LLVM 22.0.0git
MVETailPredication.cpp
Go to the documentation of this file.
1//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11/// branches to help accelerate DSP applications. These two extensions,
12/// combined with a new form of predication called tail-predication, can be used
13/// to provide implicit vector predication within a low-overhead loop.
14/// This is implicit because the predicate of active/inactive lanes is
15/// calculated by hardware, and thus does not need to be explicitly passed
16/// to vector instructions. The instructions responsible for this are the
17/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18/// the total number of data elements processed by the loop. The loop-end
19/// LETP instruction is responsible for decrementing and setting the remaining
20/// elements to be processed and generating the mask of active lanes.
21///
22/// The HardwareLoops pass inserts intrinsics identifying loops that the
23/// backend will attempt to convert into a low-overhead loop. The vectorizer is
24/// responsible for generating a vectorized loop in which the lanes are
25/// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26/// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27/// instructions. This will be picked up by the ARM Low-overhead loop pass later
28/// in the backend, which performs the final transformation to a DLSTP or WLSTP
29/// tail-predicated loop.
30//
31//===----------------------------------------------------------------------===//
32
33#include "ARM.h"
34#include "ARMSubtarget.h"
44#include "llvm/IR/IRBuilder.h"
46#include "llvm/IR/IntrinsicsARM.h"
47#include "llvm/Support/Debug.h"
52
53using namespace llvm;
54
55#define DEBUG_TYPE "mve-tail-predication"
56#define DESC "Transform predicated vector loops to use MVE tail predication"
57
59 "tail-predication", cl::desc("MVE tail-predication pass options"),
62 "Don't tail-predicate loops"),
64 "enabled-no-reductions",
65 "Enable tail-predication, but not for reduction loops"),
67 "enabled",
68 "Enable tail-predication, including reduction loops"),
70 "force-enabled-no-reductions",
71 "Enable tail-predication, but not for reduction loops, "
72 "and force this which might be unsafe"),
74 "force-enabled",
75 "Enable tail-predication, including reduction loops, "
76 "and force this which might be unsafe")));
77
78
79namespace {
80
81class MVETailPredication : public LoopPass {
83 Loop *L = nullptr;
84 ScalarEvolution *SE = nullptr;
85 TargetTransformInfo *TTI = nullptr;
86 const ARMSubtarget *ST = nullptr;
87
88public:
89 static char ID;
90
91 MVETailPredication() : LoopPass(ID) { }
92
93 void getAnalysisUsage(AnalysisUsage &AU) const override {
99 AU.setPreservesCFG();
100 }
101
102 bool runOnLoop(Loop *L, LPPassManager&) override;
103
104private:
105 /// Perform the relevant checks on the loop and convert active lane masks if
106 /// possible.
107 bool TryConvertActiveLaneMask(Value *TripCount);
108
109 /// Perform several checks on the arguments of @llvm.get.active.lane.mask
110 /// intrinsic. E.g., check that the loop induction variable and the element
111 /// count are of the form we expect, and also perform overflow checks for
112 /// the new expressions that are created.
113 const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
114
115 /// Insert the intrinsic to represent the effect of tail predication.
116 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start);
117};
118
119} // end namespace
120
121bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
122 if (skipLoop(L) || !EnableTailPredication)
123 return false;
124
125 MaskedInsts.clear();
126 Function &F = *L->getHeader()->getParent();
127 auto &TPC = getAnalysis<TargetPassConfig>();
128 auto &TM = TPC.getTM<TargetMachine>();
129 ST = &TM.getSubtarget<ARMSubtarget>(F);
130 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
132 this->L = L;
133
134 // The MVE and LOB extensions are combined to enable tail-predication, but
135 // there's nothing preventing us from generating VCTP instructions for v8.1m.
