LLVM 22.0.0git
PeepholeOptimizer.cpp
Go to the documentation of this file.
1//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Perform peephole optimizations on the machine code:
10//
11// - Optimize Extensions
12//
13// Optimization of sign / zero extension instructions. It may be extended to
14// handle other instructions with similar properties.
15//
16// On some targets, some instructions, e.g. X86 sign / zero extension, may
17// leave the source value in the lower part of the result. This optimization
18// will replace some uses of the pre-extension value with uses of the
19// sub-register of the results.
20//
21// - Optimize Comparisons
22//
23// Optimization of comparison instructions. For instance, in this code:
24//
25// sub r1, 1
26// cmp r1, 0
27// bz L1
28//
29// If the "sub" instruction all ready sets (or could be modified to set) the
30// same flag that the "cmp" instruction sets and that "bz" uses, then we can
31// eliminate the "cmp" instruction.
32//
33// Another instance, in this code:
34//
35// sub r1, r3 | sub r1, imm
36// cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37// bge L1
38//
39// If the branch instruction can use flag from "sub", then we can replace
40// "sub" with "subs" and eliminate the "cmp" instruction.
41//
42// - Optimize Loads:
43//
44// Loads that can be folded into a later instruction. A load is foldable
45// if it loads to virtual registers and the virtual register defined has
46// a single use.
47//
48// - Optimize Copies and Bitcast (more generally, target specific copies):
49//
50// Rewrite copies and bitcasts to avoid cross register bank copies
51// when possible.
52// E.g., Consider the following example, where capital and lower
53// letters denote different register file:
54// b = copy A <-- cross-bank copy
55// C = copy b <-- cross-bank copy
56// =>
57// b = copy A <-- cross-bank copy
58// C = copy A <-- same-bank copy
59//
60// E.g., for bitcast:
61// b = bitcast A <-- cross-bank copy
62// C = bitcast b <-- cross-bank copy
63// =>
64// b = bitcast A <-- cross-bank copy
65// C = copy A <-- same-bank copy
66//===----------------------------------------------------------------------===//
67
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/SmallSet.h"
73#include "llvm/ADT/Statistic.h"
89#include "llvm/MC/LaneBitmask.h"
90#include "llvm/MC/MCInstrDesc.h"
91#include "llvm/Pass.h"
93#include "llvm/Support/Debug.h"
95#include <cassert>
96#include <cstdint>
97#include <utility>
98
99using namespace llvm;
102
103#define DEBUG_TYPE "peephole-opt"
104
105// Optimize Extensions
106static cl::opt<bool> Aggressive("aggressive-ext-opt", cl::Hidden,
107 cl::desc("Aggressive extension optimization"));
108
109static cl::opt<bool>
110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
111 cl::desc("Disable the peephole optimizer"));
112
113/// Specifiy whether or not the value tracking looks through
114/// complex instructions. When this is true, the value tracker
115/// bails on everything that is not a copy or a bitcast.
116static cl::opt<bool>
117 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
118 cl::desc("Disable advanced copy optimization"));
119
121 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
122 cl::desc("Disable non-allocatable physical register copy optimization"));
123
124// Limit the number of PHI instructions to process
125// in PeepholeOptimizer::getNextSource.
127 RewritePHILimit("rewrite-phi-limit", cl::Hidden, cl::init(10),
128 cl::desc("Limit the length of PHI chains to lookup"));
129
130// Limit the length of recurrence chain when evaluating the benefit of
131// commuting operands.
133 "recurrence-chain-limit", cl::Hidden, cl::init(3),
134 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
135 "of commuting operands"));
136
137STATISTIC(NumReuse, "Number of extension results reused");
138STATISTIC(NumCmps, "Number of compares eliminated");
139STATISTIC(NumImmFold, "Number of move immediate folded");
140STATISTIC(NumLoadFold, "Number of loads folded");
141STATISTIC(NumSelects, "Number of selects optimized");
142STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
143STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
144STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
145
146namespace {
147
148class ValueTrackerResult;
149class RecurrenceInstr;
150
151/// Interface to query instructions amenable to copy rewriting.
152class Rewriter {
153protected:
154 MachineInstr &CopyLike;
155 int CurrentSrcIdx = 0; ///< The index of the source being rewritten.
156public:
157 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
158 virtual ~Rewriter() = default;
159
160 /// Get the next rewritable source (SrcReg, SrcSubReg) and
161 /// the related value that it affects (DstReg, DstSubReg).
162 /// A source is considered rewritable if its register class and the
163 /// register class of the related DstReg may not be register
164 /// coalescer friendly. In other words, given a copy-like instruction
165 /// not all the arguments may be returned at rewritable source, since
166 /// some arguments are none to be register coalescer friendly.
167 ///
168 /// Each call of this method moves the current source to the next
169 /// rewritable source.
170 /// For instance, let CopyLike be the instruction to rewrite.
171 /// CopyLike has one definition and one source:
172 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
173 ///
174 /// The first call will give the first rewritable source, i.e.,
175 /// the only source this instruction has:
176 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
177 /// This source defines the whole definition, i.e.,
178 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
179 ///
180 /// The second and subsequent calls will return false, as there is only one
181 /// rewritable source.
182 ///
183 /// \return True if a rewritable source has been found, false otherwise.
184 /// The output arguments are valid if and only if true is returned.
185 virtual bool getNextRewritableSource(RegSubRegPair &Src,
186 RegSubRegPair &Dst) = 0;
187
188 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
189 /// \return True if the rewriting was possible, false otherwise.
190 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
191};
192
193/// Rewriter for COPY instructions.
194class CopyRewriter : public Rewriter {
195public:
196 CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
197 assert(MI.isCopy() && "Expected copy instruction");
198 }
199 virtual ~CopyRewriter() = default;
200
201 bool getNextRewritableSource(RegSubRegPair &Src,
202 RegSubRegPair &Dst) override {
203 if (++CurrentSrcIdx > 1)
204 return false;
205
206 // The rewritable source is the argument.
207 const MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
208 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
209 // What we track are the alternative sources of the definition.
210 const MachineOperand &MODef = CopyLike.getOperand(0);
211 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
212 return true;
213 }
214
215 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
216 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
217 MOSrc.setReg(NewReg);
218 MOSrc.setSubReg(NewSubReg);
219 return true;
220 }
221};
222
223/// Helper class to rewrite uncoalescable copy like instructions
224/// into new COPY (coalescable friendly) instructions.
225class UncoalescableRewriter : public Rewriter {
226 int NumDefs; ///< Number of defs in the bitcast.
227
228public:
229 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
230 NumDefs = MI.getDesc().getNumDefs();
231 }
232
233 /// \see See Rewriter::getNextRewritableSource()
234 /// All such sources need to be considered rewritable in order to
235 /// rewrite a uncoalescable copy-like instruction. This method return
236 /// each definition that must be checked if rewritable.
237 bool getNextRewritableSource(RegSubRegPair &Src,
238 RegSubRegPair &Dst) override {
239 // Find the next non-dead definition and continue from there.
240 if (CurrentSrcIdx == NumDefs)
241 return false;
242
243 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
244 ++CurrentSrcIdx;
245 if (CurrentSrcIdx == NumDefs)
246 return false;
247 }
248
249 // What we track are the alternative sources of the definition.
250 Src = RegSubRegPair(0, 0);
251 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
252 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
253
254 CurrentSrcIdx++;
255 return true;
256 }
257
258 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
259 return false;
260 }
261};
262
263/// Specialized rewriter for INSERT_SUBREG instruction.
264class InsertSubregRewriter : public Rewriter {
265public:
266 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
267 assert(MI.isInsertSubreg() && "Invalid instruction");
268 }
269
270 /// \see See Rewriter::getNextRewritableSource()
271 /// Here CopyLike has the following form:
272 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
273 /// Src1 has the same register class has dst, hence, there is
274 /// nothing to rewrite.
275 /// Src2.src2SubIdx, may not be register coalescer friendly.
276 /// Therefore, the first call to this method returns:
277 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
278 /// (DstReg, DstSubReg) = (dst, subIdx).
279 ///
280 /// Subsequence calls will return false.
281 bool getNextRewritableSource(RegSubRegPair &Src,
282 RegSubRegPair &Dst) override {
283 // If we already get the only source we can rewrite, return false.
284 if (CurrentSrcIdx == 2)
285 return false;
286 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
287 CurrentSrcIdx = 2;
288 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
289 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
290 const MachineOperand &MODef = CopyLike.getOperand(0);
291
292 // We want to track something that is compatible with the
293 // partial definition.
294 if (MODef.getSubReg())
295 // Bail if we have to compose sub-register indices.
296 return false;
297 Dst = RegSubRegPair(MODef.getReg(),
298 (unsigned)CopyLike.getOperand(3).getImm());
299 return true;
300 }
301
302 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
303 if (CurrentSrcIdx != 2)
304 return false;
305 // We are rewriting the inserted reg.
306 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
307 MO.setReg(NewReg);
308 MO.setSubReg(NewSubReg);
309 return true;
310 }
311};
312
313/// Specialized rewriter for EXTRACT_SUBREG instruction.
314class ExtractSubregRewriter : public Rewriter {
315 const TargetInstrInfo &TII;
316
317public:
318 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
319 : Rewriter(MI), TII(TII) {
320 assert(MI.isExtractSubreg() && "Invalid instruction");
321 }
322
323 /// \see Rewriter::getNextRewritableSource()
324 /// Here CopyLike has the following form:
325 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
326 /// There is only one rewritable source: Src.subIdx,
327 /// which defines dst.dstSubIdx.
