LLVM 22.0.0git
PPCISelLowering.h
Go to the documentation of this file.
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that PPC uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16
17#include "PPCInstrInfo.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Type.h"
32#include <optional>
33#include <utility>
34
35namespace llvm {
36
37 namespace PPCISD {
38
39 // When adding a NEW PPCISD node please add it to the correct position in
40 // the enum. The order of elements in this enum matters!
41 // Values that are added between FIRST_MEMORY_OPCODE and LAST_MEMORY_OPCODE
42 // are considered memory opcodes and are treated differently than other
43 // entries.
44 enum NodeType : unsigned {
45 // Start the numbering where the builtin ops and target ops leave off.
47
48 /// FSEL - Traditional three-operand fsel node.
49 ///
51
52 /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
55
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
60
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
66
67 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
68 /// operand, producing an f64 value containing the integer representation
69 /// of that FP value.
72
73 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
74 /// unsigned integers with round toward zero.
77
78 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
79 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
81
82 /// Reciprocal estimate instructions (unary FP ops).
85
86 /// Test instruction for software square root.
88
89 /// Square root instruction.
91
92 /// VPERM - The PPC VPERM Instruction.
93 ///
95
96 /// XXSPLT - The PPC VSX splat instructions
97 ///
99
100 /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
101 /// converting immediate single precision numbers to double precision
102 /// vector or scalar.
104
105 /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
106 ///
108
109 /// VECINSERT - The PPC vector insert instruction
110 ///
112
113 /// VECSHL - The PPC vector shift left instruction
114 ///
116
117 /// XXPERMDI - The PPC XXPERMDI instruction
118 ///
121
122 /// The CMPB instruction (takes two operands of i32 or i64).
124
125 /// Hi/Lo - These represent the high and low 16-bit parts of a global
126 /// address respectively. These nodes have two operands, the first of
127 /// which must be a TargetGlobalAddress, and the second of which must be a
128 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
129 /// though these are usually folded into other nodes.
132
133 /// The following two target-specific nodes are used for calls through
134 /// function pointers in the 64-bit SVR4 ABI.
135
136 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
137 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
138 /// compute an allocation on the stack.
140
141 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
142 /// compute an offset from native SP to the address of the most recent
143 /// dynamic alloca.
145
146 /// To avoid stack clash, allocation is performed by block and each block is
147 /// probed.
149
150 /// The result of the mflr at function entry, used for PIC code.
152
153 /// These nodes represent PPC shifts.
154 ///
155 /// For scalar types, only the last `n + 1` bits of the shift amounts
156 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
157 /// for exact behaviors.
158 ///
159 /// For vector types, only the last n bits are used. See vsld.
163
164 /// These nodes represent PPC arithmetic operations with carry.
169
170 /// FNMSUB - Negated multiply-subtract instruction.
172
173 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
174 /// word and shift left immediate.
176
177 /// The combination of sra[wd]i and addze used to implemented signed
178 /// integer division by a power of 2. The first operand is the dividend,
179 /// and the second is the constant shift amount (representing the
180 /// divisor).
182
183 /// CALL - A direct function call.
184 /// CALL_NOP is a call with the special NOP which follows 64-bit
185 /// CALL_NOTOC the caller does not use the TOC.
186 /// SVR4 calls and 32-bit/64-bit AIX calls.
190
191 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
192 /// MTCTR instruction.
194
195 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
196 /// BCTRL instruction.
198
199 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
200 /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
201 /// and 64-bit AIX.
203
204 /// The variants that implicitly define rounding mode for calls with
205 /// strictfp semantics.
211
212 /// Return with a glue operand, matched by 'blr'
214
215 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
216 /// This copies the bits corresponding to the specified CRREG into the
217 /// resultant GPR. Bits corresponding to other CR regs are undefined.
219
220 /// Direct move from a VSX register to a GPR
222
223 /// Direct move from a GPR to a VSX register (algebraic)
225
226 /// Direct move from a GPR to a VSX register (zero)
228
229 /// Direct move of 2 consecutive GPR to a VSX register.
231
232 /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
233 /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
234 /// unsupported for this target.
235 /// Merge 2 GPRs to a single SPE register.
237
238 /// Extract SPE register component, second argument is high or low.
240
241 /// Extract a subvector from signed integer vector and convert to FP.
242 /// It is primarily used to convert a (widened) illegal integer vector
243 /// type to a legal floating point vector type.
244 /// For example v2i32 -> widened to v4i32 -> v2f64
246
247 /// Extract a subvector from unsigned integer vector and convert to FP.
248 /// As with SINT_VEC_TO_FP, used for converting illegal types.
250
251 /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
252 /// place the value into the least significant element of the most
253 /// significant doubleword in the vector. This is not element zero for
254 /// anything smaller than a doubleword on either endianness. This node has
255 /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
256 /// the aforementioned location in the vector register.
258
259 // FIXME: Remove these once the ANDI glue bug is fixed:
260 /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
261 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
262 /// implement truncation of i32 or i64 to i1.
265
266 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
267 // target (returns (Lo, Hi)). It takes a chain operand.
269
270 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
272
273 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
275
276 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
277 /// instructions. For lack of better number, we use the opcode number
278 /// encoding for the OPC field to identify the compare. For example, 838
279 /// is VCMPGTSH.
281
282 /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
283 /// altivec VCMP*_rec instructions. For lack of better number, we use the
284 /// opcode number encoding for the OPC field to identify the compare. For
285 /// example, 838 is VCMPGTSH.
287
288 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
289 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
290 /// condition register to branch on, OPC is the branch opcode to use (e.g.
291 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
292 /// an optional input flag argument.
294
295 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
296 /// loops.
299
300 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
301 /// towards zero. Used only as part of the long double-to-int
302 /// conversion sequence.
304
305 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
307
308 /// TC_RETURN - A tail call return.
309 /// operand #0 chain
310 /// operand #1 callee (register or absolute)
311 /// operand #2 stack adjustment
312 /// operand #3 optional in flag
314
315 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
318
319 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
320 /// for non-position independent code on PPC32.
322
323 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
324 /// local dynamic TLS and position indendepent code on PPC32.
326
327 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
328 /// TLS model, produces an ADDIS8 instruction that adds the GOT
329 /// base to sym\@got\@tprel\@ha.
331
332 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
333 /// TLS model, produces a LD instruction with base register G8RReg
334 /// and offset sym\@got\@tprel\@l. This completes the addition that
335 /// finds the offset of "sym" relative to the thread pointer.
337
338 /// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec
339 /// and local-exec TLS models, produces an ADD instruction that adds
340 /// the contents of G8RReg to the thread pointer. Symbol contains a
341 /// relocation sym\@tls which is to be replaced by the thread pointer
342 /// and identifies to the linker that the instruction is part of a
343 /// TLS sequence.
