68#include "llvm/IR/IntrinsicsPowerPC.h"
102#define DEBUG_TYPE "ppc-lowering"
105 "disable-p10-store-forward",
129 cl::desc(
"disable vector permute decomposition"),
133 "disable-auto-paired-vec-st",
134 cl::desc(
"disable automatically generated 32byte paired vector stores"),
139 cl::desc(
"Set minimum number of entries to use a jump table on PPC"));
143 cl::desc(
"max depth when checking alias info in GatherAllAliases()"));
147 cl::desc(
"Set inclusive limit count of TLS local-dynamic access(es) in a "
148 "function to use initial-exec"));
153 "Number of shuffles lowered to a VPERM or XXPERM");
154STATISTIC(NumDynamicAllocaProbed,
"Number of dynamic stack allocation probed");
175 initializeAddrModeMap();
178 bool isPPC64 = Subtarget.
isPPC64();
188 if (!Subtarget.hasEFPU2())
205 if (!Subtarget.hasP10Vector()) {
231 if (Subtarget.isISA3_0()) {
264 if (!Subtarget.hasSPE()) {
271 if (Subtarget.useCRBits()) {
274 if (isPPC64 || Subtarget.hasFPCVT()) {
340 if (Subtarget.isISA3_0()) {
375 if (!Subtarget.hasSPE()) {
380 if (Subtarget.hasVSX()) {
385 if (Subtarget.hasFSQRT()) {
390 if (Subtarget.hasFPRND()) {
431 if (Subtarget.hasSPE()) {
441 if (Subtarget.hasSPE())
445 if (!Subtarget.hasFSQRT() &&
446 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
450 if (!Subtarget.hasFSQRT() &&
451 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
452 Subtarget.hasFRES()))
455 if (Subtarget.hasFCPSGN()) {
463 if (Subtarget.hasFPRND()) {
477 if (Subtarget.isISA3_1()) {
483 (Subtarget.hasP9Vector() && isPPC64) ?
Custom :
Expand);
487 if (Subtarget.isISA3_0()) {
507 if (!Subtarget.useCRBits()) {
520 if (!Subtarget.useCRBits())
523 if (Subtarget.hasFPU()) {
534 if (!Subtarget.useCRBits())
539 if (Subtarget.hasSPE()) {
563 if (Subtarget.hasDirectMove() && isPPC64) {
568 if (TM.Options.UnsafeFPMath) {
671 if (Subtarget.hasSPE()) {
693 if (Subtarget.has64BitSupport()) {
708 if (Subtarget.hasLFIWAX() || isPPC64) {
714 if (Subtarget.hasSPE()) {
724 if (Subtarget.hasFPCVT()) {
725 if (Subtarget.has64BitSupport()) {
746 if (Subtarget.use64BitRegs()) {
764 if (Subtarget.has64BitSupport()) {
771 if (Subtarget.hasVSX()) {
780 if (Subtarget.hasAltivec()) {
781 for (
MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
796 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
809 if (Subtarget.hasVSX()) {
815 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
825 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
899 if (!Subtarget.hasP8Vector()) {
941 if (Subtarget.hasAltivec())
942 for (
auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
945 if (Subtarget.hasP8Altivec())
956 if (Subtarget.hasVSX()) {
962 if (Subtarget.hasP8Altivec())
967 if (Subtarget.isISA3_1()) {
1013 if (Subtarget.hasVSX()) {
1016 if (Subtarget.hasP8Vector()) {
1020 if (Subtarget.hasDirectMove() && isPPC64) {
1034 if (TM.Options.UnsafeFPMath) {
1071 if (Subtarget.hasP8Vector())
1080 if (Subtarget.hasP8Altivec()) {
1107 if (Subtarget.isISA3_1())
1210 if (Subtarget.hasP8Altivec()) {
1215 if (Subtarget.hasP9Vector()) {
1220 if (Subtarget.useCRBits()) {
1280 }
else if (Subtarget.hasVSX()) {
1305 for (
MVT VT : {MVT::f32, MVT::f64}) {
1324 if (Subtarget.hasP9Altivec()) {
1325 if (Subtarget.isISA3_1()) {
1348 if (Subtarget.hasP10Vector()) {
1353 if (Subtarget.pairedVectorMemops()) {
1358 if (Subtarget.hasMMA()) {
1359 if (Subtarget.isISAFuture()) {
1375 if (Subtarget.has64BitSupport())
1378 if (Subtarget.isISA3_1())
1396 if (Subtarget.hasAltivec()) {
1413 if (Subtarget.hasFPCVT())
1416 if (Subtarget.useCRBits())
1425 if (Subtarget.useCRBits()) {
1431 if (Subtarget.useCRBits()) {
1445 switch (CPUDirective) {
1542void PPCTargetLowering::initializeAddrModeMap() {
1593 if (MaxAlign == MaxMaxAlign)
1595 if (
VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1596 if (MaxMaxAlign >= 32 &&
1597 VTy->getPrimitiveSizeInBits().getFixedValue() >= 256)
1598 MaxAlign =
Align(32);
1599 else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 &&
1601 MaxAlign =
Align(16);
1602 }
else if (
ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1605 if (EltAlign > MaxAlign)
1606 MaxAlign = EltAlign;
1607 }
else if (
StructType *STy = dyn_cast<StructType>(Ty)) {
1608 for (
auto *EltTy : STy->elements()) {
1611 if (EltAlign > MaxAlign)
1612 MaxAlign = EltAlign;
1613 if (MaxAlign == MaxMaxAlign)
1626 if (Subtarget.hasAltivec())
1636 return Subtarget.hasSPE();
1644 Type *VectorTy,
unsigned ElemSizeInBits,
unsigned &Index)
const {
1645 if (!Subtarget.
isPPC64() || !Subtarget.hasVSX())
1648 if (
auto *VTy = dyn_cast<VectorType>(VectorTy)) {
1649 if (VTy->getScalarType()->isIntegerTy()) {
1651 if (ElemSizeInBits == 32) {
1655 if (ElemSizeInBits == 64) {
1681 return "PPCISD::FTSQRT";
1683 return "PPCISD::FSQRT";
1688 return "PPCISD::XXSPLTI_SP_TO_DP";
1690 return "PPCISD::XXSPLTI32DX";
1694 return "PPCISD::XXPERM";
1697 return "PPCISD::VSRQ";
1716 return "PPCISD::CALL_RM";
1718 return "PPCISD::CALL_NOP_RM";
1720 return "PPCISD::CALL_NOTOC_RM";
1725 return "PPCISD::BCTRL_RM";
1727 return "PPCISD::BCTRL_LOAD_TOC_RM";
1739 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1741 return "PPCISD::ANDI_rec_1_EQ_BIT";
1743 return "PPCISD::ANDI_rec_1_GT_BIT";
1758 return "PPCISD::ST_VSR_SCAL_INT";
1787 return "PPCISD::PADDI_DTPREL";
1789 return "PPCISD::VADD_SPLAT";
1800 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1802 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1812 return "PPCISD::STRICT_FADDRTZ";
1814 return "PPCISD::STRICT_FCTIDZ";
1816 return "PPCISD::STRICT_FCTIWZ";
1818 return "PPCISD::STRICT_FCTIDUZ";
1820 return "PPCISD::STRICT_FCTIWUZ";
1822 return "PPCISD::STRICT_FCFID";
1824 return "PPCISD::STRICT_FCFIDU";
1826 return "PPCISD::STRICT_FCFIDS";
1828 return "PPCISD::STRICT_FCFIDUS";
1831 return "PPCISD::STORE_COND";
1833 return "PPCISD::SETBC";
1835 return "PPCISD::SETBCR";
1837 return "PPCISD::ADDC";
1839 return "PPCISD::ADDE";
1841 return "PPCISD::SUBC";
1843 return "PPCISD::SUBE";
1851 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1868 return CFP->getValueAPF().isZero();
1872 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1873 return CFP->getValueAPF().isZero();
1881 return Op < 0 ||
Op == Val;
1893 if (ShuffleKind == 0) {
1896 for (
unsigned i = 0; i != 16; ++i)
1899 }
else if (ShuffleKind == 2) {
1902 for (
unsigned i = 0; i != 16; ++i)
1905 }
else if (ShuffleKind == 1) {
1906 unsigned j = IsLE ? 0 : 1;
1907 for (
unsigned i = 0; i != 8; ++i)
1924 if (ShuffleKind == 0) {
1927 for (
unsigned i = 0; i != 16; i += 2)
1931 }
else if (ShuffleKind == 2) {
1934 for (
unsigned i = 0; i != 16; i += 2)
1938 }
else if (ShuffleKind == 1) {
1939 unsigned j = IsLE ? 0 : 2;
1940 for (
unsigned i = 0; i != 8; i += 2)
1961 if (!Subtarget.hasP8Vector())
1965 if (ShuffleKind == 0) {
1968 for (
unsigned i = 0; i != 16; i += 4)
1974 }
else if (ShuffleKind == 2) {
1977 for (
unsigned i = 0; i != 16; i += 4)
1983 }
else if (ShuffleKind == 1) {
1984 unsigned j = IsLE ? 0 : 4;
1985 for (
unsigned i = 0; i != 8; i += 4)
2002 unsigned LHSStart,
unsigned RHSStart) {
2003 if (
N->getValueType(0) != MVT::v16i8)
2005 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
2006 "Unsupported merge size!");
2008 for (
unsigned i = 0; i != 8/UnitSize; ++i)
2009 for (
unsigned j = 0; j != UnitSize; ++j) {
2011 LHSStart+j+i*UnitSize) ||
2013 RHSStart+j+i*UnitSize))
2028 if (ShuffleKind == 1)
2030 else if (ShuffleKind == 2)
2035 if (ShuffleKind == 1)
2037 else if (ShuffleKind == 0)
2053 if (ShuffleKind == 1)
2055 else if (ShuffleKind == 2)
2060 if (ShuffleKind == 1)
2062 else if (ShuffleKind == 0)
2112 unsigned RHSStartValue) {
2113 if (
N->getValueType(0) != MVT::v16i8)
2116 for (
unsigned i = 0; i < 2; ++i)
2117 for (
unsigned j = 0; j < 4; ++j)
2119 i*RHSStartValue+j+IndexOffset) ||
2121 i*RHSStartValue+j+IndexOffset+8))
2143 unsigned indexOffset = CheckEven ? 4 : 0;
2144 if (ShuffleKind == 1)
2146 else if (ShuffleKind == 2)
2152 unsigned indexOffset = CheckEven ? 0 : 4;
2153 if (ShuffleKind == 1)
2155 else if (ShuffleKind == 0)
2171 if (
N->getValueType(0) != MVT::v16i8)
2178 for (i = 0; i != 16 && SVOp->
getMaskElt(i) < 0; ++i)
2181 if (i == 16)
return -1;
2186 if (ShiftAmt < i)
return -1;
2191 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2193 for (++i; i != 16; ++i)
2196 }
else if (ShuffleKind == 1) {
2198 for (++i; i != 16; ++i)
2205 ShiftAmt = 16 - ShiftAmt;
2214 EVT VT =
N->getValueType(0);
2215 if (VT == MVT::v2i64 || VT == MVT::v2f64)
2216 return EltSize == 8 &&
N->getMaskElt(0) ==
N->getMaskElt(1);
2219 EltSize <= 8 &&
"Can only handle 1,2,4,8 byte element sizes");
2223 if (
N->getMaskElt(0) % EltSize != 0)
2228 unsigned ElementBase =
N->getMaskElt(0);
2231 if (ElementBase >= 16)
2236 for (
unsigned i = 1; i != EltSize; ++i)
2237 if (
N->getMaskElt(i) < 0 ||
N->getMaskElt(i) != (
int)(i+ElementBase))
2240 for (
unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2242 if (
N->getMaskElt(i) < 0) {
2243 for (
unsigned j = 1; j != EltSize; ++j)
2244 if (
N->getMaskElt(i + j) >= 0)
2247 for (
unsigned j = 0; j != EltSize; ++j)
2248 if (
N->getMaskElt(i + j) !=
N->getMaskElt(j))
2265 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2266 "Unexpected element width.");
2267 assert((StepLen == 1 || StepLen == -1) &&
"Unexpected element width.");
2269 unsigned NumOfElem = 16 / Width;
2270 unsigned MaskVal[16];
2271 for (
unsigned i = 0; i < NumOfElem; ++i) {
2272 MaskVal[0] =
N->getMaskElt(i * Width);
2273 if ((StepLen == 1) && (MaskVal[0] % Width)) {
2275 }
else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2279 for (
unsigned int j = 1; j < Width; ++j) {
2280 MaskVal[j] =
N->getMaskElt(i * Width + j);
2281 if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2291 unsigned &InsertAtByte,
bool &Swap,
bool IsLE) {
2296 unsigned M0 =
N->getMaskElt(0) / 4;
2297 unsigned M1 =
N->getMaskElt(4) / 4;
2298 unsigned M2 =
N->getMaskElt(8) / 4;
2299 unsigned M3 =
N->getMaskElt(12) / 4;
2300 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2301 unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2306 if ((
M0 > 3 &&
M1 == 1 && M2 == 2 && M3 == 3) ||
2307 (
M0 < 4 &&
M1 == 5 && M2 == 6 && M3 == 7)) {
2308 ShiftElts = IsLE ? LittleEndianShifts[
M0 & 0x3] : BigEndianShifts[
M0 & 0x3];
2309 InsertAtByte = IsLE ? 12 : 0;
2314 if ((
M1 > 3 &&
M0 == 0 && M2 == 2 && M3 == 3) ||
2315 (
M1 < 4 &&
M0 == 4 && M2 == 6 && M3 == 7)) {
2316 ShiftElts = IsLE ? LittleEndianShifts[
M1 & 0x3] : BigEndianShifts[
M1 & 0x3];
2317 InsertAtByte = IsLE ? 8 : 4;
2322 if ((M2 > 3 &&
M0 == 0 &&
M1 == 1 && M3 == 3) ||
2323 (M2 < 4 &&
M0 == 4 &&
M1 == 5 && M3 == 7)) {
2324 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2325 InsertAtByte = IsLE ? 4 : 8;
2330 if ((M3 > 3 &&
M0 == 0 &&
M1 == 1 && M2 == 2) ||
2331 (M3 < 4 &&
M0 == 4 &&
M1 == 5 && M2 == 6)) {
2332 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2333 InsertAtByte = IsLE ? 0 : 12;
2340 if (
N->getOperand(1).isUndef()) {
2343 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2344 if (
M0 == XXINSERTWSrcElem &&
M1 == 1 && M2 == 2 && M3 == 3) {
2345 InsertAtByte = IsLE ? 12 : 0;
2348 if (
M0 == 0 &&
M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2349 InsertAtByte = IsLE ? 8 : 4;
2352 if (
M0 == 0 &&
M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2353 InsertAtByte = IsLE ? 4 : 8;
2356 if (
M0 == 0 &&
M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2357 InsertAtByte = IsLE ? 0 : 12;
2366 bool &Swap,
bool IsLE) {
2367 assert(
N->getValueType(0) == MVT::v16i8 &&
"Shuffle vector expects v16i8");
2373 unsigned M0 =
N->getMaskElt(0) / 4;
2374 unsigned M1 =
N->getMaskElt(4) / 4;
2375 unsigned M2 =
N->getMaskElt(8) / 4;
2376 unsigned M3 =
N->getMaskElt(12) / 4;
2380 if (
N->getOperand(1).isUndef()) {
2381 assert(
M0 < 4 &&
"Indexing into an undef vector?");
2382 if (
M1 != (
M0 + 1) % 4 || M2 != (
M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2385 ShiftElts = IsLE ? (4 -
M0) % 4 :
M0;
2391 if (
M1 != (
M0 + 1) % 8 || M2 != (
M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2395 if (
M0 == 0 ||
M0 == 7 ||
M0 == 6 ||
M0 == 5) {
2400 ShiftElts = (8 -
M0) % 8;
2401 }
else if (
M0 == 4 ||
M0 == 3 ||
M0 == 2 ||
M0 == 1) {
2406 ShiftElts = (4 -
M0) % 4;
2411 if (
M0 == 0 ||
M0 == 1 ||
M0 == 2 ||
M0 == 3) {
2416 }
else if (
M0 == 4 ||
M0 == 5 ||
M0 == 6 ||
M0 == 7) {
2428 assert(
N->getValueType(0) == MVT::v16i8 &&
"Shuffle vector expects v16i8");
2433 for (
int i = 0; i < 16; i += Width)
2434 if (
N->getMaskElt(i) != i + Width - 1)
2465 bool &Swap,
bool IsLE) {
2466 assert(
N->getValueType(0) == MVT::v16i8 &&
"Shuffle vector expects v16i8");
2472 unsigned M0 =
N->getMaskElt(0) / 8;
2473 unsigned M1 =
N->getMaskElt(8) / 8;
2474 assert(((
M0 |
M1) < 4) &&
"A mask element out of bounds?");
2478 if (
N->getOperand(1).isUndef()) {
2479 if ((
M0 |
M1) < 2) {
2480 DM = IsLE ? (((~M1) & 1) << 1) + ((~
M0) & 1) : (
M0 << 1) + (
M1 & 1);
2488 if (
M0 > 1 &&
M1 < 2) {
2490 }
else if (M0 < 2 && M1 > 1) {
2498 DM = (((~M1) & 1) << 1) + ((~
M0) & 1);
2501 if (M0 < 2 && M1 > 1) {
2503 }
else if (
M0 > 1 &&
M1 < 2) {
2511 DM = (
M0 << 1) + (
M1 & 1);
2526 if (VT == MVT::v2i64 || VT == MVT::v2f64)
2531 return (16 / EltSize) - 1 - (SVOp->
getMaskElt(0) / EltSize);
2547 unsigned EltSize = 16/
N->getNumOperands();
2548 if (EltSize < ByteSize) {
2549 unsigned Multiple = ByteSize/EltSize;
2551 assert(Multiple > 1 && Multiple <= 4 &&
"How can this happen?");
2554 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i) {
2555 if (
N->getOperand(i).isUndef())
continue;
2557 if (!isa<ConstantSDNode>(
N->getOperand(i)))
return SDValue();
2559 if (!UniquedVals[i&(Multiple-1)].
getNode())
2560 UniquedVals[i&(Multiple-1)] =
N->getOperand(i);
2561 else if (UniquedVals[i&(Multiple-1)] !=
N->getOperand(i))
2571 bool LeadingZero =
true;
2572 bool LeadingOnes =
true;
2573 for (
unsigned i = 0; i != Multiple-1; ++i) {
2574 if (!UniquedVals[i].
getNode())
continue;
2581 if (!UniquedVals[Multiple-1].
getNode())
2588 if (!UniquedVals[Multiple-1].
getNode())
2590 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2599 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i) {
2600 if (
N->getOperand(i).isUndef())
continue;
2602 OpVal =
N->getOperand(i);
2603 else if (OpVal !=
N->getOperand(i))
2609 unsigned ValSizeInBytes = EltSize;
2612 Value = CN->getZExtValue();
2614 assert(CN->getValueType(0) == MVT::f32 &&
"Only one legal FP vector type!");
2615 Value = llvm::bit_cast<uint32_t>(CN->getValueAPF().convertToFloat());
2621 if (ValSizeInBytes < ByteSize)
return SDValue();
2632 if (MaskVal == 0)
return SDValue();
2635 if (SignExtend32<5>(MaskVal) == MaskVal)
2649 if (!isa<ConstantSDNode>(
N))
2652 Imm = (int16_t)
N->getAsZExtVal();
2653 if (
N->getValueType(0) == MVT::i32)
2654 return Imm == (int32_t)
N->getAsZExtVal();
2656 return Imm == (int64_t)
N->getAsZExtVal();
2674 return (~(LHSKnown.
Zero | RHSKnown.
Zero) == 0);
2682 for (
SDNode *U :
N->users()) {
2683 if (
MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2684 if (Memop->getMemoryVT() == MVT::f64) {
2685 Base =
N.getOperand(0);
2686 Index =
N.getOperand(1);
2698 if (!isa<ConstantSDNode>(
N))
2701 Imm = (int64_t)cast<ConstantSDNode>(
N)->getSExtValue();
2702 return isInt<34>(Imm);
2729 (!EncodingAlignment ||
isAligned(*EncodingAlignment, Imm)))
2734 Base =
N.getOperand(0);
2735 Index =
N.getOperand(1);
2737 }
else if (
N.getOpcode() ==
ISD::OR) {
2739 (!EncodingAlignment ||
isAligned(*EncodingAlignment, Imm)))
2751 if (~(LHSKnown.
Zero | RHSKnown.
Zero) == 0) {
2752 Base =
N.getOperand(0);
2753 Index =
N.getOperand(1);
2823 (!EncodingAlignment ||
isAligned(*EncodingAlignment, imm))) {
2829 Base =
N.getOperand(0);
2832 }
else if (
N.getOperand(1).getOpcode() ==
PPCISD::Lo) {
2834 assert(!
N.getOperand(1).getConstantOperandVal(1) &&
2835 "Cannot handle constant offsets yet!");
2836 Disp =
N.getOperand(1).getOperand(0);
2841 Base =
N.getOperand(0);
2844 }
else if (
N.getOpcode() ==
ISD::OR) {
2847 (!EncodingAlignment ||
isAligned(*EncodingAlignment, imm))) {
2857 dyn_cast<FrameIndexSDNode>(
N.getOperand(0))) {
2861 Base =
N.getOperand(0);
2874 (!EncodingAlignment ||
isAligned(*EncodingAlignment, Imm))) {
2877 CN->getValueType(0));
2882 if ((CN->getValueType(0) == MVT::i32 ||
2883 (int64_t)CN->getZExtValue() == (
int)CN->getZExtValue()) &&
2884 (!EncodingAlignment ||
2885 isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2886 int Addr = (int)CN->getZExtValue();
2893 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2914 if (
N.getValueType() != MVT::i64)
2927 Base =
N.getOperand(0);
2943 Base =
N.getOperand(0);
2976 !
N.getOperand(1).hasOneUse() || !
N.getOperand(0).hasOneUse())) {
2977 Base =
N.getOperand(0);
2978 Index =
N.getOperand(1);
2990 Ty *PCRelCand = dyn_cast<Ty>(
N);
3002 if (isValidPCRelNode<ConstantPoolSDNode>(
N) ||
3003 isValidPCRelNode<GlobalAddressSDNode>(
N) ||
3004 isValidPCRelNode<JumpTableSDNode>(
N) ||
3005 isValidPCRelNode<BlockAddressSDNode>(
N))
3021 EVT MemVT = LD->getMemoryVT();
3028 if (!ST.hasP8Vector())
3033 if (!ST.hasP9Vector())
3045 if (
Use.getResNo() == 0 &&
3067 Ptr = LD->getBasePtr();
3068 VT = LD->getMemoryVT();
3069 Alignment = LD->getAlign();
3070 }
else if (
StoreSDNode *ST = dyn_cast<StoreSDNode>(
N)) {
3071 Ptr = ST->getBasePtr();
3072 VT = ST->getMemoryVT();
3073 Alignment = ST->getAlign();
3096 if (isa<FrameIndexSDNode>(
Base) || isa<RegisterSDNode>(
Base))
3099 SDValue Val = cast<StoreSDNode>(
N)->getValue();
3112 if (VT != MVT::i64) {
3117 if (Alignment <
Align(4))
3127 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3129 isa<ConstantSDNode>(
Offset))
3144 unsigned &HiOpFlags,
unsigned &LoOpFlags,
3200 EVT PtrVT =
Op.getValueType();
3216 return getTOCEntry(DAG,
SDLoc(CP), GA);
3219 unsigned MOHiFlag, MOLoFlag;
3226 return getTOCEntry(DAG,
SDLoc(CP), GA);
3286 EVT PtrVT =
Op.getValueType();
3304 return getTOCEntry(DAG,
SDLoc(JT), GA);
3307 unsigned MOHiFlag, MOLoFlag;
3314 return getTOCEntry(DAG,
SDLoc(GA), GA);
3324 EVT PtrVT =
Op.getValueType();
3343 return getTOCEntry(DAG,
SDLoc(BASDN), GA);
3352 unsigned MOHiFlag, MOLoFlag;
3363 return LowerGlobalTLSAddressAIX(
Op, DAG);
3365 return LowerGlobalTLSAddressLinux(
Op, DAG);
3387 if (
I.getOpcode() == Instruction::Call)
3388 if (
const CallInst *CI = dyn_cast<const CallInst>(&
I))
3389 if (
Function *CF = CI->getCalledFunction())
3390 if (CF->isDeclaration() &&
3391 CF->getIntrinsicID() == Intrinsic::threadlocal_address)
3393 dyn_cast<GlobalValue>(
I.getOperand(0))) {
3399 unsigned TLSGVCnt = TLSGV.
size();
3409 <<
" function is using the TLS-IE model for TLS-LD access.\n");
3424 bool Is64Bit = Subtarget.
isPPC64();
3428 if (Subtarget.hasAIXShLibTLSModelOpt())
3438 bool HasAIXSmallLocalExecTLS = Subtarget.hasAIXSmallLocalExecTLS();
3439 bool HasAIXSmallTLSGlobalAttr =
false;
3442 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3446 if (GVar->hasAttribute(
"aix-small-tls"))
3447 HasAIXSmallTLSGlobalAttr =
true;
3466 if ((HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr) &&
3467 IsTLSLocalExecModel) {
3487 if (HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr)
3489 "currently only supported on AIX (64-bit mode).");
3495 bool HasAIXSmallLocalDynamicTLS = Subtarget.hasAIXSmallLocalDynamicTLS();
3499 if (!Is64Bit && HasAIXSmallLocalDynamicTLS)
3501 "currently only supported on AIX (64-bit mode).");
3509 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3513 dyn_cast_or_null<GlobalVariable>(
M->getOrInsertGlobal(
3516 assert(TLSGV &&
"Not able to create GV for _$TLSML.");
3519 SDValue ModuleHandleTOC = getTOCEntry(DAG, dl, ModuleHandleTGA);
3530 if (HasAIXSmallLocalDynamicTLS) {
3539 return DAG.
getNode(
ISD::ADD, dl, PtrVT, ModuleHandle, VariableOffset);
3552 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3553 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3571 bool is64bit = Subtarget.
isPPC64();
3618 if (!