328 bool getNextRewritableSource(RegSubRegPair &Src,
329 RegSubRegPair &Dst) override {
330 // If we already get the only source we can rewrite, return false.
331 if (CurrentSrcIdx == 1)
332 return false;
333 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
334 CurrentSrcIdx = 1;
335 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
336 // If we have to compose sub-register indices, bail out.
337 if (MOExtractedReg.getSubReg())
338 return false;
339
340 Src =
341 RegSubRegPair(MOExtractedReg.getReg(), CopyLike.getOperand(2).getImm());
342
343 // We want to track something that is compatible with the definition.
344 const MachineOperand &MODef = CopyLike.getOperand(0);
345 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
346 return true;
347 }
348
349 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
350 // The only source we can rewrite is the input register.
351 if (CurrentSrcIdx != 1)
352 return false;
353
354 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
355
356 // If we find a source that does not require to extract something,
357 // rewrite the operation with a copy.
358 if (!NewSubReg) {
359 // Move the current index to an invalid position.
360 // We do not want another call to this method to be able
361 // to do any change.
362 CurrentSrcIdx = -1;
363 // Rewrite the operation as a COPY.
364 // Get rid of the sub-register index.
365 CopyLike.removeOperand(2);
366 // Morph the operation into a COPY.
367 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
368 return true;
369 }
370 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
371 return true;
372 }
373};
374
375/// Specialized rewriter for REG_SEQUENCE instruction.
376class RegSequenceRewriter : public Rewriter {
377public:
378 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
379 assert(MI.isRegSequence() && "Invalid instruction");
380 CurrentSrcIdx = -1;
381 }
382
383 /// \see Rewriter::getNextRewritableSource()
384 /// Here CopyLike has the following form:
385 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
386 /// Each call will return a different source, walking all the available
387 /// source.
388 ///
389 /// The first call returns:
390 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
391 /// (DstReg, DstSubReg) = (dst, subIdx1).
392 ///
393 /// The second call returns:
394 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
395 /// (DstReg, DstSubReg) = (dst, subIdx2).
396 ///
397 /// And so on, until all the sources have been traversed, then
398 /// it returns false.
399 bool getNextRewritableSource(RegSubRegPair &Src,
400 RegSubRegPair &Dst) override {
401 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
402 CurrentSrcIdx += 2;
403 if (static_cast<unsigned>(CurrentSrcIdx) >= CopyLike.getNumOperands())
404 return false;
405
406 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
407 Src.Reg = MOInsertedReg.getReg();
408 Src.SubReg = MOInsertedReg.getSubReg();
409
410 // We want to track something that is compatible with the related
411 // partial definition.
412 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
413
414 const MachineOperand &MODef = CopyLike.getOperand(0);
415 Dst.Reg = MODef.getReg();
416 assert(MODef.getSubReg() == 0 && "cannot have subregister def in SSA");
417 return true;
418 }
419
420 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
421 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
422 MO.setReg(NewReg);
423 MO.setSubReg(NewSubReg);
424 return true;
425 }
426};
427
428class PeepholeOptimizer : private MachineFunction::Delegate {
429 const TargetInstrInfo *TII = nullptr;
430 const TargetRegisterInfo *TRI = nullptr;
431 MachineRegisterInfo *MRI = nullptr;
432 MachineDominatorTree *DT = nullptr; // Machine dominator tree
433 MachineLoopInfo *MLI = nullptr;
434
435public:
436 PeepholeOptimizer(MachineDominatorTree *DT, MachineLoopInfo *MLI)
437 : DT(DT), MLI(MLI) {}
438
439 bool run(MachineFunction &MF);
440 /// Track Def -> Use info used for rewriting copies.
442
443 /// Sequence of instructions that formulate recurrence cycle.
444 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
445
446private:
447 bool optimizeCmpInstr(MachineInstr &MI);
448 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
450 bool optimizeSelect(MachineInstr &MI,
452 bool optimizeCondBranch(MachineInstr &MI);
453
454 bool optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter);
455 bool optimizeCoalescableCopy(MachineInstr &MI);
456 bool optimizeUncoalescableCopy(MachineInstr &MI,
458 bool optimizeRecurrence(MachineInstr &PHI);
459 bool findNextSource(const TargetRegisterClass *DefRC, unsigned DefSubReg,
460 RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
461 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
463 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
465 bool &Deleted);
466
467 /// Finds recurrence cycles, but only ones that formulated around
468 /// a def operand and a use operand that are tied. If there is a use
469 /// operand commutable with the tied use operand, find recurrence cycle
470 /// along that operand as well.
471 bool findTargetRecurrence(Register Reg,
472 const SmallSet<Register, 2> &TargetReg,
473 RecurrenceCycle &RC);
474
475 /// If copy instruction \p MI is a virtual register copy or a copy of a
476 /// constant physical register to a virtual register, track it in the
477 /// set CopySrcMIs. If this virtual register was previously seen as a
478 /// copy, replace the uses of this copy with the previously seen copy's
479 /// destination register.
480 bool foldRedundantCopy(MachineInstr &MI);
481
482 /// Is the register \p Reg a non-allocatable physical register?
483 bool isNAPhysCopy(Register Reg);
484
485 /// If copy instruction \p MI is a non-allocatable virtual<->physical
486 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
487 /// non-allocatable physical register was previously copied to a virtual
488 /// registered and hasn't been clobbered, the virt->phys copy can be
489 /// deleted.
490 bool
491 foldRedundantNAPhysCopy(MachineInstr &MI,
492 DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
493
494 bool isLoadFoldable(MachineInstr &MI,
495 SmallSet<Register, 16> &FoldAsLoadDefCandidates);
496
497 /// Check whether \p MI is understood by the register coalescer
498 /// but may require some rewriting.
499 static bool isCoalescableCopy(const MachineInstr &MI) {
500 // SubregToRegs are not interesting, because they are already register
501 // coalescer friendly.
502 return MI.isCopy() ||
503 (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() ||
504 MI.isExtractSubreg()));
505 }
506
507 /// Check whether \p MI is a copy like instruction that is
508 /// not recognized by the register coalescer.
509 static bool isUncoalescableCopy(const MachineInstr &MI) {
510 return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() ||
511 MI.isInsertSubregLike() ||
512 MI.isExtractSubregLike()));
513 }
514
515 MachineInstr &rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def,
516 RewriteMapTy &RewriteMap);
517
518 // Set of copies to virtual registers keyed by source register. Never
519 // holds any physreg which requires def tracking.
521
522 // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs.
523 void MF_HandleInsertion(MachineInstr &MI) override {}
524
525 bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) {
526 if (!MI.isCopy())
527 return false;
528
529 Register SrcReg = MI.getOperand(1).getReg();
530 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
531 if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
532 return false;
533
534 SrcPair = RegSubRegPair(SrcReg, SrcSubReg);
535 return true;
536 }
537
538 // If a COPY instruction is to be deleted or changed, we should also remove
539 // it from CopySrcMIs.
540 void deleteChangedCopy(MachineInstr &MI) {
541 RegSubRegPair SrcPair;
542 if (!getCopySrc(MI, SrcPair))
543 return;
544
545 auto It = CopySrcMIs.find(SrcPair);
546 if (It != CopySrcMIs.end() && It->second == &MI)
547 CopySrcMIs.erase(It);
548 }
549
550 void MF_HandleRemoval(MachineInstr &MI) override { deleteChangedCopy(MI); }
551
552 void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override {
553 deleteChangedCopy(MI);
554 }
555};
556
557class PeepholeOptimizerLegacy : public MachineFunctionPass {
558public:
559 static char ID; // Pass identification
560
561 PeepholeOptimizerLegacy() : MachineFunctionPass(ID) {
563 }
564
565 bool runOnMachineFunction(MachineFunction &MF) override;
566
567 void getAnalysisUsage(AnalysisUsage &AU) const override {
568 AU.setPreservesCFG();
572 if (Aggressive) {
575 }
576 }
577
579 return MachineFunctionProperties().setIsSSA();
580 }
581};
582
583/// Helper class to hold instructions that are inside recurrence cycles.
584/// The recurrence cycle is formulated around 1) a def operand and its
585/// tied use operand, or 2) a def operand and a use operand that is commutable
586/// with another use operand which is tied to the def operand. In the latter
587/// case, index of the tied use operand and the commutable use operand are
588/// maintained with CommutePair.
589class RecurrenceInstr {
590public:
591 using IndexPair = std::pair<unsigned, unsigned>;
592
593 RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
594 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
595 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
596
597 MachineInstr *getMI() const { return MI; }
598 std::optional<IndexPair> getCommutePair() const { return CommutePair; }
599
600private:
602 std::optional<IndexPair> CommutePair;
603};
604
605/// Helper class to hold a reply for ValueTracker queries.
606/// Contains the returned sources for a given search and the instructions
607/// where the sources were tracked from.
608class ValueTrackerResult {
609private:
610 /// Track all sources found by one ValueTracker query.
612
613 /// Instruction using the sources in 'RegSrcs'.
