILexer.h:141
@ JumpTableIndex
Definition: MILexer.h:178
@ kw_shufflemask
Definition: MILexer.h:132
@ kw_debug_location
Definition: MILexer.h:81
@ kw_noconvergent
Definition: MILexer.h:145
@ kw_heap_alloc_marker
Definition: MILexer.h:135
StringRef range() const
Definition: MILexer.h:237
StringRef::iterator location() const
Definition: MILexer.h:235
const APSInt & integerValue() const
Definition: MILexer.h:242
This class contains a discriminated union of information about pointers in memory operands,...
VRegInfo & getVRegInfo(Register Num)
Definition: MIParser.cpp:328
const SlotMapping & IRSlots
Definition: MIParser.h:169
const Value * getIRValue(unsigned Slot)
Definition: MIParser.cpp:373
DenseMap< unsigned, MachineBasicBlock * > MBBSlots
Definition: MIParser.h:175
StringMap< VRegInfo * > VRegInfosNamed
Definition: MIParser.h:177
DenseMap< unsigned, const Value * > Slots2Values
Maps from slot numbers to function's unnamed values.
Definition: MIParser.h:184
PerFunctionMIParsingState(MachineFunction &MF, SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &Target)
Definition: MIParser.cpp:323
DenseMap< Register, VRegInfo * > VRegInfos
Definition: MIParser.h:176
VRegInfo & getVRegInfoNamed(StringRef RegName)
Definition: MIParser.cpp:339
BumpPtrAllocator Allocator
Definition: MIParser.h:166
bool getVRegFlagValue(StringRef FlagName, uint8_t &FlagValue) const
Definition: MIParser.cpp:128
bool getDirectTargetFlag(StringRef Name, unsigned &Flag)
Try to convert a name of a direct target flag to the corresponding target flag.
Definition: MIParser.cpp:226
const RegisterBank * getRegBank(StringRef Name)
Check if the given identifier is a name of a register bank.
Definition: MIParser.cpp:316
bool parseInstrName(StringRef InstrName, unsigned &OpCode)
Try to convert an instruction name to an opcode.
Definition: MIParser.cpp:147
unsigned getSubRegIndex(StringRef Name)
Check if the given identifier is a name of a subregister index.
Definition: MIParser.cpp:187
bool getTargetIndex(StringRef Name, int &Index)
Try to convert a name of target index to the corresponding target index.
Definition: MIParser.cpp:205
void setTarget(const TargetSubtargetInfo &NewSubtarget)
Definition: MIParser.cpp:80
bool getRegisterByName(StringRef RegName, Register &Reg)
Try to convert a register name to a register number.
Definition: MIParser.cpp:118
bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag)
Try to convert a name of a MachineMemOperand target flag to the corresponding target flag.
Definition: MIParser.cpp:269
bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag)
Try to convert a name of a bitmask target flag to the corresponding target flag.
Definition: MIParser.cpp:248
const TargetRegisterClass * getRegClass(StringRef Name)
Check if the given identifier is a name of a register class.
Definition: MIParser.cpp:309
const uint32_t * getRegMask(StringRef Identifier)
Check if the given identifier is a name of a register mask.
Definition: MIParser.cpp:170
This struct contains the mappings from the slot numbers to unnamed metadata nodes,...
Definition: SlotMapping.h:33
NumberedValues< GlobalValue * > GlobalValues
Definition: SlotMapping.h:34
Definition: regcomp.c:192