LLVM 22.0.0git
SIISelLowering.cpp
Go to the documentation of this file.
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIISelLowering.h"
15#include "AMDGPU.h"
16#include "AMDGPUInstrInfo.h"
17#include "AMDGPULaneMaskUtils.h"
18#include "AMDGPUTargetMachine.h"
19#include "GCNSubtarget.h"
22#include "SIRegisterInfo.h"
23#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/Statistic.h"
39#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsR600.h"
43#include "llvm/IR/MDBuilder.h"
46#include "llvm/Support/ModRef.h"
48#include <optional>
49
50using namespace llvm;
51using namespace llvm::SDPatternMatch;
52
53#define DEBUG_TYPE "si-lower"
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58 DisableLoopAlignment("amdgpu-disable-loop-alignment",
59 cl::desc("Do not align and prefetch loops"),
60 cl::init(false));
61
63 "amdgpu-use-divergent-register-indexing", cl::Hidden,
64 cl::desc("Use indirect register addressing for divergent indexes"),
65 cl::init(false));
66
67// TODO: This option should be removed once we switch to always using PTRADD in
68// the SelectionDAG.
70 "amdgpu-use-sdag-ptradd", cl::Hidden,
71 cl::desc("Generate ISD::PTRADD nodes for 64-bit pointer arithmetic in the "
72 "SelectionDAG ISel"),
73 cl::init(false));
74
77 return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign();
78}
79
82 return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign();
83}
84
85static unsigned findFirstFreeSGPR(CCState &CCInfo) {
86 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
87 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
88 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
89 return AMDGPU::SGPR0 + Reg;
90 }
91 }
92 llvm_unreachable("Cannot allocate sgpr");
93}
94
96 const GCNSubtarget &STI)
97 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI) {
98 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
99 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
100
101 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
102 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
103
104 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
105
106 const SIRegisterInfo *TRI = STI.getRegisterInfo();
107 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
108
109 addRegisterClass(MVT::f64, V64RegClass);
110 addRegisterClass(MVT::v2f32, V64RegClass);
111 addRegisterClass(MVT::Untyped, V64RegClass);
112
113 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
114 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
115
116 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
117 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
118
119 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
120 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
121
122 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
123 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
124
125 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
126 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
127
128 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
129 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
130
131 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
132 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
133
134 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
135 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
136
137 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
138 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
139
140 addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
141 addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
142
143 addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
144 addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
145
146 addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
147 addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
148
149 addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
150 addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
151
152 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
153 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
154
155 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
156 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
157
158 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
159 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
160
161 if (Subtarget->has16BitInsts()) {
162 if (Subtarget->useRealTrue16Insts()) {
163 addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass);
164 addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass);
165 addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass);
166 } else {
167 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
168 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
169 addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass);
170 }
171
172 // Unless there are also VOP3P operations, not operations are really legal.
173 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
174 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
175 addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass);
176 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
177 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
178 addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass);
179 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
180 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
181 addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass);
182 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
183 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
184 addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass);
185 addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass);
186 addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass);
187 addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass);
188 }
189
190 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
191 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
192
193 computeRegisterProperties(Subtarget->getRegisterInfo());
194
195 // The boolean content concept here is too inflexible. Compares only ever
196 // really produce a 1-bit result. Any copy/extend from these will turn into a
197 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
198 // it's what most targets use.
201
202 // We need to custom lower vector stores from local memory
203 setOperationAction(ISD::LOAD,
204 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
205 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
206 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
207 MVT::i1, MVT::v32i32},
208 Custom);
209
210 setOperationAction(ISD::STORE,
211 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
212 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
213 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
214 MVT::i1, MVT::v32i32},
215 Custom);
216
217 if (isTypeLegal(MVT::bf16)) {
218 for (unsigned Opc :
220 ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM,
221 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT,
222 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI,
223 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2,
224 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10,
225 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT,
226 ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE,
227 ISD::SETCC}) {
228 // FIXME: The promoted to type shouldn't need to be explicit
229 setOperationAction(Opc, MVT::bf16, Promote);
230 AddPromotedToType(Opc, MVT::bf16, MVT::f32);
231 }
232
234
236 AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16);
237
238 setOperationAction(ISD::FABS, MVT::bf16, Legal);
239 setOperationAction(ISD::FNEG, MVT::bf16, Legal);
241
242 // We only need to custom lower because we can't specify an action for bf16
243 // sources.
246 }
247
248 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
249 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
250 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
251 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
252 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
253 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
254 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
255 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
256 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
257 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
258 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
259 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
260 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
261 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
262 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
263 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
264
265 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
266 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
267 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
268 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
269 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
270 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
271 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
272
273 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
274
278 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
279
280 setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom);
281
283 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
284
286 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
287 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
288
290 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
291 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
292 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
293 Expand);
295 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
296 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
297 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
298 Expand);
299
301 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
302 MVT::v3i16, MVT::v4i16, MVT::Other},
303 Custom);
304
305 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
306 setOperationAction(ISD::BR_CC,
307 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
308
310
312
314 Expand);
315
316#if 0
318#endif
319
320 // We only support LOAD/STORE and vector manipulation ops for vectors
321 // with > 4 elements.
322 for (MVT VT :
323 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
324 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
325 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
326 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
327 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
328 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
329 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
330 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
331 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
332 switch (Op) {
333 case ISD::LOAD:
334 case ISD::STORE:
336 case ISD::BITCAST:
337 case ISD::UNDEF:
341 case ISD::IS_FPCLASS:
342 break;
347 break;
348 default:
350 break;
351 }
352 }
353 }
354
355 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
356
357 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
358 // is expanded to avoid having two separate loops in case the index is a VGPR.
359
360 // Most operations are naturally 32-bit vector operations. We only support
361 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
362 for (MVT Vec64 : {MVT::v2i64, MVT::v2f64}) {
364 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
365
367 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
368
370 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
371
373 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
374 }
375
376 for (MVT Vec64 : {MVT::v3i64, MVT::v3f64}) {
378 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
379
381 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
382
384 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
385
387 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
388 }
389
390 for (MVT Vec64 : {MVT::v4i64, MVT::v4f64}) {
392 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
393
395 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
396
398 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
399
401 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
402 }
403
404 for (MVT Vec64 : {MVT::v8i64, MVT::v8f64}) {
406 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
407
409 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
410
412 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
413
415 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
416 }
417
418 for (MVT Vec64 : {MVT::v16i64, MVT::v16f64}) {
420 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
421
423 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
424
426 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
427
429 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
430 }
431
433 {MVT::v4i32, MVT::v4f32, MVT::v8i32, MVT::v8f32,
434 MVT::v16i32, MVT::v16f32, MVT::v32i32, MVT::v32f32},
435 Custom);
436
437 if (Subtarget->hasPkMovB32()) {
438 // TODO: 16-bit element vectors should be legal with even aligned elements.
439 // TODO: Can be legal with wider source types than the result with
440 // subregister extracts.
441 setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v2i32, MVT::v2f32}, Legal);
442 }
443
445 // Prevent SELECT v2i32 from being implemented with the above bitwise ops and
446 // instead lower to cndmask in SITargetLowering::LowerSELECT().
448 // Enable MatchRotate to produce ISD::ROTR, which is later transformed to
449 // alignbit.
450 setOperationAction(ISD::ROTR, MVT::v2i32, Custom);
451
452 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16},
453 Custom);
454
455 // Avoid stack access for these.
456 // TODO: Generalize to more vector types.
458 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
459 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
460 Custom);
461
462 // Deal with vec3 vector operations when widened to vec4.
464 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
465
466 // Deal with vec5/6/7 vector operations when widened to vec8.
468 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
469 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
470 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
471 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
472 Custom);
473
474 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
475 // and output demarshalling
476 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
477
478 // We can't return success/failure, only the old value,
479 // let LLVM add the comparison
480 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
481 Expand);
482
483 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
484
485 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
486
487 // FIXME: This should be narrowed to i32, but that only happens if i64 is
488 // illegal.
489 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
490 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
491
492 // On SI this is s_memtime and s_memrealtime on VI.
493 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
494
495 if (Subtarget->hasSMemRealTime() ||
496 Subtarget->getGeneration() >= AMDGPUSubtarget::GFX11)
497 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
498 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
499
500 if (Subtarget->has16BitInsts()) {
501 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
502 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
503 } else {
504 setOperationAction(ISD::FSQRT, MVT::f16, Custom);
505 }
506
507 if (Subtarget->hasMadMacF32Insts())
509
510 if (!Subtarget->hasBFI())
511 // fcopysign can be done in a single instruction with BFI.
512 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
513
514 if (!Subtarget->hasBCNT(32))
516
517 if (!Subtarget->hasBCNT(64))
519
520 if (Subtarget->hasFFBH())
522
523 if (Subtarget->hasFFBL())
525
526 // We only really have 32-bit BFE instructions (and 16-bit on VI).
527 //
528 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
529 // effort to match them now. We want this to be false for i64 cases when the
530 // extraction isn't restricted to the upper or lower half. Ideally we would
531 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
532 // span the midpoint are probably relatively rare, so don't worry about them
533 // for now.
534 if (Subtarget->hasBFE())
536
537 // Clamp modifier on add/sub
538 if (Subtarget->hasIntClamp())
540
541 if (Subtarget->hasAddNoCarry())
542 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
543 Legal);
544
546 {ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
547 {MVT::f32, MVT::f64}, Custom);
548
549 // These are really only legal for ieee_mode functions. We should be avoiding
550 // them for functions that don't have ieee_mode enabled, so just say they are
551 // legal.
552 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
553 {MVT::f32, MVT::f64}, Legal);
554
555 if (Subtarget->haveRoundOpsF64())
556 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64,
557 Legal);
558 else
559 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
560 MVT::f64, Custom);
561
562 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
563 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64},
564 Legal);
565 setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom);
566
567 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
569
570 setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
571 setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
572
573 // Custom lower these because we can't specify a rule based on an illegal
574 // source bf16.
575 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom);
576 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom);
577
578 if (Subtarget->has16BitInsts()) {
581 MVT::i16, Legal);
582
583 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
584
586 MVT::i16, Expand);
587
591 ISD::CTPOP},
592 MVT::i16, Promote);
593
594 setOperationAction(ISD::LOAD, MVT::i16, Custom);
595
596 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
597
598 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
599 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
600 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
601 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
602
606
608
609 // F16 - Constant Actions.
612
613 // F16 - Load/Store Actions.
614 setOperationAction(ISD::LOAD, MVT::f16, Promote);
615 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
616 setOperationAction(ISD::STORE, MVT::f16, Promote);
617 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
618
619 // BF16 - Load/Store Actions.
620 setOperationAction(ISD::LOAD, MVT::bf16, Promote);
621 AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16);
622 setOperationAction(ISD::STORE, MVT::bf16, Promote);
623 AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16);
624
625 // F16 - VOP1 Actions.
627 ISD::FSIN, ISD::FROUND},
628 MVT::f16, Custom);
629
630 // BF16 - VOP1 Actions.
631 if (Subtarget->hasBF16TransInsts())
632 setOperationAction({ISD::FCOS, ISD::FSIN, ISD::FDIV}, MVT::bf16, Custom);
633
636
637 // F16 - VOP2 Actions.
638 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16},
639 Expand);
640 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom);
641 setOperationAction(ISD::FFREXP, MVT::f16, Custom);
643
644 // F16 - VOP3 Actions.
646 if (STI.hasMadF16())
648
649 for (MVT VT :
650 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
651 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
652 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
653 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
654 switch (Op) {
655 case ISD::LOAD:
656 case ISD::STORE:
658 case ISD::BITCAST:
659 case ISD::UNDEF:
664 case ISD::IS_FPCLASS:
665 break;
669 break;
670 default:
672 break;
673 }
674 }
675 }
676
677 // v_perm_b32 can handle either of these.
678 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
680
681 // XXX - Do these do anything? Vector constants turn into build_vector.
682 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
683
684 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
685 Legal);
686
687 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
688 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
689 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
690 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
691
692 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
693 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
694 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
695 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
696
697 setOperationAction(ISD::AND, MVT::v2i16, Promote);
698 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
699 setOperationAction(ISD::OR, MVT::v2i16, Promote);
700 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
701 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
702 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
703
704 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
705 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
706 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
707 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
708 setOperationAction(ISD::LOAD, MVT::v4bf16, Promote);
709 AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32);
710
711 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
712 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
713 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
714 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
715 setOperationAction(ISD::STORE, MVT::v4bf16, Promote);
716 AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32);
717
718 setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
719 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
720 setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
721 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
722 setOperationAction(ISD::LOAD, MVT::v8bf16, Promote);
723 AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32);
724
725 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
726 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
727 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
728 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
729
730 setOperationAction(ISD::STORE, MVT::v8i16, Promote);
731 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
732 setOperationAction(ISD::STORE, MVT::v8f16, Promote);
733 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
734 setOperationAction(ISD::STORE, MVT::v8bf16, Promote);
735 AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32);
736
737 setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
738 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
739 setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
740 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
741 setOperationAction(ISD::LOAD, MVT::v16bf16, Promote);
742 AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32);
743
744 setOperationAction(ISD::STORE, MVT::v16i16, Promote);
745 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
746 setOperationAction(ISD::STORE, MVT::v16f16, Promote);
747 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
748 setOperationAction(ISD::STORE, MVT::v16bf16, Promote);
749 AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32);
750
751 setOperationAction(ISD::LOAD, MVT::v32i16, Promote);
752 AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32);
753 setOperationAction(ISD::LOAD, MVT::v32f16, Promote);
754 AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32);
755 setOperationAction(ISD::LOAD, MVT::v32bf16, Promote);
756 AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32);
757
758 setOperationAction(ISD::STORE, MVT::v32i16, Promote);
759 AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32);
760 setOperationAction(ISD::STORE, MVT::v32f16, Promote);
761 AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32);
762 setOperationAction(ISD::STORE, MVT::v32bf16, Promote);
763 AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32);
764
766 MVT::v2i32, Expand);
767 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
768
770 MVT::v4i32, Expand);
771
773 MVT::v8i32, Expand);
774
775 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
776 Subtarget->hasVOP3PInsts() ? Legal : Custom);
777
778 setOperationAction(ISD::FNEG, {MVT::v2f16, MVT::v2bf16}, Legal);
779 // This isn't really legal, but this avoids the legalizer unrolling it (and
780 // allows matching fneg (fabs x) patterns)
781 setOperationAction(ISD::FABS, {MVT::v2f16, MVT::v2bf16}, Legal);
782
783 // Can do this in one BFI plus a constant materialize.
785 {MVT::v2f16, MVT::v2bf16, MVT::v4f16, MVT::v4bf16,
786 MVT::v8f16, MVT::v8bf16, MVT::v16f16, MVT::v16bf16,
787 MVT::v32f16, MVT::v32bf16},
788 Custom);
789
791 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
792 MVT::f16, Custom);
793 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
794
795 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FMINIMUMNUM,
796 ISD::FMAXIMUMNUM},
797 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
798 Custom);
799
800 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
801 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
802 Expand);
803
804 for (MVT Vec16 :
805 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
806 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
809 Vec16, Custom);
811 }
812 }
813
814 if (Subtarget->hasVOP3PInsts()) {
818 MVT::v2i16, Legal);
819
820 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
821 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
822 MVT::v2f16, Legal);
823
825 {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom);
826
828 {MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8f16,
829 MVT::v8i16, MVT::v8bf16, MVT::v16f16, MVT::v16i16,
830 MVT::v16bf16, MVT::v32f16, MVT::v32i16, MVT::v32bf16},
831 Custom);
832
833 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
834 // Split vector operations.
839 VT, Custom);
840
841 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
842 // Split vector operations.
844 VT, Custom);
845
847 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
848 {MVT::v2f16, MVT::v4f16}, Custom);
849
850 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
851 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16},
852 Custom);
853
854 if (Subtarget->hasPackedFP32Ops()) {
856 MVT::v2f32, Legal);
858 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
859 Custom);
860 }
861 }
862
863 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
864
865 if (Subtarget->has16BitInsts()) {
867 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
869 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
870 } else {
871 // Legalization hack.
872 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
873
874 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
875 }
876
878 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
879 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
880 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
881 MVT::v32f16, MVT::v32bf16},
882 Custom);
883
885
886 if (Subtarget->hasVectorMulU64())
888 else if (Subtarget->hasScalarSMulU64())
890
891 if (Subtarget->hasMad64_32())
893
894 if (Subtarget->hasSafeSmemPrefetch() || Subtarget->hasVmemPrefInsts())
895 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
896
897 if (Subtarget->hasIEEEMinimumMaximumInsts()) {
898 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM},
899 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal);
900 } else {
901 // FIXME: For nnan fmaximum, emit the fmaximum3 instead of fmaxnum
902 if (Subtarget->hasMinimum3Maximum3F32())
903 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Legal);
904
905 if (Subtarget->hasMinimum3Maximum3PKF16()) {
906 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::v2f16, Legal);
907
908 // If only the vector form is available, we need to widen to a vector.
909 if (!Subtarget->hasMinimum3Maximum3F16())
910 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16, Custom);
911 }
912 }
913
914 if (Subtarget->hasVOP3PInsts()) {
915 // We want to break these into v2f16 pieces, not scalarize.
916 setOperationAction({ISD::FMINIMUM, ISD::FMAXIMUM},
917 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
918 Custom);
919 }
920
921 if (Subtarget->hasIntMinMax64())
923 Legal);
924
926 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
927 MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128,
928 MVT::i8},
929 Custom);
930
932 {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16,
933 MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16,
934 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16,
935 MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
936 Custom);
937
939 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16,
940 MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16,
941 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
942 MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
943 Custom);
944
945 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
947 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
948 setOperationAction(ISD::GET_FPENV, MVT::i64, Custom);
949 setOperationAction(ISD::SET_FPENV, MVT::i64, Custom);
950
951 // TODO: Could move this to custom lowering, could benefit from combines on
952 // extract of relevant bits.
953 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
954
956
957 if (Subtarget->hasBF16ConversionInsts()) {
958 setOperationAction(ISD::FP_ROUND, {MVT::bf16, MVT::v2bf16}, Custom);
960 }
961
962 if (Subtarget->hasBF16PackedInsts()) {
964 {ISD::FADD, ISD::FMUL, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMA},
965 MVT::v2bf16, Legal);
966 }
967
968 if (Subtarget->hasBF16TransInsts()) {
969 setOperationAction({ISD::FEXP2, ISD::FLOG2, ISD::FSQRT}, MVT::bf16, Legal);
970 }
971
972 if (Subtarget->hasCvtPkF16F32Inst()) {
974 {MVT::v2f16, MVT::v4f16, MVT::v8f16, MVT::v16f16},
975 Custom);
976 }
977
979 ISD::PTRADD,
981 ISD::SUB,
983 ISD::MUL,
984 ISD::FADD,
985 ISD::FSUB,
986 ISD::FDIV,
987 ISD::FMUL,
988 ISD::FMINNUM,
989 ISD::FMAXNUM,
990 ISD::FMINNUM_IEEE,
991 ISD::FMAXNUM_IEEE,
992 ISD::FMINIMUM,
993 ISD::FMAXIMUM,
994 ISD::FMINIMUMNUM,
995 ISD::FMAXIMUMNUM,
996 ISD::FMA,
997 ISD::SMIN,
998 ISD::SMAX,
999 ISD::UMIN,
1000 ISD::UMAX,
1001 ISD::SETCC,
1003 ISD::SMIN,
1004 ISD::SMAX,
1005 ISD::UMIN,
1006 ISD::UMAX,
1007 ISD::AND,
1008 ISD::OR,
1009 ISD::XOR,
1010 ISD::SHL,
1011 ISD::SRL,
1012 ISD::SRA,
1013 ISD::FSHR,
1023
1024 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
1026
1027 // All memory operations. Some folding on the pointer operand is done to help
1028 // matching the constant offsets in the addressing modes.
1029 setTargetDAGCombine({ISD::LOAD,
1030 ISD::STORE,
1031 ISD::ATOMIC_LOAD,
1032 ISD::ATOMIC_STORE,
1033 ISD::ATOMIC_CMP_SWAP,
1034 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
1035 ISD::ATOMIC_SWAP,
1036 ISD::ATOMIC_LOAD_ADD,
1037 ISD::ATOMIC_LOAD_SUB,
1038 ISD::ATOMIC_LOAD_AND,
1039 ISD::ATOMIC_LOAD_OR,
1040 ISD::ATOMIC_LOAD_XOR,
1041 ISD::ATOMIC_LOAD_NAND,
1042 ISD::ATOMIC_LOAD_MIN,
1043 ISD::ATOMIC_LOAD_MAX,
1044 ISD::ATOMIC_LOAD_UMIN,
1045 ISD::ATOMIC_LOAD_UMAX,
1046 ISD::ATOMIC_LOAD_FADD,
1047 ISD::ATOMIC_LOAD_FMIN,
1048 ISD::ATOMIC_LOAD_FMAX,
1049 ISD::ATOMIC_LOAD_UINC_WRAP,
1050 ISD::ATOMIC_LOAD_UDEC_WRAP,
1053
1054 // FIXME: In other contexts we pretend this is a per-function property.
1056
1058}
1059
1060const GCNSubtarget *SITargetLowering::getSubtarget() const { return Subtarget; }
1061
1063 static const MCPhysReg RCRegs[] = {AMDGPU::MODE};
1064 return RCRegs;
1065}
1066
1067//===----------------------------------------------------------------------===//
1068// TargetLowering queries
1069//===----------------------------------------------------------------------===//
1070
1071// v_mad_mix* support a conversion from f16 to f32.
1072//
1073// There is only one special case when denormals are enabled we don't currently,
1074// where this is OK to use.
1075bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
1076 EVT DestVT, EVT SrcVT) const {
1077 return DestVT.getScalarType() == MVT::f32 &&
1078 ((((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
1079 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
1080 SrcVT.getScalarType() == MVT::f16) ||
1081 (Opcode == ISD::FMA && Subtarget->hasFmaMixBF16Insts() &&
1082 SrcVT.getScalarType() == MVT::bf16)) &&
1083 // TODO: This probably only requires no input flushing?
1085}
1086
1088 LLT DestTy, LLT SrcTy) const {
1089 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
1090 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
1091 DestTy.getScalarSizeInBits() == 32 &&
1092 SrcTy.getScalarSizeInBits() == 16 &&
1093 // TODO: This probably only requires no input flushing?
1094 denormalModeIsFlushAllF32(*MI.getMF());
1095}
1096
1098 // SI has some legal vector types, but no legal vector operations. Say no
1099 // shuffles are legal in order to prefer scalarizing some vector operations.
1100 return false;
1101}
1102
1104 CallingConv::ID CC,
1105 EVT VT) const {
1107 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1108
1109 if (VT.isVector()) {
1110 EVT ScalarVT = VT.getScalarType();
1111 unsigned Size = ScalarVT.getSizeInBits();
1112 if (Size == 16) {
1113 if (Subtarget->has16BitInsts()) {
1114 if (VT.isInteger())
1115 return MVT::v2i16;
1116 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1117 }
1118 return VT.isInteger() ? MVT::i32 : MVT::f32;
1119 }
1120
1121 if (Size < 16)
1122 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1123 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
1124 }
1125
1126 if (VT.getSizeInBits() > 32)
1127 return MVT::i32;
1128
1129 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1130}
1131
1133 CallingConv::ID CC,
1134 EVT VT) const {
1136 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1137
1138 if (VT.isVector()) {
1139 unsigned NumElts = VT.getVectorNumElements();
1140 EVT ScalarVT = VT.getScalarType();
1141 unsigned Size = ScalarVT.getSizeInBits();
1142
1143 // FIXME: Should probably promote 8-bit vectors to i16.
1144 if (Size == 16 && Subtarget->has16BitInsts())
1145 return (NumElts + 1) / 2;
1146
1147 if (Size <= 32)
1148 return NumElts;
1149
1150 if (Size > 32)
1151 return NumElts * ((Size + 31) / 32);
1152 } else if (VT.getSizeInBits() > 32)
1153 return (VT.getSizeInBits() + 31) / 32;
1154
1155 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1156}
1157
1159 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1160 unsigned &NumIntermediates, MVT &RegisterVT) const {
1161 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1162 unsigned NumElts = VT.getVectorNumElements();
1163 EVT ScalarVT = VT.getScalarType();
1164 unsigned Size = ScalarVT.getSizeInBits();
1165 // FIXME: We should fix the ABI to be the same on targets without 16-bit
1166 // support, but unless we can properly handle 3-vectors, it will be still be
1167 // inconsistent.
1168 if (Size == 16 && Subtarget->has16BitInsts()) {
1169 if (ScalarVT == MVT::bf16) {
1170 RegisterVT = MVT::i32;
1171 IntermediateVT = MVT::v2bf16;
1172 } else {
1173 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1174 IntermediateVT = RegisterVT;
1175 }
1176 NumIntermediates = (NumElts + 1) / 2;
1177 return NumIntermediates;
1178 }
1179
1180 if (Size == 32) {
1181 RegisterVT = ScalarVT.getSimpleVT();
1182 IntermediateVT = RegisterVT;
1183 NumIntermediates = NumElts;
1184 return NumIntermediates;
1185 }
1186
1187 if (Size < 16 && Subtarget->has16BitInsts()) {
1188 // FIXME: Should probably form v2i16 pieces
1189 RegisterVT = MVT::i16;
1190 IntermediateVT = ScalarVT;
1191 NumIntermediates = NumElts;
1192 return NumIntermediates;
1193 }
1194
1195 if (Size != 16 && Size <= 32) {
1196 RegisterVT = MVT::i32;
1197 IntermediateVT = ScalarVT;
1198 NumIntermediates = NumElts;
1199 return NumIntermediates;
1200 }
1201
1202 if (Size > 32) {
1203 RegisterVT = MVT::i32;
1204 IntermediateVT = RegisterVT;
1205 NumIntermediates = NumElts * ((Size + 31) / 32);
1206 return NumIntermediates;
1207 }
1208 }
1209
1211 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1212}
1213
1215 const DataLayout &DL, Type *Ty,
1216 unsigned MaxNumLanes) {
1217 assert(MaxNumLanes != 0);
1218
1219 LLVMContext &Ctx = Ty->getContext();
1220 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1221 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1222 return EVT::getVectorVT(Ctx, TLI.getValueType(DL, VT->getElementType()),
1223 NumElts);
1224 }
1225
1226 return TLI.getValueType(DL, Ty);
1227}
1228
1229// Peek through TFE struct returns to only use the data size.
1231 const DataLayout &DL, Type *Ty,
1232 unsigned MaxNumLanes) {
1233 auto *ST = dyn_cast<StructType>(Ty);
1234 if (!ST)
1235 return memVTFromLoadIntrData(TLI, DL, Ty, MaxNumLanes);
1236
1237 // TFE intrinsics return an aggregate type.
1238 assert(ST->getNumContainedTypes() == 2 &&
1239 ST->getContainedType(1)->isIntegerTy(32));
1240 return memVTFromLoadIntrData(TLI, DL, ST->getContainedType(0), MaxNumLanes);
1241}
1242
1243/// Map address space 7 to MVT::amdgpuBufferFatPointer because that's its
1244/// in-memory representation. This return value is a custom type because there
1245/// is no MVT::i160 and adding one breaks integer promotion logic. While this
1246/// could cause issues during codegen, these address space 7 pointers will be
1247/// rewritten away by then. Therefore, we can return MVT::amdgpuBufferFatPointer
1248/// in order to allow pre-codegen passes that query TargetTransformInfo, often
1249/// for cost modeling, to work. (This also sets us up decently for doing the
1250/// buffer lowering in GlobalISel if SelectionDAG ever goes away.)
1252 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
1253 return MVT::amdgpuBufferFatPointer;
1255 DL.getPointerSizeInBits(AS) == 192)
1256 return MVT::amdgpuBufferStridedPointer;
1258}
1259/// Similarly, the in-memory representation of a p7 is {p8, i32}, aka
1260/// v8i32 when padding is added.
1261/// The in-memory representation of a p9 is {p8, i32, i32}, which is
1262/// also v8i32 with padding.
1264 if ((AMDGPUAS::BUFFER_FAT_POINTER == AS &&
1265 DL.getPointerSizeInBits(AS) == 160) ||
1267 DL.getPointerSizeInBits(AS) == 192))
1268 return MVT::v8i32;
1270}
1271
1272static unsigned getIntrMemWidth(unsigned IntrID) {
1273 switch (IntrID) {
1274 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1275 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1276 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1277 return 8;
1278 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1279 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1280 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1281 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1282 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1283 return 32;
1284 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1285 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1286 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1287 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1288 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1289 return 64;
1290 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1291 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1292 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1293 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
1294 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
1295 return 128;
1296 default:
1297 llvm_unreachable("Unknown width");
1298 }
1299}
1300
1301static void getCoopAtomicOperandsInfo(const CallInst &CI, bool IsLoad,
1303 Value *OrderingArg = CI.getArgOperand(IsLoad ? 1 : 2);
1304 unsigned Ord = cast<ConstantInt>(OrderingArg)->getZExtValue();
1305 switch (AtomicOrderingCABI(Ord)) {
1308 break;
1311 break;
1314 break;
1315 default:
1317 break;
1318 }
1319
1320 Info.flags =
1322 Info.flags |= MOCooperative;
1323
1324 MDNode *ScopeMD = cast<MDNode>(
1325 cast<MetadataAsValue>(CI.getArgOperand(IsLoad ? 2 : 3))->getMetadata());
1326 StringRef Scope = cast<MDString>(ScopeMD->getOperand(0))->getString();
1327 Info.ssid = CI.getContext().getOrInsertSyncScopeID(Scope);
1328}
1329
1331 const CallInst &CI,
1332 MachineFunction &MF,
1333 unsigned IntrID) const {
1334 Info.flags = MachineMemOperand::MONone;
1335 if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1336 Info.flags |= MachineMemOperand::MOInvariant;
1337 if (CI.hasMetadata(LLVMContext::MD_nontemporal))
1339 Info.flags |= getTargetMMOFlags(CI);
1340
1341 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1343 AttributeSet Attr =
1345 MemoryEffects ME = Attr.getMemoryEffects();
1346 if (ME.doesNotAccessMemory())
1347 return false;
1348
1349 // TODO: Should images get their own address space?
1350 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1351
1352 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = nullptr;
1353 if (RsrcIntr->IsImage) {
1354 const AMDGPU::ImageDimIntrinsicInfo *Intr =
1356 BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1357 Info.align.reset();
1358 }
1359
1360 Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg);
1361 if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) {
1362 if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE)
1363 // We conservatively set the memory operand of a buffer intrinsic to the
1364 // base resource pointer, so that we can access alias information about
1365 // those pointers. Cases like "this points at the same value
1366 // but with a different offset" are handled in
1367 // areMemAccessesTriviallyDisjoint.
1368 Info.ptrVal = RsrcArg;
1369 }
1370
1371 bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data;
1372 if (!IsSPrefetch) {
1373 auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1));
1374 if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE)
1375 Info.flags |= MachineMemOperand::MOVolatile;
1376 }
1377
1379 if (ME.onlyReadsMemory()) {
1380 if (RsrcIntr->IsImage) {
1381 unsigned MaxNumLanes = 4;
1382
1383 if (!BaseOpcode->Gather4) {
1384 // If this isn't a gather, we may have excess loaded elements in the
1385 // IR type. Check the dmask for the real number of elements loaded.
1386 unsigned DMask =
1387 cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1388 MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1389 }
1390
1391 Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(),
1392 CI.getType(), MaxNumLanes);
1393 } else {
1394 Info.memVT =
1396 std::numeric_limits<unsigned>::max());
1397 }
1398
1399 // FIXME: What does alignment mean for an image?
1400 Info.opc = ISD::INTRINSIC_W_CHAIN;
1401 Info.flags |= MachineMemOperand::MOLoad;
1402 } else if (ME.onlyWritesMemory()) {
1403 Info.opc = ISD::INTRINSIC_VOID;
1404
1405 Type *DataTy = CI.getArgOperand(0)->getType();
1406 if (RsrcIntr->IsImage) {
1407 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1408 unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1409 Info.memVT = memVTFromLoadIntrData(*this, MF.getDataLayout(), DataTy,
1410 DMaskLanes);
1411 } else
1412 Info.memVT = getValueType(MF.getDataLayout(), DataTy);
1413
1414 Info.flags |= MachineMemOperand::MOStore;
1415 } else {
1416 // Atomic, NoReturn Sampler or prefetch
1417 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID
1419 Info.flags |=
1421
1422 if (!IsSPrefetch)
1423 Info.flags |= MachineMemOperand::MOStore;
1424
1425 switch (IntrID) {
1426 default:
1427 if ((RsrcIntr->IsImage && BaseOpcode->NoReturn) || IsSPrefetch) {
1428 // Fake memory access type for no return sampler intrinsics
1429 Info.memVT = MVT::i32;
1430 } else {
1431 // XXX - Should this be volatile without known ordering?
1432 Info.flags |= MachineMemOperand::MOVolatile;
1433 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1434 }
1435 break;
1436 case Intrinsic::amdgcn_raw_buffer_load_lds:
1437 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1438 case Intrinsic::amdgcn_struct_buffer_load_lds:
1439 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1440 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1441 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1442 Info.ptrVal = CI.getArgOperand(1);
1443 return true;
1444 }
1445 case Intrinsic::amdgcn_raw_atomic_buffer_load:
1446 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
1447 case Intrinsic::amdgcn_struct_atomic_buffer_load:
1448 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
1449 Info.memVT =
1451 std::numeric_limits<unsigned>::max());
1452 Info.flags &= ~MachineMemOperand::MOStore;
1453 return true;
1454 }
1455 }
1456 }
1457 return true;
1458 }
1459
1460 switch (IntrID) {
1461 case Intrinsic::amdgcn_ds_ordered_add:
1462 case Intrinsic::amdgcn_ds_ordered_swap: {
1463 Info.opc = ISD::INTRINSIC_W_CHAIN;
1464 Info.memVT = MVT::getVT(CI.getType());
1465 Info.ptrVal = CI.getOperand(0);
1466 Info.align.reset();
1468
1469 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1470 if (!Vol->isZero())
1471 Info.flags |= MachineMemOperand::MOVolatile;
1472
1473 return true;
1474 }
1475 case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1476 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1477 Info.opc = ISD::INTRINSIC_W_CHAIN;
1478 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1479 Info.ptrVal = nullptr;
1480 Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER;
1482 return true;
1483 }
1484 case Intrinsic::amdgcn_ds_append:
1485 case Intrinsic::amdgcn_ds_consume: {
1486 Info.opc = ISD::INTRINSIC_W_CHAIN;
1487 Info.memVT = MVT::getVT(CI.getType());
1488 Info.ptrVal = CI.getOperand(0);
1489 Info.align.reset();
1491
1492 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1493 if (!Vol->isZero())
1494 Info.flags |= MachineMemOperand::MOVolatile;
1495
1496 return true;
1497 }
1498 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1499 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64: {
1500 Info.opc = (IntrID == Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64)
1503 Info.memVT = MVT::getVT(CI.getType());
1504 Info.ptrVal = CI.getOperand(0);
1505 Info.memVT = MVT::i64;
1506 Info.size = 8;
1507 Info.align.reset();
1509 return true;
1510 }
1511 case Intrinsic::amdgcn_global_atomic_csub: {
1512 Info.opc = ISD::INTRINSIC_W_CHAIN;
1513 Info.memVT = MVT::getVT(CI.getType());
1514 Info.ptrVal = CI.getOperand(0);
1515 Info.align.reset();
1518 return true;
1519 }
1520 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
1521 case Intrinsic::amdgcn_image_bvh_intersect_ray:
1522 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
1523 Info.opc = ISD::INTRINSIC_W_CHAIN;
1524 Info.memVT =
1525 MVT::getVT(IntrID == Intrinsic::amdgcn_image_bvh_intersect_ray
1526 ? CI.getType()
1528 ->getElementType(0)); // XXX: what is correct VT?
1529
1530 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1531 Info.align.reset();
1532 Info.flags |=
1534 return true;
1535 }
1536 case Intrinsic::amdgcn_global_atomic_fmin_num:
1537 case Intrinsic::amdgcn_global_atomic_fmax_num:
1538 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1539 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1540 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1541 case Intrinsic::amdgcn_atomic_cond_sub_u32: {
1542 Info.opc = ISD::INTRINSIC_W_CHAIN;
1543 Info.memVT = MVT::getVT(CI.getType());
1544 Info.ptrVal = CI.getOperand(0);
1545 Info.align.reset();
1549 return true;
1550 }
1551 case Intrinsic::amdgcn_flat_load_monitor_b32:
1552 case Intrinsic::amdgcn_flat_load_monitor_b64:
1553 case Intrinsic::amdgcn_flat_load_monitor_b128:
1554 case Intrinsic::amdgcn_global_load_monitor_b32:
1555 case Intrinsic::amdgcn_global_load_monitor_b64:
1556 case Intrinsic::amdgcn_global_load_monitor_b128:
1557 case Intrinsic::amdgcn_cluster_load_b32:
1558 case Intrinsic::amdgcn_cluster_load_b64:
1559 case Intrinsic::amdgcn_cluster_load_b128:
1560 case Intrinsic::amdgcn_ds_load_tr6_b96:
1561 case Intrinsic::amdgcn_ds_load_tr4_b64:
1562 case Intrinsic::amdgcn_ds_load_tr8_b64:
1563 case Intrinsic::amdgcn_ds_load_tr16_b128:
1564 case Intrinsic::amdgcn_global_load_tr6_b96:
1565 case Intrinsic::amdgcn_global_load_tr4_b64:
1566 case Intrinsic::amdgcn_global_load_tr_b64:
1567 case Intrinsic::amdgcn_global_load_tr_b128:
1568 case Intrinsic::amdgcn_ds_read_tr4_b64:
1569 case Intrinsic::amdgcn_ds_read_tr6_b96:
1570 case Intrinsic::amdgcn_ds_read_tr8_b64:
1571 case Intrinsic::amdgcn_ds_read_tr16_b64: {
1572 Info.opc = ISD::INTRINSIC_W_CHAIN;
1573 Info.memVT = MVT::getVT(CI.getType());
1574 Info.ptrVal = CI.getOperand(0);
1575 Info.align.reset();
1576 Info.flags |= MachineMemOperand::MOLoad;
1577 return true;
1578 }
1579 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1580 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1581 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
1582 Info.opc = ISD::INTRINSIC_W_CHAIN;
1583 Info.memVT = EVT::getIntegerVT(CI.getContext(), getIntrMemWidth(IntrID));
1584 Info.ptrVal = CI.getOperand(0);
1585 Info.align.reset();
1586 getCoopAtomicOperandsInfo(CI, /*IsLoad=*/true, Info);
1587 return true;
1588 }
1589 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1590 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1591 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
1592 Info.opc = ISD::INTRINSIC_VOID;
1593 Info.memVT = EVT::getIntegerVT(CI.getContext(), getIntrMemWidth(IntrID));
1594 Info.ptrVal = CI.getArgOperand(0);
1595 Info.align.reset();
1596 getCoopAtomicOperandsInfo(CI, /*IsLoad=*/false, Info);
1597 return true;
1598 }
1599 case Intrinsic::amdgcn_ds_gws_init:
1600 case Intrinsic::amdgcn_ds_gws_barrier:
1601 case Intrinsic::amdgcn_ds_gws_sema_v:
1602 case Intrinsic::amdgcn_ds_gws_sema_br:
1603 case Intrinsic::amdgcn_ds_gws_sema_p:
1604 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1605 Info.opc = ISD::INTRINSIC_VOID;
1606
1607 const GCNTargetMachine &TM =
1608 static_cast<const GCNTargetMachine &>(getTargetMachine());
1609
1611 Info.ptrVal = MFI->getGWSPSV(TM);
1612
1613 // This is an abstract access, but we need to specify a type and size.
1614 Info.memVT = MVT::i32;
1615 Info.size = 4;
1616 Info.align = Align(4);
1617
1618 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1619 Info.flags |= MachineMemOperand::MOLoad;
1620 else
1621 Info.flags |= MachineMemOperand::MOStore;
1622 return true;
1623 }
1624 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1625 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1626 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1627 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1628 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1629 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1630 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1631 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128: {
1632 Info.opc = ISD::INTRINSIC_VOID;
1633 Info.memVT = EVT::getIntegerVT(CI.getContext(), getIntrMemWidth(IntrID));
1634 Info.ptrVal = CI.getArgOperand(1);
1636 return true;
1637 }
1638 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1639 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1640 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1641 case Intrinsic::amdgcn_global_store_async_from_lds_b128: {
1642 Info.opc = ISD::INTRINSIC_VOID;
1643 Info.memVT = EVT::getIntegerVT(CI.getContext(), getIntrMemWidth(IntrID));
1644 Info.ptrVal = CI.getArgOperand(0);
1646 return true;
1647 }
1648 case Intrinsic::amdgcn_load_to_lds:
1649 case Intrinsic::amdgcn_global_load_lds: {
1650 Info.opc = ISD::INTRINSIC_VOID;
1651 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1652 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1653 Info.ptrVal = CI.getArgOperand(1);
1655 return true;
1656 }
1657 case Intrinsic::amdgcn_ds_bvh_stack_rtn:
1658 case Intrinsic::amdgcn_ds_bvh_stack_push4_pop1_rtn:
1659 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop1_rtn:
1660 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop2_rtn: {
1661 Info.opc = ISD::INTRINSIC_W_CHAIN;
1662
1663 const GCNTargetMachine &TM =
1664 static_cast<const GCNTargetMachine &>(getTargetMachine());
1665
1667 Info.ptrVal = MFI->getGWSPSV(TM);
1668
1669 // This is an abstract access, but we need to specify a type and size.