345
346 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
347 /// model, produces an ADDIS8 instruction that adds the GOT base
348 /// register to sym\@got\@tlsgd\@ha.
350
351 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
352 /// model, produces an ADDI8 instruction that adds G8RReg to
353 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
354 /// ADDIS_TLSGD_L_ADDR until after register assignment.
356
357 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
358 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
359 /// ADDIS_TLSGD_L_ADDR until after register assignment.
361
362 /// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on
363 /// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread
364 /// pointer. At the end of the call, the thread pointer is found in R3.
366
367 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
368 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
369 /// register assignment.
371
372 /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
373 /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
374 /// Op that combines two register copies of TOC entries
375 /// (region handle into R3 and variable offset into R4) followed by a
376 /// GET_TLS_ADDR node which will be expanded to a call to .__tls_get_addr.
377 /// This node is used in 64-bit mode as well (in which case the result is
378 /// G8RC and inputs are X3/X4).
380
381 /// %x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model,
382 /// produces a call to .__tls_get_mod(_$TLSML\@ml).
384
385 /// [GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle)
386 /// Op that requires a single input of the module handle TOC entry in R3,
387 /// and generates a GET_TLS_MOD_AIX node which will be expanded into a call
388 /// to .__tls_get_mod. This node is used in both 32-bit and 64-bit modes.
389 /// The only difference is the register class.
391
392 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
393 /// model, produces an ADDIS8 instruction that adds the GOT base
394 /// register to sym\@got\@tlsld\@ha.
396
397 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
398 /// model, produces an ADDI8 instruction that adds G8RReg to
399 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
400 /// ADDIS_TLSLD_L_ADDR until after register assignment.
402
403 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
404 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
405 /// ADDIS_TLSLD_L_ADDR until after register assignment.
407
408 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
409 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
410 /// following register assignment.
412
413 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
414 /// model, produces an ADDIS8 instruction that adds X3 to
415 /// sym\@dtprel\@ha.
417
418 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
419 /// model, produces an ADDI8 instruction that adds G8RReg to
420 /// sym\@got\@dtprel\@l.
422
423 /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
424 /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
426
427 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
428 /// during instruction selection to optimize a BUILD_VECTOR into
429 /// operations on splats. This is necessary to avoid losing these
430 /// optimizations due to constant folding.
432
433 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
434 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
435 /// or stxvd2x instruction. The chain is necessary because the
436 /// sequence replaces a load and needs to provide the same number
437 /// of outputs.
439
440 /// An SDNode for swaps that are not associated with any loads/stores
441 /// and thereby have no chain.
443
444 /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
445 /// lower (IDX=1) half of v4f32 to v2f64.
447
448 /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
449 /// either through an add like PADDI or through a PC Relative load like
450 /// PLD.
452
453 /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
454 /// TLS global address when using dynamic access models. This can be done
455 /// through an add like PADDI.
457
458 /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
459 /// when using local exec access models, and when prefixed instructions are
460 /// available. This is used with ADD_TLS to produce an add like PADDI.
462
463 /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
465
466 /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
468
469 /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
470 /// an accumulator or pair register. This node is needed because
471 /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
472 /// element type.
474
475 /// XXMFACC = This corresponds to the xxmfacc instruction.
477
478 // Constrained conversion from floating point to int
484
485 /// Constrained integer-to-floating-point conversion instructions.
490
491 /// Constrained floating point add in round-to-zero mode.
494
495 /// SETBC - The ISA 3.1 (P10) SETBC instruction.
497
498 /// SETBCR - The ISA 3.1 (P10) SETBCR instruction.
500
501 // NOTE: The nodes below may require PC-Rel specific patterns if the
502 // address could be PC-Relative. When adding new nodes below, consider
503 // whether or not the address can be PC-Relative and add the corresponding
504 // PC-relative patterns and tests.
505
506 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
507 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
508 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
509 /// i32.
512
513 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
514 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
515 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
516 /// or i32.
518
519 /// STFIWX - The STFIWX instruction. The first operand is an input token
520 /// chain, then an f64 value to store, then an address to store it to.
522
523 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
524 /// load which sign-extends from a 32-bit integer value into the
525 /// destination 64-bit register.
527
528 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
529 /// load which zero-extends from a 32-bit integer value into the
530 /// destination 64-bit register.
532
533 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
534 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
535 /// This can be used for converting loaded integers to floating point.
537
538 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
539 /// chain, then an f64 value to store, then an address to store it to,
540 /// followed by a byte-width for the store.
542
543 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
544 /// Maps directly to an lxvd2x instruction that will be followed by
545 /// an xxswapd.
547
548 /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
549 /// This node represents v1i128 BUILD_VECTOR of a zero extending load
550 /// instruction from <byte, halfword, word, or doubleword> to i128.
551 /// Allows utilization of the Load VSX Vector Rightmost Instructions.
553
554 /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
555 /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
556 /// the vector type to load vector in big-endian element order.
558
559 /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
560 /// v2f32 value into the lower half of a VSR register.
562
563 /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
564 /// instructions such as LXVDSX, LXVWSX.
566
567 /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
568 /// that zero-extends.
570
571 /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
572 /// that sign-extends.
574
575 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
576 /// Maps directly to an stxvd2x instruction that will be preceded by
577 /// an xxswapd.
579
580 /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
581 /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
582 /// the vector type to store vector in big-endian element order.
584
585 /// Store scalar integers from VSR.
587
588 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
589 /// except they ensure that the compare input is zero-extended for
590 /// sub-word versions because the atomic loads zero-extend.
593
594 /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
595 /// The store conditional instruction ST[BHWD]ARX that produces a glue
596 /// result to attach it to a conditional branch.
598
599 /// GPRC = TOC_ENTRY GA, TOC
600 /// Loads the entry for GA from the TOC, where the TOC base is given by
601 /// the last operand.
604 };
605
606 } // end namespace PPCISD
607
608 /// Define some predicates that are used for node matching.
609 namespace PPC {
610
611 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
612 /// VPKUHUM instruction.
613 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
614 SelectionDAG &DAG);
615
616 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
617 /// VPKUWUM instruction.
618 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
619 SelectionDAG &DAG);
620
621 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
622 /// VPKUDUM instruction.
623 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
624 SelectionDAG &DAG);
625
626 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
627 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
628 bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
629 unsigned ShuffleKind, SelectionDAG &DAG);
630
631 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
632 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
633 bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
634 unsigned ShuffleKind, SelectionDAG &DAG);
635
636 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
637 /// a VMRGEW or VMRGOW instruction
638 bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
639 unsigned ShuffleKind, SelectionDAG &DAG);
640 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
641 /// for a XXSLDWI instruction.
642 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
643 bool &Swap, bool IsLE);
644
645 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
646 /// for a XXBRH instruction.