136 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
137 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
138 return false;
139 }
140
141 BasicBlock *Preheader = L->getLoopPreheader();
142 if (!Preheader)
143 return false;
144
145 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
146 for (auto &I : *BB) {
147 auto *Call = dyn_cast<IntrinsicInst>(&I);
148 if (!Call)
149 continue;
150
151 Intrinsic::ID ID = Call->getIntrinsicID();
152 if (ID == Intrinsic::start_loop_iterations ||
153 ID == Intrinsic::test_start_loop_iterations)
154 return cast<IntrinsicInst>(&I);
155 }
156 return nullptr;
157 };
158
159 // Look for the hardware loop intrinsic that sets the iteration count.
160 IntrinsicInst *Setup = FindLoopIterations(Preheader);
161
162 // The test.set iteration could live in the pre-preheader.
163 if (!Setup) {
164 if (!Preheader->getSinglePredecessor())
165 return false;
166 Setup = FindLoopIterations(Preheader->getSinglePredecessor());
167 if (!Setup)
168 return false;
169 }
170
171 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
172
173 bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
174
175 return Changed;
176}
177
178// The active lane intrinsic has this form:
179//
180// @llvm.get.active.lane.mask(IV, TC)
181//
182// Here we perform checks that this intrinsic behaves as expected,
183// which means:
184//
185// 1) Check that the TripCount (TC) belongs to this loop (originally).
186// 2) The element count (TC) needs to be sufficiently large that the decrement
187// of element counter doesn't overflow, which means that we need to prove:
188// ceil(ElementCount / VectorWidth) >= TripCount
189// by rounding up ElementCount up:
190// ((ElementCount + (VectorWidth - 1)) / VectorWidth
191// and evaluate if expression isKnownNonNegative:
192// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
193// 3) The IV must be an induction phi with an increment equal to the
194// vector width.
195const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
196 Value *TripCount) {
197 bool ForceTailPredication =
200
201 Value *ElemCount = ActiveLaneMask->getOperand(1);
202 bool Changed = false;
203 if (!L->makeLoopInvariant(ElemCount, Changed))
204 return nullptr;
205
206 const SCEV *EC = SE->getSCEV(ElemCount);
207 const SCEV *TC = SE->getSCEV(TripCount);
208 int VectorWidth =
209 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
210 if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 &&
211 VectorWidth != 16)
212 return nullptr;
213 ConstantInt *ConstElemCount = nullptr;
214
215 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
216 // this loop. The scalar tripcount corresponds the number of elements
217 // processed by the loop, so we will refer to that from this point on.
218 if (!SE->isLoopInvariant(EC, L)) {
219 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
220 return nullptr;
221 }
222
223 // 2) Find out if IV is an induction phi. Note that we can't use Loop
224 // helpers here to get the induction variable, because the hardware loop is
225 // no longer in loopsimplify form, and also the hwloop intrinsic uses a
226 // different counter. Using SCEV, we check that the induction is of the
227 // form i = i + 4, where the increment must be equal to the VectorWidth.
228 auto *IV = ActiveLaneMask->getOperand(0);
229 const SCEV *IVExpr = SE->getSCEV(IV);
230 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
231
232 if (!AddExpr) {
233 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
234 return nullptr;
235 }
236 // Check that this AddRec is associated with this loop.
237 if (AddExpr->getLoop() != L) {
238 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
239 return nullptr;
240 }
241 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
242 if (!Step) {
243 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
244 AddExpr->getOperand(1)->dump());
245 return nullptr;
246 }
247 auto StepValue = Step->getValue()->getSExtValue();
248 if (VectorWidth != StepValue) {
249 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
250 << " doesn't match vector width " << VectorWidth << "\n");
251 return nullptr;
252 }
253
254 if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
255 ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
256 if (!TC) {
257 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
258 "set.loop.iterations\n");
259 return nullptr;
260 }
261
262 // Calculate 2 tripcount values and check that they are consistent with
263 // each other. The TripCount for a predicated vector loop body is
264 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
265 // work it out here.
266 uint64_t TC1 = TC->getZExtValue();
267 uint64_t TC2 =
268 (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
269
270 // If the tripcount values are inconsistent, we can't insert the VCTP and
271 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
272 // and legalize this.