614 const MachineInstr *Inst = nullptr;
615
616public:
617 ValueTrackerResult() = default;
618
619 ValueTrackerResult(Register Reg, unsigned SubReg) { addSource(Reg, SubReg); }
620
621 bool isValid() const { return getNumSources() > 0; }
622
623 void setInst(const MachineInstr *I) { Inst = I; }
624 const MachineInstr *getInst() const { return Inst; }
625
626 void clear() {
627 RegSrcs.clear();
628 Inst = nullptr;
629 }
630
631 void addSource(Register SrcReg, unsigned SrcSubReg) {
632 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
633 }
634
635 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
636 assert(Idx < getNumSources() && "Reg pair source out of index");
637 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
638 }
639
640 int getNumSources() const { return RegSrcs.size(); }
641
642 RegSubRegPair getSrc(int Idx) const { return RegSrcs[Idx]; }
643
644 Register getSrcReg(int Idx) const {
645 assert(Idx < getNumSources() && "Reg source out of index");
646 return RegSrcs[Idx].Reg;
647 }
648
649 unsigned getSrcSubReg(int Idx) const {
650 assert(Idx < getNumSources() && "SubReg source out of index");
651 return RegSrcs[Idx].SubReg;
652 }
653
654 bool operator==(const ValueTrackerResult &Other) const {
655 if (Other.getInst() != getInst())
656 return false;
657
658 if (Other.getNumSources() != getNumSources())
659 return false;
660
661 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
662 if (Other.getSrcReg(i) != getSrcReg(i) ||
663 Other.getSrcSubReg(i) != getSrcSubReg(i))
664 return false;
665 return true;
666 }
667};
668
669/// Helper class to track the possible sources of a value defined by
670/// a (chain of) copy related instructions.
671/// Given a definition (instruction and definition index), this class
672/// follows the use-def chain to find successive suitable sources.
673/// The given source can be used to rewrite the definition into
674/// def = COPY src.
675///
676/// For instance, let us consider the following snippet:
677/// v0 =
678/// v2 = INSERT_SUBREG v1, v0, sub0
679/// def = COPY v2.sub0
680///
681/// Using a ValueTracker for def = COPY v2.sub0 will give the following
682/// suitable sources:
683/// v2.sub0 and v0.
684/// Then, def can be rewritten into def = COPY v0.
685class ValueTracker {
686private:
687 /// The current point into the use-def chain.
688 const MachineInstr *Def = nullptr;
689
690 /// The index of the definition in Def.
691 unsigned DefIdx = 0;
692
693 /// The sub register index of the definition.
694 unsigned DefSubReg;
695
696 /// The register where the value can be found.
698
699 /// MachineRegisterInfo used to perform tracking.
701
702 /// Optional TargetInstrInfo used to perform some complex tracking.
703 const TargetInstrInfo *TII;
704
705 /// Dispatcher to the right underlying implementation of getNextSource.
706 ValueTrackerResult getNextSourceImpl();
707
708 /// Specialized version of getNextSource for Copy instructions.
709 ValueTrackerResult getNextSourceFromCopy();
710
711 /// Specialized version of getNextSource for Bitcast instructions.
712 ValueTrackerResult getNextSourceFromBitcast();
713
714 /// Specialized version of getNextSource for RegSequence instructions.
715 ValueTrackerResult getNextSourceFromRegSequence();
716
717 /// Specialized version of getNextSource for InsertSubreg instructions.
718 ValueTrackerResult getNextSourceFromInsertSubreg();
719
720 /// Specialized version of getNextSource for ExtractSubreg instructions.
721 ValueTrackerResult getNextSourceFromExtractSubreg();
722
723 /// Specialized version of getNextSource for SubregToReg instructions.
724 ValueTrackerResult getNextSourceFromSubregToReg();
725
726 /// Specialized version of getNextSource for PHI instructions.
727 ValueTrackerResult getNextSourceFromPHI();
728
729public:
730 /// Create a ValueTracker instance for the value defined by \p Reg.
731 /// \p DefSubReg represents the sub register index the value tracker will
732 /// track. It does not need to match the sub register index used in the
733 /// definition of \p Reg.
734 /// If \p Reg is a physical register, a value tracker constructed with
735 /// this constructor will not find any alternative source.
736 /// Indeed, when \p Reg is a physical register that constructor does not
737 /// know which definition of \p Reg it should track.
738 /// Use the next constructor to track a physical register.
739 ValueTracker(Register Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI,
740 const TargetInstrInfo *TII = nullptr)
741 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
742 if (!Reg.isPhysical()) {
743 Def = MRI.getVRegDef(Reg);
744 DefIdx = MRI.def_begin(Reg).getOperandNo();
745 }
746 }
747
748 /// Following the use-def chain, get the next available source
749 /// for the tracked value.
750 /// \return A ValueTrackerResult containing a set of registers
751 /// and sub registers with tracked values. A ValueTrackerResult with
752 /// an empty set of registers means no source was found.
753 ValueTrackerResult getNextSource();
754};
755
756} // end anonymous namespace
757
758char PeepholeOptimizerLegacy::ID = 0;
759
760char &llvm::PeepholeOptimizerLegacyID = PeepholeOptimizerLegacy::ID;
761
762INITIALIZE_PASS_BEGIN(PeepholeOptimizerLegacy, DEBUG_TYPE,
763 "Peephole Optimizations", false, false)
766INITIALIZE_PASS_END(PeepholeOptimizerLegacy, DEBUG_TYPE,
768
769/// If instruction is a copy-like instruction, i.e. it reads a single register
770/// and writes a single register and it does not modify the source, and if the
771/// source value is preserved as a sub-register of the result, then replace all
772/// reachable uses of the source with the subreg of the result.
773///
774/// Do not generate an EXTRACT that is used only in a debug use, as this changes
775/// the code. Since this code does not currently share EXTRACTs, just ignore all
776/// debug uses.
777bool PeepholeOptimizer::optimizeExtInstr(
779 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
780 Register SrcReg, DstReg;
781 unsigned SubIdx;
782 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
783 return false;
784
785 if (DstReg.isPhysical() || SrcReg.isPhysical())
786 return false;
787
788 if (MRI->hasOneNonDBGUse(SrcReg))
789 // No other uses.
790 return false;
791
792 // Ensure DstReg can get a register class that actually supports
793 // sub-registers. Don't change the class until we commit.
794 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
795 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
796 if (!DstRC)
797 return false;
798
799 // The ext instr may be operating on a sub-register of SrcReg as well.
800 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
801 // register.
802 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
803 // SrcReg:SubIdx should be replaced.
804 bool UseSrcSubIdx =
805 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
806
807 // The source has other uses. See if we can replace the other uses with use of
808 // the result of the extension.
810 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
811 ReachedBBs.insert(UI.getParent());
812
813 // Uses that are in the same BB of uses of the result of the instruction.
815
816 // Uses that the result of the instruction can reach.
818
819 bool ExtendLife = true;
820 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
821 MachineInstr *UseMI = UseMO.getParent();
822 if (UseMI == &MI)
823 continue;
824
825 if (UseMI->isPHI()) {
826 ExtendLife = false;
827 continue;
828 }
829
830 // Only accept uses of SrcReg:SubIdx.
831 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
832 continue;
833
834 // It's an error to translate this:
835 //
836 // %reg1025 = <sext> %reg1024
837 // ...
838 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
839 //
840 // into this:
841 //
842 // %reg1025 = <sext> %reg1024
843 // ...
844 // %reg1027 = COPY %reg1025:4
845 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
846 //
847 // The problem here is that SUBREG_TO_REG is there to assert that an
848 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
849 // the COPY here, it will give us the value after the <sext>, not the
850 // original value of %reg1024 before <sext>.
851 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
852 continue;
853
854 MachineBasicBlock *UseMBB = UseMI->getParent();
855 if (UseMBB == &MBB) {
856 // Local uses that come after the extension.
857 if (!LocalMIs.count(UseMI))
858 Uses.push_back(&UseMO);
859 } else if (ReachedBBs.count(UseMBB)) {
860 // Non-local uses where the result of the extension is used. Always
861 // replace these unless it's a PHI.
862 Uses.push_back(&UseMO);
863 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
864 // We may want to extend the live range of the extension result in order
865 // to replace these uses.
866 ExtendedUses.push_back(&UseMO);
867 } else {
868 // Both will be live out of the def MBB anyway. Don't extend live range of
869 // the extension result.
870 ExtendLife = false;
871 break;
872 }
873 }
874
875 if (ExtendLife && !ExtendedUses.empty())
876 // Extend the liveness of the extension result.
877 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
878
879 // Now replace all uses.
880 bool Changed = false;
881 if (!Uses.empty()) {
883
884 // Look for PHI uses of the extended result, we don't want to extend the
885 // liveness of a PHI input. It breaks all kinds of assumptions down
886 // stream. A PHI use is expected to be the kill of its source values.
887 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
888 if (UI.isPHI())
889 PHIBBs.insert(UI.getParent());
890
891 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
892 for (MachineOperand *UseMO : Uses) {
893 MachineInstr *UseMI = UseMO->getParent();
894 MachineBasicBlock *UseMBB = UseMI->getParent();
895 if (PHIBBs.count(UseMBB))
896 continue;
897
898 // About to add uses of DstReg, clear DstReg's kill flags.
899 if (!Changed) {
900 MRI->clearKillFlags(DstReg);
901 MRI->constrainRegClass(DstReg, DstRC);
902 }
903
904 // SubReg defs are illegal in machine SSA phase,
905 // we should not generate SubReg defs.
906 //
907 // For example, for the instructions:
908 //
909 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
910 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
911 //
912 // We should generate:
913 //
914 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
915 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
916 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
917 //
918 if (UseSrcSubIdx)
919 RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
920
921 Register NewVR = MRI->createVirtualRegister(RC);
922 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
923 TII->get(TargetOpcode::COPY), NewVR)
924 .addReg(DstReg, 0, SubIdx);
925 if (UseSrcSubIdx)
926 UseMO->setSubReg(0);
927
928 UseMO->setReg(NewVR);
929 ++NumReuse;
930 Changed = true;
931 }
932 }
933
934 return Changed;
935}
936
937/// If the instruction is a compare and the previous instruction it's comparing
938/// against already sets (or could be modified to set) the same flag as the
939/// compare, then we can remove the comparison and use the flag from the
940/// previous instruction.
941bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
942 // If this instruction is a comparison against zero and isn't comparing a
943 // physical register, we can try to optimize it.
944 Register SrcReg, SrcReg2;
945 int64_t CmpMask, CmpValue;
946 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
947 SrcReg.isPhysical() || SrcReg2.isPhysical())
948 return false;
949
950 // Attempt to optimize the comparison instruction.
951 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
952 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
953 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n");
954 ++NumCmps;
955 return true;
956 }
957
958 return false;
959}
960
961/// Optimize a select instruction.
962bool PeepholeOptimizer::optimizeSelect(
964 unsigned TrueOp = 0;
965 unsigned FalseOp = 0;
966 bool Optimizable = false;
968 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
969 return false;
970 if (!Optimizable)
971 return false;
972 if (!TII->optimizeSelect(MI, LocalMIs))
973 return false;
974 LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
975 MI.eraseFromParent();
976 ++NumSelects;
977 return true;
978}
979
980/// Check if a simpler conditional branch can be generated.
981bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
982 return TII->optimizeCondBranch(MI);
983}
984
985/// Try to find a better source value that shares the same register file to
986/// replace \p RegSubReg in an instruction like
987/// `DefRC.DefSubReg = COPY RegSubReg`
988///
989/// When true is returned, the \p RewriteMap can be used by the client to
990/// retrieve all Def -> Use along the way up to the next source. Any found
991/// Use that is not itself a key for another entry, is the next source to
992/// use. During the search for the next source, multiple sources can be found
993/// given multiple incoming sources of a PHI instruction. In this case, we
994/// look in each PHI source for the next source; all found next sources must
995/// share the same register file as \p Reg and \p SubReg. The client should
996/// then be capable to rewrite all intermediate PHIs to get the next source.
997/// \return False if no alternative sources are available. True otherwise.
998bool PeepholeOptimizer::findNextSource(const TargetRegisterClass *DefRC,
999 unsigned DefSubReg,
1000 RegSubRegPair RegSubReg,
1001 RewriteMapTy &RewriteMap) {
1002 // Do not try to find a new source for a physical register.
1003 // So far we do not have any motivating example for doing that.
1004 // Thus, instead of maintaining untested code, we will revisit that if
1005 // that changes at some point.
1006 Register Reg = RegSubReg.Reg;
1008 RegSubRegPair CurSrcPair = RegSubReg;
1009 SrcToLook.push_back(CurSrcPair);
1010
1011 unsigned PHICount = 0;
1012 do {
1013 CurSrcPair = SrcToLook.pop_back_val();
1014 // As explained above, do not handle physical registers
1015 if (CurSrcPair.Reg.isPhysical())
1016 return false;
1017
1018 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
1019
1020 // Follow the chain of copies until we find a more suitable source, a phi
1021 // or have to abort.
1022 while (true) {
1023 ValueTrackerResult Res = ValTracker.getNextSource();
1024 // Abort at the end of a chain (without finding a suitable source).
1025 if (!Res.isValid())
1026 return false;
1027
1028 // Insert the Def -> Use entry for the recently found source.
1029 auto [InsertPt, WasInserted] = RewriteMap.try_emplace(CurSrcPair, Res);
1030
1031 if (!WasInserted) {
1032 const ValueTrackerResult &CurSrcRes = InsertPt->second;
1033
1034 assert(CurSrcRes == Res && "ValueTrackerResult found must match");
1035 // An existent entry with multiple sources is a PHI cycle we must avoid.
1036 // Otherwise it's an entry with a valid next source we already found.
1037 if (CurSrcRes.getNumSources() > 1) {
1039 << "findNextSource: found PHI cycle, aborting...\n");
1040 return false;
1041 }
1042 break;
1043 }
1044
1045 // ValueTrackerResult usually have one source unless it's the result from
1046 // a PHI instruction. Add the found PHI edges to be looked up further.
1047 unsigned NumSrcs = Res.getNumSources();
1048 if (NumSrcs > 1) {
1049 PHICount++;
1050 if (PHICount >= RewritePHILimit) {
1051 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
1052 return false;
1053 }
1054
1055 for (unsigned i = 0; i < NumSrcs; ++i)
1056 SrcToLook.push_back(Res.getSrc(i));
1057 break;
1058 }
1059
1060 CurSrcPair = Res.getSrc(0);
1061 // Do not extend the live-ranges of physical registers as they add
1062 // constraints to the register allocator. Moreover, if we want to extend
1063 // the live-range of a physical register, unlike SSA virtual register,
1064 // we will have to check that they aren't redefine before the related use.
1065 if (CurSrcPair.Reg.isPhysical())
1066 return false;
1067
1068 // Keep following the chain if the value isn't any better yet.
1069 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
1070 if (!TRI->shouldRewriteCopySrc(DefRC, DefSubReg, SrcRC,
1071 CurSrcPair.SubReg))
1072 continue;
1073
1074 // We currently cannot deal with subreg operands on PHI instructions
1075 // (see insertPHI()).
1076 if (PHICount > 0 && CurSrcPair.SubReg != 0)
1077 continue;
1078
1079 // We found a suitable source, and are done with this chain.
1080 break;
1081 }
1082 } while (!SrcToLook.empty());
1083
1084 // If we did not find a more suitable source, there is nothing to optimize.
1085 return CurSrcPair.Reg != Reg;
1086}
1087
1088/// Insert a PHI instruction with incoming edges \p SrcRegs that are
1089/// guaranteed to have the same register class. This is necessary whenever we
1090/// successfully traverse a PHI instruction and find suitable sources coming
1091/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
1092/// suitable to be used in a new COPY instruction.
1094 const TargetInstrInfo &TII,
1095 const SmallVectorImpl<RegSubRegPair> &SrcRegs,
1096 MachineInstr &OrigPHI) {
1097 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
1098
1099 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
1100 // NewRC is only correct if no subregisters are involved. findNextSource()
1101 // should have rejected those cases already.
1102 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
1103 Register NewVR = MRI.createVirtualRegister(NewRC);
1104 MachineBasicBlock *MBB = OrigPHI.getParent();
1105 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
1106 TII.get(TargetOpcode::PHI), NewVR);
1107
1108 unsigned MBBOpIdx = 2;
1109 for (const RegSubRegPair &RegPair : SrcRegs) {
1110 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
1111 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
1112 // Since we're extended the lifetime of RegPair.Reg, clear the
1113 // kill flags to account for that and make RegPair.Reg reaches
1114 // the new PHI.
1115 MRI.clearKillFlags(RegPair.Reg);
1116 MBBOpIdx += 2;
1117 }
1118
1119 return *MIB;
1120}
1121
1122/// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1123/// the new source to use for rewrite. If \p HandleMultipleSources is true and
1124/// multiple sources for a given \p Def are found along the way, we found a
1125/// PHI instructions that needs to be rewritten.
1126/// TODO: HandleMultipleSources should be removed once we test PHI handling
1127/// with coalescable copies.
1128static RegSubRegPair
1130 RegSubRegPair Def,
1131 const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1132 bool HandleMultipleSources = true) {
1133 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1134 while (true) {
1135 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1136 // If there are no entries on the map, LookupSrc is the new source.
1137 if (!Res.isValid())
1138 return LookupSrc;
1139
1140 // There's only one source for this definition, keep searching...
1141 unsigned NumSrcs = Res.getNumSources();
1142 if (NumSrcs == 1) {
1143 LookupSrc.Reg = Res.getSrcReg(0);
1144 LookupSrc.SubReg = Res.getSrcSubReg(0);
1145 continue;
1146 }
1147
1148 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1149 if (!HandleMultipleSources)
1150 break;
1151
1152 // Multiple sources, recurse into each source to find a new source
1153 // for it. Then, rewrite the PHI accordingly to its new edges.
1155 for (unsigned i = 0; i < NumSrcs; ++i) {
1156 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1157 NewPHISrcs.push_back(
1158 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1159 }
1160
1161 // Build the new PHI node and return its def register as the new source.
1162 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1163 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1164 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1165 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
1166 LLVM_DEBUG(dbgs() << " With: " << NewPHI);
1167 const MachineOperand &MODef = NewPHI.getOperand(0);
1168 return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1169 }
1170
1171 return RegSubRegPair(0, 0);
1172}
1173
1174bool PeepholeOptimizer::optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter) {
1175 bool Changed = false;
1176 // Get the right rewriter for the current copy.
1177 // Rewrite each rewritable source.
1178 RegSubRegPair Dst;
1179 RegSubRegPair TrackPair;
1180 while (CpyRewriter.getNextRewritableSource(TrackPair, Dst)) {
1181 if (Dst.Reg.isPhysical()) {
1182 // Do not try to find a new source for a physical register.
1183 // So far we do not have any motivating example for doing that.
1184 // Thus, instead of maintaining untested code, we will revisit that if
1185 // that changes at some point.
1186 continue;
1187 }
1188
1189 const TargetRegisterClass *DefRC = MRI->getRegClass(Dst.Reg);
1190
1191 // Keep track of PHI nodes and its incoming edges when looking for sources.
1192 RewriteMapTy RewriteMap;
1193 // Try to find a more suitable source. If we failed to do so, or get the
1194 // actual source, move to the next source.