647 bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
648
649 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
650 /// for a XXBRW instruction.
651 bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
652
653 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
654 /// for a XXBRD instruction.
655 bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
656
657 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
658 /// for a XXBRQ instruction.
659 bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
660
661 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
662 /// for a XXPERMDI instruction.
663 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
664 bool &Swap, bool IsLE);
665
666 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
667 /// shift amount, otherwise return -1.
668 int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
669 SelectionDAG &DAG);
670
671 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
672 /// specifies a splat of a single element that is suitable for input to
673 /// VSPLTB/VSPLTH/VSPLTW.
674 bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
675
676 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
677 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
678 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
679 /// vector into the other. This function will also set a couple of
680 /// output parameters for how much the source vector needs to be shifted and
681 /// what byte number needs to be specified for the instruction to put the
682 /// element in the desired location of the target vector.
683 bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
684 unsigned &InsertAtByte, bool &Swap, bool IsLE);
685
686 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
687 /// appropriate for PPC mnemonics (which have a big endian bias - namely
688 /// elements are counted from the left of the vector register).
689 unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
690 SelectionDAG &DAG);
691
692 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
693 /// formed by using a vspltis[bhw] instruction of the specified element
694 /// size, return the constant being splatted. The ByteSize field indicates
695 /// the number of bytes of each element [124] -> [bhw].
696 SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
697
698 // Flags for computing the optimal addressing mode for loads and stores.
701
702 // Extension mode for integer loads.
704 MOF_ZExt = 1 << 1,
705 MOF_NoExt = 1 << 2,
706
707 // Address computation flags.
708 MOF_NotAddNorCst = 1 << 5, // Not const. or sum of ptr and scalar.
709 MOF_RPlusSImm16 = 1 << 6, // Reg plus signed 16-bit constant.
710 MOF_RPlusLo = 1 << 7, // Reg plus signed 16-bit relocation
711 MOF_RPlusSImm16Mult4 = 1 << 8, // Reg plus 16-bit signed multiple of 4.
712 MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
713 MOF_RPlusSImm34 = 1 << 10, // Reg plus 34-bit signed constant.
714 MOF_RPlusR = 1 << 11, // Sum of two variables.
715 MOF_PCRel = 1 << 12, // PC-Relative relocation.
716 MOF_AddrIsSImm32 = 1 << 13, // A simple 32-bit constant.
717
718 // The in-memory type.
719 MOF_SubWordInt = 1 << 15,
720 MOF_WordInt = 1 << 16,
722 MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
723 MOF_Vector = 1 << 19, // Vector types and quad precision scalars.
724 MOF_Vector256 = 1 << 20,
725
726 // Subtarget features.
730 MOF_SubtargetSPE = 1 << 25
731 };
732
733 // The addressing modes for loads and stores.
734 enum AddrMode {
742 };
743 } // end namespace PPC
744
746 const PPCSubtarget &Subtarget;
747
748 public:
749 explicit PPCTargetLowering(const PPCTargetMachine &TM,
750 const PPCSubtarget &STI);
751
752 /// getTargetNodeName() - This method returns the name of a target specific
753 /// DAG node.
754 const char *getTargetNodeName(unsigned Opcode) const override;
755
756 bool isSelectSupported(SelectSupportKind Kind) const override {
757 // PowerPC does not support scalar condition selects on vectors.
759 }
760
761 /// getPreferredVectorAction - The code we generate when vector types are
762 /// legalized by promoting the integer element type is often much worse
763 /// than code we generate if we widen the type for applicable vector types.
764 /// The issue with promoting is that the vector is scalaraized, individual
765 /// elements promoted and then the vector is rebuilt. So say we load a pair
766 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
767 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
768 /// then the VPERM for the shuffle. All in all a very slow sequence.
770 const override {
771 // Default handling for scalable and single-element vectors.
772 if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
774
775 // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
776 // types as those are only for MMA instructions.
777 if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
778 return TypeSplitVector;
779 if (VT.getScalarSizeInBits() == 1)
780 return TypePromoteInteger;
781
782 // Widen vectors that have reasonably sized elements.
783 if (VT.getScalarSizeInBits() % 8 == 0)
784 return TypeWidenVector;
786 }
787
788 bool useSoftFloat() const override;
789
790 bool hasSPE() const;
791
792 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
793 return MVT::i32;
794 }
795
796 bool isCheapToSpeculateCttz(Type *Ty) const override {
797 return true;
798 }
799
800 bool isCheapToSpeculateCtlz(Type *Ty) const override {
801 return true;
802 }
803
804 bool
806 unsigned ElemSizeInBits,
807 unsigned &Index) const override;
808
809 bool isCtlzFast() const override {
810 return true;
811 }
812
813 bool isEqualityCmpFoldedWithSignedCmp() const override {
814 return false;
815 }
816
817 bool hasAndNotCompare(SDValue) const override {
818 return true;
819 }
820
821 bool preferIncOfAddToSubOfNot(EVT VT) const override;
822
823 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
824 return VT.isScalarInteger();
825 }
826
828 bool OptForSize, NegatibleCost &Cost,
829 unsigned Depth = 0) const override;
830
831 /// getSetCCResultType - Return the ISD::SETCC ValueType
833 EVT VT) const override;
834
835 /// Return true if target always benefits from combining into FMA for a
836 /// given value type. This must typically return false on targets where FMA
837 /// takes more cycles to execute than FADD.
838 bool enableAggressiveFMAFusion(EVT VT) const override;
839
840 /// getPreIndexedAddressParts - returns true by value, base pointer and
841 /// offset pointer and addressing mode by reference if the node's address
842 /// can be legally represented as pre-indexed load / store address.
846 SelectionDAG &DAG) const override;
847
848 /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
849 /// it can be more efficiently represented as [r+imm].
851 SelectionDAG &DAG) const;
852
853 /// SelectAddressRegReg - Given the specified addressed, check to see if it
854 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
855 /// is non-zero, only accept displacement which is not suitable for [r+imm].
856 /// Returns false if it can be represented by [r+imm], which are preferred.
858 SelectionDAG &DAG,
859 MaybeAlign EncodingAlignment = std::nullopt) const;
860
861 /// SelectAddressRegImm - Returns true if the address N can be represented
862 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
863 /// is not better represented as reg+reg. If \p EncodingAlignment is
864 /// non-zero, only accept displacements suitable for instruction encoding
865 /// requirement, i.e. multiples of 4 for DS form.
867 SelectionDAG &DAG,
868 MaybeAlign EncodingAlignment) const;
870 SelectionDAG &DAG) const;
871
872 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
873 /// represented as an indexed [r+r] operation.