TM.isPositionIndependent())
3677 PtrVT, GOTPtr, TGA, TGA);
3679 PtrVT, TLSAddr, TGA);
3688 EVT PtrVT =
Op.getValueType();
3713 return getTOCEntry(DAG,
DL, GA);
3716 unsigned MOHiFlag, MOLoFlag;
3724 return getTOCEntry(DAG,
DL, GA);
3736 bool IsStrict =
Op->isStrictFPOpcode();
3738 cast<CondCodeSDNode>(
Op.getOperand(IsStrict ? 3 : 2))->get();
3742 EVT LHSVT =
LHS.getValueType();
3746 if (LHSVT == MVT::f128) {
3747 assert(!Subtarget.hasP9Vector() &&
3748 "SETCC for f128 is already legal under Power9!");
3759 assert(!IsStrict &&
"Don't know how to handle STRICT_FSETCC!");
3761 if (
Op.getValueType() == MVT::v2i64) {
3764 if (
LHS.getValueType() == MVT::v2i64) {
3772 int ShuffV[] = {1, 0, 3, 2};
3777 dl, MVT::v4i32, Shuff, SetCC32));
3794 if (
C->isAllOnes() ||
C->isZero())
3804 EVT VT =
Op.getValueType();
3813 EVT VT =
Node->getValueType(0);
3817 const Value *SV = cast<SrcValueSDNode>(
Node->getOperand(2))->getValue();
3827 if (VT == MVT::i64) {
3858 InChain = OverflowArea.
getValue(1);
3904 InChain = DAG.
getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3911 assert(!Subtarget.
isPPC64() &&
"LowerVACOPY is PPC32 only");
3917 false,
true,
nullptr, std::nullopt,
3923 return Op.getOperand(0);
3932 "Expecting Inline ASM node.");
3942 if (
Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3948 unsigned NumVals =
Flags.getNumOperandRegisters();
3951 switch (
Flags.getKind()) {
3962 for (; NumVals; --NumVals, ++i) {
3963 Register Reg = cast<RegisterSDNode>(
Op.getOperand(i))->getReg();
3964 if (Reg != PPC::LR && Reg != PPC::LR8)
3993 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4003 const Value *TrampolineAddr =
4004 cast<SrcValueSDNode>(
Op.getOperand(4))->getValue();
4006 cast<Function>(cast<SrcValueSDNode>(
Op.getOperand(5))->getValue());
4014 PointerAlign, MMOFlags);
4016 OutChains[0] = DAG.
getStore(EPLoadChain, dl, LoadEntryPoint, Trmp,
4021 SDValue TOCFromDescriptorPtr =
4023 SDValue TOCReg = DAG.
getLoad(PtrVT, dl, Chain, TOCFromDescriptorPtr,
4025 PointerAlign, MMOFlags);
4026 SDValue TrampolineTOCPointer =
4030 DAG.
getStore(TOCLoadChain, dl, TOCReg, TrampolineTOCPointer,
4037 DAG.
getStore(Chain, dl, Nest, EnvPointer,
4045 bool isPPC64 = (PtrVT == MVT::i64);
4049 Args.emplace_back(Trmp, IntPtrTy);
4054 Args.emplace_back(FPtr, IntPtrTy);
4055 Args.emplace_back(Nest, IntPtrTy);
4059 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
4063 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
4064 return CallResult.second;
4078 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
4079 return DAG.
getStore(
Op.getOperand(0), dl, FR,
Op.getOperand(1),
4114 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
4123 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
4138 nextPtr = DAG.
getNode(
ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
4141 SDValue thirdStore = DAG.
getStore(secondStore, dl, StackOffsetFI, nextPtr,
4143 nextOffset += FrameOffset;
4144 nextPtr = DAG.
getNode(
ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
4147 return DAG.
getStore(thirdStore, dl, FR, nextPtr,
4153static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
4154 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
4155 PPC::F11, PPC::F12, PPC::F13};
4160 unsigned PtrByteSize) {
4162 if (Flags.isByVal())
4163 ArgSize = Flags.getByValSize();
4167 if (!Flags.isInConsecutiveRegs())
4168 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4177 unsigned PtrByteSize) {
4178 Align Alignment(PtrByteSize);
4181 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4182 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4183 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
4184 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
4185 Alignment =
Align(16);
4188 if (Flags.isByVal()) {
4189 auto BVAlign = Flags.getNonZeroByValAlign();
4190 if (BVAlign > PtrByteSize) {
4191 if (BVAlign.value() % PtrByteSize != 0)
4193 "ByVal alignment is not a multiple of the pointer size");
4195 Alignment = BVAlign;
4200 if (Flags.isInConsecutiveRegs()) {
4204 if (Flags.isSplit() && OrigVT != MVT::ppcf128)
4218 unsigned PtrByteSize,
unsigned LinkageSize,
4219 unsigned ParamAreaSize,
unsigned &ArgOffset,
4220 unsigned &AvailableFPRs,
4221 unsigned &AvailableVRs) {
4222 bool UseMemory =
false;
4227 ArgOffset =
alignTo(ArgOffset, Alignment);
4230 if (ArgOffset >= LinkageSize + ParamAreaSize)
4235 if (Flags.isInConsecutiveRegsLast())
4236 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4239 if (ArgOffset > LinkageSize + ParamAreaSize)
4244 if (!Flags.isByVal()) {
4245 if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
4246 if (AvailableFPRs > 0) {
4250 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4251 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4252 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
4253 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
4254 if (AvailableVRs > 0) {
4266 unsigned NumBytes) {
4270SDValue PPCTargetLowering::LowerFormalArguments(
4275 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
4278 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4281 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4285SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4327 const Align PtrAlign(4);
4336 CCInfo.AllocateStack(LinkageSize, PtrAlign);
4339 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
4352 RC = &PPC::GPRCRegClass;
4355 if (Subtarget.hasP8Vector())
4356 RC = &PPC::VSSRCRegClass;
4357 else if (Subtarget.hasSPE())
4358 RC = &PPC::GPRCRegClass;
4360 RC = &PPC::F4RCRegClass;
4363 if (Subtarget.hasVSX())
4364 RC = &PPC::VSFRCRegClass;
4365 else if (Subtarget.hasSPE())
4367 RC = &PPC::GPRCRegClass;
4369 RC = &PPC::F8RCRegClass;
4374 RC = &PPC::VRRCRegClass;
4377 RC = &PPC::VRRCRegClass;
4381 RC = &PPC::VRRCRegClass;
4388 if (VA.
getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4389 assert(i + 1 < e &&
"No second half of double precision argument");
4401 ValVT == MVT::i1 ? MVT::i32 : ValVT);
4402 if (ValVT == MVT::i1)
4417 ArgOffset += ArgSize - ObjSize;
4435 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign);
4440 unsigned MinReservedArea = CCByValInfo.getStackSize();
4441 MinReservedArea = std::max(MinReservedArea, LinkageSize);
4457 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4458 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4460 const unsigned NumGPArgRegs = std::size(GPArgRegs);
4463 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4466 unsigned NumFPArgRegs = std::size(FPArgRegs);
4475 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4479 PtrVT.getSizeInBits() / 8, CCInfo.getStackSize(),
true));
4492 VReg = MF.
addLiveIn(GPArgReg, &PPC::GPRCRegClass);
4507 for (
unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4511 VReg = MF.
addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4524 if (!MemOps.
empty())
4535 const SDLoc &dl)
const {
4539 else if (
Flags.isZExt())
4546SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4559 "fastcc not supported on varargs functions");
4565 unsigned PtrByteSize = 8;
4569 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4570 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4573 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4574 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4577 const unsigned Num_GPR_Regs = std::size(GPR);
4579 const unsigned Num_VR_Regs = std::size(VR);
4587 bool HasParameterArea = !isELFv2ABI || isVarArg;
4588 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4589 unsigned NumBytes = LinkageSize;
4590 unsigned AvailableFPRs = Num_FPR_Regs;
4591 unsigned AvailableVRs = Num_VR_Regs;
4593 if (
In.Flags.isNest())
4597 LinkageSize, ParamAreaSize, NumBytes,
4598 AvailableFPRs, AvailableVRs))
4599 HasParameterArea =
true;
4606 unsigned ArgOffset = LinkageSize;
4607 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4610 unsigned CurArgIdx = 0;
4611 for (
unsigned ArgNo = 0, e =
Ins.size(); ArgNo != e; ++ArgNo) {
4613 bool needsLoad =
false;
4614 EVT ObjectVT =
Ins[ArgNo].VT;
4615 EVT OrigVT =
Ins[ArgNo].ArgVT;
4617 unsigned ArgSize = ObjSize;
4619 if (Ins[ArgNo].isOrigArg()) {
4620 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4621 CurArgIdx =
Ins[ArgNo].getOrigArgIndex();
4626 unsigned CurArgOffset;
4628 auto ComputeArgOffset = [&]() {
4632 ArgOffset =
alignTo(ArgOffset, Alignment);
4633 CurArgOffset = ArgOffset;
4640 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4641 GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4646 if (
Flags.isByVal()) {
4647 assert(Ins[ArgNo].isOrigArg() &&
"Byval arguments cannot be implicit");
4653 ObjSize =
Flags.getByValSize();
4654 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4676 if (HasParameterArea ||
4677 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4684 if (ObjSize < PtrByteSize) {
4688 if (!isLittleEndian) {
4694 if (GPR_idx != Num_GPR_Regs) {
4706 ArgOffset += PtrByteSize;
4715 for (
unsigned j = 0;
j < ArgSize;
j += PtrByteSize) {
4716 if (GPR_idx == Num_GPR_Regs)
4727 unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4735 ArgOffset += ArgSize;
4744 if (
Flags.isNest()) {
4749 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4750 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4758 if (GPR_idx != Num_GPR_Regs) {
4763 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4766 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4772 ArgSize = PtrByteSize;
4783 if (FPR_idx != Num_FPR_Regs) {
4786 if (ObjectVT == MVT::f32)
4788 Subtarget.hasP8Vector()
4789 ? &PPC::VSSRCRegClass
4790 : &PPC::F4RCRegClass);
4793 ? &PPC::VSFRCRegClass
4794 : &PPC::F8RCRegClass);
4809 if (ObjectVT == MVT::f32) {
4810 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4828 ArgSize =
Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4829 ArgOffset += ArgSize;
4830 if (
Flags.isInConsecutiveRegsLast())
4831 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4845 if (VR_idx != Num_VR_Regs) {
4862 if (ObjSize < ArgSize && !isLittleEndian)
4863 CurArgOffset += ArgSize - ObjSize;
4873 unsigned MinReservedArea;
4874 if (HasParameterArea)
4875 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4877 MinReservedArea = LinkageSize;
4894 int Depth = ArgOffset;
4903 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4904 GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4916 if (!MemOps.
empty())
4925 unsigned ParamSize) {
4927 if (!isTailCall)
return 0;
4931 int SPDiff = (int)CallerMinReservedArea - (
int)ParamSize;
4933 if (SPDiff < FI->getTailCallSPDelta())
4949 "PC Relative callers do not have a TOC and cannot share a TOC Base");
4962 if (!TM.shouldAssumeDSOLocal(CalleeGV))
4968 const Function *
F = dyn_cast<Function>(CalleeGV);
4969 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(CalleeGV);
4974 F = dyn_cast<Function>(GlobalObj);
5007 if (TM.getFunctionSections() || CalleeGV->
hasComdat() ||
5008 Caller->hasComdat() || CalleeGV->
getSection() != Caller->getSection())
5010 if (
const auto *
F = dyn_cast<Function>(CalleeGV)) {
5011 if (
F->getSectionPrefix() != Caller->getSectionPrefix())
5023 const unsigned PtrByteSize = 8;
5027 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5028 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5031 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5032 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5035 const unsigned NumGPRs = std::size(GPR);
5036 const unsigned NumFPRs = 13;
5037 const unsigned NumVRs = std::size(VR);
5038 const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5040 unsigned NumBytes = LinkageSize;
5041 unsigned AvailableFPRs = NumFPRs;
5042 unsigned AvailableVRs = NumVRs;
5045 if (Param.Flags.isNest())
continue;
5048 LinkageSize, ParamAreaSize, NumBytes,
5049 AvailableFPRs, AvailableVRs))
5060 auto CalleeArgEnd = CB.
arg_end();
5063 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
5064 const Value* CalleeArg = *CalleeArgIter;
5065 const Value* CallerArg = &(*CallerArgIter);
5066 if (CalleeArg == CallerArg)
5074 isa<UndefValue>(CalleeArg))
5092 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
5102bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
5107 bool isCalleeExternalSymbol)
const {
5110 if (
DisableSCO && !TailCallOpt)
return false;
5113 if (isVarArg)
return false;
5189bool PPCTargetLowering::IsEligibleForTailCallOptimization(
5223 if (!
C)
return nullptr;
5225 int Addr =
C->getZExtValue();
5226 if ((
Addr & 3) != 0 ||
5232 (
int)
C->getZExtValue() >> 2,
SDLoc(
Op),
5239struct TailCallArgumentInfo {
5244 TailCallArgumentInfo() =
default;
5254 for (
unsigned i = 0, e = TailCallArgs.
size(); i != e; ++i) {
5255 SDValue Arg = TailCallArgs[i].Arg;
5256 SDValue FIN = TailCallArgs[i].FrameIdxOp;
5257 int FI = TailCallArgs[i].FrameIdx;
5260 Chain, dl, Arg, FIN,
5269 int SPDiff,
const SDLoc &dl) {
5275 int SlotSize = Subtarget.
isPPC64() ? 8 : 4;
5276 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5278 NewRetAddrLoc,
true);
5281 Chain = DAG.
getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5291 int SPDiff,
unsigned ArgOffset,
5293 int Offset = ArgOffset + SPDiff;
5296 EVT VT = IsPPC64 ? MVT::i64 : MVT::i32;
5298 TailCallArgumentInfo
Info;
5300 Info.FrameIdxOp = FIN;
5308SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5313 LROpOut = getReturnAddrFrameIndex(DAG);
5332 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
false,
false,
5340 SDValue PtrOff,
int SPDiff,
unsigned ArgOffset,
bool isPPC64,
5364 const SDLoc &dl,
int SPDiff,
unsigned NumBytes,
SDValue LROp,
5374 if (!MemOpChains2.
empty())
5398SDValue PPCTargetLowering::LowerCallResult(
5406 CCRetInfo.AnalyzeCallResult(
5412 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
5418 if (Subtarget.hasSPE() && VA.
getLocVT() == MVT::f64) {
5421 Chain =
Lo.getValue(1);
5422 InGlue =
Lo.getValue(2);
5426 Chain =
Hi.getValue(1);
5427 InGlue =
Hi.getValue(2);
5464 auto *
G = dyn_cast<GlobalAddressSDNode>(Callee);
5496 bool IsStrictFPCall =
false) {
5500 unsigned RetOpc = 0;
5525 auto *
G = dyn_cast<GlobalAddressSDNode>(Callee);
5531 if (IsStrictFPCall) {
5562 auto isLocalCallee = [&]() {
5567 !isa_and_nonnull<GlobalIFunc>(GV);
5578 const auto getAIXFuncEntryPointSymbolSDNode = [&](
const GlobalValue *GV) {
5588 auto *
G = dyn_cast<GlobalAddressSDNode>(Callee);
5591 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5594 assert(!isa<GlobalIFunc>(GV) &&
"IFunc is not supported on AIX.");
5595 return getAIXFuncEntryPointSymbolSDNode(GV);
5602 const char *SymName = S->getSymbol();
5608 dyn_cast_or_null<Function>(
Mod->getNamedValue(SymName)))
5609 return getAIXFuncEntryPointSymbolSDNode(
F);
5615 const auto getExternalFunctionEntryPointSymbol = [&](
StringRef SymName) {
5623 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5630 assert(Callee.getNode() &&
"What no callee?");
5636 "Expected a CALLSEQ_STARTSDNode.");
5653 SDValue MTCTROps[] = {Chain, Callee, Glue};
5654 EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5695 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5714 SDValue LoadFuncPtr = DAG.
getLoad(RegVT, dl, LDChain, Callee, MPI,
5715 Alignment, MMOFlags);
5722 DAG.
getLoad(RegVT, dl, LDChain, AddTOC,
5729 DAG.
getLoad(RegVT, dl, LDChain, AddPtr,
5741 "Nest parameter is not supported on AIX.");
5757 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5760 const bool IsPPC64 = Subtarget.
isPPC64();
5809 for (
const auto &[Reg,
N] : RegsToPass)
5827 assert(Mask &&
"Missing call preserved mask for calling convention");
5835SDValue PPCTargetLowering::FinishCall(
5850 if (!CFlags.IsIndirect)
5854 dl, CFlags.HasNest, Subtarget);
5864 if (CFlags.IsTailCall) {
5868 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5871 isa<ConstantSDNode>(Callee) ||
5873 "Expecting a global address, external symbol, absolute value, "
5874 "register or an indirect tail call when PC Relative calls are "
5878 "Unexpected call opcode for a tail call.");
5885 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5886 Chain = DAG.
getNode(CallOpc, dl, ReturnTypes, Ops);
5898 Chain = DAG.
getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl);
5901 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5912 const GlobalValue *CalleeGV = dyn_cast<GlobalValue>(CalleeFunc);
5921 return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB,
5922 CalleeFunc->
isVarArg(), Outs, Ins, CallerFunc,
5926bool PPCTargetLowering::isEligibleForTCO(
5931 bool isCalleeExternalSymbol)
const {
5936 return IsEligibleForTailCallOptimization_64SVR4(
5937 CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc,
5938 isCalleeExternalSymbol);
5940 return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC,
5963 auto *
G = dyn_cast<GlobalAddressSDNode>(Callee);
5965 bool IsCalleeExternalSymbol = isa<ExternalSymbolSDNode>(Callee);
5968 isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins,
5982 isa<GlobalAddressSDNode>(Callee)) &&
5983 "Callee should be an llvm::Function object.");
5986 <<
"\nTCO callee: ");
5993 "site marked musttail");
5998 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
6000 Callee = LowerGlobalAddress(Callee, DAG);
6003 CallConv, isTailCall, isVarArg, isPatchPoint,
6011 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
6016 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
6018 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
6022SDValue PPCTargetLowering::LowerCall_32SVR4(
6033 const bool IsVarArg = CFlags.IsVarArg;
6034 const bool IsTailCall = CFlags.IsTailCall;
6040 const Align PtrAlign(4);
6069 unsigned NumArgs = Outs.
size();
6071 for (
unsigned i = 0; i != NumArgs; ++i) {
6072 MVT ArgVT = Outs[i].VT;
6078 Outs[i].OrigTy, CCInfo);
6081 ArgFlags, Outs[i].OrigTy, CCInfo);
6086 errs() <<
"Call operand #" << i <<
" has unhandled type "
6102 CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign);
6109 unsigned NumBytes = CCByValInfo.getStackSize();
6123 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6134 bool seenFloatArg =
false;
6139 for (
unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.
size();
6141 ++i, ++RealArgIdx) {
6143 SDValue Arg = OutVals[RealArgIdx];
6146 if (
Flags.isByVal()) {
6151 assert((j < ByValArgLocs.
size()) &&
"Index out of bounds!");
6174 Chain = CallSeqStart = NewCallSeqStart;
6193 if (Subtarget.hasSPE() && Arg.
getValueType() == MVT::f64) {
6200 RegsToPass.
push_back(std::make_pair(ArgLocs[++i].getLocReg(),
6224 if (!MemOpChains.
empty())
6230 for (
const auto &[Reg,
N] : RegsToPass) {
6239 SDValue Ops[] = { Chain, InGlue };
6251 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
6252 Callee, SPDiff, NumBytes, Ins, InVals, CB);
6257SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
6269 return NewCallSeqStart;
6272SDValue PPCTargetLowering::LowerCall_64SVR4(
6281 unsigned NumOps = Outs.
size();
6282 bool IsSibCall =
false;
6286 unsigned PtrByteSize = 8;
6301 assert(!(IsFastCall && CFlags.IsVarArg) &&
6302 "fastcc not supported on varargs functions");
6309 unsigned NumBytes = LinkageSize;
6310 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6313 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6314 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6317 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6318 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6321 const unsigned NumGPRs = std::size(GPR);
6323 const unsigned NumVRs = std::size(VR);
6329 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6330 if (!HasParameterArea) {
6331 unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6332 unsigned AvailableFPRs = NumFPRs;
6333 unsigned AvailableVRs = NumVRs;
6334 unsigned NumBytesTmp = NumBytes;
6335 for (
unsigned i = 0; i != NumOps; ++i) {
6336 if (Outs[i].
Flags.isNest())
continue;
6338 PtrByteSize, LinkageSize, ParamAreaSize,
6339 NumBytesTmp, AvailableFPRs, AvailableVRs))
6340 HasParameterArea =
true;
6346 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6351 HasParameterArea =
false;
6354 for (
unsigned i = 0; i != NumOps; ++i) {
6356 EVT ArgVT = Outs[i].VT;
6357 EVT OrigVT = Outs[i].ArgVT;
6363 if (
Flags.isByVal()) {
6364 NumGPRsUsed += (
Flags.getByValSize()+7)/8;
6365 if (NumGPRsUsed > NumGPRs)
6366 HasParameterArea =
true;
6373 if (++NumGPRsUsed <= NumGPRs)
6383 if (++NumVRsUsed <= NumVRs)
6387 if (++NumVRsUsed <= NumVRs)
6392 if (++NumFPRsUsed <= NumFPRs)
6396 HasParameterArea =
true;
6403 NumBytes =
alignTo(NumBytes, Alignement);
6406 if (
Flags.isInConsecutiveRegsLast())
6407 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6410 unsigned NumBytesActuallyUsed = NumBytes;
6420 if (HasParameterArea)
6421 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6423 NumBytes = LinkageSize;
6438 if (CFlags.IsTailCall)
6450 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6461 unsigned ArgOffset = LinkageSize;
6467 for (
unsigned i = 0; i != NumOps; ++i) {
6470 EVT ArgVT = Outs[i].VT;
6471 EVT OrigVT = Outs[i].ArgVT;
6480 auto ComputePtrOff = [&]() {
6484 ArgOffset =
alignTo(ArgOffset, Alignment);
6495 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6496 GPR_idx = std::min(GPR_idx, NumGPRs);
6503 Arg = DAG.
getNode(ExtOp, dl, MVT::i64, Arg);
6509 if (
Flags.isByVal()) {
6527 EVT VT = (
Size==1) ? MVT::i8 : ((
Size==2) ? MVT::i16 : MVT::i32);
6528 if (GPR_idx != NumGPRs) {
6532 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], Load));
6534 ArgOffset += PtrByteSize;
6539 if (GPR_idx == NumGPRs &&
Size < 8) {
6541 if (!isLittleEndian) {
6546 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6549 ArgOffset += PtrByteSize;
6558 if ((NumGPRs - GPR_idx) * PtrByteSize <
Size)
6559 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6564 if (
Size < 8 && GPR_idx != NumGPRs) {
6574 if (!isLittleEndian) {
6578 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6586 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], Load));
6589 ArgOffset += PtrByteSize;
6595 for (
unsigned j=0;
j<
Size;
j+=PtrByteSize) {
6598 if (GPR_idx != NumGPRs) {
6599 unsigned LoadSizeInBits = std::min(PtrByteSize, (
Size - j)) * 8;
6605 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], Load));
6606 ArgOffset += PtrByteSize;
6608 ArgOffset += ((
Size -
j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6620 if (
Flags.isNest()) {
6622 RegsToPass.
push_back(std::make_pair(PPC::X11, Arg));
6629 if (GPR_idx != NumGPRs) {
6630 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], Arg));
6635 assert(HasParameterArea &&
6636 "Parameter area must exist to pass an argument in memory.");
6638 true, CFlags.IsTailCall,
false, MemOpChains,
6639 TailCallArguments, dl);
6641 ArgOffset += PtrByteSize;
6644 ArgOffset += PtrByteSize;
6657 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6658 bool NeededLoad =
false;
6661 if (FPR_idx != NumFPRs)
6662 RegsToPass.
push_back(std::make_pair(
FPR[FPR_idx++], Arg));
6665 if (!NeedGPROrStack)
6667 else if (GPR_idx != NumGPRs && !IsFastCall) {
6681 }
else if (!
Flags.isInConsecutiveRegs()) {
6687 }
else if (ArgOffset % PtrByteSize != 0) {
6691 if (!isLittleEndian)
6696 }
else if (
Flags.isInConsecutiveRegsLast()) {
6699 if (!isLittleEndian)
6709 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6717 !isLittleEndian && !
Flags.isInConsecutiveRegs()) {
6722 assert(HasParameterArea &&
6723 "Parameter area must exist to pass an argument in memory.");
6725 true, CFlags.IsTailCall,
false, MemOpChains,
6726 TailCallArguments, dl);
6733 if (!IsFastCall || NeededLoad) {
6735 Flags.isInConsecutiveRegs()) ? 4 : 8;
6736 if (
Flags.isInConsecutiveRegsLast())
6737 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6757 if (CFlags.IsVarArg) {
6758 assert(HasParameterArea &&
6759 "Parameter area must exist if we have a varargs call.");
6765 if (VR_idx != NumVRs) {
6769 RegsToPass.
push_back(std::make_pair(VR[VR_idx++], Load));
6772 for (
unsigned i=0; i<16; i+=PtrByteSize) {
6773 if (GPR_idx == NumGPRs)
6780 RegsToPass.
push_back(std::make_pair(GPR[GPR_idx++], Load));
6786 if (VR_idx != NumVRs) {
6787 RegsToPass.
push_back(std::make_pair(VR[VR_idx++], Arg));
6792 assert(HasParameterArea &&
6793 "Parameter area must exist to pass an argument in memory.");
6795 true, CFlags.IsTailCall,
true, MemOpChains,
6796 TailCallArguments, dl);
6807 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6808 "mismatch in size of parameter area");
6809 (void)NumBytesActuallyUsed;
6811 if (!MemOpChains.
empty())
6817 if (CFlags.IsIndirect) {
6821 assert(!CFlags.IsTailCall &&
"Indirect tails calls not supported");
6836 if (isELFv2ABI && !CFlags.IsPatchPoint)
6837 RegsToPass.
push_back(std::make_pair((
unsigned)PPC::X12, Callee));
6843 for (
const auto &[Reg,
N] : RegsToPass) {
6848 if (CFlags.IsTailCall && !IsSibCall)
6852 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
6853 Callee, SPDiff, NumBytes, Ins, InVals, CB);
6860 "Required alignment greater than stack alignment.");
6880 return RequiredAlign <= 8;
6885 return RequiredAlign <= 4;
6894 const bool IsPPC64 = Subtarget.
isPPC64();
6895 const unsigned PtrSize = IsPPC64 ? 8 : 4;
6896 const Align PtrAlign(PtrSize);
6897 const Align StackAlign(16);
6900 if (ValVT == MVT::f128)
6904 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6905 PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6907 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6908 PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6911 PPC::V2, PPC::V3, PPC::V4, PPC::V5,
6912 PPC::V6, PPC::V7, PPC::V8, PPC::V9,
6913 PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6927 if (ByValAlign > StackAlign)
6929 "16 are not supported.");
6932 const Align ObjAlign = ByValAlign > PtrAlign ? ByValAlign : PtrAlign;
6936 if (ByValSize == 0) {
6944 while (NextReg != GPRs.
size() &&
6950 assert(Reg &&
"Alocating register unexpectedly failed.");
6955 const unsigned StackSize =
alignTo(ByValSize, ObjAlign);
6976 assert(IsPPC64 &&
"PPC32 should have split i64 values.");
7005 for (
unsigned I = 0;
I < StoreSize;
I += PtrSize) {
7007 assert(FReg &&
"An FPR should be available when a GPR is reserved.");
7040 const unsigned VecSize = 16;
7041 const Align VecAlign(VecSize);
7061 while (NextRegIndex != GPRs.
size() &&
7066 assert(Reg &&
"Allocating register unexpectedly failed.");
7079 for (
unsigned I = 0;
I != VecSize;
I += PtrSize)
7091 if (NextRegIndex == GPRs.
size()) {
7100 if (GPRs[NextRegIndex] == PPC::R9) {
7107 assert(FirstReg && SecondReg &&
7108 "Allocating R9 or R10 unexpectedly failed.");
7122 for (
unsigned I = 0;
I != VecSize;
I += PtrSize) {
7124 assert(Reg &&
"Failed to allocated register for vararg vector argument");
7139 assert((IsPPC64 || SVT != MVT::i64) &&
7140 "i64 should have been split for 32-bit codegen.");
7148 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7150 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
7152 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
7160 return &PPC::VRRCRegClass;
7173 else if (Flags.isZExt())
7183 if (PPC::GPRCRegClass.
contains(Reg)) {
7184 assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7185 "Reg must be a valid argument register!");
7186 return LASize + 4 * (Reg - PPC::R3);
7189 if (PPC::G8RCRegClass.
contains(Reg)) {
7190 assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7191 "Reg must be a valid argument register!");
7192 return LASize + 8 * (Reg - PPC::X3);
7238SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7245 "Unexpected calling convention!");
7255 const bool IsPPC64 = Subtarget.
isPPC64();
7256 const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7268 CCInfo.AllocateStack(LinkageSize,
Align(PtrByteSize));
7269 uint64_t SaveStackPos = CCInfo.getStackSize();
7271 CCInfo.AnalyzeFormalArguments(Ins,
CC_AIX);
7282 bool ArgSignExt =
Ins[VA.
getValNo()].Flags.isSExt();
7294 LocVT.
SimpleTy, IsPPC64, Subtarget.hasP8Vector(), Subtarget.hasVSX());
7296 MVT SaveVT = RegClass == &PPC::G8RCRegClass ? MVT::i64 : LocVT;
7308 unsigned StoreSize =
7310 SaveStackPos =
alignTo(SaveStackPos + StoreSize, PtrByteSize);
7313 auto HandleMemLoc = [&]() {
7316 assert((ValSize <= LocSize) &&
7317 "Object size is larger than size of MemLoc");
7320 if (LocSize > ValSize)
7321 CurArgOffset += LocSize - ValSize;
7323 const bool IsImmutable =
7363 assert(isVarArg &&
"Only use custom memloc for vararg.");
7366 const unsigned OriginalValNo = VA.
getValNo();
7367 (void)OriginalValNo;
7369 auto HandleCustomVecRegLoc = [&]() {
7370 assert(
I !=
End && ArgLocs[
I].isRegLoc() && ArgLocs[
I].needsCustom() &&
7371 "Missing custom RegLoc.");
7374 "Unexpected Val type for custom RegLoc.");
7376 "ValNo mismatch between custom MemLoc and RegLoc.");
7380 Subtarget.hasVSX()));
7387 HandleCustomVecRegLoc();
7388 HandleCustomVecRegLoc();
7392 if (
I !=
End && ArgLocs[
I].isRegLoc() && ArgLocs[
I].needsCustom()) {
7394 "Only 2 custom RegLocs expected for 64-bit codegen.");
7395 HandleCustomVecRegLoc();
7396 HandleCustomVecRegLoc();
7440 const unsigned Size =
7452 if (
Flags.isByVal()) {
7458 const unsigned StackSize =
alignTo(
Flags.getByValSize(), PtrByteSize);
7467 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7469 auto HandleRegLoc = [&, RegClass, LocVT](
const MCPhysReg PhysReg,
7482 CopyFrom.
getValue(1), dl, CopyFrom,
7492 for (;
Offset != StackSize && ArgLocs[
I].isRegLoc();
7495 "RegLocs should be for ByVal argument.");
7502 if (
Offset != StackSize) {
7504 "Expected MemLoc for remaining bytes.");
7505 assert(ArgLocs[
I].isMemLoc() &&
"Expected MemLoc for remaining bytes.");
7519 Subtarget.hasVSX()));
7536 const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7538 unsigned CallerReservedArea = std::max<unsigned>(
7539 CCInfo.getStackSize(), LinkageSize + MinParameterSaveArea);
7545 CallerReservedArea =
7554 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7555 PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7557 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7558 PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7559 const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32);
7564 for (
unsigned GPRIndex =
7565 (CCInfo.getStackSize() - LinkageSize) / PtrByteSize;
7566 GPRIndex < NumGPArgRegs; ++GPRIndex) {
7569 IsPPC64 ? MF.
addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7570 : MF.
addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7582 if (!MemOps.
empty())
7588SDValue PPCTargetLowering::LowerCall_AIX(
7601 "Unexpected calling convention!");
7603 if (CFlags.IsPatchPoint)
7610 CCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7618 const bool IsPPC64 = Subtarget.
isPPC64();
7620 const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7621 CCInfo.AllocateStack(LinkageSize,
Align(PtrByteSize));
7622 CCInfo.AnalyzeCallOperands(Outs,
CC_AIX);
7630 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7631 const unsigned NumBytes = std::max<unsigned>(
7632 LinkageSize + MinParameterSaveAreaSize, CCInfo.getStackSize());
7648 for (
unsigned I = 0, E = ArgLocs.
size();
I != E;) {
7649 const unsigned ValNo = ArgLocs[
I].getValNo();
7653 if (
Flags.isByVal()) {
7654 const unsigned ByValSize =
Flags.getByValSize();
7662 auto GetLoad = [&](
EVT VT,
unsigned LoadOffset) {
7671 unsigned LoadOffset = 0;
7674 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[
I].isRegLoc()) {
7677 LoadOffset += PtrByteSize;
7680 "Unexpected location for pass-by-value argument.");
7684 if (LoadOffset == ByValSize)
7688 assert(ArgLocs[
I].getValNo() == ValNo &&
7689 "Expected additional location for by-value argument.");
7691 if (ArgLocs[
I].isMemLoc()) {
7692 assert(LoadOffset < ByValSize &&
"Unexpected memloc for by-val arg.");
7697 Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7703 CallSeqStart, MemcpyFlags, DAG, dl);
7712 const unsigned ResidueBytes = ByValSize % PtrByteSize;
7713 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7714 "Unexpected register residue for by-value argument.");
7716 for (
unsigned Bytes = 0; Bytes != ResidueBytes;) {
7720 : ((
N == 2) ? MVT::i16 : (
N == 4 ? MVT::i32 : MVT::i64));
7730 "Unexpected load emitted during handling of pass-by-value "
7738 ResidueVal = ResidueVal ? DAG.
getNode(
ISD::OR, dl, PtrVT, ResidueVal,
7773 assert(CFlags.IsVarArg &&
"Custom MemLocs only used for Vector args.");
7781 const unsigned OriginalValNo = VA.