1195 if (!findNextSource(DefRC, Dst.SubReg, TrackPair, RewriteMap))
1196 continue;
1197
1198 // Get the new source to rewrite. TODO: Only enable handling of multiple
1199 // sources (PHIs) once we have a motivating example and testcases for it.
1200 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1201 /*HandleMultipleSources=*/false);
1202 assert(TrackPair.Reg != NewSrc.Reg &&
1203 "should not rewrite source to original value");
1204 if (!NewSrc.Reg)
1205 continue;
1206
1207 // Rewrite source.
1208 if (CpyRewriter.RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1209 // We may have extended the live-range of NewSrc, account for that.
1210 MRI->clearKillFlags(NewSrc.Reg);
1211 Changed = true;
1212 }
1213 }
1214
1215 // TODO: We could have a clean-up method to tidy the instruction.
1216 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1217 // => v0 = COPY v1
1218 // Currently we haven't seen motivating example for that and we
1219 // want to avoid untested code.
1220 NumRewrittenCopies += Changed;
1221 return Changed;
1222}
1223
1224/// Optimize generic copy instructions to avoid cross register bank copy.
1225/// The optimization looks through a chain of copies and tries to find a source
1226/// that has a compatible register class.
1227/// Two register classes are considered to be compatible if they share the same
1228/// register bank.
1229/// New copies issued by this optimization are register allocator
1230/// friendly. This optimization does not remove any copy as it may
1231/// overconstrain the register allocator, but replaces some operands
1232/// when possible.
1233/// \pre isCoalescableCopy(*MI) is true.
1234/// \return True, when \p MI has been rewritten. False otherwise.
1235bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1236 assert(isCoalescableCopy(MI) && "Invalid argument");
1237 assert(MI.getDesc().getNumDefs() == 1 &&
1238 "Coalescer can understand multiple defs?!");
1239 const MachineOperand &MODef = MI.getOperand(0);
1240 // Do not rewrite physical definitions.
1241 if (MODef.getReg().isPhysical())
1242 return false;
1243
1244 switch (MI.getOpcode()) {
1245 case TargetOpcode::COPY:
1246 return optimizeCoalescableCopyImpl(CopyRewriter(MI));
1247 case TargetOpcode::INSERT_SUBREG:
1248 return optimizeCoalescableCopyImpl(InsertSubregRewriter(MI));
1249 case TargetOpcode::EXTRACT_SUBREG:
1250 return optimizeCoalescableCopyImpl(ExtractSubregRewriter(MI, *TII));
1251 case TargetOpcode::REG_SEQUENCE:
1252 return optimizeCoalescableCopyImpl(RegSequenceRewriter(MI));
1253 default:
1254 // Handle uncoalescable copy-like instructions.
1255 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1256 MI.isExtractSubregLike())
1257 return optimizeCoalescableCopyImpl(UncoalescableRewriter(MI));
1258 return false;
1259 }
1260}
1261
1262/// Rewrite the source found through \p Def, by using the \p RewriteMap
1263/// and create a new COPY instruction. More info about RewriteMap in
1264/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1265/// Uncoalescable copies, since they are copy like instructions that aren't
1266/// recognized by the register allocator.
1267MachineInstr &PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1268 RegSubRegPair Def,
1269 RewriteMapTy &RewriteMap) {
1270 assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers");
1271
1272 // Find the new source to use in the COPY rewrite.
1273 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1274
1275 // Insert the COPY.
1276 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1277 Register NewVReg = MRI->createVirtualRegister(DefRC);
1278
1279 MachineInstr *NewCopy =
1280 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1281 TII->get(TargetOpcode::COPY), NewVReg)
1282 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1283
1284 if (Def.SubReg) {
1285 NewCopy->getOperand(0).setSubReg(Def.SubReg);
1286 NewCopy->getOperand(0).setIsUndef();
1287 }
1288
1289 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1290 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
1291 LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
1292 MRI->replaceRegWith(Def.Reg, NewVReg);
1293 MRI->clearKillFlags(NewVReg);
1294
1295 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1296 // account for that.
1297 MRI->clearKillFlags(NewSrc.Reg);
1298
1299 return *NewCopy;
1300}
1301
1302/// Optimize copy-like instructions to create
1303/// register coalescer friendly instruction.
1304/// The optimization tries to kill-off the \p MI by looking
1305/// through a chain of copies to find a source that has a compatible
1306/// register class.
1307/// If such a source is found, it replace \p MI by a generic COPY
1308/// operation.
1309/// \pre isUncoalescableCopy(*MI) is true.
1310/// \return True, when \p MI has been optimized. In that case, \p MI has
1311/// been removed from its parent.
1312/// All COPY instructions created, are inserted in \p LocalMIs.
1313bool PeepholeOptimizer::optimizeUncoalescableCopy(
1315 assert(isUncoalescableCopy(MI) && "Invalid argument");
1316 UncoalescableRewriter CpyRewriter(MI);
1317
1318 // Rewrite each rewritable source by generating new COPYs. This works
1319 // differently from optimizeCoalescableCopy since it first makes sure that all
1320 // definitions can be rewritten.
1321 RewriteMapTy RewriteMap;
1322 RegSubRegPair Src;
1324 SmallVector<RegSubRegPair, 4> RewritePairs;
1325 while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1326 // If a physical register is here, this is probably for a good reason.
1327 // Do not rewrite that.
1328 if (Def.Reg.isPhysical())
1329 return false;
1330
1331 // FIXME: Uncoalescable copies are treated differently by
1332 // UncoalescableRewriter, and this probably should not share
1333 // API. getNextRewritableSource really finds rewritable defs.
1334 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1335
1336 // If we do not know how to rewrite this definition, there is no point
1337 // in trying to kill this instruction.
1338 if (!findNextSource(DefRC, Def.SubReg, Def, RewriteMap))
1339 return false;
1340
1341 RewritePairs.push_back(Def);
1342 }
1343
1344 // The change is possible for all defs, do it.
1345 for (const RegSubRegPair &Def : RewritePairs) {
1346 // Rewrite the "copy" in a way the register coalescer understands.
1347 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1348 LocalMIs.insert(&NewCopy);
1349 }
1350
1351 // MI is now dead.
1352 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1353 MI.eraseFromParent();
1354 ++NumUncoalescableCopies;
1355 return true;
1356}
1357
1358/// Check whether MI is a candidate for folding into a later instruction.
1359/// We only fold loads to virtual registers and the virtual register defined
1360/// has a single user.
1361bool PeepholeOptimizer::isLoadFoldable(
1362 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1363 if (!MI.canFoldAsLoad() || !MI.mayLoad())
1364 return false;
1365 const MCInstrDesc &MCID = MI.getDesc();
1366 if (MCID.getNumDefs() != 1)
1367 return false;
1368
1369 Register Reg = MI.getOperand(0).getReg();
1370 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1371 // loads. It should be checked when processing uses of the load, since
1372 // uses can be removed during peephole.
1373 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1374 MRI->hasOneNonDBGUser(Reg)) {
1375 FoldAsLoadDefCandidates.insert(Reg);
1376 return true;
1377 }
1378 return false;
1379}
1380
1381bool PeepholeOptimizer::isMoveImmediate(
1384 const MCInstrDesc &MCID = MI.getDesc();
1385 if (MCID.getNumDefs() != 1 || !MI.getOperand(0).isReg())
1386 return false;
1387 Register Reg = MI.getOperand(0).getReg();
1388 if (!Reg.isVirtual())
1389 return false;
1390
1391 int64_t ImmVal;
1392 if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal))
1393 return false;
1394
1395 ImmDefMIs.insert(std::make_pair(Reg, &MI));
1396 ImmDefRegs.insert(Reg);
1397 return true;
1398}
1399
1400/// Try folding register operands that are defined by move immediate
1401/// instructions, i.e. a trivial constant folding optimization, if
1402/// and only if the def and use are in the same BB.
1403bool PeepholeOptimizer::foldImmediate(
1405 DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) {
1406 Deleted = false;
1407 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1408 MachineOperand &MO = MI.getOperand(i);
1409 if (!MO.isReg() || MO.isDef())
1410 continue;
1411 Register Reg = MO.getReg();
1412 if (!Reg.isVirtual())
1413 continue;
1414 if (ImmDefRegs.count(Reg) == 0)
1415 continue;
1417 assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1418 if (TII->foldImmediate(MI, *II->second, Reg, MRI)) {
1419 ++NumImmFold;
1420 // foldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI
1421 // is not deleted, and we happened to get a same MI, we can delete MI and
1422 // replace its users.
1423 if (MRI->getVRegDef(Reg) &&
1424 MI.isIdenticalTo(*II->second, MachineInstr::IgnoreVRegDefs)) {
1425 Register DstReg = MI.getOperand(0).getReg();
1426 if (DstReg.isVirtual() &&
1427 MRI->getRegClass(DstReg) == MRI->getRegClass(Reg)) {
1428 MRI->replaceRegWith(DstReg, Reg);
1429 MI.eraseFromParent();
1430 Deleted = true;
1431 }
1432 }
1433 return true;
1434 }
1435 }
1436 return false;
1437}
1438
1439// FIXME: This is very simple and misses some cases which should be handled when
1440// motivating examples are found.
1441//
1442// The copy rewriting logic should look at uses as well as defs and be able to
1443// eliminate copies across blocks.
1444//
1445// Later copies that are subregister extracts will also not be eliminated since
1446// only the first copy is considered.
1447//
1448// e.g.