1670 Info.memVT = MVT::i32;
1671 Info.size = 4;
1672 Info.align = Align(4);
1673
1675 return true;
1676 }
1677 case Intrinsic::amdgcn_s_prefetch_data:
1678 case Intrinsic::amdgcn_flat_prefetch:
1679 case Intrinsic::amdgcn_global_prefetch: {
1680 Info.opc = ISD::INTRINSIC_VOID;
1681 Info.memVT = EVT::getIntegerVT(CI.getContext(), 8);
1682 Info.ptrVal = CI.getArgOperand(0);
1683 Info.flags |= MachineMemOperand::MOLoad;
1684 return true;
1685 }
1686 default:
1687 return false;
1688 }
1689}
1690
1692 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
1694 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1695 // The DAG's ValueType loses the addrspaces.
1696 // Add them as 2 extra Constant operands "from" and "to".
1697 unsigned SrcAS = I.getOperand(0)->getType()->getPointerAddressSpace();
1698 unsigned DstAS = I.getType()->getPointerAddressSpace();
1699 Ops.push_back(DAG.getTargetConstant(SrcAS, SDLoc(), MVT::i32));
1700 Ops.push_back(DAG.getTargetConstant(DstAS, SDLoc(), MVT::i32));
1701 break;
1702 }
1703 default:
1704 break;
1705 }
1706}
1707
1710 Type *&AccessTy) const {
1711 Value *Ptr = nullptr;
1712 switch (II->getIntrinsicID()) {
1713 case Intrinsic::amdgcn_atomic_cond_sub_u32:
1714 case Intrinsic::amdgcn_cluster_load_b128:
1715 case Intrinsic::amdgcn_cluster_load_b64:
1716 case Intrinsic::amdgcn_cluster_load_b32:
1717 case Intrinsic::amdgcn_ds_append:
1718 case Intrinsic::amdgcn_ds_consume:
1719 case Intrinsic::amdgcn_ds_load_tr8_b64:
1720 case Intrinsic::amdgcn_ds_load_tr16_b128:
1721 case Intrinsic::amdgcn_ds_load_tr4_b64:
1722 case Intrinsic::amdgcn_ds_load_tr6_b96:
1723 case Intrinsic::amdgcn_ds_read_tr4_b64:
1724 case Intrinsic::amdgcn_ds_read_tr6_b96:
1725 case Intrinsic::amdgcn_ds_read_tr8_b64:
1726 case Intrinsic::amdgcn_ds_read_tr16_b64:
1727 case Intrinsic::amdgcn_ds_ordered_add:
1728 case Intrinsic::amdgcn_ds_ordered_swap:
1729 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1730 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64:
1731 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1732 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1733 case Intrinsic::amdgcn_flat_load_monitor_b128:
1734 case Intrinsic::amdgcn_flat_load_monitor_b32:
1735 case Intrinsic::amdgcn_flat_load_monitor_b64:
1736 case Intrinsic::amdgcn_global_atomic_csub:
1737 case Intrinsic::amdgcn_global_atomic_fmax_num:
1738 case Intrinsic::amdgcn_global_atomic_fmin_num:
1739 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1740 case Intrinsic::amdgcn_global_load_monitor_b128:
1741 case Intrinsic::amdgcn_global_load_monitor_b32:
1742 case Intrinsic::amdgcn_global_load_monitor_b64:
1743 case Intrinsic::amdgcn_global_load_tr_b64:
1744 case Intrinsic::amdgcn_global_load_tr_b128:
1745 case Intrinsic::amdgcn_global_load_tr4_b64:
1746 case Intrinsic::amdgcn_global_load_tr6_b96:
1747 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1748 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1749 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1750 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1751 Ptr = II->getArgOperand(0);
1752 break;
1753 case Intrinsic::amdgcn_load_to_lds:
1754 case Intrinsic::amdgcn_global_load_lds:
1755 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1756 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1757 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1758 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1759 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1760 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1761 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1762 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1763 Ptr = II->getArgOperand(1);
1764 break;
1765 default:
1766 return false;
1767 }
1768 AccessTy = II->getType();
1769 Ops.push_back(Ptr);
1770 return true;
1771}
1772
1774 unsigned AddrSpace) const {
1775 if (!Subtarget->hasFlatInstOffsets()) {
1776 // Flat instructions do not have offsets, and only have the register
1777 // address.
1778 return AM.BaseOffs == 0 && AM.Scale == 0;
1779 }
1780
1781 decltype(SIInstrFlags::FLAT) FlatVariant =
1785
1786 return AM.Scale == 0 &&
1787 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1788 AM.BaseOffs, AddrSpace, FlatVariant));
1789}
1790
1792 if (Subtarget->hasFlatGlobalInsts())
1794
1795 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1796 // Assume the we will use FLAT for all global memory accesses
1797 // on VI.
1798 // FIXME: This assumption is currently wrong. On VI we still use
1799 // MUBUF instructions for the r + i addressing mode. As currently
1800 // implemented, the MUBUF instructions only work on buffer < 4GB.
1801 // It may be possible to support > 4GB buffers with MUBUF instructions,
1802 // by setting the stride value in the resource descriptor which would
1803 // increase the size limit to (stride * 4GB). However, this is risky,
1804 // because it has never been validated.
1806 }
1807
1808 return isLegalMUBUFAddressingMode(AM);
1809}
1810
1811bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1812 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1813 // additionally can do r + r + i with addr64. 32-bit has more addressing
1814 // mode options. Depending on the resource constant, it can also do
1815 // (i64 r0) + (i32 r1) * (i14 i).
1816 //
1817 // Private arrays end up using a scratch buffer most of the time, so also
1818 // assume those use MUBUF instructions. Scratch loads / stores are currently
1819 // implemented as mubuf instructions with offen bit set, so slightly
1820 // different than the normal addr64.
1821 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1822 if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1823 return false;
1824
1825 // FIXME: Since we can split immediate into soffset and immediate offset,
1826 // would it make sense to allow any immediate?
1827
1828 switch (AM.Scale) {
1829 case 0: // r + i or just i, depending on HasBaseReg.
1830 return true;
1831 case 1:
1832 return true; // We have r + r or r + i.
1833 case 2:
1834 if (AM.HasBaseReg) {
1835 // Reject 2 * r + r.
1836 return false;
1837 }
1838
1839 // Allow 2 * r as r + r
1840 // Or 2 * r + i is allowed as r + r + i.
1841 return true;
1842 default: // Don't allow n * r
1843 return false;
1844 }
1845}
1846
1848 const AddrMode &AM, Type *Ty,
1849 unsigned AS,
1850 Instruction *I) const {
1851 // No global is ever allowed as a base.
1852 if (AM.BaseGV)
1853 return false;
1854
1855 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1856 return isLegalGlobalAddressingMode(AM);
1857
1858 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1862 // If the offset isn't a multiple of 4, it probably isn't going to be
1863 // correctly aligned.
1864 // FIXME: Can we get the real alignment here?
1865 if (AM.BaseOffs % 4 != 0)
1866 return isLegalMUBUFAddressingMode(AM);
1867
1868 if (!Subtarget->hasScalarSubwordLoads()) {
1869 // There are no SMRD extloads, so if we have to do a small type access we
1870 // will use a MUBUF load.
1871 // FIXME?: We also need to do this if unaligned, but we don't know the
1872 // alignment here.
1873 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1874 return isLegalGlobalAddressingMode(AM);
1875 }
1876
1877 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1878 // SMRD instructions have an 8-bit, dword offset on SI.
1879 if (!isUInt<8>(AM.BaseOffs / 4))
1880 return false;
1881 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1882 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1883 // in 8-bits, it can use a smaller encoding.
1884 if (!isUInt<32>(AM.BaseOffs / 4))
1885 return false;
1886 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) {
1887 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1888 if (!isUInt<20>(AM.BaseOffs))
1889 return false;
1890 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) {
1891 // On GFX9 the offset is signed 21-bit in bytes (but must not be negative
1892 // for S_BUFFER_* instructions).
1893 if (!isInt<21>(AM.BaseOffs))
1894 return false;
1895 } else {
1896 // On GFX12, all offsets are signed 24-bit in bytes.
1897 if (!isInt<24>(AM.BaseOffs))
1898 return false;
1899 }
1900
1901 if ((AS == AMDGPUAS::CONSTANT_ADDRESS ||
1903 AM.BaseOffs < 0) {
1904 // Scalar (non-buffer) loads can only use a negative offset if
1905 // soffset+offset is non-negative. Since the compiler can only prove that
1906 // in a few special cases, it is safer to claim that negative offsets are
1907 // not supported.
1908 return false;
1909 }
1910
1911 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1912 return true;
1913
1914 if (AM.Scale == 1 && AM.HasBaseReg)
1915 return true;
1916
1917 return false;
1918 }
1919
1920 if (AS == AMDGPUAS::PRIVATE_ADDRESS)
1921 return Subtarget->enableFlatScratch()
1923 : isLegalMUBUFAddressingMode(AM);
1924
1925 if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1926 (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) {
1927 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1928 // field.
1929 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1930 // an 8-bit dword offset but we don't know the alignment here.
1931 if (!isUInt<16>(AM.BaseOffs))
1932 return false;
1933
1934 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1935 return true;
1936
1937 if (AM.Scale == 1 && AM.HasBaseReg)
1938 return true;
1939
1940 return false;
1941 }
1942
1944 // For an unknown address space, this usually means that this is for some
1945 // reason being used for pure arithmetic, and not based on some addressing
1946 // computation. We don't have instructions that compute pointers with any
1947 // addressing modes, so treat them as having no offset like flat
1948 // instructions.
1950 }
1951
1952 // Assume a user alias of global for unknown address spaces.
1953 return isLegalGlobalAddressingMode(AM);
1954}
1955
1957 const MachineFunction &MF) const {
1959 return (MemVT.getSizeInBits() <= 4 * 32);
1960 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1961 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1962 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1963 }
1965 return (MemVT.getSizeInBits() <= 2 * 32);
1966 return true;
1967}
1968
1970 unsigned Size, unsigned AddrSpace, Align Alignment,
1971 MachineMemOperand::Flags Flags, unsigned *IsFast) const {
1972 if (IsFast)
1973 *IsFast = 0;
1974
1975 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1976 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1977 // Check if alignment requirements for ds_read/write instructions are
1978 // disabled.
1979 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1980 return false;
1981
1982 Align RequiredAlignment(
1983 PowerOf2Ceil(divideCeil(Size, 8))); // Natural alignment.
1984 if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1985 Alignment < RequiredAlignment)
1986 return false;
1987
1988 // Either, the alignment requirements are "enabled", or there is an
1989 // unaligned LDS access related hardware bug though alignment requirements
1990 // are "disabled". In either case, we need to check for proper alignment
1991 // requirements.
1992 //
1993 switch (Size) {
1994 case 64:
1995 // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1996 // address is negative, then the instruction is incorrectly treated as
1997 // out-of-bounds even if base + offsets is in bounds. Split vectorized
1998 // loads here to avoid emitting ds_read2_b32. We may re-combine the
1999 // load later in the SILoadStoreOptimizer.
2000 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
2001 return false;
2002
2003 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
2004 // can do a 4 byte aligned, 8 byte access in a single operation using
2005 // ds_read2/write2_b32 with adjacent offsets.
2006 RequiredAlignment = Align(4);
2007
2008 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2009 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
2010 // ds_write2_b32 depending on the alignment. In either case with either
2011 // alignment there is no faster way of doing this.
2012
2013 // The numbers returned here and below are not additive, it is a 'speed
2014 // rank'. They are just meant to be compared to decide if a certain way
2015 // of lowering an operation is faster than another. For that purpose
2016 // naturally aligned operation gets it bitsize to indicate that "it
2017 // operates with a speed comparable to N-bit wide load". With the full
2018 // alignment ds128 is slower than ds96 for example. If underaligned it
2019 // is comparable to a speed of a single dword access, which would then
2020 // mean 32 < 128 and it is faster to issue a wide load regardless.
2021 // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
2022 // wider load which will not be aligned anymore the latter is slower.
2023 if (IsFast)
2024 *IsFast = (Alignment >= RequiredAlignment) ? 64
2025 : (Alignment < Align(4)) ? 32
2026 : 1;
2027 return true;
2028 }
2029
2030 break;
2031 case 96:
2032 if (!Subtarget->hasDS96AndDS128())
2033 return false;
2034
2035 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
2036 // gfx8 and older.
2037
2038 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2039 // Naturally aligned access is fastest. However, also report it is Fast
2040 // if memory is aligned less than DWORD. A narrow load or store will be
2041 // be equally slow as a single ds_read_b96/ds_write_b96, but there will
2042 // be more of them, so overall we will pay less penalty issuing a single
2043 // instruction.
2044
2045 // See comment on the values above.
2046 if (IsFast)
2047 *IsFast = (Alignment >= RequiredAlignment) ? 96
2048 : (Alignment < Align(4)) ? 32
2049 : 1;
2050 return true;
2051 }
2052
2053 break;
2054 case 128:
2055 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
2056 return false;
2057
2058 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
2059 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
2060 // single operation using ds_read2/write2_b64.
2061 RequiredAlignment = Align(8);
2062
2063 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2064 // Naturally aligned access is fastest. However, also report it is Fast
2065 // if memory is aligned less than DWORD. A narrow load or store will be
2066 // be equally slow as a single ds_read_b128/ds_write_b128, but there
2067 // will be more of them, so overall we will pay less penalty issuing a
2068 // single instruction.
2069
2070 // See comment on the values above.
2071 if (IsFast)
2072 *IsFast = (Alignment >= RequiredAlignment) ? 128
2073 : (Alignment < Align(4)) ? 32
2074 : 1;
2075 return true;
2076 }
2077
2078 break;
2079 default:
2080 if (Size > 32)
2081 return false;
2082
2083 break;
2084 }
2085
2086 // See comment on the values above.
2087 // Note that we have a single-dword or sub-dword here, so if underaligned
2088 // it is a slowest possible access, hence returned value is 0.
2089 if (IsFast)
2090 *IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
2091
2092 return Alignment >= RequiredAlignment ||
2093 Subtarget->hasUnalignedDSAccessEnabled();
2094 }
2095
2096 // FIXME: We have to be conservative here and assume that flat operations
2097 // will access scratch. If we had access to the IR function, then we
2098 // could determine if any private memory was used in the function.
2099 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
2100 AddrSpace == AMDGPUAS::FLAT_ADDRESS) {
2101 bool AlignedBy4 = Alignment >= Align(4);
2102 if (Subtarget->hasUnalignedScratchAccessEnabled()) {
2103 if (IsFast)
2104 *IsFast = AlignedBy4 ? Size : 1;
2105 return true;
2106 }
2107
2108 if (IsFast)
2109 *IsFast = AlignedBy4;
2110
2111 return AlignedBy4;
2112 }
2113
2114 // So long as they are correct, wide global memory operations perform better
2115 // than multiple smaller memory ops -- even when misaligned
2116 if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) {
2117 if (IsFast)
2118 *IsFast = Size;
2119
2120 return Alignment >= Align(4) ||
2121 Subtarget->hasUnalignedBufferAccessEnabled();
2122 }
2123
2124 // Ensure robust out-of-bounds guarantees for buffer accesses are met if
2125 // RelaxedBufferOOBMode is disabled. Normally hardware will ensure proper
2126 // out-of-bounds behavior, but in the edge case where an access starts
2127 // out-of-bounds and then enter in-bounds, the entire access would be treated
2128 // as out-of-bounds. Prevent misaligned memory accesses by requiring the
2129 // natural alignment of buffer accesses.
2130 if (AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
2131 AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
2132 AddrSpace == AMDGPUAS::BUFFER_STRIDED_POINTER) {
2133 if (!Subtarget->hasRelaxedBufferOOBMode() &&
2134 Alignment < Align(PowerOf2Ceil(divideCeil(Size, 8))))
2135 return false;
2136 }
2137
2138 // Smaller than dword value must be aligned.
2139 if (Size < 32)
2140 return false;
2141
2142 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
2143 // byte-address are ignored, thus forcing Dword alignment.
2144 // This applies to private, global, and constant memory.
2145 if (IsFast)
2146 *IsFast = 1;
2147
2148 return Size >= 32 && Alignment >= Align(4);
2149}
2150
2152 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
2153 unsigned *IsFast) const {
2155 Alignment, Flags, IsFast);
2156}
2157
2159 LLVMContext &Context, const MemOp &Op,
2160 const AttributeList &FuncAttributes) const {
2161 // FIXME: Should account for address space here.
2162
2163 // The default fallback uses the private pointer size as a guess for a type to
2164 // use. Make sure we switch these to 64-bit accesses.
2165
2166 if (Op.size() >= 16 &&
2167 Op.isDstAligned(Align(4))) // XXX: Should only do for global
2168 return MVT::v4i32;
2169
2170 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
2171 return MVT::v2i32;
2172
2173 // Use the default.
2174 return MVT::Other;
2175}
2176
2178 const MemSDNode *MemNode = cast<MemSDNode>(N);
2179 return MemNode->getMemOperand()->getFlags() & MONoClobber;
2180}
2181
2186
2188 unsigned DestAS) const {
2189 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
2190 if (DestAS == AMDGPUAS::PRIVATE_ADDRESS &&
2191 Subtarget->hasGloballyAddressableScratch()) {
2192 // Flat -> private requires subtracting src_flat_scratch_base_lo.
2193 return false;
2194 }
2195
2196 // Flat -> private/local is a simple truncate.
2197 // Flat -> global is no-op
2198 return true;
2199 }
2200
2201 const GCNTargetMachine &TM =
2202 static_cast<const GCNTargetMachine &>(getTargetMachine());
2203 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
2204}
2205
2213
2215 Type *Ty) const {
2216 // FIXME: Could be smarter if called for vector constants.
2217 return true;
2218}
2219
2221 unsigned Index) const {
2223 return false;
2224
2225 // TODO: Add more cases that are cheap.
2226 return Index == 0;
2227}
2228
2229bool SITargetLowering::isExtractVecEltCheap(EVT VT, unsigned Index) const {
2230 // TODO: This should be more aggressive, particular for 16-bit element
2231 // vectors. However there are some mixed improvements and regressions.
2232 EVT EltTy = VT.getVectorElementType();
2233 return EltTy.getSizeInBits() % 32 == 0;
2234}
2235
2237 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
2238 switch (Op) {
2239 case ISD::LOAD:
2240 case ISD::STORE:
2241 return true;
2242 default:
2243 return false;
2244 }
2245 }
2246
2247 // SimplifySetCC uses this function to determine whether or not it should
2248 // create setcc with i1 operands. We don't have instructions for i1 setcc.
2249 if (VT == MVT::i1 && Op == ISD::SETCC)
2250 return false;
2251
2253}
2254
2255SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
2256 const SDLoc &SL,
2257 SDValue Chain,
2258 uint64_t Offset) const {
2259 const DataLayout &DL = DAG.getDataLayout();
2263
2264 auto [InputPtrReg, RC, ArgTy] =
2265 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
2266
2267 // We may not have the kernarg segment argument if we have no kernel
2268 // arguments.
2269 if (!InputPtrReg)
2270 return DAG.getConstant(Offset, SL, PtrVT);
2271
2273 SDValue BasePtr = DAG.getCopyFromReg(
2274 Chain, SL, MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
2275
2276 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset));
2277}
2278
2279SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
2280 const SDLoc &SL) const {
2283 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
2284}
2285
2286SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
2287 const SDLoc &SL) const {
2288
2290 std::optional<uint32_t> KnownSize =
2292 if (KnownSize.has_value())
2293 return DAG.getConstant(*KnownSize, SL, MVT::i32);
2294 return SDValue();
2295}
2296
2297SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
2298 const SDLoc &SL, SDValue Val,
2299 bool Signed,
2300 const ISD::InputArg *Arg) const {
2301 // First, if it is a widened vector, narrow it.
2302 if (VT.isVector() &&
2304 EVT NarrowedVT =
2307 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
2308 DAG.getConstant(0, SL, MVT::i32));
2309 }
2310
2311 // Then convert the vector elements or scalar value.
2312 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && VT.bitsLT(MemVT)) {
2313 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
2314 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
2315 }
2316
2317 if (MemVT.isFloatingPoint())
2318 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
2319 else if (Signed)
2320 Val = DAG.getSExtOrTrunc(Val, SL, VT);
2321 else
2322 Val = DAG.getZExtOrTrunc(Val, SL, VT);
2323
2324 return Val;
2325}
2326
2327SDValue SITargetLowering::lowerKernargMemParameter(
2328 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
2329 uint64_t Offset, Align Alignment, bool Signed,
2330 const ISD::InputArg *Arg) const {
2331 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
2332
2333 // Try to avoid using an extload by loading earlier than the argument address,
2334 // and extracting the relevant bits. The load should hopefully be merged with
2335 // the previous argument.
2336 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
2337 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
2338 int64_t AlignDownOffset = alignDown(Offset, 4);
2339 int64_t OffsetDiff = Offset - AlignDownOffset;
2340
2341 EVT IntVT = MemVT.changeTypeToInteger();
2342
2343 // TODO: If we passed in the base kernel offset we could have a better
2344 // alignment than 4, but we don't really need it.
2345 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
2346 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
2349
2350 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
2351 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
2352
2353 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
2354 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
2355 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
2356
2357 return DAG.getMergeValues({ArgVal, Load.getValue(1)}, SL);
2358 }
2359
2360 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
2361 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
2364
2365 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
2366 return DAG.getMergeValues({Val, Load.getValue(1)}, SL);
2367}
2368
2369/// Coerce an argument which was passed in a different ABI type to the original
2370/// expected value type.
2371SDValue SITargetLowering::convertABITypeToValueType(SelectionDAG &DAG,
2372 SDValue Val,
2373 CCValAssign &VA,
2374 const SDLoc &SL) const {
2375 EVT ValVT = VA.getValVT();
2376
2377 // If this is an 8 or 16-bit value, it is really passed promoted
2378 // to 32 bits. Insert an assert[sz]ext to capture this, then
2379 // truncate to the right size.
2380 switch (VA.getLocInfo()) {
2381 case CCValAssign::Full:
2382 return Val;
2383 case CCValAssign::BCvt:
2384 return DAG.getNode(ISD::BITCAST, SL, ValVT, Val);
2385 case CCValAssign::SExt:
2386 Val = DAG.getNode(ISD::AssertSext, SL, VA.getLocVT(), Val,
2387 DAG.getValueType(ValVT));
2388 return DAG.getNode(ISD::TRUNCATE, SL, ValVT, Val);
2389 case CCValAssign::ZExt:
2390 Val = DAG.getNode(ISD::AssertZext, SL, VA.getLocVT(), Val,
2391 DAG.getValueType(ValVT));
2392 return DAG.getNode(ISD::TRUNCATE, SL, ValVT, Val);
2393 case CCValAssign::AExt:
2394 return DAG.getNode(ISD::TRUNCATE, SL, ValVT, Val);
2395 default:
2396 llvm_unreachable("Unknown loc info!");
2397 }
2398}
2399
2400SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG,
2401 CCValAssign &VA, const SDLoc &SL,
2402 SDValue Chain,
2403 const ISD::InputArg &Arg) const {
2404 MachineFunction &MF = DAG.getMachineFunction();
2405 MachineFrameInfo &MFI = MF.getFrameInfo();
2406
2407 if (Arg.Flags.isByVal()) {
2408 unsigned Size = Arg.Flags.getByValSize();
2409 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
2410 return DAG.getFrameIndex(FrameIdx, MVT::i32);
2411 }
2412
2413 unsigned ArgOffset = VA.getLocMemOffset();
2414 unsigned ArgSize = VA.getValVT().getStoreSize();
2415
2416 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
2417
2418 // Create load nodes to retrieve arguments from the stack.
2419 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
2420
2421 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2423 MVT MemVT = VA.getValVT();
2424
2425 switch (VA.getLocInfo()) {
2426 default:
2427 break;
2428 case CCValAssign::BCvt:
2429 MemVT = VA.getLocVT();
2430 break;
2431 case CCValAssign::SExt:
2432 ExtType = ISD::SEXTLOAD;
2433 break;
2434 case CCValAssign::ZExt:
2435 ExtType = ISD::ZEXTLOAD;
2436 break;
2437 case CCValAssign::AExt:
2438 ExtType = ISD::EXTLOAD;
2439 break;
2440 }
2441
2442 SDValue ArgValue = DAG.getExtLoad(
2443 ExtType, SL, VA.getLocVT(), Chain, FIN,
2445
2446 SDValue ConvertedVal = convertABITypeToValueType(DAG, ArgValue, VA, SL);
2447 if (ConvertedVal == ArgValue)
2448 return ConvertedVal;
2449
2450 return DAG.getMergeValues({ConvertedVal, ArgValue.getValue(1)}, SL);
2451}
2452
2453SDValue SITargetLowering::lowerWorkGroupId(
2454 SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT,
2457 AMDGPUFunctionArgInfo::PreloadedValue ClusterWorkGroupIdPV) const {
2458 if (!Subtarget->hasClusters())
2459 return getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2460
2461 // Clusters are supported. Return the global position in the grid. If clusters
2462 // are enabled, WorkGroupIdPV returns the cluster ID not the workgroup ID.
2463
2464 // WorkGroupIdXYZ = ClusterId == 0 ?
2465 // ClusterIdXYZ :
2466 // ClusterIdXYZ * (ClusterMaxIdXYZ + 1) + ClusterWorkGroupIdXYZ
2467 SDValue ClusterIdXYZ = getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2468 SDLoc SL(ClusterIdXYZ);
2469 SDValue ClusterMaxIdXYZ = getPreloadedValue(DAG, MFI, VT, ClusterMaxIdPV);
2470 SDValue One = DAG.getConstant(1, SL, VT);
2471 SDValue ClusterSizeXYZ = DAG.getNode(ISD::ADD, SL, VT, ClusterMaxIdXYZ, One);
2472 SDValue ClusterWorkGroupIdXYZ =
2473 getPreloadedValue(DAG, MFI, VT, ClusterWorkGroupIdPV);
2474 SDValue GlobalIdXYZ =
2475 DAG.getNode(ISD::ADD, SL, VT, ClusterWorkGroupIdXYZ,
2476 DAG.getNode(ISD::MUL, SL, VT, ClusterIdXYZ, ClusterSizeXYZ));
2477
2478 switch (MFI.getClusterDims().getKind()) {
2481 return GlobalIdXYZ;
2483 return ClusterIdXYZ;
2485 using namespace AMDGPU::Hwreg;
2486 SDValue ClusterIdField =
2487 DAG.getTargetConstant(HwregEncoding::encode(ID_IB_STS2, 6, 4), SL, VT);
2488 SDNode *GetReg =
2489 DAG.getMachineNode(AMDGPU::S_GETREG_B32_const, SL, VT, ClusterIdField);
2490 SDValue ClusterId(GetReg, 0);
2491 SDValue Zero = DAG.getConstant(0, SL, VT);
2492 return DAG.getNode(ISD::SELECT_CC, SL, VT, ClusterId, Zero, ClusterIdXYZ,
2493 GlobalIdXYZ, DAG.getCondCode(ISD::SETEQ));
2494 }
2495 }
2496
2497 llvm_unreachable("nothing should reach here");
2498}
2499
2500SDValue SITargetLowering::getPreloadedValue(
2501 SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT,
2503 const ArgDescriptor *Reg = nullptr;
2504 const TargetRegisterClass *RC;
2505 LLT Ty;
2506
2508 const ArgDescriptor WorkGroupIDX =
2509 ArgDescriptor::createRegister(AMDGPU::TTMP9);
2510 // If GridZ is not programmed in an entry function then the hardware will set
2511 // it to all zeros, so there is no need to mask the GridY value in the low
2512 // order bits.
2513 const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister(
2514 AMDGPU::TTMP7,
2515 AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu);
2516 const ArgDescriptor WorkGroupIDZ =
2517 ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u);
2518 const ArgDescriptor ClusterWorkGroupIDX =
2519 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x0000000Fu);
2520 const ArgDescriptor ClusterWorkGroupIDY =
2521 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x000000F0u);
2522 const ArgDescriptor ClusterWorkGroupIDZ =
2523 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x00000F00u);
2524 const ArgDescriptor ClusterWorkGroupMaxIDX =
2525 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x0000F000u);
2526 const ArgDescriptor ClusterWorkGroupMaxIDY =
2527 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x000F0000u);
2528 const ArgDescriptor ClusterWorkGroupMaxIDZ =
2529 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x00F00000u);
2530 const ArgDescriptor ClusterWorkGroupMaxFlatID =
2531 ArgDescriptor::createRegister(AMDGPU::TTMP6, 0x0F000000u);
2532
2533 auto LoadConstant = [&](unsigned N) {
2534 return DAG.getConstant(N, SDLoc(), VT);
2535 };
2536
2537 if (Subtarget->hasArchitectedSGPRs() &&
2539 AMDGPU::ClusterDimsAttr ClusterDims = MFI.getClusterDims();
2540 bool HasFixedDims = ClusterDims.isFixedDims();
2541
2542 switch (PVID) {
2544 Reg = &WorkGroupIDX;
2545 RC = &AMDGPU::SReg_32RegClass;
2546 Ty = LLT::scalar(32);
2547 break;
2549 Reg = &WorkGroupIDY;
2550 RC = &AMDGPU::SReg_32RegClass;
2551 Ty = LLT::scalar(32);
2552 break;
2554 Reg = &WorkGroupIDZ;
2555 RC = &AMDGPU::SReg_32RegClass;
2556 Ty = LLT::scalar(32);
2557 break;
2559 if (HasFixedDims && ClusterDims.getDims()[0] == 1)
2560 return LoadConstant(0);
2561 Reg = &ClusterWorkGroupIDX;
2562 RC = &AMDGPU::SReg_32RegClass;
2563 Ty = LLT::scalar(32);
2564 break;
2566 if (HasFixedDims && ClusterDims.getDims()[1] == 1)
2567 return LoadConstant(0);
2568 Reg = &ClusterWorkGroupIDY;
2569 RC = &AMDGPU::SReg_32RegClass;
2570 Ty = LLT::scalar(32);
2571 break;
2573 if (HasFixedDims && ClusterDims.getDims()[2] == 1)
2574 return LoadConstant(0);
2575 Reg = &ClusterWorkGroupIDZ;
2576 RC = &AMDGPU::SReg_32RegClass;
2577 Ty = LLT::scalar(32);
2578 break;
2580 if (HasFixedDims)
2581 return LoadConstant(ClusterDims.getDims()[0] - 1);
2582 Reg = &ClusterWorkGroupMaxIDX;
2583 RC = &AMDGPU::SReg_32RegClass;
2584 Ty = LLT::scalar(32);
2585 break;
2587 if (HasFixedDims)
2588 return LoadConstant(ClusterDims.getDims()[1] - 1);
2589 Reg = &ClusterWorkGroupMaxIDY;
2590 RC = &AMDGPU::SReg_32RegClass;
2591 Ty = LLT::scalar(32);
2592 break;
2594 if (HasFixedDims)
2595 return LoadConstant(ClusterDims.getDims()[2] - 1);
2596 Reg = &ClusterWorkGroupMaxIDZ;
2597 RC = &AMDGPU::SReg_32RegClass;
2598 Ty = LLT::scalar(32);
2599 break;
2601 Reg = &ClusterWorkGroupMaxFlatID;
2602 RC = &AMDGPU::SReg_32RegClass;
2603 Ty = LLT::scalar(32);
2604 break;
2605 default:
2606 break;
2607 }
2608 }
2609
2610 if (!Reg)
2611 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
2612 if (!Reg) {
2614 // It's possible for a kernarg intrinsic call to appear in a kernel with
2615 // no allocated segment, in which case we do not add the user sgpr
2616 // argument, so just return null.
2617 return DAG.getConstant(0, SDLoc(), VT);
2618 }
2619
2620 // It's undefined behavior if a function marked with the amdgpu-no-*
2621 // attributes uses the corresponding intrinsic.
2622 return DAG.getPOISON(VT);
2623 }
2624
2625 return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg);
2626}
2627
2629 CallingConv::ID CallConv,
2630 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
2631 FunctionType *FType,
2633 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
2634 const ISD::InputArg *Arg = &Ins[I];
2635
2636 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
2637 "vector type argument should have been split");
2638
2639 // First check if it's a PS input addr.
2640 if (CallConv == CallingConv::AMDGPU_PS && !Arg->Flags.isInReg() &&
2641 PSInputNum <= 15) {
2642 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
2643
2644 // Inconveniently only the first part of the split is marked as isSplit,
2645 // so skip to the end. We only want to increment PSInputNum once for the
2646 // entire split argument.
2647 if (Arg->Flags.isSplit()) {
2648 while (!Arg->Flags.isSplitEnd()) {
2649 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
2650 "unexpected vector split in ps argument type");
2651 if (!SkipArg)
2652 Splits.push_back(*Arg);
2653 Arg = &Ins[++I];
2654 }
2655 }
2656
2657 if (SkipArg) {
2658 // We can safely skip PS inputs.
2659 Skipped.set(Arg->getOrigArgIndex());
2660 ++PSInputNum;
2661 continue;
2662 }
2663
2664 Info->markPSInputAllocated(PSInputNum);
2665 if (Arg->Used)
2666 Info->markPSInputEnabled(PSInputNum);
2667
2668 ++PSInputNum;
2669 }
2670
2671 Splits.push_back(*Arg);
2672 }
2673}
2674
2675// Allocate special inputs passed in VGPRs.
2677 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2678 SIMachineFunctionInfo &Info) const {
2679 const LLT S32 = LLT::scalar(32);
2681
2682 if (Info.hasWorkItemIDX()) {
2683 Register Reg = AMDGPU::VGPR0;
2684 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2685
2686 CCInfo.AllocateReg(Reg);
2687 unsigned Mask =
2688 (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
2689 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2690 }
2691
2692 if (Info.hasWorkItemIDY()) {
2693 assert(Info.hasWorkItemIDX());
2694 if (Subtarget->hasPackedTID()) {
2695 Info.setWorkItemIDY(
2696 ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 10));
2697 } else {
2698 unsigned Reg = AMDGPU::VGPR1;
2699 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2700
2701 CCInfo.AllocateReg(Reg);
2702 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
2703 }
2704 }
2705
2706 if (Info.hasWorkItemIDZ()) {
2707 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2708 if (Subtarget->hasPackedTID()) {
2709 Info.setWorkItemIDZ(
2710 ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 20));
2711 } else {
2712 unsigned Reg = AMDGPU::VGPR2;
2713 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2714
2715 CCInfo.AllocateReg(Reg);
2716 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
2717 }
2718 }
2719}
2720
2721// Try to allocate a VGPR at the end of the argument list, or if no argument
2722// VGPRs are left allocating a stack slot.
2723// If \p Mask is is given it indicates bitfield position in the register.
2724// If \p Arg is given use it with new ]p Mask instead of allocating new.
2725static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
2726 ArgDescriptor Arg = ArgDescriptor()) {
2727 if (Arg.isSet())
2728 return ArgDescriptor::createArg(Arg, Mask);
2729
2730 ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2731 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2732 if (RegIdx == ArgVGPRs.size()) {
2733 // Spill to stack required.
2734 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2735
2736 return ArgDescriptor::createStack(Offset, Mask);
2737 }
2738
2739 unsigned Reg = ArgVGPRs[RegIdx];
2740 Reg = CCInfo.AllocateReg(Reg);
2741 assert(Reg != AMDGPU::NoRegister);
2742
2743 MachineFunction &MF = CCInfo.getMachineFunction();
2744 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2745 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2746 return ArgDescriptor::createRegister(Reg, Mask);
2747}
2748
2750 const TargetRegisterClass *RC,
2751 unsigned NumArgRegs) {
2752 ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
2753 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2754 if (RegIdx == ArgSGPRs.size())
2755 report_fatal_error("ran out of SGPRs for arguments");
2756
2757 unsigned Reg = ArgSGPRs[RegIdx];
2758 Reg = CCInfo.AllocateReg(Reg);
2759 assert(Reg != AMDGPU::NoRegister);
2760
2761 MachineFunction &MF = CCInfo.getMachineFunction();
2762 MF.addLiveIn(Reg, RC);
2764}
2765
2766// If this has a fixed position, we still should allocate the register in the
2767// CCInfo state. Technically we could get away with this for values passed
2768// outside of the normal argument range.
2770 const TargetRegisterClass *RC,
2771 MCRegister Reg) {
2772 Reg = CCInfo.AllocateReg(Reg);
2773 assert(Reg != AMDGPU::NoRegister);
2774 MachineFunction &MF = CCInfo.getMachineFunction();
2775 MF.addLiveIn(Reg, RC);
2776}
2777
2778static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2779 if (Arg) {
2780 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2781 Arg.getRegister());
2782 } else
2783 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2784}
2785
2786static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2787 if (Arg) {
2788 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2789 Arg.getRegister());
2790 } else
2791 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2792}
2793
2794/// Allocate implicit function VGPR arguments at the end of allocated user
2795/// arguments.
2797 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2798 SIMachineFunctionInfo &Info) const {
2799 const unsigned Mask = 0x3ff;
2800 ArgDescriptor Arg;
2801
2802 if (Info.hasWorkItemIDX()) {
2803 Arg = allocateVGPR32Input(CCInfo, Mask);
2804 Info.setWorkItemIDX(Arg);
2805 }
2806
2807 if (Info.hasWorkItemIDY()) {
2808 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2809 Info.setWorkItemIDY(Arg);
2810 }
2811
2812 if (Info.hasWorkItemIDZ())
2813 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2814}
2815
2816/// Allocate implicit function VGPR arguments in fixed registers.
2818 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2819 SIMachineFunctionInfo &Info) const {
2820 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2821 if (!Reg)
2822 report_fatal_error("failed to allocate VGPR for implicit arguments");
2823
2824 const unsigned Mask = 0x3ff;
2825 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2826 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2827 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2828}
2829
2831 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2832 SIMachineFunctionInfo &Info) const {
2833 auto &ArgInfo = Info.getArgInfo();
2834 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2835
2836 // TODO: Unify handling with private memory pointers.
2837 if (UserSGPRInfo.hasDispatchPtr())
2838 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2839
2840 if (UserSGPRInfo.hasQueuePtr())
2841 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2842
2843 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2844 // constant offset from the kernarg segment.
2845 if (Info.hasImplicitArgPtr())
2846 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2847
2848 if (UserSGPRInfo.hasDispatchID())
2849 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2850
2851 // flat_scratch_init is not applicable for non-kernel functions.
2852
2853 if (Info.hasWorkGroupIDX())
2854 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2855
2856 if (Info.hasWorkGroupIDY())
2857 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2858
2859 if (Info.hasWorkGroupIDZ())
2860 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2861
2862 if (Info.hasLDSKernelId())
2863 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2864}
2865
2866// Allocate special inputs passed in user SGPRs.
2868 MachineFunction &MF,
2869 const SIRegisterInfo &TRI,
2870 SIMachineFunctionInfo &Info) const {
2871 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2872 if (UserSGPRInfo.hasImplicitBufferPtr()) {
2873 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2874 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2875 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2876 }
2877
2878 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2879 if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
2880 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2881 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2882 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2883 }
2884
2885 if (UserSGPRInfo.hasDispatchPtr()) {
2886 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2887 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2888 CCInfo.AllocateReg(DispatchPtrReg);
2889 }
2890
2891 if (UserSGPRInfo.hasQueuePtr()) {
2892 Register QueuePtrReg = Info.addQueuePtr(TRI);
2893 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2894 CCInfo.AllocateReg(QueuePtrReg);
2895 }
2896
2897 if (UserSGPRInfo.hasKernargSegmentPtr()) {
2899 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2900 CCInfo.AllocateReg(InputPtrReg);
2901
2902 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2903 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2904 }
2905
2906 if (UserSGPRInfo.hasDispatchID()) {
2907 Register DispatchIDReg = Info.addDispatchID(TRI);
2908 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2909 CCInfo.AllocateReg(DispatchIDReg);
2910 }
2911
2912 if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2913 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2914 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2915 CCInfo.AllocateReg(FlatScratchInitReg);
2916 }
2917
2918 if (UserSGPRInfo.hasPrivateSegmentSize()) {
2919 Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(TRI);
2920 MF.addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass);
2921 CCInfo.AllocateReg(PrivateSegmentSizeReg);
2922 }
2923
2924 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2925 // these from the dispatch pointer.