875 SelectionDAG &DAG) const;
876
877 /// SelectAddressPCRel - Represent the specified address as pc relative to
878 /// be represented as [pc+imm]
880
882
883 /// LowerOperation - Provide custom lowering hooks for some operations.
884 ///
885 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
886
887 /// ReplaceNodeResults - Replace the results of node with an illegal result
888 /// type with new values built out of custom code.
889 ///
891 SelectionDAG &DAG) const override;
892
893 SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
894 SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
895
896 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
897
898 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
899 SmallVectorImpl<SDNode *> &Created) const override;
900
901 Register getRegisterByName(const char* RegName, LLT VT,
902 const MachineFunction &MF) const override;
903
905 KnownBits &Known,
906 const APInt &DemandedElts,
907 const SelectionDAG &DAG,
908 unsigned Depth = 0) const override;
909
910 Align getPrefLoopAlignment(MachineLoop *ML) const override;
911
912 bool shouldInsertFencesForAtomic(const Instruction *I) const override {
913 return true;
914 }
915
916 Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr,
917 AtomicOrdering Ord) const override;
918
920 AtomicOrdering Ord) const override;
921
923 AtomicOrdering Ord) const override;
925 AtomicOrdering Ord) const override;
926
927 bool shouldInlineQuadwordAtomics() const;
928
930 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
931
934
936 AtomicRMWInst *AI, Value *AlignedAddr,
937 Value *Incr, Value *Mask,
938 Value *ShiftAmt,
939 AtomicOrdering Ord) const override;
942 Value *AlignedAddr, Value *CmpVal,
943 Value *NewVal, Value *Mask,
944 AtomicOrdering Ord) const override;
945
948 MachineBasicBlock *MBB) const override;
951 unsigned AtomicSize,
952 unsigned BinOpcode,
953 unsigned CmpOpcode = 0,
954 unsigned CmpPred = 0) const;
957 bool is8bit,
958 unsigned Opcode,
959 unsigned CmpOpcode = 0,
960 unsigned CmpPred = 0) const;
961
963 MachineBasicBlock *MBB) const;
964
966 MachineBasicBlock *MBB) const;
967
969 MachineBasicBlock *MBB) const;
970
971 bool hasInlineStackProbe(const MachineFunction &MF) const override;
972
973 unsigned getStackProbeSize(const MachineFunction &MF) const;
974
975 ConstraintType getConstraintType(StringRef Constraint) const override;
976
977 /// Examine constraint string and operand type and determine a weight value.
978 /// The operand object must already have been set up with the operand type.
980 AsmOperandInfo &info, const char *constraint) const override;
981
982 std::pair<unsigned, const TargetRegisterClass *>
984 StringRef Constraint, MVT VT) const override;
985
986 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
987 /// function arguments in the caller parameter area.
988 Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override;
989
990 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
991 /// vector. If it is invalid, don't add anything to Ops.
993 std::vector<SDValue> &Ops,
994 SelectionDAG &DAG) const override;
995
997 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
998 if (ConstraintCode == "es")
1000 else if (ConstraintCode == "Q")
1002 else if (ConstraintCode == "Z")
1004 else if (ConstraintCode == "Zy")
1006 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1007 }
1008
1011 SelectionDAG &DAG) const override;
1012
1013 /// isLegalAddressingMode - Return true if the addressing mode represented
1014 /// by AM is legal for this target, for a load/store of the specified type.
1015 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1016 Type *Ty, unsigned AS,
1017 Instruction *I = nullptr) const override;
1018
1019 /// isLegalICmpImmediate - Return true if the specified immediate is legal
1020 /// icmp immediate, that is the target has icmp instructions which can
1021 /// compare a register against the immediate without having to materialize
1022 /// the immediate into a register.
1023 bool isLegalICmpImmediate(int64_t Imm) const override;
1024
1025 /// isLegalAddImmediate - Return true if the specified immediate is legal
1026 /// add immediate, that is the target has add instructions which can
1027 /// add a register and the immediate without having to materialize
1028 /// the immediate into a register.
1029 bool isLegalAddImmediate(int64_t Imm) const override;
1030
1031 /// isTruncateFree - Return true if it's free to truncate a value of
1032 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1033 /// register X1 to i32 by referencing its sub-register R1.
1034 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1035 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1036
1037 bool isZExtFree(SDValue Val, EVT VT2) const override;
1038
1039 bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1040
1041 /// Returns true if it is beneficial to convert a load of a constant
1042 /// to just the constant itself.
1044 Type *Ty) const override;
1045
1046 bool convertSelectOfConstantsToMath(EVT VT) const override {
1047 return true;
1048 }
1049
1050 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1051 SDValue C) const override;
1052
1054 EVT VT) const override {
1055 // Only handle float load/store pair because float(fpr) load/store
1056 // instruction has more cycles than integer(gpr) load/store in PPC.
1057 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1058 return false;
1059 if (VT != MVT::f32 && VT != MVT::f64)
1060 return false;
1061
1062 return true;
1063 }
1064
1065 // Returns true if the address of the global is stored in TOC entry.
1066 bool isAccessedAsGotIndirect(SDValue N) const;
1067
1068 bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1069
1070 bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1071 const CallInst &I,
1072 MachineFunction &MF,
1073 unsigned Intrinsic) const override;
1074
1075 /// It returns EVT::Other if the type should be determined using generic
1076 /// target-independent logic.
1077 EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op,
1078 const AttributeList &FuncAttributes) const override;
1079
1080 /// Is unaligned memory access allowed for the given type, and is it fast
1081 /// relative to software emulation.
1083 EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1085 unsigned *Fast = nullptr) const override;
1086
1087 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1088 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1089 /// expanded to FMAs when this method returns true, otherwise fmuladd is
1090 /// expanded to fmul + fadd.
1092 EVT VT) const override;
1093
1094 bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1095
1096 /// isProfitableToHoist - Check if it is profitable to hoist instruction
1097 /// \p I to its dominator block.
1098 /// For example, it is not profitable if \p I and it's only user can form a
1099 /// FMA instruction, because Powerpc prefers FMADD.
1100 bool isProfitableToHoist(Instruction *I) const override;
1101
1102 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1103
1104 // Should we expand the build vector with shuffles?
1105 bool
1107 unsigned DefinedValues) const override;
1108
1109 // Keep the zero-extensions for arguments to libcalls.
1110 bool shouldKeepZExtForFP16Conv() const override { return true; }
1111
1112 /// createFastISel - This method returns a target-specific FastISel object,
1113 /// or null if the target does not support "fast" instruction selection.
1115 const TargetLibraryInfo *LibInfo) const override;
1116
1117 /// Returns true if an argument of type Ty needs to be passed in a
1118 /// contiguous block of registers in calling convention CallConv.
1120 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1121 const DataLayout &DL) const override {
1122 // We support any array type as "consecutive" block in the parameter
1123 // save area. The element type defines the alignment requirement and
1124 // whether the argument should go in GPRs, FPRs, or VRs if available.