1449// %1 = COPY %0
1450// %2 = COPY %0:sub1
1451//
1452// Should replace %2 uses with %1:sub1
1453bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) {
1454 assert(MI.isCopy() && "expected a COPY machine instruction");
1455
1456 RegSubRegPair SrcPair;
1457 if (!getCopySrc(MI, SrcPair))
1458 return false;
1459
1460 Register DstReg = MI.getOperand(0).getReg();
1461 if (!DstReg.isVirtual())
1462 return false;
1463
1464 if (CopySrcMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1465 // First copy of this reg seen.
1466 return false;
1467 }
1468
1469 MachineInstr *PrevCopy = CopySrcMIs.find(SrcPair)->second;
1470
1471 assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() &&
1472 "Unexpected mismatching subreg!");
1473
1474 Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1475
1476 // Only replace if the copy register class is the same.
1477 //
1478 // TODO: If we have multiple copies to different register classes, we may want
1479 // to track multiple copies of the same source register.
1480 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1481 return false;
1482
1483 MRI->replaceRegWith(DstReg, PrevDstReg);
1484
1485 // Lifetime of the previous copy has been extended.
1486 MRI->clearKillFlags(PrevDstReg);
1487 return true;
1488}
1489
1490bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1491 return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1492}
1493
1494bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1496 assert(MI.isCopy() && "expected a COPY machine instruction");
1497
1499 return false;
1500
1501 Register DstReg = MI.getOperand(0).getReg();
1502 Register SrcReg = MI.getOperand(1).getReg();
1503 if (isNAPhysCopy(SrcReg) && DstReg.isVirtual()) {
1504 // %vreg = COPY $physreg
1505 // Avoid using a datastructure which can track multiple live non-allocatable
1506 // phys->virt copies since LLVM doesn't seem to do this.
1507 NAPhysToVirtMIs.insert({SrcReg, &MI});
1508 return false;
1509 }
1510
1511 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1512 return false;
1513
1514 // $physreg = COPY %vreg
1515 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1516 if (PrevCopy == NAPhysToVirtMIs.end()) {
1517 // We can't remove the copy: there was an intervening clobber of the
1518 // non-allocatable physical register after the copy to virtual.
1519 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1520 << MI);
1521 return false;
1522 }
1523
1524 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1525 if (PrevDstReg == SrcReg) {
1526 // Remove the virt->phys copy: we saw the virtual register definition, and
1527 // the non-allocatable physical register's state hasn't changed since then.
1528 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1529 ++NumNAPhysCopies;
1530 return true;
1531 }
1532
1533 // Potential missed optimization opportunity: we saw a different virtual
1534 // register get a copy of the non-allocatable physical register, and we only
1535 // track one such copy. Avoid getting confused by this new non-allocatable
1536 // physical register definition, and remove it from the tracked copies.
1537 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1538 NAPhysToVirtMIs.erase(PrevCopy);
1539 return false;
1540}
1541
1542/// \bried Returns true if \p MO is a virtual register operand.
1544 return MO.isReg() && MO.getReg().isVirtual();
1545}
1546
1547bool PeepholeOptimizer::findTargetRecurrence(
1548 Register Reg, const SmallSet<Register, 2> &TargetRegs,
1549 RecurrenceCycle &RC) {
1550 // Recurrence found if Reg is in TargetRegs.
1551 if (TargetRegs.count(Reg))
1552 return true;
1553
1554 // TODO: Curerntly, we only allow the last instruction of the recurrence
1555 // cycle (the instruction that feeds the PHI instruction) to have more than
1556 // one uses to guarantee that commuting operands does not tie registers
1557 // with overlapping live range. Once we have actual live range info of
1558 // each register, this constraint can be relaxed.
1559 if (!MRI->hasOneNonDBGUse(Reg))
1560 return false;
1561
1562 // Give up if the reccurrence chain length is longer than the limit.
1563 if (RC.size() >= MaxRecurrenceChain)
1564 return false;
1565
1566 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1567 unsigned Idx = MI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
1568
1569 // Only interested in recurrences whose instructions have only one def, which
1570 // is a virtual register.
1571 if (MI.getDesc().getNumDefs() != 1)
1572 return false;
1573
1574 MachineOperand &DefOp = MI.getOperand(0);
1575 if (!isVirtualRegisterOperand(DefOp))
1576 return false;
1577
1578 // Check if def operand of MI is tied to any use operand. We are only
1579 // interested in the case that all the instructions in the recurrence chain
1580 // have there def operand tied with one of the use operand.
1581 unsigned TiedUseIdx;
1582 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1583 return false;
1584
1585 if (Idx == TiedUseIdx) {
1586 RC.push_back(RecurrenceInstr(&MI));
1587 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1588 } else {
1589 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1590 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1591 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1592 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1593 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1594 }
1595 }
1596
1597 return false;
1598}
1599
1600/// Phi instructions will eventually be lowered to copy instructions.
1601/// If phi is in a loop header, a recurrence may formulated around the source
1602/// and destination of the phi. For such case commuting operands of the
1603/// instructions in the recurrence may enable coalescing of the copy instruction
1604/// generated from the phi. For example, if there is a recurrence of
1605///
1606/// LoopHeader:
1607/// %1 = phi(%0, %100)
1608/// LoopLatch:
1609/// %0<def, tied1> = ADD %2<def, tied0>, %1
1610///
1611/// , the fact that %0 and %2 are in the same tied operands set makes
1612/// the coalescing of copy instruction generated from the phi in
1613/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1614/// %2 have overlapping live range. This introduces additional move
1615/// instruction to the final assembly. However, if we commute %2 and
1616/// %1 of ADD instruction, the redundant move instruction can be
1617/// avoided.
1618bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1619 SmallSet<Register, 2> TargetRegs;
1620 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1621 MachineOperand &MO = PHI.getOperand(Idx);
1622 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1623 TargetRegs.insert(MO.getReg());
1624 }
1625
1626 bool Changed = false;
1627 RecurrenceCycle RC;
1628 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1629 // Commutes operands of instructions in RC if necessary so that the copy to
1630 // be generated from PHI can be coalesced.
1631 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1632 for (auto &RI : RC) {
1633 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1634 auto CP = RI.getCommutePair();
1635 if (CP) {
1636 Changed = true;
1637 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1638 (*CP).second);
1639 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1640 }
1641 }
1642 }
1643
1644 return Changed;
1645}
1646
1650 MFPropsModifier _(*this, MF);
1651 auto *DT =
1652 Aggressive ? &MFAM.getResult<MachineDominatorTreeAnalysis>(MF) : nullptr;
1653 auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(MF);
1654 PeepholeOptimizer Impl(DT, MLI);
1655 bool Changed = Impl.run(MF);
1656 if (!Changed)
1657 return PreservedAnalyses::all();
1658
1660 PA.preserve<MachineDominatorTreeAnalysis>();
1661 PA.preserve<MachineLoopAnalysis>();
1662 PA.preserveSet<CFGAnalyses>();
1663 return PA;
1664}
1665
1666bool PeepholeOptimizerLegacy::runOnMachineFunction(MachineFunction &MF) {
1667 if (skipFunction(MF.getFunction()))
1668 return false;
1669 auto *DT = Aggressive
1670 ? &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()
1671 : nullptr;
1672 auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1673 PeepholeOptimizer Impl(DT, MLI);
1674 return Impl.run(MF);
1675}
1676
1677bool PeepholeOptimizer::run(MachineFunction &MF) {
1678
1679 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1680 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1681
1682 if (DisablePeephole)
1683 return false;
1684
1685 TII = MF.getSubtarget().getInstrInfo();
1687 MRI = &MF.getRegInfo();
1688 MF.setDelegate(this);
1689
1690 bool Changed = false;
1691
1692 for (MachineBasicBlock &MBB : MF) {
1693 bool SeenMoveImm = false;
1694
1695 // During this forward scan, at some point it needs to answer the question
1696 // "given a pointer to an MI in the current BB, is it located before or
1697 // after the current instruction".
1698 // To perform this, the following set keeps track of the MIs already seen
1699 // during the scan, if a MI is not in the set, it is assumed to be located
1700 // after. Newly created MIs have to be inserted in the set as well.
1702 SmallSet<Register, 4> ImmDefRegs;
1704 SmallSet<Register, 16> FoldAsLoadDefCandidates;
1705
1706 // Track when a non-allocatable physical register is copied to a virtual
1707 // register so that useless moves can be removed.
1708 //
1709 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1710 // without any intervening re-definition of $physreg.
1711 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1712
1713 CopySrcMIs.clear();
1714
1715 bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1716
1717 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1718 MII != MIE;) {
1719 MachineInstr *MI = &*MII;
1720 // We may be erasing MI below, increment MII now.
1721 ++MII;
1722 LocalMIs.insert(MI);
1723
1724 // Skip debug instructions. They should not affect this peephole
1725 // optimization.
1726 if (MI->isDebugInstr())
1727 continue;
1728
1729 if (MI->isPosition())
1730 continue;
1731
1732 if (IsLoopHeader && MI->isPHI()) {
1733 if (optimizeRecurrence(*MI)) {
1734 Changed = true;
1735 continue;
1736 }
1737 }
1738
1739 if (!MI->isCopy()) {
1740 for (const MachineOperand &MO : MI->operands()) {
1741 // Visit all operands: definitions can be implicit or explicit.
1742 if (MO.isReg()) {
1743 Register Reg = MO.getReg();
1744 if (MO.isDef() && isNAPhysCopy(Reg)) {
1745 const auto &Def = NAPhysToVirtMIs.find(Reg);
1746 if (Def != NAPhysToVirtMIs.end()) {
1747 // A new definition of the non-allocatable physical register
1748 // invalidates previous copies.
