40 "inliner-interactive-channel-base",
cl::Hidden,
42 "Base file path for the interactive mode. The incoming filename should "
43 "have the name <inliner-interactive-channel-base>.in, while the "
44 "outgoing name should be <inliner-interactive-channel-base>.out"));
46 (
Twine(
"In interactive mode, also send the default policy decision: ") +
59 "if-caller-not-cold",
"if the caller is not cold")));
64#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
66#include "InlinerSizeModel.h"
72std::unique_ptr<InlineAdvisor>
74 std::function<
bool(
CallBase &)> GetDefaultAdvice) {
78 auto RunnerFactory = [&](
const std::vector<TensorSpec> &
InputFeatures)
79 -> std::unique_ptr<MLModelRunner> {
80 std::unique_ptr<MLModelRunner> AOTRunner;
82 AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
86 AOTRunner = std::make_unique<InteractiveModelRunner>(
93 return std::make_unique<MLInlineAdvisor>(M,
MAM, RunnerFactory,
97#define DEBUG_TYPE "inline-ml"
100 "ml-advisor-size-increase-threshold",
cl::Hidden,
101 cl::desc(
"Maximum factor by which expected native size may increase before "
102 "blocking any further inlining."),
108 "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
114#define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE),
136 if (
Function *Callee = CS->getCalledFunction()) {
137 if (!Callee->isDeclaration()) {
147 std::unique_ptr<MLModelRunner>(
const std::vector<TensorSpec> &)>
155 InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize),
165 const std::vector<CallGraphNode *> &CGNodes = *
I;
167 for (
auto *CGNode : CGNodes) {
169 if (!
F ||
F->isDeclaration())
173 auto *Called = CS->getCalledFunction();
174 auto Pos = FunctionLevels.find(&CG.get(*Called));
178 if (Pos == FunctionLevels.end())
180 Level = std::max(Level, Pos->second + 1);
184 for (
auto *CGNode : CGNodes) {
186 if (
F && !
F->isDeclaration())
187 FunctionLevels[&CG.get(*
F)] = Level;
190 for (
auto KVP : FunctionLevels) {
191 AllNodes.insert(KVP.first);
194 NodeCount = AllNodes.size();
197 if (!IR2VecVocabResult->isValid()) {
198 M.getContext().emitError(
"IR2VecVocabAnalysis is not valid");
202 auto IR2VecDim = IR2VecVocabResult->getDimension();
213 M.getContext().emitError(
"Could not create model runner");
220 return CG.lookup(
F) ? FunctionLevels.at(CG.lookup(
F)) : 0;
224 if (!CurSCC || ForceStop)
244 while (!NodesInLastSCC.empty()) {
245 const auto *
N = *NodesInLastSCC.begin();
247 NodesInLastSCC.erase(
N);
249 const auto NLevel = FunctionLevels.at(
N);
250 for (
const auto &E : *(*
N)) {
251 const auto *AdjNode = &E.getNode();
252 assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
253 auto I = AllNodes.insert(AdjNode);
257 NodesInLastSCC.insert(AdjNode);
258 FunctionLevels[AdjNode] = NLevel;
263 EdgeCount -= EdgesOfLastSeenNodes;
264 EdgesOfLastSeenNodes = 0;
268 assert(NodesInLastSCC.empty());
269 for (
const auto &
N : *CurSCC)
270 NodesInLastSCC.insert(&
N);
277 if (!CurSCC || ForceStop)
282 EdgesOfLastSeenNodes = 0;
291 for (
const auto &
N : *CurSCC) {
293 auto I = NodesInLastSCC.insert(&
N);
297 assert(NodeCount >= NodesInLastSCC.size());
298 assert(EdgeCount >= EdgesOfLastSeenNodes);
311 bool CalleeWasDeleted) {
320 FAM.invalidate(*Caller, PA);
323 int64_t IRSizeAfter =
334 int64_t NewCallerAndCalleeEdges =
340 if (CalleeWasDeleted) {
342 NodesInLastSCC.erase(CG.lookup(*Callee));
343 DeadFunctions.insert(Callee);
345 NewCallerAndCalleeEdges +=
349 assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
352int64_t MLInlineAdvisor::getModuleIRSize()
const {
355 if (!