1125 //
1126 // Note that clang uses this capability both to implement the ELFv2
1127 // homogeneous float/vector aggregate ABI, and to avoid having to use
1128 // "byval" when passing aggregates that might fully fit in registers.
1129 return Ty->isArrayTy();
1130 }
1131
1132 /// If a physical register, this returns the register that receives the
1133 /// exception address on entry to an EH pad.
1134 Register
1135 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1136
1137 /// If a physical register, this returns the register that receives the
1138 /// exception typeid on entry to a landing pad.
1139 Register
1140 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1141
1142 /// Override to support customized stack guard loading.
1143 bool useLoadStackGuardNode(const Module &M) const override;
1144
1145 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1146 bool ForCodeSize) const override;
1147
1148 unsigned getJumpTableEncoding() const override;
1149 bool isJumpTableRelative() const override;
1151 SelectionDAG &DAG) const override;
1153 unsigned JTI,
1154 MCContext &Ctx) const override;
1155
1156 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1157 /// compute the address flags of the node, get the optimal address mode
1158 /// based on the flags, and set the Base and Disp based on the address mode.
1160 SDValue &Disp, SDValue &Base,
1161 SelectionDAG &DAG,
1162 MaybeAlign Align) const;
1163 /// SelectForceXFormMode - Given the specified address, force it to be
1164 /// represented as an indexed [r+r] operation (an XForm instruction).
1166 SelectionDAG &DAG) const;
1167
1169 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1170 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1171 const override;
1172 /// Structure that collects some common arguments that get passed around
1173 /// between the functions for call lowering.
1174 struct CallFlags {
1176 const bool IsTailCall : 1;
1177 const bool IsVarArg : 1;
1178 const bool IsPatchPoint : 1;
1179 const bool IsIndirect : 1;
1180 const bool HasNest : 1;
1181 const bool NoMerge : 1;
1182
1184 bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1188 };
1189
1191 bool IsVarArg) const;
1192 bool supportsTailCallFor(const CallBase *CB) const;
1193
1194 bool hasMultipleConditionRegisters(EVT VT) const override;
1195
1196 private:
1197 struct ReuseLoadInfo {
1198 SDValue Ptr;
1199 SDValue Chain;
1200 SDValue ResChain;
1202 bool IsDereferenceable = false;
1203 bool IsInvariant = false;
1204 Align Alignment;
1205 AAMDNodes AAInfo;
1206 const MDNode *Ranges = nullptr;
1207
1208 ReuseLoadInfo() = default;
1209
1210 MachineMemOperand::Flags MMOFlags() const {
1212 if (IsDereferenceable)
1214 if (IsInvariant)
1216 return F;
1217 }
1218 };
1219
1220 // Map that relates a set of common address flags to PPC addressing modes.
1221 std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1222 void initializeAddrModeMap();
1223
1224 bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1225 SelectionDAG &DAG,
1227
1228 void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1229 SelectionDAG &DAG, const SDLoc &dl) const;
1230 SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1231 const SDLoc &dl) const;
1232
1233 bool directMoveIsProfitable(const SDValue &Op) const;
1234 SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1235 const SDLoc &dl) const;
1236
1237 SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1238 const SDLoc &dl) const;
1239
1240 SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1241
1242 SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1243 SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1244
1245 bool IsEligibleForTailCallOptimization(
1246 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1247 CallingConv::ID CallerCC, bool isVarArg,
1248 const SmallVectorImpl<ISD::InputArg> &Ins) const;
1249
1250 bool IsEligibleForTailCallOptimization_64SVR4(
1251 const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1252 CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
1253 const SmallVectorImpl<ISD::OutputArg> &Outs,
1254 const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
1255 bool isCalleeExternalSymbol) const;
1256
1257 bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1258 CallingConv::ID CallerCC, const CallBase *CB,
1259 bool isVarArg,
1260 const SmallVectorImpl<ISD::OutputArg> &Outs,
1261 const SmallVectorImpl<ISD::InputArg> &Ins,
1262 const Function *CallerFunc,
1263 bool isCalleeExternalSymbol) const;
1264
1265 SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1266 SDValue Chain, SDValue &LROpOut,
1267 SDValue &FPOpOut,
1268 const SDLoc &dl) const;
1269
1270 SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1271
1272 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1273 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1274 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1275 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1276 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1277 SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1278 SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1279 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1280 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1281 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1282 SDValue LowerSSUBO(SDValue Op, SelectionDAG &DAG) const;
1283 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1284 SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1285 SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1286 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1287 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1288 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1289 SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1290 SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1291 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1292 SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1293 SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1294 SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1295 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1296 SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1297 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1298 const SDLoc &dl) const;
1299 SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1300 SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1301 SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1302 SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1303 SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1304 SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1305 SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1306 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1307 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1308 SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1309 EVT VT, SDValue V1, SDValue V2) const;
1310 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1311 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1312 SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1313 SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1314 SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1315 SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
1316 SDValue LowerADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const;
1317 SDValue LowerADDSUBO(SDValue Op, SelectionDAG &DAG) const;
1318 SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1319 SelectionDAG &DAG) const;
1320 SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1321 const char *LibCallDoubleName, SDValue Op,
1322 SelectionDAG &DAG) const;
1323 bool isLowringToMASSFiniteSafe(SDValue Op) const;
1324 bool isLowringToMASSSafe(SDValue Op) const;
1325 bool isScalarMASSConversionEnabled() const;
1326 SDValue lowerLibCallBase(const char *LibCallDoubleName,
1327 const char *LibCallFloatName,
1328 const char *LibCallDoubleNameFinite,
1329 const char *LibCallFloatNameFinite, SDValue Op,
1330 SelectionDAG &DAG) const;
1331 SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1332 SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1333 SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1334 SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1335 SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1336 SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1337 SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1338 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1339 SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1340 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1341 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1342 SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1343
1344 SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1345 SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1346 SDValue LowerDMFVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1347 SDValue LowerDMFVectorStore(SDValue Op, SelectionDAG &DAG) const;
1348 SDValue DMFInsert1024(const SmallVectorImpl<SDValue> &Pairs,
1349 const SDLoc &dl, SelectionDAG &DAG) const;
1350
1351 SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1352 CallingConv::ID CallConv, bool isVarArg,
1353 const SmallVectorImpl<ISD::InputArg> &Ins,
1354 const SDLoc &dl, SelectionDAG &DAG,
1355 SmallVectorImpl<SDValue> &InVals) const;
1356
1357 SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1358 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1359 SDValue InGlue, SDValue Chain, SDValue CallSeqStart,
1360 SDValue &Callee, int SPDiff, unsigned NumBytes,
1361 const SmallVectorImpl<ISD::InputArg> &Ins,
1362 SmallVectorImpl<SDValue> &InVals,
1363 const CallBase *CB) const;
1364
1365 SDValue
1366 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1367 const SmallVectorImpl<ISD::InputArg> &Ins,
1368 const SDLoc &dl, SelectionDAG &DAG,
1369 SmallVectorImpl<SDValue> &InVals) const override;
1370