getValNo();
7783 unsigned LoadOffset = 0;
7784 auto HandleCustomVecRegLoc = [&]() {
7785 assert(
I != E &&
"Unexpected end of CCvalAssigns.");
7786 assert(ArgLocs[
I].isRegLoc() && ArgLocs[
I].needsCustom() &&
7787 "Expected custom RegLoc.");
7790 "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7796 LoadOffset += PtrByteSize;
7802 HandleCustomVecRegLoc();
7803 HandleCustomVecRegLoc();
7805 if (
I != E && ArgLocs[
I].isRegLoc() && ArgLocs[
I].needsCustom() &&
7806 ArgLocs[
I].getValNo() == OriginalValNo) {
7808 "Only 2 custom RegLocs expected for 64-bit codegen.");
7809 HandleCustomVecRegLoc();
7810 HandleCustomVecRegLoc();
7821 DAG.
getStore(Chain, dl, Arg, PtrOff,
7830 "Unexpected register handling for calling convention.");
7836 "Custom register handling only expected for VarArg.");
7854 "Unexpected custom register for argument!");
7875 if (!MemOpChains.
empty())
7880 if (CFlags.IsIndirect) {
7881 assert(!CFlags.IsTailCall &&
"Indirect tail-calls not supported.");
7885 const unsigned TOCSaveOffset =
7901 for (
auto Reg : RegsToPass) {
7906 const int SPDiff = 0;
7907 return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
7908 Callee, SPDiff, NumBytes, Ins, InVals, CB);
7918 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7919 return CCInfo.CheckReturn(
7934 CCInfo.AnalyzeReturn(Outs,
7943 for (
unsigned i = 0, RealResIdx = 0; i != RVLocs.
size(); ++i, ++RealResIdx) {
7947 SDValue Arg = OutVals[RealResIdx];
7962 if (Subtarget.hasSPE() && VA.
getLocVT() == MVT::f64) {
7985 RetOps.push_back(Glue);
7991PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
SDValue Op,
7996 EVT IntVT =
Op.getValueType();
8000 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
8002 SDValue Ops[2] = {Chain, FPSIdx};
8016 bool isPPC64 = Subtarget.
isPPC64();
8017 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
8037 bool isPPC64 = Subtarget.
isPPC64();
8058PPCTargetLowering::getFramePointerFrameIndex(
SelectionDAG & DAG)
const {
8060 bool isPPC64 = Subtarget.
isPPC64();
8094 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
8095 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
8106 bool isPPC64 = Subtarget.
isPPC64();
8118 Op.getOperand(0),
Op.getOperand(1));
8125 Op.getOperand(0),
Op.getOperand(1));
8129 if (
Op.getValueType().isVector())
8130 return LowerVectorLoad(
Op, DAG);
8132 assert(
Op.getValueType() == MVT::i1 &&
8133 "Custom lowering only for i1 loads");
8146 BasePtr, MVT::i8, MMO);
8154 if (
Op.getOperand(1).getValueType().isVector())
8155 return LowerVectorStore(
Op, DAG);
8157 assert(
Op.getOperand(1).getValueType() == MVT::i1 &&
8158 "Custom lowering only for i1 stores");
8177 assert(
Op.getValueType() == MVT::i1 &&
8178 "Custom lowering only for i1 results");
8206 EVT TrgVT =
Op.getValueType();
8219 !llvm::has_single_bit<uint32_t>(
8230 if (SrcSize == 256) {
8241 Op1 = SrcSize == 128 ? N1 :
widenVec(DAG, N1,
DL);
8249 for (
unsigned i = 0; i < TrgNumElts; ++i)
8252 for (
unsigned i = 1; i <= TrgNumElts; ++i)
8256 for (
unsigned i = TrgNumElts; i < WideNumElts; ++i)
8269 EVT ResVT =
Op.getValueType();
8270 EVT CmpVT =
Op.getOperand(0).getValueType();
8272 SDValue TV =
Op.getOperand(2), FV =
Op.getOperand(3);
8278 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
8295 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8327 if (
LHS.getValueType() == MVT::f32)
8340 if (
LHS.getValueType() == MVT::f32)
8349 if (
LHS.getValueType() == MVT::f32)
8363 if (
Cmp.getValueType() == MVT::f32)
8373 if (
Cmp.getValueType() == MVT::f32)
8379 if (
Cmp.getValueType() == MVT::f32)
8385 if (
Cmp.getValueType() == MVT::f32)
8391 if (
Cmp.getValueType() == MVT::f32)
8424 bool IsStrict =
Op->isStrictFPOpcode();
8430 Flags.setNoFPExcept(
Op->getFlags().hasNoFPExcept());
8433 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
8435 MVT DestTy =
Op.getSimpleValueType();
8436 assert(Src.getValueType().isFloatingPoint() &&
8437 (DestTy == MVT::i8 || DestTy == MVT::i16 || DestTy == MVT::i32 ||
8438 DestTy == MVT::i64) &&
8439 "Invalid FP_TO_INT types");
8440 if (Src.getValueType() == MVT::f32) {
8444 DAG.
getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8445 Chain = Src.getValue(1);
8449 if ((DestTy == MVT::i8 || DestTy == MVT::i16) && Subtarget.hasP9Vector())
8459 assert((IsSigned || Subtarget.hasFPCVT()) &&
8460 "i64 FP_TO_UINT is supported only with FPCVT");
8463 EVT ConvTy = Src.getValueType() == MVT::f128 ? MVT::f128 : MVT::f64;
8475void PPCTargetLowering::LowerFP_TO_INTForReuse(
SDValue Op, ReuseLoadInfo &RLI,
8477 const SDLoc &dl)
const {
8481 bool IsStrict =
Op->isStrictFPOpcode();
8484 bool i32Stack =
Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8485 (IsSigned || Subtarget.hasFPCVT());
8487 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8496 Alignment =
Align(4);
8499 SDValue Ops[] = { Chain, Tmp, FIPtr };
8501 DAG.
getVTList(MVT::Other), Ops, MVT::i32, MMO);
8503 Chain = DAG.
getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8507 if (
Op.getValueType() == MVT::i32 && !i32Stack &&
8517 RLI.Alignment = Alignment;
8525 const SDLoc &dl)
const {
8528 if (
Op->isStrictFPOpcode())
8535 const SDLoc &dl)
const {
8536 bool IsStrict =
Op->isStrictFPOpcode();
8539 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
8540 EVT SrcVT = Src.getValueType();
8541 EVT DstVT =
Op.getValueType();
8544 if (SrcVT == MVT::f128)
8545 return Subtarget.hasP9Vector() ?
Op :
SDValue();
8549 if (SrcVT == MVT::ppcf128) {
8550 if (DstVT == MVT::i32) {
8555 Flags.setNoFPExcept(
Op->getFlags().hasNoFPExcept());
8566 {Op.getOperand(0), Lo, Hi}, Flags);
8569 {Res.getValue(1), Res}, Flags);
8575 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8599 {Chain, Src, FltOfs}, Flags);
8603 {Chain, Val}, Flags);
8606 dl, DstVT, Sel, DAG.
getConstant(0, dl, DstVT), SignMask);
8624 if (Subtarget.hasDirectMove() && Subtarget.
isPPC64())
8625 return LowerFP_TO_INTDirectMove(
Op, DAG, dl);
8628 LowerFP_TO_INTForReuse(
Op, RLI, DAG, dl);
8630 return DAG.
getLoad(
Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8631 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8642bool PPCTargetLowering::canReuseLoadAddress(
SDValue Op,
EVT MemVT,
8647 if (
Op->isStrictFPOpcode())
8652 (Subtarget.hasFPCVT() ||
Op.getValueType() == MVT::i32);
8656 Op.getOperand(0).getValueType())) {
8658 LowerFP_TO_INTForReuse(
Op, RLI, DAG, dl);
8663 if (!LD ||
LD->getExtensionType() != ET ||
LD->isVolatile() ||
8664 LD->isNonTemporal())
8666 if (
LD->getMemoryVT() != MemVT)
8676 RLI.Ptr =
LD->getBasePtr();
8677 if (
LD->isIndexed() && !
LD->getOffset().isUndef()) {
8679 "Non-pre-inc AM on PPC?");
8684 RLI.Chain =
LD->getChain();
8685 RLI.MPI =
LD->getPointerInfo();
8686 RLI.IsDereferenceable =
LD->isDereferenceable();
8687 RLI.IsInvariant =
LD->isInvariant();
8688 RLI.Alignment =
LD->getAlign();
8689 RLI.AAInfo =
LD->getAAInfo();
8690 RLI.Ranges =
LD->getRanges();
8692 RLI.ResChain =
SDValue(LD,
LD->isIndexed() ? 2 : 1);
8699bool PPCTargetLowering::directMoveIsProfitable(
const SDValue &
Op)
const {
8700 SDNode *Origin =
Op.getOperand(
Op->isStrictFPOpcode() ? 1 : 0).getNode();
8707 if (!Subtarget.hasP9Vector() &&
8714 if (
Use.getResNo() != 0)
8737 Flags.setNoFPExcept(
Op->getFlags().hasNoFPExcept());
8741 bool IsSingle =
Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8744 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8745 if (
Op->isStrictFPOpcode()) {
8747 Chain =
Op.getOperand(0);
8749 DAG.
getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8751 return DAG.
getNode(ConvOpc, dl, ConvTy, Src);
8759 const SDLoc &dl)
const {
8760 assert((
Op.getValueType() == MVT::f32 ||
8761 Op.getValueType() == MVT::f64) &&
8762 "Invalid floating point type as target of conversion");
8763 assert(Subtarget.hasFPCVT() &&
8764 "Int to FP conversions with direct moves require FPCVT");
8765 SDValue Src =
Op.getOperand(
Op->isStrictFPOpcode() ? 1 : 0);
8766 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8788 for (
unsigned i = 1; i < NumConcat; ++i)
8795 const SDLoc &dl)
const {
8796 bool IsStrict =
Op->isStrictFPOpcode();
8797 unsigned Opc =
Op.getOpcode();
8798 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
8801 "Unexpected conversion type");
8802 assert((
Op.getValueType() == MVT::v2f64 ||
Op.getValueType() == MVT::v4f32) &&
8803 "Supports conversions to v2f64/v4f32 only.");
8807 Flags.setNoFPExcept(
Op->getFlags().hasNoFPExcept());
8810 bool FourEltRes =
Op.getValueType() == MVT::v4f32;
8815 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8818 for (
unsigned i = 0; i < WideNumElts; ++i)
8821 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8822 int SaveElts = FourEltRes ? 4 : 2;
8824 for (
int i = 0; i < SaveElts; i++)
8825 ShuffV[i * Stride] = i;
8827 for (
int i = 1; i <= SaveElts; i++)
8828 ShuffV[i * Stride - 1] = i - 1;
8836 Arrange = DAG.
getBitcast(IntermediateVT, Arrange);
8837 EVT ExtVT = Src.getValueType();
8838 if (Subtarget.hasP9Altivec())
8849 {Op.getOperand(0), Extend}, Flags);
8851 return DAG.
getNode(
Opc, dl,
Op.getValueType(), Extend);
8859 bool IsStrict =
Op->isStrictFPOpcode();
8860 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
8865 Flags.setNoFPExcept(
Op->getFlags().hasNoFPExcept());
8867 EVT InVT = Src.getValueType();
8868 EVT OutVT =
Op.getValueType();
8871 return LowerINT_TO_FPVector(
Op, DAG, dl);
8874 if (
Op.getValueType() == MVT::f128)
8875 return Subtarget.hasP9Vector() ?
Op :
SDValue();
8878 if (
Op.getValueType() != MVT::f32 &&
Op.getValueType() != MVT::f64)
8881 if (Src.getValueType() == MVT::i1) {
8893 if (Subtarget.hasDirectMove() && directMoveIsProfitable(
Op) &&
8894 Subtarget.
isPPC64() && Subtarget.hasFPCVT())
8895 return LowerINT_TO_FPDirectMove(
Op, DAG, dl);
8897 assert((IsSigned || Subtarget.hasFPCVT()) &&
8898 "UINT_TO_FP is supported only with FPCVT");
8900 if (Src.getValueType() == MVT::i64) {
8912 if (
Op.getValueType() == MVT::f32 &&
8913 !Subtarget.hasFPCVT() &&
8954 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8955 Bits = DAG.
getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8956 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8959 }
else if (Subtarget.hasLFIWAX() &&
8960 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG,
ISD::SEXTLOAD)) {
8963 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8964 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8967 Ops, MVT::i32, MMO);
8970 }
else if (Subtarget.hasFPCVT() &&
8971 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG,
ISD::ZEXTLOAD)) {
8974 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8975 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8978 Ops, MVT::i32, MMO);
8981 }
else if (((Subtarget.hasLFIWAX() &&
8983 (Subtarget.hasFPCVT() &&
8997 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8998 "Expected an i32 store");
9004 RLI.Alignment =
Align(4);
9008 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
9009 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
9012 dl, DAG.
getVTList(MVT::f64, MVT::Other),
9013 Ops, MVT::i32, MMO);
9014 Chain =
Bits.getValue(1);
9020 Chain =
FP.getValue(1);
9022 if (
Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
9026 {Chain, FP, DAG.getIntPtrConstant(0, dl, true)},
9035 assert(Src.getValueType() == MVT::i32 &&
9036 "Unhandled INT_TO_FP type in custom expander!");
9046 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
9049 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
9058 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
9059 "Expected an i32 store");
9065 RLI.Alignment =
Align(4);
9070 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
9071 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
9073 DAG.
getVTList(MVT::f64, MVT::Other), Ops,
9076 if (ReusingLoad && RLI.ResChain) {
9081 "i32->FP without LFIWAX supported only on PPC64");
9090 Chain, dl, Ext64, FIdx,
9096 MVT::f64, dl, Chain, FIdx,
9104 Chain =
FP.getValue(1);
9105 if (
Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
9109 {Chain, FP, DAG.getIntPtrConstant(0, dl, true)}, Flags);
9125 if (
auto *CVal = dyn_cast<ConstantSDNode>(
Op.getOperand(1))) {
9127 assert(Mode < 4 &&
"Unsupported rounding mode!");
9128 unsigned InternalRnd =
Mode ^ (~(
Mode >> 1) & 1);
9129 if (Subtarget.isISA3_0())
9132 PPC::MFFSCRNI, Dl, {MVT::f64, MVT::Other},
9133 {DAG.getConstant(InternalRnd, Dl, MVT::i32, true), Chain}),
9136 (InternalRnd & 2) ? PPC::MTFSB1 : PPC::MTFSB0, Dl, MVT::Other,
9137 {DAG.
getConstant(30, Dl, MVT::i32,
true), Chain});
9139 (InternalRnd & 1) ? PPC::MTFSB1 : PPC::MTFSB0, Dl, MVT::Other,
9157 if (!Subtarget.isISA3_0()) {
9159 Chain =
MFFS.getValue(1);
9163 if (Subtarget.isISA3_0()) {
9168 PPC::RLDIMI, Dl, MVT::i64,
9173 NewFPSCR =
SDValue(InsertRN, 0);
9184 if (Subtarget.isISA3_0()) {
9192 PPC::RLWIMI, Dl, MVT::i32,
9193 {Tmp, DstFlag, DAG.getTargetConstant(0, Dl, MVT::i32),
9194 DAG.getTargetConstant(30, Dl, MVT::i32),
9195 DAG.getTargetConstant(31, Dl, MVT::i32)}),
9203 if (Subtarget.isISA3_0())
9209 PPC::MTFSF, Dl, MVT::Other,
9210 {DAG.
getConstant(255, Dl, MVT::i32,
true), NewFPSCR, Zero, Zero, Chain});
9237 EVT VT =
Op.getValueType();
9243 Chain =
MFFS.getValue(1);
9257 "Stack slot adjustment is valid only on big endian subtargets!");
9287 EVT VT =
Op.getValueType();
9291 VT ==
Op.getOperand(1).getValueType() &&
9311 SDValue OutOps[] = { OutLo, OutHi };
9316 EVT VT =
Op.getValueType();
9320 VT ==
Op.getOperand(1).getValueType() &&
9340 SDValue OutOps[] = { OutLo, OutHi };
9346 EVT VT =
Op.getValueType();
9349 VT ==
Op.getOperand(1).getValueType() &&
9369 SDValue OutOps[] = { OutLo, OutHi };
9376 EVT VT =
Op.getValueType();
9383 EVT AmtVT =
Z.getValueType();
9406 static const MVT VTys[] = {
9407 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
9410 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
9413 if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
9418 EVT CanonicalVT = VTys[SplatSize-1];
9431 const SDLoc &dl,
EVT DestVT = MVT::Other) {
9432 if (DestVT == MVT::Other) DestVT =
Op.getValueType();
9441 EVT DestVT = MVT::Other) {
9442 if (DestVT == MVT::Other) DestVT =
LHS.getValueType();
9451 EVT DestVT = MVT::Other) {
9454 DAG.
getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9466 for (
unsigned i = 0; i != 16; ++i)
9487 EVT VecVT = V->getValueType(0);
9488 bool RightType = VecVT == MVT::v2f64 ||
9489 (HasP8Vector && VecVT == MVT::v4f32) ||
9490 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9494 bool IsSplat =
true;
9495 bool IsLoad =
false;
9496 SDValue Op0 = V->getOperand(0);
9501 if (V->isConstant())
9503 for (
int i = 0, e = V->getNumOperands(); i < e; ++i) {
9504 if (V->getOperand(i).isUndef())
9508 if (V->getOperand(i).getOpcode() ==
ISD::LOAD ||
9510 V->getOperand(i).getOperand(0).getOpcode() ==
ISD::LOAD) ||
9512 V->getOperand(i).getOperand(0).getOpcode() ==
ISD::LOAD) ||
9514 V->getOperand(i).getOperand(0).getOpcode() ==
ISD::LOAD))
9518 if (V->getOperand(i) != Op0 ||
9519 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9522 return !(IsSplat && IsLoad);
9532 (
Op.getValueType() != MVT::f128))
9537 if ((
Lo.getValueType() != MVT::i64) || (
Hi.getValueType() != MVT::i64))
9557 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9565 APFloat APFloatToConvert = ArgAPFloat;
9566 bool LosesInfo =
true;
9571 ArgAPFloat = APFloatToConvert;
9593 APFloat APFloatToConvert = ArgAPFloat;
9594 bool LosesInfo =
true;
9598 return (!LosesInfo && !APFloatToConvert.
isDenormal());
9603 LoadSDNode *InputNode = dyn_cast<LoadSDNode>(
Op.getOperand(0));
9607 EVT Ty =
Op->getValueType(0);
9610 if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9619 if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) &&
ISD::isEXTLoad(InputNode) &&
9623 if (Ty == MVT::v2i64) {
9626 if (MemVT == MVT::i32) {
9638 bool IsLittleEndian) {
9644 APInt ConstValue(VTSize, 0);
9648 unsigned BitPos = 0;
9650 auto *CN = dyn_cast<ConstantSDNode>(OpVal);
9656 ConstValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth),
9657 IsLittleEndian ? BitPos : VTSize - EltWidth - BitPos);
9661 for (
unsigned J = 0; J < 16; ++J) {
9663 if (ExtractValue != 0x00 && ExtractValue != 0xFF)
9665 if (ExtractValue == 0xFF)
9680 assert(BVN &&
"Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9682 if (Subtarget.hasP10Vector()) {
9683 APInt BitMask(32, 0);
9689 BitMask != 0 && BitMask != 0xffff) {
9703 APInt APSplatBits, APSplatUndef;
9704 unsigned SplatBitSize;
9706 bool BVNIsConstantSplat =
9714 if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9715 Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) {
9718 if ((
Op->getValueType(0) == MVT::v2f64) &&
9751 bool IsSplat64 =
false;
9753 int32_t SextVal = 0;
9754 if (BVNIsConstantSplat && SplatBitSize <= 64) {
9756 if (SplatBitSize <= 32) {
9758 }
else if (SplatBitSize == 64 && Subtarget.hasP8Altivec()) {
9759 int64_t Splat64Val =
static_cast<int64_t
>(SplatBits);
9760 bool P9Vector = Subtarget.hasP9Vector();
9761 int32_t
Hi = P9Vector ? 127 : 15;
9762 int32_t
Lo = P9Vector ? -128 : -16;
9763 IsSplat64 = Splat64Val >=
Lo && Splat64Val <=
Hi;
9764 SextVal =
static_cast<int32_t
>(SplatBits);
9768 if (!BVNIsConstantSplat || (SplatBitSize > 32 && !IsSplat64)) {
9775 const SDValue *InputLoad = &
Op.getOperand(0);
9780 unsigned MemorySize =
LD->getMemoryVT().getScalarSizeInBits();
9781 unsigned ElementSize =
9784 assert(((ElementSize == 2 * MemorySize)
9788 "Unmatched element size and opcode!\n");
9793 unsigned NumUsesOfInputLD = 128 / ElementSize;
9795 if (BVInOp.isUndef())
9810 if (NumUsesOfInputLD == 1 &&
9813 Subtarget.hasLFIWAX()))
9822 Subtarget.isISA3_1() && ElementSize <= 16)
9825 assert(NumUsesOfInputLD > 0 &&
"No uses of input LD of a build_vector?");
9827 Subtarget.hasVSX()) {
9834 NewOpcode, dl, DAG.
getVTList(
Op.getValueType(), MVT::Other), Ops,
9835 LD->getMemoryVT(),
LD->getMemOperand());
9847 if (Subtarget.hasVSX() && Subtarget.
isPPC64() &&
9849 Subtarget.hasP8Vector()))
9855 unsigned SplatSize = SplatBitSize / 8;
9860 if (SplatBits == 0) {
9862 if (
Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9874 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 2)
9876 Op.getValueType(), DAG, dl);
9878 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 4)
9883 if (Subtarget.hasP9Vector() && SplatSize == 1)
9889 if (SextVal >= -16 && SextVal <= 15) {
9892 unsigned UseSize = SplatSize == 8 ? 4 : SplatSize;
9902 if (Subtarget.hasP9Vector() && SextVal >= -128 && SextVal <= 127) {
9907 switch (SplatSize) {
9911 IID = Intrinsic::ppc_altivec_vupklsb;
9914 IID = Intrinsic::ppc_altivec_vextsb2w;
9917 IID = Intrinsic::ppc_altivec_vextsb2d;
9923 assert(!IsSplat64 &&
"Unhandled 64-bit splat pattern");
9932 if (SextVal >= -32 && SextVal <= 31) {
9937 EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9938 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9941 if (VT ==
Op.getValueType())
9950 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9964 static const signed char SplatCsts[] = {
9965 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9966 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9969 for (
unsigned idx = 0; idx < std::size(SplatCsts); ++idx) {
9972 int i = SplatCsts[idx];
9976 unsigned TypeShiftAmt = i & (SplatBitSize-1);
9979 if (SextVal == (
int)((
unsigned)i << TypeShiftAmt)) {
9981 static const unsigned IIDs[] = {
9982 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9983 Intrinsic::ppc_altivec_vslw
9990 if (SextVal == (
int)((
unsigned)i >> TypeShiftAmt)) {
9992 static const unsigned IIDs[] = {
9993 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9994 Intrinsic::ppc_altivec_vsrw
10001 if (SextVal == (
int)(((
unsigned)i << TypeShiftAmt) |
10002 ((
unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
10004 static const unsigned IIDs[] = {
10005 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
10006 Intrinsic::ppc_altivec_vrlw
10013 if (SextVal == (
int)(((
unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
10019 if (SextVal == (
int)(((
unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
10025 if (SextVal == (
int)(((
unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
10040 unsigned OpNum = (PFEntry >> 26) & 0x0F;
10041 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
10042 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
10058 if (LHSID == (1*9+2)*9+3)
return LHS;
10059 assert(LHSID == ((4*9+5)*9+6)*9+7 &&
"Illegal OP_COPY!");
10071 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
10072 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
10073 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
10074 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
10077 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
10078 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
10079 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
10080 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
10083 for (
unsigned i = 0; i != 16; ++i)
10084 ShufIdxs[i] = (i&3)+0;
10087 for (
unsigned i = 0; i != 16; ++i)
10088 ShufIdxs[i] = (i&3)+4;
10091 for (
unsigned i = 0; i != 16; ++i)
10092 ShufIdxs[i] = (i&3)+8;
10095 for (
unsigned i = 0; i != 16; ++i)
10096 ShufIdxs[i] = (i&3)+12;
10117 const unsigned BytesInVector = 16;
10122 unsigned ShiftElts = 0, InsertAtByte = 0;
10126 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1,
10127 0, 15, 14, 13, 12, 11, 10, 9};
10128 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
10129 1, 2, 3, 4, 5, 6, 7, 8};
10132 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
10144 bool FoundCandidate =
false;
10148 unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
10151 for (
unsigned i = 0; i < BytesInVector; ++i) {
10152 unsigned CurrentElement =
Mask[i];
10155 if (V2.
isUndef() && CurrentElement != VINSERTBSrcElem)
10158 bool OtherElementsInOrder =
true;
10161 for (
unsigned j = 0;
j < BytesInVector; ++
j) {
10168 (!V2.
isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
10169 if (Mask[j] != OriginalOrder[j] + MaskOffset) {
10170 OtherElementsInOrder =
false;
10177 if (OtherElementsInOrder) {
10184 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
10185 : BigEndianShifts[CurrentElement & 0xF];
10186 Swap = CurrentElement < BytesInVector;
10188 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
10189 FoundCandidate =
true;
10194 if (!FoundCandidate)
10218 const unsigned NumHalfWords = 8;
10219 const unsigned BytesInVector = NumHalfWords * 2;
10228 unsigned ShiftElts = 0, InsertAtByte = 0;
10232 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
10233 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
10236 uint32_t OriginalOrderLow = 0x1234567;
10237 uint32_t OriginalOrderHigh = 0x89ABCDEF;
10240 for (
unsigned i = 0; i < NumHalfWords; ++i) {
10241 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
10258 bool FoundCandidate =
false;
10261 for (
unsigned i = 0; i < NumHalfWords; ++i) {
10262 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
10272 unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
10273 TargetOrder = OriginalOrderLow;
10277 if (MaskOneElt == VINSERTHSrcElem &&
10278 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
10279 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
10280 FoundCandidate =
true;
10286 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
10288 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
10290 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
10291 : BigEndianShifts[MaskOneElt & 0x7];
10292 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
10293 Swap = MaskOneElt < NumHalfWords;
10294 FoundCandidate =
true;
10300 if (!FoundCandidate)
10335 auto ShuffleMask = SVN->
getMask();
10350 ShuffleMask = CommutedSV->
getMask();
10359 APInt APSplatValue, APSplatUndef;
10360 unsigned SplatBitSize;
10376 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
10377 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
10378 ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
10380 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
10381 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
10382 ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
10390 for (; SplatBitSize < 32; SplatBitSize <<= 1)
10391 SplatVal |= (SplatVal << SplatBitSize);
10405 assert(
Op.getValueType() == MVT::v1i128 &&
10406 "Only set v1i128 as custom, other type shouldn't reach here!");
10411 if (SHLAmt % 8 == 0) {
10412 std::array<int, 16>
Mask;
10413 std::iota(
Mask.begin(),
Mask.end(), 0);
10414 std::rotate(
Mask.begin(),
Mask.begin() + SHLAmt / 8,
Mask.end());
10443 if (
SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
10444 if (!isa<ShuffleVectorSDNode>(NewShuffle))
10447 SVOp = cast<ShuffleVectorSDNode>(
Op);
10448 V1 =
Op.getOperand(0);
10449 V2 =
Op.getOperand(1);
10451 EVT VT =
Op.getValueType();
10454 unsigned ShiftElts, InsertAtByte;
10460 bool IsPermutedLoad =
false;
10462 if (InputLoad && Subtarget.hasVSX() && V2.
isUndef() &&
10472 if (IsPermutedLoad) {
10473 assert((isLittleEndian || IsFourByte) &&
10474 "Unexpected size for permuted load on big endian target");
10475 SplatIdx += IsFourByte ? 2 : 1;
10476 assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
10477 "Splat of a value outside of the loaded memory");
10482 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
10485 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
10487 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
10491 if (
LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
10504 DAG.
getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
10507 Ops,
LD->getMemoryVT(),
LD->getMemOperand());
10516 if (VT == MVT::v2i64 || VT == MVT::v2f64)
10519 if (Subtarget.hasP9Vector() &&
10540 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) {
10542 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
10543 return SplatInsertNode;
10546 if (Subtarget.hasP9Altivec()) {
10548 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
10551 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
10555 if (Subtarget.hasVSX() &&
10568 if (Subtarget.hasVSX() &&
10581 if (Subtarget.hasP9Vector()) {
10601 if (Subtarget.hasVSX()) {
10622 if (V2.isUndef()) {
10635 (Subtarget.hasP8Altivec() && (
10646 unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10656 (Subtarget.hasP8Altivec() && (
10667 unsigned PFIndexes[4];
10668 bool isFourElementShuffle =
true;
10669 for (
unsigned i = 0; i != 4 && isFourElementShuffle;
10671 unsigned EltNo = 8;
10672 for (
unsigned j = 0;
j != 4; ++
j) {
10673 if (PermMask[i * 4 + j] < 0)
10676 unsigned ByteSource = PermMask[i * 4 +
j];
10677 if ((ByteSource & 3) != j) {
10678 isFourElementShuffle =
false;
10683 EltNo = ByteSource / 4;
10684 }
else if (EltNo != ByteSource / 4) {
10685 isFourElementShuffle =
false;
10689 PFIndexes[i] = EltNo;
10697 if (isFourElementShuffle) {
10699 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10700 PFIndexes[2] * 9 + PFIndexes[3];
10703 unsigned Cost = (PFEntry >> 30);
10723 if (V2.isUndef()) V2 = V1;
10725 return LowerVPERM(
Op, DAG, PermMask, VT, V1, V2);
10734 bool NeedSwap =
false;
10736 bool isPPC64 = Subtarget.