F.isDeclaration())
361 auto InsertPair = FPICache.try_emplace(&
F);
362 if (!InsertPair.second)
363 return InsertPair.first->second;
365 return InsertPair.first->second;
369 if (
auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
382 if (!PSI.isFunctionEntryCold(&Caller))
383 return std::make_unique<InlineAdvice>(
this, CB, ORE,
403 <<
"Won't attempt inlining because module size grew too much.";
405 return std::make_unique<InlineAdvice>(
this, CB, ORE, Mandatory);
408 int CostEstimate = 0;
410 auto IsCallSiteInlinable =
412 if (!IsCallSiteInlinable) {
416 return std::make_unique<InlineAdvice>(
this, CB, ORE,
false);
418 CostEstimate = *IsCallSiteInlinable;
421 const auto CostFeatures =
424 return std::make_unique<InlineAdvice>(
this, CB, ORE,
false);
430 auto NumCtantParams = 0;
438 *
ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) =
439 CalleeBefore.BasicBlockCount;
440 *
ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) =
442 *
ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount;
443 *
ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) =
445 *
ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount;
446 *
ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) =
449 FeatureIndex::caller_conditionally_executed_blocks) =
450 CallerBefore.BlocksReachedFromConditionalInstruction;
451 *
ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) =
452 CallerBefore.BasicBlockCount;
454 FeatureIndex::callee_conditionally_executed_blocks) =
455 CalleeBefore.BlocksReachedFromConditionalInstruction;
456 *
ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) =
458 *
ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate;
459 *
ModelRunner->getTensor<int64_t>(FeatureIndex::is_callee_avail_external) =
460 Callee.hasAvailableExternallyLinkage();
461 *
ModelRunner->getTensor<int64_t>(FeatureIndex::is_caller_avail_external) =
462 Caller.hasAvailableExternallyLinkage();
471 [](
double Val) { return static_cast<float>(Val); });
474 setEmbedding(CalleeBefore.getFunctionEmbedding(),
476 setEmbedding(CallerBefore.getFunctionEmbedding(),
493std::unique_ptr<MLInlineAdvice>
496 return std::make_unique<MLInlineAdvice>(
497 this, CB, ORE,
static_cast<bool>(
ModelRunner->evaluate<int64_t>()));
500std::unique_ptr<InlineAdvice>
501MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(
CallBase &CB) {
504 return std::make_unique<InlineAdvice>(
this, CB,
getCallerORE(CB),
false);
511 if (
auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
513 if (Advice && !ForceStop)
520 return std::make_unique<InlineAdvice>(
this, CB,
getCallerORE(CB), Advice);
523std::unique_ptr<MLInlineAdvice>
525 return std::make_unique<MLInlineAdvice>(
this, CB,
getCallerORE(CB),
true);
528void MLInlineAdvisor::print(
raw_ostream &OS)
const {
529 OS <<
"[MLInlineAdvisor] Nodes: " << NodeCount <<
" Edges: " << EdgeCount
530 <<
" EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes <<
"\n";
531 OS <<
"[MLInlineAdvisor] FPI:\n";
532 for (
auto I : FPICache) {
533 OS <<
I.first->getName() <<
":\n";
538 OS <<
"[MLInlineAdvisor] FuncLevels:\n";
539 for (
auto I : FunctionLevels)
540 OS << (DeadFunctions.
contains(&
I.first->getFunction())
542 :
I.first->getFunction().getName())
543 <<
" : " <<
I.second <<
"\n";
563void MLInlineAdvice::reportContextForRemark(
568 OR << NV(getAdvisor()->getFeatureMap()[
I].
name(),
569 *getAdvisor()->getModelRunner().getTensor<int64_t>(
I));
580 reportContextForRemark(R);
583 getAdvisor()->onSuccessfulInlining(*
this,
false);
590 reportContextForRemark(R);
593 getAdvisor()->onSuccessfulInlining(*
this,
true);
598 getAdvisor()->getCachedFPI(*
Caller) = PreInlineCallerFPI;
602 reportContextForRemark(R);
610 reportContextForRemark(R);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Expand Atomic instructions
This file provides interfaces used to build and manipulate a call graph, which is a very useful tool ...