1371 SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1372 SmallVectorImpl<SDValue> &InVals) const override;
1373
1374 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1375 bool isVarArg,
1376 const SmallVectorImpl<ISD::OutputArg> &Outs,
1377 LLVMContext &Context, const Type *RetTy) const override;
1378
1379 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1380 const SmallVectorImpl<ISD::OutputArg> &Outs,
1381 const SmallVectorImpl<SDValue> &OutVals,
1382 const SDLoc &dl, SelectionDAG &DAG) const override;
1383
1384 SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1385 SelectionDAG &DAG, SDValue ArgVal,
1386 const SDLoc &dl) const;
1387
1388 SDValue LowerFormalArguments_AIX(
1389 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1390 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1391 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1392 SDValue LowerFormalArguments_64SVR4(
1393 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1394 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1395 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1396 SDValue LowerFormalArguments_32SVR4(
1397 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1398 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1399 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1400
1401 SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1402 SDValue CallSeqStart,
1403 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1404 const SDLoc &dl) const;
1405
1406 SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1407 const SmallVectorImpl<ISD::OutputArg> &Outs,
1408 const SmallVectorImpl<SDValue> &OutVals,
1409 const SmallVectorImpl<ISD::InputArg> &Ins,
1410 const SDLoc &dl, SelectionDAG &DAG,
1411 SmallVectorImpl<SDValue> &InVals,
1412 const CallBase *CB) const;
1413 SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1414 const SmallVectorImpl<ISD::OutputArg> &Outs,
1415 const SmallVectorImpl<SDValue> &OutVals,
1416 const SmallVectorImpl<ISD::InputArg> &Ins,
1417 const SDLoc &dl, SelectionDAG &DAG,
1418 SmallVectorImpl<SDValue> &InVals,
1419 const CallBase *CB) const;
1420 SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1421 const SmallVectorImpl<ISD::OutputArg> &Outs,
1422 const SmallVectorImpl<SDValue> &OutVals,
1423 const SmallVectorImpl<ISD::InputArg> &Ins,
1424 const SDLoc &dl, SelectionDAG &DAG,
1425 SmallVectorImpl<SDValue> &InVals,
1426 const CallBase *CB) const;
1427
1428 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1429 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1430 SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1431
1432 SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1433 SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1434 SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1435 SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1436 SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1437 SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1438 SDValue combineVectorShift(SDNode *N, DAGCombinerInfo &DCI) const;
1439 SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1440 SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1441 SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1442 SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1443 SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1444 SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1445 SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1446 SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1447 SelectionDAG &DAG) const;
1448 SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1449 DAGCombinerInfo &DCI) const;
1450
1451 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1452 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1453 /// (2) keeping the result of comparison in GPR has performance benefit.
1454 SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1455
1456 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1457 int &RefinementSteps, bool &UseOneConstNR,
1458 bool Reciprocal) const override;
1459 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1460 int &RefinementSteps) const override;
1461 SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1462 const DenormalMode &Mode) const override;
1463 SDValue getSqrtResultForDenormInput(SDValue Operand,
1464 SelectionDAG &DAG) const override;
1465 unsigned combineRepeatedFPDivisors() const override;
1466
1467 SDValue
1468 combineElementTruncationToVectorTruncation(SDNode *N,
1469 DAGCombinerInfo &DCI) const;
1470
1471 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1472 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1473 /// essentially any shuffle of v8i16 vectors that just inserts one element
1474 /// from one vector into the other.
1475 SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1476
1477 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1478 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1479 /// essentially v16i8 vector version of VINSERTH.
1480 SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1481
1482 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1483 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1484 SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1485
1486 // Return whether the call instruction can potentially be optimized to a
1487 // tail call. This will cause the optimizers to attempt to move, or
1488 // duplicate return instructions to help enable tail call optimizations.
1489 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1490 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1491
1492 /// getAddrModeForFlags - Based on the set of address flags, select the most
1493 /// optimal instruction format to match by.
1494 PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1495
1496 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1497 /// the address flags of the load/store instruction that is to be matched.
1498 /// The address flags are stored in a map, which is then searched
1499 /// through to determine the optimal load/store instruction format.
1500 unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1501 SelectionDAG &DAG) const;
1502 }; // end class PPCTargetLowering
1503
1504 namespace PPC {
1505
1506 FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1507 const TargetLibraryInfo *LibInfo);
1508
1509 } // end namespace PPC
1510
1511 bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1512 bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1513 bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1514 bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1515
1516 bool convertToNonDenormSingle(APInt &ArgAPInt);
1517 bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1518 bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1519
1520} // end namespace llvm
1521
1522#endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
return RetTy
uint64_t Addr
uint32_t Index
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
Definition: APInt.h:78
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:506
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:709
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1116
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:43
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Metadata node.
Definition: Metadata.h:1077
Machine Value Type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
Representation of each machine instruction.
Definition: MachineInstr.h:72
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOInvariant
The memory access always returns the same value (or traps).
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
MachineBasicBlock * emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
CCAssignFn * ccAssignFnForCall(CallingConv::ID CC, bool Return, bool IsVarArg) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
SelectForceXFormMode - Given the specified address, force it to be represented as an indexed [r+r] op...
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
bool hasInlineStackProbe(const MachineFunction &MF) const override
MachineBasicBlock * emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName() - This method returns the name of a target specific DAG node.
bool supportsTailCallFor(const CallBase *CB) const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
MachineBasicBlock * emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
MachineBasicBlock * EmitPartwordAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, bool is8bit, unsigned Opcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const
SelectAddressRegImm - Returns true if the address N can be represented by a base register plus a sign...
bool shouldInsertFencesForAtomic(const Instruction *I) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
Returns true if an argument of type Ty needs to be passed in a contiguous block of registers in calli...
bool isSelectSupported(SelectSupportKind Kind) const override
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const override
Target-specific splitting of values into parts that fit a register storing a legal type.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
LowerAsmOperandForConstraint - Lower the specified operand into the Ops vector.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
ReplaceNodeResults - Replace the results of node with an illegal result type with new values built ou...
bool hasMultipleConditionRegisters(EVT VT) const override
Does the target have multiple (allocatable) condition registers that can be used to store the results...
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
getByValTypeAlignment - Return the desired alignment for ByVal aggregate function arguments in the ca...
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment=std::nullopt) const
SelectAddressRegReg - Given the specified addressed, check to see if it can be more efficiently repre...