isPPC64();
10738 if (Subtarget.hasVSX() && Subtarget.hasP9Vector() &&
10740 LLVM_DEBUG(
dbgs() <<
"At least one of two input vectors are dead - using "
10741 "XXPERM instead\n");
10750 NeedSwap = !NeedSwap;
10785 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10787 if (V1HasXXSWAPD) {
10790 else if (SrcElt < 16)
10793 if (V2HasXXSWAPD) {
10796 else if (SrcElt > 15)
10805 for (
unsigned j = 0;
j != BytesPerElement; ++
j)
10806 if (isLittleEndian)
10808 DAG.
getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32));
10811 DAG.
getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32));
10814 if (V1HasXXSWAPD) {
10818 if (V2HasXXSWAPD) {
10823 if (isPPC64 && (V1HasXXSWAPD || V2HasXXSWAPD)) {
10824 if (ValType != MVT::v2f64)
10830 ShufflesHandledWithVPERM++;
10835 dbgs() <<
"Emitting a XXPERM for the following shuffle:\n";
10837 dbgs() <<
"Emitting a VPERM for the following shuffle:\n";
10840 dbgs() <<
"With the following permute control vector:\n";
10845 VPermMask = DAG.
getBitcast(MVT::v4i32, VPermMask);
10849 if (isLittleEndian)
10855 VPERMNode = DAG.
getBitcast(ValType, VPERMNode);
10867 switch (IntrinsicID) {
10871 case Intrinsic::ppc_altivec_vcmpbfp_p:
10875 case Intrinsic::ppc_altivec_vcmpeqfp_p:
10879 case Intrinsic::ppc_altivec_vcmpequb_p:
10883 case Intrinsic::ppc_altivec_vcmpequh_p:
10887 case Intrinsic::ppc_altivec_vcmpequw_p:
10891 case Intrinsic::ppc_altivec_vcmpequd_p:
10892 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10898 case Intrinsic::ppc_altivec_vcmpneb_p:
10899 case Intrinsic::ppc_altivec_vcmpneh_p:
10900 case Intrinsic::ppc_altivec_vcmpnew_p:
10901 case Intrinsic::ppc_altivec_vcmpnezb_p:
10902 case Intrinsic::ppc_altivec_vcmpnezh_p:
10903 case Intrinsic::ppc_altivec_vcmpnezw_p:
10904 if (Subtarget.hasP9Altivec()) {
10905 switch (IntrinsicID) {
10908 case Intrinsic::ppc_altivec_vcmpneb_p:
10911 case Intrinsic::ppc_altivec_vcmpneh_p:
10914 case Intrinsic::ppc_altivec_vcmpnew_p:
10917 case Intrinsic::ppc_altivec_vcmpnezb_p:
10920 case Intrinsic::ppc_altivec_vcmpnezh_p:
10923 case Intrinsic::ppc_altivec_vcmpnezw_p:
10931 case Intrinsic::ppc_altivec_vcmpgefp_p:
10935 case Intrinsic::ppc_altivec_vcmpgtfp_p:
10939 case Intrinsic::ppc_altivec_vcmpgtsb_p:
10943 case Intrinsic::ppc_altivec_vcmpgtsh_p:
10947 case Intrinsic::ppc_altivec_vcmpgtsw_p:
10951 case Intrinsic::ppc_altivec_vcmpgtsd_p:
10952 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10958 case Intrinsic::ppc_altivec_vcmpgtub_p:
10962 case Intrinsic::ppc_altivec_vcmpgtuh_p:
10966 case Intrinsic::ppc_altivec_vcmpgtuw_p:
10970 case Intrinsic::ppc_altivec_vcmpgtud_p:
10971 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10978 case Intrinsic::ppc_altivec_vcmpequq:
10979 case Intrinsic::ppc_altivec_vcmpgtsq:
10980 case Intrinsic::ppc_altivec_vcmpgtuq:
10981 if (!Subtarget.isISA3_1())
10983 switch (IntrinsicID) {
10986 case Intrinsic::ppc_altivec_vcmpequq:
10989 case Intrinsic::ppc_altivec_vcmpgtsq:
10992 case Intrinsic::ppc_altivec_vcmpgtuq:
10999 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
11000 case Intrinsic::ppc_vsx_xvcmpgedp_p:
11001 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
11002 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
11003 case Intrinsic::ppc_vsx_xvcmpgesp_p:
11004 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
11005 if (Subtarget.hasVSX()) {
11006 switch (IntrinsicID) {
11007 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
11010 case Intrinsic::ppc_vsx_xvcmpgedp_p:
11013 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
11016 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
11019 case Intrinsic::ppc_vsx_xvcmpgesp_p:
11022 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
11032 case Intrinsic::ppc_altivec_vcmpbfp:
11035 case Intrinsic::ppc_altivec_vcmpeqfp:
11038 case Intrinsic::ppc_altivec_vcmpequb:
11041 case Intrinsic::ppc_altivec_vcmpequh:
11044 case Intrinsic::ppc_altivec_vcmpequw:
11047 case Intrinsic::ppc_altivec_vcmpequd:
11048 if (Subtarget.hasP8Altivec())
11053 case Intrinsic::ppc_altivec_vcmpneb:
11054 case Intrinsic::ppc_altivec_vcmpneh:
11055 case Intrinsic::ppc_altivec_vcmpnew:
11056 case Intrinsic::ppc_altivec_vcmpnezb:
11057 case Intrinsic::ppc_altivec_vcmpnezh:
11058 case Intrinsic::ppc_altivec_vcmpnezw:
11059 if (Subtarget.hasP9Altivec())
11060 switch (IntrinsicID) {
11063 case Intrinsic::ppc_altivec_vcmpneb:
11066 case Intrinsic::ppc_altivec_vcmpneh:
11069 case Intrinsic::ppc_altivec_vcmpnew:
11072 case Intrinsic::ppc_altivec_vcmpnezb:
11075 case Intrinsic::ppc_altivec_vcmpnezh:
11078 case Intrinsic::ppc_altivec_vcmpnezw:
11085 case Intrinsic::ppc_altivec_vcmpgefp:
11088 case Intrinsic::ppc_altivec_vcmpgtfp:
11091 case Intrinsic::ppc_altivec_vcmpgtsb:
11094 case Intrinsic::ppc_altivec_vcmpgtsh:
11097 case Intrinsic::ppc_altivec_vcmpgtsw:
11100 case Intrinsic::ppc_altivec_vcmpgtsd:
11101 if (Subtarget.hasP8Altivec())
11106 case Intrinsic::ppc_altivec_vcmpgtub:
11109 case Intrinsic::ppc_altivec_vcmpgtuh:
11112 case Intrinsic::ppc_altivec_vcmpgtuw:
11115 case Intrinsic::ppc_altivec_vcmpgtud:
11116 if (Subtarget.hasP8Altivec())
11121 case Intrinsic::ppc_altivec_vcmpequq_p:
11122 case Intrinsic::ppc_altivec_vcmpgtsq_p:
11123 case Intrinsic::ppc_altivec_vcmpgtuq_p:
11124 if (!Subtarget.isISA3_1())
11126 switch (IntrinsicID) {
11129 case Intrinsic::ppc_altivec_vcmpequq_p:
11132 case Intrinsic::ppc_altivec_vcmpgtsq_p:
11135 case Intrinsic::ppc_altivec_vcmpgtuq_p:
11149 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
11153 switch (IntrinsicID) {
11154 case Intrinsic::thread_pointer:
11160 case Intrinsic::ppc_rldimi: {
11161 assert(Subtarget.
isPPC64() &&
"rldimi is only available in 64-bit!");
11165 return Op.getOperand(2);
11166 if (
Mask.isAllOnes())
11169 unsigned MB = 0, ME = 0;
11173 if (ME < 63 - SH) {
11176 }
else if (ME > 63 - SH) {
11182 {Op.getOperand(2), Src,
11183 DAG.getTargetConstant(63 - ME, dl, MVT::i32),
11184 DAG.getTargetConstant(MB, dl, MVT::i32)}),
11188 case Intrinsic::ppc_rlwimi: {
11191 return Op.getOperand(2);
11192 if (
Mask.isAllOnes())
11195 unsigned MB = 0, ME = 0;
11199 PPC::RLWIMI, dl, MVT::i32,
11200 {Op.getOperand(2), Op.getOperand(1), Op.getOperand(3),
11201 DAG.getTargetConstant(MB, dl, MVT::i32),
11202 DAG.getTargetConstant(ME, dl, MVT::i32)}),
11206 case Intrinsic::ppc_rlwnm: {
11207 if (
Op.getConstantOperandVal(3) == 0)
11209 unsigned MB = 0, ME = 0;
11214 {Op.getOperand(1), Op.getOperand(2),
11215 DAG.getTargetConstant(MB, dl, MVT::i32),
11216 DAG.getTargetConstant(ME, dl, MVT::i32)}),
11220 case Intrinsic::ppc_mma_disassemble_acc: {
11221 if (Subtarget.isISAFuture()) {
11222 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
11260 case Intrinsic::ppc_vsx_disassemble_pair: {
11263 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
11268 for (
int VecNo = 0; VecNo < NumVecs; VecNo++) {
11279 case Intrinsic::ppc_mma_build_dmr: {
11282 for (
int i = 1; i < 9; i += 2) {
11297 case Intrinsic::ppc_mma_dmxxextfdmr512: {
11298 assert(Subtarget.isISAFuture() &&
"dmxxextfdmr512 requires ISA Future");
11299 auto *
Idx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
11300 assert(
Idx && (
Idx->getSExtValue() == 0 ||
Idx->getSExtValue() == 1) &&
11301 "Specify P of 0 or 1 for lower or upper 512 bytes");
11302 unsigned HiLo =
Idx->getSExtValue();
11306 Opcode = PPC::DMXXEXTFDMR512;
11307 Subx = PPC::sub_wacc_lo;
11309 Opcode = PPC::DMXXEXTFDMR512_HI;
11310 Subx = PPC::sub_wacc_hi;
11313 DAG.
getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1,
11317 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
11321 case Intrinsic::ppc_mma_dmxxextfdmr256: {
11322 assert(Subtarget.isISAFuture() &&
"dmxxextfdmr256 requires ISA Future");
11323 auto *
Idx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
11324 assert(
Idx && (
Idx->getSExtValue() >= 0 ||
Idx->getSExtValue() <= 3) &&
11325 "Specify a dmr row pair 0-3");
11326 unsigned IdxVal =
Idx->getSExtValue();
11330 Subx = PPC::sub_dmrrowp0;
11333 Subx = PPC::sub_dmrrowp1;
11336 Subx = PPC::sub_wacc_hi_then_sub_dmrrowp0;
11339 Subx = PPC::sub_wacc_hi_then_sub_dmrrowp1;
11343 DAG.
getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::v256i1,
11349 DAG.
getMachineNode(PPC::DMXXEXTFDMR256, dl, MVT::v256i1, {Subreg, P}),
11353 case Intrinsic::ppc_mma_dmxxinstdmr512: {
11354 assert(Subtarget.isISAFuture() &&
"dmxxinstdmr512 requires ISA Future");
11355 auto *
Idx = dyn_cast<ConstantSDNode>(
Op.getOperand(4));
11356 assert(
Idx && (
Idx->getSExtValue() == 0 ||
Idx->getSExtValue() == 1) &&
11357 "Specify P of 0 or 1 for lower or upper 512 bytes");
11358 unsigned HiLo =
Idx->getSExtValue();
11362 Opcode = PPC::DMXXINSTDMR512;
11363 Subx = PPC::sub_wacc_lo;
11365 Opcode = PPC::DMXXINSTDMR512_HI;
11366 Subx = PPC::sub_wacc_hi;
11368 SDValue Ops[] = {
Op.getOperand(2),
Op.getOperand(3)};
11376 case Intrinsic::ppc_mma_dmxxinstdmr256: {
11377 assert(Subtarget.isISAFuture() &&
"dmxxinstdmr256 requires ISA Future");
11378 auto *
Idx = dyn_cast<ConstantSDNode>(
Op.getOperand(3));
11379 assert(
Idx && (
Idx->getSExtValue() >= 0 ||
Idx->getSExtValue() <= 3) &&
11380 "Specify a dmr row pair 0-3");
11381 unsigned IdxVal =
Idx->getSExtValue();
11385 Subx = PPC::sub_dmrrowp0;
11388 Subx = PPC::sub_dmrrowp1;
11391 Subx = PPC::sub_wacc_hi_then_sub_dmrrowp0;
11394 Subx = PPC::sub_wacc_hi_then_sub_dmrrowp1;
11401 DAG.
getMachineNode(PPC::DMXXINSTDMR256, dl, MVT::v256i1, Ops), 0);
11403 Op.getOperand(1), DMRRowp,
SubReg),
11407 case Intrinsic::ppc_mma_xxmfacc:
11408 case Intrinsic::ppc_mma_xxmtacc: {
11410 if (!Subtarget.isISAFuture())
11421 case Intrinsic::ppc_unpack_longdouble: {
11422 auto *
Idx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
11423 assert(
Idx && (
Idx->getSExtValue() == 0 ||
Idx->getSExtValue() == 1) &&
11424 "Argument of long double unpack must be 0 or 1!");
11427 Idx->getValueType(0)));
11430 case Intrinsic::ppc_compare_exp_lt:
11431 case Intrinsic::ppc_compare_exp_gt:
11432 case Intrinsic::ppc_compare_exp_eq:
11433 case Intrinsic::ppc_compare_exp_uo: {
11435 switch (IntrinsicID) {
11436 case Intrinsic::ppc_compare_exp_lt:
11439 case Intrinsic::ppc_compare_exp_gt:
11442 case Intrinsic::ppc_compare_exp_eq:
11445 case Intrinsic::ppc_compare_exp_uo:
11451 PPC::SELECT_CC_I4, dl, MVT::i32,
11452 {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
11453 Op.getOperand(1), Op.getOperand(2)),
11455 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
11456 DAG.getTargetConstant(Pred, dl, MVT::i32)}),
11459 case Intrinsic::ppc_test_data_class: {
11460 EVT OpVT =
Op.getOperand(1).getValueType();
11461 unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP
11462 : (OpVT == MVT::f64 ? PPC::XSTSTDCDP
11466 PPC::SELECT_CC_I4, dl, MVT::i32,
11467 {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
11470 DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
11471 DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
11474 case Intrinsic::ppc_fnmsub: {
11475 EVT VT =
Op.getOperand(1).getValueType();
11476 if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
11482 Op.getOperand(2),
Op.getOperand(3));
11484 case Intrinsic::ppc_convert_f128_to_ppcf128:
11485 case Intrinsic::ppc_convert_ppcf128_to_f128: {
11486 RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
11487 ? RTLIB::CONVERT_PPCF128_F128
11488 : RTLIB::CONVERT_F128_PPCF128;
11489 MakeLibCallOptions CallOptions;
11490 std::pair<SDValue, SDValue>
Result =
11491 makeLibCall(DAG, LC,
Op.getValueType(),
Op.getOperand(1), CallOptions,
11495 case Intrinsic::ppc_maxfe:
11496 case Intrinsic::ppc_maxfl:
11497 case Intrinsic::ppc_maxfs:
11498 case Intrinsic::ppc_minfe:
11499 case Intrinsic::ppc_minfl:
11500 case Intrinsic::ppc_minfs: {
11501 EVT VT =
Op.getValueType();
11504 [VT](
const SDUse &
Use) { return Use.getValueType() == VT; }) &&
11505 "ppc_[max|min]f[e|l|s] must have uniform type arguments");
11508 if (IntrinsicID == Intrinsic::ppc_minfe ||
11509 IntrinsicID == Intrinsic::ppc_minfl ||
11510 IntrinsicID == Intrinsic::ppc_minfs)
11532 Op.getOperand(1),
Op.getOperand(2),
11543 EVT VTs[] = {
Op.getOperand(2).getValueType(), MVT::Glue };
11551 switch (
Op.getConstantOperandVal(1)) {
11556 Bitx = PPC::sub_eq;
11562 Bitx = PPC::sub_eq;
11568 Bitx = PPC::sub_lt;
11574 Bitx = PPC::sub_lt;
11580 if (Subtarget.isISA3_1()) {
11585 CR6Reg, SubRegIdx, GlueOp),
11587 return DAG.
getNode(SetOp, dl, MVT::i32, CRBit);
11613 int ArgStart = isa<ConstantSDNode>(
Op.getOperand(0)) ? 0 : 1;
11615 switch (
Op.getConstantOperandVal(ArgStart)) {
11616 case Intrinsic::ppc_cfence: {
11617 assert(ArgStart == 1 &&
"llvm.ppc.cfence must carry a chain argument.");
11618 SDValue Val =
Op.getOperand(ArgStart + 1);
11620 if (Ty == MVT::i128) {
11625 unsigned Opcode = Subtarget.
isPPC64() ? PPC::CFENCE8 : PPC::CFENCE;
11628 Opcode,
DL, MVT::Other,
11633 case Intrinsic::ppc_mma_disassemble_dmr: {
11654 int VectorIndex = 0;
11667 "Expecting an atomic compare-and-swap here.");
11669 auto *AtomicNode = cast<AtomicSDNode>(
Op.getNode());
11670 EVT MemVT = AtomicNode->getMemoryVT();
11688 for (
int i = 0, e = AtomicNode->getNumOperands(); i <
e; i++)
11689 Ops.
push_back(AtomicNode->getOperand(i));
11701 EVT MemVT =
N->getMemoryVT();
11703 "Expect quadword atomic operations");
11705 unsigned Opc =
N->getOpcode();
11713 DAG.
getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
11714 for (
int I = 1, E =
N->getNumOperands();
I < E; ++
I)
11717 Ops, MemVT,
N->getMemOperand());
11724 DAG.
getNode(
ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
11734 DAG.
getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
11744 N->getMemOperand());
11756 enum DataClassMask {
11758 DC_NEG_INF = 1 << 4,
11759 DC_POS_INF = 1 << 5,
11760 DC_NEG_ZERO = 1 << 2,
11761 DC_POS_ZERO = 1 << 3,
11762 DC_NEG_SUBNORM = 1,
11763 DC_POS_SUBNORM = 1 << 1,
11766 EVT VT =
Op.getValueType();
11768 unsigned TestOp = VT == MVT::f128 ? PPC::XSTSTDCQP
11769 : VT == MVT::f64 ? PPC::XSTSTDCDP
11780 return DAG.
getNOT(Dl, Rev, MVT::i1);
11787 TestOp, Dl, MVT::i32,
11789 DC_NEG_ZERO | DC_POS_ZERO |
11790 DC_NEG_SUBNORM | DC_POS_SUBNORM,
11796 DAG.
getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev,
11802 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev,
11807 Sign = DAG.
getNOT(Dl, Sign, MVT::i1);
11820 bool IsQuiet = Mask &
fcQNan;
11826 if (VT == MVT::f128) {
11830 QuietMask = 0x8000;
11831 }
else if (VT == MVT::f64) {
11843 QuietMask = 0x80000;
11844 }
else if (VT == MVT::f32) {
11846 QuietMask = 0x400000;
11862 unsigned NativeMask = 0;
11864 NativeMask |= DC_NAN;
11866 NativeMask |= DC_NEG_INF;
11868 NativeMask |= DC_POS_INF;
11870 NativeMask |= DC_NEG_ZERO;
11872 NativeMask |= DC_POS_ZERO;
11874 NativeMask |= DC_NEG_SUBNORM;
11876 NativeMask |= DC_POS_SUBNORM;
11879 TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1,
11881 TestOp, Dl, MVT::i32,
11890 assert(Subtarget.hasP9Vector() &&
"Test data class requires Power9");
11892 uint64_t RHSC =
Op.getConstantOperandVal(1);
11895 if (
LHS.getValueType() == MVT::ppcf128) {
11911 unsigned EltSize =
Op.getValueType().getScalarSizeInBits();
11912 if (isa<ConstantSDNode>(Op0) && EltSize <= 32) {
11913 int64_t
IntVal =
Op.getConstantOperandVal(0);
11914 if (IntVal >= -16 && IntVal <= 15)
11920 if (Subtarget.hasLFIWAX() && Subtarget.hasVSX() &&
11927 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
11934 return Bits.getValue(0);
11955 64 -
Op.getValueType().getScalarSizeInBits(), dl, ShiftAmountTy);
11962 return DAG.
getLoad(
Op.getValueType(), dl, Store, FIdx,
11976 "Should only be called for ISD::INSERT_VECTOR_ELT");
11980 EVT VT =
Op.getValueType();
11985 if (VT == MVT::v2f64 &&
C)
11988 if (Subtarget.hasP9Vector()) {
11997 if ((VT == MVT::v4f32) && (V2.
getValueType() == MVT::f32) &&
11998 (isa<LoadSDNode>(V2))) {
12003 BitcastLoad,
Op.getOperand(2));
12004 return DAG.
getBitcast(MVT::v4f32, InsVecElt);
12008 if (Subtarget.isISA3_1()) {
12009 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.
isPPC64())
12013 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
12014 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
12024 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
12027 unsigned InsertAtElement =
C->getZExtValue();
12028 unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
12030 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
12044 EVT VT =
Op.getValueType();
12045 bool IsV1024i1 = VT == MVT::v1024i1;
12046 bool IsV2048i1 = VT == MVT::v2048i1;
12050 assert((IsV1024i1 || IsV2048i1) &&
"Unsupported type.");
12052 assert((Subtarget.hasMMA() && Subtarget.isISAFuture()) &&
12053 "Dense Math support required.");
12054 assert(Subtarget.pairedVectorMemops() &&
"Vector pair support required.");
12063 for (
unsigned Idx = 0;
Idx < NumVecs; ++
Idx) {
12072 DAG.
getVTList(MVT::v256i1, MVT::Other),
12073 LoadOps, MVT::v256i1, NewMMO);
12079 std::reverse(Loads.
begin(), Loads.
end());
12080 std::reverse(LoadChains.
begin(), LoadChains.
end());
12089 Loads[2], Loads[3]),
12093 const SDValue Ops[] = {RC,
Lo, LoSub,
Hi, HiSub};
12105 Loads[4], Loads[5]),
12108 Loads[6], Loads[7]),
12110 const SDValue Dmr1Ops[] = {RC, Dmr1Lo, LoSub, Dmr1Hi, HiSub};
12112 DAG.
getMachineNode(PPC::REG_SEQUENCE, dl, MVT::v1024i1, Dmr1Ops), 0);
12118 const SDValue DmrPOps[] = {DmrPRC,
Value, Dmr0Sub, Dmr1Value, Dmr1Sub};
12121 DAG.
getMachineNode(PPC::REG_SEQUENCE, dl, MVT::v2048i1, DmrPOps), 0);
12134 Pairs[2], Pairs[3]),
12140 {RC, Lo, LoSub, Hi, HiSub}),
12150 EVT VT =
Op.getValueType();
12152 if (VT == MVT::v1024i1 || VT == MVT::v2048i1)
12153 return LowerDMFVectorLoad(
Op, DAG);
12155 if (VT != MVT::v256i1 && VT != MVT::v512i1)
12161 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
12162 "Type unsupported without MMA");
12163 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
12164 "Type unsupported without paired vector support");
12169 for (
unsigned Idx = 0;
Idx < NumVecs; ++
Idx) {
12171 DAG.
getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
12181 std::reverse(Loads.
begin(), Loads.
end());
12182 std::reverse(LoadChains.
begin(), LoadChains.
end());
12202 bool IsV1024i1 = VT == MVT::v1024i1;
12203 bool IsV2048i1 = VT == MVT::v2048i1;
12207 assert((IsV1024i1 || IsV2048i1) &&
"Unsupported type.");
12209 assert((Subtarget.hasMMA() && Subtarget.isISAFuture()) &&
12210 "Dense Math support required.");
12211 assert(Subtarget.pairedVectorMemops() &&
"Vector pair support required.");
12213 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
12216 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1,
12221 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1,
12229 ExtNode = DAG.
getMachineNode(PPC::DMXXEXTFDMR512_HI, dl, ReturnTypes,
Hi);
12235 DAG.
getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::v1024i1,
12241 DAG.
getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::v1024i1,
12247 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1, Dmr0,
12252 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1, Dmr0,
12257 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1, Dmr1,
12262 TargetOpcode::EXTRACT_SUBREG, dl, MVT::v512i1, Dmr1,
12267 DAG.
getMachineNode(PPC::DMXXEXTFDMR512, dl, ReturnTypes, Dmr0Lo);
12271 DAG.
getMachineNode(PPC::DMXXEXTFDMR512_HI, dl, ReturnTypes, Dmr0Hi);
12274 ExtNode = DAG.
getMachineNode(PPC::DMXXEXTFDMR512, dl, ReturnTypes, Dmr1Lo);
12278 DAG.
getMachineNode(PPC::DMXXEXTFDMR512_HI, dl, ReturnTypes, Dmr1Hi);
12284 std::reverse(Values.
begin(), Values.
end());
12288 StoreChain, DAG.
getConstant(Intrinsic::ppc_vsx_stxvp, dl, MVT::i32),
12292 for (
unsigned Idx = 0;
Idx < NumVecs; ++
Idx) {
12300 Ops[2] = Values[
Idx];
12302 MVT::v256i1, NewMMO);
12318 EVT StoreVT =
Value.getValueType();
12320 if (StoreVT == MVT::v1024i1 || StoreVT == MVT::v2048i1)
12321 return LowerDMFVectorStore(
Op, DAG);
12323 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
12329 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
12330 "Type unsupported without MMA");
12331 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
12332 "Type unsupported without paired vector support");
12335 unsigned NumVecs = 2;
12336 if (StoreVT == MVT::v512i1) {
12337 if (Subtarget.isISAFuture()) {
12338 EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
12340 PPC::DMXXEXTFDMR512, dl, ReturnTypes,
Op.getOperand(1));
12343 Value2 =
SDValue(ExtNode, 1);
12348 for (
unsigned Idx = 0;
Idx < NumVecs; ++
Idx) {
12351 if (Subtarget.isISAFuture()) {
12361 DAG.
getStore(StoreChain, dl, Elt, BasePtr,
12375 if (
Op.getValueType() == MVT::v4i32) {
12392 LHS, RHS, DAG, dl, MVT::v4i32);
12395 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
12400 }
else if (
Op.getValueType() == MVT::v16i8) {
12406 LHS, RHS, DAG, dl, MVT::v8i16);
12411 LHS, RHS, DAG, dl, MVT::v8i16);
12419 for (
unsigned i = 0; i != 8; ++i) {
12420 if (isLittleEndian) {
12422 Ops[i*2+1] = 2*i+16;
12425 Ops[i*2+1] = 2*i+1+16;
12428 if (isLittleEndian)
12438 bool IsStrict =
Op->isStrictFPOpcode();
12439 if (
Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
12440 !Subtarget.hasP9Vector())
12450 "Should only be called for ISD::FP_EXTEND");
12454 if (
Op.getValueType() != MVT::v2f64 ||
12455 Op.getOperand(0).getValueType() != MVT::v2f32)
12467 "Node should have 2 operands with second one being a constant!");
12479 int DWord =
Idx >> 1;
12502 LD->getMemoryVT(),
LD->getMemOperand());
12515 LD->getMemoryVT(),
LD->getMemOperand());
12527 if (STI.useCRBits())
12545 if (STI.useCRBits())
12554 EVT VT =
N->getValueType(0);
12555 EVT CarryType =
N->getValueType(1);
12556 unsigned Opc =
N->getOpcode();
12560 N->getOperand(0),
N->getOperand(1));
12573 unsigned Opc =
N->getOpcode();
12574 EVT VT =
N->getValueType(0);
12575 EVT CarryType =
N->getValueType(1);
12576 SDValue CarryOp =
N->getOperand(2);
12584 Op.getOperand(0),
Op.getOperand(1), CarryOp);
12598 EVT VT =
Op.getNode()->getValueType(0);
12620 switch (
Op.getOpcode()) {
12640 return LowerSSUBO(
Op, DAG);
12652 return LowerGET_DYNAMIC_AREA_OFFSET(
Op, DAG);
12673 return LowerSET_ROUNDING(
Op, DAG);
12680 case ISD::FSHL:
return LowerFunnelShift(
Op, DAG);
12681 case ISD::FSHR:
return LowerFunnelShift(
Op, DAG);
12693 return LowerFP_ROUND(
Op, DAG);
12706 return LowerINTRINSIC_VOID(
Op, DAG);
12708 return LowerBSWAP(
Op, DAG);
12710 return LowerATOMIC_CMP_SWAP(
Op, DAG);
12712 return LowerATOMIC_LOAD_STORE(
Op, DAG);
12714 return LowerIS_FPCLASS(
Op, DAG);
12717 return LowerADDSUBO(
Op, DAG);
12720 return LowerADDSUBO_CARRY(
Op, DAG);
12728 switch (
N->getOpcode()) {
12730 llvm_unreachable(
"Do not know how to custom type legalize this operation!");
12747 if (
N->getConstantOperandVal(1) != Intrinsic::loop_decrement)
12750 assert(
N->getValueType(0) == MVT::i1 &&
12751 "Unexpected result type for CTR decrement intrinsic");
12753 N->getValueType(0));
12763 switch (
N->getConstantOperandVal(0)) {
12764 case Intrinsic::ppc_pack_longdouble:
12766 N->getOperand(2),
N->getOperand(1)));
12768 case Intrinsic::ppc_maxfe:
12769 case Intrinsic::ppc_minfe:
12770 case Intrinsic::ppc_fnmsub:
12771 case Intrinsic::ppc_convert_f128_to_ppcf128:
12781 EVT VT =
N->getValueType(0);
12783 if (VT == MVT::i64) {
12796 if (
N->getOperand(
N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
12800 Results.push_back(LoweredValue);
12801 if (
N->isStrictFPOpcode())
12806 if (!