2926}
2927
2928// Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be
2929// sequential starting from the first argument.
2931 CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs,
2933 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2934 Function &F = MF.getFunction();
2935 unsigned LastExplicitArgOffset = Subtarget->getExplicitKernelArgOffset();
2936 GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo();
2937 bool InPreloadSequence = true;
2938 unsigned InIdx = 0;
2939 bool AlignedForImplictArgs = false;
2940 unsigned ImplicitArgOffset = 0;
2941 for (auto &Arg : F.args()) {
2942 if (!InPreloadSequence || !Arg.hasInRegAttr())
2943 break;
2944
2945 unsigned ArgIdx = Arg.getArgNo();
2946 // Don't preload non-original args or parts not in the current preload
2947 // sequence.
2948 if (InIdx < Ins.size() &&
2949 (!Ins[InIdx].isOrigArg() || Ins[InIdx].getOrigArgIndex() != ArgIdx))
2950 break;
2951
2952 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2953 Ins[InIdx].getOrigArgIndex() == ArgIdx;
2954 InIdx++) {
2955 assert(ArgLocs[ArgIdx].isMemLoc());
2956 auto &ArgLoc = ArgLocs[InIdx];
2957 const Align KernelArgBaseAlign = Align(16);
2958 unsigned ArgOffset = ArgLoc.getLocMemOffset();
2959 Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset);
2960 unsigned NumAllocSGPRs =
2961 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2962
2963 // Fix alignment for hidden arguments.
2964 if (Arg.hasAttribute("amdgpu-hidden-argument")) {
2965 if (!AlignedForImplictArgs) {
2966 ImplicitArgOffset =
2967 alignTo(LastExplicitArgOffset,
2968 Subtarget->getAlignmentForImplicitArgPtr()) -
2969 LastExplicitArgOffset;
2970 AlignedForImplictArgs = true;
2971 }
2972 ArgOffset += ImplicitArgOffset;
2973 }
2974
2975 // Arg is preloaded into the previous SGPR.
2976 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2977 assert(InIdx >= 1 && "No previous SGPR");
2978 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2979 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2980 continue;
2981 }
2982
2983 unsigned Padding = ArgOffset - LastExplicitArgOffset;
2984 unsigned PaddingSGPRs = alignTo(Padding, 4) / 4;
2985 // Check for free user SGPRs for preloading.
2986 if (PaddingSGPRs + NumAllocSGPRs > SGPRInfo.getNumFreeUserSGPRs()) {
2987 InPreloadSequence = false;
2988 break;
2989 }
2990
2991 // Preload this argument.
2992 const TargetRegisterClass *RC =
2993 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2994 SmallVectorImpl<MCRegister> *PreloadRegs =
2995 Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2996
2997 if (PreloadRegs->size() > 1)
2998 RC = &AMDGPU::SGPR_32RegClass;
2999 for (auto &Reg : *PreloadRegs) {
3000 assert(Reg);
3001 MF.addLiveIn(Reg, RC);
3002 CCInfo.AllocateReg(Reg);
3003 }
3004
3005 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
3006 }
3007 }
3008}
3009
3011 const SIRegisterInfo &TRI,
3012 SIMachineFunctionInfo &Info) const {
3013 // Always allocate this last since it is a synthetic preload.
3014 if (Info.hasLDSKernelId()) {
3015 Register Reg = Info.addLDSKernelId();
3016 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3017 CCInfo.AllocateReg(Reg);
3018 }
3019}
3020
3021// Allocate special input registers that are initialized per-wave.
3024 CallingConv::ID CallConv,
3025 bool IsShader) const {
3026 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
3027 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
3028 // Note: user SGPRs are handled by the front-end for graphics shaders
3029 // Pad up the used user SGPRs with dead inputs.
3030
3031 // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately
3032 // before enabling architected SGPRs for workgroup IDs.
3033 assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget");
3034
3035 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
3036 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
3037 // rely on it to reach 16 since if we end up having no stack usage, it will
3038 // not really be added.
3039 unsigned NumRequiredSystemSGPRs =
3040 Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() +
3041 Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo();
3042 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
3043 Register Reg = Info.addReservedUserSGPR();
3044 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3045 CCInfo.AllocateReg(Reg);
3046 }
3047 }
3048
3049 if (!HasArchitectedSGPRs) {
3050 if (Info.hasWorkGroupIDX()) {
3051 Register Reg = Info.addWorkGroupIDX();
3052 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3053 CCInfo.AllocateReg(Reg);
3054 }
3055
3056 if (Info.hasWorkGroupIDY()) {
3057 Register Reg = Info.addWorkGroupIDY();
3058 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3059 CCInfo.AllocateReg(Reg);
3060 }
3061
3062 if (Info.hasWorkGroupIDZ()) {
3063 Register Reg = Info.addWorkGroupIDZ();
3064 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3065 CCInfo.AllocateReg(Reg);
3066 }
3067 }
3068
3069 if (Info.hasWorkGroupInfo()) {
3070 Register Reg = Info.addWorkGroupInfo();
3071 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3072 CCInfo.AllocateReg(Reg);
3073 }
3074
3075 if (Info.hasPrivateSegmentWaveByteOffset()) {
3076 // Scratch wave offset passed in system SGPR.
3077 unsigned PrivateSegmentWaveByteOffsetReg;
3078
3079 if (IsShader) {
3080 PrivateSegmentWaveByteOffsetReg =
3081 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
3082
3083 // This is true if the scratch wave byte offset doesn't have a fixed
3084 // location.
3085 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
3086 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
3087 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
3088 }
3089 } else
3090 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
3091
3092 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
3093 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
3094 }
3095
3096 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
3097 Info.getNumPreloadedSGPRs() >= 16);
3098}
3099
3101 MachineFunction &MF,
3102 const SIRegisterInfo &TRI,
3104 // Now that we've figured out where the scratch register inputs are, see if
3105 // should reserve the arguments and use them directly.
3106 MachineFrameInfo &MFI = MF.getFrameInfo();
3107 bool HasStackObjects = MFI.hasStackObjects();
3108 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3109
3110 // Record that we know we have non-spill stack objects so we don't need to
3111 // check all stack objects later.
3112 if (HasStackObjects)
3113 Info.setHasNonSpillStackObjects(true);
3114
3115 // Everything live out of a block is spilled with fast regalloc, so it's
3116 // almost certain that spilling will be required.
3117 if (TM.getOptLevel() == CodeGenOptLevel::None)
3118 HasStackObjects = true;
3119
3120 // For now assume stack access is needed in any callee functions, so we need
3121 // the scratch registers to pass in.
3122 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
3123
3124 if (!ST.enableFlatScratch()) {
3125 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
3126 // If we have stack objects, we unquestionably need the private buffer
3127 // resource. For the Code Object V2 ABI, this will be the first 4 user
3128 // SGPR inputs. We can reserve those and use them directly.
3129
3130 Register PrivateSegmentBufferReg =
3132 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
3133 } else {
3134 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
3135 // We tentatively reserve the last registers (skipping the last registers
3136 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
3137 // we'll replace these with the ones immediately after those which were
3138 // really allocated. In the prologue copies will be inserted from the
3139 // argument to these reserved registers.
3140
3141 // Without HSA, relocations are used for the scratch pointer and the
3142 // buffer resource setup is always inserted in the prologue. Scratch wave
3143 // offset is still in an input SGPR.
3144 Info.setScratchRSrcReg(ReservedBufferReg);
3145 }
3146 }
3147
3149
3150 // For entry functions we have to set up the stack pointer if we use it,
3151 // whereas non-entry functions get this "for free". This means there is no
3152 // intrinsic advantage to using S32 over S34 in cases where we do not have
3153 // calls but do need a frame pointer (i.e. if we are requested to have one
3154 // because frame pointer elimination is disabled). To keep things simple we
3155 // only ever use S32 as the call ABI stack pointer, and so using it does not
3156 // imply we need a separate frame pointer.
3157 //
3158 // Try to use s32 as the SP, but move it if it would interfere with input
3159 // arguments. This won't work with calls though.
3160 //
3161 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
3162 // registers.
3163 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
3164 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
3165 } else {
3167
3168 if (MFI.hasCalls())
3169 report_fatal_error("call in graphics shader with too many input SGPRs");
3170
3171 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
3172 if (!MRI.isLiveIn(Reg)) {
3173 Info.setStackPtrOffsetReg(Reg);
3174 break;
3175 }
3176 }
3177
3178 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
3179 report_fatal_error("failed to find register for SP");
3180 }
3181
3182 // hasFP should be accurate for entry functions even before the frame is
3183 // finalized, because it does not rely on the known stack size, only
3184 // properties like whether variable sized objects are present.
3185 if (ST.getFrameLowering()->hasFP(MF)) {
3186 Info.setFrameOffsetReg(AMDGPU::SGPR33);
3187 }
3188}
3189
3192 return !Info->isEntryFunction();
3193}
3194
3196
3198 MachineBasicBlock *Entry,
3199 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3201
3202 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
3203 if (!IStart)
3204 return;
3205
3206 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3207 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
3208 MachineBasicBlock::iterator MBBI = Entry->begin();
3209 for (const MCPhysReg *I = IStart; *I; ++I) {
3210 const TargetRegisterClass *RC = nullptr;
3211 if (AMDGPU::SReg_64RegClass.contains(*I))
3212 RC = &AMDGPU::SGPR_64RegClass;
3213 else if (AMDGPU::SReg_32RegClass.contains(*I))
3214 RC = &AMDGPU::SGPR_32RegClass;
3215 else
3216 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3217
3218 Register NewVR = MRI->createVirtualRegister(RC);
3219 // Create copy from CSR to a virtual register.
3220 Entry->addLiveIn(*I);
3221 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
3222 .addReg(*I);
3223
3224 // Insert the copy-back instructions right before the terminator.
3225 for (auto *Exit : Exits)
3226 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
3227 TII->get(TargetOpcode::COPY), *I)
3228 .addReg(NewVR);
3229 }
3230}
3231
3233 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3234 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3235 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3237
3239 const Function &Fn = MF.getFunction();
3242 bool IsError = false;
3243
3244 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
3246 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()));
3247 IsError = true;
3248 }
3249
3252 BitVector Skipped(Ins.size());
3253 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3254 *DAG.getContext());
3255
3256 bool IsGraphics = AMDGPU::isGraphics(CallConv);
3257 bool IsKernel = AMDGPU::isKernel(CallConv);
3258 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
3259
3260 if (IsGraphics) {
3261 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
3262 assert(!UserSGPRInfo.hasDispatchPtr() &&
3263 !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() &&
3264 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
3265 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
3266 (void)UserSGPRInfo;
3267 if (!Subtarget->enableFlatScratch())
3268 assert(!UserSGPRInfo.hasFlatScratchInit());
3269 if ((CallConv != CallingConv::AMDGPU_CS &&
3270 CallConv != CallingConv::AMDGPU_Gfx &&
3271 CallConv != CallingConv::AMDGPU_Gfx_WholeWave) ||
3272 !Subtarget->hasArchitectedSGPRs())
3273 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
3274 !Info->hasWorkGroupIDZ());
3275 }
3276
3277 bool IsWholeWaveFunc = Info->isWholeWaveFunction();
3278
3279 if (CallConv == CallingConv::AMDGPU_PS) {
3280 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
3281
3282 // At least one interpolation mode must be enabled or else the GPU will
3283 // hang.
3284 //
3285 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
3286 // set PSInputAddr, the user wants to enable some bits after the compilation
3287 // based on run-time states. Since we can't know what the final PSInputEna
3288 // will look like, so we shouldn't do anything here and the user should take
3289 // responsibility for the correct programming.
3290 //
3291 // Otherwise, the following restrictions apply:
3292 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
3293 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
3294 // enabled too.
3295 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
3296 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
3297 CCInfo.AllocateReg(AMDGPU::VGPR0);
3298 CCInfo.AllocateReg(AMDGPU::VGPR1);
3299 Info->markPSInputAllocated(0);
3300 Info->markPSInputEnabled(0);
3301 }
3302 if (Subtarget->isAmdPalOS()) {
3303 // For isAmdPalOS, the user does not enable some bits after compilation
3304 // based on run-time states; the register values being generated here are
3305 // the final ones set in hardware. Therefore we need to apply the
3306 // workaround to PSInputAddr and PSInputEnable together. (The case where
3307 // a bit is set in PSInputAddr but not PSInputEnable is where the
3308 // frontend set up an input arg for a particular interpolation mode, but
3309 // nothing uses that input arg. Really we should have an earlier pass
3310 // that removes such an arg.)
3311 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
3312 if ((PsInputBits & 0x7F) == 0 ||
3313 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
3314 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
3315 }
3316 } else if (IsKernel) {
3317 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
3318 } else {
3319 Splits.append(IsWholeWaveFunc ? std::next(Ins.begin()) : Ins.begin(),
3320 Ins.end());
3321 }
3322
3323 if (IsKernel)
3324 analyzeFormalArgumentsCompute(CCInfo, Ins);
3325
3326 if (IsEntryFunc) {
3327 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
3328 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
3329 if (IsKernel && Subtarget->hasKernargPreload())
3330 allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info);
3331
3332 allocateLDSKernelId(CCInfo, MF, *TRI, *Info);
3333 } else if (!IsGraphics) {
3334 // For the fixed ABI, pass workitem IDs in the last argument register.
3335 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
3336
3337 // FIXME: Sink this into allocateSpecialInputSGPRs
3338 if (!Subtarget->enableFlatScratch())
3339 CCInfo.AllocateReg(Info->getScratchRSrcReg());
3340
3341 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
3342 }
3343
3344 if (!IsKernel) {
3345 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
3346 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
3347
3348 // This assumes the registers are allocated by CCInfo in ascending order
3349 // with no gaps.
3350 Info->setNumWaveDispatchSGPRs(
3351 CCInfo.getFirstUnallocated(AMDGPU::SGPR_32RegClass.getRegisters()));
3352 Info->setNumWaveDispatchVGPRs(
3353 CCInfo.getFirstUnallocated(AMDGPU::VGPR_32RegClass.getRegisters()));
3354 } else if (Info->getNumKernargPreloadedSGPRs()) {
3355 Info->setNumWaveDispatchSGPRs(Info->getNumUserSGPRs());
3356 }
3357
3359
3360 if (IsWholeWaveFunc) {
3362 {MVT::i1, MVT::Other}, Chain);
3363 InVals.push_back(Setup.getValue(0));
3364 Chains.push_back(Setup.getValue(1));
3365 }
3366
3367 // FIXME: This is the minimum kernel argument alignment. We should improve
3368 // this to the maximum alignment of the arguments.
3369 //
3370 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
3371 // kern arg offset.
3372 const Align KernelArgBaseAlign = Align(16);
3373
3374 for (unsigned i = IsWholeWaveFunc ? 1 : 0, e = Ins.size(), ArgIdx = 0; i != e;
3375 ++i) {
3376 const ISD::InputArg &Arg = Ins[i];
3377 if ((Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) || IsError) {
3378 InVals.push_back(DAG.getPOISON(Arg.VT));
3379 continue;
3380 }
3381
3382 CCValAssign &VA = ArgLocs[ArgIdx++];
3383 MVT VT = VA.getLocVT();
3384
3385 if (IsEntryFunc && VA.isMemLoc()) {
3386 VT = Ins[i].VT;
3387 EVT MemVT = VA.getLocVT();
3388
3389 const uint64_t Offset = VA.getLocMemOffset();
3390 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
3391
3392 if (Arg.Flags.isByRef()) {
3393 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
3394
3395 const GCNTargetMachine &TM =
3396 static_cast<const GCNTargetMachine &>(getTargetMachine());
3397 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
3398 Arg.Flags.getPointerAddrSpace())) {
3401 }
3402
3403 InVals.push_back(Ptr);
3404 continue;
3405 }
3406
3407 SDValue NewArg;
3408 if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
3409 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
3410 // In this case the argument is packed into the previous preload SGPR.
3411 int64_t AlignDownOffset = alignDown(Offset, 4);
3412 int64_t OffsetDiff = Offset - AlignDownOffset;
3413 EVT IntVT = MemVT.changeTypeToInteger();
3414
3415 const SIMachineFunctionInfo *Info =
3418 Register Reg =
3419 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
3420
3421 assert(Reg);
3422 Register VReg = MRI.getLiveInVirtReg(Reg);
3423 SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
3424
3425 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32);
3426 SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt);
3427
3428 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract);
3429 ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal);
3430 NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal,
3431 Ins[i].Flags.isSExt(), &Ins[i]);
3432
3433 NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL);
3434 } else {
3435 const SIMachineFunctionInfo *Info =
3438 const SmallVectorImpl<MCRegister> &PreloadRegs =
3439 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
3440
3441 SDValue Copy;
3442 if (PreloadRegs.size() == 1) {
3443 Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]);
3444 const TargetRegisterClass *RC = MRI.getRegClass(VReg);
3445 NewArg = DAG.getCopyFromReg(
3446 Chain, DL, VReg,
3448 TRI->getRegSizeInBits(*RC)));
3449
3450 } else {
3451 // If the kernarg alignment does not match the alignment of the SGPR
3452 // tuple RC that can accommodate this argument, it will be built up
3453 // via copies from from the individual SGPRs that the argument was
3454 // preloaded to.
3456 for (auto Reg : PreloadRegs) {
3457 Register VReg = MRI.getLiveInVirtReg(Reg);
3458 Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
3459 Elts.push_back(Copy);
3460 }
3461 NewArg =
3462 DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3463 PreloadRegs.size()),
3464 DL, Elts);
3465 }
3466
3467 // If the argument was preloaded to multiple consecutive 32-bit
3468 // registers because of misalignment between addressable SGPR tuples
3469 // and the argument size, we can still assume that because of kernarg
3470 // segment alignment restrictions that NewArg's size is the same as
3471 // MemVT and just do a bitcast. If MemVT is less than 32-bits we add a
3472 // truncate since we cannot preload to less than a single SGPR and the
3473 // MemVT may be smaller.
3474 EVT MemVTInt =
3476 if (MemVT.bitsLT(NewArg.getSimpleValueType()))
3477 NewArg = DAG.getNode(ISD::TRUNCATE, DL, MemVTInt, NewArg);
3478
3479 NewArg = DAG.getBitcast(MemVT, NewArg);
3480 NewArg = convertArgType(DAG, VT, MemVT, DL, NewArg,
3481 Ins[i].Flags.isSExt(), &Ins[i]);
3482 NewArg = DAG.getMergeValues({NewArg, Chain}, DL);
3483 }
3484 } else {
3485 // Hidden arguments that are in the kernel signature must be preloaded
3486 // to user SGPRs. Print a diagnostic error if a hidden argument is in
3487 // the argument list and is not preloaded.
3488 if (Arg.isOrigArg()) {
3489 Argument *OrigArg = Fn.getArg(Arg.getOrigArgIndex());
3490 if (OrigArg->hasAttribute("amdgpu-hidden-argument")) {
3492 *OrigArg->getParent(),
3493 "hidden argument in kernel signature was not preloaded",
3494 DL.getDebugLoc()));
3495 }
3496 }
3497
3498 NewArg =
3499 lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset,
3500 Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
3501 }
3502 Chains.push_back(NewArg.getValue(1));
3503
3504 auto *ParamTy =
3505 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
3506 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
3507 ParamTy &&
3508 (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
3509 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
3510 // On SI local pointers are just offsets into LDS, so they are always
3511 // less than 16-bits. On CI and newer they could potentially be
3512 // real pointers, so we can't guarantee their size.
3513 NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg,
3514 DAG.getValueType(MVT::i16));
3515 }
3516
3517 InVals.push_back(NewArg);
3518 continue;
3519 }
3520 if (!IsEntryFunc && VA.isMemLoc()) {
3521 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
3522 InVals.push_back(Val);
3523 if (!Arg.Flags.isByVal())
3524 Chains.push_back(Val.getValue(1));
3525 continue;
3526 }
3527
3528 assert(VA.isRegLoc() && "Parameter must be in a register!");
3529
3530 Register Reg = VA.getLocReg();
3531 const TargetRegisterClass *RC = nullptr;
3532 if (AMDGPU::VGPR_32RegClass.contains(Reg))
3533 RC = &AMDGPU::VGPR_32RegClass;
3534 else if (AMDGPU::SGPR_32RegClass.contains(Reg))
3535 RC = &AMDGPU::SGPR_32RegClass;
3536 else
3537 llvm_unreachable("Unexpected register class in LowerFormalArguments!");
3538
3539 Reg = MF.addLiveIn(Reg, RC);
3540 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
3541
3542 if (Arg.Flags.isSRet()) {
3543 // The return object should be reasonably addressable.
3544
3545 // FIXME: This helps when the return is a real sret. If it is a
3546 // automatically inserted sret (i.e. CanLowerReturn returns false), an
3547 // extra copy is inserted in SelectionDAGBuilder which obscures this.
3548 unsigned NumBits =
3550 Val = DAG.getNode(
3551 ISD::AssertZext, DL, VT, Val,
3552 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
3553 }
3554
3555 Val = convertABITypeToValueType(DAG, Val, VA, DL);
3556 InVals.push_back(Val);
3557 }
3558
3559 // Start adding system SGPRs.
3560 if (IsEntryFunc)
3561 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
3562
3563 // DAG.getPass() returns nullptr when using new pass manager.
3564 // TODO: Use DAG.getMFAM() to access analysis result.
3565 if (DAG.getPass()) {
3566 auto &ArgUsageInfo = DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
3567 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
3568 }
3569
3570 unsigned StackArgSize = CCInfo.getStackSize();
3571 Info->setBytesInStackArgArea(StackArgSize);
3572
3573 return Chains.empty() ? Chain
3574 : DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3575}
3576
3577// TODO: If return values can't fit in registers, we should return as many as
3578// possible in registers before passing on stack.
3580 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
3581 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context,
3582 const Type *RetTy) const {
3583 // Replacing returns with sret/stack usage doesn't make sense for shaders.
3584 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
3585 // for shaders. Vector types should be explicitly handled by CC.
3586 if (AMDGPU::isEntryFunctionCC(CallConv))
3587 return true;
3588
3590 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3591 if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)))
3592 return false;
3593
3594 // We must use the stack if return would require unavailable registers.
3595 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
3596 unsigned TotalNumVGPRs = Subtarget->getAddressableNumArchVGPRs();
3597 for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3598 if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3599 return false;
3600
3601 return true;
3602}
3603
3604SDValue
3606 bool isVarArg,
3608 const SmallVectorImpl<SDValue> &OutVals,
3609 const SDLoc &DL, SelectionDAG &DAG) const {
3613
3614 if (AMDGPU::isKernel(CallConv)) {
3615 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
3616 OutVals, DL, DAG);
3617 }
3618
3619 bool IsShader = AMDGPU::isShader(CallConv);
3620
3621 Info->setIfReturnsVoid(Outs.empty());
3622 bool IsWaveEnd = Info->returnsVoid() && IsShader;
3623
3624 // CCValAssign - represent the assignment of the return value to a location.
3626
3627 // CCState - Info about the registers and stack slots.
3628 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3629 *DAG.getContext());
3630
3631 // Analyze outgoing return values.
3632 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3633
3634 SDValue Glue;
3636 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3637
3638 SDValue ReadFirstLane =
3639 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, DL, MVT::i32);
3640 // Copy the result values into the output registers.
3641 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
3642 ++I, ++RealRVLocIdx) {
3643 CCValAssign &VA = RVLocs[I];
3644 assert(VA.isRegLoc() && "Can only return in registers!");
3645 // TODO: Partially return in registers if return values don't fit.
3646 SDValue Arg = OutVals[RealRVLocIdx];
3647
3648 // Copied from other backends.
3649 switch (VA.getLocInfo()) {
3650 case CCValAssign::Full:
3651 break;
3652 case CCValAssign::BCvt:
3653 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3654 break;
3655 case CCValAssign::SExt:
3656 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3657 break;
3658 case CCValAssign::ZExt:
3659 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3660 break;
3661 case CCValAssign::AExt:
3662 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3663 break;
3664 default:
3665 llvm_unreachable("Unknown loc info!");
3666 }
3667 if (TRI->isSGPRPhysReg(VA.getLocReg()))
3669 ReadFirstLane, Arg);
3670 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
3671 Glue = Chain.getValue(1);
3672 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3673 }
3674
3675 // FIXME: Does sret work properly?
3676 if (!Info->isEntryFunction()) {
3677 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3678 const MCPhysReg *I =
3679 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3680 if (I) {
3681 for (; *I; ++I) {
3682 if (AMDGPU::SReg_64RegClass.contains(*I))
3683 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3684 else if (AMDGPU::SReg_32RegClass.contains(*I))
3685 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3686 else
3687 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3688 }
3689 }
3690 }
3691
3692 // Update chain and glue.
3693 RetOps[0] = Chain;
3694 if (Glue.getNode())
3695 RetOps.push_back(Glue);
3696
3697 unsigned Opc = AMDGPUISD::ENDPGM;
3698 if (!IsWaveEnd)
3699 Opc = Info->isWholeWaveFunction() ? AMDGPUISD::WHOLE_WAVE_RETURN
3700 : IsShader ? AMDGPUISD::RETURN_TO_EPILOG
3702 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
3703}
3704
3706 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
3707 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3708 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
3709 SDValue ThisVal) const {
3710 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
3711
3712 // Assign locations to each value returned by this call.
3714 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3715 *DAG.getContext());
3716 CCInfo.AnalyzeCallResult(Ins, RetCC);
3717
3718 // Copy all of the result registers out of their specified physreg.
3719 for (CCValAssign VA : RVLocs) {
3720 SDValue Val;
3721
3722 if (VA.isRegLoc()) {
3723 Val =
3724 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
3725 Chain = Val.getValue(1);
3726 InGlue = Val.getValue(2);
3727 } else if (VA.isMemLoc()) {
3728 report_fatal_error("TODO: return values in memory");
3729 } else
3730 llvm_unreachable("unknown argument location type");
3731
3732 switch (VA.getLocInfo()) {
3733 case CCValAssign::Full:
3734 break;
3735 case CCValAssign::BCvt:
3736 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3737 break;
3738 case CCValAssign::ZExt:
3739 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3740 DAG.getValueType(VA.getValVT()));
3741 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3742 break;
3743 case CCValAssign::SExt:
3744 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3745 DAG.getValueType(VA.getValVT()));
3746 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3747 break;
3748 case CCValAssign::AExt:
3749 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3750 break;
3751 default:
3752 llvm_unreachable("Unknown loc info!");
3753 }
3754
3755 InVals.push_back(Val);
3756 }
3757
3758 return Chain;
3759}
3760
3761// Add code to pass special inputs required depending on used features separate
3762// from the explicit user arguments present in the IR.
3764 CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info,
3765 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
3766 SmallVectorImpl<SDValue> &MemOpChains, SDValue Chain) const {
3767 // If we don't have a call site, this was a call inserted by
3768 // legalization. These can never use special inputs.
3769 if (!CLI.CB)
3770 return;
3771
3772 SelectionDAG &DAG = CLI.DAG;
3773 const SDLoc &DL = CLI.DL;
3774 const Function &F = DAG.getMachineFunction().getFunction();
3775
3776 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3777 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
3778
3779 const AMDGPUFunctionArgInfo *CalleeArgInfo =
3781 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
3782 // DAG.getPass() returns nullptr when using new pass manager.
3783 // TODO: Use DAG.getMFAM() to access analysis result.
3784 if (DAG.getPass()) {
3785 auto &ArgUsageInfo =
3787 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3788 }
3789 }
3790
3791 // TODO: Unify with private memory register handling. This is complicated by
3792 // the fact that at least in kernels, the input argument is not necessarily
3793 // in the same location as the input.
3794 // clang-format off
3795 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
3796 std::array<StringLiteral, 2>> ImplicitAttrs[] = {
3797 {AMDGPUFunctionArgInfo::DISPATCH_PTR, {"amdgpu-no-dispatch-ptr", ""}},
3798 {AMDGPUFunctionArgInfo::QUEUE_PTR, {"amdgpu-no-queue-ptr", ""}},
3799 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, {"amdgpu-no-implicitarg-ptr", ""}},
3800 {AMDGPUFunctionArgInfo::DISPATCH_ID, {"amdgpu-no-dispatch-id", ""}},
3801 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, {"amdgpu-no-workgroup-id-x", "amdgpu-no-cluster-id-x"}},
3802 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, {"amdgpu-no-workgroup-id-y", "amdgpu-no-cluster-id-y"}},
3803 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, {"amdgpu-no-workgroup-id-z", "amdgpu-no-cluster-id-z"}},
3804 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID, {"amdgpu-no-lds-kernel-id", ""}},
3805 };
3806 // clang-format on
3807
3808 for (auto [InputID, Attrs] : ImplicitAttrs) {
3809 // If the callee does not use the attribute value, skip copying the value.
3810 if (all_of(Attrs, [&](StringRef Attr) {
3811 return Attr.empty() || CLI.CB->hasFnAttr(Attr);
3812 }))
3813 continue;
3814
3815 const auto [OutgoingArg, ArgRC, ArgTy] =
3816 CalleeArgInfo->getPreloadedValue(InputID);
3817 if (!OutgoingArg)
3818 continue;
3819
3820 const auto [IncomingArg, IncomingArgRC, Ty] =
3821 CallerArgInfo.getPreloadedValue(InputID);
3822 assert(IncomingArgRC == ArgRC);
3823
3824 // All special arguments are ints for now.
3825 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3826 SDValue InputReg;
3827
3828 if (IncomingArg) {
3829 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
3830 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
3831 // The implicit arg ptr is special because it doesn't have a corresponding
3832 // input for kernels, and is computed from the kernarg segment pointer.
3833 InputReg = getImplicitArgPtr(DAG, DL);
3834 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
3835 std::optional<uint32_t> Id =
3837 if (Id.has_value()) {
3838 InputReg = DAG.getConstant(*Id, DL, ArgVT);
3839 } else {
3840 InputReg = DAG.getPOISON(ArgVT);
3841 }
3842 } else {
3843 // We may have proven the input wasn't needed, although the ABI is
3844 // requiring it. We just need to allocate the register appropriately.
3845 InputReg = DAG.getPOISON(ArgVT);
3846 }
3847
3848 if (OutgoingArg->isRegister()) {
3849 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3850 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
3851 report_fatal_error("failed to allocate implicit input argument");
3852 } else {
3853 unsigned SpecialArgOffset =
3854 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
3855 SDValue ArgStore =
3856 storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset);
3857 MemOpChains.push_back(ArgStore);
3858 }
3859 }
3860
3861 // Pack workitem IDs into a single register or pass it as is if already
3862 // packed.
3863
3864 auto [OutgoingArg, ArgRC, Ty] =
3866 if (!OutgoingArg)
3867 std::tie(OutgoingArg, ArgRC, Ty) =
3869 if (!OutgoingArg)
3870 std::tie(OutgoingArg, ArgRC, Ty) =
3872 if (!OutgoingArg)
3873 return;
3874
3875 const ArgDescriptor *IncomingArgX = std::get<0>(
3877 const ArgDescriptor *IncomingArgY = std::get<0>(
3879 const ArgDescriptor *IncomingArgZ = std::get<0>(
3881
3882 SDValue InputReg;
3883 SDLoc SL;
3884
3885 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
3886 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
3887 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
3888
3889 // If incoming ids are not packed we need to pack them.
3890 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
3891 NeedWorkItemIDX) {
3892 if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
3893 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
3894 } else {
3895 InputReg = DAG.getConstant(0, DL, MVT::i32);
3896 }
3897 }
3898
3899 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
3900 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
3901 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
3902 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
3903 DAG.getShiftAmountConstant(10, MVT::i32, SL));
3904 InputReg = InputReg.getNode()
3905 ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y)
3906 : Y;
3907 }
3908
3909 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
3910 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
3911 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
3912 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
3913 DAG.getShiftAmountConstant(20, MVT::i32, SL));
3914 InputReg = InputReg.getNode()
3915 ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z)
3916 : Z;
3917 }
3918
3919 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3920 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3921 // We're in a situation where the outgoing function requires the workitem
3922 // ID, but the calling function does not have it (e.g a graphics function
3923 // calling a C calling convention function). This is illegal, but we need
3924 // to produce something.
3925 InputReg = DAG.getPOISON(MVT::i32);
3926 } else {
3927 // Workitem ids are already packed, any of present incoming arguments
3928 // will carry all required fields.
3929 ArgDescriptor IncomingArg =
3930 ArgDescriptor::createArg(IncomingArgX ? *IncomingArgX
3931 : IncomingArgY ? *IncomingArgY
3932 : *IncomingArgZ,
3933 ~0u);
3934 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
3935 }
3936 }
3937
3938 if (OutgoingArg->isRegister()) {
3939 if (InputReg)
3940 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3941
3942 CCInfo.AllocateReg(OutgoingArg->getRegister());
3943 } else {
3944 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
3945 if (InputReg) {
3946 SDValue ArgStore =
3947 storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset);
3948 MemOpChains.push_back(ArgStore);
3949 }
3950 }
3951}
3952
3954 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3956 const SmallVectorImpl<SDValue> &OutVals,
3957 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3958 if (AMDGPU::isChainCC(CalleeCC))
3959 return true;
3960
3961 if (!AMDGPU::mayTailCallThisCC(CalleeCC))
3962 return false;
3963
3964 // For a divergent call target, we need to do a waterfall loop over the
3965 // possible callees which precludes us from using a simple jump.
3966 if (Callee->isDivergent())
3967 return false;
3968
3970 const Function &CallerF = MF.getFunction();
3971 CallingConv::ID CallerCC = CallerF.getCallingConv();
3973 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3974
3975 // Kernels aren't callable, and don't have a live in return address so it
3976 // doesn't make sense to do a tail call with entry functions.
3977 if (!CallerPreserved)
3978 return false;
3979
3980 bool CCMatch = CallerCC == CalleeCC;
3981
3983 if (AMDGPU::canGuaranteeTCO(CalleeCC) && CCMatch)
3984 return true;
3985 return false;
3986 }
3987
3988 // TODO: Can we handle var args?
3989 if (IsVarArg)
3990 return false;
3991
3992 for (const Argument &Arg : CallerF.args()) {
3993 if (Arg.hasByValAttr())
3994 return false;
3995 }
3996
3997 LLVMContext &Ctx = *DAG.getContext();
3998
3999 // Check that the call results are passed in the same way.
4000 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
4001 CCAssignFnForCall(CalleeCC, IsVarArg),
4002 CCAssignFnForCall(CallerCC, IsVarArg)))
4003 return false;
4004
4005 // The callee has to preserve all registers the caller needs to preserve.
4006 if (!CCMatch) {
4007 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
4008 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
4009 return false;
4010 }
4011
4012 // Nothing more to check if the callee is taking no arguments.
4013 if (Outs.empty())
4014 return true;
4015
4017 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
4018
4019 // FIXME: We are not allocating special input registers, so we will be
4020 // deciding based on incorrect register assignments.
4021 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
4022
4023 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
4024 // If the stack arguments for this call do not fit into our own save area then
4025 // the call cannot be made tail.
4026 // TODO: Is this really necessary?
4027 if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
4028 return false;
4029
4030 for (const auto &[CCVA, ArgVal] : zip_equal(ArgLocs, OutVals)) {
4031 // FIXME: What about inreg arguments that end up passed in memory?
4032 if (!CCVA.isRegLoc())
4033 continue;
4034
4035 // If we are passing an argument in an SGPR, and the value is divergent,
4036 // this call requires a waterfall loop.
4037 if (ArgVal->isDivergent() && TRI->isSGPRPhysReg(CCVA.getLocReg())) {
4038 LLVM_DEBUG(
4039 dbgs() << "Cannot tail call due to divergent outgoing argument in "
4040 << printReg(CCVA.getLocReg(), TRI) << '\n');
4041 return false;
4042 }
4043 }
4044
4045 const MachineRegisterInfo &MRI = MF.getRegInfo();
4046 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
4047}
4048
4050 if (!CI->isTailCall())
4051 return false;
4052
4053 const Function *ParentFn = CI->getParent()->getParent();
4055 return false;
4056 return true;
4057}
4058
4059namespace {
4060// Chain calls have special arguments that we need to handle. These are
4061// tagging along at the end of the arguments list(s), after the SGPR and VGPR
4062// arguments (index 0 and 1 respectively).
4063enum ChainCallArgIdx {
4064 Exec = 2,
4065 Flags,
4066 NumVGPRs,
4067 FallbackExec,
4068 FallbackCallee
4069};
4070} // anonymous namespace
4071
4072// The wave scratch offset register is used as the global base pointer.
4074 SmallVectorImpl<SDValue> &InVals) const {
4075 CallingConv::ID CallConv = CLI.CallConv;
4076 bool IsChainCallConv = AMDGPU::isChainCC(CallConv);
4077
4078 SelectionDAG &DAG = CLI.DAG;
4079
4080 const SDLoc &DL = CLI.DL;
4081 SDValue Chain = CLI.Chain;
4082 SDValue Callee = CLI.Callee;
4083
4084 llvm::SmallVector<SDValue, 6> ChainCallSpecialArgs;
4085 bool UsesDynamicVGPRs = false;
4086 if (IsChainCallConv) {
4087 // The last arguments should be the value that we need to put in EXEC,
4088 // followed by the flags and any other arguments with special meanings.
4089 // Pop them out of CLI.Outs and CLI.OutVals before we do any processing so
4090 // we don't treat them like the "real" arguments.
4091 auto RequestedExecIt =
4092 llvm::find_if(CLI.Outs, [](const ISD::OutputArg &Arg) {
4093 return Arg.OrigArgIndex == 2;
4094 });
4095 assert(RequestedExecIt != CLI.Outs.end() && "No node for EXEC");
4096
4097 size_t SpecialArgsBeginIdx = RequestedExecIt - CLI.Outs.begin();
4098 CLI.OutVals.erase(CLI.OutVals.begin() + SpecialArgsBeginIdx,
4099 CLI.OutVals.end());
4100 CLI.Outs.erase(RequestedExecIt, CLI.Outs.end());
4101
4102 assert(CLI.Outs.back().OrigArgIndex < 2 &&
4103 "Haven't popped all the special args");
4104
4105 TargetLowering::ArgListEntry RequestedExecArg =
4106 CLI.Args[ChainCallArgIdx::Exec];
4107 if (!RequestedExecArg.Ty->isIntegerTy(Subtarget->getWavefrontSize()))
4108 return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC");
4109
4110 // Convert constants into TargetConstants, so they become immediate operands
4111 // instead of being selected into S_MOV.
4112 auto PushNodeOrTargetConstant = [&](TargetLowering::ArgListEntry Arg) {
4113 if (const auto *ArgNode = dyn_cast<ConstantSDNode>(Arg.Node)) {
4114 ChainCallSpecialArgs.push_back(DAG.getTargetConstant(
4115 ArgNode->getAPIntValue(), DL, ArgNode->getValueType(0)));
4116 } else
4117 ChainCallSpecialArgs.push_back(Arg.Node);
4118 };
4119
4120 PushNodeOrTargetConstant(RequestedExecArg);
4121
4122 // Process any other special arguments depending on the value of the flags.
4123 TargetLowering::ArgListEntry Flags = CLI.Args[ChainCallArgIdx::Flags];
4124
4125 const APInt &FlagsValue = cast<ConstantSDNode>(Flags.Node)->getAPIntValue();
4126 if (FlagsValue.isZero()) {
4127 if (CLI.Args.size() > ChainCallArgIdx::Flags + 1)
4128 return lowerUnhandledCall(CLI, InVals,
4129 "no additional args allowed if flags == 0");
4130 } else if (FlagsValue.isOneBitSet(0)) {
4131 if (CLI.Args.size() != ChainCallArgIdx::FallbackCallee + 1) {
4132 return lowerUnhandledCall(CLI, InVals, "expected 3 additional args");
4133 }
4134
4135 if (!Subtarget->isWave32()) {
4136 return lowerUnhandledCall(
4137 CLI, InVals, "dynamic VGPR mode is only supported for wave32");
4138 }
4139
4140 UsesDynamicVGPRs = true;
4141 std::for_each(CLI.Args.begin() + ChainCallArgIdx::NumVGPRs,
4142 CLI.Args.end(), PushNodeOrTargetConstant);
4143 }
4144 }
4145
4147 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
4149 bool &IsTailCall = CLI.IsTailCall;
4150 bool IsVarArg = CLI.IsVarArg;
4151 bool IsSibCall = false;
4153
4154 if (Callee.isUndef() || isNullConstant(Callee)) {
4155 if (!CLI.IsTailCall) {
4156 for (ISD::InputArg &Arg : CLI.Ins)
4157 InVals.push_back(DAG.getPOISON(Arg.VT));
4158 }
4159
4160 return Chain;
4161 }
4162
4163 if (IsVarArg) {
4164 return lowerUnhandledCall(CLI, InVals,
4165 "unsupported call to variadic function ");
4166 }
4167
4168 if (!CLI.CB)
4169 return lowerUnhandledCall(CLI, InVals, "unsupported libcall legalization");
4170
4171 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
4172 return lowerUnhandledCall(CLI, InVals,
4173 "unsupported required tail call to function ");
4174 }
4175
4176 if (IsTailCall) {
4177 IsTailCall = isEligibleForTailCallOptimization(Callee, CallConv, IsVarArg,
4178 Outs, OutVals, Ins, DAG);
4179 if (!IsTailCall &&
4180 ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) {
4181 report_fatal_error("failed to perform tail call elimination on a call "
4182 "site marked musttail or on llvm.amdgcn.cs.chain");
4183 }
4184
4185 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4186
4187 // A sibling call is one where we're under the usual C ABI and not planning
4188 // to change that but can still do a tail call:
4189 if (!TailCallOpt && IsTailCall)
4190 IsSibCall = true;
4191
4192 if (IsTailCall)
4193 ++NumTailCalls;
4194 }
4195
4198 SmallVector<SDValue, 8> MemOpChains;
4199
4200 // Analyze operands of the call, assigning locations to each operand.