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
#define INLINE_COST_FEATURE_ITERATOR(M)
#define INLINE_FEATURE_ITERATOR(M)
Implements a lazy call graph analysis and related passes for the new pass manager.
static cl::opt< bool > KeepFPICache("ml-advisor-keep-fpi-cache", cl::Hidden, cl::desc("For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"), cl::init(false))
static cl::opt< std::string > ModelSelector("ml-inliner-model-selector", cl::Hidden, cl::init(""))
CallBase * getInlinableCS(Instruction &I)
NoopSavedModelImpl CompiledModelType
static cl::opt< std::string > InteractiveChannelBaseName("inliner-interactive-channel-base", cl::Hidden, cl::desc("Base file path for the interactive mode. The incoming filename should " "have the name <inliner-interactive-channel-base>.in, while the " "outgoing name should be <inliner-interactive-channel-base>.out"))
#define POPULATE_NAMES(DTYPE, SHAPE, NAME, __)
static cl::opt< float > SizeIncreaseThreshold("ml-advisor-size-increase-threshold", cl::Hidden, cl::desc("Maximum factor by which expected native size may increase before " "blocking any further inlining."), cl::init(2.0))
static const std::string InclDefaultMsg
static cl::opt< SkipMLPolicyCriteria > SkipPolicy("ml-inliner-skip-policy", cl::Hidden, cl::init(SkipMLPolicyCriteria::Never), cl::values(clEnumValN(SkipMLPolicyCriteria::Never, "never", "never"), clEnumValN(SkipMLPolicyCriteria::IfCallerIsNotCold, "if-caller-not-cold", "if the caller is not cold")))
static cl::opt< bool > InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden, cl::desc(InclDefaultMsg))
FunctionAnalysisManager FAM
ModuleAnalysisManager MAM
This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected components (SCCs) of a ...
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
The basic data container for the call graph of a Module of IR.
Common features for diagnostics dealing with optimization remarks that are used by both IR and MIR pa...
Analysis pass which computes a DominatorTree.
int64_t DirectCallsToDefinedFunctions
Number of direct calls made from this function to other functions defined in this module.
This analysis provides the vocabulary for IR2Vec.
Function *const Caller
Caller and Callee are pre-inlining.
const BasicBlock *const Block
OptimizationRemarkEmitter & ORE
InlineAdvisor *const Advisor
LLVM_ABI InlineAdvice(InlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool IsInliningRecommended)
bool isInliningRecommended() const
Get the inlining recommendation.
OptimizationRemarkEmitter & getCallerORE(CallBase &CB)
FunctionAnalysisManager & FAM
static MandatoryInliningKind getMandatoryKind(CallBase &CB, FunctionAnalysisManager &FAM, OptimizationRemarkEmitter &ORE)
InlineAdvisor(InlineAdvisor &&)=delete
InlineResult is basically true or false.
An analysis pass which computes the call graph for a module.
A node in the call graph.
An SCC of the call graph.
Analysis pass that exposes the LoopInfo for a function.