N->getValueType(0).isVector())
12847 assert((SZ == 8 || SZ == 16 || SZ == 32 || SZ == 64) &&
12848 "Only 8/16/32/64-bit atomic loads supported");
12854 IntID = Intrinsic::ppc_lbarx;
12855 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
12858 IntID = Intrinsic::ppc_lharx;
12859 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
12862 IntID = Intrinsic::ppc_lwarx;
12865 IntID = Intrinsic::ppc_ldarx;
12882 assert((SZ == 8 || SZ == 16 || SZ == 32 || SZ == 64) &&
12883 "Only 8/16/32/64-bit atomic loads supported");
12889 IntID = Intrinsic::ppc_stbcx;
12890 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
12893 IntID = Intrinsic::ppc_sthcx;
12894 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
12897 IntID = Intrinsic::ppc_stwcx;
12900 IntID = Intrinsic::ppc_stdcx;
12904 if (SZ == 8 || SZ == 16)
12931 if (isa<LoadInst>(Inst))
12942 unsigned AtomicSize,
12943 unsigned BinOpcode,
12944 unsigned CmpOpcode,
12945 unsigned CmpPred)
const {
12949 auto LoadMnemonic = PPC::LDARX;
12950 auto StoreMnemonic = PPC::STDCX;
12951 switch (AtomicSize) {
12955 LoadMnemonic = PPC::LBARX;
12956 StoreMnemonic = PPC::STBCX;
12957 assert(Subtarget.hasPartwordAtomics() &&
"Call this only with size >=4");
12960 LoadMnemonic = PPC::LHARX;
12961 StoreMnemonic = PPC::STHCX;
12962 assert(Subtarget.hasPartwordAtomics() &&
"Call this only with size >=4");
12965 LoadMnemonic = PPC::LWARX;
12966 StoreMnemonic = PPC::STWCX;
12969 LoadMnemonic = PPC::LDARX;
12970 StoreMnemonic = PPC::STDCX;
12986 CmpOpcode ?
F->CreateMachineBasicBlock(LLVM_BB) :
nullptr;
12988 F->insert(It, loopMBB);
12990 F->insert(It, loop2MBB);
12991 F->insert(It, exitMBB);
12997 Register TmpReg = (!BinOpcode) ? incr :
12999 : &PPC::GPRCRegClass);
13024 BuildMI(BB, dl,
TII->get(LoadMnemonic), dest)
13031 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
13033 BuildMI(BB, dl,
TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
13061 switch(
MI.getOpcode()) {
13065 return TII->isSignExtended(
MI.getOperand(1).getReg(),
13066 &
MI.getMF()->getRegInfo());
13090 case PPC::EXTSB8_32_64:
13091 case PPC::EXTSB8_rec:
13092 case PPC::EXTSB_rec:
13095 case PPC::EXTSH8_32_64:
13096 case PPC::EXTSH8_rec:
13097 case PPC::EXTSH_rec:
13099 case PPC::EXTSWSLI:
13100 case PPC::EXTSWSLI_32_64:
13101 case PPC::EXTSWSLI_32_64_rec:
13102 case PPC::EXTSWSLI_rec:
13103 case PPC::EXTSW_32:
13104 case PPC::EXTSW_32_64:
13105 case PPC::EXTSW_32_64_rec:
13106 case PPC::EXTSW_rec:
13109 case PPC::SRAWI_rec:
13110 case PPC::SRAW_rec:
13119 unsigned BinOpcode,
unsigned CmpOpcode,
unsigned CmpPred)
const {
13129 bool IsSignExtended =
13132 if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
13134 BuildMI(*BB,
MI, dl,
TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
13135 .
addReg(
MI.getOperand(3).getReg());
13136 MI.getOperand(3).setReg(ValueReg);
13140 if (Subtarget.hasPartwordAtomics())
13148 bool is64bit = Subtarget.
isPPC64();
13150 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
13161 CmpOpcode ?
F->CreateMachineBasicBlock(LLVM_BB) :
nullptr;
13163 F->insert(It, loopMBB);
13165 F->insert(It, loop2MBB);
13166 F->insert(It, exitMBB);
13172 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
13217 if (ptrA != ZeroReg) {
13219 BuildMI(BB, dl,
TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
13227 BuildMI(BB, dl,
TII->get(PPC::RLWINM), Shift1Reg)
13228 .
addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
13231 .
addImm(is8bit ? 28 : 27);
13232 if (!isLittleEndian)
13233 BuildMI(BB, dl,
TII->get(PPC::XORI), ShiftReg)
13235 .
addImm(is8bit ? 24 : 16);
13237 BuildMI(BB, dl,
TII->get(PPC::RLDICR), PtrReg)
13242 BuildMI(BB, dl,
TII->get(PPC::RLWINM), PtrReg)
13252 BuildMI(BB, dl,
TII->get(PPC::ORI), Mask2Reg)
13256 BuildMI(BB, dl,
TII->get(PPC::SLW), MaskReg)
13261 BuildMI(BB, dl,
TII->get(PPC::LWARX), TmpDestReg)
13265 BuildMI(BB, dl,
TII->get(BinOpcode), TmpReg)
13268 BuildMI(BB, dl,
TII->get(PPC::ANDC), Tmp2Reg)
13280 unsigned ValueReg = SReg;
13281 unsigned CmpReg = Incr2Reg;
13282 if (CmpOpcode == PPC::CMPW) {
13284 BuildMI(BB, dl,
TII->get(PPC::SRW), ValueReg)
13288 BuildMI(BB, dl,
TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
13290 ValueReg = ValueSReg;
13322 .
addImm(is8bit ? 24 : 16)
13343 Register DstReg =
MI.getOperand(0).getReg();
13345 assert(
TRI->isTypeLegalForClass(*RC, MVT::i32) &&
"Invalid destination!");
13346 Register mainDstReg =
MRI.createVirtualRegister(RC);
13347 Register restoreDstReg =
MRI.createVirtualRegister(RC);
13350 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13351 "Invalid Pointer Size!");
13399 Register LabelReg =
MRI.createVirtualRegister(PtrRC);
13400 Register BufReg =
MI.getOperand(1).getReg();
13415 BaseReg = Subtarget.
isPPC64() ? PPC::X1 : PPC::R1;
13417 BaseReg = Subtarget.
isPPC64() ? PPC::BP8 : PPC::BP;
13420 TII->get(Subtarget.
isPPC64() ? PPC::STD : PPC::STW))
13443 TII->get(Subtarget.
isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
13464 TII->get(PPC::PHI), DstReg)
13468 MI.eraseFromParent();
13482 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13483 "Invalid Pointer Size!");
13486 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
13489 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
13490 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
13504 Register BufReg =
MI.getOperand(0).getReg();
13509 if (PVT == MVT::i64) {
13521 if (PVT == MVT::i64) {
13533 if (PVT == MVT::i64) {
13545 if (PVT == MVT::i64) {
13557 if (PVT == MVT::i64 && Subtarget.
isSVR4ABI()) {
13567 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).
addReg(Tmp);
13570 MI.eraseFromParent();
13586 "Unexpected stack alignment");
13590 unsigned StackProbeSize =
13593 StackProbeSize &= ~(StackAlign - 1);
13594 return StackProbeSize ? StackProbeSize : StackAlign;
13606 const bool isPPC64 = Subtarget.
isPPC64();
13638 MF->
insert(MBBIter, TestMBB);
13639 MF->
insert(MBBIter, BlockMBB);
13640 MF->
insert(MBBIter, TailMBB);
13645 Register DstReg =
MI.getOperand(0).getReg();
13646 Register NegSizeReg =
MI.getOperand(1).getReg();
13648 Register FinalStackPtr =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13649 Register FramePointer =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13650 Register ActualNegSizeReg =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13656 if (!
MRI.hasOneNonDBGUse(NegSizeReg))
13658 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
13664 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
13665 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
13667 .
addDef(ActualNegSizeReg)
13669 .
add(
MI.getOperand(2))
13670 .
add(
MI.getOperand(3));
13676 .
addReg(ActualNegSizeReg);
13679 int64_t NegProbeSize = -(int64_t)ProbeSize;
13680 assert(isInt<32>(NegProbeSize) &&
"Unhandled probe size!");
13681 Register ScratchReg =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13682 if (!isInt<16>(NegProbeSize)) {
13683 Register TempReg =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13685 .
addImm(NegProbeSize >> 16);
13689 .
addImm(NegProbeSize & 0xFFFF);
13696 Register Div =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13698 .
addReg(ActualNegSizeReg)
13700 Register Mul =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13704 Register NegMod =
MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13707 .
addReg(ActualNegSizeReg);
13716 Register CmpResult =
MRI.createVirtualRegister(&PPC::CRRCRegClass);
13717 BuildMI(TestMBB,
DL,
TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
13742 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
13744 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
13745 MaxCallFrameSizeReg)
13746 .
add(
MI.getOperand(2))
13747 .
add(
MI.getOperand(3));
13748 BuildMI(TailMBB,
DL,
TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
13750 .
addReg(MaxCallFrameSizeReg);
13759 MI.eraseFromParent();
13761 ++NumDynamicAllocaProbed;
13766 switch (
MI.getOpcode()) {
13767 case PPC::SELECT_CC_I4:
13768 case PPC::SELECT_CC_I8:
13769 case PPC::SELECT_CC_F4:
13770 case PPC::SELECT_CC_F8:
13771 case PPC::SELECT_CC_F16:
13772 case PPC::SELECT_CC_VRRC:
13773 case PPC::SELECT_CC_VSFRC:
13774 case PPC::SELECT_CC_VSSRC:
13775 case PPC::SELECT_CC_VSRC:
13776 case PPC::SELECT_CC_SPE4:
13777 case PPC::SELECT_CC_SPE:
13785 switch (
MI.getOpcode()) {
13786 case PPC::SELECT_I4:
13787 case PPC::SELECT_I8:
13788 case PPC::SELECT_F4:
13789 case PPC::SELECT_F8:
13790 case PPC::SELECT_F16:
13791 case PPC::SELECT_SPE:
13792 case PPC::SELECT_SPE4:
13793 case PPC::SELECT_VRRC:
13794 case PPC::SELECT_VSFRC:
13795 case PPC::SELECT_VSSRC:
13796 case PPC::SELECT_VSRC:
13806 if (
MI.getOpcode() == TargetOpcode::STACKMAP ||
13807 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
13809 MI.getOpcode() == TargetOpcode::PATCHPOINT &&
13822 if (
MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
13823 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
13825 }
else if (
MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
13826 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
13840 if (Subtarget.hasISEL() &&
13841 (
MI.getOpcode() == PPC::SELECT_CC_I4 ||
13842 MI.getOpcode() == PPC::SELECT_CC_I8 ||
13843 MI.getOpcode() == PPC::SELECT_I4 ||
MI.getOpcode() == PPC::SELECT_I8)) {
13845 if (
MI.getOpcode() == PPC::SELECT_CC_I4 ||
13846 MI.getOpcode() == PPC::SELECT_CC_I8)
13847 Cond.push_back(
MI.getOperand(4));
13850 Cond.push_back(
MI.getOperand(1));
13853 TII->insertSelect(*BB,
MI, dl,
MI.getOperand(0).getReg(),
Cond,
13854 MI.getOperand(2).getReg(),
MI.getOperand(3).getReg());
13870 F->insert(It, copy0MBB);
13871 F->insert(It, sinkMBB);
13880 unsigned CallFrameSize =
TII->getCallFrameSizeAt(
MI);
13895 .
addReg(
MI.getOperand(1).getReg())
13898 unsigned SelectPred =
MI.getOperand(4).getImm();
13901 .
addReg(
MI.getOperand(1).getReg())
13918 .
addReg(
MI.getOperand(3).getReg())
13920 .
addReg(
MI.getOperand(2).getReg())
13922 }
else if (
MI.getOpcode() == PPC::ReadTB) {
13938 F->insert(It, readMBB);
13939 F->insert(It, sinkMBB);
13960 BuildMI(BB, dl,
TII->get(PPC::CMPW), CmpReg)
13970 }
else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
13972 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
13974 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
13976 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
13979 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
13981 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
13983 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
13985 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
13988 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
13990 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
13992 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
13994 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
13997 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
13999 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
14001 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
14003 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
14006 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
14008 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
14010 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
14012 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
14015 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
14017 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
14019 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
14021 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
14024 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
14026 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
14028 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
14030 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
14033 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
14035 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
14037 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
14039 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
14042 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
14044 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
14046 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
14048 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
14051 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
14053 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
14055 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
14057 else if (
MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
14060 else if (
MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
14062 else if (
MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
14064 else if (
MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
14066 else if (
MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
14068 else if (
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
14069 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
14070 (Subtarget.hasPartwordAtomics() &&
14071 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
14072 (Subtarget.hasPartwordAtomics() &&
14073 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
14074 bool is64bit =
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
14076 auto LoadMnemonic = PPC::LDARX;
14077 auto StoreMnemonic = PPC::STDCX;
14078 switch (
MI.getOpcode()) {
14081 case PPC::ATOMIC_CMP_SWAP_I8:
14082 LoadMnemonic = PPC::LBARX;
14083 StoreMnemonic = PPC::STBCX;
14084 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
14086 case PPC::ATOMIC_CMP_SWAP_I16:
14087 LoadMnemonic = PPC::LHARX;
14088 StoreMnemonic = PPC::STHCX;
14089 assert(Subtarget.hasPartwordAtomics() &&
"No support partword atomics.");
14091 case PPC::ATOMIC_CMP_SWAP_I32:
14092 LoadMnemonic = PPC::LWARX;
14093 StoreMnemonic = PPC::STWCX;
14095 case PPC::ATOMIC_CMP_SWAP_I64:
14096 LoadMnemonic = PPC::LDARX;
14097 StoreMnemonic = PPC::STDCX;
14105 Register oldval =
MI.getOperand(3).getReg();
14106 Register newval =
MI.getOperand(4).getReg();
14112 F->insert(It, loop1MBB);
14113 F->insert(It, loop2MBB);
14114 F->insert(It, exitMBB);
14135 BuildMI(BB, dl,
TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg)
14161 }
else if (
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
14162 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
14166 bool is64bit = Subtarget.
isPPC64();
14168 bool is8bit =
MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
14173 Register oldval =
MI.getOperand(3).getReg();
14174 Register newval =
MI.getOperand(4).getReg();
14180 F->insert(It, loop1MBB);
14181 F->insert(It, loop2MBB);
14182 F->insert(It, exitMBB);
14189 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
14208 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
14240 if (ptrA != ZeroReg) {
14242 BuildMI(BB, dl,
TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
14251 BuildMI(BB, dl,
TII->get(PPC::RLWINM), Shift1Reg)
14252 .
addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
14255 .
addImm(is8bit ? 28 : 27);
14256 if (!isLittleEndian)
14257 BuildMI(BB, dl,
TII->get(PPC::XORI), ShiftReg)
14259 .
addImm(is8bit ? 24 : 16);
14261 BuildMI(BB, dl,
TII->get(PPC::RLDICR), PtrReg)
14266 BuildMI(BB, dl,
TII->get(PPC::RLWINM), PtrReg)
14271 BuildMI(BB, dl,
TII->get(PPC::SLW), NewVal2Reg)
14274 BuildMI(BB, dl,
TII->get(PPC::SLW), OldVal2Reg)
14281 BuildMI(BB, dl,
TII->get(PPC::ORI), Mask2Reg)
14285 BuildMI(BB, dl,
TII->get(PPC::SLW), MaskReg)
14288 BuildMI(BB, dl,
TII->get(PPC::AND), NewVal3Reg)
14291 BuildMI(BB, dl,
TII->get(PPC::AND), OldVal3Reg)
14296 BuildMI(BB, dl,
TII->get(PPC::LWARX), TmpDestReg)
14313 BuildMI(BB, dl,
TII->get(PPC::ANDC), Tmp2Reg)
14337 }
else if (
MI.getOpcode() == PPC::FADDrtz) {
14362 auto MIB =
BuildMI(*BB,
MI, dl,
TII->get(PPC::FADD), Dest)
14370 }
else if (
MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
14371 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
14372 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
14373 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
14374 unsigned Opcode = (
MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
14375 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
14378 bool IsEQ = (
MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
14379 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
14383 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
14387 .
addReg(
MI.getOperand(1).getReg())
14390 MI.getOperand(0).getReg())
14391 .
addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
14392 }
else if (
MI.getOpcode() == PPC::TCHECK_RET) {
14398 MI.getOperand(0).getReg())
14400 }
else if (
MI.getOpcode() == PPC::TBEGIN_RET) {
14402 unsigned Imm =
MI.getOperand(1).getImm();
14405 MI.getOperand(0).getReg())
14407 }
else if (
MI.getOpcode() == PPC::SETRNDi) {
14409 Register OldFPSCRReg =
MI.getOperand(0).getReg();
14412 if (
MRI.use_empty(OldFPSCRReg))
14413 BuildMI(*BB,
MI, dl,
TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
14415 BuildMI(*BB,
MI, dl,
TII->get(PPC::MFFS), OldFPSCRReg);
14426 unsigned Mode =
MI.getOperand(1).getImm();
14427 BuildMI(*BB,
MI, dl,
TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
14431 BuildMI(*BB,
MI, dl,
TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
14434 }
else if (
MI.getOpcode() == PPC::SETRND) {
14442 auto copyRegFromG8RCOrF8RC = [&] (
unsigned DestReg,
unsigned SrcReg) {
14443 if (Subtarget.hasDirectMove()) {
14444 BuildMI(*BB,
MI, dl,
TII->get(TargetOpcode::COPY), DestReg)
14448 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
14451 if (RC == &PPC::F8RCRegClass) {
14454 "Unsupported RegClass.");
14456 StoreOp = PPC::STFD;
14461 (RegInfo.
getRegClass(DestReg) == &PPC::F8RCRegClass) &&
14462 "Unsupported RegClass.");
14495 Register OldFPSCRReg =
MI.getOperand(0).getReg();
14498 BuildMI(*BB,
MI, dl,
TII->get(PPC::MFFS), OldFPSCRReg);
14512 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
14520 BuildMI(*BB,
MI, dl,
TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
14521 BuildMI(*BB,
MI, dl,
TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
14527 BuildMI(*BB,
MI, dl,
TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
14534 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
14543 }
else if (
MI.getOpcode() == PPC::SETFLM) {
14547 Register OldFPSCRReg =
MI.getOperand(0).getReg();
14548 if (
MRI.use_empty(OldFPSCRReg))
14549 BuildMI(*BB,
MI, Dl,
TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
14551 BuildMI(*BB,
MI, Dl,
TII->get(PPC::MFFS), OldFPSCRReg);
14554 Register NewFPSCRReg =
MI.getOperand(1).getReg();
14560 }
else if (
MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
14561 MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
14563 }
else if (
MI.getOpcode() == PPC::SPLIT_QUADWORD) {
14570 .
addUse(Src, 0, PPC::sub_gp8_x1);
14573 .
addUse(Src, 0, PPC::sub_gp8_x0);
14574 }
else if (
MI.getOpcode() == PPC::LQX_PSEUDO ||
14575 MI.getOpcode() == PPC::STQX_PSEUDO) {
14581 F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
14587 MI.getOpcode() == PPC::LQX_PSEUDO ?
TII->get(PPC::LQ)
14588 :
TII->get(PPC::STQ))
14596 MI.eraseFromParent();
14609 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
14612 return RefinementSteps;
14618 EVT VT =
Op.getValueType();
14621 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
14645PPCTargetLowering::getSqrtResultForDenormInput(
SDValue Op,
14648 EVT VT =
Op.getValueType();
14649 if (VT != MVT::f64 &&
14650 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
14657 int Enabled,
int &RefinementSteps,
14658 bool &UseOneConstNR,
14659 bool Reciprocal)
const {
14661 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
14662 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
14663 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
14664 (VT == MVT::v2f64 && Subtarget.hasVSX())) {
14670 UseOneConstNR = !Subtarget.needsTwoConstNR();
14678 int &RefinementSteps)
const {
14680 if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
14681 (VT == MVT::f64 && Subtarget.hasFRE()) ||
14682 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
14683 (VT == MVT::v2f64 && Subtarget.hasVSX())) {
14691unsigned PPCTargetLowering::combineRepeatedFPDivisors()
const {
14729 unsigned Bytes,
int Dist,
14739 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
14740 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
14743 if (FS != BFS || FS != (
int)Bytes)
return false;
14747 SDValue Base1 = Loc, Base2 = BaseLoc;
14748 int64_t Offset1 = 0, Offset2 = 0;
14751 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
14761 if (isGA1 && isGA2 && GV1 == GV2)
14762 return Offset1 == (Offset2 + Dist*Bytes);
14769 unsigned Bytes,
int Dist,
14772 EVT VT = LS->getMemoryVT();
14773 SDValue Loc = LS->getBasePtr();
14779 switch (
N->getConstantOperandVal(1)) {
14780 default:
return false;
14781 case Intrinsic::ppc_altivec_lvx:
14782 case Intrinsic::ppc_altivec_lvxl:
14783 case Intrinsic::ppc_vsx_lxvw4x:
14784 case Intrinsic::ppc_vsx_lxvw4x_be:
14787 case Intrinsic::ppc_vsx_lxvd2x:
14788 case Intrinsic::ppc_vsx_lxvd2x_be:
14791 case Intrinsic::ppc_altivec_lvebx:
14794 case Intrinsic::ppc_altivec_lvehx:
14797 case Intrinsic::ppc_altivec_lvewx:
14807 switch (
N->getConstantOperandVal(1)) {
14808 default:
return false;
14809 case Intrinsic::ppc_altivec_stvx:
14810 case Intrinsic::ppc_altivec_stvxl:
14811 case Intrinsic::ppc_vsx_stxvw4x:
14814 case Intrinsic::ppc_vsx_stxvd2x:
14817 case Intrinsic::ppc_vsx_stxvw4x_be:
14820 case Intrinsic::ppc_vsx_stxvd2x_be:
14823 case Intrinsic::ppc_altivec_stvebx:
14826 case Intrinsic::ppc_altivec_stvehx:
14829 case Intrinsic::ppc_altivec_stvewx:
14846 SDValue Chain = LD->getChain();
14847 EVT VT = LD->getMemoryVT();
14856 while (!Queue.empty()) {
14857 SDNode *ChainNext = Queue.pop_back_val();
14858 if (!Visited.
insert(ChainNext).second)
14861 if (
MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
14865 if (!Visited.
count(ChainLD->getChain().getNode()))
14866 Queue.push_back(ChainLD->getChain().getNode());
14868 for (
const SDUse &O : ChainNext->
ops())
14869 if (!Visited.
count(O.getNode()))
14870 Queue.push_back(O.getNode());
14872 LoadRoots.
insert(ChainNext);
14883 for (
SDNode *
I : LoadRoots) {
14884 Queue.push_back(
I);
14886 while (!Queue.empty()) {
14887 SDNode *LoadRoot = Queue.pop_back_val();
14888 if (!Visited.
insert(LoadRoot).second)
14891 if (
MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
14896 if (((isa<MemSDNode>(U) &&
14897 cast<MemSDNode>(U)->getChain().
getNode() == LoadRoot) ||
14900 Queue.push_back(U);
14933 auto Final = Shifted;
14944 DAGCombinerInfo &DCI)
const {
14952 if (!DCI.isAfterLegalizeDAG())
14957 for (
const SDNode *U :
N->users())
14961 ISD::CondCode CC = cast<CondCodeSDNode>(
N->getOperand(2))->get();
14962 auto OpSize =
N->getOperand(0).getValueSizeInBits();
14966 if (OpSize <
Size) {
14984 DAGCombinerInfo &DCI)
const {
14988 assert(Subtarget.useCRBits() &&
"Expecting to be tracking CR bits");
14999 N->getValueType(0) != MVT::i1)
15002 if (
N->getOperand(0).getValueType() != MVT::i32 &&
15003 N->getOperand(0).getValueType() != MVT::i64)
15011 cast<CondCodeSDNode>(
N->getOperand(
15013 unsigned OpBits =
N->getOperand(0).getValueSizeInBits();
15024 return (
N->getOpcode() ==
ISD::SETCC ? ConvertSETCCToSubtract(
N, DCI)
15047 if (
N->getOperand(0).getOpcode() !=
ISD::AND &&
15048 N->getOperand(0).getOpcode() !=
ISD::OR &&
15049 N->getOperand(0).getOpcode() !=
ISD::XOR &&
15059 N->getOperand(1).getOpcode() !=
ISD::AND &&
15060 N->getOperand(1).getOpcode() !=
ISD::OR &&
15061 N->getOperand(1).getOpcode() !=
ISD::XOR &&
15074 for (
unsigned i = 0; i < 2; ++i) {
15078 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
15079 isa<ConstantSDNode>(
N->getOperand(i)))
15090 while (!BinOps.
empty()) {
15098 for (
unsigned i = 0, ie = BinOp.
getNumOperands(); i != ie; ++i) {
15132 for (
unsigned i = 0, ie = Inputs.
size(); i != ie; ++i) {
15133 if (isa<ConstantSDNode>(Inputs[i]))
15156 for (
unsigned i = 0, ie = PromOps.
size(); i != ie; ++i) {
15178 for (
unsigned i = 0, ie = Inputs.
size(); i != ie; ++i) {
15181 if (isa<ConstantSDNode>(Inputs[i]))
15187 std::list<HandleSDNode> PromOpHandles;
15188 for (
auto &PromOp : PromOps)
15189 PromOpHandles.emplace_back(PromOp);
15196 while (!PromOpHandles.empty()) {
15198 PromOpHandles.pop_back();
15204 if (!isa<ConstantSDNode>(PromOp.
getOperand(0)) &&
15207 PromOpHandles.emplace_front(PromOp);
15212 if (isa<ConstantSDNode>(RepValue))
15221 default:
C = 0;
break;
15226 if ((!isa<ConstantSDNode>(PromOp.
getOperand(
C)) &&
15234 PromOpHandles.emplace_front(PromOp);
15241 for (
unsigned i = 0; i < 2; ++i)
15242 if (isa<ConstantSDNode>(Ops[
C+i]))
15251 return N->getOperand(0);
15259 DAGCombinerInfo &DCI)
const {
15277 if (
N->getValueType(0) != MVT::i32 &&
15278 N->getValueType(0) != MVT::i64)
15281 if (!((
N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
15282 (
N->getOperand(0).getValueType() == MVT::i32 && Subtarget.
isPPC64())))
15285 if (
N->getOperand(0).getOpcode() !=
ISD::AND &&
15286 N->getOperand(0).getOpcode() !=
ISD::OR &&
15287 N->getOperand(0).getOpcode() !=
ISD::XOR &&
15298 while (!BinOps.
empty()) {
15306 for (
unsigned i = 0, ie = BinOp.
getNumOperands(); i != ie; ++i) {
15337 for (
unsigned i = 0, ie = Inputs.
size(); i != ie; ++i) {
15338 if (isa<ConstantSDNode>(Inputs[i]))
15349 SelectTruncOp[0].
insert(std::make_pair(
User,
15353 SelectTruncOp[0].
insert(std::make_pair(
User,
15356 SelectTruncOp[1].
insert(std::make_pair(
User,
15362 for (
unsigned i = 0, ie = PromOps.
size(); i != ie; ++i) {
15371 SelectTruncOp[0].
insert(std::make_pair(
User,
15375 SelectTruncOp[0].
insert(std::make_pair(
User,
15378 SelectTruncOp[1].
insert(std::make_pair(
User,
15384 unsigned PromBits =
N->getOperand(0).getValueSizeInBits();
15385 bool ReallyNeedsExt =
false;
15389 for (
unsigned i = 0, ie = Inputs.
size(); i != ie; ++i) {
15390 if (isa<ConstantSDNode>(Inputs[i]))
15394 Inputs[i].getOperand(0).getValueSizeInBits();
15395 assert(PromBits < OpBits &&
"Truncation not to a smaller bit count?");
15400 OpBits-PromBits))) ||
15403 (OpBits-(PromBits-1)))) {
15404 ReallyNeedsExt =
true;
15412 for (
unsigned i = 0, ie = Inputs.
size(); i != ie; ++i) {
15416 if (isa<ConstantSDNode>(Inputs[i]))
15419 SDValue InSrc = Inputs[i].getOperand(0);
15433 std::list<HandleSDNode> PromOpHandles;
15434 for (
auto &PromOp : PromOps)
15435 PromOpHandles.emplace_back(PromOp);
15441 while (!PromOpHandles.empty()) {
15443 PromOpHandles.pop_back();
15447 default:
C = 0;
break;
15452 if ((!isa<ConstantSDNode>(PromOp.
getOperand(
C)) &&
15460 PromOpHandles.emplace_front(PromOp);
15470 (SelectTruncOp[1].count(PromOp.
getNode()) &&
15472 PromOpHandles.emplace_front(PromOp);
15480 for (
unsigned i = 0; i < 2; ++i) {
15481 if (!isa<ConstantSDNode>(Ops[
C+i]))
15498 auto SI0 = SelectTruncOp[0].
find(PromOp.
getNode());
15499 if (SI0 != SelectTruncOp[0].
end())
15501 auto SI1 = SelectTruncOp[1].
find(PromOp.
getNode());
15502 if (SI1 != SelectTruncOp[1].
end())
15511 if (!ReallyNeedsExt)
15512 return N->getOperand(0);
15519 N->getValueSizeInBits(0), PromBits),
15520 dl,
N->getValueType(0)));
15523 "Invalid extension type");
15526 DAG.
getConstant(
N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
15534 DAGCombinerInfo &DCI)
const {
15536 "Should be called with a SETCC node");
15538 ISD::CondCode CC = cast<CondCodeSDNode>(
N->getOperand(2))->get();
15554 EVT VT =
N->getValueType(0);
15555 EVT OpVT =
LHS.getValueType();
15561 return DAGCombineTruncBoolExt(
N, DCI);
15566 if (
LoadSDNode *LD = dyn_cast<LoadSDNode>(
Op.getNode()))
15568 Op.getValueType() == MVT::f64;
15580combineElementTruncationToVectorTruncation(
SDNode *
N,
15581 DAGCombinerInfo &DCI)
const {
15583 "Should be called with a BUILD_VECTOR node");
15588 SDValue FirstInput =
N->getOperand(0);
15590 "The input operand must be an fp-to-int conversion.");
15599 bool IsSplat =
true;
15604 EVT TargetVT =
N->getValueType(0);
15605 for (
int i = 0, e =
N->getNumOperands(); i < e; ++i) {
15606 SDValue NextOp =
N->getOperand(i);
15610 if (NextConversion != FirstConversion)
15618 if (
N->getOperand(i) != FirstInput)
15629 for (
int i = 0, e =
N->getNumOperands(); i < e; ++i) {
15630 SDValue In =
N->getOperand(i).getOperand(0);
15653 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
15655 return DAG.
getNode(Opcode, dl, TargetVT, BV);
15668 "Should be called with a BUILD_VECTOR node");
15673 if (!