4202 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
4203 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
4204
4205 if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv) &&
4207 // With a fixed ABI, allocate fixed registers before user arguments.
4208 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
4209 }
4210
4211 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
4212
4213 // Get a count of how many bytes are to be pushed on the stack.
4214 unsigned NumBytes = CCInfo.getStackSize();
4215
4216 if (IsSibCall) {
4217 // Since we're not changing the ABI to make this a tail call, the memory
4218 // operands are already available in the caller's incoming argument space.
4219 NumBytes = 0;
4220 }
4221
4222 // FPDiff is the byte offset of the call's argument area from the callee's.
4223 // Stores to callee stack arguments will be placed in FixedStackSlots offset
4224 // by this amount for a tail call. In a sibling call it must be 0 because the
4225 // caller will deallocate the entire stack and the callee still expects its
4226 // arguments to begin at SP+0. Completely unused for non-tail calls.
4227 int32_t FPDiff = 0;
4228 MachineFrameInfo &MFI = MF.getFrameInfo();
4229 auto *TRI = Subtarget->getRegisterInfo();
4230
4231 // Adjust the stack pointer for the new arguments...
4232 // These operations are automatically eliminated by the prolog/epilog pass
4233 if (!IsSibCall)
4234 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
4235
4236 if (!IsSibCall || IsChainCallConv) {
4237 if (!Subtarget->enableFlatScratch()) {
4238 SmallVector<SDValue, 4> CopyFromChains;
4239
4240 // In the HSA case, this should be an identity copy.
4241 SDValue ScratchRSrcReg =
4242 DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
4243 RegsToPass.emplace_back(IsChainCallConv
4244 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
4245 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
4246 ScratchRSrcReg);
4247 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
4248 Chain = DAG.getTokenFactor(DL, CopyFromChains);
4249 }
4250 }
4251
4252 const unsigned NumSpecialInputs = RegsToPass.size();
4253
4254 MVT PtrVT = MVT::i32;
4255
4256 // Walk the register/memloc assignments, inserting copies/loads.
4257 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4258 CCValAssign &VA = ArgLocs[i];
4259 SDValue Arg = OutVals[i];
4260
4261 // Promote the value if needed.
4262 switch (VA.getLocInfo()) {
4263 case CCValAssign::Full:
4264 break;
4265 case CCValAssign::BCvt:
4266 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
4267 break;
4268 case CCValAssign::ZExt:
4269 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4270 break;
4271 case CCValAssign::SExt:
4272 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
4273 break;
4274 case CCValAssign::AExt:
4275 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
4276 break;
4277 case CCValAssign::FPExt:
4278 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
4279 break;
4280 default:
4281 llvm_unreachable("Unknown loc info!");
4282 }
4283
4284 if (VA.isRegLoc()) {
4285 RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
4286 } else {
4287 assert(VA.isMemLoc());
4288
4289 SDValue DstAddr;
4290 MachinePointerInfo DstInfo;
4291
4292 unsigned LocMemOffset = VA.getLocMemOffset();
4293 int32_t Offset = LocMemOffset;
4294
4295 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
4296 MaybeAlign Alignment;
4297
4298 if (IsTailCall) {
4299 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4300 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize()
4301 : VA.getValVT().getStoreSize();
4302
4303 // FIXME: We can have better than the minimum byval required alignment.
4304 Alignment =
4305 Flags.isByVal()
4306 ? Flags.getNonZeroByValAlign()
4307 : commonAlignment(Subtarget->getStackAlignment(), Offset);
4308
4309 Offset = Offset + FPDiff;
4310 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
4311
4312 DstAddr = DAG.getFrameIndex(FI, PtrVT);
4313 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
4314
4315 // Make sure any stack arguments overlapping with where we're storing
4316 // are loaded before this eventual operation. Otherwise they'll be
4317 // clobbered.
4318
4319 // FIXME: Why is this really necessary? This seems to just result in a
4320 // lot of code to copy the stack and write them back to the same
4321 // locations, which are supposed to be immutable?
4322 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
4323 } else {
4324 // Stores to the argument stack area are relative to the stack pointer.
4325 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
4326 MVT::i32);
4327 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
4328 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
4329 Alignment =
4330 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
4331 }
4332
4333 if (Outs[i].Flags.isByVal()) {
4334 SDValue SizeNode =
4335 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
4336 SDValue Cpy =
4337 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
4338 Outs[i].Flags.getNonZeroByValAlign(),
4339 /*isVol = */ false, /*AlwaysInline = */ true,
4340 /*CI=*/nullptr, std::nullopt, DstInfo,
4342
4343 MemOpChains.push_back(Cpy);
4344 } else {
4345 SDValue Store =
4346 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
4347 MemOpChains.push_back(Store);
4348 }
4349 }
4350 }
4351
4352 if (!MemOpChains.empty())
4353 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
4354
4355 SDValue ReadFirstLaneID =
4356 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, DL, MVT::i32);
4357
4358 SDValue TokenGlue;
4359 if (CLI.ConvergenceControlToken) {
4360 TokenGlue = DAG.getNode(ISD::CONVERGENCECTRL_GLUE, DL, MVT::Glue,
4362 }
4363
4364 // Build a sequence of copy-to-reg nodes chained together with token chain
4365 // and flag operands which copy the outgoing args into the appropriate regs.
4366 SDValue InGlue;
4367
4368 unsigned ArgIdx = 0;
4369 for (auto [Reg, Val] : RegsToPass) {
4370 if (ArgIdx++ >= NumSpecialInputs &&
4371 (IsChainCallConv || !Val->isDivergent()) && TRI->isSGPRPhysReg(Reg)) {
4372 // For chain calls, the inreg arguments are required to be
4373 // uniform. Speculatively Insert a readfirstlane in case we cannot prove
4374 // they are uniform.
4375 //
4376 // For other calls, if an inreg arguments is known to be uniform,
4377 // speculatively insert a readfirstlane in case it is in a VGPR.
4378 //
4379 // FIXME: We need to execute this in a waterfall loop if it is a divergent
4380 // value, so let that continue to produce invalid code.
4381
4382 SmallVector<SDValue, 3> ReadfirstlaneArgs({ReadFirstLaneID, Val});
4383 if (TokenGlue)
4384 ReadfirstlaneArgs.push_back(TokenGlue);
4386 ReadfirstlaneArgs);
4387 }
4388
4389 Chain = DAG.getCopyToReg(Chain, DL, Reg, Val, InGlue);
4390 InGlue = Chain.getValue(1);
4391 }
4392
4393 // We don't usually want to end the call-sequence here because we would tidy
4394 // the frame up *after* the call, however in the ABI-changing tail-call case
4395 // we've carefully laid out the parameters so that when sp is reset they'll be
4396 // in the correct location.
4397 if (IsTailCall && !IsSibCall) {
4398 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
4399 InGlue = Chain.getValue(1);
4400 }
4401
4402 std::vector<SDValue> Ops({Chain});
4403
4404 // Add a redundant copy of the callee global which will not be legalized, as
4405 // we need direct access to the callee later.
4407 const GlobalValue *GV = GSD->getGlobal();
4408 Ops.push_back(Callee);
4409 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
4410 } else {
4411 if (IsTailCall) {
4412 // isEligibleForTailCallOptimization considered whether the call target is
4413 // divergent, but we may still end up with a uniform value in a VGPR.
4414 // Insert a readfirstlane just in case.
4415 SDValue ReadFirstLaneID =
4416 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, DL, MVT::i32);
4417
4418 SmallVector<SDValue, 3> ReadfirstlaneArgs({ReadFirstLaneID, Callee});
4419 if (TokenGlue)
4420 ReadfirstlaneArgs.push_back(TokenGlue); // Wire up convergence token.
4421 Callee = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Callee.getValueType(),
4422 ReadfirstlaneArgs);
4423 }
4424
4425 Ops.push_back(Callee);
4426 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
4427 }
4428
4429 if (IsTailCall) {
4430 // Each tail call may have to adjust the stack by a different amount, so
4431 // this information must travel along with the operation for eventual
4432 // consumption by emitEpilogue.
4433 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
4434 }
4435
4436 if (IsChainCallConv)
4437 llvm::append_range(Ops, ChainCallSpecialArgs);
4438
4439 // Add argument registers to the end of the list so that they are known live
4440 // into the call.
4441 for (auto &[Reg, Val] : RegsToPass)
4442 Ops.push_back(DAG.getRegister(Reg, Val.getValueType()));
4443
4444 // Add a register mask operand representing the call-preserved registers.
4445 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
4446 assert(Mask && "Missing call preserved mask for calling convention");
4447 Ops.push_back(DAG.getRegisterMask(Mask));
4448
4449 if (SDValue Token = CLI.ConvergenceControlToken) {
4451 GlueOps.push_back(Token);
4452 if (InGlue)
4453 GlueOps.push_back(InGlue);
4454
4455 InGlue = SDValue(DAG.getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, DL,
4456 MVT::Glue, GlueOps),
4457 0);
4458 }
4459
4460 if (InGlue)
4461 Ops.push_back(InGlue);
4462
4463 // If we're doing a tall call, use a TC_RETURN here rather than an
4464 // actual call instruction.
4465 if (IsTailCall) {
4466 MFI.setHasTailCall();
4467 unsigned OPC = AMDGPUISD::TC_RETURN;
4468 switch (CallConv) {
4471 break;
4474 OPC = UsesDynamicVGPRs ? AMDGPUISD::TC_RETURN_CHAIN_DVGPR
4476 break;
4477 }
4478
4479 // If the caller is a whole wave function, we need to use a special opcode
4480 // so we can patch up EXEC.
4481 if (Info->isWholeWaveFunction())
4483
4484 return DAG.getNode(OPC, DL, MVT::Other, Ops);
4485 }
4486
4487 // Returns a chain and a flag for retval copy to use.
4488 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, {MVT::Other, MVT::Glue}, Ops);
4489 Chain = Call.getValue(0);
4490 InGlue = Call.getValue(1);
4491
4492 uint64_t CalleePopBytes = NumBytes;
4493 Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL);
4494 if (!Ins.empty())
4495 InGlue = Chain.getValue(1);
4496
4497 // Handle result values, copying them out of physregs into vregs that we
4498 // return.
4499 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
4500 InVals, /*IsThisReturn=*/false, SDValue());
4501}
4502
4503// This is similar to the default implementation in ExpandDYNAMIC_STACKALLOC,
4504// except for:
4505// 1. Stack growth direction(default: downwards, AMDGPU: upwards), and
4506// 2. Scale size where, scale = wave-reduction(alloca-size) * wave-size
4508 SelectionDAG &DAG) const {
4509 const MachineFunction &MF = DAG.getMachineFunction();
4511
4512 SDLoc dl(Op);
4513 EVT VT = Op.getValueType();
4514 SDValue Chain = Op.getOperand(0);
4515 Register SPReg = Info->getStackPtrOffsetReg();
4516
4517 // Chain the dynamic stack allocation so that it doesn't modify the stack
4518 // pointer when other instructions are using the stack.
4519 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
4520
4521 SDValue Size = Op.getOperand(1);
4522 SDValue BaseAddr = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
4523 Align Alignment = cast<ConstantSDNode>(Op.getOperand(2))->getAlignValue();
4524
4525 const TargetFrameLowering *TFL = Subtarget->getFrameLowering();
4527 "Stack grows upwards for AMDGPU");
4528
4529 Chain = BaseAddr.getValue(1);
4530 Align StackAlign = TFL->getStackAlign();
4531 if (Alignment > StackAlign) {
4532 uint64_t ScaledAlignment = Alignment.value()
4533 << Subtarget->getWavefrontSizeLog2();
4534 uint64_t StackAlignMask = ScaledAlignment - 1;
4535 SDValue TmpAddr = DAG.getNode(ISD::ADD, dl, VT, BaseAddr,
4536 DAG.getConstant(StackAlignMask, dl, VT));
4537 BaseAddr = DAG.getNode(ISD::AND, dl, VT, TmpAddr,
4538 DAG.getSignedConstant(-ScaledAlignment, dl, VT));
4539 }
4540
4541 assert(Size.getValueType() == MVT::i32 && "Size must be 32-bit");
4542 SDValue NewSP;
4544 // For constant sized alloca, scale alloca size by wave-size
4545 SDValue ScaledSize = DAG.getNode(
4546 ISD::SHL, dl, VT, Size,
4547 DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4548 NewSP = DAG.getNode(ISD::ADD, dl, VT, BaseAddr, ScaledSize); // Value
4549 } else {
4550 // For dynamic sized alloca, perform wave-wide reduction to get max of
4551 // alloca size(divergent) and then scale it by wave-size
4552 SDValue WaveReduction =
4553 DAG.getTargetConstant(Intrinsic::amdgcn_wave_reduce_umax, dl, MVT::i32);
4554 Size = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, WaveReduction,
4555 Size, DAG.getConstant(0, dl, MVT::i32));
4556 SDValue ScaledSize = DAG.getNode(
4557 ISD::SHL, dl, VT, Size,
4558 DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4559 NewSP =
4560 DAG.getNode(ISD::ADD, dl, VT, BaseAddr, ScaledSize); // Value in vgpr.
4561 SDValue ReadFirstLaneID =
4562 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, dl, MVT::i32);
4563 NewSP = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, ReadFirstLaneID,
4564 NewSP);
4565 }
4566
4567 Chain = DAG.getCopyToReg(Chain, dl, SPReg, NewSP); // Output chain
4568 SDValue CallSeqEnd = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
4569
4570 return DAG.getMergeValues({BaseAddr, CallSeqEnd}, dl);
4571}
4572
4574 if (Op.getValueType() != MVT::i32)
4575 return Op; // Defer to cannot select error.
4576
4578 SDLoc SL(Op);
4579
4580 SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32);
4581
4582 // Convert from wave uniform to swizzled vector address. This should protect
4583 // from any edge cases where the stacksave result isn't directly used with
4584 // stackrestore.
4585 SDValue VectorAddress =
4586 DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP);
4587 return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL);
4588}
4589
4591 SelectionDAG &DAG) const {
4592 SDLoc SL(Op);
4593 assert(Op.getValueType() == MVT::i32);
4594
4595 uint32_t BothRoundHwReg =
4597 SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
4598
4599 SDValue IntrinID =
4600 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
4601 SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(),
4602 Op.getOperand(0), IntrinID, GetRoundBothImm);
4603
4604 // There are two rounding modes, one for f32 and one for f64/f16. We only
4605 // report in the standard value range if both are the same.
4606 //
4607 // The raw values also differ from the expected FLT_ROUNDS values. Nearest
4608 // ties away from zero is not supported, and the other values are rotated by
4609 // 1.
4610 //
4611 // If the two rounding modes are not the same, report a target defined value.
4612
4613 // Mode register rounding mode fields:
4614 //
4615 // [1:0] Single-precision round mode.
4616 // [3:2] Double/Half-precision round mode.
4617 //
4618 // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.
4619 //
4620 // Hardware Spec
4621 // Toward-0 3 0
4622 // Nearest Even 0 1
4623 // +Inf 1 2
4624 // -Inf 2 3
4625 // NearestAway0 N/A 4
4626 //
4627 // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit
4628 // table we can index by the raw hardware mode.
4629 //
4630 // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf
4631
4632 SDValue BitTable =
4634
4635 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4636 SDValue RoundModeTimesNumBits =
4637 DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two);
4638
4639 // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we
4640 // knew only one mode was demanded.
4641 SDValue TableValue =
4642 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
4643 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
4644
4645 SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32);
4646 SDValue TableEntry =
4647 DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask);
4648
4649 // There's a gap in the 4-bit encoded table and actual enum values, so offset
4650 // if it's an extended value.
4651 SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4652 SDValue IsStandardValue =
4653 DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT);
4654 SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four);
4655 SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue,
4656 TableEntry, EnumOffset);
4657
4658 return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL);
4659}
4660
4662 SelectionDAG &DAG) const {
4663 SDLoc SL(Op);
4664
4665 SDValue NewMode = Op.getOperand(1);
4666 assert(NewMode.getValueType() == MVT::i32);
4667
4668 // Index a table of 4-bit entries mapping from the C FLT_ROUNDS values to the
4669 // hardware MODE.fp_round values.
4670 if (auto *ConstMode = dyn_cast<ConstantSDNode>(NewMode)) {
4671 uint32_t ClampedVal = std::min(
4672 static_cast<uint32_t>(ConstMode->getZExtValue()),
4674 NewMode = DAG.getConstant(
4675 AMDGPU::decodeFltRoundToHWConversionTable(ClampedVal), SL, MVT::i32);
4676 } else {
4677 // If we know the input can only be one of the supported standard modes in
4678 // the range 0-3, we can use a simplified mapping to hardware values.
4679 KnownBits KB = DAG.computeKnownBits(NewMode);
4680 const bool UseReducedTable = KB.countMinLeadingZeros() >= 30;
4681 // The supported standard values are 0-3. The extended values start at 8. We
4682 // need to offset by 4 if the value is in the extended range.
4683
4684 if (UseReducedTable) {
4685 // Truncate to the low 32-bits.
4686 SDValue BitTable = DAG.getConstant(
4687 AMDGPU::FltRoundToHWConversionTable & 0xffff, SL, MVT::i32);
4688
4689 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4690 SDValue RoundModeTimesNumBits =
4691 DAG.getNode(ISD::SHL, SL, MVT::i32, NewMode, Two);
4692
4693 NewMode =
4694 DAG.getNode(ISD::SRL, SL, MVT::i32, BitTable, RoundModeTimesNumBits);
4695
4696 // TODO: SimplifyDemandedBits on the setreg source here can likely reduce
4697 // the table extracted bits into inline immediates.
4698 } else {
4699 // table_index = umin(value, value - 4)
4700 // MODE.fp_round = (bit_table >> (table_index << 2)) & 0xf
4701 SDValue BitTable =
4703
4704 SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4705 SDValue OffsetEnum = DAG.getNode(ISD::SUB, SL, MVT::i32, NewMode, Four);
4706 SDValue IndexVal =
4707 DAG.getNode(ISD::UMIN, SL, MVT::i32, NewMode, OffsetEnum);
4708
4709 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4710 SDValue RoundModeTimesNumBits =
4711 DAG.getNode(ISD::SHL, SL, MVT::i32, IndexVal, Two);
4712
4713 SDValue TableValue =
4714 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
4715 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
4716
4717 // No need to mask out the high bits since the setreg will ignore them
4718 // anyway.
4719 NewMode = TruncTable;
4720 }
4721
4722 // Insert a readfirstlane in case the value is a VGPR. We could do this
4723 // earlier and keep more operations scalar, but that interferes with
4724 // combining the source.
4725 SDValue ReadFirstLaneID =
4726 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32);
4727 NewMode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4728 ReadFirstLaneID, NewMode);
4729 }
4730
4731 // N.B. The setreg will be later folded into s_round_mode on supported
4732 // targets.
4733 SDValue IntrinID =
4734 DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32);
4735 uint32_t BothRoundHwReg =
4737 SDValue RoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
4738
4739 SDValue SetReg =
4740 DAG.getNode(ISD::INTRINSIC_VOID, SL, Op->getVTList(), Op.getOperand(0),
4741 IntrinID, RoundBothImm, NewMode);
4742
4743 return SetReg;
4744}
4745
4747 if (Op->isDivergent() &&
4748 (!Subtarget->hasVmemPrefInsts() || !Op.getConstantOperandVal(4)))
4749 // Cannot do I$ prefetch with divergent pointer.
4750 return SDValue();
4751
4752 switch (cast<MemSDNode>(Op)->getAddressSpace()) {
4756 break;
4758 if (Subtarget->hasSafeSmemPrefetch())
4759 break;
4760 [[fallthrough]];
4761 default:
4762 return SDValue();
4763 }
4764
4765 // I$ prefetch
4766 if (!Subtarget->hasSafeSmemPrefetch() && !Op.getConstantOperandVal(4))
4767 return SDValue();
4768
4769 return Op;
4770}
4771
4772// Work around DAG legality rules only based on the result type.
4774 bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND;
4775 SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
4776 EVT SrcVT = Src.getValueType();
4777
4778 if (SrcVT.getScalarType() != MVT::bf16)
4779 return Op;
4780
4781 SDLoc SL(Op);
4782 SDValue BitCast =
4783 DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src);
4784
4785 EVT DstVT = Op.getValueType();
4786 if (IsStrict)
4787 llvm_unreachable("Need STRICT_BF16_TO_FP");
4788
4789 return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
4790}
4791
4793 SDLoc SL(Op);
4794 if (Op.getValueType() != MVT::i64)
4795 return Op;
4796
4797 uint32_t ModeHwReg =
4799 SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
4800 uint32_t TrapHwReg =
4802 SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
4803
4804 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::Other);
4805 SDValue IntrinID =
4806 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
4807 SDValue GetModeReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
4808 Op.getOperand(0), IntrinID, ModeHwRegImm);
4809 SDValue GetTrapReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
4810 Op.getOperand(0), IntrinID, TrapHwRegImm);
4811 SDValue TokenReg =
4812 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, GetModeReg.getValue(1),
4813 GetTrapReg.getValue(1));
4814
4815 SDValue CvtPtr =
4816 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, GetModeReg, GetTrapReg);
4817 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
4818
4819 return DAG.getMergeValues({Result, TokenReg}, SL);
4820}
4821
4823 SDLoc SL(Op);
4824 if (Op.getOperand(1).getValueType() != MVT::i64)
4825 return Op;
4826
4827 SDValue Input = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op.getOperand(1));
4828 SDValue NewModeReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
4829 DAG.getConstant(0, SL, MVT::i32));
4830 SDValue NewTrapReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
4831 DAG.getConstant(1, SL, MVT::i32));
4832
4833 SDValue ReadFirstLaneID =
4834 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32);
4835 NewModeReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4836 ReadFirstLaneID, NewModeReg);
4837 NewTrapReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4838 ReadFirstLaneID, NewTrapReg);
4839
4840 unsigned ModeHwReg =
4842 SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
4843 unsigned TrapHwReg =
4845 SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
4846
4847 SDValue IntrinID =
4848 DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32);
4849 SDValue SetModeReg =
4850 DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
4851 IntrinID, ModeHwRegImm, NewModeReg);
4852 SDValue SetTrapReg =
4853 DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
4854 IntrinID, TrapHwRegImm, NewTrapReg);
4855 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SetTrapReg, SetModeReg);
4856}
4857
4859 const MachineFunction &MF) const {
4860 const Function &Fn = MF.getFunction();
4861
4863 .Case("m0", AMDGPU::M0)
4864 .Case("exec", AMDGPU::EXEC)
4865 .Case("exec_lo", AMDGPU::EXEC_LO)
4866 .Case("exec_hi", AMDGPU::EXEC_HI)
4867 .Case("flat_scratch", AMDGPU::FLAT_SCR)
4868 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4869 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4870 .Default(Register());
4871 if (!Reg)
4872 return Reg;
4873
4874 if (!Subtarget->hasFlatScrRegister() &&
4875 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
4876 Fn.getContext().emitError(Twine("invalid register \"" + StringRef(RegName) +
4877 "\" for subtarget."));
4878 }
4879
4880 switch (Reg) {
4881 case AMDGPU::M0:
4882 case AMDGPU::EXEC_LO:
4883 case AMDGPU::EXEC_HI:
4884 case AMDGPU::FLAT_SCR_LO:
4885 case AMDGPU::FLAT_SCR_HI:
4886 if (VT.getSizeInBits() == 32)
4887 return Reg;
4888 break;
4889 case AMDGPU::EXEC:
4890 case AMDGPU::FLAT_SCR:
4891 if (VT.getSizeInBits() == 64)
4892 return Reg;
4893 break;
4894 default:
4895 llvm_unreachable("missing register type checking");
4896 }
4897
4899 Twine("invalid type for register \"" + StringRef(RegName) + "\"."));
4900}
4901
4902// If kill is not the last instruction, split the block so kill is always a
4903// proper terminator.
4906 MachineBasicBlock *BB) const {
4907 MachineBasicBlock *SplitBB = BB->splitAt(MI, /*UpdateLiveIns=*/true);
4909 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
4910 return SplitBB;
4911}
4912
4913// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
4914// \p MI will be the only instruction in the loop body block. Otherwise, it will
4915// be the first instruction in the remainder block.
4916//
4917/// \returns { LoopBody, Remainder }
4918static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4920 MachineFunction *MF = MBB.getParent();
4922
4923 // To insert the loop we need to split the block. Move everything after this
4924 // point to a new block, and insert a new empty block between the two.
4926 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
4928 ++MBBI;
4929
4930 MF->insert(MBBI, LoopBB);
4931 MF->insert(MBBI, RemainderBB);
4932
4933 LoopBB->addSuccessor(LoopBB);
4934 LoopBB->addSuccessor(RemainderBB);
4935
4936 // Move the rest of the block into a new block.
4937 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
4938
4939 if (InstInLoop) {
4940 auto Next = std::next(I);
4941
4942 // Move instruction to loop body.
4943 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
4944
4945 // Move the rest of the block.
4946 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
4947 } else {
4948 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
4949 }
4950
4951 MBB.addSuccessor(LoopBB);
4952
4953 return std::pair(LoopBB, RemainderBB);
4954}
4955
4956/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
4958 MachineBasicBlock *MBB = MI.getParent();
4960 auto I = MI.getIterator();
4961 auto E = std::next(I);
4962
4963 // clang-format off
4964 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
4965 .addImm(0);
4966 // clang-format on
4967
4968 MIBundleBuilder Bundler(*MBB, I, E);
4969 finalizeBundle(*MBB, Bundler.begin());
4970}
4971
4974 MachineBasicBlock *BB) const {
4975 const DebugLoc &DL = MI.getDebugLoc();
4976
4978
4980
4981 // Apparently kill flags are only valid if the def is in the same block?
4982 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
4983 Src->setIsKill(false);
4984
4985 auto [LoopBB, RemainderBB] = splitBlockForLoop(MI, *BB, true);
4986
4987 MachineBasicBlock::iterator I = LoopBB->end();
4988
4989 const unsigned EncodedReg = AMDGPU::Hwreg::HwregEncoding::encode(
4991
4992 // Clear TRAP_STS.MEM_VIOL
4993 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
4994 .addImm(0)
4995 .addImm(EncodedReg);
4996
4998
4999 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5000
5001 // Load and check TRAP_STS.MEM_VIOL
5002 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
5003 .addImm(EncodedReg);
5004
5005 // FIXME: Do we need to use an isel pseudo that may clobber scc?
5006 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
5007 .addReg(Reg, RegState::Kill)
5008 .addImm(0);
5009 // clang-format off
5010 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
5011 .addMBB(LoopBB);
5012 // clang-format on
5013
5014 return RemainderBB;
5015}
5016
5017// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
5018// wavefront. If the value is uniform and just happens to be in a VGPR, this
5019// will only do one iteration. In the worst case, this will loop 64 times.
5020//
5021// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
5024 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
5025 const DebugLoc &DL, const MachineOperand &Idx,
5026 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
5027 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
5028 Register &SGPRIdxReg) {
5029
5030 MachineFunction *MF = OrigBB.getParent();
5031 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5032 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5035
5036 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
5037 Register PhiExec = MRI.createVirtualRegister(BoolRC);
5038 Register NewExec = MRI.createVirtualRegister(BoolRC);
5039 Register CurrentIdxReg =
5040 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5041 Register CondReg = MRI.createVirtualRegister(BoolRC);
5042
5043 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
5044 .addReg(InitReg)
5045 .addMBB(&OrigBB)
5046 .addReg(ResultReg)
5047 .addMBB(&LoopBB);
5048
5049 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
5050 .addReg(InitSaveExecReg)
5051 .addMBB(&OrigBB)
5052 .addReg(NewExec)
5053 .addMBB(&LoopBB);
5054
5055 // Read the next variant <- also loop target.
5056 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
5057 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
5058
5059 // Compare the just read M0 value to all possible Idx values.
5060 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
5061 .addReg(CurrentIdxReg)
5062 .addReg(Idx.getReg(), 0, Idx.getSubReg());
5063
5064 // Update EXEC, save the original EXEC value to VCC.
5065 BuildMI(LoopBB, I, DL, TII->get(LMC.AndSaveExecOpc), NewExec)
5066 .addReg(CondReg, RegState::Kill);
5067
5068 MRI.setSimpleHint(NewExec, CondReg);
5069
5070 if (UseGPRIdxMode) {
5071 if (Offset == 0) {
5072 SGPRIdxReg = CurrentIdxReg;
5073 } else {
5074 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
5075 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
5076 .addReg(CurrentIdxReg, RegState::Kill)
5077 .addImm(Offset);
5078 }
5079 } else {
5080 // Move index from VCC into M0
5081 if (Offset == 0) {
5082 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
5083 .addReg(CurrentIdxReg, RegState::Kill);
5084 } else {
5085 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
5086 .addReg(CurrentIdxReg, RegState::Kill)
5087 .addImm(Offset);
5088 }
5089 }
5090
5091 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
5092 MachineInstr *InsertPt =
5093 BuildMI(LoopBB, I, DL, TII->get(LMC.XorTermOpc), LMC.ExecReg)
5094 .addReg(LMC.ExecReg)
5095 .addReg(NewExec);
5096
5097 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
5098 // s_cbranch_scc0?
5099
5100 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
5101 // clang-format off
5102 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
5103 .addMBB(&LoopBB);
5104 // clang-format on
5105
5106 return InsertPt->getIterator();
5107}
5108
5109// This has slightly sub-optimal regalloc when the source vector is killed by
5110// the read. The register allocator does not understand that the kill is
5111// per-workitem, so is kept alive for the whole loop so we end up not re-using a
5112// subregister from it, using 1 more VGPR than necessary. This was saved when
5113// this was expanded after register allocation.
5116 unsigned InitResultReg, unsigned PhiReg, int Offset,
5117 bool UseGPRIdxMode, Register &SGPRIdxReg) {
5118 MachineFunction *MF = MBB.getParent();
5119 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5120 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5122 const DebugLoc &DL = MI.getDebugLoc();
5124
5125 const auto *BoolXExecRC = TRI->getWaveMaskRegClass();
5126 Register DstReg = MI.getOperand(0).getReg();
5127 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
5128 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
5130
5131 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
5132
5133 // Save the EXEC mask
5134 // clang-format off
5135 BuildMI(MBB, I, DL, TII->get(LMC.MovOpc), SaveExec)
5136 .addReg(LMC.ExecReg);
5137 // clang-format on
5138
5139 auto [LoopBB, RemainderBB] = splitBlockForLoop(MI, MBB, false);
5140
5141 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
5142
5143 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
5144 InitResultReg, DstReg, PhiReg, TmpExec,
5145 Offset, UseGPRIdxMode, SGPRIdxReg);
5146
5147 MachineBasicBlock *LandingPad = MF->CreateMachineBasicBlock();
5149 ++MBBI;
5150 MF->insert(MBBI, LandingPad);
5151 LoopBB->removeSuccessor(RemainderBB);
5152 LandingPad->addSuccessor(RemainderBB);
5153 LoopBB->addSuccessor(LandingPad);
5154 MachineBasicBlock::iterator First = LandingPad->begin();
5155 // clang-format off
5156 BuildMI(*LandingPad, First, DL, TII->get(LMC.MovOpc), LMC.ExecReg)
5157 .addReg(SaveExec);
5158 // clang-format on
5159
5160 return InsPt;
5161}
5162
5163// Returns subreg index, offset
5164static std::pair<unsigned, int>
5166 const TargetRegisterClass *SuperRC, unsigned VecReg,
5167 int Offset) {
5168 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
5169
5170 // Skip out of bounds offsets, or else we would end up using an undefined
5171 // register.
5172 if (Offset >= NumElts || Offset < 0)
5173 return std::pair(AMDGPU::sub0, Offset);
5174
5175 return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
5176}
5177
5180 int Offset) {
5181 MachineBasicBlock *MBB = MI.getParent();
5182 const DebugLoc &DL = MI.getDebugLoc();
5184
5185 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
5186
5187 assert(Idx->getReg() != AMDGPU::NoRegister);
5188
5189 if (Offset == 0) {
5190 // clang-format off
5191 BuildMI(*MBB, I, DL, TII->get(AMDGPU::COPY), AMDGPU::M0)
5192 .add(*Idx);
5193 // clang-format on
5194 } else {
5195 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
5196 .add(*Idx)
5197 .addImm(Offset);
5198 }
5199}
5200
5203 int Offset) {
5204 MachineBasicBlock *MBB = MI.getParent();
5205 const DebugLoc &DL = MI.getDebugLoc();
5207
5208 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
5209
5210 if (Offset == 0)
5211 return Idx->getReg();
5212
5213 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5214 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
5215 .add(*Idx)
5216 .addImm(Offset);
5217 return Tmp;
5218}
5219
5222 const GCNSubtarget &ST) {
5223 const SIInstrInfo *TII = ST.getInstrInfo();
5224 const SIRegisterInfo &TRI = TII->getRegisterInfo();
5225 MachineFunction *MF = MBB.getParent();
5227
5228 Register Dst = MI.getOperand(0).getReg();
5229 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
5230 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
5231 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
5232
5233 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
5234 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
5235
5236 unsigned SubReg;
5237 std::tie(SubReg, Offset) =
5238 computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
5239
5240 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5241
5242 // Check for a SGPR index.
5243 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5245 const DebugLoc &DL = MI.getDebugLoc();
5246
5247 if (UseGPRIdxMode) {
5248 // TODO: Look at the uses to avoid the copy. This may require rescheduling
5249 // to avoid interfering with other uses, so probably requires a new
5250 // optimization pass.
5252
5253 const MCInstrDesc &GPRIDXDesc =
5254 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
5255 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
5256 .addReg(SrcReg)
5257 .addReg(Idx)
5258 .addImm(SubReg);
5259 } else {
5261
5262 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
5263 .addReg(SrcReg, 0, SubReg)
5264 .addReg(SrcReg, RegState::Implicit);
5265 }
5266
5267 MI.eraseFromParent();
5268
5269 return &MBB;
5270 }
5271
5272 // Control flow needs to be inserted if indexing with a VGPR.
5273 const DebugLoc &DL = MI.getDebugLoc();
5275
5276 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5277 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5278
5279 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
5280
5281 Register SGPRIdxReg;
5282 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
5283 UseGPRIdxMode, SGPRIdxReg);
5284
5285 MachineBasicBlock *LoopBB = InsPt->getParent();
5286
5287 if (UseGPRIdxMode) {
5288 const MCInstrDesc &GPRIDXDesc =
5289 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
5290
5291 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
5292 .addReg(SrcReg)
5293 .addReg(SGPRIdxReg)
5294 .addImm(SubReg);
5295 } else {
5296 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
5297 .addReg(SrcReg, 0, SubReg)
5298 .addReg(SrcReg, RegState::Implicit);
5299 }
5300
5301 MI.eraseFromParent();
5302
5303 return LoopBB;
5304}
5305
5308 const GCNSubtarget &ST) {
5309 const SIInstrInfo *TII = ST.getInstrInfo();
5310 const SIRegisterInfo &TRI = TII->getRegisterInfo();
5311 MachineFunction *MF = MBB.getParent();
5313
5314 Register Dst = MI.getOperand(0).getReg();
5315 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
5316 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
5317 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
5318 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
5319 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
5320 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
5321
5322 // This can be an immediate, but will be folded later.
5323 assert(Val->getReg());
5324
5325 unsigned SubReg;
5326 std::tie(SubReg, Offset) =
5327 computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset);
5328 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5329
5330 if (Idx->getReg() == AMDGPU::NoRegister) {
5332 const DebugLoc &DL = MI.getDebugLoc();
5333
5334 assert(Offset == 0);
5335
5336 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
5337 .add(*SrcVec)
5338 .add(*Val)
5339 .addImm(SubReg);
5340
5341 MI.eraseFromParent();
5342 return &MBB;
5343 }
5344
5345 // Check for a SGPR index.
5346 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5348 const DebugLoc &DL = MI.getDebugLoc();
5349
5350 if (UseGPRIdxMode) {
5352
5353 const MCInstrDesc &GPRIDXDesc =
5354 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
5355 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
5356 .addReg(SrcVec->getReg())
5357 .add(*Val)
5358 .addReg(Idx)
5359 .addImm(SubReg);
5360 } else {
5362
5363 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
5364 TRI.getRegSizeInBits(*VecRC), 32, false);
5365 BuildMI(MBB, I, DL, MovRelDesc, Dst)
5366 .addReg(SrcVec->getReg())
5367 .add(*Val)
5368 .addImm(SubReg);
5369 }
5370 MI.eraseFromParent();
5371 return &MBB;
5372 }
5373
5374 // Control flow needs to be inserted if indexing with a VGPR.
5375 if (Val->isReg())
5376 MRI.clearKillFlags(Val->getReg());
5377
5378 const DebugLoc &DL = MI.getDebugLoc();
5379
5380 Register PhiReg = MRI.createVirtualRegister(VecRC);
5381
5382 Register SGPRIdxReg;
5383 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
5384 UseGPRIdxMode, SGPRIdxReg);
5385 MachineBasicBlock *LoopBB = InsPt->getParent();
5386
5387 if (UseGPRIdxMode) {
5388 const MCInstrDesc &GPRIDXDesc =
5389 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
5390
5391 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
5392 .addReg(PhiReg)
5393 .add(*Val)
5394 .addReg(SGPRIdxReg)
5395 .addImm(SubReg);
5396 } else {
5397 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
5398 TRI.getRegSizeInBits(*VecRC), 32, false);
5399 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
5400 .addReg(PhiReg)
5401 .add(*Val)
5402 .addImm(SubReg);
5403 }
5404
5405 MI.eraseFromParent();
5406 return LoopBB;
5407}
5408
5410 MachineBasicBlock *BB) {
5411 // For targets older than GFX12, we emit a sequence of 32-bit operations.
5412 // For GFX12, we emit s_add_u64 and s_sub_u64.