273 if (TC1 != TC2) {
274 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
275 << TC1 << " from set.loop.iterations, and "
276 << TC2 << " from get.active.lane.mask\n");
277 return nullptr;
278 }
279 } else if (!ForceTailPredication) {
280 // 3) We need to prove that the sub expression that we create in the
281 // tail-predicated loop body, which calculates the remaining elements to be
282 // processed, is non-negative, i.e. it doesn't overflow:
283 //
284 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
285 //
286 // This is true if:
287 //
288 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
289 //
290 // which what we will be using here.
291 //
292 const SCEV *VW =
293 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
294 // ElementCount + (VW-1):
295 const SCEV *Start = AddExpr->getStart();
296 const SCEV *ECPlusVWMinus1 = SE->getAddExpr(
297 EC,
298 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
299
300 // Ceil = ElementCount + (VW-1) / VW
301 const SCEV *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
302
303 // Prevent unused variable warnings with TC
304 (void)TC;
305 LLVM_DEBUG({
306 dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
307 dbgs() << "ARM TP: - TripCount = " << *TC << "\n";
308 dbgs() << "ARM TP: - ElemCount = " << *EC << "\n";
309 dbgs() << "ARM TP: - Start = " << *Start << "\n";
310 dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n";
311 dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n";
312 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n";
313 });
314
315 // As an example, almost all the tripcount expressions (produced by the
316 // vectoriser) look like this:
317 //
318 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4)
319 //
320 // and "ElementCount + (VW-1) / VW":
321 //
322 // Ceil = ((3 + %N) /u 4)
323 //
324 // Check for equality of TC and Ceil by calculating SCEV expression
325 // TC - Ceil and test it for zero.
326 //
327 const SCEV *Div = SE->getUDivExpr(
328 SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW),
329 SE->getNegativeSCEV(Start)),
330 VW);
331 const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div);
332 LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub->dump());
333
334 // Use context sensitive facts about the path to the loop to refine. This
335 // comes up as the backedge taken count can incorporate context sensitive
336 // reasoning, and our RHS just above doesn't.
337 Sub = SE->applyLoopGuards(Sub, L);
338 LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump());
339
340 if (!Sub->isZero()) {
341 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
342 return nullptr;
343 }
344 }
345
346 // Check that the start value is a multiple of the VectorWidth.
347 // TODO: This could do with a method to check if the scev is a multiple of
348 // VectorWidth. For the moment we just check for constants, muls and unknowns
349 // (which use MaskedValueIsZero and seems to be the most common).
350 if (auto *BaseC = dyn_cast<SCEVConstant>(AddExpr->getStart())) {
351 if (BaseC->getAPInt().urem(VectorWidth) == 0)
352 return SE->getMinusSCEV(EC, BaseC);
353 } else if (auto *BaseV = dyn_cast<SCEVUnknown>(AddExpr->getStart())) {
354 Type *Ty = BaseV->getType();
356 Log2_64(VectorWidth));
357 if (MaskedValueIsZero(BaseV->getValue(), Mask,
358 L->getHeader()->getDataLayout()))
359 return SE->getMinusSCEV(EC, BaseV);
360 } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(AddExpr->getStart())) {
361 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(0)))
362 if (BaseC->getAPInt().urem(VectorWidth) == 0)
363 return SE->getMinusSCEV(EC, BaseC);
364 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(1)))
365 if (BaseC->getAPInt().urem(VectorWidth) == 0)
366 return SE->getMinusSCEV(EC, BaseC);
367 }
368
370 dbgs() << "ARM TP: induction base is not know to be a multiple of VF: "
371 << *AddExpr->getOperand(0) << "\n");
372 return nullptr;
373}
374
375void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
376 Value *Start) {
377 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
378 Module *M = L->getHeader()->getModule();
379 Type *Ty = IntegerType::get(M->getContext(), 32);
380 unsigned VectorWidth =
381 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
382
383 // Insert a phi to count the number of elements processed by the loop.