1750 << "NAPhysCopy: invalidating because of " << *MI);
1751 NAPhysToVirtMIs.erase(Def);
1752 }
1753 }
1754 } else if (MO.isRegMask()) {
1755 const uint32_t *RegMask = MO.getRegMask();
1756 for (auto &RegMI : NAPhysToVirtMIs) {
1757 Register Def = RegMI.first;
1758 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1760 << "NAPhysCopy: invalidating because of " << *MI);
1761 NAPhysToVirtMIs.erase(Def);
1762 }
1763 }
1764 }
1765 }
1766 }
1767
1768 if (MI->isImplicitDef() || MI->isKill())
1769 continue;
1770
1771 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1772 // Blow away all non-allocatable physical registers knowledge since we
1773 // don't know what's correct anymore.
1774 //
1775 // FIXME: handle explicit asm clobbers.
1776 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1777 << *MI);
1778 NAPhysToVirtMIs.clear();
1779 }
1780
1781 if ((isUncoalescableCopy(*MI) &&
1782 optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1783 (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1784 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1785 // MI is deleted.
1786 LocalMIs.erase(MI);
1787 Changed = true;
1788 continue;
1789 }
1790
1791 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1792 Changed = true;
1793 continue;
1794 }
1795
1796 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1797 // MI is just rewritten.
1798 Changed = true;
1799 continue;
1800 }
1801
1802 if (MI->isCopy() && (foldRedundantCopy(*MI) ||
1803 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1804 LocalMIs.erase(MI);
1805 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1806 MI->eraseFromParent();
1807 Changed = true;
1808 continue;
1809 }
1810
1811 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1812 SeenMoveImm = true;
1813 } else {
1814 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1815 // optimizeExtInstr might have created new instructions after MI
1816 // and before the already incremented MII. Adjust MII so that the
1817 // next iteration sees the new instructions.
1818 MII = MI;
1819 ++MII;
1820 if (SeenMoveImm) {
1821 bool Deleted;
1822 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs, Deleted);
1823 if (Deleted) {
1824 LocalMIs.erase(MI);
1825 continue;
1826 }
1827 }
1828 }
1829
1830 // Check whether MI is a load candidate for folding into a later
1831 // instruction. If MI is not a candidate, check whether we can fold an
1832 // earlier load into MI.
1833 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1834 !FoldAsLoadDefCandidates.empty()) {
1835
1836 // We visit each operand even after successfully folding a previous
1837 // one. This allows us to fold multiple loads into a single
1838 // instruction. We do assume that optimizeLoadInstr doesn't insert
1839 // foldable uses earlier in the argument list. Since we don't restart
1840 // iteration, we'd miss such cases.
1841 const MCInstrDesc &MIDesc = MI->getDesc();
1842 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); ++i) {
1843 const MachineOperand &MOp = MI->getOperand(i);
1844 if (!MOp.isReg())
1845 continue;
1846 Register FoldAsLoadDefReg = MOp.getReg();
1847 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1848 // We need to fold load after optimizeCmpInstr, since
1849 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1850 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1851 // we need it for markUsesInDebugValueAsUndef().
1852 Register FoldedReg = FoldAsLoadDefReg;
1853 MachineInstr *DefMI = nullptr;
1854 if (MachineInstr *FoldMI =
1855 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1856 // Update LocalMIs since we replaced MI with FoldMI and deleted
1857 // DefMI.
1858 LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1859 LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
1860 LocalMIs.erase(MI);
1861 LocalMIs.erase(DefMI);
1862 LocalMIs.insert(FoldMI);
1863 // Update the call info.
1864 if (MI->shouldUpdateAdditionalCallInfo())
1865 MI->getMF()->moveAdditionalCallInfo(MI, FoldMI);
1866 MI->eraseFromParent();
1868 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1869 FoldAsLoadDefCandidates.erase(FoldedReg);
1870 ++NumLoadFold;
1871
1872 // MI is replaced with FoldMI so we can continue trying to fold
1873 Changed = true;
1874 MI = FoldMI;
1875 }
1876 }
1877 }
1878 }
1879
1880 // If we run into an instruction we can't fold across, discard
1881 // the load candidates. Note: We might be able to fold *into* this
1882 // instruction, so this needs to be after the folding logic.
1883 if (MI->isLoadFoldBarrier()) {
1884 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1885 FoldAsLoadDefCandidates.clear();
1886 }
1887 }
1888 }
1889
1890 MF.resetDelegate(this);
1891 return Changed;
1892}
1893
1894ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1895 assert(Def->isCopy() && "Invalid definition");
1896 // Copy instruction are supposed to be: Def = Src.
1897 // If someone breaks this assumption, bad things will happen everywhere.
1898 // There may be implicit uses preventing the copy to be moved across
1899 // some target specific register definitions
1900 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1901 "Invalid number of operands");
1902 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1903 assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA");
1904
1905 // Otherwise, we want the whole source.
1906 const MachineOperand &Src = Def->getOperand(1);
1907 if (Src.isUndef())
1908 return ValueTrackerResult();
1909 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1910}
1911
1912ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1913 assert(Def->isBitcast() && "Invalid definition");
1914
1915 // Bail if there are effects that a plain copy will not expose.
1916 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1917 return ValueTrackerResult();
1918
1919 // Bitcasts with more than one def are not supported.
1920 if (Def->getDesc().getNumDefs() != 1)
1921 return ValueTrackerResult();
1922
1923 assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA");
1924
1925 unsigned SrcIdx = Def->getNumOperands();
1926 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1927 ++OpIdx) {
1928 const MachineOperand &MO = Def->getOperand(OpIdx);
1929 if (!MO.isReg() || !MO.getReg())
1930 continue;
1931 // Ignore dead implicit defs.
1932 if (MO.isImplicit() && MO.isDead())
1933 continue;
1934 assert(!MO.isDef() && "We should have skipped all the definitions by now");
1935 if (SrcIdx != EndOpIdx)
1936 // Multiple sources?
1937 return ValueTrackerResult();
1938 SrcIdx = OpIdx;
1939 }
1940
1941 // In some rare case, Def has no input, SrcIdx is out of bound,
1942 // getOperand(SrcIdx) will fail below.
1943 if (SrcIdx >= Def->getNumOperands())
1944 return ValueTrackerResult();
1945
1946 const MachineOperand &DefOp = Def->getOperand(DefIdx);
1947
1948 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1949 // will break the assumed guarantees for the upper bits.
1950 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1951 if (UseMI.isSubregToReg())
1952 return ValueTrackerResult();
1953 }
1954
1955 const MachineOperand &Src = Def->getOperand(SrcIdx);
1956 if (Src.isUndef())
1957 return ValueTrackerResult();
1958 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1959}
1960
1961ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1962 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1963 "Invalid definition");
1964
1965 assert(!Def->getOperand(DefIdx).getSubReg() && "illegal subregister def");
1966
1968 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1969 return ValueTrackerResult();
1970
1971 // We are looking at:
1972 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1973 //
1974 // Check if one of the operands exactly defines the subreg we are interested
1975 // in.
1976 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1977 if (RegSeqInput.SubIdx == DefSubReg)
1978 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1979 }
1980
1981 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1982
1983 // If we did not find an exact match, see if we can do a composition to
1984 // extract a sub-subregister.
1985 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1986 LaneBitmask DefMask = TRI->getSubRegIndexLaneMask(DefSubReg);
1987 LaneBitmask ThisOpRegMask = TRI->getSubRegIndexLaneMask(RegSeqInput.SubIdx);
1988
1989 // Check that this extract reads a subset of this single reg_sequence input.
1990 //
1991 // FIXME: We should be able to filter this in terms of the indexes directly
1992 // without checking the lanemasks.
1993 if ((DefMask & ThisOpRegMask) != DefMask)
1994 continue;
1995
1996 unsigned ReverseDefCompose =
1997 TRI->reverseComposeSubRegIndices(RegSeqInput.SubIdx, DefSubReg);
1998 if (!ReverseDefCompose)
1999 continue;
2000
2001 unsigned ComposedDefInSrcReg1 =
2002 TRI->composeSubRegIndices(RegSeqInput.SubReg, ReverseDefCompose);
2003
2004 // TODO: We should be able to defer checking if the result register class
2005 // supports the index to continue looking for a rewritable source.
2006 //
2007 // TODO: Should we modify the register class to support the index?
2008 const TargetRegisterClass *SrcRC = MRI.getRegClass(RegSeqInput.Reg);
2009 const TargetRegisterClass *SrcWithSubRC =
2010 TRI->getSubClassWithSubReg(SrcRC, ComposedDefInSrcReg1);
2011 if (SrcRC != SrcWithSubRC)
2012 return ValueTrackerResult();
2013
2014 return ValueTrackerResult(RegSeqInput.Reg, ComposedDefInSrcReg1);
2015 }
2016
2017 // If the subreg we are tracking is super-defined by another subreg,
2018 // we could follow this value. However, this would require to compose
2019 // the subreg and we do not do that for now.
2020 return ValueTrackerResult();
2021}
2022
2023ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
2024 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
2025 "Invalid definition");
2026 assert(!Def->getOperand(DefIdx).getSubReg() && "no subreg defs in SSA");
2027
2029 RegSubRegPairAndIdx InsertedReg;
2030 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
2031 return ValueTrackerResult();
2032
2033 // We are looking at:
2034 // Def = INSERT_SUBREG v0, v1, sub1
2035 // There are two cases:
2036 // 1. DefSubReg == sub1, get v1.
2037 // 2. DefSubReg != sub1, the value may be available through v0.
2038
2039 // #1 Check if the inserted register matches the required sub index.