5413 MachineFunction *MF = BB->getParent();
5414 const SIInstrInfo *TII = MF->getSubtarget<GCNSubtarget>().getInstrInfo();
5415 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5417 const DebugLoc &DL = MI.getDebugLoc();
5418 MachineOperand &Dest = MI.getOperand(0);
5419 MachineOperand &Src0 = MI.getOperand(1);
5420 MachineOperand &Src1 = MI.getOperand(2);
5421 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
5422 if (ST.hasScalarAddSub64()) {
5423 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
5424 // clang-format off
5425 BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg())
5426 .add(Src0)
5427 .add(Src1);
5428 // clang-format on
5429 } else {
5430 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5431 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
5432
5433 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5434 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5435
5436 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
5437 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5438 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
5439 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5440
5441 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
5442 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5443 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
5444 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5445
5446 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
5447 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
5448 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
5449 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
5450 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
5451 .addReg(DestSub0)
5452 .addImm(AMDGPU::sub0)
5453 .addReg(DestSub1)
5454 .addImm(AMDGPU::sub1);
5455 }
5456 MI.eraseFromParent();
5457 return BB;
5458}
5459
5461 switch (Opc) {
5462 case AMDGPU::S_MIN_U32:
5463 return std::numeric_limits<uint32_t>::max();
5464 case AMDGPU::S_MIN_I32:
5465 return std::numeric_limits<int32_t>::max();
5466 case AMDGPU::S_MAX_U32:
5467 return std::numeric_limits<uint32_t>::min();
5468 case AMDGPU::S_MAX_I32:
5469 return std::numeric_limits<int32_t>::min();
5470 case AMDGPU::S_ADD_I32:
5471 case AMDGPU::S_SUB_I32:
5472 case AMDGPU::S_OR_B32:
5473 case AMDGPU::S_XOR_B32:
5474 return std::numeric_limits<uint32_t>::min();
5475 case AMDGPU::S_AND_B32:
5476 return std::numeric_limits<uint32_t>::max();
5477 default:
5479 "Unexpected opcode in getIdentityValueFor32BitWaveReduction");
5480 }
5481}
5482
5484 switch (Opc) {
5485 case AMDGPU::V_CMP_LT_U64_e64: // umin.u64
5486 return std::numeric_limits<uint64_t>::max();
5487 case AMDGPU::V_CMP_LT_I64_e64: // min.i64
5488 return std::numeric_limits<int64_t>::max();
5489 case AMDGPU::V_CMP_GT_U64_e64: // umax.u64
5490 return std::numeric_limits<uint64_t>::min();
5491 case AMDGPU::V_CMP_GT_I64_e64: // max.i64
5492 return std::numeric_limits<int64_t>::min();
5493 case AMDGPU::S_ADD_U64_PSEUDO:
5494 case AMDGPU::S_SUB_U64_PSEUDO:
5495 case AMDGPU::S_OR_B64:
5496 case AMDGPU::S_XOR_B64:
5497 return std::numeric_limits<uint64_t>::min();
5498 case AMDGPU::S_AND_B64:
5499 return std::numeric_limits<uint64_t>::max();
5500 default:
5502 "Unexpected opcode in getIdentityValueFor64BitWaveReduction");
5503 }
5504}
5505
5506static bool is32bitWaveReduceOperation(unsigned Opc) {
5507 return Opc == AMDGPU::S_MIN_U32 || Opc == AMDGPU::S_MIN_I32 ||
5508 Opc == AMDGPU::S_MAX_U32 || Opc == AMDGPU::S_MAX_I32 ||
5509 Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32 ||
5510 Opc == AMDGPU::S_AND_B32 || Opc == AMDGPU::S_OR_B32 ||
5511 Opc == AMDGPU::S_XOR_B32;
5512}
5513
5516 const GCNSubtarget &ST,
5517 unsigned Opc) {
5519 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5520 const DebugLoc &DL = MI.getDebugLoc();
5521 const SIInstrInfo *TII = ST.getInstrInfo();
5522
5523 // Reduction operations depend on whether the input operand is SGPR or VGPR.
5524 Register SrcReg = MI.getOperand(1).getReg();
5525 bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg));
5526 Register DstReg = MI.getOperand(0).getReg();
5527 MachineBasicBlock *RetBB = nullptr;
5528 if (isSGPR) {
5529 switch (Opc) {
5530 case AMDGPU::S_MIN_U32:
5531 case AMDGPU::S_MIN_I32:
5532 case AMDGPU::S_MAX_U32:
5533 case AMDGPU::S_MAX_I32:
5534 case AMDGPU::S_AND_B32:
5535 case AMDGPU::S_OR_B32: {
5536 // Idempotent operations.
5537 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg);
5538 RetBB = &BB;
5539 break;
5540 }
5541 case AMDGPU::V_CMP_LT_U64_e64: // umin
5542 case AMDGPU::V_CMP_LT_I64_e64: // min
5543 case AMDGPU::V_CMP_GT_U64_e64: // umax
5544 case AMDGPU::V_CMP_GT_I64_e64: // max
5545 case AMDGPU::S_AND_B64:
5546 case AMDGPU::S_OR_B64: {
5547 // Idempotent operations.
5548 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B64), DstReg).addReg(SrcReg);
5549 RetBB = &BB;
5550 break;
5551 }
5552 case AMDGPU::S_XOR_B32:
5553 case AMDGPU::S_XOR_B64:
5554 case AMDGPU::S_ADD_I32:
5555 case AMDGPU::S_ADD_U64_PSEUDO:
5556 case AMDGPU::S_SUB_I32:
5557 case AMDGPU::S_SUB_U64_PSEUDO: {
5558 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
5559 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
5560 Register ExecMask = MRI.createVirtualRegister(WaveMaskRegClass);
5561 Register NumActiveLanes =
5562 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5563
5564 bool IsWave32 = ST.isWave32();
5565 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5566 MCRegister ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5567 unsigned BitCountOpc =
5568 IsWave32 ? AMDGPU::S_BCNT1_I32_B32 : AMDGPU::S_BCNT1_I32_B64;
5569
5570 BuildMI(BB, MI, DL, TII->get(MovOpc), ExecMask).addReg(ExecReg);
5571
5572 auto NewAccumulator =
5573 BuildMI(BB, MI, DL, TII->get(BitCountOpc), NumActiveLanes)
5574 .addReg(ExecMask);
5575
5576 switch (Opc) {
5577 case AMDGPU::S_XOR_B32:
5578 case AMDGPU::S_XOR_B64: {
5579 // Performing an XOR operation on a uniform value
5580 // depends on the parity of the number of active lanes.
5581 // For even parity, the result will be 0, for odd
5582 // parity the result will be the same as the input value.
5583 Register ParityRegister =
5584 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5585
5586 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_AND_B32), ParityRegister)
5587 .addReg(NewAccumulator->getOperand(0).getReg())
5588 .addImm(1)
5589 .setOperandDead(3); // Dead scc
5590 if (Opc == AMDGPU::S_XOR_B32) {
5591 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DstReg)
5592 .addReg(SrcReg)
5593 .addReg(ParityRegister);
5594 } else {
5595 Register DestSub0 =
5596 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5597 Register DestSub1 =
5598 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5599
5600 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
5601 const TargetRegisterClass *SrcSubRC =
5602 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5603
5604 MachineOperand Op1L = TII->buildExtractSubRegOrImm(
5605 MI, MRI, MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5606 MachineOperand Op1H = TII->buildExtractSubRegOrImm(
5607 MI, MRI, MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5608
5609 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DestSub0)
5610 .add(Op1L)
5611 .addReg(ParityRegister);
5612
5613 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DestSub1)
5614 .add(Op1H)
5615 .addReg(ParityRegister);
5616
5617 BuildMI(BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5618 .addReg(DestSub0)
5619 .addImm(AMDGPU::sub0)
5620 .addReg(DestSub1)
5621 .addImm(AMDGPU::sub1);
5622 }
5623 break;
5624 }
5625 case AMDGPU::S_SUB_I32: {
5626 Register NegatedVal = MRI.createVirtualRegister(DstRegClass);
5627
5628 // Take the negation of the source operand.
5629 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_SUB_I32), NegatedVal)
5630 .addImm(0)
5631 .addReg(SrcReg);
5632 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DstReg)
5633 .addReg(NegatedVal)
5634 .addReg(NewAccumulator->getOperand(0).getReg());
5635 break;
5636 }
5637 case AMDGPU::S_ADD_I32: {
5638 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DstReg)
5639 .addReg(SrcReg)
5640 .addReg(NewAccumulator->getOperand(0).getReg());
5641 break;
5642 }
5643 case AMDGPU::S_ADD_U64_PSEUDO:
5644 case AMDGPU::S_SUB_U64_PSEUDO: {
5645 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5646 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5647 Register Op1H_Op0L_Reg =
5648 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5649 Register Op1L_Op0H_Reg =
5650 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5651 Register CarryReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5652 Register AddReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5653 Register NegatedValLo =
5654 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5655 Register NegatedValHi =
5656 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5657
5658 const TargetRegisterClass *Src1RC = MRI.getRegClass(SrcReg);
5659 const TargetRegisterClass *Src1SubRC =
5660 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub0);
5661
5662 MachineOperand Op1L = TII->buildExtractSubRegOrImm(
5663 MI, MRI, MI.getOperand(1), Src1RC, AMDGPU::sub0, Src1SubRC);
5664 MachineOperand Op1H = TII->buildExtractSubRegOrImm(
5665 MI, MRI, MI.getOperand(1), Src1RC, AMDGPU::sub1, Src1SubRC);
5666
5667 if (Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5668 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_SUB_I32), NegatedValLo)
5669 .addImm(0)
5670 .addReg(NewAccumulator->getOperand(0).getReg())
5671 .setOperandDead(3); // Dead scc
5672 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_ASHR_I32), NegatedValHi)
5673 .addReg(NegatedValLo)
5674 .addImm(31)
5675 .setOperandDead(3); // Dead scc
5676 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), Op1L_Op0H_Reg)
5677 .add(Op1L)
5678 .addReg(NegatedValHi);
5679 }
5680 Register LowOpcode = Opc == AMDGPU::S_SUB_U64_PSEUDO
5681 ? NegatedValLo
5682 : NewAccumulator->getOperand(0).getReg();
5683 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), DestSub0)
5684 .add(Op1L)
5685 .addReg(LowOpcode);
5686 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_HI_U32), CarryReg)
5687 .add(Op1L)
5688 .addReg(LowOpcode);
5689 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MUL_I32), Op1H_Op0L_Reg)
5690 .add(Op1H)
5691 .addReg(LowOpcode);
5692
5693 Register HiVal = Opc == AMDGPU::S_SUB_U64_PSEUDO ? AddReg : DestSub1;
5694 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_ADD_U32), HiVal)
5695 .addReg(CarryReg)
5696 .addReg(Op1H_Op0L_Reg)
5697 .setOperandDead(3); // Dead scc
5698
5699 if (Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5700 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_ADD_U32), DestSub1)
5701 .addReg(HiVal)
5702 .addReg(Op1L_Op0H_Reg)
5703 .setOperandDead(3); // Dead scc
5704 }
5705 BuildMI(BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5706 .addReg(DestSub0)
5707 .addImm(AMDGPU::sub0)
5708 .addReg(DestSub1)
5709 .addImm(AMDGPU::sub1);
5710 break;
5711 }
5712 }
5713 RetBB = &BB;
5714 }
5715 }
5716 } else {
5717 // TODO: Implement DPP Strategy and switch based on immediate strategy
5718 // operand. For now, for all the cases (default, Iterative and DPP we use
5719 // iterative approach by default.)
5720
5721 // To reduce the VGPR using iterative approach, we need to iterate
5722 // over all the active lanes. Lowering consists of ComputeLoop,
5723 // which iterate over only active lanes. We use copy of EXEC register
5724 // as induction variable and every active lane modifies it using bitset0
5725 // so that we will get the next active lane for next iteration.
5727 Register SrcReg = MI.getOperand(1).getReg();
5728 bool is32BitOpc = is32bitWaveReduceOperation(Opc);
5729
5730 // Create Control flow for loop
5731 // Split MI's Machine Basic block into For loop
5732 auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true);
5733
5734 // Create virtual registers required for lowering.
5735 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
5736 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
5737 Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass);
5738 Register IdentityValReg = MRI.createVirtualRegister(DstRegClass);
5739 Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass);
5740 Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
5741 Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
5742 Register FF1Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5743 Register LaneValueReg = MRI.createVirtualRegister(DstRegClass);
5744
5745 bool IsWave32 = ST.isWave32();
5746 unsigned MovOpcForExec = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5747 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5748
5749 // Create initial values of induction variable from Exec, Accumulator and
5750 // insert branch instr to newly created ComputeBlock
5751 BuildMI(BB, I, DL, TII->get(MovOpcForExec), LoopIterator).addReg(ExecReg);
5752 if (is32BitOpc) {
5754 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), IdentityValReg)
5755 .addImm(IdentityValue);
5756 } else {
5758 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B64_IMM_PSEUDO), IdentityValReg)
5759 .addImm(IdentityValue);
5760 }
5761 // clang-format off
5762 BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH))
5763 .addMBB(ComputeLoop);
5764 // clang-format on
5765
5766 // Start constructing ComputeLoop
5767 I = ComputeLoop->begin();
5768 auto Accumulator =
5769 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg)
5770 .addReg(IdentityValReg)
5771 .addMBB(&BB);
5772 auto ActiveBits =
5773 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg)
5774 .addReg(LoopIterator)
5775 .addMBB(&BB);
5776
5777 I = ComputeLoop->end();
5778 MachineInstr *NewAccumulator;
5779 // Perform the computations
5780 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
5781 BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg)
5782 .addReg(ActiveBitsReg);
5783 if (is32BitOpc) {
5784 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::V_READLANE_B32),
5785 LaneValueReg)
5786 .addReg(SrcReg)
5787 .addReg(FF1Reg);
5788 NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
5789 .addReg(Accumulator->getOperand(0).getReg())
5790 .addReg(LaneValueReg);
5791 } else {
5792 Register LaneValueLoReg =
5793 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5794 Register LaneValueHiReg =
5795 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5796 Register LaneValReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
5797 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
5798 const TargetRegisterClass *SrcSubRC =
5799 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5800 MachineOperand Op1L = TII->buildExtractSubRegOrImm(
5801 MI, MRI, MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5802 MachineOperand Op1H = TII->buildExtractSubRegOrImm(
5803 MI, MRI, MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5804 // lane value input should be in an sgpr
5805 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::V_READLANE_B32),
5806 LaneValueLoReg)
5807 .add(Op1L)
5808 .addReg(FF1Reg);
5809 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::V_READLANE_B32),
5810 LaneValueHiReg)
5811 .add(Op1H)
5812 .addReg(FF1Reg);
5813 auto LaneValue = BuildMI(*ComputeLoop, I, DL,
5814 TII->get(TargetOpcode::REG_SEQUENCE), LaneValReg)
5815 .addReg(LaneValueLoReg)
5816 .addImm(AMDGPU::sub0)
5817 .addReg(LaneValueHiReg)
5818 .addImm(AMDGPU::sub1);
5819 switch (Opc) {
5820 case AMDGPU::S_OR_B64:
5821 case AMDGPU::S_AND_B64:
5822 case AMDGPU::S_XOR_B64: {
5823 NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
5824 .addReg(Accumulator->getOperand(0).getReg())
5825 .addReg(LaneValue->getOperand(0).getReg())
5826 .setOperandDead(3); // Dead scc
5827 break;
5828 }
5829 case AMDGPU::V_CMP_GT_I64_e64:
5830 case AMDGPU::V_CMP_GT_U64_e64:
5831 case AMDGPU::V_CMP_LT_I64_e64:
5832 case AMDGPU::V_CMP_LT_U64_e64: {
5833 Register LaneMaskReg = MRI.createVirtualRegister(WaveMaskRegClass);
5834 Register ComparisonResultReg =
5835 MRI.createVirtualRegister(WaveMaskRegClass);
5836 const TargetRegisterClass *VregClass = TRI->getVGPR64Class();
5837 const TargetRegisterClass *VSubRegClass =
5838 TRI->getSubRegisterClass(VregClass, AMDGPU::sub0);
5839 Register AccumulatorVReg = MRI.createVirtualRegister(VregClass);
5840 MachineOperand SrcReg0Sub0 =
5841 TII->buildExtractSubRegOrImm(MI, MRI, Accumulator->getOperand(0),
5842 VregClass, AMDGPU::sub0, VSubRegClass);
5843 MachineOperand SrcReg0Sub1 =
5844 TII->buildExtractSubRegOrImm(MI, MRI, Accumulator->getOperand(0),
5845 VregClass, AMDGPU::sub1, VSubRegClass);
5846 BuildMI(*ComputeLoop, I, DL, TII->get(TargetOpcode::REG_SEQUENCE),
5847 AccumulatorVReg)
5848 .add(SrcReg0Sub0)
5849 .addImm(AMDGPU::sub0)
5850 .add(SrcReg0Sub1)
5851 .addImm(AMDGPU::sub1);
5852 BuildMI(*ComputeLoop, I, DL, TII->get(Opc), LaneMaskReg)
5853 .addReg(LaneValue->getOperand(0).getReg())
5854 .addReg(AccumulatorVReg);
5855
5856 unsigned AndOpc = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
5857 BuildMI(*ComputeLoop, I, DL, TII->get(AndOpc), ComparisonResultReg)
5858 .addReg(LaneMaskReg)
5859 .addReg(ActiveBitsReg);
5860
5861 NewAccumulator = BuildMI(*ComputeLoop, I, DL,
5862 TII->get(AMDGPU::S_CSELECT_B64), DstReg)
5863 .addReg(LaneValue->getOperand(0).getReg())
5864 .addReg(Accumulator->getOperand(0).getReg());
5865 break;
5866 }
5867 case AMDGPU::S_ADD_U64_PSEUDO:
5868 case AMDGPU::S_SUB_U64_PSEUDO: {
5869 NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
5870 .addReg(Accumulator->getOperand(0).getReg())
5871 .addReg(LaneValue->getOperand(0).getReg());
5872 ComputeLoop = Expand64BitScalarArithmetic(*NewAccumulator, ComputeLoop);
5873 break;
5874 }
5875 }
5876 }
5877 // Manipulate the iterator to get the next active lane
5878 unsigned BITSETOpc =
5879 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
5880 BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg)
5881 .addReg(FF1Reg)
5882 .addReg(ActiveBitsReg);
5883
5884 // Add phi nodes
5885 Accumulator.addReg(DstReg).addMBB(ComputeLoop);
5886 ActiveBits.addReg(NewActiveBitsReg).addMBB(ComputeLoop);
5887
5888 // Creating branching
5889 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
5890 BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc))
5891 .addReg(NewActiveBitsReg)
5892 .addImm(0);
5893 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
5894 .addMBB(ComputeLoop);
5895
5896 RetBB = ComputeEnd;
5897 }
5898 MI.eraseFromParent();
5899 return RetBB;
5900}
5901
5904 MachineBasicBlock *BB) const {
5905
5907 MachineFunction *MF = BB->getParent();
5909
5910 switch (MI.getOpcode()) {
5911 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
5912 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32);
5913 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U64:
5914 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::V_CMP_LT_U64_e64);
5915 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I32:
5916 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_I32);
5917 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I64:
5918 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::V_CMP_LT_I64_e64);
5919 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
5920 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32);
5921 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U64:
5922 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::V_CMP_GT_U64_e64);
5923 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I32:
5924 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_I32);
5925 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I64:
5926 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::V_CMP_GT_I64_e64);
5927 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_I32:
5928 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_ADD_I32);
5929 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_U64:
5930 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_ADD_U64_PSEUDO);
5931 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_I32:
5932 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_SUB_I32);
5933 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_U64:
5934 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_SUB_U64_PSEUDO);
5935 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B32:
5936 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_AND_B32);
5937 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B64:
5938 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_AND_B64);
5939 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B32:
5940 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_OR_B32);
5941 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B64:
5942 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_OR_B64);
5943 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B32:
5944 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_XOR_B32);
5945 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B64:
5946 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_XOR_B64);
5947 case AMDGPU::S_UADDO_PSEUDO:
5948 case AMDGPU::S_USUBO_PSEUDO: {
5949 const DebugLoc &DL = MI.getDebugLoc();
5950 MachineOperand &Dest0 = MI.getOperand(0);
5951 MachineOperand &Dest1 = MI.getOperand(1);
5952 MachineOperand &Src0 = MI.getOperand(2);
5953 MachineOperand &Src1 = MI.getOperand(3);
5954
5955 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
5956 ? AMDGPU::S_ADD_I32
5957 : AMDGPU::S_SUB_I32;
5958 // clang-format off
5959 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg())
5960 .add(Src0)
5961 .add(Src1);
5962 // clang-format on
5963
5964 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
5965 .addImm(1)
5966 .addImm(0);
5967
5968 MI.eraseFromParent();
5969 return BB;
5970 }
5971 case AMDGPU::S_ADD_U64_PSEUDO:
5972 case AMDGPU::S_SUB_U64_PSEUDO: {
5973 return Expand64BitScalarArithmetic(MI, BB);
5974 }
5975 case AMDGPU::V_ADD_U64_PSEUDO:
5976 case AMDGPU::V_SUB_U64_PSEUDO: {
5978 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5979 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5980 const DebugLoc &DL = MI.getDebugLoc();
5981
5982 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
5983
5984 MachineOperand &Dest = MI.getOperand(0);
5985 MachineOperand &Src0 = MI.getOperand(1);
5986 MachineOperand &Src1 = MI.getOperand(2);
5987
5988 if (ST.hasAddSubU64Insts()) {
5989 auto I = BuildMI(*BB, MI, DL,
5990 TII->get(IsAdd ? AMDGPU::V_ADD_U64_e64
5991 : AMDGPU::V_SUB_U64_e64),
5992 Dest.getReg())
5993 .add(Src0)
5994 .add(Src1)
5995 .addImm(0); // clamp
5996 TII->legalizeOperands(*I);
5997 MI.eraseFromParent();
5998 return BB;
5999 }
6000
6001 if (IsAdd && ST.hasLshlAddU64Inst()) {
6002 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
6003 Dest.getReg())
6004 .add(Src0)
6005 .addImm(0)
6006 .add(Src1);
6007 TII->legalizeOperands(*Add);
6008 MI.eraseFromParent();
6009 return BB;
6010 }
6011
6012 const auto *CarryRC = TRI->getWaveMaskRegClass();
6013
6014 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6015 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6016
6017 Register CarryReg = MRI.createVirtualRegister(CarryRC);
6018 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
6019
6020 const TargetRegisterClass *Src0RC = Src0.isReg()
6021 ? MRI.getRegClass(Src0.getReg())
6022 : &AMDGPU::VReg_64RegClass;
6023 const TargetRegisterClass *Src1RC = Src1.isReg()
6024 ? MRI.getRegClass(Src1.getReg())
6025 : &AMDGPU::VReg_64RegClass;
6026
6027 const TargetRegisterClass *Src0SubRC =
6028 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6029 const TargetRegisterClass *Src1SubRC =
6030 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6031
6032 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
6033 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6034 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
6035 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6036
6037 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
6038 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6039 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
6040 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6041
6042 unsigned LoOpc =
6043 IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
6044 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
6045 .addReg(CarryReg, RegState::Define)
6046 .add(SrcReg0Sub0)
6047 .add(SrcReg1Sub0)
6048 .addImm(0); // clamp bit
6049
6050 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
6051 MachineInstr *HiHalf =
6052 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
6053 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
6054 .add(SrcReg0Sub1)
6055 .add(SrcReg1Sub1)
6056 .addReg(CarryReg, RegState::Kill)
6057 .addImm(0); // clamp bit
6058
6059 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
6060 .addReg(DestSub0)
6061 .addImm(AMDGPU::sub0)
6062 .addReg(DestSub1)
6063 .addImm(AMDGPU::sub1);
6064 TII->legalizeOperands(*LoHalf);
6065 TII->legalizeOperands(*HiHalf);
6066 MI.eraseFromParent();
6067 return BB;
6068 }
6069 case AMDGPU::S_ADD_CO_PSEUDO:
6070 case AMDGPU::S_SUB_CO_PSEUDO: {
6071 // This pseudo has a chance to be selected
6072 // only from uniform add/subcarry node. All the VGPR operands
6073 // therefore assumed to be splat vectors.
6075 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
6076 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6078 const DebugLoc &DL = MI.getDebugLoc();
6079 MachineOperand &Dest = MI.getOperand(0);
6080 MachineOperand &CarryDest = MI.getOperand(1);
6081 MachineOperand &Src0 = MI.getOperand(2);
6082 MachineOperand &Src1 = MI.getOperand(3);
6083 MachineOperand &Src2 = MI.getOperand(4);
6084 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
6085 ? AMDGPU::S_ADDC_U32
6086 : AMDGPU::S_SUBB_U32;
6087 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
6088 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6089 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
6090 .addReg(Src0.getReg());
6091 Src0.setReg(RegOp0);
6092 }
6093 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
6094 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6095 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
6096 .addReg(Src1.getReg());
6097 Src1.setReg(RegOp1);
6098 }
6099 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6100 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
6101 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
6102 .addReg(Src2.getReg());
6103 Src2.setReg(RegOp2);
6104 }
6105
6106 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
6107 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
6108 assert(WaveSize == 64 || WaveSize == 32);
6109
6110 if (WaveSize == 64) {
6111 if (ST.hasScalarCompareEq64()) {
6112 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
6113 .addReg(Src2.getReg())
6114 .addImm(0);
6115 } else {
6116 const TargetRegisterClass *SubRC =
6117 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
6118 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
6119 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
6120 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
6121 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
6122 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6123
6124 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
6125 .add(Src2Sub0)
6126 .add(Src2Sub1);
6127
6128 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
6129 .addReg(Src2_32, RegState::Kill)
6130 .addImm(0);
6131 }
6132 } else {
6133 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
6134 .addReg(Src2.getReg())
6135 .addImm(0);
6136 }
6137
6138 // clang-format off
6139 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg())
6140 .add(Src0)
6141 .add(Src1);
6142 // clang-format on
6143
6144 unsigned SelOpc =
6145 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
6146
6147 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
6148 .addImm(-1)
6149 .addImm(0);
6150
6151 MI.eraseFromParent();
6152 return BB;
6153 }
6154 case AMDGPU::SI_INIT_M0: {
6155 MachineOperand &M0Init = MI.getOperand(0);
6156 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
6157 TII->get(M0Init.isReg() ? AMDGPU::COPY : AMDGPU::S_MOV_B32),
6158 AMDGPU::M0)
6159 .add(M0Init);
6160 MI.eraseFromParent();
6161 return BB;
6162 }
6163 case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: {
6164 // Set SCC to true, in case the barrier instruction gets converted to a NOP.
6165 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
6166 TII->get(AMDGPU::S_CMP_EQ_U32))
6167 .addImm(0)
6168 .addImm(0);
6169 return BB;
6170 }
6171 case AMDGPU::GET_GROUPSTATICSIZE: {
6172 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
6173 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
6174 DebugLoc DL = MI.getDebugLoc();
6175 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
6176 .add(MI.getOperand(0))
6177 .addImm(MFI->getLDSSize());
6178 MI.eraseFromParent();
6179 return BB;
6180 }
6181 case AMDGPU::GET_SHADERCYCLESHILO: {
6184 const DebugLoc &DL = MI.getDebugLoc();
6185 // The algorithm is:
6186 //
6187 // hi1 = getreg(SHADER_CYCLES_HI)
6188 // lo1 = getreg(SHADER_CYCLES_LO)
6189 // hi2 = getreg(SHADER_CYCLES_HI)
6190 //
6191 // If hi1 == hi2 then there was no overflow and the result is hi2:lo1.
6192 // Otherwise there was overflow and the result is hi2:0. In both cases the
6193 // result should represent the actual time at some point during the sequence
6194 // of three getregs.
6195 using namespace AMDGPU::Hwreg;
6196 Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6197 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1)
6198 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6199 Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6200 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1)
6201 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
6202 Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6203 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2)
6204 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6205 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32))
6206 .addReg(RegHi1)
6207 .addReg(RegHi2);
6208 Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6209 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo)
6210 .addReg(RegLo1)
6211 .addImm(0);
6212 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE))
6213 .add(MI.getOperand(0))
6214 .addReg(RegLo)
6215 .addImm(AMDGPU::sub0)
6216 .addReg(RegHi2)
6217 .addImm(AMDGPU::sub1);
6218 MI.eraseFromParent();
6219 return BB;
6220 }
6221 case AMDGPU::SI_INDIRECT_SRC_V1:
6222 case AMDGPU::SI_INDIRECT_SRC_V2:
6223 case AMDGPU::SI_INDIRECT_SRC_V4:
6224 case AMDGPU::SI_INDIRECT_SRC_V8:
6225 case AMDGPU::SI_INDIRECT_SRC_V9:
6226 case AMDGPU::SI_INDIRECT_SRC_V10:
6227 case AMDGPU::SI_INDIRECT_SRC_V11:
6228 case AMDGPU::SI_INDIRECT_SRC_V12:
6229 case AMDGPU::SI_INDIRECT_SRC_V16:
6230 case AMDGPU::SI_INDIRECT_SRC_V32:
6231 return emitIndirectSrc(MI, *BB, *getSubtarget());
6232 case AMDGPU::SI_INDIRECT_DST_V1:
6233 case AMDGPU::SI_INDIRECT_DST_V2:
6234 case AMDGPU::SI_INDIRECT_DST_V4:
6235 case AMDGPU::SI_INDIRECT_DST_V8:
6236 case AMDGPU::SI_INDIRECT_DST_V9:
6237 case AMDGPU::SI_INDIRECT_DST_V10:
6238 case AMDGPU::SI_INDIRECT_DST_V11:
6239 case AMDGPU::SI_INDIRECT_DST_V12:
6240 case AMDGPU::SI_INDIRECT_DST_V16:
6241 case AMDGPU::SI_INDIRECT_DST_V32:
6242 return emitIndirectDst(MI, *BB, *getSubtarget());
6243 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
6244 case AMDGPU::SI_KILL_I1_PSEUDO:
6245 return splitKillBlock(MI, BB);
6246 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
6248 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
6249 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6250
6251 Register Dst = MI.getOperand(0).getReg();
6252 const MachineOperand &Src0 = MI.getOperand(1);
6253 const MachineOperand &Src1 = MI.getOperand(2);
6254 const DebugLoc &DL = MI.getDebugLoc();
6255 Register SrcCond = MI.getOperand(3).getReg();
6256
6257 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6258 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6259 const auto *CondRC = TRI->getWaveMaskRegClass();
6260 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
6261
6262 const TargetRegisterClass *Src0RC = Src0.isReg()
6263 ? MRI.getRegClass(Src0.getReg())
6264 : &AMDGPU::VReg_64RegClass;
6265 const TargetRegisterClass *Src1RC = Src1.isReg()
6266 ? MRI.getRegClass(Src1.getReg())
6267 : &AMDGPU::VReg_64RegClass;
6268
6269 const TargetRegisterClass *Src0SubRC =
6270 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6271 const TargetRegisterClass *Src1SubRC =
6272 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6273
6274 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
6275 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6276 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
6277 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6278
6279 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
6280 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6281 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
6282 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6283
6284 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy).addReg(SrcCond);
6285 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
6286 .addImm(0)
6287 .add(Src0Sub0)
6288 .addImm(0)
6289 .add(Src1Sub0)
6290 .addReg(SrcCondCopy);
6291 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
6292 .addImm(0)
6293 .add(Src0Sub1)
6294 .addImm(0)
6295 .add(Src1Sub1)
6296 .addReg(SrcCondCopy);
6297
6298 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
6299 .addReg(DstLo)
6300 .addImm(AMDGPU::sub0)
6301 .addReg(DstHi)
6302 .addImm(AMDGPU::sub1);
6303 MI.eraseFromParent();
6304 return BB;
6305 }
6306 case AMDGPU::SI_BR_UNDEF: {
6308 const DebugLoc &DL = MI.getDebugLoc();
6309 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
6310 .add(MI.getOperand(0));
6311 Br->getOperand(1).setIsUndef(); // read undef SCC
6312 MI.eraseFromParent();
6313 return BB;
6314 }
6315 case AMDGPU::ADJCALLSTACKUP:
6316 case AMDGPU::ADJCALLSTACKDOWN: {
6318 MachineInstrBuilder MIB(*MF, &MI);
6319 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
6320 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
6321 return BB;
6322 }
6323 case AMDGPU::SI_CALL_ISEL: {
6325 const DebugLoc &DL = MI.getDebugLoc();
6326
6327 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
6328
6330 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
6331
6332 for (const MachineOperand &MO : MI.operands())
6333 MIB.add(MO);
6334
6335 MIB.cloneMemRefs(MI);
6336 MI.eraseFromParent();
6337 return BB;
6338 }
6339 case AMDGPU::V_ADD_CO_U32_e32:
6340 case AMDGPU::V_SUB_CO_U32_e32:
6341 case AMDGPU::V_SUBREV_CO_U32_e32: {
6342 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
6343 const DebugLoc &DL = MI.getDebugLoc();
6344 unsigned Opc = MI.getOpcode();
6345
6346 bool NeedClampOperand = false;
6347 if (TII->pseudoToMCOpcode(Opc) == -1) {
6349 NeedClampOperand = true;
6350 }
6351
6352 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
6353 if (TII->isVOP3(*I)) {
6354 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
6355 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6356 I.addReg(TRI->getVCC(), RegState::Define);
6357 }
6358 I.add(MI.getOperand(1)).add(MI.getOperand(2));
6359 if (NeedClampOperand)
6360 I.addImm(0); // clamp bit for e64 encoding
6361
6362 TII->legalizeOperands(*I);
6363
6364 MI.eraseFromParent();
6365 return BB;
6366 }
6367 case AMDGPU::V_ADDC_U32_e32:
6368 case AMDGPU::V_SUBB_U32_e32:
6369 case AMDGPU::V_SUBBREV_U32_e32:
6370 // These instructions have an implicit use of vcc which counts towards the
6371 // constant bus limit.
6372 TII->legalizeOperands(MI);
6373 return BB;
6374 case AMDGPU::DS_GWS_INIT:
6375 case AMDGPU::DS_GWS_SEMA_BR:
6376 case AMDGPU::DS_GWS_BARRIER:
6377 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
6378 [[fallthrough]];
6379 case AMDGPU::DS_GWS_SEMA_V:
6380 case AMDGPU::DS_GWS_SEMA_P:
6381 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
6382 // A s_waitcnt 0 is required to be the instruction immediately following.
6383 if (getSubtarget()->hasGWSAutoReplay()) {
6385 return BB;
6386 }
6387
6388 return emitGWSMemViolTestLoop(MI, BB);
6389 case AMDGPU::S_SETREG_B32: {
6390 // Try to optimize cases that only set the denormal mode or rounding mode.
6391 //
6392 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
6393 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
6394 // instead.
6395 //
6396 // FIXME: This could be predicates on the immediate, but tablegen doesn't
6397 // allow you to have a no side effect instruction in the output of a
6398 // sideeffecting pattern.
6399 auto [ID, Offset, Width] =
6400 AMDGPU::Hwreg::HwregEncoding::decode(MI.getOperand(1).getImm());
6402 return BB;
6403
6404 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
6405 const unsigned SetMask = WidthMask << Offset;
6406
6407 if (getSubtarget()->hasDenormModeInst()) {
6408 unsigned SetDenormOp = 0;
6409 unsigned SetRoundOp = 0;
6410
6411 // The dedicated instructions can only set the whole denorm or round mode
6412 // at once, not a subset of bits in either.
6413 if (SetMask ==
6415 // If this fully sets both the round and denorm mode, emit the two
6416 // dedicated instructions for these.
6417 SetRoundOp = AMDGPU::S_ROUND_MODE;
6418 SetDenormOp = AMDGPU::S_DENORM_MODE;
6419 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
6420 SetRoundOp = AMDGPU::S_ROUND_MODE;
6421 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
6422 SetDenormOp = AMDGPU::S_DENORM_MODE;
6423 }
6424
6425 if (SetRoundOp || SetDenormOp) {
6427 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
6428 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
6429 unsigned ImmVal = Def->getOperand(1).getImm();
6430 if (SetRoundOp) {
6431 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
6432 .addImm(ImmVal & 0xf);
6433
6434 // If we also have the denorm mode, get just the denorm mode bits.
6435 ImmVal >>= 4;
6436 }
6437
6438 if (SetDenormOp) {
6439 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
6440 .addImm(ImmVal & 0xf);
6441 }
6442
6443 MI.eraseFromParent();
6444 return BB;
6445 }
6446 }
6447 }
6448
6449 // If only FP bits are touched, used the no side effects pseudo.
6450 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
6451 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
6452 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
6453
6454 return BB;
6455 }
6456 case AMDGPU::S_INVERSE_BALLOT_U32:
6457 case AMDGPU::S_INVERSE_BALLOT_U64:
6458 // These opcodes only exist to let SIFixSGPRCopies insert a readfirstlane if
6459 // necessary. After that they are equivalent to a COPY.
6460 MI.setDesc(TII->get(AMDGPU::COPY));
6461 return BB;
6462 case AMDGPU::ENDPGM_TRAP: {
6463 const DebugLoc &DL = MI.getDebugLoc();
6464 if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) {
6465 MI.setDesc(TII->get(AMDGPU::S_ENDPGM));
6466 MI.addOperand(MachineOperand::CreateImm(0));
6467 return BB;
6468 }
6469
6470 // We need a block split to make the real endpgm a terminator. We also don't
6471 // want to break phis in successor blocks, so we can't just delete to the
6472 // end of the block.
6473
6474 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
6476 MF->push_back(TrapBB);
6477 // clang-format off
6478 BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM))
6479 .addImm(0);
6480 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
6481 .addMBB(TrapBB);
6482 // clang-format on
6483
6484 BB->addSuccessor(TrapBB);
6485 MI.eraseFromParent();
6486 return SplitBB;
6487 }
6488 case AMDGPU::SIMULATED_TRAP: {
6489 assert(Subtarget->hasPrivEnabledTrap2NopBug());
6491 MachineBasicBlock *SplitBB =
6492 TII->insertSimulatedTrap(MRI, *BB, MI, MI.getDebugLoc());
6493 MI.eraseFromParent();
6494 return SplitBB;
6495 }
6496 case AMDGPU::SI_TCRETURN_GFX_WholeWave:
6497 case AMDGPU::SI_WHOLE_WAVE_FUNC_RETURN: {
6499
6500 // During ISel, it's difficult to propagate the original EXEC mask to use as
6501 // an input to SI_WHOLE_WAVE_FUNC_RETURN. Set it up here instead.
6502 MachineInstr *Setup = TII->getWholeWaveFunctionSetup(*BB->getParent());
6503 assert(Setup && "Couldn't find SI_SETUP_WHOLE_WAVE_FUNC");
6504 Register OriginalExec = Setup->getOperand(0).getReg();
6505 MF->getRegInfo().clearKillFlags(OriginalExec);
6506 MI.getOperand(0).setReg(OriginalExec);
6507 return BB;
6508 }
6509 default:
6510 if (TII->isImage(MI) || TII->isMUBUF(MI)) {
6511 if (!MI.mayStore())
6513 return BB;
6514 }
6516 }
6517}
6518
6520 // This currently forces unfolding various combinations of fsub into fma with
6521 // free fneg'd operands. As long as we have fast FMA (controlled by
6522 // isFMAFasterThanFMulAndFAdd), we should perform these.
6523
6524 // When fma is quarter rate, for f64 where add / sub are at best half rate,
6525 // most of these combines appear to be cycle neutral but save on instruction
6526 // count / code size.
6527 return true;
6528}
6529
6531
6533 EVT VT) const {
6534 if (!VT.isVector()) {
6535 return MVT::i1;
6536 }
6537 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
6538}
6539
6541 // TODO: Should i16 be used always if legal? For now it would force VALU
6542 // shifts.
6543 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
6544}
6545
6547 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
6548 ? Ty.changeElementSize(16)
6549 : Ty.changeElementSize(32);
6550}
6551
6552// Answering this is somewhat tricky and depends on the specific device which
6553// have different rates for fma or all f64 operations.
6554//
6555// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
6556// regardless of which device (although the number of cycles differs between
6557// devices), so it is always profitable for f64.
6558//
6559// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
6560// only on full rate devices. Normally, we should prefer selecting v_mad_f32
6561// which we can always do even without fused FP ops since it returns the same
6562// result as the separate operations and since it is always full
6563// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
6564// however does not support denormals, so we do report fma as faster if we have
6565// a fast fma device and require denormals.
6566//
6568 EVT VT) const {
6569 VT = VT.getScalarType();
6570
6571 switch (VT.getSimpleVT().SimpleTy) {
6572 case MVT::f32: {
6573 // If mad is not available this depends only on if f32 fma is full rate.
6574 if (!Subtarget->hasMadMacF32Insts())
6575 return Subtarget->hasFastFMAF32();
6576
6577 // Otherwise f32 mad is always full rate and returns the same result as
6578 // the separate operations so should be preferred over fma.
6579 // However does not support denormals.
6581 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
6582
6583 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
6584 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
6585 }
6586 case MVT::f64:
6587 return true;
6588 case MVT::f16:
6589 case MVT::bf16:
6590 return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF);
6591 default:
6592 break;
6593 }
6594
6595 return false;
6596}
6597
6599 LLT Ty) const {
6600 switch (Ty.getScalarSizeInBits()) {
6601 case 16:
6602 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
6603 case 32:
6604 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
6605 case 64:
6606 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
6607 default:
6608 break;
6609 }
6610
6611 return false;
6612}
6613
6615 if (!Ty.isScalar())
6616 return false;
6617
6618 if (Ty.getScalarSizeInBits() == 16)
6619 return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF());
6620 if (Ty.getScalarSizeInBits() == 32)
6621 return Subtarget->hasMadMacF32Insts() &&
6622 denormalModeIsFlushAllF32(*MI.getMF());
6623
6624 return false;
6625}
6626
6628 const SDNode *N) const {
6629 // TODO: Check future ftz flag
6630 // v_mad_f32/v_mac_f32 do not support denormals.
6631 EVT VT = N->getValueType(0);
6632 if (VT == MVT::f32)
6633 return Subtarget->hasMadMacF32Insts() &&
6635 if (VT == MVT::f16) {
6636 return Subtarget->hasMadF16() &&
6638 }
6639
6640 return false;
6641}
6642
6643//===----------------------------------------------------------------------===//
6644// Custom DAG Lowering Operations
6645//===----------------------------------------------------------------------===//
6646
6647// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
6648// wider vector type is legal.