N->getValueType(0).getVectorElementType().isByteSized())
15676 bool InputsAreConsecutiveLoads =
true;
15677 bool InputsAreReverseConsecutive =
true;
15678 unsigned ElemSize =
N->getValueType(0).getScalarType().getStoreSize();
15679 SDValue FirstInput =
N->getOperand(0);
15680 bool IsRoundOfExtLoad =
false;
15685 FirstLoad = cast<LoadSDNode>(FirstInput.
getOperand(0));
15690 N->getNumOperands() == 1)
15693 if (!IsRoundOfExtLoad)
15694 FirstLoad = cast<LoadSDNode>(FirstInput);
15698 for (
int i = 1, e =
N->getNumOperands(); i < e; ++i) {
15700 if (IsRoundOfExtLoad &&
N->getOperand(i).getOpcode() !=
ISD::FP_ROUND)
15703 SDValue NextInput = IsRoundOfExtLoad ?
N->getOperand(i).getOperand(0) :
15709 IsRoundOfExtLoad ?
N->getOperand(i-1).getOperand(0) :
N->getOperand(i-1);
15710 LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput);
15711 LoadSDNode *LD2 = cast<LoadSDNode>(NextInput);
15720 InputsAreConsecutiveLoads =
false;
15722 InputsAreReverseConsecutive =
false;
15725 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
15730 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
15731 "The loads cannot be both consecutive and reverse consecutive.");
15735 if (InputsAreConsecutiveLoads) {
15736 assert(FirstLoad &&
"Input needs to be a LoadSDNode.");
15740 ReturnSDVal = WideLoad;
15741 }
else if (InputsAreReverseConsecutive) {
15743 assert(LastLoad &&
"Input needs to be a LoadSDNode.");
15748 for (
int i =
N->getNumOperands() - 1; i >= 0; i--)
15752 DAG.
getUNDEF(
N->getValueType(0)), Ops);
15756 for (
auto *LD : InputLoads)
15758 return ReturnSDVal;
15775 for (
unsigned i = 0; i <
N->getNumOperands(); i++) {
15777 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
15779 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
15780 CorrectElems = CorrectElems >> 8;
15781 Elems = Elems >> 8;
15788 EVT VT =
N->getValueType(0);
15826 auto isSExtOfVecExtract = [&](
SDValue Op) ->
bool {
15846 if (Input && Input != Extract.
getOperand(0))
15852 Elems = Elems << 8;
15861 for (
unsigned i = 0; i <
N->getNumOperands(); i++) {
15862 if (!isSExtOfVecExtract(
N->getOperand(i))) {
15869 int TgtElemArrayIdx;
15871 int OutputSize =
N->getValueType(0).getScalarSizeInBits();
15872 if (InputSize + OutputSize == 40)
15873 TgtElemArrayIdx = 0;
15874 else if (InputSize + OutputSize == 72)
15875 TgtElemArrayIdx = 1;
15876 else if (InputSize + OutputSize == 48)
15877 TgtElemArrayIdx = 2;
15878 else if (InputSize + OutputSize == 80)
15879 TgtElemArrayIdx = 3;
15880 else if (InputSize + OutputSize == 96)
15881 TgtElemArrayIdx = 4;
15885 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
15887 ? CorrectElems & 0x0F0F0F0F0F0F0F0F
15888 : CorrectElems & 0xF0F0F0F0F0F0F0F0;
15889 if (Elems != CorrectElems) {
15905 if (
N->getValueType(0) != MVT::v1i128)
15908 SDValue Operand =
N->getOperand(0);
15914 auto *LD = cast<LoadSDNode>(Operand);
15915 EVT MemoryType = LD->getMemoryVT();
15919 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
15920 MemoryType == MVT::i32 || MemoryType == MVT::i64;
15923 if (!ValidLDType ||
15929 LD->getChain(), LD->getBasePtr(),
15933 DAG.
getVTList(MVT::v1i128, MVT::Other),
15934 LoadOps, MemoryType, LD->getMemOperand());
15938 DAGCombinerInfo &DCI)
const {
15940 "Should be called with a BUILD_VECTOR node");
15945 if (!Subtarget.hasVSX())
15951 SDValue FirstInput =
N->getOperand(0);
15953 SDValue Reduced = combineElementTruncationToVectorTruncation(
N, DCI);
15968 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
15977 if (Subtarget.isISA3_1()) {
15983 if (
N->getValueType(0) != MVT::v2f64)
15994 if (FirstInput.
getOpcode() !=
N->getOperand(1).getOpcode())
15998 SDValue Ext2 =
N->getOperand(1).getOperand(0);
16005 if (!Ext1Op || !Ext2Op)
16014 if (FirstElem == 0 && SecondElem == 1)
16016 else if (FirstElem == 2 && SecondElem == 3)
16024 return DAG.
getNode(NodeType, dl, MVT::v2f64,
16029 DAGCombinerInfo &DCI)
const {
16032 "Need an int -> FP conversion node here");
16043 if (
Op.getValueType() != MVT::f32 &&
Op.getValueType() != MVT::f64)
16045 if (!
Op.getOperand(0).getValueType().isSimple())
16047 if (
Op.getOperand(0).getValueType().getSimpleVT() <=
MVT(MVT::i1) ||
16048 Op.getOperand(0).getValueType().getSimpleVT() >
MVT(MVT::i64))
16051 SDValue FirstOperand(
Op.getOperand(0));
16052 bool SubWordLoad = FirstOperand.getOpcode() ==
ISD::LOAD &&
16053 (FirstOperand.getValueType() == MVT::i8 ||
16054 FirstOperand.getValueType() == MVT::i16);
16055 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
16057 bool DstDouble =
Op.getValueType() == MVT::f64;
16058 unsigned ConvOp =
Signed ?
16064 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
16073 SDValue ExtOps[] = { Ld, WidthConst };
16075 return DAG.
getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
16077 return DAG.
getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
16085 if (
Op.getOperand(0).getValueType() == MVT::i32)
16089 "UINT_TO_FP is supported only with FPCVT");
16093 unsigned FCFOp = (Subtarget.hasFPCVT() &&
Op.getValueType() == MVT::f32)
16098 MVT FCFTy = (Subtarget.hasFPCVT() &&
Op.getValueType() == MVT::f32)
16105 Subtarget.hasFPCVT()) ||
16107 SDValue Src =
Op.getOperand(0).getOperand(0);
16108 if (Src.getValueType() == MVT::f32) {
16110 DCI.AddToWorklist(Src.getNode());
16111 }
else if (Src.getValueType() != MVT::f64) {
16123 if (
Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
16126 DCI.AddToWorklist(
FP.getNode());
16150 switch (
N->getOpcode()) {
16155 Chain = LD->getChain();
16156 Base = LD->getBasePtr();
16157 MMO = LD->getMemOperand();
16176 MVT VecTy =
N->getValueType(0).getSimpleVT();
16184 Chain = Load.getValue(1);
16190 if (VecTy != MVT::v2f64) {
16217 switch (
N->getOpcode()) {
16222 Chain = ST->getChain();
16223 Base = ST->getBasePtr();
16224 MMO = ST->getMemOperand();
16244 SDValue Src =
N->getOperand(SrcOpnd);
16245 MVT VecTy = Src.getValueType().getSimpleVT();
16248 if (VecTy != MVT::v2f64) {
16254 DAG.
getVTList(MVT::v2f64, MVT::Other), Chain, Src);
16260 StoreOps, VecTy, MMO);
16267 DAGCombinerInfo &DCI)
const {
16270 unsigned Opcode =
N->getOperand(1).getOpcode();
16272 bool Strict =
N->getOperand(1)->isStrictFPOpcode();
16276 &&
"Not a FP_TO_INT Instruction!");
16278 SDValue Val =
N->getOperand(1).getOperand(Strict ? 1 : 0);
16279 EVT Op1VT =
N->getOperand(1).getValueType();
16282 if (!Subtarget.hasVSX() || !Subtarget.hasFPCVT() || !
isTypeLegal(ResVT))
16286 bool ValidTypeForStoreFltAsInt =
16287 (Op1VT == MVT::i32 || (Op1VT == MVT::i64 && Subtarget.
isPPC64()) ||
16288 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
16291 if (ResVT == MVT::ppcf128 || (ResVT == MVT::f128 && !Subtarget.hasP9Vector()))
16294 if ((Op1VT != MVT::i64 && !Subtarget.hasP8Vector()) ||
16295 cast<StoreSDNode>(
N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
16302 SDValue Ops[] = {
N->getOperand(0), Val,
N->getOperand(2),
16308 cast<StoreSDNode>(
N)->getMemoryVT(),
16309 cast<StoreSDNode>(
N)->getMemOperand());
16317 bool PrevElemFromFirstVec = Mask[0] < NumElts;
16318 for (
int i = 1, e = Mask.size(); i < e; i++) {
16319 if (PrevElemFromFirstVec && Mask[i] < NumElts)
16321 if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
16323 PrevElemFromFirstVec = !PrevElemFromFirstVec;
16335 FirstOp =
Op.getOperand(i);
16342 if (
Op.getOperand(i) != FirstOp && !
Op.getOperand(i).isUndef())
16352 Op =
Op.getOperand(0);
16368 int RHSFirstElt,
int RHSLastElt,
int HalfVec,
unsigned LHSNumValidElts,
16369 unsigned RHSNumValidElts,
const PPCSubtarget &Subtarget) {
16371 Subtarget.
isLittleEndian() ? HalfVec : HalfVec - LHSNumValidElts;
16373 Subtarget.
isLittleEndian() ? HalfVec : HalfVec - RHSNumValidElts;
16374 for (
int I = 0, E = ShuffV.
size();
I < E; ++
I) {
16375 int Idx = ShuffV[
I];
16376 if (
Idx >= LHSFirstElt &&
Idx <= LHSLastElt)
16377 ShuffV[
I] += LHSEltFixup;
16378 else if (
Idx >= RHSFirstElt &&
Idx <= RHSLastElt)
16379 ShuffV[
I] += RHSEltFixup;
16390 SDLoc dl(OrigSToV);
16393 "Expecting a SCALAR_TO_VECTOR here");
16406 "Cannot produce a permuted scalar_to_vector for one element vector");
16408 unsigned ResultInElt = NumElts / 2;
16410 NewMask[ResultInElt] =
Idx->getZExtValue();
16419 int HalfVec,
int LHSLastElementDefined,
16420 int RHSLastElementDefined) {
16421 for (
int Index : ShuffV) {
16425 if ((LHSLastElementDefined >= 0) && (Index < HalfVec) &&
16426 (Index > LHSLastElementDefined))
16429 if ((RHSLastElementDefined >= 0) &&
16430 (Index > HalfVec + RHSLastElementDefined))
16437 int ScalarSize,
uint64_t ShuffleEltWidth,
unsigned &NumValidElts,
16438 int FirstElt,
int &LastElt,
SDValue VecShuffOperand,
SDValue SToVNode,
16454 LastElt = (
uint64_t)ScalarSize > ShuffleEltWidth
16455 ? ScalarSize / ShuffleEltWidth - 1 + FirstElt
16458 if (SToVPermuted.
getValueType() != VecShuffOperandType)
16459 SToVPermuted = DAG.
getBitcast(VecShuffOperandType, SToVPermuted);
16460 return SToVPermuted;
16480 int NumElts =
LHS.getValueType().getVectorNumElements();
16490 if (!Subtarget.hasDirectMove())
16500 Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
16509 if (SToVLHS || SToVRHS) {
16512 int ShuffleNumElts = ShuffV.
size();
16513 int HalfVec = ShuffleNumElts / 2;
16519 unsigned LHSNumValidElts = HalfVec;
16520 unsigned RHSNumValidElts = HalfVec;
16525 int LHSFirstElt = 0;
16526 int RHSFirstElt = ShuffleNumElts;
16527 int LHSLastElt = -1;
16528 int RHSLastElt = -1;
16536 int LHSScalarSize = 0;
16537 int RHSScalarSize = 0;
16540 if (!IsLittleEndian && LHSScalarSize >= 64)
16545 if (!IsLittleEndian && RHSScalarSize >= 64)
16548 if (LHSScalarSize != 0)
16550 LHSScalarSize, ShuffleEltWidth, LHSNumValidElts, LHSFirstElt,
16551 LHSLastElt, LHS, SToVLHS, DAG, Subtarget);
16552 if (RHSScalarSize != 0)
16554 RHSScalarSize, ShuffleEltWidth, RHSNumValidElts, RHSFirstElt,
16555 RHSLastElt, RHS, SToVRHS, DAG, Subtarget);
16566 ShuffV, LHSFirstElt, LHSLastElt, RHSFirstElt, RHSLastElt, HalfVec,
16567 LHSNumValidElts, RHSNumValidElts, Subtarget);
16572 if (!isa<ShuffleVectorSDNode>(Res))
16574 Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
16593 if (IsLittleEndian) {
16596 if (Mask[0] < NumElts)
16597 for (
int i = 1, e =
Mask.size(); i < e; i += 2) {
16601 ShuffV[i] = (ShuffV[i - 1] >= 0 ? ShuffV[i - 1] : 0) + NumElts;
16606 for (
int i = 0, e =
Mask.size(); i <
e; i += 2) {
16610 ShuffV[i] = (ShuffV[i + 1] >= 0 ? ShuffV[i + 1] : 0) + NumElts;
16615 if (Mask[0] < NumElts)
16616 for (
int i = 0, e =
Mask.size(); i <
e; i += 2) {
16620 ShuffV[i] = ShuffV[i + 1] >= 0 ? ShuffV[i + 1] - NumElts : 0;
16625 for (
int i = 1, e =
Mask.size(); i <
e; i += 2) {
16629 ShuffV[i] = ShuffV[i - 1] >= 0 ? ShuffV[i - 1] - NumElts : 0;
16636 cast<BuildVectorSDNode>(TheSplat.
getNode())->getSplatValue();
16639 if (IsLittleEndian)
16648 DAGCombinerInfo &DCI)
const {
16650 "Not a reverse memop pattern!");
16655 auto I =
Mask.rbegin();
16656 auto E =
Mask.rend();
16658 for (;
I != E; ++
I) {
16675 if (!Subtarget.hasP9Vector())
16678 if(!IsElementReverse(SVN))
16686 if (
Use.getResNo() == 0 &&
16717 if (IntrinsicID == Intrinsic::ppc_stdcx)
16719 else if (IntrinsicID == Intrinsic::ppc_stwcx)
16721 else if (IntrinsicID == Intrinsic::ppc_sthcx)
16723 else if (IntrinsicID == Intrinsic::ppc_stbcx)
16749 switch (
N->getOpcode()) {
16752 return combineADD(
N, DCI);
16761 !isa<ConstantSDNode>(Op2) ||
N->getValueType(0) != MVT::i64 ||
16771 if (!isUInt<32>(Imm))
16778 return combineSHL(
N, DCI);
16780 return combineSRA(
N, DCI);
16782 return combineSRL(
N, DCI);
16784 return combineMUL(
N, DCI);
16787 return combineFMALike(
N, DCI);
16790 return N->getOperand(0);
16794 return N->getOperand(0);
16800 return N->getOperand(0);
16806 return DAGCombineExtBoolTrunc(
N, DCI);
16808 return combineTRUNCATE(
N, DCI);
16810 if (
SDValue CSCC = combineSetCC(
N, DCI))
16814 return DAGCombineTruncBoolExt(
N, DCI);
16817 return combineFPToIntToFP(
N, DCI);
16820 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(
N->getOperand(0));
16821 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(
N), LSBase, DCI);
16823 return combineVectorShuffle(cast<ShuffleVectorSDNode>(
N), DCI.
DAG);
16826 EVT Op1VT =
N->getOperand(1).getValueType();
16827 unsigned Opcode =
N->getOperand(1).getOpcode();
16831 SDValue Val = combineStoreFPToInt(
N, DCI);
16838 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(
N), DCI);
16844 if (cast<StoreSDNode>(
N)->isUnindexed() && Opcode ==
ISD::BSWAP &&
16845 N->getOperand(1).getNode()->hasOneUse() &&
16846 (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
16847 (Subtarget.hasLDBRX() && Subtarget.
isPPC64() && Op1VT == MVT::i64))) {
16851 EVT mVT = cast<StoreSDNode>(
N)->getMemoryVT();
16855 SDValue BSwapOp =
N->getOperand(1).getOperand(0);
16862 if (Op1VT.
bitsGT(mVT)) {
16867 if (Op1VT == MVT::i64)
16872 N->getOperand(0), BSwapOp,
N->getOperand(2), DAG.
getValueType(mVT)
16876 Ops, cast<StoreSDNode>(
N)->getMemoryVT(),
16877 cast<StoreSDNode>(
N)->getMemOperand());
16883 isa<ConstantSDNode>(
N->getOperand(1)) && Op1VT == MVT::i32) {
16885 EVT MemVT = cast<StoreSDNode>(
N)->getMemoryVT();
16890 auto *ST = cast<StoreSDNode>(
N);
16892 ST->getBasePtr(), ST->getOffset(), MemVT,
16893 ST->getMemOperand(), ST->getAddressingMode(),
16897 return ST->isUnindexed()
16907 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
16908 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
16915 EVT VT = LD->getValueType(0);
16922 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
16923 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
16934 auto ReplaceTwoFloatLoad = [&]() {
16935 if (VT != MVT::i64)
16950 if (!LD->hasNUsesOfValue(2, 0))
16953 auto UI = LD->user_begin();
16954 while (UI.getUse().getResNo() != 0) ++UI;
16956 while (UI.getUse().getResNo() != 0) ++UI;
16957 SDNode *RightShift = *UI;
16965 if (RightShift->getOpcode() !=
ISD::SRL ||
16966 !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
16967 RightShift->getConstantOperandVal(1) != 32 ||
16968 !RightShift->hasOneUse())
16971 SDNode *Trunc2 = *RightShift->user_begin();
16981 Bitcast->getValueType(0) != MVT::f32)
16993 SDValue BasePtr = LD->getBasePtr();
16994 if (LD->isIndexed()) {
16996 "Non-pre-inc AM on PPC?");
17004 SDValue FloatLoad = DAG.
getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
17005 LD->getPointerInfo(), LD->getAlign(),
17006 MMOFlags, LD->getAAInfo());
17012 LD->getPointerInfo().getWithOffset(4),
17015 if (LD->isIndexed()) {
17029 if (ReplaceTwoFloatLoad())
17032 EVT MemVT = LD->getMemoryVT();
17035 if (LD->isUnindexed() && VT.
isVector() &&
17038 !Subtarget.hasP8Vector() &&
17039 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
17040 VT == MVT::v4f32))) &&
17041 LD->getAlign() < ABIAlignment) {
17043 SDValue Chain = LD->getChain();
17072 MVT PermCntlTy, PermTy, LDTy;
17073 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
17074 : Intrinsic::ppc_altivec_lvsl;
17075 IntrLD = Intrinsic::ppc_altivec_lvx;
17076 IntrPerm = Intrinsic::ppc_altivec_vperm;
17077 PermCntlTy = MVT::v16i8;
17078 PermTy = MVT::v4i32;
17097 SDValue BaseLoadOps[] = { Chain, LDXIntID,
Ptr };
17101 BaseLoadOps, LDTy, BaseMMO);
17110 int IncValue = IncOffset;
17127 SDValue ExtraLoadOps[] = { Chain, LDXIntID,
Ptr };
17131 ExtraLoadOps, LDTy, ExtraMMO);
17142 if (isLittleEndian)
17144 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
17147 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
17150 Perm = Subtarget.hasAltivec()
17166 unsigned IID =
N->getConstantOperandVal(0);
17168 : Intrinsic::ppc_altivec_lvsl);
17169 if (IID ==
Intr &&
N->getOperand(1)->getOpcode() ==
ISD::ADD) {
17176 .
zext(
Add.getScalarValueSizeInBits()))) {
17177 SDNode *BasePtr =
Add->getOperand(0).getNode();
17178 for (
SDNode *U : BasePtr->users()) {
17180 U->getConstantOperandVal(0) == IID) {
17190 if (isa<ConstantSDNode>(
Add->getOperand(1))) {
17191 SDNode *BasePtr =
Add->getOperand(0).getNode();
17192 for (
SDNode *U : BasePtr->users()) {
17194 isa<ConstantSDNode>(U->getOperand(1)) &&
17195 (
Add->getConstantOperandVal(1) - U->getConstantOperandVal(1)) %
17201 V->getConstantOperandVal(0) == IID) {
17213 (IID == Intrinsic::ppc_altivec_vmaxsw ||
17214 IID == Intrinsic::ppc_altivec_vmaxsh ||
17215 IID == Intrinsic::ppc_altivec_vmaxsb)) {
17246 switch (
N->getConstantOperandVal(1)) {
17249 case Intrinsic::ppc_altivec_vsum4sbs:
17250 case Intrinsic::ppc_altivec_vsum4shs:
17251 case Intrinsic::ppc_altivec_vsum4ubs: {
17257 dyn_cast<BuildVectorSDNode>(
N->getOperand(3))) {
17258 APInt APSplatBits, APSplatUndef;
17259 unsigned SplatBitSize;
17262 APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0,
17265 if (BVNIsConstantSplat && APSplatBits == 0)
17270 case Intrinsic::ppc_vsx_lxvw4x:
17271 case Intrinsic::ppc_vsx_lxvd2x:
17283 switch (
N->getConstantOperandVal(1)) {
17286 case Intrinsic::ppc_vsx_stxvw4x:
17287 case Intrinsic::ppc_vsx_stxvd2x:
17296 bool Is64BitBswapOn64BitTgt =
17297 Subtarget.
isPPC64() &&
N->getValueType(0) == MVT::i64;
17299 N->getOperand(0).hasOneUse();
17300 if (IsSingleUseNormalLd &&
17301 (
N->getValueType(0) == MVT::i32 ||
N->getValueType(0) == MVT::i16 ||
17302 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
17313 DAG.
getVTList(
N->getValueType(0) == MVT::i64 ?
17314 MVT::i64 : MVT::i32, MVT::Other),
17315 Ops, LD->getMemoryVT(), LD->getMemOperand());
17319 if (
N->getValueType(0) == MVT::i16)
17336 !IsSingleUseNormalLd)
17338 LoadSDNode *LD = cast<LoadSDNode>(
N->getOperand(0));
17341 if (!LD->isSimple())
17343 SDValue BasePtr = LD->getBasePtr();
17345 LD->getPointerInfo(), LD->getAlign());
17350 LD->getMemOperand(), 4, 4);
17360 Hi.getOperand(0).getValue(1),
Lo.getOperand(0).getValue(1));
17369 if (!
N->getOperand(0).hasOneUse() &&
17370 !
N->getOperand(1).hasOneUse() &&
17371 !
N->getOperand(2).hasOneUse()) {
17374 SDNode *VCMPrecNode =
nullptr;
17376 SDNode *LHSN =
N->getOperand(0).getNode();
17382 VCMPrecNode =
User;
17394 SDNode *FlagUser =
nullptr;
17396 FlagUser ==
nullptr; ++UI) {
17397 assert(UI != VCMPrecNode->
use_end() &&
"Didn't find user!");
17410 return SDValue(VCMPrecNode, 0);
17420 ISD::CondCode CC = cast<CondCodeSDNode>(
N->getOperand(1))->get();
17432 auto RHSAPInt =
RHS->getAsAPIntVal();
17433 if (!RHSAPInt.isIntN(64))
17436 unsigned Val = RHSAPInt.getZExtValue();
17437 auto isImpossibleCompare = [&]() {
17440 if (Val != 0 && Val != 1) {
17442 return N->getOperand(0);
17445 N->getOperand(0),
N->getOperand(4));
17450 unsigned StoreWidth = 0;
17453 if (
SDValue Impossible = isImpossibleCompare())
17467 auto *MemNode = cast<MemSDNode>(
LHS);
17470 DAG.
getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops,
17471 MemNode->getMemoryVT(), MemNode->getMemOperand());
17475 if (
N->getOperand(0) ==
LHS.getValue(1))
17476 InChain =
LHS.getOperand(0);
17488 DAG.
getRegister(PPC::CR0, MVT::i32),
N->getOperand(4),
17494 assert(isDot &&
"Can't compare against a vector result!");
17496 if (
SDValue Impossible = isImpossibleCompare())
17499 bool BranchOnWhenPredTrue = (CC ==
ISD::SETEQ) ^ (Val == 0);
17506 EVT VTs[] = {
LHS.getOperand(2).getValueType(), MVT::Glue };
17511 switch (
LHS.getConstantOperandVal(1)) {
17530 N->getOperand(4), CompNode.
getValue(1));
17535 return DAGCombineBuildVector(
N, DCI);
17548 EVT VT =
N->getValueType(0);
17549 if (VT == MVT::i64 && !Subtarget.
isPPC64())
17551 if ((VT != MVT::i32 && VT != MVT::i64) ||
17559 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).
countr_zero();
17579 const APInt &DemandedElts,
17581 unsigned Depth)
const {
17583 switch (
Op.getOpcode()) {
17587 if (cast<VTSDNode>(
Op.getOperand(2))->getVT() == MVT::i16)
17588 Known.
Zero = 0xFFFF0000;
17592 if (
Op.getResNo() == 0) {
17597 Known.
Zero = ~1ULL;
17602 switch (
Op.getConstantOperandVal(0)) {
17604 case Intrinsic::ppc_altivec_vcmpbfp_p:
17605 case Intrinsic::ppc_altivec_vcmpeqfp_p:
17606 case Intrinsic::ppc_altivec_vcmpequb_p:
17607 case Intrinsic::ppc_altivec_vcmpequh_p:
17608 case Intrinsic::ppc_altivec_vcmpequw_p:
17609 case Intrinsic::ppc_altivec_vcmpequd_p:
17610 case Intrinsic::ppc_altivec_vcmpequq_p:
17611 case Intrinsic::ppc_altivec_vcmpgefp_p:
17612 case Intrinsic::ppc_altivec_vcmpgtfp_p:
17613 case Intrinsic::ppc_altivec_vcmpgtsb_p:
17614 case Intrinsic::ppc_altivec_vcmpgtsh_p:
17615 case Intrinsic::ppc_altivec_vcmpgtsw_p:
17616 case Intrinsic::ppc_altivec_vcmpgtsd_p:
17617 case Intrinsic::ppc_altivec_vcmpgtsq_p:
17618 case Intrinsic::ppc_altivec_vcmpgtub_p:
17619 case Intrinsic::ppc_altivec_vcmpgtuh_p:
17620 case Intrinsic::ppc_altivec_vcmpgtuw_p:
17621 case Intrinsic::ppc_altivec_vcmpgtud_p:
17622 case Intrinsic::ppc_altivec_vcmpgtuq_p:
17629 switch (
Op.getConstantOperandVal(1)) {
17632 case Intrinsic::ppc_load2r:
17634 Known.
Zero = 0xFFFF0000;
17665 if (
ML->getLoopDepth() > 1 &&
ML->getSubLoops().empty())
17674 for (
auto I =
ML->block_begin(), IE =
ML->block_end();
I != IE; ++
I)
17676 LoopSize +=
TII->getInstSizeInBytes(J);
17681 if (LoopSize > 16 && LoopSize <= 32)
17695 if (Constraint.
size() == 1) {
17696 switch (Constraint[0]) {
17714 }
else if (Constraint ==
"wc") {
17716 }
else if (Constraint ==
"wa" || Constraint ==
"wd" ||
17717 Constraint ==
"wf" || Constraint ==
"ws" ||
17718 Constraint ==
"wi" || Constraint ==
"ww") {
17731 Value *CallOperandVal =
info.CallOperandVal;
17734 if (!CallOperandVal)
17741 else if ((
StringRef(constraint) ==
"wa" ||
17753 switch (*constraint) {
17783std::pair<unsigned, const TargetRegisterClass *>
17787 if (Constraint.
size() == 1) {
17789 switch (Constraint[0]) {
17791 if (VT == MVT::i64 && Subtarget.
isPPC64())
17792 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
17793 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
17795 if (VT == MVT::i64 && Subtarget.
isPPC64())
17796 return std::make_pair(0U, &PPC::G8RCRegClass);
17797 return std::make_pair(0U, &PPC::GPRCRegClass);
17803 if (Subtarget.hasSPE()) {
17804 if (VT == MVT::f32 || VT == MVT::i32)
17805 return std::make_pair(0U, &PPC::GPRCRegClass);
17806 if (VT == MVT::f64 || VT == MVT::i64)
17807 return std::make_pair(0U, &PPC::SPERCRegClass);
17809 if (VT == MVT::f32 || VT == MVT::i32)
17810 return std::make_pair(0U, &PPC::F4RCRegClass);
17811 if (VT == MVT::f64 || VT == MVT::i64)
17812 return std::make_pair(0U, &PPC::F8RCRegClass);
17816 if (Subtarget.hasAltivec() && VT.
isVector())
17817 return std::make_pair(0U, &PPC::VRRCRegClass);
17818 else if (Subtarget.hasVSX())
17820 return std::make_pair(0U, &PPC::VFRCRegClass);
17823 return std::make_pair(0U, &PPC::CRRCRegClass);
17825 }
else if (Constraint ==
"wc" && Subtarget.useCRBits()) {
17827 return std::make_pair(0U, &PPC::CRBITRCRegClass);
17828 }
else if ((Constraint ==
"wa" || Constraint ==
"wd" ||
17829 Constraint ==
"wf" || Constraint ==
"wi") &&
17830 Subtarget.hasVSX()) {
17834 return std::make_pair(0U, &PPC::VSRCRegClass);
17835 if (VT == MVT::f32 && Subtarget.hasP8Vector())
17836 return std::make_pair(0U, &PPC::VSSRCRegClass);
17837 return std::make_pair(0U, &PPC::VSFRCRegClass);
17838 }
else if ((Constraint ==
"ws" || Constraint ==
"ww") && Subtarget.hasVSX()) {
17839 if (VT == MVT::f32 && Subtarget.hasP8Vector())
17840 return std::make_pair(0U, &PPC::VSSRCRegClass);
17842 return std::make_pair(0U, &PPC::VSFRCRegClass);
17843 }
else if (Constraint ==
"lr") {
17844 if (VT == MVT::i64)
17845 return std::make_pair(0U, &PPC::LR8RCRegClass);
17847 return std::make_pair(0U, &PPC::LRRCRegClass);
17852 if (Constraint[0] ==
'{' && Constraint[Constraint.
size() - 1] ==
'}') {
17856 if (Constraint.
size() > 3 && Constraint[1] ==
'v' && Constraint[2] ==
's') {
17857 int VSNum = atoi(Constraint.
data() + 3);
17858 assert(VSNum >= 0 && VSNum <= 63 &&
17859 "Attempted to access a vsr out of range");
17861 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
17862 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
17867 if (Constraint.
size() > 3 && Constraint[1] ==
'f') {
17868 int RegNum = atoi(Constraint.
data() + 2);
17869 if (RegNum > 31 || RegNum < 0)
17871 if (VT == MVT::f32 || VT == MVT::i32)
17872 return Subtarget.hasSPE()
17873 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
17874 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
17875 if (VT == MVT::f64 || VT == MVT::i64)
17876 return Subtarget.hasSPE()
17877 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
17878 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
17882 std::pair<unsigned, const TargetRegisterClass *> R =
17891 if (R.first && VT == MVT::i64 && Subtarget.
isPPC64() &&
17892 PPC::GPRCRegClass.contains(R.first))
17893 return std::make_pair(
TRI->getMatchingSuperReg(R.first,
17894 PPC::sub_32, &PPC::G8RCRegClass),
17895 &PPC::G8RCRegClass);
17898 if (!R.second &&
StringRef(
"{cc}").equals_insensitive(Constraint)) {
17899 R.first = PPC::CR0;
17900 R.second = &PPC::CRRCRegClass;
17904 if (Subtarget.
isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
17905 if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
17906 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
17907 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
17908 errs() <<
"warning: vector registers 20 to 32 are reserved in the "
17909 "default AIX AltiVec ABI and cannot be used\n";
17919 std::vector<SDValue> &Ops,
17924 if (Constraint.
size() > 1)
17927 char Letter = Constraint[0];
17942 EVT TCVT = MVT::i64;
17947 if (isInt<16>(
Value))
17951 if (isShiftedUInt<16, 16>(
Value))
17955 if (isShiftedInt<16, 16>(
Value))
17959 if (isUInt<16>(
Value))
17975 if (isInt<16>(-
Value))
17983 if (Result.getNode()) {
17984 Ops.push_back(Result);
17995 if (
I.getNumOperands() <= 1)
17997 if (!isa<ConstantSDNode>(Ops[1].
getNode()))
17999 auto IntrinsicID = Ops[1].getNode()->getAsZExtVal();
18000 if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
18001 IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap)
18004 if (
MDNode *MDN =
I.getMetadata(LLVMContext::MD_annotation))
18032 switch (AM.