2040 if (InsertedReg.SubIdx == DefSubReg) {
2041 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
2042 }
2043 // #2 Otherwise, if the sub register we are looking for is not partial
2044 // defined by the inserted element, we can look through the main
2045 // register (v0).
2046 const MachineOperand &MODef = Def->getOperand(DefIdx);
2047 // If the result register (Def) and the base register (v0) do not
2048 // have the same register class or if we have to compose
2049 // subregisters, bail out.
2050 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
2051 BaseReg.SubReg)
2052 return ValueTrackerResult();
2053
2054 // Get the TRI and check if the inserted sub-register overlaps with the
2055 // sub-register we are tracking.
2056 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
2057 if ((TRI->getSubRegIndexLaneMask(DefSubReg) &
2058 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx))
2059 .any())
2060 return ValueTrackerResult();
2061 // At this point, the value is available in v0 via the same subreg
2062 // we used for Def.
2063 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
2064}
2065
2066ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
2067 assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) &&
2068 "Invalid definition");
2069 // We are looking at:
2070 // Def = EXTRACT_SUBREG v0, sub0
2071
2072 // Bail if we have to compose sub registers.
2073 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2074 if (DefSubReg)
2075 return ValueTrackerResult();
2076
2077 RegSubRegPairAndIdx ExtractSubregInputReg;
2078 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2079 return ValueTrackerResult();
2080
2081 // Bail if we have to compose sub registers.
2082 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2083 if (ExtractSubregInputReg.SubReg)
2084 return ValueTrackerResult();
2085 // Otherwise, the value is available in the v0.sub0.
2086 return ValueTrackerResult(ExtractSubregInputReg.Reg,
2087 ExtractSubregInputReg.SubIdx);
2088}
2089
2090ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2091 assert(Def->isSubregToReg() && "Invalid definition");
2092 // We are looking at:
2093 // Def = SUBREG_TO_REG Imm, v0, sub0
2094
2095 // Bail if we have to compose sub registers.
2096 // If DefSubReg != sub0, we would have to check that all the bits
2097 // we track are included in sub0 and if yes, we would have to
2098 // determine the right subreg in v0.
2099 if (DefSubReg != Def->getOperand(3).getImm())
2100 return ValueTrackerResult();
2101 // Bail if we have to compose sub registers.
2102 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2103 if (Def->getOperand(2).getSubReg())
2104 return ValueTrackerResult();
2105
2106 return ValueTrackerResult(Def->getOperand(2).getReg(),
2107 Def->getOperand(3).getImm());
2108}
2109
2110/// Explore each PHI incoming operand and return its sources.
2111ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2112 assert(Def->isPHI() && "Invalid definition");
2113 ValueTrackerResult Res;
2114
2115 // Return all register sources for PHI instructions.
2116 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2117 const MachineOperand &MO = Def->getOperand(i);
2118 assert(MO.isReg() && "Invalid PHI instruction");
2119 // We have no code to deal with undef operands. They shouldn't happen in
2120 // normal programs anyway.
2121 if (MO.isUndef())
2122 return ValueTrackerResult();
2123 Res.addSource(MO.getReg(), MO.getSubReg());
2124 }
2125
2126 return Res;
2127}
2128
2129ValueTrackerResult ValueTracker::getNextSourceImpl() {
2130 assert(Def && "This method needs a valid definition");
2131
2132 assert(((Def->getOperand(DefIdx).isDef() &&
2133 (DefIdx < Def->getDesc().getNumDefs() ||
2134 Def->getDesc().isVariadic())) ||
2135 Def->getOperand(DefIdx).isImplicit()) &&
2136 "Invalid DefIdx");
2137 if (Def->isCopy())
2138 return getNextSourceFromCopy();
2139 if (Def->isBitcast())
2140 return getNextSourceFromBitcast();
2141 // All the remaining cases involve "complex" instructions.
2142 // Bail if we did not ask for the advanced tracking.
2144 return ValueTrackerResult();
2145 if (Def->isRegSequence() || Def->isRegSequenceLike())
2146 return getNextSourceFromRegSequence();
2147 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2148 return getNextSourceFromInsertSubreg();
2149 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2150 return getNextSourceFromExtractSubreg();
2151 if (Def->isSubregToReg())
2152 return getNextSourceFromSubregToReg();
2153 if (Def->isPHI())
2154 return getNextSourceFromPHI();
2155 return ValueTrackerResult();
2156}
2157
2158ValueTrackerResult ValueTracker::getNextSource() {
2159 // If we reach a point where we cannot move up in the use-def chain,
2160 // there is nothing we can get.
2161 if (!Def)
2162 return ValueTrackerResult();
2163
2164 ValueTrackerResult Res = getNextSourceImpl();
2165 if (Res.isValid()) {
2166 // Update definition, definition index, and subregister for the
2167 // next call of getNextSource.
2168 // Update the current register.
2169 bool OneRegSrc = Res.getNumSources() == 1;
2170 if (OneRegSrc)
2171 Reg = Res.getSrcReg(0);
2172 // Update the result before moving up in the use-def chain
2173 // with the instruction containing the last found sources.
2174 Res.setInst(Def);
2175
2176 // If we can still move up in the use-def chain, move to the next
2177 // definition.
2178 if (!Reg.isPhysical() && OneRegSrc) {
2179 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2180 if (DI != MRI.def_end()) {
2181 Def = DI->getParent();
2182 DefIdx = DI.getOperandNo();
2183 DefSubReg = Res.getSrcSubReg(0);
2184 } else {
2185 Def = nullptr;
2186 }
2187 return Res;
2188 }
2189 }
2190 // If we end up here, this means we will not be able to find another source
2191 // for the next iteration. Make sure any new call to getNextSource bails out
2192 // early by cutting the use-def chain.
2193 Def = nullptr;
2194 return Res;
2195}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
MachineBasicBlock & MBB
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1328
const HexagonInstrInfo * TII
#define _
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
#define I(x, y, z)
Definition: MD5.cpp:58
TargetInstrInfo::RegSubRegPair RegSubRegPair
Register const TargetRegisterInfo * TRI
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
TargetInstrInfo::RegSubRegPair RegSubRegPair
static cl::opt< unsigned > RewritePHILimit("rewrite-phi-limit", cl::Hidden, cl::init(10), cl::desc("Limit the length of PHI chains to lookup"))
static cl::opt< bool > DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), cl::desc("Disable the peephole optimizer"))
static cl::opt< unsigned > MaxRecurrenceChain("recurrence-chain-limit", cl::Hidden, cl::init(3), cl::desc("Maximum length of recurrence chain when evaluating the benefit " "of commuting operands"))
static cl::opt< bool > DisableNAPhysCopyOpt("disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable non-allocatable physical register copy optimization"))
static bool isVirtualRegisterOperand(MachineOperand &MO)
\bried Returns true if MO is a virtual register operand.
static MachineInstr & insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const SmallVectorImpl< RegSubRegPair > &SrcRegs, MachineInstr &OrigPHI)
Insert a PHI instruction with incoming edges SrcRegs that are guaranteed to have the same register cl...
static cl::opt< bool > Aggressive("aggressive-ext-opt", cl::Hidden, cl::desc("Aggressive extension optimization"))
static cl::opt< bool > DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable advanced copy optimization"))
Specifiy whether or not the value tracking looks through complex instructions.
Peephole Optimizations
#define DEBUG_TYPE
static RegSubRegPair getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, RegSubRegPair Def, const PeepholeOptimizer::RewriteMapTy &RewriteMap, bool HandleMultipleSources=true)
Given a Def.Reg and Def.SubReg pair, use RewriteMap to find the new source to use for rewrite.
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Virtual Register Rewriter
Definition: VirtRegMap.cpp:269
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:270
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:73
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:203
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
bool erase(const KeyT &Val)
Definition: DenseMap.h:319
iterator end()
Definition: DenseMap.h:87
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:230
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
bool isLoopHeader(const BlockT *BB) const
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:199
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:249
An RAII based helper class to modify MachineFunctionProperties when running pass.
Analysis pass which computes a MachineDominatorTree.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID)
Callback before changing MCInstrDesc.
virtual void MF_HandleRemoval(MachineInstr &MI)=0
Callback before a removal. This should not modify the MI directly.
virtual void MF_HandleInsertion(MachineInstr &MI)=0
Callback after an insertion. This should not modify the MI directly.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
void setDelegate(Delegate *delegate)
Set the delegate.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:72
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:587
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:359
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:511
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
bool isPHI() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
Analysis pass that exposes the MachineLoopInfo for a machine function.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
const uint32_t * getRegMask() const
getRegMask - Returns a bit mask of registers preserved by this RegMask operand.
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
unsigned getOperandNo() const
getOperandNo - Return the operand # of this MachineOperand in its MachineInstr.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:74
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:78
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:418
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:134
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:176
bool empty() const
Definition: SmallSet.h:169
bool erase(const T &V)
Definition: SmallSet.h:198
void clear()
Definition: SmallSet.h:209
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:182
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
TargetInstrInfo - Interface to description of machine instruction set.
static const unsigned CommuteAnyOperandIndex
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
MCInstrDesc const & getDesc(MCInstrInfo const &MCII, MCInst const &MCI)
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
Definition: SFrame.h:77
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
std::pair< unsigned, unsigned > IndexPair
The pair of an instruction index and a operand index.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
LLVM_ABI char & PeepholeOptimizerLegacyID
PeepholeOptimizer - This pass performs peephole optimizations - like extension and comparison elimina...
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI void initializePeepholeOptimizerLegacyPass(PassRegistry &)
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:856
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
A pair composed of a register and a sub-register index.