6650 SelectionDAG &DAG) const {
6651 unsigned Opc = Op.getOpcode();
6652 EVT VT = Op.getValueType();
6653 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
6654 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
6655 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6656 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
6657
6658 auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
6659
6660 SDLoc SL(Op);
6661 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, Op->getFlags());
6662 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, Op->getFlags());
6663
6664 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
6665}
6666
6667// Enable lowering of ROTR for vxi32 types. This is a workaround for a
6668// regression whereby extra unnecessary instructions were added to codegen
6669// for rotr operations, casued by legalising v2i32 or. This resulted in extra
6670// instructions to extract the result from the vector.
6672 [[maybe_unused]] EVT VT = Op.getValueType();
6673
6674 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v8i32 ||
6675 VT == MVT::v16i32) &&
6676 "Unexpected ValueType.");
6677
6678 return DAG.UnrollVectorOp(Op.getNode());
6679}
6680
6681// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
6682// wider vector type is legal.
6684 SelectionDAG &DAG) const {
6685 unsigned Opc = Op.getOpcode();
6686 EVT VT = Op.getValueType();
6687 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16 ||
6688 VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 ||
6689 VT == MVT::v8bf16 || VT == MVT::v16i16 || VT == MVT::v16f16 ||
6690 VT == MVT::v16bf16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6691 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16 ||
6692 VT == MVT::v32bf16);
6693
6694 auto [Lo0, Hi0] = DAG.SplitVectorOperand(Op.getNode(), 0);
6695 auto [Lo1, Hi1] = DAG.SplitVectorOperand(Op.getNode(), 1);
6696
6697 SDLoc SL(Op);
6698
6699 SDValue OpLo =
6700 DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Op->getFlags());
6701 SDValue OpHi =
6702 DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Op->getFlags());
6703
6704 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
6705}
6706
6708 SelectionDAG &DAG) const {
6709 unsigned Opc = Op.getOpcode();
6710 EVT VT = Op.getValueType();
6711 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
6712 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
6713 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6714 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
6715 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
6716 VT == MVT::v32bf16);
6717
6718 SDValue Op0 = Op.getOperand(0);
6719 auto [Lo0, Hi0] = Op0.getValueType().isVector()
6720 ? DAG.SplitVectorOperand(Op.getNode(), 0)
6721 : std::pair(Op0, Op0);
6722
6723 auto [Lo1, Hi1] = DAG.SplitVectorOperand(Op.getNode(), 1);
6724 auto [Lo2, Hi2] = DAG.SplitVectorOperand(Op.getNode(), 2);
6725
6726 SDLoc SL(Op);
6727 auto ResVT = DAG.GetSplitDestVTs(VT);
6728
6729 SDValue OpLo =
6730 DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, Op->getFlags());
6731 SDValue OpHi =
6732 DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, Op->getFlags());
6733
6734 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
6735}
6736
6738 switch (Op.getOpcode()) {
6739 default:
6741 case ISD::BRCOND:
6742 return LowerBRCOND(Op, DAG);
6743 case ISD::RETURNADDR:
6744 return LowerRETURNADDR(Op, DAG);
6745 case ISD::LOAD: {
6746 SDValue Result = LowerLOAD(Op, DAG);
6747 assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) &&
6748 "Load should return a value and a chain");
6749 return Result;
6750 }
6751 case ISD::FSQRT: {
6752 EVT VT = Op.getValueType();
6753 if (VT == MVT::f32)
6754 return lowerFSQRTF32(Op, DAG);
6755 if (VT == MVT::f64)
6756 return lowerFSQRTF64(Op, DAG);
6757 return SDValue();
6758 }
6759 case ISD::FSIN:
6760 case ISD::FCOS:
6761 return LowerTrig(Op, DAG);
6762 case ISD::SELECT:
6763 return LowerSELECT(Op, DAG);
6764 case ISD::FDIV:
6765 return LowerFDIV(Op, DAG);
6766 case ISD::FFREXP:
6767 return LowerFFREXP(Op, DAG);
6768 case ISD::ATOMIC_CMP_SWAP:
6769 return LowerATOMIC_CMP_SWAP(Op, DAG);
6770 case ISD::STORE:
6771 return LowerSTORE(Op, DAG);
6772 case ISD::GlobalAddress: {
6775 return LowerGlobalAddress(MFI, Op, DAG);
6776 }
6778 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6780 return LowerINTRINSIC_W_CHAIN(Op, DAG);
6782 return LowerINTRINSIC_VOID(Op, DAG);
6783 case ISD::ADDRSPACECAST:
6784 return lowerADDRSPACECAST(Op, DAG);
6786 return lowerINSERT_SUBVECTOR(Op, DAG);
6788 return lowerINSERT_VECTOR_ELT(Op, DAG);
6790 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6792 return lowerVECTOR_SHUFFLE(Op, DAG);
6794 return lowerSCALAR_TO_VECTOR(Op, DAG);
6795 case ISD::BUILD_VECTOR:
6796 return lowerBUILD_VECTOR(Op, DAG);
6797 case ISD::FP_ROUND:
6799 return lowerFP_ROUND(Op, DAG);
6800 case ISD::TRAP:
6801 return lowerTRAP(Op, DAG);
6802 case ISD::DEBUGTRAP:
6803 return lowerDEBUGTRAP(Op, DAG);
6804 case ISD::ABS:
6805 case ISD::FABS:
6806 case ISD::FNEG:
6807 case ISD::FCANONICALIZE:
6808 case ISD::BSWAP:
6809 return splitUnaryVectorOp(Op, DAG);
6810 case ISD::FMINNUM:
6811 case ISD::FMAXNUM:
6812 return lowerFMINNUM_FMAXNUM(Op, DAG);
6813 case ISD::FMINIMUMNUM:
6814 case ISD::FMAXIMUMNUM:
6815 return lowerFMINIMUMNUM_FMAXIMUMNUM(Op, DAG);
6816 case ISD::FMINIMUM:
6817 case ISD::FMAXIMUM:
6818 return lowerFMINIMUM_FMAXIMUM(Op, DAG);
6819 case ISD::FLDEXP:
6820 case ISD::STRICT_FLDEXP:
6821 return lowerFLDEXP(Op, DAG);
6822 case ISD::FMA:
6823 return splitTernaryVectorOp(Op, DAG);
6824 case ISD::FP_TO_SINT:
6825 case ISD::FP_TO_UINT:
6826 return LowerFP_TO_INT(Op, DAG);
6827 case ISD::SHL:
6828 case ISD::SRA:
6829 case ISD::SRL:
6830 case ISD::ADD:
6831 case ISD::SUB:
6832 case ISD::SMIN:
6833 case ISD::SMAX:
6834 case ISD::UMIN:
6835 case ISD::UMAX:
6836 case ISD::FADD:
6837 case ISD::FMUL:
6838 case ISD::FMINNUM_IEEE:
6839 case ISD::FMAXNUM_IEEE:
6840 case ISD::UADDSAT:
6841 case ISD::USUBSAT:
6842 case ISD::SADDSAT:
6843 case ISD::SSUBSAT:
6844 return splitBinaryVectorOp(Op, DAG);
6845 case ISD::FCOPYSIGN:
6846 return lowerFCOPYSIGN(Op, DAG);
6847 case ISD::MUL:
6848 return lowerMUL(Op, DAG);
6849 case ISD::SMULO:
6850 case ISD::UMULO:
6851 return lowerXMULO(Op, DAG);
6852 case ISD::SMUL_LOHI:
6853 case ISD::UMUL_LOHI:
6854 return lowerXMUL_LOHI(Op, DAG);
6855 case ISD::DYNAMIC_STACKALLOC:
6856 return LowerDYNAMIC_STACKALLOC(Op, DAG);
6857 case ISD::STACKSAVE:
6858 return LowerSTACKSAVE(Op, DAG);
6859 case ISD::GET_ROUNDING:
6860 return lowerGET_ROUNDING(Op, DAG);
6861 case ISD::SET_ROUNDING:
6862 return lowerSET_ROUNDING(Op, DAG);
6863 case ISD::PREFETCH:
6864 return lowerPREFETCH(Op, DAG);
6865 case ISD::FP_EXTEND:
6867 return lowerFP_EXTEND(Op, DAG);
6868 case ISD::GET_FPENV:
6869 return lowerGET_FPENV(Op, DAG);
6870 case ISD::SET_FPENV:
6871 return lowerSET_FPENV(Op, DAG);
6872 case ISD::ROTR:
6873 return lowerROTR(Op, DAG);
6874 }
6875 return SDValue();
6876}
6877
6878// Used for D16: Casts the result of an instruction into the right vector,
6879// packs values if loads return unpacked values.
6881 const SDLoc &DL, SelectionDAG &DAG,
6882 bool Unpacked) {
6883 if (!LoadVT.isVector())
6884 return Result;
6885
6886 // Cast back to the original packed type or to a larger type that is a
6887 // multiple of 32 bit for D16. Widening the return type is a required for
6888 // legalization.
6889 EVT FittingLoadVT = LoadVT;
6890 if ((LoadVT.getVectorNumElements() % 2) == 1) {
6891 FittingLoadVT =
6893 LoadVT.getVectorNumElements() + 1);
6894 }
6895
6896 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
6897 // Truncate to v2i16/v4i16.
6898 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
6899
6900 // Workaround legalizer not scalarizing truncate after vector op
6901 // legalization but not creating intermediate vector trunc.
6903 DAG.ExtractVectorElements(Result, Elts);
6904 for (SDValue &Elt : Elts)
6905 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
6906
6907 // Pad illegal v1i16/v3fi6 to v4i16
6908 if ((LoadVT.getVectorNumElements() % 2) == 1)
6909 Elts.push_back(DAG.getPOISON(MVT::i16));
6910
6911 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
6912
6913 // Bitcast to original type (v2f16/v4f16).
6914 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
6915 }
6916
6917 // Cast back to the original packed type.
6918 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
6919}
6920
6921SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, MemSDNode *M,
6922 SelectionDAG &DAG,
6924 bool IsIntrinsic) const {
6925 SDLoc DL(M);
6926
6927 bool Unpacked = Subtarget->hasUnpackedD16VMem();
6928 EVT LoadVT = M->getValueType(0);
6929
6930 EVT EquivLoadVT = LoadVT;
6931 if (LoadVT.isVector()) {
6932 if (Unpacked) {
6933 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
6934 LoadVT.getVectorNumElements());
6935 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
6936 // Widen v3f16 to legal type
6937 EquivLoadVT =
6939 LoadVT.getVectorNumElements() + 1);
6940 }
6941 }
6942
6943 // Change from v4f16/v2f16 to EquivLoadVT.
6944 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
6945
6947 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, VTList, Ops,
6948 M->getMemoryVT(), M->getMemOperand());
6949
6950 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
6951
6952 return DAG.getMergeValues({Adjusted, Load.getValue(1)}, DL);
6953}
6954
6955SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
6956 SelectionDAG &DAG,
6957 ArrayRef<SDValue> Ops) const {
6958 SDLoc DL(M);
6959 EVT LoadVT = M->getValueType(0);
6960 EVT EltType = LoadVT.getScalarType();
6961 EVT IntVT = LoadVT.changeTypeToInteger();
6962
6963 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6964
6965 assert(M->getNumValues() == 2 || M->getNumValues() == 3);
6966 bool IsTFE = M->getNumValues() == 3;
6967
6968 unsigned Opc = IsFormat ? (IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
6970 : IsTFE ? AMDGPUISD::BUFFER_LOAD_TFE
6971 : AMDGPUISD::BUFFER_LOAD;
6972
6973 if (IsD16) {
6974 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
6975 }
6976
6977 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6978 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
6979 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand(),
6980 IsTFE);
6981
6982 if (isTypeLegal(LoadVT)) {
6983 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
6984 M->getMemOperand(), DAG);
6985 }
6986
6987 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
6988 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
6989 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
6990 M->getMemOperand(), DAG);
6991 return DAG.getMergeValues(
6992 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
6993 DL);
6994}
6995
6997 SelectionDAG &DAG) {
6998 EVT VT = N->getValueType(0);
6999 unsigned CondCode = N->getConstantOperandVal(3);
7000 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
7001 return DAG.getPOISON(VT);
7002
7003 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
7004
7005 SDValue LHS = N->getOperand(1);
7006 SDValue RHS = N->getOperand(2);
7007
7008 SDLoc DL(N);
7009
7010 EVT CmpVT = LHS.getValueType();
7011 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
7012 unsigned PromoteOp =
7014 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
7015 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
7016 }
7017
7018 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
7019
7020 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
7021 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
7022
7023 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
7024 DAG.getCondCode(CCOpcode));
7025 if (VT.bitsEq(CCVT))
7026 return SetCC;
7027 return DAG.getZExtOrTrunc(SetCC, DL, VT);
7028}
7029
7031 SelectionDAG &DAG) {
7032 EVT VT = N->getValueType(0);
7033
7034 unsigned CondCode = N->getConstantOperandVal(3);
7035 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
7036 return DAG.getPOISON(VT);
7037
7038 SDValue Src0 = N->getOperand(1);
7039 SDValue Src1 = N->getOperand(2);
7040 EVT CmpVT = Src0.getValueType();
7041 SDLoc SL(N);
7042
7043 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
7044 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7045 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7046 }
7047
7048 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
7049 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
7050 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
7051 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
7052 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, Src1,
7053 DAG.getCondCode(CCOpcode));
7054 if (VT.bitsEq(CCVT))
7055 return SetCC;
7056 return DAG.getZExtOrTrunc(SetCC, SL, VT);
7057}
7058
7060 SelectionDAG &DAG) {
7061 EVT VT = N->getValueType(0);
7062 SDValue Src = N->getOperand(1);
7063 SDLoc SL(N);
7064
7065 if (Src.getOpcode() == ISD::SETCC) {
7066 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
7067 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
7068 Src.getOperand(1), Src.getOperand(2));
7069 }
7070 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
7071 // (ballot 0) -> 0
7072 if (Arg->isZero())
7073 return DAG.getConstant(0, SL, VT);
7074
7075 // (ballot 1) -> EXEC/EXEC_LO
7076 if (Arg->isOne()) {
7077 Register Exec;
7078 if (VT.getScalarSizeInBits() == 32)
7079 Exec = AMDGPU::EXEC_LO;
7080 else if (VT.getScalarSizeInBits() == 64)
7081 Exec = AMDGPU::EXEC;
7082 else
7083 return SDValue();
7084
7085 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
7086 }
7087 }
7088
7089 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
7090 // ISD::SETNE)
7091 return DAG.getNode(
7092 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
7093 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
7094}
7095
7097 SelectionDAG &DAG) {
7098 EVT VT = N->getValueType(0);
7099 unsigned ValSize = VT.getSizeInBits();
7100 unsigned IID = N->getConstantOperandVal(0);
7101 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
7102 IID == Intrinsic::amdgcn_permlanex16;
7103 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
7104 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
7105 SDLoc SL(N);
7106 MVT IntVT = MVT::getIntegerVT(ValSize);
7107 const GCNSubtarget *ST = TLI.getSubtarget();
7108 unsigned SplitSize = 32;
7109 if (IID == Intrinsic::amdgcn_update_dpp && (ValSize % 64 == 0) &&
7110 ST->hasDPALU_DPP() &&
7111 AMDGPU::isLegalDPALU_DPPControl(*ST, N->getConstantOperandVal(3)))
7112 SplitSize = 64;
7113
7114 auto createLaneOp = [&DAG, &SL, N, IID](SDValue Src0, SDValue Src1,
7115 SDValue Src2, MVT ValT) -> SDValue {
7117 switch (IID) {
7118 case Intrinsic::amdgcn_permlane16:
7119 case Intrinsic::amdgcn_permlanex16:
7120 case Intrinsic::amdgcn_update_dpp:
7121 Operands.push_back(N->getOperand(6));
7122 Operands.push_back(N->getOperand(5));
7123 Operands.push_back(N->getOperand(4));
7124 [[fallthrough]];
7125 case Intrinsic::amdgcn_writelane:
7126 Operands.push_back(Src2);
7127 [[fallthrough]];
7128 case Intrinsic::amdgcn_readlane:
7129 case Intrinsic::amdgcn_set_inactive:
7130 case Intrinsic::amdgcn_set_inactive_chain_arg:
7131 case Intrinsic::amdgcn_mov_dpp8:
7132 Operands.push_back(Src1);
7133 [[fallthrough]];
7134 case Intrinsic::amdgcn_readfirstlane:
7135 case Intrinsic::amdgcn_permlane64:
7136 Operands.push_back(Src0);
7137 break;
7138 default:
7139 llvm_unreachable("unhandled lane op");
7140 }
7141
7142 Operands.push_back(DAG.getTargetConstant(IID, SL, MVT::i32));
7143 std::reverse(Operands.begin(), Operands.end());
7144
7145 if (SDNode *GL = N->getGluedNode()) {
7146 assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
7147 GL = GL->getOperand(0).getNode();
7148 Operands.push_back(DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
7149 SDValue(GL, 0)));
7150 }
7151
7152 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, ValT, Operands);
7153 };
7154
7155 SDValue Src0 = N->getOperand(1);
7156 SDValue Src1, Src2;
7157 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
7158 IID == Intrinsic::amdgcn_mov_dpp8 ||
7159 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7160 Src1 = N->getOperand(2);
7161 if (IID == Intrinsic::amdgcn_writelane ||
7162 IID == Intrinsic::amdgcn_update_dpp || IsPermLane16)
7163 Src2 = N->getOperand(3);
7164 }
7165
7166 if (ValSize == SplitSize) {
7167 // Already legal
7168 return SDValue();
7169 }
7170
7171 if (ValSize < 32) {
7172 bool IsFloat = VT.isFloatingPoint();
7173 Src0 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src0) : Src0,
7174 SL, MVT::i32);
7175
7176 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7177 Src1 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src1) : Src1,
7178 SL, MVT::i32);
7179 }
7180
7181 if (IID == Intrinsic::amdgcn_writelane) {
7182 Src2 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src2) : Src2,
7183 SL, MVT::i32);
7184 }
7185
7186 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32);
7187 SDValue Trunc = DAG.getAnyExtOrTrunc(LaneOp, SL, IntVT);
7188 return IsFloat ? DAG.getBitcast(VT, Trunc) : Trunc;
7189 }
7190
7191 if (ValSize % SplitSize != 0)
7192 return SDValue();
7193
7194 auto unrollLaneOp = [&DAG, &SL](SDNode *N) -> SDValue {
7195 EVT VT = N->getValueType(0);
7196 unsigned NE = VT.getVectorNumElements();
7197 EVT EltVT = VT.getVectorElementType();
7199 unsigned NumOperands = N->getNumOperands();
7200 SmallVector<SDValue, 4> Operands(NumOperands);
7201 SDNode *GL = N->getGluedNode();
7202
7203 // only handle convergencectrl_glue
7204 assert(!GL || GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
7205
7206 for (unsigned i = 0; i != NE; ++i) {
7207 for (unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e;
7208 ++j) {
7209 SDValue Operand = N->getOperand(j);
7210 EVT OperandVT = Operand.getValueType();
7211 if (OperandVT.isVector()) {
7212 // A vector operand; extract a single element.
7213 EVT OperandEltVT = OperandVT.getVectorElementType();
7214 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, OperandEltVT,
7215 Operand, DAG.getVectorIdxConstant(i, SL));
7216 } else {
7217 // A scalar operand; just use it as is.
7218 Operands[j] = Operand;
7219 }
7220 }
7221
7222 if (GL)
7223 Operands[NumOperands - 1] =
7224 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
7225 SDValue(GL->getOperand(0).getNode(), 0));
7226
7227 Scalars.push_back(DAG.getNode(N->getOpcode(), SL, EltVT, Operands));
7228 }
7229
7230 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NE);
7231 return DAG.getBuildVector(VecVT, SL, Scalars);
7232 };
7233
7234 if (VT.isVector()) {
7235 switch (MVT::SimpleValueType EltTy =
7237 case MVT::i32:
7238 case MVT::f32:
7239 if (SplitSize == 32) {
7240 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VT.getSimpleVT());
7241 return unrollLaneOp(LaneOp.getNode());
7242 }
7243 [[fallthrough]];
7244 case MVT::i16:
7245 case MVT::f16:
7246 case MVT::bf16: {
7247 unsigned SubVecNumElt =
7248 SplitSize / VT.getVectorElementType().getSizeInBits();
7249 MVT SubVecVT = MVT::getVectorVT(EltTy, SubVecNumElt);
7251 SDValue Src0SubVec, Src1SubVec, Src2SubVec;
7252 for (unsigned i = 0, EltIdx = 0; i < ValSize / SplitSize; i++) {
7253 Src0SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src0,
7254 DAG.getConstant(EltIdx, SL, MVT::i32));
7255
7256 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive ||
7257 IsPermLane16)
7258 Src1SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src1,
7259 DAG.getConstant(EltIdx, SL, MVT::i32));
7260
7261 if (IID == Intrinsic::amdgcn_writelane)
7262 Src2SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src2,
7263 DAG.getConstant(EltIdx, SL, MVT::i32));
7264
7265 Pieces.push_back(
7266 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16
7267 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT)
7268 : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT));
7269 EltIdx += SubVecNumElt;
7270 }
7271 return DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, Pieces);
7272 }
7273 default:
7274 // Handle all other cases by bitcasting to i32 vectors
7275 break;
7276 }
7277 }
7278
7279 MVT VecVT =
7280 MVT::getVectorVT(MVT::getIntegerVT(SplitSize), ValSize / SplitSize);
7281 Src0 = DAG.getBitcast(VecVT, Src0);
7282
7283 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
7284 Src1 = DAG.getBitcast(VecVT, Src1);
7285
7286 if (IID == Intrinsic::amdgcn_writelane)
7287 Src2 = DAG.getBitcast(VecVT, Src2);
7288
7289 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT);
7290 SDValue UnrolledLaneOp = unrollLaneOp(LaneOp.getNode());
7291 return DAG.getBitcast(VT, UnrolledLaneOp);
7292}
7293
7296 SelectionDAG &DAG) const {
7297 switch (N->getOpcode()) {
7299 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
7300 Results.push_back(Res);
7301 return;
7302 }
7304 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
7305 Results.push_back(Res);
7306 return;
7307 }
7309 unsigned IID = N->getConstantOperandVal(0);
7310 switch (IID) {
7311 case Intrinsic::amdgcn_make_buffer_rsrc:
7312 Results.push_back(lowerPointerAsRsrcIntrin(N, DAG));
7313 return;
7314 case Intrinsic::amdgcn_cvt_pkrtz: {
7315 SDValue Src0 = N->getOperand(1);
7316 SDValue Src1 = N->getOperand(2);
7317 SDLoc SL(N);
7318 SDValue Cvt =
7319 DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, Src0, Src1);
7320 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
7321 return;
7322 }
7323 case Intrinsic::amdgcn_cvt_pknorm_i16:
7324 case Intrinsic::amdgcn_cvt_pknorm_u16:
7325 case Intrinsic::amdgcn_cvt_pk_i16:
7326 case Intrinsic::amdgcn_cvt_pk_u16: {
7327 SDValue Src0 = N->getOperand(1);
7328 SDValue Src1 = N->getOperand(2);
7329 SDLoc SL(N);
7330 unsigned Opcode;
7331
7332 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
7334 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
7336 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
7338 else
7340
7341 EVT VT = N->getValueType(0);
7342 if (isTypeLegal(VT))
7343 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
7344 else {
7345 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
7346 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
7347 }
7348 return;
7349 }
7350 case Intrinsic::amdgcn_s_buffer_load: {
7351 // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate
7352 // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG
7353 // combiner tries to merge the s_buffer_load_u8 with a sext instruction
7354 // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with
7355 // s_buffer_load_i8.
7356 if (!Subtarget->hasScalarSubwordLoads())
7357 return;
7358 SDValue Op = SDValue(N, 0);
7359 SDValue Rsrc = Op.getOperand(1);
7360 SDValue Offset = Op.getOperand(2);
7361 SDValue CachePolicy = Op.getOperand(3);
7362 EVT VT = Op.getValueType();
7363 assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n");
7364 SDLoc DL(Op);
7366 const DataLayout &DataLayout = DAG.getDataLayout();
7367 Align Alignment =
7373 VT.getStoreSize(), Alignment);
7374 SDValue LoadVal;
7375 if (!Offset->isDivergent()) {
7376 SDValue Ops[] = {Rsrc, // source register
7377 Offset, CachePolicy};
7378 SDValue BufferLoad =
7380 DAG.getVTList(MVT::i32), Ops, VT, MMO);
7381 LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
7382 } else {
7383 SDValue Ops[] = {
7384 DAG.getEntryNode(), // Chain
7385 Rsrc, // rsrc
7386 DAG.getConstant(0, DL, MVT::i32), // vindex
7387 {}, // voffset
7388 {}, // soffset
7389 {}, // offset
7390 CachePolicy, // cachepolicy
7391 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7392 };
7393 setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
7394 LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
7395 }
7396 Results.push_back(LoadVal);
7397 return;
7398 }
7399 case Intrinsic::amdgcn_dead: {
7400 for (unsigned I = 0, E = N->getNumValues(); I < E; ++I)
7401 Results.push_back(DAG.getPOISON(N->getValueType(I)));
7402 return;
7403 }
7404 }
7405 break;
7406 }
7408 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
7409 if (Res.getOpcode() == ISD::MERGE_VALUES) {
7410 // FIXME: Hacky
7411 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
7412 Results.push_back(Res.getOperand(I));
7413 }
7414 } else {
7415 Results.push_back(Res);
7416 Results.push_back(Res.getValue(1));
7417 }
7418 return;
7419 }
7420
7421 break;
7422 }
7423 case ISD::SELECT: {
7424 SDLoc SL(N);
7425 EVT VT = N->getValueType(0);
7426 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
7427 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
7428 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
7429
7430 EVT SelectVT = NewVT;
7431 if (NewVT.bitsLT(MVT::i32)) {
7432 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
7433 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
7434 SelectVT = MVT::i32;
7435 }
7436
7437 SDValue NewSelect =
7438 DAG.getNode(ISD::SELECT, SL, SelectVT, N->getOperand(0), LHS, RHS);
7439
7440 if (NewVT != SelectVT)
7441 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
7442 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
7443 return;
7444 }
7445 case ISD::FNEG: {
7446 if (N->getValueType(0) != MVT::v2f16)
7447 break;
7448
7449 SDLoc SL(N);
7450 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
7451
7452 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, BC,
7453 DAG.getConstant(0x80008000, SL, MVT::i32));
7454 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
7455 return;
7456 }
7457 case ISD::FABS: {
7458 if (N->getValueType(0) != MVT::v2f16)
7459 break;
7460
7461 SDLoc SL(N);
7462 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
7463
7464 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, BC,
7465 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
7466 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
7467 return;
7468 }
7469 case ISD::FSQRT: {
7470 if (N->getValueType(0) != MVT::f16)
7471 break;
7472 Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG));
7473 break;
7474 }
7475 default:
7477 break;
7478 }
7479}
7480
7481/// Helper function for LowerBRCOND
7482static SDNode *findUser(SDValue Value, unsigned Opcode) {
7483
7484 for (SDUse &U : Value->uses()) {
7485 if (U.get() != Value)
7486 continue;
7487
7488 if (U.getUser()->getOpcode() == Opcode)
7489 return U.getUser();
7490 }
7491 return nullptr;
7492}
7493
7494unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
7495 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
7496 switch (Intr->getConstantOperandVal(1)) {
7497 case Intrinsic::amdgcn_if:
7498 return AMDGPUISD::IF;
7499 case Intrinsic::amdgcn_else:
7500 return AMDGPUISD::ELSE;
7501 case Intrinsic::amdgcn_loop:
7502 return AMDGPUISD::LOOP;
7503 case Intrinsic::amdgcn_end_cf:
7504 llvm_unreachable("should not occur");
7505 default:
7506 return 0;
7507 }
7508 }
7509
7510 // break, if_break, else_break are all only used as inputs to loop, not
7511 // directly as branch conditions.
7512 return 0;
7513}
7514
7521
7523 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
7524 return false;
7525
7526 // FIXME: Either avoid relying on address space here or change the default
7527 // address space for functions to avoid the explicit check.
7528 return (GV->getValueType()->isFunctionTy() ||
7531}
7532
7534 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
7535}
7536
7538 if (!GV->hasExternalLinkage())
7539 return true;
7540
7541 const auto OS = getTargetMachine().getTargetTriple().getOS();
7542 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
7543}
7544
7545/// This transforms the control flow intrinsics to get the branch destination as
7546/// last parameter, also switches branch target with BR if the need arise
7547SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const {
7548 SDLoc DL(BRCOND);
7549
7550 SDNode *Intr = BRCOND.getOperand(1).getNode();
7551 SDValue Target = BRCOND.getOperand(2);
7552 SDNode *BR = nullptr;
7553 SDNode *SetCC = nullptr;
7554
7555 if (Intr->getOpcode() == ISD::SETCC) {
7556 // As long as we negate the condition everything is fine
7557 SetCC = Intr;
7558 Intr = SetCC->getOperand(0).getNode();
7559
7560 } else {
7561 // Get the target from BR if we don't negate the condition
7562 BR = findUser(BRCOND, ISD::BR);
7563 assert(BR && "brcond missing unconditional branch user");
7564 Target = BR->getOperand(1);
7565 }
7566
7567 unsigned CFNode = isCFIntrinsic(Intr);
7568 if (CFNode == 0) {
7569 // This is a uniform branch so we don't need to legalize.
7570 return BRCOND;
7571 }
7572
7573 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
7575
7576 assert(!SetCC ||
7577 (SetCC->getConstantOperandVal(1) == 1 &&
7578 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
7579 ISD::SETNE));
7580
7581 // operands of the new intrinsic call
7583 if (HaveChain)
7584 Ops.push_back(BRCOND.getOperand(0));
7585
7586 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
7587 Ops.push_back(Target);
7588
7589 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
7590
7591 // build the new intrinsic call
7592 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
7593
7594 if (!HaveChain) {
7595 SDValue Ops[] = {SDValue(Result, 0), BRCOND.getOperand(0)};
7596
7598 }
7599
7600 if (BR) {
7601 // Give the branch instruction our target
7602 SDValue Ops[] = {BR->getOperand(0), BRCOND.getOperand(2)};
7603 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
7604 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
7605 }
7606
7607 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
7608
7609 // Copy the intrinsic results to registers
7610 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
7611 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
7612 if (!CopyToReg)
7613 continue;
7614
7615 Chain = DAG.getCopyToReg(Chain, DL, CopyToReg->getOperand(1),
7616 SDValue(Result, i - 1), SDValue());
7617
7618 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
7619 }
7620
7621 // Remove the old intrinsic from the chain
7622 DAG.ReplaceAllUsesOfValueWith(SDValue(Intr, Intr->getNumValues() - 1),
7623 Intr->getOperand(0));
7624
7625 return Chain;
7626}
7627
7628SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
7629 MVT VT = Op.getSimpleValueType();
7630 SDLoc DL(Op);
7631 // Checking the depth
7632 if (Op.getConstantOperandVal(0) != 0)
7633 return DAG.getConstant(0, DL, VT);
7634
7635 MachineFunction &MF = DAG.getMachineFunction();
7636 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7637 // Check for kernel and shader functions
7638 if (Info->isEntryFunction())
7639 return DAG.getConstant(0, DL, VT);
7640
7641 MachineFrameInfo &MFI = MF.getFrameInfo();
7642 // There is a call to @llvm.returnaddress in this function
7643 MFI.setReturnAddressIsTaken(true);
7644
7645 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
7646 // Get the return address reg and mark it as an implicit live-in
7647 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF),
7648 getRegClassFor(VT, Op.getNode()->isDivergent()));
7649
7650 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
7651}
7652
7653SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, SDValue Op,
7654 const SDLoc &DL, EVT VT) const {
7655 return Op.getValueType().bitsLE(VT)
7656 ? DAG.getNode(ISD::FP_EXTEND, DL, VT, Op)
7657 : DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
7658 DAG.getTargetConstant(0, DL, MVT::i32));
7659}
7660
7661SDValue SITargetLowering::splitFP_ROUNDVectorOp(SDValue Op,
7662 SelectionDAG &DAG) const {
7663 EVT DstVT = Op.getValueType();
7664 unsigned NumElts = DstVT.getVectorNumElements();
7665 assert(NumElts > 2 && isPowerOf2_32(NumElts));
7666
7667 auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
7668
7669 SDLoc DL(Op);
7670 unsigned Opc = Op.getOpcode();
7671 SDValue Flags = Op.getOperand(1);
7672 EVT HalfDstVT =
7673 EVT::getVectorVT(*DAG.getContext(), DstVT.getScalarType(), NumElts / 2);
7674 SDValue OpLo = DAG.getNode(Opc, DL, HalfDstVT, Lo, Flags);
7675 SDValue OpHi = DAG.getNode(Opc, DL, HalfDstVT, Hi, Flags);
7676
7677 return DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, OpLo, OpHi);
7678}
7679
7680SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
7681 SDValue Src = Op.getOperand(0);
7682 EVT SrcVT = Src.getValueType();
7683 EVT DstVT = Op.getValueType();
7684
7685 if (DstVT.isVector() && DstVT.getScalarType() == MVT::f16) {
7686 assert(Subtarget->hasCvtPkF16F32Inst() && "support v_cvt_pk_f16_f32");
7687 if (SrcVT.getScalarType() != MVT::f32)
7688 return SDValue();
7689 return SrcVT == MVT::v2f32 ? Op : splitFP_ROUNDVectorOp(Op, DAG);
7690 }
7691
7692 if (SrcVT.getScalarType() != MVT::f64)
7693 return Op;
7694
7695 SDLoc DL(Op);
7696 if (DstVT == MVT::f16) {
7697 // TODO: Handle strictfp
7698 if (Op.getOpcode() != ISD::FP_ROUND)
7699 return Op;
7700
7701 if (!Subtarget->has16BitInsts()) {
7702 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
7703 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
7704 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
7705 }
7706 if (Op->getFlags().hasApproximateFuncs()) {
7707 SDValue Flags = Op.getOperand(1);
7708 SDValue Src32 = DAG.getNode(ISD::FP_ROUND, DL, MVT::f32, Src, Flags);
7709 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Src32, Flags);
7710 }
7711 SDValue FpToFp16 = LowerF64ToF16Safe(Src, DL, DAG);
7712 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
7713 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
7714 }
7715
7716 assert(DstVT.getScalarType() == MVT::bf16 &&
7717 "custom lower FP_ROUND for f16 or bf16");
7718 assert(Subtarget->hasBF16ConversionInsts() && "f32 -> bf16 is legal");
7719
7720 // Round-inexact-to-odd f64 to f32, then do the final rounding using the
7721 // hardware f32 -> bf16 instruction.
7722 EVT F32VT = SrcVT.isVector() ? SrcVT.changeVectorElementType(MVT::f32) :
7723 MVT::f32;
7724 SDValue Rod = expandRoundInexactToOdd(F32VT, Src, DL, DAG);
7725 return DAG.getNode(ISD::FP_ROUND, DL, DstVT, Rod,
7726 DAG.getTargetConstant(0, DL, MVT::i32));
7727}
7728
7729SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
7730 SelectionDAG &DAG) const {
7731 EVT VT = Op.getValueType();
7732 const MachineFunction &MF = DAG.getMachineFunction();
7733 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7734 bool IsIEEEMode = Info->getMode().IEEE;
7735
7736 // FIXME: Assert during selection that this is only selected for
7737 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
7738 // mode functions, but this happens to be OK since it's only done in cases
7739 // where there is known no sNaN.
7740 if (IsIEEEMode)
7741 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
7742
7743 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7744 VT == MVT::v16bf16)
7745 return splitBinaryVectorOp(Op, DAG);
7746 return Op;
7747}
7748
7749SDValue
7750SITargetLowering::lowerFMINIMUMNUM_FMAXIMUMNUM(SDValue Op,
7751 SelectionDAG &DAG) const {
7752 EVT VT = Op.getValueType();
7753 const MachineFunction &MF = DAG.getMachineFunction();
7754 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7755 bool IsIEEEMode = Info->getMode().IEEE;
7756
7757 if (IsIEEEMode)
7758 return expandFMINIMUMNUM_FMAXIMUMNUM(Op.getNode(), DAG);
7759
7760 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7761 VT == MVT::v16bf16)
7762 return splitBinaryVectorOp(Op, DAG);
7763 return Op;
7764}
7765
7766SDValue SITargetLowering::lowerFMINIMUM_FMAXIMUM(SDValue Op,
7767 SelectionDAG &DAG) const {
7768 EVT VT = Op.getValueType();
7769 if (VT.isVector())
7770 return splitBinaryVectorOp(Op, DAG);
7771
7772 assert(!Subtarget->hasIEEEMinimumMaximumInsts() &&
7773 !Subtarget->hasMinimum3Maximum3F16() &&
7774 Subtarget->hasMinimum3Maximum3PKF16() && VT == MVT::f16 &&
7775 "should not need to widen f16 minimum/maximum to v2f16");
7776
7777 // Widen f16 operation to v2f16
7778
7779 // fminimum f16:x, f16:y ->
7780 // extract_vector_elt (fminimum (v2f16 (scalar_to_vector x))
7781 // (v2f16 (scalar_to_vector y))), 0
7782 SDLoc SL(Op);
7783 SDValue WideSrc0 =
7784 DAG.getNode(ISD::SCALAR_TO_VECTOR, SL, MVT::v2f16, Op.getOperand(0));
7785 SDValue WideSrc1 =
7786 DAG.getNode(ISD::SCALAR_TO_VECTOR, SL, MVT::v2f16, Op.getOperand(1));
7787
7788 SDValue Widened =
7789 DAG.getNode(Op.getOpcode(), SL, MVT::v2f16, WideSrc0, WideSrc1);
7790
7791 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::f16, Widened,
7792 DAG.getConstant(0, SL, MVT::i32));
7793}
7794
7795SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const {
7796 bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP;
7797 EVT VT = Op.getValueType();
7798 assert(VT == MVT::f16);
7799
7800 SDValue Exp = Op.getOperand(IsStrict ? 2 : 1);
7801 EVT ExpVT = Exp.getValueType();
7802 if (ExpVT == MVT::i16)
7803 return Op;
7804
7805 SDLoc DL(Op);
7806
7807 // Correct the exponent type for f16 to i16.
7808 // Clamp the range of the exponent to the instruction's range.
7809
7810 // TODO: This should be a generic narrowing legalization, and can easily be
7811 // for GlobalISel.
7812
7813 SDValue MinExp = DAG.getSignedConstant(minIntN(16), DL, ExpVT);
7814 SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp);
7815
7816 SDValue MaxExp = DAG.getSignedConstant(maxIntN(16), DL, ExpVT);
7817 SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp);
7818
7819 SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp);
7820
7821 if (IsStrict) {
7822 return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other},
7823 {Op.getOperand(0), Op.getOperand(1), TruncExp});
7824 }
7825
7826 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp);
7827}
7828
7830 switch (Op->getOpcode()) {
7831 case ISD::SRA:
7832 case ISD::SMIN:
7833 case ISD::SMAX:
7834 return ISD::SIGN_EXTEND;
7835 case ISD::SRL:
7836 case ISD::UMIN:
7837 case ISD::UMAX:
7838 return ISD::ZERO_EXTEND;
7839 case ISD::ADD:
7840 case ISD::SUB:
7841 case ISD::AND:
7842 case ISD::OR:
7843 case ISD::XOR:
7844 case ISD::SHL:
7845 case ISD::SELECT:
7846 case ISD::MUL:
7847 // operation result won't be influenced by garbage high bits.
7848 // TODO: are all of those cases correct, and are there more?
7849 return ISD::ANY_EXTEND;
7850 case ISD::SETCC: {
7851 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7853 }
7854 default:
7855 llvm_unreachable("unexpected opcode!");
7856 }
7857}
7858
7859SDValue SITargetLowering::promoteUniformOpToI32(SDValue Op,
7860 DAGCombinerInfo &DCI) const {
7861 const unsigned Opc = Op.getOpcode();
7862 assert(Opc == ISD::ADD || Opc == ISD::SUB || Opc == ISD::SHL ||
7863 Opc == ISD::SRL || Opc == ISD::SRA || Opc == ISD::AND ||
7864 Opc == ISD::OR || Opc == ISD::XOR || Opc == ISD::MUL ||
7865 Opc == ISD::SETCC || Opc == ISD::SELECT || Opc == ISD::SMIN ||
7866 Opc == ISD::SMAX || Opc == ISD::UMIN || Opc == ISD::UMAX);
7867
7868 EVT OpTy = (Opc != ISD::SETCC) ? Op.getValueType()
7869 : Op->getOperand(0).getValueType();
7870 auto ExtTy = OpTy.changeElementType(MVT::i32);
7871
7872 if (DCI.isBeforeLegalizeOps() ||
7873 isNarrowingProfitable(Op.getNode(), ExtTy, OpTy))
7874 return SDValue();
7875
7876 auto &DAG = DCI.DAG;
7877
7878 SDLoc DL(Op);
7879 SDValue LHS;
7880 SDValue RHS;
7881 if (Opc == ISD::SELECT) {
7882 LHS = Op->getOperand(1);
7883 RHS = Op->getOperand(2);
7884 } else {
7885 LHS = Op->getOperand(0);
7886 RHS = Op->getOperand(1);
7887 }
7888
7889 const unsigned ExtOp = getExtOpcodeForPromotedOp(Op);
7890 LHS = DAG.getNode(ExtOp, DL, ExtTy, {LHS});
7891
7892 // Special case: for shifts, the RHS always needs a zext.