Scale) {
18060 unsigned Depth =
Op.getConstantOperandVal(0);
18084 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
18092 unsigned Depth =
Op.getConstantOperandVal(0);
18099 bool isPPC64 = PtrVT == MVT::i64;
18105 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
18107 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
18117#define GET_REGISTER_MATCHER
18118#include "PPCGenAsmMatcher.inc"
18122 bool IsPPC64 = Subtarget.
isPPC64();
18134 if ((IsPPC64 && Reg == PPC::R2) || Reg == PPC::R0)
18140 Reg = Reg.id() - PPC::R0 + PPC::X0;
18162 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
18180 unsigned Intrinsic)
const {
18181 switch (Intrinsic) {
18182 case Intrinsic::ppc_atomicrmw_xchg_i128:
18183 case Intrinsic::ppc_atomicrmw_add_i128:
18184 case Intrinsic::ppc_atomicrmw_sub_i128:
18185 case Intrinsic::ppc_atomicrmw_nand_i128:
18186 case Intrinsic::ppc_atomicrmw_and_i128:
18187 case Intrinsic::ppc_atomicrmw_or_i128:
18188 case Intrinsic::ppc_atomicrmw_xor_i128:
18189 case Intrinsic::ppc_cmpxchg_i128:
18191 Info.memVT = MVT::i128;
18192 Info.ptrVal =
I.getArgOperand(0);
18198 case Intrinsic::ppc_atomic_load_i128:
18200 Info.memVT = MVT::i128;
18201 Info.ptrVal =
I.getArgOperand(0);
18206 case Intrinsic::ppc_atomic_store_i128:
18208 Info.memVT = MVT::i128;
18209 Info.ptrVal =
I.getArgOperand(2);
18214 case Intrinsic::ppc_altivec_lvx:
18215 case Intrinsic::ppc_altivec_lvxl:
18216 case Intrinsic::ppc_altivec_lvebx:
18217 case Intrinsic::ppc_altivec_lvehx:
18218 case Intrinsic::ppc_altivec_lvewx:
18219 case Intrinsic::ppc_vsx_lxvd2x:
18220 case Intrinsic::ppc_vsx_lxvw4x:
18221 case Intrinsic::ppc_vsx_lxvd2x_be:
18222 case Intrinsic::ppc_vsx_lxvw4x_be:
18223 case Intrinsic::ppc_vsx_lxvl:
18224 case Intrinsic::ppc_vsx_lxvll: {
18226 switch (Intrinsic) {
18227 case Intrinsic::ppc_altivec_lvebx:
18230 case Intrinsic::ppc_altivec_lvehx:
18233 case Intrinsic::ppc_altivec_lvewx:
18236 case Intrinsic::ppc_vsx_lxvd2x:
18237 case Intrinsic::ppc_vsx_lxvd2x_be:
18247 Info.ptrVal =
I.getArgOperand(0);
18254 case Intrinsic::ppc_altivec_stvx:
18255 case Intrinsic::ppc_altivec_stvxl:
18256 case Intrinsic::ppc_altivec_stvebx:
18257 case Intrinsic::ppc_altivec_stvehx:
18258 case Intrinsic::ppc_altivec_stvewx:
18259 case Intrinsic::ppc_vsx_stxvd2x:
18260 case Intrinsic::ppc_vsx_stxvw4x:
18261 case Intrinsic::ppc_vsx_stxvd2x_be:
18262 case Intrinsic::ppc_vsx_stxvw4x_be:
18263 case Intrinsic::ppc_vsx_stxvl:
18264 case Intrinsic::ppc_vsx_stxvll: {
18266 switch (Intrinsic) {
18267 case Intrinsic::ppc_altivec_stvebx:
18270 case Intrinsic::ppc_altivec_stvehx:
18273 case Intrinsic::ppc_altivec_stvewx:
18276 case Intrinsic::ppc_vsx_stxvd2x:
18277 case Intrinsic::ppc_vsx_stxvd2x_be:
18287 Info.ptrVal =
I.getArgOperand(1);
18294 case Intrinsic::ppc_stdcx:
18295 case Intrinsic::ppc_stwcx:
18296 case Intrinsic::ppc_sthcx:
18297 case Intrinsic::ppc_stbcx: {
18299 auto Alignment =
Align(8);
18300 switch (Intrinsic) {
18301 case Intrinsic::ppc_stdcx:
18304 case Intrinsic::ppc_stwcx:
18306 Alignment =
Align(4);
18308 case Intrinsic::ppc_sthcx:
18310 Alignment =
Align(2);
18312 case Intrinsic::ppc_stbcx:
18314 Alignment =
Align(1);
18319 Info.ptrVal =
I.getArgOperand(0);
18321 Info.align = Alignment;
18340 if (Subtarget.hasAltivec() &&
Op.size() >= 16) {
18341 if (
Op.isMemset() && Subtarget.hasVSX()) {
18346 if (TailSize > 2 && TailSize <= 4) {
18351 if (
Op.isAligned(
Align(16)) || Subtarget.hasP8Vector())
18370 return !(BitSize == 0 || BitSize > 64);
18378 return NumBits1 == 64 && NumBits2 == 32;
18386 return NumBits1 == 64 && NumBits2 == 32;
18392 if (
LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
18393 EVT MemVT = LD->getMemoryVT();
18394 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
18395 (Subtarget.
isPPC64() && MemVT == MVT::i32)) &&
18411 "invalid fpext types");
18413 if (DestVT == MVT::f128)
18419 return isInt<16>(Imm) || isUInt<16>(Imm);
18423 return isInt<16>(Imm) || isUInt<16>(Imm);
18428 unsigned *
Fast)
const {
18442 !Subtarget.allowsUnalignedFPAccess())
18446 if (Subtarget.hasVSX()) {
18447 if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
18448 VT != MVT::v4f32 && VT != MVT::v4i32)
18455 if (VT == MVT::ppcf128)
18469 if (
auto *ConstNode = dyn_cast<ConstantSDNode>(
C.getNode())) {
18470 if (!ConstNode->getAPIntValue().isSignedIntN(64))
18478 int64_t Imm = ConstNode->getSExtValue();
18479 unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
18481 if (isInt<16>(Imm))
18506 return Subtarget.hasP9Vector();
18514 if (!
I->hasOneUse())
18518 assert(
User &&
"A single use instruction with no uses.");
18520 switch (
I->getOpcode()) {
18521 case Instruction::FMul: {
18523 if (
User->getOpcode() != Instruction::FSub &&
18524 User->getOpcode() != Instruction::FAdd)
18537 case Instruction::Load: {
18550 if (
User->getOpcode() != Instruction::Store)
18570 static const MCPhysReg ScratchRegs[] = {
18571 PPC::X12, PPC::LR8, PPC::CTR8, 0
18574 return ScratchRegs;
18578 const Constant *PersonalityFn)
const {
18579 return Subtarget.
isPPC64() ? PPC::X3 : PPC::R3;
18583 const Constant *PersonalityFn)
const {
18584 return Subtarget.
isPPC64() ? PPC::X4 : PPC::R4;
18589 EVT VT ,
unsigned DefinedValues)
const {
18590 if (VT == MVT::v2i64)
18591 return Subtarget.hasDirectMove();
18593 if (Subtarget.hasVSX())
18627 bool LegalOps,
bool OptForSize,
18629 unsigned Depth)
const {
18633 unsigned Opc =
Op.getOpcode();
18634 EVT VT =
Op.getValueType();
18659 if (Flags.hasNoSignedZeros() ||
Options.NoSignedZerosFPMath) {
18663 N0Cost,
Depth + 1);
18667 N1Cost,
Depth + 1);
18669 if (NegN0 && N0Cost <= N1Cost) {
18670 Cost = std::min(N0Cost, N2Cost);
18671 return DAG.
getNode(
Opc, Loc, VT, NegN0, N1, NegN2, Flags);
18672 }
else if (NegN1) {
18673 Cost = std::min(N1Cost, N2Cost);
18674 return DAG.
getNode(
Opc, Loc, VT, N0, NegN1, NegN2, Flags);
18693 if (M.getStackProtectorGuard() ==
"tls" || Subtarget.
isTargetLinux())
18699 bool ForCodeSize)
const {
18700 if (!VT.
isSimple() || !Subtarget.hasVSX())
18710 if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) {
18715 APSInt IntResult(16,
false);
18720 if (IsExact && IntResult <= 15 && IntResult >= -16)
18722 return Imm.isZero();
18725 return Imm.isPosZero();
18737 unsigned Opcode =
N->getOpcode();
18738 unsigned TargetOpcode;
18757 if (Mask->getZExtValue() == OpSizeInBits - 1)
18764 DAGCombinerInfo &DCI)
const {
18765 EVT VT =
N->getValueType(0);
18768 unsigned Opc =
N->getOpcode();
18770 "Unexpected opcode.");
18777 if (EltTy != MVT::i64 && EltTy != MVT::i32)
18782 bool AddSplatCase =
false;
18786 AddSplatCase =
true;
18790 if (!AddSplatCase) {
18794 unsigned SplatBitSize;
18796 APInt APSplatBits, APSplatUndef;
18798 bool BVNIsConstantSplat =
18801 if (!BVNIsConstantSplat || SplatBitSize != EltBits)
18812 if (SplatBits == (EltBits - 1)) {
18826 return DCI.DAG.getNode(NewOpc,
DL, VT, N0, SplatOnes);
18834 if (EltTy != MVT::i64 || SplatBits != 1)
18840SDValue PPCTargetLowering::combineSHL(
SDNode *
N, DAGCombinerInfo &DCI)
const {
18844 if (
N->getValueType(0).isVector())
18845 return combineVectorShift(
N, DCI);
18849 if (!Subtarget.isISA3_0() || !Subtarget.
isPPC64() ||
18852 N->getValueType(0) != MVT::i64)
18867 ShiftBy = DCI.DAG.getConstant(CN1->
getZExtValue(),
DL, MVT::i32);
18873SDValue PPCTargetLowering::combineSRA(
SDNode *
N, DAGCombinerInfo &DCI)
const {
18877 if (
N->getValueType(0).isVector())
18878 return combineVectorShift(
N, DCI);
18883SDValue PPCTargetLowering::combineSRL(
SDNode *
N, DAGCombinerInfo &DCI)
const {
18887 if (
N->getValueType(0).isVector())
18888 return combineVectorShift(
N, DCI);
18905 auto isZextOfCompareWithConstant = [](
SDValue Op) {
18907 Op.getValueType() != MVT::i64)
18911 if (Cmp.getOpcode() !=
ISD::SETCC || !Cmp.hasOneUse() ||
18912 Cmp.getOperand(0).getValueType() != MVT::i64)
18915 if (
auto *
Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
18916 int64_t NegConstant = 0 -
Constant->getSExtValue();
18919 return isInt<16>(NegConstant);
18925 bool LHSHasPattern = isZextOfCompareWithConstant(
LHS);
18926 bool RHSHasPattern = isZextOfCompareWithConstant(
RHS);
18929 if (LHSHasPattern && !RHSHasPattern)
18931 else if (!LHSHasPattern && !RHSHasPattern)
18935 EVT CarryType = Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
18938 SDValue Z = Cmp.getOperand(0);
18939 auto *
Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
18940 int64_t NegConstant = 0 -
Constant->getSExtValue();
18942 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
18953 SDValue AddOrZ = NegConstant != 0 ?
Add : Z;
18971 SDValue AddOrZ = NegConstant != 0 ?
Add : Z;
19012 if (!GSDN || !ConstNode)
19019 if (!isInt<34>(NewOffset))
19032SDValue PPCTargetLowering::combineADD(
SDNode *
N, DAGCombinerInfo &DCI)
const {
19052 DAGCombinerInfo &DCI)
const {
19054 if (Subtarget.useCRBits()) {
19056 if (
SDValue CRTruncValue = DAGCombineTruncBoolExt(
N, DCI))
19057 return CRTruncValue;
19064 if (Op0.
getValueType() != MVT::i128 ||
N->getValueType(0) != MVT::i64)
19067 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
19077 EltToExtract = EltToExtract ? 0 : 1;
19087 return DCI.DAG.getNode(
19089 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
19094SDValue PPCTargetLowering::combineMUL(
SDNode *
N, DAGCombinerInfo &DCI)
const {
19098 if (!ConstOpOrElement)
19106 auto IsProfitable = [
this](
bool IsNeg,
bool IsAddOne,
EVT VT) ->
bool {
19130 return IsAddOne && IsNeg ? VT.
isVector() :
true;
19134 EVT VT =
N->getValueType(0);
19141 if ((MulAmtAbs - 1).isPowerOf2()) {
19145 if (!IsProfitable(IsNeg,
true, VT))
19158 }
else if ((MulAmtAbs + 1).isPowerOf2()) {
19162 if (!IsProfitable(IsNeg,
false, VT))
19183 DAGCombinerInfo &DCI)
const {
19188 EVT VT =
N->getValueType(0);
19191 unsigned Opc =
N->getOpcode();
19193 bool LegalOps = !DCI.isBeforeLegalizeOps();
19201 if (!
Flags.hasNoSignedZeros() && !
Options.NoSignedZerosFPMath)
19217bool PPCTargetLowering::mayBeEmittedAsTailCall(
const CallInst *CI)
const {
19234 if (!Callee ||
Callee->isVarArg())
19247bool PPCTargetLowering::
19248isMaskAndCmp0FoldingBeneficial(
const Instruction &AndI)
const {
19251 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
19253 if (CI->getBitWidth() > 64)
19255 int64_t ConstVal = CI->getZExtValue();
19256 return isUInt<16>(ConstVal) ||
19257 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
19266PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(
unsigned Flags)
const {
19272 if ((Flags & FlagSet) == FlagSet)
19275 if ((Flags & FlagSet) == FlagSet)
19278 if ((Flags & FlagSet) == FlagSet)
19281 if ((Flags & FlagSet) == FlagSet)
19302 if ((FrameIndexAlign % 4) != 0)
19303 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
19304 if ((FrameIndexAlign % 16) != 0)
19305 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
19309 if ((FrameIndexAlign % 4) == 0)
19311 if ((FrameIndexAlign % 16) == 0)
19324 auto SetAlignFlagsForImm = [&](
uint64_t Imm) {
19325 if ((Imm & 0x3) == 0)
19327 if ((Imm & 0xf) == 0)
19333 const APInt &ConstImm = CN->getAPIntValue();
19352 const APInt &ConstImm = CN->getAPIntValue();
19362 }
else if (
RHS.getOpcode() ==
PPCISD::Lo && !
RHS.getConstantOperandVal(1))
19374 isValidPCRelNode<ConstantPoolSDNode>(
N) ||
19375 isValidPCRelNode<GlobalAddressSDNode>(
N) ||
19376 isValidPCRelNode<JumpTableSDNode>(
N) ||
19377 isValidPCRelNode<BlockAddressSDNode>(
N));
19382unsigned PPCTargetLowering::computeMOFlags(
const SDNode *Parent,
SDValue N,
19387 if (!Subtarget.hasP9Vector())
19392 if (Subtarget.hasPrefixInstrs())
19395 if (Subtarget.hasSPE())
19404 unsigned ParentOp = Parent->
getOpcode();
19408 if ((
ID == Intrinsic::ppc_vsx_lxvp) || (
ID == Intrinsic::ppc_vsx_stxvp)) {
19409 SDValue IntrinOp = (
ID == Intrinsic::ppc_vsx_lxvp)
19420 if (
const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
19421 if (LSB->isIndexed())
19426 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
19427 assert(MN &&
"Parent should be a MemSDNode!");
19432 "Not expecting scalar integers larger than 16 bytes!");
19435 else if (
Size == 32)
19442 else if (
Size == 256) {
19443 assert(Subtarget.pairedVectorMemops() &&
19444 "256-bit vectors are only available when paired vector memops is "
19452 else if (MemVT == MVT::f128 || MemVT.
isVector())
19462 if (
const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
19483 FlagSet &= ~PPC::MOF_NoExt;
19488 bool IsNonP1034BitConst =
19492 IsNonP1034BitConst)
19505 int16_t ForceXFormImm = 0;
19508 Disp =
N.getOperand(0);
19509 Base =
N.getOperand(1);
19520 !
N.getOperand(1).hasOneUse() || !
N.getOperand(0).hasOneUse())) {
19521 Disp =
N.getOperand(0);
19522 Base =
N.getOperand(1);
19536 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
19542 if (PartVT == MVT::f64 &&
19543 (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
19552SDValue PPCTargetLowering::lowerToLibCall(
const char *LibCallName,
SDValue Op,
19556 EVT RetVT =
Op.getValueType();
19563 EVT ArgVT =
N.getValueType();
19567 Entry.IsZExt = !Entry.IsSExt;
19568 Args.push_back(Entry);
19576 (
RetTy ==
F.getReturnType() ||
F.getReturnType()->isVoidTy());
19582 .setTailCall(isTailCall)
19589SDValue PPCTargetLowering::lowerLibCallBasedOnType(
19590 const char *LibCallFloatName,
const char *LibCallDoubleName,
SDValue Op,
19592 if (
Op.getValueType() == MVT::f32)
19593 return lowerToLibCall(LibCallFloatName,
Op, DAG);
19595 if (
Op.getValueType() == MVT::f64)
19596 return lowerToLibCall(LibCallDoubleName,
Op, DAG);
19601bool PPCTargetLowering::isLowringToMASSFiniteSafe(
SDValue Op)
const {
19603 return isLowringToMASSSafe(
Op) &&
Flags.hasNoSignedZeros() &&
19607bool PPCTargetLowering::isLowringToMASSSafe(
SDValue Op)
const {
19608 return Op.getNode()->getFlags().hasApproximateFuncs();
19611bool PPCTargetLowering::isScalarMASSConversionEnabled()
const {
19615SDValue PPCTargetLowering::lowerLibCallBase(
const char *LibCallDoubleName,
19616 const char *LibCallFloatName,
19617 const char *LibCallDoubleNameFinite,
19618 const char *LibCallFloatNameFinite,
19621 if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(
Op))
19624 if (!isLowringToMASSFiniteSafe(
Op))
19625 return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName,
Op,
19628 return lowerLibCallBasedOnType(LibCallFloatNameFinite,
19629 LibCallDoubleNameFinite,
Op, DAG);
19633 return lowerLibCallBase(
"__xl_pow",
"__xl_powf",
"__xl_pow_finite",
19634 "__xl_powf_finite",
Op, DAG);
19638 return lowerLibCallBase(
"__xl_sin",
"__xl_sinf",
"__xl_sin_finite",
19639 "__xl_sinf_finite",
Op, DAG);
19643 return lowerLibCallBase(
"__xl_cos",
"__xl_cosf",
"__xl_cos_finite",
19644 "__xl_cosf_finite",
Op, DAG);
19648 return lowerLibCallBase(
"__xl_log",
"__xl_logf",
"__xl_log_finite",
19649 "__xl_logf_finite",
Op, DAG);
19653 return lowerLibCallBase(
"__xl_log10",
"__xl_log10f",
"__xl_log10_finite",
19654 "__xl_log10f_finite",
Op, DAG);
19658 return lowerLibCallBase(
"__xl_exp",
"__xl_expf",
"__xl_exp_finite",
19659 "__xl_expf_finite",
Op, DAG);
19666 if (!isa<FrameIndexSDNode>(
N))
19684 unsigned Flags = computeMOFlags(Parent,
N, DAG);
19696 "Must be using PC-Relative calls when a valid PC-Relative node is "
19726 Disp =
N.getOperand(1).getOperand(0);
19731 Base =
N.getOperand(0);
19738 auto *CN = cast<ConstantSDNode>(
N);
19739 EVT CNType = CN->getValueType(0);
19740 uint64_t CNImm = CN->getZExtValue();
19751 if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
19753 int32_t
Addr = (int32_t)CNImm;
19758 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
19774 unsigned Opcode =
N.getOpcode();
19782 Base =
N.getOperand(0);
19801 Base = FI ?
N :
N.getOperand(1);
19813 bool IsVarArg)
const {
19823 return Subtarget.
isPPC64() && Subtarget.hasQuadwordAtomics();
19859 return Intrinsic::ppc_atomicrmw_xchg_i128;
19861 return Intrinsic::ppc_atomicrmw_add_i128;
19863 return Intrinsic::ppc_atomicrmw_sub_i128;
19865 return Intrinsic::ppc_atomicrmw_and_i128;
19867 return Intrinsic::ppc_atomicrmw_or_i128;
19869 return Intrinsic::ppc_atomicrmw_xor_i128;
19871 return Intrinsic::ppc_atomicrmw_nand_i128;
19888 {AlignedAddr, IncrLo, IncrHi});
19894 Lo, Builder.
CreateShl(
Hi, ConstantInt::get(ValTy, 64)),
"val64");
19915 Builder.
CreateCall(IntCmpXchg, {AlignedAddr, CmpLo, CmpHi, NewLo, NewHi});
19922 Lo, Builder.
CreateShl(
Hi, ConstantInt::get(ValTy, 64)),
"val64");
19926 return Subtarget.useCRBits();
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, bool IsTailCall, std::optional< CallLowering::PtrAuthInfo > &PAI, MachineRegisterInfo &MRI)
static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1, SDValue V2, unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &DL)
GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit the specified operations t...
static bool isSignExtended(SDValue N, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
static std::pair< Register, unsigned > getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
static bool isLoad(int Opcode)
static bool isFloatingPointZero(SDValue Op)
isFloatingPointZero - Return true if this is +0.0.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Atomic ordering constants.
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static RegisterPass< DebugifyModulePass > DM("debugify", "Attach debug info to everything")
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl)
CreateCopyOfByValArgument - Make a copy of an aggregate at address specified by "Src" to address "Dst...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
Register const TargetRegisterInfo * TRI
static bool isConstantOrUndef(const SDValue Op)
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
cl::opt< bool > ANDIGlueBug("expose-ppc-andi-glue-bug", cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden)
static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, SelectionDAG &DAG, const SDLoc &dl)
getCanonicalConstSplat - Build a canonical splat immediate of Val with an element size of SplatSize.
static bool IsSelectCC(MachineInstr &MI)
static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static const TargetRegisterClass * getRegClassForSVT(MVT::SimpleValueType SVT, bool IsPPC64, bool HasP8Vector, bool HasVSX)
static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign)
static SDValue DAGCombineAddc(SDNode *N, llvm::PPCTargetLowering::DAGCombinerInfo &DCI)
static bool needStackSlotPassParameters(const PPCSubtarget &Subtarget, const SmallVectorImpl< ISD::OutputArg > &Outs)
static bool isAlternatingShuffMask(const ArrayRef< int > &Mask, int NumElts)
static bool isShuffleMaskInRange(const SmallVectorImpl< int > &ShuffV, int HalfVec, int LHSLastElementDefined, int RHSLastElementDefined)
static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, SDValue Input, uint64_t Elems, uint64_t CorrectElems)
static cl::opt< bool > DisablePPCUnaligned("disable-ppc-unaligned", cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden)
static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG)
static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, bool Swap, SDLoc &DL, SelectionDAG &DAG)
This function is called when we have proved that a SETCC node can be replaced by subtraction (and oth...
static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL)
static void CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool IsPPC64, SDValue Arg, int SPDiff, unsigned ArgOffset, SmallVectorImpl< TailCallArgumentInfo > &TailCallArguments)
CalculateTailCallArgDest - Remember Argument for later processing.
static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, SelectionDAG &DAG)
Set alignment flags based on whether or not the Frame Index is aligned.
static bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget)
static void updateForAIXShLibTLSModelOpt(TLSModel::Model &Model, SelectionDAG &DAG, const TargetMachine &TM)
updateForAIXShLibTLSModelOpt - Helper to initialize TLS model opt settings, and then apply the update...
static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N)
Used when computing address flags for selecting loads and stores.
static bool callsShareTOCBase(const Function *Caller, const GlobalValue *CalleeGV, const TargetMachine &TM)
static SDValue generateSToVPermutedForVecShuffle(int ScalarSize, uint64_t ShuffleEltWidth, unsigned &NumValidElts, int FirstElt, int &LastElt, SDValue VecShuffOperand, SDValue SToVNode, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
constexpr uint64_t AIXSmallTlsPolicySizeLimit
static bool isPCRelNode(SDValue N)
static void LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, bool isTailCall, bool isVector, SmallVectorImpl< SDValue > &MemOpChains, SmallVectorImpl< TailCallArgumentInfo > &TailCallArguments, const SDLoc &dl)
LowerMemOpCallTo - Store the argument to the stack or remember it in case of tail calls.
static cl::opt< unsigned > PPCGatherAllAliasesMaxDepth("ppc-gather-alias-max-depth", cl::init(18), cl::Hidden, cl::desc("max depth when checking alias info in GatherAllAliases()"))
static bool areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, CallingConv::ID CalleeCC)
static const MCPhysReg FPR[]
FPR - The set of FP registers that should be allocated for arguments on Darwin and AIX.
static SDNode * isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG)
isCallCompatibleAddress - Return the immediate to use if the specified 32-bit value is representable ...
static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize)
CalculateStackSlotAlignment - Calculates the alignment of this argument on the stack.
static bool IsSelect(MachineInstr &MI)
static SDValue ConvertCarryFlagToCarryValue(EVT SumType, SDValue Flag, EVT CarryType, SelectionDAG &DAG, const PPCSubtarget &STI)
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, bool HasDirectMove, bool HasP8Vector)
Do we have an efficient pattern in a .td file for this node?
static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
static void setUsesTOCBasePtr(MachineFunction &MF)
static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, const SDLoc &dl, const PPCSubtarget &Subtarget)
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, unsigned NumBytes)
EnsureStackAlignment - Round stack frame size up from NumBytes to ensure minimum alignment required f...
static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth)
static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB)
static bool isFPExtLoad(SDValue Op)
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, const SDLoc &dl, EVT DestVT=MVT::Other)
BuildIntrinsicOp - Return a unary operator intrinsic node with the specified intrinsic ID.
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, unsigned Bytes, int Dist, SelectionDAG &DAG)
static void StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, SDValue Chain, const SmallVectorImpl< TailCallArgumentInfo > &TailCallArgs, SmallVectorImpl< SDValue > &MemOpChains, const SDLoc &dl)
StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
static cl::opt< bool > UseAbsoluteJumpTables("ppc-use-absolute-jumptables", cl::desc("use absolute jump tables on ppc"), cl::Hidden)
static void setXFormForUnalignedFI(SDValue N, unsigned Flags, PPC::AddrMode &Mode)
static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign)
getMaxByValAlign - Helper for getByValTypeAlignment to determine the desired ByVal argument alignment...