MachineBasicBlock * EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *MBB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode=0, unsigned CmpPred=0) const
bool hasAndNotCompare(SDValue) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const override
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override
Perform a store-conditional operation to Addr.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressRegRegOnly - Given the specified addressed, force it to be represented as an indexed [r+...
bool useSoftFloat() const override
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
bool preferIncOfAddToSubOfNot(EVT VT) const override
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const override
Returns a 0 terminated array of registers that can be safely used as scratch registers.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPreIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mod...
bool isProfitableToHoist(Instruction *I) const override
isProfitableToHoist - Check if it is profitable to hoist instruction I to its dominator block.
bool convertSelectOfConstantsToMath(EVT VT) const override
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const override
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint, return the type of constraint it is for this target.
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const override
Return true if the target shall perform extract vector element and store given that the vector is kno...
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
bool isEqualityCmpFoldedWithSignedCmp() const override
Return true if instruction generated for equality comparison is folded with instruction generated for...
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
getPreferredVectorAction - The code we generate when vector types are legalized by promoting the inte...
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
unsigned getStackProbeSize(const MachineFunction &MF) const
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool useLoadStackGuardNode(const Module &M) const override
Override to support customized stack guard loading.
bool shouldKeepZExtForFP16Conv() const override
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster than a pair of fmul and fadd i...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Is unaligned memory access allowed for the given type, and is it fast relative to software emulation.
bool shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const override
bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const
Similar to the 16-bit case but for instructions that take a 34-bit displacement field (prefixed loads...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool isJumpTableRelative() const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign Align) const
SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), compute the address flags of...
bool SelectAddressPCRel(SDValue N, SDValue &Base) const
SelectAddressPCRel - Represent the specified address as pc relative to be represented as [pc+imm].
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
getSetCCResultType - Return the ISD::SETCC ValueType
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const
SelectAddressEVXRegReg - Given the specified addressed, check to see if it can be more efficiently re...
bool isLegalICmpImmediate(int64_t Imm) const override
isLegalICmpImmediate - Return true if the specified immediate is legal icmp immediate,...
bool isAccessedAsGotIndirect(SDValue N) const
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const override
createFastISel - This method returns a target-specific FastISel object, or null if the target does no...
bool shouldInlineQuadwordAtomics() const
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isLegalAddImmediate(int64_t Imm) const override
isLegalAddImmediate - Return true if the specified immediate is legal add immediate,...
Common code between 32-bit and 64-bit PowerPC targets.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:229
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
Provides information about what library functions are available for the current target.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
SelectSupportKind
Enum that describes what type of support for selects the target has.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
NegatibleCost
Enum that specifies when a float negation is beneficial.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:264
LLVM Value Representation.
Definition: Value.h:75
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1141
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1568
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1634
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1665
@ SEXT_LD_SPLAT
VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that sign-extends.
@ FCTIDUZ
Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for unsigned integers with round ...
@ ADDI_TLSGD_L_ADDR
G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSGD_L and GET_TLS_ADDR unti...
@ FSQRT
Square root instruction.
@ STRICT_FCFID
Constrained integer-to-floating-point conversion instructions.
@ DYNALLOC
The following two target-specific nodes are used for calls through function pointers in the 64-bit SV...
@ COND_BRANCH
CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This corresponds to the COND_BRANCH pseudo ...
@ TLSLD_AIX
[GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle) Op that requires a single input of the module handle ...
@ CALL_RM
The variants that implicitly define rounding mode for calls with strictfp semantics.
@ STORE_VEC_BE
CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
@ BDNZ
CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based loops.
@ MTVSRZ
Direct move from a GPR to a VSX register (zero)
@ SRL
These nodes represent PPC shifts.
@ VECINSERT
VECINSERT - The PPC vector insert instruction.
@ LXSIZX
GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an integer smaller than 64 bits into ...
@ FNMSUB
FNMSUB - Negated multiply-subtract instruction.
@ FCTIDZ
FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 operand, producing an f64 value...
@ GET_TLS_ADDR
x3 = GET_TLS_ADDR x3, Symbol - For the general-dynamic TLS model, produces a call to __tls_get_addr(s...
@ XXSPLTI32DX
XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
@ ANDI_rec_1_EQ_BIT
i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the eq or gt bit of CR0 after ex...
@ FRE
Reciprocal estimate instructions (unary FP ops).
@ ADDIS_GOT_TPREL_HA
G8RC = ADDIS_GOT_TPREL_HA x2, Symbol - Used by the initial-exec TLS model, produces an ADDIS8 instruc...
@ STORE_COND
CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr The store conditional instruction ST[BHWD]ARX that produces a...
@ SINT_VEC_TO_FP
Extract a subvector from signed integer vector and convert to FP.
@ EXTRACT_SPE
Extract SPE register component, second argument is high or low.
@ XXSWAPD
VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little endian.
@ ADDI_TLSLD_L_ADDR
G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that combines ADDI_TLSLD_L and GET_TLSLD_ADDR un...
@ ATOMIC_CMP_SWAP_8
ATOMIC_CMP_SWAP - the exact same as the target-independent nodes except they ensure that the compare ...
@ ST_VSR_SCAL_INT
Store scalar integers from VSR.
@ VCMP
RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* instructions.
@ BCTRL
CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a BCTRL instruction.
@ BUILD_SPE64
BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and EXTRACT_ELEMENT but take f64 arguments in...
@ LFIWZX
GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point load which zero-extends from a 32-bit inte...
@ FIRST_MEMORY_OPCODE
CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a byte-swapping store instruction.
@ RET_GLUE
Return with a glue operand, matched by 'blr'.
@ SCALAR_TO_VECTOR_PERMUTED
PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to place the value into the least sign...
@ EXTRACT_VSX_REG
EXTRACT_VSX_REG = Extract one of the underlying vsx registers of an accumulator or pair register.
@ STXSIX
STXSIX - The STXSI[bh]X instruction.
@ MAT_PCREL_ADDR
MAT_PCREL_ADDR = Materialize a PC Relative address.
@ MFOCRF
R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
@ XXSPLT
XXSPLT - The PPC VSX splat instructions.
@ TOC_ENTRY
GPRC = TOC_ENTRY GA, TOC Loads the entry for GA from the TOC, where the TOC base is given by the last...
@ XXPERMDI
XXPERMDI - The PPC XXPERMDI instruction.
@ ADDIS_DTPREL_HA
G8RC = ADDIS_DTPREL_HA x3, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction t...
@ ADD_TLS
G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec and local-exec TLS models,...
@ MTVSRA
Direct move from a GPR to a VSX register (algebraic)
@ VADD_SPLAT
VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded during instruction selection to optimi...
@ PPC32_GOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ ADDI_DTPREL_L
G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction ...