7893 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
7894 RHS = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtTy, {RHS});
7895 else
7896 RHS = DAG.getNode(ExtOp, DL, ExtTy, {RHS});
7897
7898 // setcc always return i1/i1 vec so no need to truncate after.
7899 if (Opc == ISD::SETCC) {
7900 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7901 return DAG.getSetCC(DL, Op.getValueType(), LHS, RHS, CC);
7902 }
7903
7904 // For other ops, we extend the operation's return type as well so we need to
7905 // truncate back to the original type.
7906 SDValue NewVal;
7907 if (Opc == ISD::SELECT)
7908 NewVal = DAG.getNode(ISD::SELECT, DL, ExtTy, {Op->getOperand(0), LHS, RHS});
7909 else
7910 NewVal = DAG.getNode(Opc, DL, ExtTy, {LHS, RHS});
7911
7912 return DAG.getZExtOrTrunc(NewVal, DL, OpTy);
7913}
7914
7915SDValue SITargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7916 SDValue Mag = Op.getOperand(0);
7917 EVT MagVT = Mag.getValueType();
7918
7919 if (MagVT.getVectorNumElements() > 2)
7920 return splitBinaryVectorOp(Op, DAG);
7921
7922 SDValue Sign = Op.getOperand(1);
7923 EVT SignVT = Sign.getValueType();
7924
7925 if (MagVT == SignVT)
7926 return Op;
7927
7928 // fcopysign v2f16:mag, v2f32:sign ->
7929 // fcopysign v2f16:mag, bitcast (trunc (bitcast sign to v2i32) to v2i16)
7930
7931 SDLoc SL(Op);
7932 SDValue SignAsInt32 = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Sign);
7933 SDValue SignAsInt16 = DAG.getNode(ISD::TRUNCATE, SL, MVT::v2i16, SignAsInt32);
7934
7935 SDValue SignAsHalf16 = DAG.getNode(ISD::BITCAST, SL, MagVT, SignAsInt16);
7936
7937 return DAG.getNode(ISD::FCOPYSIGN, SL, MagVT, Mag, SignAsHalf16);
7938}
7939
7940// Custom lowering for vector multiplications and s_mul_u64.
7941SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const {
7942 EVT VT = Op.getValueType();
7943
7944 // Split vector operands.
7945 if (VT.isVector())
7946 return splitBinaryVectorOp(Op, DAG);
7947
7948 assert(VT == MVT::i64 && "The following code is a special for s_mul_u64");
7949
7950 // There are four ways to lower s_mul_u64:
7951 //
7952 // 1. If all the operands are uniform, then we lower it as it is.
7953 //
7954 // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit
7955 // multiplications because there is not a vector equivalent of s_mul_u64.
7956 //
7957 // 3. If the cost model decides that it is more efficient to use vector
7958 // registers, then we have to split s_mul_u64 in 32-bit multiplications.
7959 // This happens in splitScalarSMULU64() in SIInstrInfo.cpp .
7960 //
7961 // 4. If the cost model decides to use vector registers and both of the
7962 // operands are zero-extended/sign-extended from 32-bits, then we split the
7963 // s_mul_u64 in two 32-bit multiplications. The problem is that it is not
7964 // possible to check if the operands are zero-extended or sign-extended in
7965 // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with
7966 // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace
7967 // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended.
7968 // If the cost model decides that we have to use vector registers, then
7969 // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/
7970 // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model
7971 // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/
7972 // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in
7973 // SIInstrInfo.cpp .
7974
7975 if (Op->isDivergent())
7976 return SDValue();
7977
7978 SDValue Op0 = Op.getOperand(0);
7979 SDValue Op1 = Op.getOperand(1);
7980 // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64
7981 // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to
7982 // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo.
7983 KnownBits Op0KnownBits = DAG.computeKnownBits(Op0);
7984 unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros();
7985 KnownBits Op1KnownBits = DAG.computeKnownBits(Op1);
7986 unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros();
7987 SDLoc SL(Op);
7988 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
7989 return SDValue(
7990 DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
7991 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0);
7992 unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1);
7993 if (Op0SignBits >= 33 && Op1SignBits >= 33)
7994 return SDValue(
7995 DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
7996 // If all the operands are uniform, then we lower s_mul_u64 as it is.
7997 return Op;
7998}
7999
8000SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
8001 EVT VT = Op.getValueType();
8002 SDLoc SL(Op);
8003 SDValue LHS = Op.getOperand(0);
8004 SDValue RHS = Op.getOperand(1);
8005 bool isSigned = Op.getOpcode() == ISD::SMULO;
8006
8007 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8008 const APInt &C = RHSC->getAPIntValue();
8009 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8010 if (C.isPowerOf2()) {
8011 // smulo(x, signed_min) is same as umulo(x, signed_min).
8012 bool UseArithShift = isSigned && !C.isMinSignedValue();
8013 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
8014 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
8015 SDValue Overflow =
8016 DAG.getSetCC(SL, MVT::i1,
8017 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, SL, VT,
8018 Result, ShiftAmt),
8019 LHS, ISD::SETNE);
8020 return DAG.getMergeValues({Result, Overflow}, SL);
8021 }
8022 }
8023
8024 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
8025 SDValue Top =
8026 DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, SL, VT, LHS, RHS);
8027
8028 SDValue Sign = isSigned
8029 ? DAG.getNode(ISD::SRA, SL, VT, Result,
8030 DAG.getConstant(VT.getScalarSizeInBits() - 1,
8031 SL, MVT::i32))
8032 : DAG.getConstant(0, SL, VT);
8033 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
8034
8035 return DAG.getMergeValues({Result, Overflow}, SL);
8036}
8037
8038SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
8039 if (Op->isDivergent()) {
8040 // Select to V_MAD_[IU]64_[IU]32.
8041 return Op;
8042 }
8043 if (Subtarget->hasSMulHi()) {
8044 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
8045 return SDValue();
8046 }
8047 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
8048 // calculate the high part, so we might as well do the whole thing with
8049 // V_MAD_[IU]64_[IU]32.
8050 return Op;
8051}
8052
8053SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
8054 if (!Subtarget->isTrapHandlerEnabled() ||
8055 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
8056 return lowerTrapEndpgm(Op, DAG);
8057
8058 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG)
8059 : lowerTrapHsaQueuePtr(Op, DAG);
8060}
8061
8062SDValue SITargetLowering::lowerTrapEndpgm(SDValue Op, SelectionDAG &DAG) const {
8063 SDLoc SL(Op);
8064 SDValue Chain = Op.getOperand(0);
8065 return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain);
8066}
8067
8068SDValue
8069SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
8070 const SDLoc &DL, Align Alignment,
8071 ImplicitParameter Param) const {
8072 MachineFunction &MF = DAG.getMachineFunction();
8073 uint64_t Offset = getImplicitParameterOffset(MF, Param);
8074 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
8075 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
8076 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
8079}
8080
8081SDValue SITargetLowering::lowerTrapHsaQueuePtr(SDValue Op,
8082 SelectionDAG &DAG) const {
8083 SDLoc SL(Op);
8084 SDValue Chain = Op.getOperand(0);
8085
8086 SDValue QueuePtr;
8087 // For code object version 5, QueuePtr is passed through implicit kernarg.
8088 const Module *M = DAG.getMachineFunction().getFunction().getParent();
8090 QueuePtr =
8091 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
8092 } else {
8093 MachineFunction &MF = DAG.getMachineFunction();
8094 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
8095 Register UserSGPR = Info->getQueuePtrUserSGPR();
8096
8097 if (UserSGPR == AMDGPU::NoRegister) {
8098 // We probably are in a function incorrectly marked with
8099 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
8100 // trap, so just use a null pointer.
8101 QueuePtr = DAG.getConstant(0, SL, MVT::i64);
8102 } else {
8103 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
8104 MVT::i64);
8105 }
8106 }
8107
8108 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
8109 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, QueuePtr, SDValue());
8110
8111 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
8112 SDValue Ops[] = {ToReg, DAG.getTargetConstant(TrapID, SL, MVT::i16), SGPR01,
8113 ToReg.getValue(1)};
8114 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
8115}
8116
8117SDValue SITargetLowering::lowerTrapHsa(SDValue Op, SelectionDAG &DAG) const {
8118 SDLoc SL(Op);
8119 SDValue Chain = Op.getOperand(0);
8120
8121 // We need to simulate the 's_trap 2' instruction on targets that run in
8122 // PRIV=1 (where it is treated as a nop).
8123 if (Subtarget->hasPrivEnabledTrap2NopBug())
8124 return DAG.getNode(AMDGPUISD::SIMULATED_TRAP, SL, MVT::Other, Chain);
8125
8126 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
8127 SDValue Ops[] = {Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16)};
8128 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
8129}
8130
8131SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
8132 SDLoc SL(Op);
8133 SDValue Chain = Op.getOperand(0);
8134 MachineFunction &MF = DAG.getMachineFunction();
8135
8136 if (!Subtarget->isTrapHandlerEnabled() ||
8137 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
8138 LLVMContext &Ctx = MF.getFunction().getContext();
8139 Ctx.diagnose(DiagnosticInfoUnsupported(MF.getFunction(),
8140 "debugtrap handler not supported",
8141 Op.getDebugLoc(), DS_Warning));
8142 return Chain;
8143 }
8144
8145 uint64_t TrapID =
8146 static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
8147 SDValue Ops[] = {Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16)};
8148 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
8149}
8150
8151SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
8152 SelectionDAG &DAG) const {
8153 if (Subtarget->hasApertureRegs()) {
8154 const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
8155 ? AMDGPU::SRC_SHARED_BASE
8156 : AMDGPU::SRC_PRIVATE_BASE;
8157 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
8158 !Subtarget->hasGloballyAddressableScratch()) &&
8159 "Cannot use src_private_base with globally addressable scratch!");
8160 // Note: this feature (register) is broken. When used as a 32-bit operand,
8161 // it returns a wrong value (all zeroes?). The real value is in the upper 32
8162 // bits.
8163 //
8164 // To work around the issue, emit a 64 bit copy from this register
8165 // then extract the high bits. Note that this shouldn't even result in a
8166 // shift being emitted and simply become a pair of registers (e.g.):
8167 // s_mov_b64 s[6:7], src_shared_base
8168 // v_mov_b32_e32 v1, s7
8169 SDValue Copy =
8170 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ApertureRegNo, MVT::v2i32);
8171 return DAG.getExtractVectorElt(DL, MVT::i32, Copy, 1);
8172 }
8173
8174 // For code object version 5, private_base and shared_base are passed through
8175 // implicit kernargs.
8176 const Module *M = DAG.getMachineFunction().getFunction().getParent();
8180 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
8181 }
8182
8183 MachineFunction &MF = DAG.getMachineFunction();
8184 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
8185 Register UserSGPR = Info->getQueuePtrUserSGPR();
8186 if (UserSGPR == AMDGPU::NoRegister) {
8187 // We probably are in a function incorrectly marked with
8188 // amdgpu-no-queue-ptr. This is undefined.
8189 return DAG.getPOISON(MVT::i32);
8190 }
8191
8192 SDValue QueuePtr =
8193 CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
8194
8195 // Offset into amd_queue_t for group_segment_aperture_base_hi /
8196 // private_segment_aperture_base_hi.
8197 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
8198
8199 SDValue Ptr =
8200 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset));
8201
8202 // TODO: Use custom target PseudoSourceValue.
8203 // TODO: We should use the value from the IR intrinsic call, but it might not
8204 // be available and how do we get it?
8205 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
8206 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
8207 commonAlignment(Align(64), StructOffset),
8210}
8211
8212/// Return true if the value is a known valid address, such that a null check is
8213/// not necessary.
8215 const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
8217 return true;
8218
8219 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
8220 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
8221
8222 // TODO: Search through arithmetic, handle arguments and loads
8223 // marked nonnull.
8224 return false;
8225}
8226
8227SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
8228 SelectionDAG &DAG) const {
8229 SDLoc SL(Op);
8230
8231 const AMDGPUTargetMachine &TM =
8232 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
8233
8234 unsigned DestAS, SrcAS;
8235 SDValue Src;
8236 bool IsNonNull = false;
8237 if (const auto *ASC = dyn_cast<AddrSpaceCastSDNode>(Op)) {
8238 SrcAS = ASC->getSrcAddressSpace();
8239 Src = ASC->getOperand(0);
8240 DestAS = ASC->getDestAddressSpace();
8241 } else {
8242 assert(Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8243 Op.getConstantOperandVal(0) ==
8244 Intrinsic::amdgcn_addrspacecast_nonnull);
8245 Src = Op->getOperand(1);
8246 SrcAS = Op->getConstantOperandVal(2);
8247 DestAS = Op->getConstantOperandVal(3);
8248 IsNonNull = true;
8249 }
8250
8251 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
8252
8253 // flat -> local/private
8254 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
8255 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
8256 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
8257 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
8258
8259 if (DestAS == AMDGPUAS::PRIVATE_ADDRESS &&
8260 Subtarget->hasGloballyAddressableScratch()) {
8261 // flat -> private with globally addressable scratch: subtract
8262 // src_flat_scratch_base_lo.
8263 SDValue FlatScratchBaseLo(
8264 DAG.getMachineNode(
8265 AMDGPU::S_MOV_B32, SL, MVT::i32,
8266 DAG.getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO, MVT::i32)),
8267 0);
8268 Ptr = DAG.getNode(ISD::SUB, SL, MVT::i32, Ptr, FlatScratchBaseLo);
8269 }
8270
8271 if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
8272 return Ptr;
8273
8274 unsigned NullVal = TM.getNullPointerValue(DestAS);
8275 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
8276 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
8277
8278 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
8279 SegmentNullPtr);
8280 }
8281 }
8282
8283 // local/private -> flat
8284 if (DestAS == AMDGPUAS::FLAT_ADDRESS) {
8285 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
8286 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
8287 SDValue CvtPtr;
8288 if (SrcAS == AMDGPUAS::PRIVATE_ADDRESS &&
8289 Subtarget->hasGloballyAddressableScratch()) {
8290 // For wave32: Addr = (TID[4:0] << 52) + FLAT_SCRATCH_BASE + privateAddr
8291 // For wave64: Addr = (TID[5:0] << 51) + FLAT_SCRATCH_BASE + privateAddr
8292 SDValue AllOnes = DAG.getSignedTargetConstant(-1, SL, MVT::i32);
8293 SDValue ThreadID = DAG.getConstant(0, SL, MVT::i32);
8294 ThreadID = DAG.getNode(
8295 ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
8296 DAG.getTargetConstant(Intrinsic::amdgcn_mbcnt_lo, SL, MVT::i32),
8297 AllOnes, ThreadID);
8298 if (Subtarget->isWave64())
8299 ThreadID = DAG.getNode(
8300 ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
8301 DAG.getTargetConstant(Intrinsic::amdgcn_mbcnt_hi, SL, MVT::i32),
8302 AllOnes, ThreadID);
8303 SDValue ShAmt = DAG.getShiftAmountConstant(
8304 57 - 32 - Subtarget->getWavefrontSizeLog2(), MVT::i32, SL);
8305 SDValue SrcHi = DAG.getNode(ISD::SHL, SL, MVT::i32, ThreadID, ShAmt);
8306 CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, SrcHi);
8307 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8308 // Accessing src_flat_scratch_base_lo as a 64-bit operand gives the full
8309 // 64-bit hi:lo value.
8310 SDValue FlatScratchBase = {
8311 DAG.getMachineNode(
8312 AMDGPU::S_MOV_B64, SL, MVT::i64,
8313 DAG.getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE, MVT::i64)),
8314 0};
8315 CvtPtr = DAG.getNode(ISD::ADD, SL, MVT::i64, CvtPtr, FlatScratchBase);
8316 } else {
8317 SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
8318 CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
8319 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8320 }
8321
8322 if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
8323 return CvtPtr;
8324
8325 unsigned NullVal = TM.getNullPointerValue(SrcAS);
8326 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
8327
8328 SDValue NonNull =
8329 DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
8330
8331 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
8332 FlatNullPtr);
8333 }
8334 }
8335
8336 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8337 Op.getValueType() == MVT::i64) {
8338 const SIMachineFunctionInfo *Info =
8339 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
8340 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
8341 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
8342 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8343 }
8344
8345 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8346 Src.getValueType() == MVT::i64)
8347 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
8348
8349 // global <-> flat are no-ops and never emitted.
8350
8351 // Invalid casts are poison.
8352 return DAG.getPOISON(Op->getValueType(0));
8353}
8354
8355// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
8356// the small vector and inserting them into the big vector. That is better than
8357// the default expansion of doing it via a stack slot. Even though the use of
8358// the stack slot would be optimized away afterwards, the stack slot itself
8359// remains.
8360SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
8361 SelectionDAG &DAG) const {
8362 SDValue Vec = Op.getOperand(0);
8363 SDValue Ins = Op.getOperand(1);
8364 SDValue Idx = Op.getOperand(2);
8365 EVT VecVT = Vec.getValueType();
8366 EVT InsVT = Ins.getValueType();
8367 EVT EltVT = VecVT.getVectorElementType();
8368 unsigned InsNumElts = InsVT.getVectorNumElements();
8369 unsigned IdxVal = Idx->getAsZExtVal();
8370 SDLoc SL(Op);
8371
8372 if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) {
8373 // Insert 32-bit registers at a time.
8374 assert(InsNumElts % 2 == 0 && "expect legal vector types");
8375
8376 unsigned VecNumElts = VecVT.getVectorNumElements();
8377 EVT NewVecVT =
8378 EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2);
8379 EVT NewInsVT = InsNumElts == 2 ? MVT::i32
8381 MVT::i32, InsNumElts / 2);
8382
8383 Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec);
8384 Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins);
8385
8386 for (unsigned I = 0; I != InsNumElts / 2; ++I) {
8387 SDValue Elt;
8388 if (InsNumElts == 2) {
8389 Elt = Ins;
8390 } else {
8391 Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins,
8392 DAG.getConstant(I, SL, MVT::i32));
8393 }
8394 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt,
8395 DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32));
8396 }
8397
8398 return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec);
8399 }
8400
8401 for (unsigned I = 0; I != InsNumElts; ++I) {
8402 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
8403 DAG.getConstant(I, SL, MVT::i32));
8404 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
8405 DAG.getConstant(IdxVal + I, SL, MVT::i32));
8406 }
8407 return Vec;
8408}
8409
8410SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
8411 SelectionDAG &DAG) const {
8412 SDValue Vec = Op.getOperand(0);
8413 SDValue InsVal = Op.getOperand(1);
8414 SDValue Idx = Op.getOperand(2);
8415 EVT VecVT = Vec.getValueType();
8416 EVT EltVT = VecVT.getVectorElementType();
8417 unsigned VecSize = VecVT.getSizeInBits();
8418 unsigned EltSize = EltVT.getSizeInBits();
8419 SDLoc SL(Op);
8420
8421 // Specially handle the case of v4i16 with static indexing.
8422 unsigned NumElts = VecVT.getVectorNumElements();
8423 auto *KIdx = dyn_cast<ConstantSDNode>(Idx);
8424 if (NumElts == 4 && EltSize == 16 && KIdx) {
8425 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
8426
8427 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
8428 DAG.getConstant(0, SL, MVT::i32));
8429 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
8430 DAG.getConstant(1, SL, MVT::i32));
8431
8432 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
8433 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
8434
8435 unsigned Idx = KIdx->getZExtValue();
8436 bool InsertLo = Idx < 2;
8437 SDValue InsHalf = DAG.getNode(
8438 ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, InsertLo ? LoVec : HiVec,
8439 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
8440 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
8441
8442 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
8443
8444 SDValue Concat =
8445 InsertLo ? DAG.getBuildVector(MVT::v2i32, SL, {InsHalf, HiHalf})
8446 : DAG.getBuildVector(MVT::v2i32, SL, {LoHalf, InsHalf});
8447
8448 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
8449 }
8450
8451 // Static indexing does not lower to stack access, and hence there is no need
8452 // for special custom lowering to avoid stack access.
8453 if (isa<ConstantSDNode>(Idx))
8454 return SDValue();
8455
8456 // Avoid stack access for dynamic indexing by custom lowering to
8457 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
8458
8459 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
8460
8461 MVT IntVT = MVT::getIntegerVT(VecSize);
8462
8463 // Convert vector index to bit-index and get the required bit mask.
8464 assert(isPowerOf2_32(EltSize));
8465 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
8466 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
8467 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
8468 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
8469 DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
8470
8471 // 1. Create a congruent vector with the target value in each element.
8472 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
8473 DAG.getSplatBuildVector(VecVT, SL, InsVal));
8474
8475 // 2. Mask off all other indices except the required index within (1).
8476 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
8477
8478 // 3. Mask off the required index within the target vector.
8479 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
8480 SDValue RHS =
8481 DAG.getNode(ISD::AND, SL, IntVT, DAG.getNOT(SL, BFM, IntVT), BCVec);
8482
8483 // 4. Get (2) and (3) ORed into the target vector.
8484 SDValue BFI =
8485 DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS, SDNodeFlags::Disjoint);
8486
8487 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
8488}
8489
8490SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
8491 SelectionDAG &DAG) const {
8492 SDLoc SL(Op);
8493
8494 EVT ResultVT = Op.getValueType();
8495 SDValue Vec = Op.getOperand(0);
8496 SDValue Idx = Op.getOperand(1);
8497 EVT VecVT = Vec.getValueType();
8498 unsigned VecSize = VecVT.getSizeInBits();
8499 EVT EltVT = VecVT.getVectorElementType();
8500
8501 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
8502
8503 // Make sure we do any optimizations that will make it easier to fold
8504 // source modifiers before obscuring it with bit operations.
8505
8506 // XXX - Why doesn't this get called when vector_shuffle is expanded?
8507 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
8508 return Combined;
8509
8510 if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
8511 SDValue Lo, Hi;
8512 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
8513
8514 if (VecSize == 128) {
8515 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
8516 Lo = DAG.getBitcast(LoVT,
8517 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
8518 DAG.getConstant(0, SL, MVT::i32)));
8519 Hi = DAG.getBitcast(HiVT,
8520 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
8521 DAG.getConstant(1, SL, MVT::i32)));
8522 } else if (VecSize == 256) {
8523 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
8524 SDValue Parts[4];
8525 for (unsigned P = 0; P < 4; ++P) {
8526 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
8527 DAG.getConstant(P, SL, MVT::i32));
8528 }
8529
8530 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
8531 Parts[0], Parts[1]));
8532 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
8533 Parts[2], Parts[3]));
8534 } else {
8535 assert(VecSize == 512);
8536
8537 SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec);
8538 SDValue Parts[8];
8539 for (unsigned P = 0; P < 8; ++P) {
8540 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
8541 DAG.getConstant(P, SL, MVT::i32));
8542 }
8543
8544 Lo = DAG.getBitcast(LoVT,
8545 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
8546 Parts[0], Parts[1], Parts[2], Parts[3]));
8547 Hi = DAG.getBitcast(HiVT,
8548 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
8549 Parts[4], Parts[5], Parts[6], Parts[7]));
8550 }
8551
8552 EVT IdxVT = Idx.getValueType();
8553 unsigned NElem = VecVT.getVectorNumElements();
8554 assert(isPowerOf2_32(NElem));
8555 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
8556 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
8557 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
8558 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
8559 }
8560
8561 assert(VecSize <= 64);
8562
8563 MVT IntVT = MVT::getIntegerVT(VecSize);
8564
8565 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
8566 SDValue VecBC = peekThroughBitcasts(Vec);
8567 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8568 SDValue Src = VecBC.getOperand(0);
8569 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
8570 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
8571 }
8572
8573 unsigned EltSize = EltVT.getSizeInBits();
8574 assert(isPowerOf2_32(EltSize));
8575
8576 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
8577
8578 // Convert vector index to bit-index (* EltSize)
8579 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
8580
8581 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
8582 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
8583
8584 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
8585 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
8586 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
8587 }
8588
8589 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
8590}
8591
8592static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
8593 assert(Elt % 2 == 0);
8594 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
8595}
8596
8597static bool elementPairIsOddToEven(ArrayRef<int> Mask, int Elt) {
8598 assert(Elt % 2 == 0);
8599 return Mask[Elt] >= 0 && Mask[Elt + 1] >= 0 && (Mask[Elt] & 1) &&
8600 !(Mask[Elt + 1] & 1);
8601}
8602
8603SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
8604 SelectionDAG &DAG) const {
8605 SDLoc SL(Op);
8606 EVT ResultVT = Op.getValueType();
8607 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
8608 MVT EltVT = ResultVT.getVectorElementType().getSimpleVT();
8609 const int NewSrcNumElts = 2;
8610 MVT PackVT = MVT::getVectorVT(EltVT, NewSrcNumElts);
8611 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
8612
8613 // Break up the shuffle into registers sized pieces.
8614 //
8615 // We're trying to form sub-shuffles that the register allocation pipeline
8616 // won't be able to figure out, like how to use v_pk_mov_b32 to do a register
8617 // blend or 16-bit op_sel. It should be able to figure out how to reassemble a
8618 // pair of copies into a consecutive register copy, so use the ordinary
8619 // extract_vector_elt lowering unless we can use the shuffle.
8620 //
8621 // TODO: This is a bit of hack, and we should probably always use
8622 // extract_subvector for the largest possible subvector we can (or at least
8623 // use it for PackVT aligned pieces). However we have worse support for
8624 // combines on them don't directly treat extract_subvector / insert_subvector
8625 // as legal. The DAG scheduler also ends up doing a worse job with the
8626 // extract_subvectors.
8627 const bool ShouldUseConsecutiveExtract = EltVT.getSizeInBits() == 16;
8628
8629 // vector_shuffle <0,1,6,7> lhs, rhs
8630 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
8631 //
8632 // vector_shuffle <6,7,2,3> lhs, rhs
8633 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
8634 //
8635 // vector_shuffle <6,7,0,1> lhs, rhs
8636 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
8637
8638 // Avoid scalarizing when both halves are reading from consecutive elements.
8639
8640 // If we're treating 2 element shuffles as legal, also create odd-to-even
8641 // shuffles of neighboring pairs.
8642 //
8643 // vector_shuffle <3,2,7,6> lhs, rhs
8644 // -> concat_vectors vector_shuffle <1, 0> (extract_subvector lhs, 0)
8645 // vector_shuffle <1, 0> (extract_subvector rhs, 2)
8646
8648 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
8649 if (ShouldUseConsecutiveExtract &&
8651 const int Idx = SVN->getMaskElt(I);
8652 int VecIdx = Idx < SrcNumElts ? 0 : 1;
8653 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
8654 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT,
8655 SVN->getOperand(VecIdx),
8656 DAG.getConstant(EltIdx, SL, MVT::i32));
8657 Pieces.push_back(SubVec);
8658 } else if (elementPairIsOddToEven(SVN->getMask(), I) &&
8660 int Idx0 = SVN->getMaskElt(I);
8661 int Idx1 = SVN->getMaskElt(I + 1);
8662
8663 SDValue SrcOp0 = SVN->getOperand(0);
8664 SDValue SrcOp1 = SrcOp0;
8665 if (Idx0 >= SrcNumElts) {
8666 SrcOp0 = SVN->getOperand(1);
8667 Idx0 -= SrcNumElts;
8668 }
8669
8670 if (Idx1 >= SrcNumElts) {
8671 SrcOp1 = SVN->getOperand(1);
8672 Idx1 -= SrcNumElts;
8673 }
8674
8675 int AlignedIdx0 = Idx0 & ~(NewSrcNumElts - 1);
8676 int AlignedIdx1 = Idx1 & ~(NewSrcNumElts - 1);
8677
8678 // Extract nearest even aligned piece.
8679 SDValue SubVec0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT, SrcOp0,
8680 DAG.getConstant(AlignedIdx0, SL, MVT::i32));
8681 SDValue SubVec1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT, SrcOp1,
8682 DAG.getConstant(AlignedIdx1, SL, MVT::i32));
8683
8684 int NewMaskIdx0 = Idx0 - AlignedIdx0;
8685 int NewMaskIdx1 = Idx1 - AlignedIdx1;
8686
8687 SDValue Result0 = SubVec0;
8688 SDValue Result1 = SubVec0;
8689
8690 if (SubVec0 != SubVec1) {
8691 NewMaskIdx1 += NewSrcNumElts;
8692 Result1 = SubVec1;
8693 } else {
8694 Result1 = DAG.getPOISON(PackVT);
8695 }
8696
8697 SDValue Shuf = DAG.getVectorShuffle(PackVT, SL, Result0, Result1,
8698 {NewMaskIdx0, NewMaskIdx1});
8699 Pieces.push_back(Shuf);
8700 } else {
8701 const int Idx0 = SVN->getMaskElt(I);
8702 const int Idx1 = SVN->getMaskElt(I + 1);
8703 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
8704 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
8705 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
8706 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
8707
8708 SDValue Vec0 = SVN->getOperand(VecIdx0);
8709 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec0,
8710 DAG.getSignedConstant(EltIdx0, SL, MVT::i32));
8711
8712 SDValue Vec1 = SVN->getOperand(VecIdx1);
8713 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec1,
8714 DAG.getSignedConstant(EltIdx1, SL, MVT::i32));
8715 Pieces.push_back(DAG.getBuildVector(PackVT, SL, {Elt0, Elt1}));
8716 }
8717 }
8718
8719 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
8720}
8721
8722SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
8723 SelectionDAG &DAG) const {
8724 SDValue SVal = Op.getOperand(0);
8725 EVT ResultVT = Op.getValueType();
8726 EVT SValVT = SVal.getValueType();
8727 SDValue UndefVal = DAG.getPOISON(SValVT);
8728 SDLoc SL(Op);
8729
8731 VElts.push_back(SVal);
8732 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
8733 VElts.push_back(UndefVal);
8734
8735 return DAG.getBuildVector(ResultVT, SL, VElts);
8736}
8737
8738SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
8739 SelectionDAG &DAG) const {
8740 SDLoc SL(Op);
8741 EVT VT = Op.getValueType();
8742
8743 if (VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16) {
8744 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
8745
8746 SDValue Lo = Op.getOperand(0);
8747 SDValue Hi = Op.getOperand(1);
8748
8749 // Avoid adding defined bits with the zero_extend.
8750 if (Hi.isUndef()) {
8751 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
8752 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
8753 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
8754 }
8755
8756 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
8757 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
8758
8759 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
8760 DAG.getConstant(16, SL, MVT::i32));
8761 if (Lo.isUndef())
8762 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
8763
8764 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
8765 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
8766
8767 SDValue Or =
8768 DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi, SDNodeFlags::Disjoint);
8769 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
8770 }
8771
8772 // Split into 2-element chunks.
8773 const unsigned NumParts = VT.getVectorNumElements() / 2;
8774 EVT PartVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
8775 MVT PartIntVT = MVT::getIntegerVT(PartVT.getSizeInBits());
8776
8778 for (unsigned P = 0; P < NumParts; ++P) {
8779 SDValue Vec = DAG.getBuildVector(
8780 PartVT, SL, {Op.getOperand(P * 2), Op.getOperand(P * 2 + 1)});
8781 Casts.push_back(DAG.getNode(ISD::BITCAST, SL, PartIntVT, Vec));
8782 }
8783
8784 SDValue Blend =
8785 DAG.getBuildVector(MVT::getVectorVT(PartIntVT, NumParts), SL, Casts);
8786 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
8787}
8788
8790 const GlobalAddressSDNode *GA) const {
8791 // OSes that use ELF REL relocations (instead of RELA) can only store a
8792 // 32-bit addend in the instruction, so it is not safe to allow offset folding
8793 // which can create arbitrary 64-bit addends. (This is only a problem for
8794 // R_AMDGPU_*32_HI relocations since other relocation types are unaffected by
8795 // the high 32 bits of the addend.)
8796 //
8797 // This should be kept in sync with how HasRelocationAddend is initialized in
8798 // the constructor of ELFAMDGPUAsmBackend.
8799 if (!Subtarget->isAmdHsaOS())
8800 return false;
8801
8802 // We can fold offsets for anything that doesn't require a GOT relocation.
8803 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
8807}
8808
8809static SDValue
8811 const SDLoc &DL, int64_t Offset, EVT PtrVT,
8812 unsigned GAFlags = SIInstrInfo::MO_NONE) {
8813 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
8814 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
8815 // lowered to the following code sequence:
8816 //
8817 // For constant address space:
8818 // s_getpc_b64 s[0:1]
8819 // s_add_u32 s0, s0, $symbol
8820 // s_addc_u32 s1, s1, 0
8821 //
8822 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
8823 // a fixup or relocation is emitted to replace $symbol with a literal
8824 // constant, which is a pc-relative offset from the encoding of the $symbol
8825 // operand to the global variable.
8826 //
8827 // For global address space:
8828 // s_getpc_b64 s[0:1]
8829 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
8830 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
8831 //
8832 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
8833 // fixups or relocations are emitted to replace $symbol@*@lo and
8834 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
8835 // which is a 64-bit pc-relative offset from the encoding of the $symbol
8836 // operand to the global variable.
8837 if (((const GCNSubtarget &)DAG.getSubtarget()).has64BitLiterals()) {
8838 assert(GAFlags != SIInstrInfo::MO_NONE);
8839
8840 SDValue Ptr =
8841 DAG.getTargetGlobalAddress(GV, DL, MVT::i64, Offset, GAFlags + 2);
8842 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET64, DL, PtrVT, Ptr);
8843 }
8844
8845 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags);
8846 SDValue PtrHi;
8847 if (GAFlags == SIInstrInfo::MO_NONE)
8848 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
8849 else
8850 PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1);
8851 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
8852}
8853
8854SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
8855 SDValue Op,
8856 SelectionDAG &DAG) const {
8857 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
8858 SDLoc DL(GSD);
8859 EVT PtrVT = Op.getValueType();
8860
8861 const GlobalValue *GV = GSD->getGlobal();
8867 GV->hasExternalLinkage()) {
8868 Type *Ty = GV->getValueType();
8869 // HIP uses an unsized array `extern __shared__ T s[]` or similar
8870 // zero-sized type in other languages to declare the dynamic shared
8871 // memory which size is not known at the compile time. They will be
8872 // allocated by the runtime and placed directly after the static
8873 // allocated ones. They all share the same offset.
8874 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
8875 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
8876 // Adjust alignment for that dynamic shared memory array.
8879 MFI->setUsesDynamicLDS(true);
8880 return SDValue(
8881 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
8882 }
8883 }
8885 }
8886
8888 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
8890 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
8891 }
8892
8893 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
8894 if (Subtarget->has64BitLiterals()) {
8896 GV, DL, MVT::i64, GSD->getOffset(), SIInstrInfo::MO_ABS64);
8897 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, Addr),
8898 0);
8899 }
8900
8901 SDValue AddrLo = DAG.getTargetGlobalAddress(
8902 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO);
8903 AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0};
8904
8905 SDValue AddrHi = DAG.getTargetGlobalAddress(
8906 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI);
8907 AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0};
8908
8909 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi);
8910 }
8911
8912 if (shouldEmitFixup(GV))
8913 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
8914
8915 if (shouldEmitPCReloc(GV))
8916 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
8918
8919 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
8921 PointerType *PtrTy =
8923 const DataLayout &DataLayout = DAG.getDataLayout();
8924 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
8925 MachinePointerInfo PtrInfo =
8927
8928 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
8931}
8932
8934 const SDLoc &DL, SDValue V) const {
8935 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
8936 // the destination register.
8937 //
8938 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
8939 // so we will end up with redundant moves to m0.
8940 //
8941 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
8942
8943 // A Null SDValue creates a glue result.
8944 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
8945 V, Chain);
8946 return SDValue(M0, 0);
8947}
8948
8949SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op,
8950 MVT VT,
8951 unsigned Offset) const {
8952 SDLoc SL(Op);
8953 SDValue Param = lowerKernargMemParameter(
8954 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
8955 // The local size values will have the hi 16-bits as zero.
8956 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
8957 DAG.getValueType(VT));
8958}
8959
8961 EVT VT) {
8964 "non-hsa intrinsic with hsa target", DL.getDebugLoc()));
8965 return DAG.getPOISON(VT);
8966}
8967
8969 EVT VT) {
8972 "intrinsic not supported on subtarget", DL.getDebugLoc()));
8973 return DAG.getPOISON(VT);
8974}
8975
8977 ArrayRef<SDValue> Elts) {
8978 assert(!Elts.empty());
8979 MVT Type;
8980 unsigned NumElts = Elts.size();
8981
8982 if (NumElts <= 12) {
8983 Type = MVT::getVectorVT(MVT::f32, NumElts);
8984 } else {
8985 assert(Elts.size() <= 16);
8986 Type = MVT::v16f32;
8987 NumElts = 16;
8988 }
8989
8990 SmallVector<SDValue, 16> VecElts(NumElts);
8991 for (unsigned i = 0; i < Elts.size(); ++i) {
8992 SDValue Elt = Elts[i];
8993 if (Elt.getValueType() != MVT::f32)
8994 Elt = DAG.getBitcast(MVT::f32, Elt);
8995 VecElts[i] = Elt;
8996 }
8997 for (unsigned i = Elts.size(); i < NumElts; ++i)
8998 VecElts[i] = DAG.getPOISON(MVT::f32);
8999
9000 if (NumElts == 1)
9001 return VecElts[0];
9002 return DAG.getBuildVector(Type, DL, VecElts);
9003}
9004
9005static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
9006 SDValue Src, int ExtraElts) {
9007 EVT SrcVT = Src.getValueType();
9008
9010
9011 if (SrcVT.isVector())
9012 DAG.ExtractVectorElements(Src, Elts);
9013 else
9014 Elts.push_back(Src);
9015
9016 SDValue Undef = DAG.getPOISON(SrcVT.getScalarType());
9017 while (ExtraElts--)
9018 Elts.push_back(Undef);
9019
9020 return DAG.getBuildVector(CastVT, DL, Elts);
9021}
9022
9023// Re-construct the required return value for a image load intrinsic.
9024// This is more complicated due to the optional use TexFailCtrl which means the
9025// required return type is an aggregate
9027 ArrayRef<EVT> ResultTypes, bool IsTexFail,
9028 bool Unpacked, bool IsD16, int DMaskPop,
9029 int NumVDataDwords, bool IsAtomicPacked16Bit,
9030 const SDLoc &DL) {
9031 // Determine the required return type. This is the same regardless of
9032 // IsTexFail flag
9033 EVT ReqRetVT = ResultTypes[0];
9034 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
9035 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
9036 ? (ReqRetNumElts + 1) / 2
9037 : ReqRetNumElts;
9038
9039 int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2;
9040
9041 MVT DataDwordVT =
9042 NumDataDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
9043
9044 MVT MaskPopVT =
9045 MaskPopDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
9046
9047 SDValue Data(Result, 0);
9048 SDValue TexFail;
9049
9050 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
9051 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
9052 if (MaskPopVT.isVector()) {
9053 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
9054 SDValue(Result, 0), ZeroIdx);
9055 } else {
9056 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
9057 SDValue(Result, 0), ZeroIdx);
9058 }
9059 }
9060
9061 if (DataDwordVT.isVector() && !IsAtomicPacked16Bit)
9062 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
9063 NumDataDwords - MaskPopDwords);
9064
9065 if (IsD16)
9066 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
9067
9068 EVT LegalReqRetVT = ReqRetVT;
9069 if (!ReqRetVT.isVector()) {
9070 if (!Data.getValueType().isInteger())
9071 Data = DAG.getNode(ISD::BITCAST, DL,
9072 Data.getValueType().changeTypeToInteger(), Data);
9073 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
9074 } else {
9075 // We need to widen the return vector to a legal type
9076 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
9077 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
9078 LegalReqRetVT =
9080 ReqRetVT.getVectorNumElements() + 1);
9081 }
9082 }
9083 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
9084
9085 if (IsTexFail) {
9086 TexFail =
9087 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
9088 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
9089
9090 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
9091 }
9092
9093 if (Result->getNumValues() == 1)
9094 return Data;
9095
9096 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
9097}
9098
9099static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
9100 SDValue *LWE, bool &IsTexFail) {
9101 auto *TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
9102
9103 uint64_t Value = TexFailCtrlConst->getZExtValue();
9104 if (Value) {
9105 IsTexFail = true;
9106 }
9107
9108 SDLoc DL(TexFailCtrlConst);
9109 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
9110 Value &= ~(uint64_t)0x1;
9111 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
9112 Value &= ~(uint64_t)0x2;
9113
9114 return Value == 0;
9115}
9116
9118 MVT PackVectorVT,
9119 SmallVectorImpl<SDValue> &PackedAddrs,
9120 unsigned DimIdx, unsigned EndIdx,
9121 unsigned NumGradients) {
9122 SDLoc DL(Op);
9123 for (unsigned I = DimIdx; I < EndIdx; I++) {
9124 SDValue Addr = Op.getOperand(I);
9125
9126 // Gradients are packed with undef for each coordinate.