384 Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt());
385 PHINode *Processed = Builder.CreatePHI(Ty, 2);
386 Processed->addIncoming(Start, L->getLoopPreheader());
387
388 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
389 // thus represent the effect of tail predication.
390 Builder.SetInsertPoint(ActiveLaneMask);
391 ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
392
393 Intrinsic::ID VCTPID;
394 switch (VectorWidth) {
395 default:
396 llvm_unreachable("unexpected number of lanes");
397 case 2: VCTPID = Intrinsic::arm_mve_vctp64; break;
398 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
399 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
400 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
401 }
402 Value *VCTPCall = Builder.CreateIntrinsic(VCTPID, Processed);
403 ActiveLaneMask->replaceAllUsesWith(VCTPCall);
404
405 // Add the incoming value to the new phi.
406 // TODO: This add likely already exists in the loop.
407 Value *Remaining = Builder.CreateSub(Processed, Factor);
408 Processed->addIncoming(Remaining, L->getLoopLatch());
409 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
410 << *Processed << "\n"
411 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
412}
413
414bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
415 SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
416 for (auto *BB : L->getBlocks())
417 for (auto &I : *BB)
418 if (auto *Int = dyn_cast<IntrinsicInst>(&I))
419 if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
420 ActiveLaneMasks.push_back(Int);
421
422 if (ActiveLaneMasks.empty())
423 return false;
424
425 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
426
427 for (auto *ActiveLaneMask : ActiveLaneMasks) {
428 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
429 << *ActiveLaneMask << "\n");
430
431 const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount);
432 if (!StartSCEV) {
433 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
434 return false;
435 }
436 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV
437 << "\n");
438 SCEVExpander Expander(*SE, L->getHeader()->getDataLayout(),
439 "start");
440 Instruction *Ins = L->getLoopPreheader()->getTerminator();
441 Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins);
442 LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n");
443 InsertVCTPIntrinsic(ActiveLaneMask, Start);
444 }
445
446 // Remove dead instructions and now dead phis.
447 for (auto *II : ActiveLaneMasks)
449 for (auto *I : L->blocks())
451 return true;
452}
453
455 return new MVETailPredication();
456}
457
458char MVETailPredication::ID = 0;
459
460INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
461INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
This file a TargetTransformInfoImplBase conforming object specific to the ARM target machine.
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:687
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define DESC
cl::opt< TailPredication::Mode > EnableTailPredication("tail-predication", cl::desc("MVE tail-predication pass options"), cl::init(TailPredication::Enabled), cl::values(clEnumValN(TailPredication::Disabled, "disabled", "Don't tail-predicate loops"), clEnumValN(TailPredication::EnabledNoReductions, "enabled-no-reductions", "Enable tail-predication, but not for reduction loops"), clEnumValN(TailPredication::Enabled, "enabled", "Enable tail-predication, including reduction loops"), clEnumValN(TailPredication::ForceEnabledNoReductions, "force-enabled-no-reductions", "Enable tail-predication, but not for reduction loops, " "and force this which might be unsafe"), clEnumValN(TailPredication::ForceEnabled, "force-enabled", "Enable tail-predication, including reduction loops, " "and force this which might be unsafe")))
#define DEBUG_TYPE
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Target-Independent Code Generator Pass Configuration Options pass.
This pass exposes codegen information to IR-level passes.
static const uint32_t IV[8]
Definition: blake3_impl.h:83
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:306
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:270
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:437
This is the shared class of boolean and integer constants.
Definition: Constants.h:87
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:163
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:319
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:49
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:597
virtual bool runOnLoop(Loop *L, LPPassManager &LPM)=0
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:99
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:112
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an analyzed expression in the program.
LLVM_ABI void dump() const
This method is used for debugging.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
bool empty() const
Definition: SmallVector.h:82
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:83
Target-Independent Code Generator Pass Configuration Options.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Value * getOperand(unsigned i) const
Definition: User.h:232
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:126
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:712
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:533
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:342
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
Pass * createMVETailPredicationPass()
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
@ Sub
Subtraction of integers.