InlineAdvice that tracks changes post inlining.
void updateCachedCallerFPI(FunctionAnalysisManager &FAM) const
const int64_t CallerIRSize
MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool Recommendation)
const int64_t CalleeIRSize
void recordInliningImpl() override
Function * getCaller() const
const int64_t CallerAndCalleeEdges
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override
Function * getCallee() const
void recordInliningWithCalleeDeletedImpl() override
void recordUnattemptedInliningImpl() override
const std::vector< TensorSpec > & getFeatureMap() const
std::unique_ptr< MLModelRunner > ModelRunner
FunctionPropertiesInfo & getCachedFPI(Function &) const
void onPassExit(LazyCallGraph::SCC *SCC) override
This must be called when the Inliner pass is exited, as function passes may be run subsequently.
void onSuccessfulInlining(const MLInlineAdvice &Advice, bool CalleeWasDeleted)
static const std::vector< TensorSpec > & getInitialFeatureMap()
virtual std::unique_ptr< MLInlineAdvice > getMandatoryAdviceImpl(CallBase &CB)
void onPassEntry(LazyCallGraph::SCC *SCC) override
This must be called when the Inliner pass is entered, to allow the InlineAdvisor update internal stat...
MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM, std::function< std::unique_ptr< MLModelRunner >(const std::vector< TensorSpec > &)> GetModelRunner, std::function< bool(CallBase &)> GetDefaultAdvice)
int64_t getLocalCalls(Function &F)
std::vector< TensorSpec > FeatureMap
virtual std::unique_ptr< MLInlineAdvice > getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE)
int64_t getIRSize(Function &F) const
std::function< bool(CallBase &)> GetDefaultAdvice
std::unique_ptr< InlineAdvice > getAdviceImpl(CallBase &CB) override
std::unique_ptr< InlineAdvice > getMandatoryAdvice(CallBase &CB, bool Advice) override
unsigned getInitialFunctionLevel(const Function &F) const
A Module instance is used to store all the information related to an LLVM module.
A mock class satisfying the interface expected by ReleaseModeModelRunner for its TGen parameter.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & abandon()
Mark an analysis as abandoned.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis pass providing the TargetTransformInfo.
static TensorSpec createSpec(const std::string &Name, const std::vector< int64_t > &Shape, int Port=0)
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
const ParentTy * getParent() const
This class implements an extremely fast bulk output stream that can only output to a stream.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
This is an optimization pass for GlobalISel generic memory operations.
constexpr FeatureIndex inlineCostFeatureToMlFeature(InlineCostFeatureIndex Feature)
LLVM_ABI const char *const DefaultDecisionName
bool isEmbeddedModelEvaluatorValid()
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
scc_iterator< T > scc_begin(const T &G)
Construct the begin iterator for a deduced graph type T.
LLVM_ABI std::unique_ptr< InlineAdvisor > getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM, std::function< bool(CallBase &)> GetDefaultAdvice)
InnerAnalysisManagerProxy< FunctionAnalysisManager, Module > FunctionAnalysisManagerModuleProxy
Provide the FunctionAnalysisManager to Module proxy.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
LLVM_ABI const TensorSpec DefaultDecisionSpec
LLVM_ABI const char *const DecisionName
@ Never
Never set the bit.
static const std::vector< TensorSpec > InputFeatures
LLVM_ABI std::optional< InlineCostFeatures > getInliningCostFeatures(CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref< AssumptionCache &(Function &)> GetAssumptionCache, function_ref< BlockFrequencyInfo &(Function &)> GetBFI=nullptr, function_ref< const TargetLibraryInfo &(Function &)> GetTLI=nullptr, ProfileSummaryInfo *PSI=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Get the expanded cost features.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI const TensorSpec InlineDecisionSpec
LLVM_ABI const char *const RewardName
LLVM_ABI std::optional< int > getInliningCostEstimate(CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref< AssumptionCache &(Function &)> GetAssumptionCache, function_ref< BlockFrequencyInfo &(Function &)> GetBFI=nullptr, function_ref< const TargetLibraryInfo &(Function &)> GetTLI=nullptr, ProfileSummaryInfo *PSI=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Get the cost estimate ignoring thresholds.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
ReleaseModeModelRunner - production mode implementation of the MLModelRunner.
Embedding is a datatype that wraps std::vector<double>.