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, unsigned Bytes, int Dist, SelectionDAG &DAG)
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart)
isVMerge - Common function, used to match vmrg* shuffles.
static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, unsigned &HiOpFlags, unsigned &LoOpFlags, const GlobalValue *GV=nullptr)
Return true if we should reference labels using a PICBase, set the HiOpFlags and LoOpFlags to the tar...
cl::opt< bool > DisableAutoPairedVecSt("disable-auto-paired-vec-st", cl::desc("disable automatically generated 32byte paired vector stores"), cl::init(true), cl::Hidden)
static void buildCallOperands(SmallVectorImpl< SDValue > &Ops, PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, SmallVector< std::pair< unsigned, SDValue >, 8 > &RegsToPass, SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, const PPCSubtarget &Subtarget)
static cl::opt< bool > DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden)
static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget &ST)
Returns true if we should use a direct load into vector instruction (such as lxsd or lfd),...
static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl< int > &ShuffV, int LHSFirstElt, int LHSLastElt, int RHSFirstElt, int RHSLastElt, int HalfVec, unsigned LHSNumValidElts, unsigned RHSNumValidElts, const PPCSubtarget &Subtarget)
static cl::opt< bool > DisableSCO("disable-ppc-sco", cl::desc("disable sibling call optimization on ppc"), cl::Hidden)
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT)
static cl::opt< bool > DisablePPCPreinc("disable-ppc-preinc", cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden)
static Intrinsic::ID getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp)
static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget)
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize)
CalculateStackSlotSize - Calculates the size reserved for this argument on the stack.
static int CalculateTailCallSPDiff(SelectionDAG &DAG, bool isTailCall, unsigned ParamSize)
CalculateTailCallSPDiff - Get the amount the stack pointer has to be adjusted to accommodate the argu...
static Instruction * callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id)
static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, SDValue &Glue, SDValue &Chain, const SDLoc &dl)
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, SelectionDAG &DAG)
static SDValue isScalarToVec(SDValue Op)
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl)
static cl::opt< bool > DisablePerfectShuffle("ppc-disable-perfect-shuffle", cl::desc("disable vector permute decomposition"), cl::init(true), cl::Hidden)
bool isValidMtVsrBmi(APInt &BitMask, BuildVectorSDNode &BVN, bool IsLittleEndian)
static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, bool &isDot, const PPCSubtarget &Subtarget)
getVectorCompareInfo - Given an intrinsic, return false if it is not a vector comparison.
static unsigned invertFMAOpcode(unsigned Opc)
static const SDValue * getNormalLoadInput(const SDValue &Op, bool &IsPermuted)
static cl::opt< unsigned > PPCMinimumJumpTableEntries("ppc-min-jump-table-entries", cl::init(64), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table on PPC"))
static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, unsigned &Opcode)
static SDValue ConvertCarryValueToCarryFlag(EVT SumType, SDValue Value, SelectionDAG &DAG, const PPCSubtarget &STI)
static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, const PPCSubtarget &Subtarget, SDValue Chain=SDValue())
static void PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain, const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, SDValue FPOp, SmallVectorImpl< TailCallArgumentInfo > &TailCallArguments)
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, SDValue OldRetAddr, SDValue OldFP, int SPDiff, const SDLoc &dl)
EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to the appropriate stack sl...
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, SelectionDAG &DAG, const SDLoc &dl)
BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified amount.
static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG)
static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, SelectionDAG &DAG, SDValue ArgValue, MVT LocVT, const SDLoc &dl)
static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, SelectionDAG &DAG)
Given a node, compute flags that are used for address computation when selecting load and store instr...
cl::opt< bool > ANDIGlueBug
static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart)
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize, unsigned LinkageSize, unsigned ParamAreaSize, unsigned &ArgOffset, unsigned &AvailableFPRs, unsigned &AvailableVRs)
CalculateStackSlotUsed - Return whether this argument will use its stack slot (instead of being passe...
static cl::opt< unsigned > PPCAIXTLSModelOptUseIEForLDLimit("ppc-aix-shared-lib-tls-model-opt-limit", cl::init(1), cl::Hidden, cl::desc("Set inclusive limit count of TLS local-dynamic access(es) in a " "function to use initial-exec"))
static unsigned getPPCStrictOpcode(unsigned Opc)
static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, SDValue &Glue, SDValue &Chain, SDValue CallSeqStart, const CallBase *CB, const SDLoc &dl, bool hasNest, const PPCSubtarget &Subtarget)
static cl::opt< bool > DisableP10StoreForward("disable-p10-store-forward", cl::desc("disable P10 store forward-friendly conversion"), cl::Hidden, cl::init(false))
static bool isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width)
static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV)
static bool isSplatBV(SDValue Op)
static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG)
static cl::opt< bool > DisableILPPref("disable-ppc-ilp-pref", cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden)
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int)
Check that the mask is shuffling N byte elements.
static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG)
Reduce the number of loads when building a vector.
static bool isValidPCRelNode(SDValue N)
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
SI optimize exec mask operations pre RA
static const MCExpr * MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift, MCContext &Ctx)
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file describes how to lower LLVM code to machine code.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
uint64_t getZExtValue() const
Get zero extended value.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
bool isNegative() const
Determine sign of this APInt.
void clearAllBits()
Set every bit to 0.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
bool getBoolValue() const
Convert APInt to a boolean value.
double bitsToDouble() const
Converts APInt bits to a double.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getNewValOperand()
an instruction that atomically reads a memory location, combines it with another value,...
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ UDecWrap
Decrement one until a minimum value or zero.
BinOp getOperation() const
This is an SDNode representing atomic operations.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
int64_t getOffset() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
static BranchProbability getOne()
static BranchProbability getZero()
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
CCState - This class holds information needed while lowering arguments and return values.
MachineFunction & getMachineFunction() const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
void addLoc(const CCValAssign &V)
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getCalledOperand() const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
unsigned arg_size() const
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
This class represents a function call, abstracting a target machine's calling convention.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI unsigned getLargestLegalIntTypeSizeInBits() const
Returns the size of largest legal integer type size, or 0 if none are set.
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
uint64_t getFnAttributeAsParsedInteger(StringRef Kind, uint64_t Default=0) const
For a string attribute Kind, parse attribute as an integer.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
AttributeList getAttributes() const
Return the attribute list for this Function.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Type * getReturnType() const
Returns the type of the ret val.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
int64_t getOffset() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
LLVM_ABI const GlobalObject * getAliaseeObject() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
void setThreadLocalMode(ThreadLocalMode Val)
bool hasHiddenVisibility() const
LLVM_ABI StringRef getSection() const
Module * getParent()
Get the module that this global value is contained inside of...
bool isStrongDefinitionForLinker() const
Returns true if this global's definition will be the one chosen by the linker.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
bool hasProtectedVisibility() const
Common base class shared among various IRBuilders.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
BasicBlock * GetInsertBlock() const
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
LLVM_ABI bool hasAtomicLoad() const LLVM_READONLY
Return true if this atomic instruction loads from memory.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
This is an important class for using LLVM in a threaded context.
Base class for LoadSDNode and StoreSDNode.
An instruction for reading from memory.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
TypeSize getValue() const
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
MCSymbolXCOFF * getQualNameSymbol() const
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool hasVAStart() const
Returns true if the function calls the llvm.va_start intrinsic.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateImm(int64_t Val)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
LLVM_ABI MachineInstr * getVRegDef(Register Reg) const
getVRegDef - Return the machine instr that defines the specified virtual register or null if none is ...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI Register getLiveInVirtReg(MCRegister PReg) const
getLiveInVirtReg - If PReg is a live-in physical register, return the corresponding live-in virtual r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getBasePtr() const
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
A Module instance is used to store all the information related to an LLVM module.
uint64_t getReturnSaveOffset() const
getReturnSaveOffset - Return the previous frame offset to save the return address.
uint64_t getFramePointerSaveOffset() const
getFramePointerSaveOffset - Return the previous frame offset to save the frame pointer.
unsigned getLinkageSize() const
getLinkageSize - Return the size of the PowerPC ABI linkage area.
uint64_t getTOCSaveOffset() const
getTOCSaveOffset - Return the previous frame offset to save the TOC register – 64-bit SVR4 ABI only.
PPCFunctionInfo - This class is derived from MachineFunction private PowerPC target-specific informat...
void setVarArgsNumFPR(unsigned Num)
void setReturnAddrSaveIndex(int idx)
bool isAIXFuncUseTLSIEForLD() const
int getReturnAddrSaveIndex() const
unsigned getVarArgsNumFPR() const
void setAIXFuncUseTLSIEForLD()
int getFramePointerSaveIndex() const
void setVarArgsNumGPR(unsigned Num)
void appendParameterType(ParamType Type)
int getVarArgsFrameIndex() const
void setLRStoreRequired()
bool isAIXFuncTLSModelOptInitDone() const
void setTailCallSPDelta(int size)
void setAIXFuncTLSModelOptInitDone()
bool isLRStoreRequired() const
void setMinReservedArea(unsigned size)
unsigned getVarArgsNumGPR() const
unsigned getMinReservedArea() const
void setVarArgsStackOffset(int Offset)
void setVarArgsFrameIndex(int Index)
void addLiveInAttr(Register VReg, ISD::ArgFlagsTy Flags)
This function associates attributes for each live-in virtual register.
int getVarArgsStackOffset() const
void setFramePointerSaveIndex(int Idx)
static bool hasPCRelFlag(unsigned TF)
bool is32BitELFABI() const
unsigned descriptorTOCAnchorOffset() const
MVT getScalarIntVT() const
bool useSoftFloat() const
const PPCFrameLowering * getFrameLowering() const override
bool needsSwapsForVSXMemOps() const
bool isPPC64() const
isPPC64 - Return true if we are generating code for 64-bit pointer mode.
bool isUsingPCRelativeCalls() const
bool usesFunctionDescriptors() const
True if the ABI is descriptor based.
MCRegister getEnvironmentPointerRegister() const
const PPCInstrInfo * getInstrInfo() const override
unsigned getCPUDirective() const
getCPUDirective - Returns the -m directive specified for the cpu.
POPCNTDKind hasPOPCNTD() const
bool isLittleEndian() const
bool isTargetLinux() const
MCRegister getTOCPointerRegister() const
MCRegister getStackPointerRegister() const
bool is64BitELFABI() const
const PPCTargetMachine & getTargetMachine() const
bool isPredictableSelectIsExpensive() const
bool enableMachineScheduler() const override
Scheduling customization.
const PPCRegisterInfo * getRegisterInfo() const override
bool isGVIndirectSymbol(const GlobalValue *GV) const
True if the GV will be accessed via an indirect symbol.
unsigned descriptorEnvironmentPointerOffset() const
MachineBasicBlock * emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
CCAssignFn * ccAssignFnForCall(CallingConv::ID CC, bool Return, bool IsVarArg) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
SelectForceXFormMode - Given the specified address, force it to be represented as an indexed [r+r] op...
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
bool hasInlineStackProbe(const MachineFunction &MF) const override
MachineBasicBlock * emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName() - This method returns the name of a target specific DAG node.
bool supportsTailCallFor(const CallBase *CB) const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
MachineBasicBlock * emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
MachineBasicBlock * EmitPartwordAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const
SelectAddressRegImm - Returns true if the address N can be represented by a base register plus a sign...
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
LowerAsmOperandForConstraint - Lower the specified operand into the Ops vector.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
ReplaceNodeResults - Replace the results of node with an illegal result type with new values built ou...
bool hasMultipleConditionRegisters(EVT VT) const override
Does the target have multiple (allocatable) condition registers that can be used to store the results...
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
getByValTypeAlignment - Return the desired alignment for ByVal aggregate function arguments in the ca...
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment=std::nullopt) const
SelectAddressRegReg - Given the specified addressed, check to see if it can be more efficiently repre...
MachineBasicBlock * EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const override
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override
Perform a store-conditional operation to Addr.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressRegRegOnly - Given the specified addressed, force it to be represented as an indexed [r+...
bool useSoftFloat() const override
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
bool preferIncOfAddToSubOfNot(EVT VT) const override
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPreIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mod...
bool isProfitableToHoist(Instruction *I) const override
isProfitableToHoist - Check if it is profitable to hoist instruction I to its dominator block.
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const override
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint, return the type of constraint it is for this target.
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const override
Return true if the target shall perform extract vector element and store given that the vector is kno...
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
unsigned getStackProbeSize(const MachineFunction &MF) const
PPCTargetLowering(const PPCTargetMachine &TM, const PPCSubtarget &STI)
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool useLoadStackGuardNode(const Module &M) const override
Override to support customized stack guard loading.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster than a pair of fmul and fadd i...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Is unaligned memory access allowed for the given type, and is it fast relative to software emulation.
bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override
bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
Similar to the 16-bit case but for instructions that take a 34-bit displacement field (prefixed loads...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isJumpTableRelative() const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign Align) const
SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), compute the address flags of...
bool SelectAddressPCRel(SDValue N, SDValue &Base) const
SelectAddressPCRel - Represent the specified address as pc relative to be represented as [pc+imm].
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
getSetCCResultType - Return the ISD::SETCC ValueType
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressEVXRegReg - Given the specified addressed, check to see if it can be more efficiently re...
bool isLegalICmpImmediate(int64_t Imm) const override
isLegalICmpImmediate - Return true if the specified immediate is legal icmp immediate,...
bool isAccessedAsGotIndirect(SDValue N) const
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override
createFastISel - This method returns a target-specific FastISel object, or null if the target does no...
bool shouldInlineQuadwordAtomics() const
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isLegalAddImmediate(int64_t Imm) const override
isLegalAddImmediate - Return true if the specified immediate is legal add immediate,...
Common code between 32-bit and 64-bit PowerPC targets.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
iterator_range< value_op_iterator > op_values() const
iterator_range< use_iterator > uses()
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
iterator_range< user_iterator > users()
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
static use_iterator use_end()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
unsigned getNumOperands() const
static SectionKind getMetadata()
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getValue() const
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
Information about stack frame layout on the target.
unsigned getStackAlignment() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?...
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
NegatibleCost
Enum that specifies when a float negation is beneficial.
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
std::vector< ArgListEntry > ArgListTy
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
virtual MCSymbol * getFunctionEntryPointSymbol(const GlobalValue *Func, const TargetMachine &TM) const
If supported, return the function entry point symbol.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
bool isPositionIndependent() const
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
Primary interface to the complete machine description for the target machine.
TLSModel::Model getTLSModel(const GlobalValue *GV) const
Returns the TLS model which should be used for the given global variable.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
Reloc::Model getRelocationModel() const
Returns the code generation relocation model.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
unsigned NoInfsFPMath
NoInfsFPMath - This flag is enabled when the -enable-no-infs-fp-math flag is specified on the command...
unsigned PPCGenScalarMASSEntries
Enables scalar MASS conversions.
unsigned NoNaNsFPMath
NoNaNsFPMath - This flag is enabled when the -enable-no-nans-fp-math flag is specified on the command...
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
@ FP128TyID
128-bit floating point type (112-bit significand)
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFunctionTy() const
True if this is an instance of FunctionType.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
int getNumOccurrences() const
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ STRICT_FSQRT
Constrained versions of libm-equivalent floating point intrinsics.
@ SET_ROUNDING
Set rounding mode.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ BR
Control flow instructions. These all have token chains.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ BR_JT
BR_JT - Jumptable branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_SINT_TO_FP
STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool isUNINDEXEDLoad(const SDNode *N)
Returns true if the specified node is an unindexed load.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ MO_TLSLDM_FLAG
MO_TLSLDM_FLAG - on AIX the ML relocation type is only valid for a reference to a TOC symbol from the...
@ MO_PIC_LO_FLAG
MO_PIC_LO_FLAG = MO_PIC_FLAG | MO_LO.
@ MO_TPREL_PCREL_FLAG
MO_TPREL_PCREL_FLAG = MO_PCREL_FLAG | MO_TPREL_FLAG.
@ MO_GOT_TPREL_PCREL_FLAG
MO_GOT_TPREL_PCREL_FLAG - A combintaion of flags, if these bits are set they should produce the reloc...
@ MO_GOT_PCREL_FLAG
MO_GOT_PCREL_FLAG = MO_PCREL_FLAG | MO_GOT_FLAG.
@ MO_TLSGDM_FLAG
MO_TLSGDM_FLAG - If this bit is set the symbol reference is relative to the region handle of TLS Gene...
@ MO_PCREL_FLAG
MO_PCREL_FLAG - If this bit is set, the symbol reference is relative to the current instruction addre...
@ MO_TLSLD_FLAG
MO_TLSLD_FLAG - If this bit is set the symbol reference is relative to TLS Local Dynamic model.
@ MO_TLS_PCREL_FLAG
MO_TPREL_PCREL_FLAG = MO_PCREL_FLAG | MO_TLS.
@ MO_PLT
On PPC, the 12 bits are not enough for all target operand flags.
@ MO_TLS
Symbol for VK_TLS fixup attached to an ADD instruction.
@ MO_TPREL_FLAG
MO_TPREL_FLAG - If this bit is set, the symbol reference is relative to the thread pointer and the sy...
@ MO_LO
MO_LO, MO_HA - lo16(symbol) and ha16(symbol)
@ MO_GOT_TLSLD_PCREL_FLAG
MO_GOT_TLSLD_PCREL_FLAG - A combintaion of flags, if these bits are set they should produce the reloc...
@ MO_PIC_HA_FLAG
MO_PIC_HA_FLAG = MO_PIC_FLAG | MO_HA.
@ MO_TLSGD_FLAG
MO_TLSGD_FLAG - If this bit is set the symbol reference is relative to TLS General Dynamic model for ...
@ MO_GOT_TLSGD_PCREL_FLAG
MO_GOT_TLSGD_PCREL_FLAG - A combintaion of flags, if these bits are set they should produce the reloc...
@ MO_PIC_FLAG
MO_PIC_FLAG - If this bit is set, the symbol reference is relative to the function's picbase,...
@ SEXT_LD_SPLAT
VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that sign-extends.
@ FCTIDUZ
Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for unsigned integers with round ...
@ ADDI_TLSGD_L_ADDR
G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSGD_L and GET_TLS_ADDR unti...
@ FSQRT
Square root instruction.
@ STRICT_FCFID
Constrained integer-to-floating-point conversion instructions.
@ DYNALLOC
The following two target-specific nodes are used for calls through function pointers in the 64-bit SV...
@ COND_BRANCH
CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This corresponds to the COND_BRANCH pseudo ...
@ TLSLD_AIX
[GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle) Op that requires a single input of the module handle ...
@ CALL_RM
The variants that implicitly define rounding mode for calls with strictfp semantics.
@ STORE_VEC_BE
CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
@ BDNZ
CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based loops.
@ MTVSRZ
Direct move from a GPR to a VSX register (zero)
@ SRL
These nodes represent PPC shifts.
@ VECINSERT
VECINSERT - The PPC vector insert instruction.
@ LXSIZX
GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an integer smaller than 64 bits into ...
@ FNMSUB
FNMSUB - Negated multiply-subtract instruction.
@ FCTIDZ
FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 operand, producing an f64 value...
@ GET_TLS_ADDR
x3 = GET_TLS_ADDR x3, Symbol - For the general-dynamic TLS model, produces a call to __tls_get_addr(s...
@ XXSPLTI32DX
XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
@ ANDI_rec_1_EQ_BIT
i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the eq or gt bit of CR0 after ex...
@ FRE
Reciprocal estimate instructions (unary FP ops).
@ ADDIS_GOT_TPREL_HA
G8RC = ADDIS_GOT_TPREL_HA x2, Symbol - Used by the initial-exec TLS model, produces an ADDIS8 instruc...
@ STORE_COND
CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr The store conditional instruction ST[BHWD]ARX that produces a...
@ SINT_VEC_TO_FP
Extract a subvector from signed integer vector and convert to FP.
@ EXTRACT_SPE
Extract SPE register component, second argument is high or low.
@ XXSWAPD
VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little endian.
@ ADDI_TLSLD_L_ADDR
G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSLD_L and GET_TLSLD_ADDR un...
@ ATOMIC_CMP_SWAP_8
ATOMIC_CMP_SWAP - the exact same as the target-independent nodes except they ensure that the compare ...
@ ST_VSR_SCAL_INT
Store scalar integers from VSR.
@ VCMP
RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* instructions.
@ BCTRL
CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a BCTRL instruction.
@ BUILD_SPE64
BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and EXTRACT_ELEMENT but take f64 arguments in...
@ LFIWZX
GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point load which zero-extends from a 32-bit inte...
@ RET_GLUE
Return with a glue operand, matched by 'blr'.
@ SCALAR_TO_VECTOR_PERMUTED
PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to place the value into the least sign...
@ EXTRACT_VSX_REG
EXTRACT_VSX_REG = Extract one of the underlying vsx registers of an accumulator or pair register.
@ STXSIX
STXSIX - The STXSI[bh]X instruction.
@ MAT_PCREL_ADDR
MAT_PCREL_ADDR = Materialize a PC Relative address.
@ MFOCRF
R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
@ XXSPLT
XXSPLT - The PPC VSX splat instructions.
@ TOC_ENTRY
GPRC = TOC_ENTRY GA, TOC Loads the entry for GA from the TOC, where the TOC base is given by the last...
@ XXPERMDI
XXPERMDI - The PPC XXPERMDI instruction.
@ ADDIS_DTPREL_HA
G8RC = ADDIS_DTPREL_HA x3, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction t...
@ ADD_TLS
G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec and local-exec TLS models,...
@ MTVSRA
Direct move from a GPR to a VSX register (algebraic)
@ VADD_SPLAT
VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded during instruction selection to optimi...
@ PPC32_GOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ ADDI_DTPREL_L
G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction ...
@ BCTRL_LOAD_TOC
CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl instruction and the TOC reload r...
@ PPC32_PICGOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ FCFID
FCFID - The FCFID instruction, taking an f64 operand and producing and f64 value containing the FP re...
@ CR6SET
ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
@ LBRX
GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a byte-swapping load instruction.
@ GET_TLS_MOD_AIX
x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model, produces a call to ....
@ SETBC
SETBC - The ISA 3.1 (P10) SETBC instruction.
@ LD_VSX_LH
VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a v2f32 value into the lower ha...
@ PROBED_ALLOCA
To avoid stack clash, allocation is performed by block and each block is probed.
@ XXMFACC
XXMFACC = This corresponds to the xxmfacc instruction.
@ ADDIS_TLSGD_HA
G8RC = ADDIS_TLSGD_HA x2, Symbol - For the general-dynamic TLS model, produces an ADDIS8 instruction ...
@ SETBCR
SETBCR - The ISA 3.1 (P10) SETBCR instruction.
@ ACC_BUILD
ACC_BUILD = Build an accumulator register from 4 VSX registers.
@ GlobalBaseReg
The result of the mflr at function entry, used for PIC code.
@ LXVD2X
VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
@ XSMAXC
XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
@ CALL
CALL - A direct function call.
@ MTCTR
CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a MTCTR instruction.
@ TC_RETURN
TC_RETURN - A tail call return.
@ STFIWX
STFIWX - The STFIWX instruction.
@ LD_SPLAT
VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory instructions such as LXVDSX,...
@ VCMP_rec
RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the altivec VCMP*_rec instructions.
@ MFFS
F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
@ VSRQ
VSRQ - The ISA 3.1 (P10) Vector Shift right quadword instruction.
@ PADDI_DTPREL
G8RC = PADDI_DTPREL x3, Symbol - For the pc-rel based local-dynamic TLS model, produces a PADDI8 inst...
@ BUILD_FP128
Direct move of 2 consecutive GPR to a VSX register.
@ VEXTS
VEXTS, ByteWidth - takes an input in VSFRC and produces an output in VSFRC that is sign-extended from...
@ TLS_LOCAL_EXEC_MAT_ADDR
TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address when using local exec access ...
@ VPERM
VPERM - The PPC VPERM Instruction.
@ ADDIS_TLSLD_HA
G8RC = ADDIS_TLSLD_HA x2, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction th...
@ XXSPLTI_SP_TO_DP
XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for converting immediate single prec...
@ GET_TLSLD_ADDR
x3 = GET_TLSLD_ADDR x3, Symbol - For the local-dynamic TLS model, produces a call to __tls_get_addr(s...
@ ADDI_TLSGD_L
x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS model, produces an ADDI8 instruction t...
@ DYNAREAOFFSET
This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to compute an offset from native ...
@ PAIR_BUILD
PAIR_BUILD = Build a vector pair register from 2 VSX registers.
@ STRICT_FADDRTZ
Constrained floating point add in round-to-zero mode.
@ FTSQRT
Test instruction for software square root.
@ FP_EXTEND_HALF
FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or lower (IDX=1) half of v4f32 to v2f6...
@ CMPB
The CMPB instruction (takes two operands of i32 or i64).
@ VECSHL
VECSHL - The PPC vector shift left instruction.
@ ADDI_TLSLD_L
x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction tha...
@ FADDRTZ
F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding towards zero.
@ ZEXT_LD_SPLAT
VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that zero-extends.
@ SRA_ADDZE
The combination of sra[wd]i and addze used to implemented signed integer division by a power of 2.
@ EXTSWSLI
EXTSWSLI = The PPC extswsli instruction, which does an extend-sign word and shift left immediate.
@ STXVD2X
CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
@ ADDC
These nodes represent PPC arithmetic operations with carry.
@ TLSGD_AIX
GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY Op that combines two re...
@ UINT_VEC_TO_FP
Extract a subvector from unsigned integer vector and convert to FP.
@ GET_TPOINTER
x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on 32-bit AIX, produces a call to ...
@ LXVRZX
LXVRZX - Load VSX Vector Rightmost and Zero Extend This node represents v1i128 BUILD_VECTOR of a zero...
@ FCFIDU
Newer FCFID[US] integer-to-floating-point conversion instructions for unsigned integers and single-pr...
@ FSEL
FSEL - Traditional three-operand fsel node.
@ SWAP_NO_CHAIN
An SDNode for swaps that are not associated with any loads/stores and thereby have no chain.
@ LOAD_VEC_BE
VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
@ LFIWAX
GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point load which sign-extends from a 32-bit inte...
@ LD_GOT_TPREL_L
G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec TLS model, produces a LD instruction ...
@ MFVSR
Direct move from a VSX register to a GPR.
@ TLS_DYNAMIC_MAT_PCREL_ADDR
TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for TLS global address when using dyna...
@ Hi
Hi/Lo - These represent the high and low 16-bit parts of a global address respectively.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG)
get_VSPLTI_elt - If this is a build_vector of constants which can be formed by using a vspltis[bhw] i...
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N)
isXXBRDShuffleMask - Return true if this is a shuffle mask suitable for a XXBRD instruction.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo)
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for a VRGH* instruction with the ...
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a VPKUDUM instruction.
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for a VMRGEW or VMRGOW instructi...
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N)
isXXBRQShuffleMask - Return true if this is a shuffle mask suitable for a XXBRQ instruction.
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N)
isXXBRWShuffleMask - Return true if this is a shuffle mask suitable for a XXBRW instruction.
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable for a XXPERMDI instruction.
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N)
isXXBRHShuffleMask - Return true if this is a shuffle mask suitable for a XXBRH instruction.
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG)
getSplatIdxForPPCMnemonics - Return the splat index as a value that is appropriate for PPC mnemonics ...
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable for a XXSLDWI instruction.
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift amount, otherwise return -1.
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for a VRGL* instruction with the ...
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE)
isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by the XXINSERTW instruction intr...
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize)
isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand specifies a splat of a singl...
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a VPKUWUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a VPKUHUM instruction.
@ Define
Register definition.
Reg
All possible values of the reg field in the ModR/M byte.
@ XTY_ER
External reference.
initializer< Ty > init(const Ty &Val)
constexpr uint64_t PointerSize
aarch64 pointer size.
NodeAddr< FuncNode * > Func
LLVM_ABI const_iterator end(StringRef path LLVM_LIFETIME_BOUND)
Get end iterator over path.
This is an optimization pass for GlobalISel generic memory operations.
static bool isIndirectCall(const MachineInstr &MI)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat)
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
bool isIntS16Immediate(SDNode *N, int16_t &Imm)
isIntS16Immediate - This method tests to see if the node is either a 32-bit or 64-bit immediate,...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
static bool isRunOfOnes64(uint64_t Val, unsigned &MB, unsigned &ME)
bool RetCC_PPC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
bool CC_PPC64_ELF(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
unsigned M1(unsigned Val)
bool isReleaseOrStronger(AtomicOrdering AO)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool convertToNonDenormSingle(APInt &ArgAPInt)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool CC_PPC32_SVR4_ByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
bool CC_PPC32_SVR4(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
bool RetCC_PPC_Cold(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
@ Success
The lock was released successfully.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Mod
The access may modify the value stored in memory.
bool isIntS34Immediate(SDNode *N, int64_t &Imm)
isIntS34Immediate - This method tests if value of node given can be accurately represented as a sign ...
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
bool isPhysRegUsedAfter(Register Reg, MachineBasicBlock::iterator MBI)
Check if physical register Reg is used after MBI.
unsigned M0(unsigned Val)
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr int32_t SignExtend32(uint32_t X)
Sign-extend the number in the bottom B bits of X to a 32-bit integer.
constexpr unsigned BitWidth
bool CC_PPC32_SVR4_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME)
Returns true iff Val consists of one contiguous run of 1s with any number of 0s on either side.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
static const unsigned PerfectShuffleTable[6561+1]
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This is used by foldLoadsRecursive() to capture a Root Load node which is of type or(load,...
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI const fltSemantics & PPCDoubleDouble() LLVM_READNONE
static constexpr roundingMode rmTowardZero
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
Represent subnormal handling kind for floating point instruction inputs and outputs.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
unsigned getByValSize() const
void setByValSize(unsigned S)
Align getNonZeroByValAlign() const
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Structure that collects some common arguments that get passed around between the functions for call l...
const CallingConv::ID CallConv
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This contains information for each constraint that we are lowering.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isAfterLegalizeDAG() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)