@ BCTRL_LOAD_TOC
CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl instruction and the TOC reload r...
@ PPC32_PICGOT
GPRC = address of GLOBAL_OFFSET_TABLE.
@ FCFID
FCFID - The FCFID instruction, taking an f64 operand and producing and f64 value containing the FP re...
@ CR6SET
ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
@ LBRX
GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a byte-swapping load instruction.
@ GET_TLS_MOD_AIX
x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model, produces a call to ....
@ SETBC
SETBC - The ISA 3.1 (P10) SETBC instruction.
@ LD_VSX_LH
VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a v2f32 value into the lower ha...
@ PROBED_ALLOCA
To avoid stack clash, allocation is performed by block and each block is probed.
@ XXMFACC
XXMFACC = This corresponds to the xxmfacc instruction.
@ ADDIS_TLSGD_HA
G8RC = ADDIS_TLSGD_HA x2, Symbol - For the general-dynamic TLS model, produces an ADDIS8 instruction ...
@ SETBCR
SETBCR - The ISA 3.1 (P10) SETBCR instruction.
@ ACC_BUILD
ACC_BUILD = Build an accumulator register from 4 VSX registers.
@ GlobalBaseReg
The result of the mflr at function entry, used for PIC code.
@ LXVD2X
VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
@ XSMAXC
XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
@ CALL
CALL - A direct function call.
@ MTCTR
CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a MTCTR instruction.
@ TC_RETURN
TC_RETURN - A tail call return.
@ STFIWX
STFIWX - The STFIWX instruction.
@ LD_SPLAT
VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory instructions such as LXVDSX,...
@ VCMP_rec
RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the altivec VCMP*_rec instructions.
@ MFFS
F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
@ PADDI_DTPREL
G8RC = PADDI_DTPREL x3, Symbol - For the pc-rel based local-dynamic TLS model, produces a PADDI8 inst...
@ BUILD_FP128
Direct move of 2 consecutive GPR to a VSX register.
@ VEXTS
VEXTS, ByteWidth - takes an input in VSFRC and produces an output in VSFRC that is sign-extended from...
@ TLS_LOCAL_EXEC_MAT_ADDR
TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address when using local exec access ...
@ VPERM
VPERM - The PPC VPERM Instruction.
@ ADDIS_TLSLD_HA
G8RC = ADDIS_TLSLD_HA x2, Symbol - For the local-dynamic TLS model, produces an ADDIS8 instruction th...
@ XXSPLTI_SP_TO_DP
XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for converting immediate single prec...
@ GET_TLSLD_ADDR
x3 = GET_TLSLD_ADDR x3, Symbol - For the local-dynamic TLS model, produces a call to __tls_get_addr(s...
@ ADDI_TLSGD_L
x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS model, produces an ADDI8 instruction t...
@ DYNAREAOFFSET
This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to compute an offset from native ...
@ PAIR_BUILD
PAIR_BUILD = Build a vector pair register from 2 VSX registers.
@ STRICT_FADDRTZ
Constrained floating point add in round-to-zero mode.
@ FTSQRT
Test instruction for software square root.
@ FP_EXTEND_HALF
FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or lower (IDX=1) half of v4f32 to v2f6...
@ CMPB
The CMPB instruction (takes two operands of i32 or i64).
@ VECSHL
VECSHL - The PPC vector shift left instruction.
@ ADDI_TLSLD_L
x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS model, produces an ADDI8 instruction tha...
@ FADDRTZ
F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding towards zero.
@ ZEXT_LD_SPLAT
VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory that zero-extends.
@ SRA_ADDZE
The combination of sra[wd]i and addze used to implemented signed integer division by a power of 2.
@ EXTSWSLI
EXTSWSLI = The PPC extswsli instruction, which does an extend-sign word and shift left immediate.
@ STXVD2X
CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
@ ADDC
These nodes represent PPC arithmetic operations with carry.
@ TLSGD_AIX
GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY Op that combines two re...
@ UINT_VEC_TO_FP
Extract a subvector from unsigned integer vector and convert to FP.
@ GET_TPOINTER
x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on 32-bit AIX, produces a call to ...
@ LXVRZX
LXVRZX - Load VSX Vector Rightmost and Zero Extend This node represents v1i128 BUILD_VECTOR of a zero...
@ FCFIDU
Newer FCFID[US] integer-to-floating-point conversion instructions for unsigned integers and single-pr...
@ FSEL
FSEL - Traditional three-operand fsel node.
@ SWAP_NO_CHAIN
An SDNode for swaps that are not associated with any loads/stores and thereby have no chain.
@ LOAD_VEC_BE
VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
@ LFIWAX
GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point load which sign-extends from a 32-bit inte...
@ LD_GOT_TPREL_L
G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec TLS model, produces a LD instruction ...
@ MFVSR
Direct move from a VSX register to a GPR.
@ TLS_DYNAMIC_MAT_PCREL_ADDR
TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for TLS global address when using dyna...
@ Hi
Hi/Lo - These represent the high and low 16-bit parts of a global address respectively.
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG)
get_VSPLTI_elt - If this is a build_vector of constants which can be formed by using a vspltis[bhw] i...
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N)
isXXBRDShuffleMask - Return true if this is a shuffle mask suitable for a XXBRD instruction.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo)
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for a VRGH* instruction with the ...
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a VPKUDUM instruction.
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for a VMRGEW or VMRGOW instructi...
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N)
isXXBRQShuffleMask - Return true if this is a shuffle mask suitable for a XXBRQ instruction.
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N)
isXXBRWShuffleMask - Return true if this is a shuffle mask suitable for a XXBRW instruction.
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable for a XXPERMDI instruction.
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N)
isXXBRHShuffleMask - Return true if this is a shuffle mask suitable for a XXBRH instruction.
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG)
getSplatIdxForPPCMnemonics - Return the splat index as a value that is appropriate for PPC mnemonics ...
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE)
isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable for a XXSLDWI instruction.
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift amount, otherwise return -1.
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG)
isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for a VRGL* instruction with the ...
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE)
isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by the XXINSERTW instruction intr...
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize)
isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand specifies a splat of a singl...
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a VPKUWUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG)
isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a VPKUHUM instruction.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:477
bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat)
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
bool isIntS16Immediate(SDNode *N, int16_t &Imm)
isIntS16Immediate - This method tests to see if the node is either a 32-bit or 64-bit immediate,...
bool convertToNonDenormSingle(APInt &ArgAPInt)
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool isIntS34Immediate(SDNode *N, int64_t &Imm)
isIntS34Immediate - This method tests if value of node given can be accurately represented as a sign ...
DWARFExpression::Operation Op
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:157
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Structure that collects some common arguments that get passed around between the functions for call l...
CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg, bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)