9127 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
9128 // 1D: undef,dx/dh; undef,dx/dv
9129 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
9130 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
9131 if (((I + 1) >= EndIdx) ||
9132 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
9133 I == DimIdx + NumGradients - 1))) {
9134 if (Addr.getValueType() != MVT::i16)
9135 Addr = DAG.getBitcast(MVT::i16, Addr);
9136 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
9137 } else {
9138 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
9139 I++;
9140 }
9141 Addr = DAG.getBitcast(MVT::f32, Addr);
9142 PackedAddrs.push_back(Addr);
9143 }
9144}
9145
9146SDValue SITargetLowering::lowerImage(SDValue Op,
9148 SelectionDAG &DAG, bool WithChain) const {
9149 SDLoc DL(Op);
9150 MachineFunction &MF = DAG.getMachineFunction();
9151 const GCNSubtarget *ST = &MF.getSubtarget<GCNSubtarget>();
9152 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
9154 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
9155 unsigned IntrOpcode = Intr->BaseOpcode;
9156 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
9157 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
9158 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
9159
9160 SmallVector<EVT, 3> ResultTypes(Op->values());
9161 SmallVector<EVT, 3> OrigResultTypes(Op->values());
9162 bool IsD16 = false;
9163 bool IsG16 = false;
9164 bool IsA16 = false;
9165 SDValue VData;
9166 int NumVDataDwords = 0;
9167 bool AdjustRetType = false;
9168 bool IsAtomicPacked16Bit = false;
9169
9170 // Offset of intrinsic arguments
9171 const unsigned ArgOffset = WithChain ? 2 : 1;
9172
9173 unsigned DMask;
9174 unsigned DMaskLanes = 0;
9175
9176 if (BaseOpcode->Atomic) {
9177 VData = Op.getOperand(2);
9178
9179 IsAtomicPacked16Bit =
9180 (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
9181 Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
9182
9183 bool Is64Bit = VData.getValueSizeInBits() == 64;
9184 if (BaseOpcode->AtomicX2) {
9185 SDValue VData2 = Op.getOperand(3);
9186 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
9187 {VData, VData2});
9188 if (Is64Bit)
9189 VData = DAG.getBitcast(MVT::v4i32, VData);
9190
9191 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
9192 DMask = Is64Bit ? 0xf : 0x3;
9193 NumVDataDwords = Is64Bit ? 4 : 2;
9194 } else {
9195 DMask = Is64Bit ? 0x3 : 0x1;
9196 NumVDataDwords = Is64Bit ? 2 : 1;
9197 }
9198 } else {
9199 DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex);
9200 DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
9201
9202 if (BaseOpcode->Store) {
9203 VData = Op.getOperand(2);
9204
9205 MVT StoreVT = VData.getSimpleValueType();
9206 if (StoreVT.getScalarType() == MVT::f16) {
9207 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9208 return Op; // D16 is unsupported for this instruction
9209
9210 IsD16 = true;
9211 VData = handleD16VData(VData, DAG, true);
9212 }
9213
9214 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
9215 } else if (!BaseOpcode->NoReturn) {
9216 // Work out the num dwords based on the dmask popcount and underlying type
9217 // and whether packing is supported.
9218 MVT LoadVT = ResultTypes[0].getSimpleVT();
9219 if (LoadVT.getScalarType() == MVT::f16) {
9220 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9221 return Op; // D16 is unsupported for this instruction
9222
9223 IsD16 = true;
9224 }
9225
9226 // Confirm that the return type is large enough for the dmask specified
9227 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
9228 (!LoadVT.isVector() && DMaskLanes > 1))
9229 return Op;
9230
9231 // The sq block of gfx8 and gfx9 do not estimate register use correctly
9232 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
9233 // instructions.
9234 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
9235 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
9236 NumVDataDwords = (DMaskLanes + 1) / 2;
9237 else
9238 NumVDataDwords = DMaskLanes;
9239
9240 AdjustRetType = true;
9241 }
9242 }
9243
9244 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
9246
9247 // Check for 16 bit addresses or derivatives and pack if true.
9248 MVT VAddrVT =
9249 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
9250 MVT VAddrScalarVT = VAddrVT.getScalarType();
9251 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9252 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9253
9254 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
9255 VAddrScalarVT = VAddrVT.getScalarType();
9256 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9257 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9258
9259 // Push back extra arguments.
9260 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
9261 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
9262 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
9263 // Special handling of bias when A16 is on. Bias is of type half but
9264 // occupies full 32-bit.
9265 SDValue Bias = DAG.getBuildVector(
9266 MVT::v2f16, DL,
9267 {Op.getOperand(ArgOffset + I), DAG.getPOISON(MVT::f16)});
9268 VAddrs.push_back(Bias);
9269 } else {
9270 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
9271 "Bias needs to be converted to 16 bit in A16 mode");
9272 VAddrs.push_back(Op.getOperand(ArgOffset + I));
9273 }
9274 }
9275
9276 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
9277 // 16 bit gradients are supported, but are tied to the A16 control
9278 // so both gradients and addresses must be 16 bit
9279 LLVM_DEBUG(
9280 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
9281 "require 16 bit args for both gradients and addresses");
9282 return Op;
9283 }
9284
9285 if (IsA16) {
9286 if (!ST->hasA16()) {
9287 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
9288 "support 16 bit addresses\n");
9289 return Op;
9290 }
9291 }
9292
9293 // We've dealt with incorrect input so we know that if IsA16, IsG16
9294 // are set then we have to compress/pack operands (either address,
9295 // gradient or both)
9296 // In the case where a16 and gradients are tied (no G16 support) then we
9297 // have already verified that both IsA16 and IsG16 are true
9298 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
9299 // Activate g16
9300 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
9302 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
9303 }
9304
9305 // Add gradients (packed or unpacked)
9306 if (IsG16) {
9307 // Pack the gradients
9308 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
9309 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
9310 ArgOffset + Intr->GradientStart,
9311 ArgOffset + Intr->CoordStart, Intr->NumGradients);
9312 } else {
9313 for (unsigned I = ArgOffset + Intr->GradientStart;
9314 I < ArgOffset + Intr->CoordStart; I++)
9315 VAddrs.push_back(Op.getOperand(I));
9316 }
9317
9318 // Add addresses (packed or unpacked)
9319 if (IsA16) {
9320 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
9321 ArgOffset + Intr->CoordStart, VAddrEnd,
9322 0 /* No gradients */);
9323 } else {
9324 // Add uncompressed address
9325 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
9326 VAddrs.push_back(Op.getOperand(I));
9327 }
9328
9329 // If the register allocator cannot place the address registers contiguously
9330 // without introducing moves, then using the non-sequential address encoding
9331 // is always preferable, since it saves VALU instructions and is usually a
9332 // wash in terms of code size or even better.
9333 //
9334 // However, we currently have no way of hinting to the register allocator that
9335 // MIMG addresses should be placed contiguously when it is possible to do so,
9336 // so force non-NSA for the common 2-address case as a heuristic.
9337 //
9338 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
9339 // allocation when possible.
9340 //
9341 // Partial NSA is allowed on GFX11+ where the final register is a contiguous
9342 // set of the remaining addresses.
9343 const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler);
9344 const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding();
9345 const bool UseNSA = ST->hasNSAEncoding() &&
9346 VAddrs.size() >= ST->getNSAThreshold(MF) &&
9347 (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding);
9348 const bool UsePartialNSA =
9349 UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize;
9350
9351 SDValue VAddr;
9352 if (UsePartialNSA) {
9353 VAddr = getBuildDwordsVector(DAG, DL,
9354 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
9355 } else if (!UseNSA) {
9356 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
9357 }
9358
9359 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
9360 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
9361 SDValue Unorm;
9362 if (!BaseOpcode->Sampler) {
9363 Unorm = True;
9364 } else {
9365 uint64_t UnormConst =
9366 Op.getConstantOperandVal(ArgOffset + Intr->UnormIndex);
9367
9368 Unorm = UnormConst ? True : False;
9369 }
9370
9371 SDValue TFE;
9372 SDValue LWE;
9373 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
9374 bool IsTexFail = false;
9375 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
9376 return Op;
9377
9378 if (IsTexFail) {
9379 if (!DMaskLanes) {
9380 // Expecting to get an error flag since TFC is on - and dmask is 0
9381 // Force dmask to be at least 1 otherwise the instruction will fail
9382 DMask = 0x1;
9383 DMaskLanes = 1;
9384 NumVDataDwords = 1;
9385 }
9386 NumVDataDwords += 1;
9387 AdjustRetType = true;
9388 }
9389
9390 // Has something earlier tagged that the return type needs adjusting
9391 // This happens if the instruction is a load or has set TexFailCtrl flags
9392 if (AdjustRetType) {
9393 // NumVDataDwords reflects the true number of dwords required in the return
9394 // type
9395 if (DMaskLanes == 0 && !BaseOpcode->Store) {
9396 // This is a no-op load. This can be eliminated
9397 SDValue Undef = DAG.getPOISON(Op.getValueType());
9398 if (isa<MemSDNode>(Op))
9399 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
9400 return Undef;
9401 }
9402
9403 EVT NewVT = NumVDataDwords > 1 ? EVT::getVectorVT(*DAG.getContext(),
9404 MVT::i32, NumVDataDwords)
9405 : MVT::i32;
9406
9407 ResultTypes[0] = NewVT;
9408 if (ResultTypes.size() == 3) {
9409 // Original result was aggregate type used for TexFailCtrl results
9410 // The actual instruction returns as a vector type which has now been
9411 // created. Remove the aggregate result.
9412 ResultTypes.erase(&ResultTypes[1]);
9413 }
9414 }
9415
9416 unsigned CPol = Op.getConstantOperandVal(ArgOffset + Intr->CachePolicyIndex);
9417 if (BaseOpcode->Atomic)
9418 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
9419 if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) |
9421 return Op;
9422
9424 if (BaseOpcode->Store || BaseOpcode->Atomic)
9425 Ops.push_back(VData); // vdata
9426 if (UsePartialNSA) {
9427 append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1));
9428 Ops.push_back(VAddr);
9429 } else if (UseNSA)
9430 append_range(Ops, VAddrs);
9431 else
9432 Ops.push_back(VAddr);
9433 SDValue Rsrc = Op.getOperand(ArgOffset + Intr->RsrcIndex);
9434 EVT RsrcVT = Rsrc.getValueType();
9435 if (RsrcVT != MVT::v4i32 && RsrcVT != MVT::v8i32)
9436 return Op;
9437 Ops.push_back(Rsrc);
9438 if (BaseOpcode->Sampler) {
9439 SDValue Samp = Op.getOperand(ArgOffset + Intr->SampIndex);
9440 if (Samp.getValueType() != MVT::v4i32)
9441 return Op;
9442 Ops.push_back(Samp);
9443 }
9444 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
9445 if (IsGFX10Plus)
9446 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
9447 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9448 Ops.push_back(Unorm);
9449 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
9450 Ops.push_back(IsA16 && // r128, a16 for gfx9
9451 ST->hasFeature(AMDGPU::FeatureR128A16)
9452 ? True
9453 : False);
9454 if (IsGFX10Plus)
9455 Ops.push_back(IsA16 ? True : False);
9456
9457 if (!Subtarget->hasGFX90AInsts())
9458 Ops.push_back(TFE); // tfe
9459 else if (TFE->getAsZExtVal()) {
9460 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
9462 "TFE is not supported on this GPU", DL.getDebugLoc()));
9463 }
9464
9465 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9466 Ops.push_back(LWE); // lwe
9467 if (!IsGFX10Plus)
9468 Ops.push_back(DimInfo->DA ? True : False);
9469 if (BaseOpcode->HasD16)
9470 Ops.push_back(IsD16 ? True : False);
9471 if (isa<MemSDNode>(Op))
9472 Ops.push_back(Op.getOperand(0)); // chain
9473
9474 int NumVAddrDwords =
9475 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
9476 int Opcode = -1;
9477
9478 if (IsGFX12Plus) {
9479 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12,
9480 NumVDataDwords, NumVAddrDwords);
9481 } else if (IsGFX11Plus) {
9482 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
9483 UseNSA ? AMDGPU::MIMGEncGfx11NSA
9484 : AMDGPU::MIMGEncGfx11Default,
9485 NumVDataDwords, NumVAddrDwords);
9486 } else if (IsGFX10Plus) {
9487 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
9488 UseNSA ? AMDGPU::MIMGEncGfx10NSA
9489 : AMDGPU::MIMGEncGfx10Default,
9490 NumVDataDwords, NumVAddrDwords);
9491 } else {
9492 if (Subtarget->hasGFX90AInsts()) {
9493 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
9494 NumVDataDwords, NumVAddrDwords);
9495 if (Opcode == -1) {
9496 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
9498 "requested image instruction is not supported on this GPU",
9499 DL.getDebugLoc()));
9500
9501 unsigned Idx = 0;
9502 SmallVector<SDValue, 3> RetValues(OrigResultTypes.size());
9503 for (EVT VT : OrigResultTypes) {
9504 if (VT == MVT::Other)
9505 RetValues[Idx++] = Op.getOperand(0); // Chain
9506 else
9507 RetValues[Idx++] = DAG.getPOISON(VT);
9508 }
9509
9510 return DAG.getMergeValues(RetValues, DL);
9511 }
9512 }
9513 if (Opcode == -1 &&
9514 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
9515 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
9516 NumVDataDwords, NumVAddrDwords);
9517 if (Opcode == -1)
9518 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
9519 NumVDataDwords, NumVAddrDwords);
9520 }
9521 if (Opcode == -1)
9522 return Op;
9523
9524 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
9525 if (auto *MemOp = dyn_cast<MemSDNode>(Op)) {
9526 MachineMemOperand *MemRef = MemOp->getMemOperand();
9527 DAG.setNodeMemRefs(NewNode, {MemRef});
9528 }
9529
9530 if (BaseOpcode->AtomicX2) {
9532 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
9533 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
9534 }
9535 if (BaseOpcode->NoReturn)
9536 return SDValue(NewNode, 0);
9537 return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail,
9538 Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
9539 NumVDataDwords, IsAtomicPacked16Bit, DL);
9540}
9541
9542SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
9543 SDValue Offset, SDValue CachePolicy,
9544 SelectionDAG &DAG) const {
9545 MachineFunction &MF = DAG.getMachineFunction();
9546
9547 const DataLayout &DataLayout = DAG.getDataLayout();
9548 Align Alignment =
9549 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
9550
9551 MachineMemOperand *MMO = MF.getMachineMemOperand(
9552 MachinePointerInfo(),
9555 VT.getStoreSize(), Alignment);
9556
9557 if (!Offset->isDivergent()) {
9558 SDValue Ops[] = {Rsrc, Offset, CachePolicy};
9559
9560 // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the
9561 // s_buffer_load_u16 instruction is emitted for both signed and unsigned
9562 // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext
9563 // and generates s_buffer_load_i16 (performSignExtendInRegCombine).
9564 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9565 SDValue BufferLoad =
9567 DAG.getVTList(MVT::i32), Ops, VT, MMO);
9568 return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
9569 }
9570
9571 // Widen vec3 load to vec4.
9572 if (VT.isVector() && VT.getVectorNumElements() == 3 &&
9573 !Subtarget->hasScalarDwordx3Loads()) {
9574 EVT WidenedVT =
9576 auto WidenedOp = DAG.getMemIntrinsicNode(
9577 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
9578 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
9579 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
9580 DAG.getVectorIdxConstant(0, DL));
9581 return Subvector;
9582 }
9583
9585 DAG.getVTList(VT), Ops, VT, MMO);
9586 }
9587
9588 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
9589 // assume that the buffer is unswizzled.
9590 SDValue Ops[] = {
9591 DAG.getEntryNode(), // Chain
9592 Rsrc, // rsrc
9593 DAG.getConstant(0, DL, MVT::i32), // vindex
9594 {}, // voffset
9595 {}, // soffset
9596 {}, // offset
9597 CachePolicy, // cachepolicy
9598 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9599 };
9600 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9601 setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
9602 return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
9603 }
9604
9606 unsigned NumLoads = 1;
9607 MVT LoadVT = VT.getSimpleVT();
9608 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
9609 assert((LoadVT.getScalarType() == MVT::i32 ||
9610 LoadVT.getScalarType() == MVT::f32));
9611
9612 if (NumElts == 8 || NumElts == 16) {
9613 NumLoads = NumElts / 4;
9614 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
9615 }
9616
9617 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Other});
9618
9619 // Use the alignment to ensure that the required offsets will fit into the
9620 // immediate offsets.
9621 setBufferOffsets(Offset, DAG, &Ops[3],
9622 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
9623
9624 uint64_t InstOffset = Ops[5]->getAsZExtVal();
9625 for (unsigned i = 0; i < NumLoads; ++i) {
9626 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
9627 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
9628 LoadVT, MMO, DAG));
9629 }
9630
9631 if (NumElts == 8 || NumElts == 16)
9632 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
9633
9634 return Loads[0];
9635}
9636
9637SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const {
9638 // With architected SGPRs, waveIDinGroup is in TTMP8[29:25].
9639 if (!Subtarget->hasArchitectedSGPRs())
9640 return {};
9641 SDLoc SL(Op);
9642 MVT VT = MVT::i32;
9643 SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT);
9644 return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8,
9645 DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT));
9646}
9647
9648SDValue SITargetLowering::lowerConstHwRegRead(SelectionDAG &DAG, SDValue Op,
9649 AMDGPU::Hwreg::Id HwReg,
9650 unsigned LowBit,
9651 unsigned Width) const {
9652 SDLoc SL(Op);
9653 using namespace AMDGPU::Hwreg;
9654 return {DAG.getMachineNode(
9655 AMDGPU::S_GETREG_B32_const, SL, MVT::i32,
9656 DAG.getTargetConstant(HwregEncoding::encode(HwReg, LowBit, Width),
9657 SL, MVT::i32)),
9658 0};
9659}
9660
9661SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
9662 unsigned Dim,
9663 const ArgDescriptor &Arg) const {
9664 SDLoc SL(Op);
9665 MachineFunction &MF = DAG.getMachineFunction();
9666 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
9667 if (MaxID == 0)
9668 return DAG.getConstant(0, SL, MVT::i32);
9669
9670 // It's undefined behavior if a function marked with the amdgpu-no-*
9671 // attributes uses the corresponding intrinsic.
9672 if (!Arg)
9673 return DAG.getPOISON(Op->getValueType(0));
9674
9675 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
9676 SDLoc(DAG.getEntryNode()), Arg);
9677
9678 // Don't bother inserting AssertZext for packed IDs since we're emitting the
9679 // masking operations anyway.
9680 //
9681 // TODO: We could assert the top bit is 0 for the source copy.
9682 if (Arg.isMasked())
9683 return Val;
9684
9685 // Preserve the known bits after expansion to a copy.
9686 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
9687 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
9688 DAG.getValueType(SmallVT));
9689}
9690
9691SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9692 SelectionDAG &DAG) const {
9693 MachineFunction &MF = DAG.getMachineFunction();
9694 auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
9695
9696 EVT VT = Op.getValueType();
9697 SDLoc DL(Op);
9698 unsigned IntrinsicID = Op.getConstantOperandVal(0);
9699
9700 // TODO: Should this propagate fast-math-flags?
9701
9702 switch (IntrinsicID) {
9703 case Intrinsic::amdgcn_implicit_buffer_ptr: {
9704 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
9705 return emitNonHSAIntrinsicError(DAG, DL, VT);
9706 return getPreloadedValue(DAG, *MFI, VT,
9708 }
9709 case Intrinsic::amdgcn_dispatch_ptr:
9710 case Intrinsic::amdgcn_queue_ptr: {
9711 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
9712 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
9713 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
9714 DL.getDebugLoc()));
9715 return DAG.getPOISON(VT);
9716 }
9717
9718 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr
9721 return getPreloadedValue(DAG, *MFI, VT, RegID);
9722 }
9723 case Intrinsic::amdgcn_implicitarg_ptr: {
9724 if (MFI->isEntryFunction())
9725 return getImplicitArgPtr(DAG, DL);
9726 return getPreloadedValue(DAG, *MFI, VT,
9728 }
9729 case Intrinsic::amdgcn_kernarg_segment_ptr: {
9731 // This only makes sense to call in a kernel, so just lower to null.
9732 return DAG.getConstant(0, DL, VT);
9733 }
9734
9735 return getPreloadedValue(DAG, *MFI, VT,
9737 }
9738 case Intrinsic::amdgcn_dispatch_id: {
9739 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
9740 }
9741 case Intrinsic::amdgcn_rcp:
9742 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
9743 case Intrinsic::amdgcn_rsq:
9744 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
9745 case Intrinsic::amdgcn_rsq_legacy:
9746 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
9747 return emitRemovedIntrinsicError(DAG, DL, VT);
9748 return SDValue();
9749 case Intrinsic::amdgcn_rcp_legacy:
9750 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
9751 return emitRemovedIntrinsicError(DAG, DL, VT);
9752 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
9753 case Intrinsic::amdgcn_rsq_clamp: {
9754 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
9755 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
9756
9757 Type *Type = VT.getTypeForEVT(*DAG.getContext());
9758 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
9759 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
9760
9761 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
9762 SDValue Tmp =
9763 DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT));
9764 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
9765 DAG.getConstantFP(Min, DL, VT));
9766 }
9767 case Intrinsic::r600_read_ngroups_x:
9768 if (Subtarget->isAmdHsaOS())
9769 return emitNonHSAIntrinsicError(DAG, DL, VT);
9770
9771 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
9773 false);
9774 case Intrinsic::r600_read_ngroups_y:
9775 if (Subtarget->isAmdHsaOS())
9776 return emitNonHSAIntrinsicError(DAG, DL, VT);
9777
9778 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
9780 false);
9781 case Intrinsic::r600_read_ngroups_z:
9782 if (Subtarget->isAmdHsaOS())
9783 return emitNonHSAIntrinsicError(DAG, DL, VT);
9784
9785 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
9787 false);
9788 case Intrinsic::r600_read_local_size_x:
9789 if (Subtarget->isAmdHsaOS())
9790 return emitNonHSAIntrinsicError(DAG, DL, VT);
9791
9792 return lowerImplicitZextParam(DAG, Op, MVT::i16,
9794 case Intrinsic::r600_read_local_size_y:
9795 if (Subtarget->isAmdHsaOS())
9796 return emitNonHSAIntrinsicError(DAG, DL, VT);
9797
9798 return lowerImplicitZextParam(DAG, Op, MVT::i16,
9800 case Intrinsic::r600_read_local_size_z:
9801 if (Subtarget->isAmdHsaOS())
9802 return emitNonHSAIntrinsicError(DAG, DL, VT);
9803
9804 return lowerImplicitZextParam(DAG, Op, MVT::i16,
9806 case Intrinsic::amdgcn_workgroup_id_x:
9807 return lowerWorkGroupId(DAG, *MFI, VT,
9811 case Intrinsic::amdgcn_workgroup_id_y:
9812 return lowerWorkGroupId(DAG, *MFI, VT,
9816 case Intrinsic::amdgcn_workgroup_id_z:
9817 return lowerWorkGroupId(DAG, *MFI, VT,
9821 case Intrinsic::amdgcn_cluster_id_x:
9822 return Subtarget->hasClusters()
9823 ? getPreloadedValue(DAG, *MFI, VT,
9825 : DAG.getPOISON(VT);
9826 case Intrinsic::amdgcn_cluster_id_y:
9827 return Subtarget->hasClusters()
9828 ? getPreloadedValue(DAG, *MFI, VT,
9830 : DAG.getPOISON(VT);
9831 case Intrinsic::amdgcn_cluster_id_z:
9832 return Subtarget->hasClusters()
9833 ? getPreloadedValue(DAG, *MFI, VT,
9835 : DAG.getPOISON(VT);
9836 case Intrinsic::amdgcn_cluster_workgroup_id_x:
9837 return Subtarget->hasClusters()
9838 ? getPreloadedValue(
9839 DAG, *MFI, VT,
9841 : DAG.getPOISON(VT);
9842 case Intrinsic::amdgcn_cluster_workgroup_id_y:
9843 return Subtarget->hasClusters()
9844 ? getPreloadedValue(
9845 DAG, *MFI, VT,
9847 : DAG.getPOISON(VT);
9848 case Intrinsic::amdgcn_cluster_workgroup_id_z:
9849 return Subtarget->hasClusters()
9850 ? getPreloadedValue(
9851 DAG, *MFI, VT,
9853 : DAG.getPOISON(VT);
9854 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
9855 return Subtarget->hasClusters()
9856 ? lowerConstHwRegRead(DAG, Op, AMDGPU::Hwreg::ID_IB_STS2, 21, 4)
9857 : SDValue();
9858 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
9859 return Subtarget->hasClusters()
9860 ? getPreloadedValue(
9861 DAG, *MFI, VT,
9863 : DAG.getPOISON(VT);
9864 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
9865 return Subtarget->hasClusters()
9866 ? getPreloadedValue(
9867 DAG, *MFI, VT,
9869 : DAG.getPOISON(VT);
9870 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
9871 return Subtarget->hasClusters()
9872 ? getPreloadedValue(
9873 DAG, *MFI, VT,
9875 : DAG.getPOISON(VT);
9876 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
9877 return Subtarget->hasClusters()
9878 ? getPreloadedValue(
9879 DAG, *MFI, VT,
9881 : DAG.getPOISON(VT);
9882 case Intrinsic::amdgcn_wave_id:
9883 return lowerWaveID(DAG, Op);
9884 case Intrinsic::amdgcn_lds_kernel_id: {
9885 if (MFI->isEntryFunction())
9886 return getLDSKernelId(DAG, DL);
9887 return getPreloadedValue(DAG, *MFI, VT,
9889 }
9890 case Intrinsic::amdgcn_workitem_id_x:
9891 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
9892 case Intrinsic::amdgcn_workitem_id_y:
9893 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
9894 case Intrinsic::amdgcn_workitem_id_z:
9895 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
9896 case Intrinsic::amdgcn_wavefrontsize:
9897 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
9898 SDLoc(Op), MVT::i32);
9899 case Intrinsic::amdgcn_s_buffer_load: {
9900 unsigned CPol = Op.getConstantOperandVal(3);
9901 // s_buffer_load, because of how it's optimized, can't be volatile
9902 // so reject ones with the volatile bit set.
9903 if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12)
9906 return Op;
9907 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2),
9908 Op.getOperand(3), DAG);
9909 }
9910 case Intrinsic::amdgcn_fdiv_fast:
9911 return lowerFDIV_FAST(Op, DAG);
9912 case Intrinsic::amdgcn_sin:
9913 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
9914
9915 case Intrinsic::amdgcn_cos:
9916 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
9917
9918 case Intrinsic::amdgcn_mul_u24:
9919 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1),
9920 Op.getOperand(2));
9921 case Intrinsic::amdgcn_mul_i24:
9922 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1),
9923 Op.getOperand(2));
9924
9925 case Intrinsic::amdgcn_log_clamp: {
9926 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
9927 return SDValue();
9928
9929 return emitRemovedIntrinsicError(DAG, DL, VT);
9930 }
9931 case Intrinsic::amdgcn_fract:
9932 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
9933
9934 case Intrinsic::amdgcn_class:
9935 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1),
9936 Op.getOperand(2));
9937 case Intrinsic::amdgcn_div_fmas:
9938 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1),
9939 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
9940
9941 case Intrinsic::amdgcn_div_fixup:
9942 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1),
9943 Op.getOperand(2), Op.getOperand(3));
9944
9945 case Intrinsic::amdgcn_div_scale: {
9946 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
9947
9948 // Translate to the operands expected by the machine instruction. The
9949 // first parameter must be the same as the first instruction.
9950 SDValue Numerator = Op.getOperand(1);
9951 SDValue Denominator = Op.getOperand(2);
9952
9953 // Note this order is opposite of the machine instruction's operations,
9954 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
9955 // intrinsic has the numerator as the first operand to match a normal
9956 // division operation.
9957
9958 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
9959
9960 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
9961 Denominator, Numerator);
9962 }
9963 case Intrinsic::amdgcn_icmp: {
9964 // There is a Pat that handles this variant, so return it as-is.
9965 if (Op.getOperand(1).getValueType() == MVT::i1 &&
9966 Op.getConstantOperandVal(2) == 0 &&
9967 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
9968 return Op;
9969 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
9970 }
9971 case Intrinsic::amdgcn_fcmp: {
9972 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
9973 }
9974 case Intrinsic::amdgcn_ballot:
9975 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
9976 case Intrinsic::amdgcn_fmed3:
9977 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, Op.getOperand(1),
9978 Op.getOperand(2), Op.getOperand(3));
9979 case Intrinsic::amdgcn_fdot2:
9980 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, Op.getOperand(1),
9981 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
9982 case Intrinsic::amdgcn_fmul_legacy:
9983 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, Op.getOperand(1),
9984 Op.getOperand(2));
9985 case Intrinsic::amdgcn_sffbh:
9986 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
9987 case Intrinsic::amdgcn_sbfe:
9988 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1),
9989 Op.getOperand(2), Op.getOperand(3));
9990 case Intrinsic::amdgcn_ubfe:
9991 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1),
9992 Op.getOperand(2), Op.getOperand(3));
9993 case Intrinsic::amdgcn_cvt_pkrtz:
9994 case Intrinsic::amdgcn_cvt_pknorm_i16:
9995 case Intrinsic::amdgcn_cvt_pknorm_u16:
9996 case Intrinsic::amdgcn_cvt_pk_i16:
9997 case Intrinsic::amdgcn_cvt_pk_u16: {
9998 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
9999 EVT VT = Op.getValueType();
10000 unsigned Opcode;
10001
10002 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
10004 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
10006 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
10008 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
10010 else
10012
10013 if (isTypeLegal(VT))
10014 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
10015
10016 SDValue Node =
10017 DAG.getNode(Opcode, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2));
10018 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
10019 }
10020 case Intrinsic::amdgcn_fmad_ftz:
10021 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
10022 Op.getOperand(2), Op.getOperand(3));
10023
10024 case Intrinsic::amdgcn_if_break:
10025 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
10026 Op->getOperand(1), Op->getOperand(2)),
10027 0);
10028
10029 case Intrinsic::amdgcn_groupstaticsize: {
10031 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
10032 return Op;
10033
10034 const Module *M = MF.getFunction().getParent();
10035 const GlobalValue *GV =
10036 Intrinsic::getDeclarationIfExists(M, Intrinsic::amdgcn_groupstaticsize);
10037 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
10039 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
10040 }
10041 case Intrinsic::amdgcn_is_shared:
10042 case Intrinsic::amdgcn_is_private: {
10043 SDLoc SL(Op);
10044 SDValue SrcVec =
10045 DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
10046 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
10047 DAG.getConstant(1, SL, MVT::i32));
10048
10049 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared)
10051 : AMDGPUAS::PRIVATE_ADDRESS;
10052 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
10053 Subtarget->hasGloballyAddressableScratch()) {
10054 SDValue FlatScratchBaseHi(
10055 DAG.getMachineNode(
10056 AMDGPU::S_MOV_B32, DL, MVT::i32,
10057 DAG.getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI, MVT::i32)),
10058 0);
10059 // Test bits 63..58 against the aperture address.
10060 return DAG.getSetCC(
10061 SL, MVT::i1,
10062 DAG.getNode(ISD::XOR, SL, MVT::i32, SrcHi, FlatScratchBaseHi),
10063 DAG.getConstant(1u << 26, SL, MVT::i32), ISD::SETULT);
10064 }
10065
10066 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
10067 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
10068 }
10069 case Intrinsic::amdgcn_perm:
10070 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
10071 Op.getOperand(2), Op.getOperand(3));
10072 case Intrinsic::amdgcn_reloc_constant: {
10073 Module *M = MF.getFunction().getParent();
10074 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
10075 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
10076 auto *RelocSymbol = cast<GlobalVariable>(
10077 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
10078 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
10080 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
10081 }
10082 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
10083 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
10084 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
10085 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
10086 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
10087 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
10088 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
10089 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
10090 if (Op.getOperand(4).getValueType() == MVT::i32)
10091 return SDValue();
10092
10093 SDLoc SL(Op);
10094 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32);
10095 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
10096 Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10097 Op.getOperand(3), IndexKeyi32);
10098 }
10099 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
10100 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
10101 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
10102 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
10103 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
10104 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
10105 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
10106 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
10107 if (Op.getOperand(4).getValueType() == MVT::i64)
10108 return SDValue();
10109
10110 SDLoc SL(Op);
10111 auto IndexKeyi64 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i64);
10112 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
10113 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10114 Op.getOperand(3), IndexKeyi64, Op.getOperand(5),
10115 Op.getOperand(6)});
10116 }
10117 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
10118 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
10119 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
10120 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
10121 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
10122 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8: {
10123 EVT IndexKeyTy = IntrinsicID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
10124 ? MVT::i64
10125 : MVT::i32;
10126 if (Op.getOperand(6).getValueType() == IndexKeyTy)
10127 return SDValue();
10128
10129 SDLoc SL(Op);
10130 auto IndexKey = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, IndexKeyTy);
10131 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
10132 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10133 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10134 IndexKey, Op.getOperand(7),
10135 Op.getOperand(8)}); // No clamp operand
10136 }
10137 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
10138 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
10139 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
10140 if (Op.getOperand(6).getValueType() == MVT::i32)
10141 return SDValue();
10142
10143 SDLoc SL(Op);
10144 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32);
10145 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
10146 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10147 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10148 IndexKeyi32, Op.getOperand(7)});
10149 }
10150 case Intrinsic::amdgcn_addrspacecast_nonnull:
10151 return lowerADDRSPACECAST(Op, DAG);
10152 case Intrinsic::amdgcn_readlane:
10153 case Intrinsic::amdgcn_readfirstlane:
10154 case Intrinsic::amdgcn_writelane:
10155 case Intrinsic::amdgcn_permlane16:
10156 case Intrinsic::amdgcn_permlanex16:
10157 case Intrinsic::amdgcn_permlane64:
10158 case Intrinsic::amdgcn_set_inactive:
10159 case Intrinsic::amdgcn_set_inactive_chain_arg:
10160 case Intrinsic::amdgcn_mov_dpp8:
10161 case Intrinsic::amdgcn_update_dpp:
10162 return lowerLaneOp(*this, Op.getNode(), DAG);
10163 case Intrinsic::amdgcn_dead: {
10165 for (const EVT ValTy : Op.getNode()->values())
10166 Poisons.push_back(DAG.getPOISON(ValTy));
10167 return DAG.getMergeValues(Poisons, SDLoc(Op));
10168 }
10169 default:
10170 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10172 return lowerImage(Op, ImageDimIntr, DAG, false);
10173
10174 return Op;
10175 }
10176}
10177
10178// On targets not supporting constant in soffset field, turn zero to
10179// SGPR_NULL to avoid generating an extra s_mov with zero.
10181 const GCNSubtarget *Subtarget) {
10182 if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset))
10183 return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32);
10184 return SOffset;
10185}
10186
10187SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
10188 SelectionDAG &DAG,
10189 unsigned NewOpcode) const {
10190 SDLoc DL(Op);
10191
10192 SDValue VData = Op.getOperand(2);
10193 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
10194 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
10195 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
10196 SDValue Ops[] = {
10197 Op.getOperand(0), // Chain
10198 VData, // vdata
10199 Rsrc, // rsrc
10200 DAG.getConstant(0, DL, MVT::i32), // vindex
10201 VOffset, // voffset
10202 SOffset, // soffset
10203 Offset, // offset
10204 Op.getOperand(6), // cachepolicy
10205 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
10206 };
10207
10208 auto *M = cast<MemSDNode>(Op);
10209
10210 EVT MemVT = VData.getValueType();
10211 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
10212 M->getMemOperand());
10213}
10214
10215SDValue
10216SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
10217 unsigned NewOpcode) const {
10218 SDLoc DL(Op);
10219
10220 SDValue VData = Op.getOperand(2);
10221 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
10222 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
10223 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
10224 SDValue Ops[] = {
10225 Op.getOperand(0), // Chain
10226 VData, // vdata
10227 Rsrc, // rsrc
10228 Op.getOperand(4), // vindex
10229 VOffset, // voffset
10230 SOffset, // soffset
10231 Offset, // offset
10232 Op.getOperand(7), // cachepolicy
10233 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
10234 };
10235
10236 auto *M = cast<MemSDNode>(Op);
10237
10238 EVT MemVT = VData.getValueType();
10239 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
10240 M->getMemOperand());
10241}
10242
10243SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
10244 SelectionDAG &DAG) const {
10245 unsigned IntrID = Op.getConstantOperandVal(1);
10246 SDLoc DL(Op);
10247
10248 switch (IntrID) {
10249 case Intrinsic::amdgcn_ds_ordered_add:
10250 case Intrinsic::amdgcn_ds_ordered_swap: {
10251 MemSDNode *M = cast<MemSDNode>(Op);
10252 SDValue Chain = M->getOperand(0);
10253 SDValue M0 = M->getOperand(2);
10254 SDValue Value = M->getOperand(3);
10255 unsigned IndexOperand = M->getConstantOperandVal(7);
10256 unsigned WaveRelease = M->getConstantOperandVal(8);
10257 unsigned WaveDone = M->getConstantOperandVal(9);
10258
10259 unsigned OrderedCountIndex = IndexOperand & 0x3f;
10260 IndexOperand &= ~0x3f;
10261 unsigned CountDw = 0;
10262
10263 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
10264 CountDw = (IndexOperand >> 24) & 0xf;
10265 IndexOperand &= ~(0xf << 24);
10266
10267 if (CountDw < 1 || CountDw > 4) {
10268 const Function &Fn = DAG.getMachineFunction().getFunction();
10269 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
10270 Fn, "ds_ordered_count: dword count must be between 1 and 4",
10271 DL.getDebugLoc()));
10272 CountDw = 1;
10273 }
10274 }
10275
10276 if (IndexOperand) {
10277 const Function &Fn = DAG.getMachineFunction().getFunction();
10278 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
10279 Fn, "ds_ordered_count: bad index operand", DL.getDebugLoc()));
10280 }
10281
10282 if (WaveDone && !WaveRelease) {
10283 // TODO: Move this to IR verifier
10284 const Function &Fn = DAG.getMachineFunction().getFunction();
10285 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
10286 Fn, "ds_ordered_count: wave_done requires wave_release",
10287 DL.getDebugLoc()));
10288 }
10289
10290 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
10291 unsigned ShaderType =
10293 unsigned Offset0 = OrderedCountIndex << 2;
10294 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
10295
10296 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
10297 Offset1 |= (CountDw - 1) << 6;
10298
10299 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
10300 Offset1 |= ShaderType << 2;
10301
10302 unsigned Offset = Offset0 | (Offset1 << 8);
10303
10304 SDValue Ops[] = {
10305 Chain, Value, DAG.getTargetConstant(Offset, DL, MVT::i16),
10306 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
10307 };
10309 M->getVTList(), Ops, M->getMemoryVT(),
10310 M->getMemOperand());
10311 }
10312 case Intrinsic::amdgcn_raw_buffer_load:
10313 case Intrinsic::amdgcn_raw_ptr_buffer_load:
10314 case Intrinsic::amdgcn_raw_atomic_buffer_load:
10315 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
10316 case Intrinsic::amdgcn_raw_buffer_load_format:
10317 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
10318 const bool IsFormat =
10319 IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
10320 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
10321
10322 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
10323 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(3), DAG);
10324 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
10325 SDValue Ops[] = {
10326 Op.getOperand(0), // Chain
10327 Rsrc, // rsrc
10328 DAG.getConstant(0, DL, MVT::i32), // vindex
10329 VOffset, // voffset
10330 SOffset, // soffset
10331 Offset, // offset
10332 Op.getOperand(5), // cachepolicy, swizzled buffer
10333 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
10334 };
10335
10336 auto *M = cast<MemSDNode>(Op);
10337 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
10338 }
10339 case Intrinsic::amdgcn_struct_buffer_load:
10340 case Intrinsic::amdgcn_struct_ptr_buffer_load:
10341 case Intrinsic::amdgcn_struct_buffer_load_format:
10342 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
10343 case Intrinsic::amdgcn_struct_atomic_buffer_load:
10344 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
10345 const bool IsFormat =
10346 IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
10347 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
10348
10349 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
10350 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
10351 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
10352 SDValue Ops[] = {
10353 Op.getOperand(0), // Chain
10354 Rsrc, // rsrc
10355 Op.getOperand(3), // vindex
10356 VOffset, // voffset
10357 SOffset, // soffset
10358 Offset, // offset
10359 Op.getOperand(6), // cachepolicy, swizzled buffer
10360 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
10361 };
10362
10363 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
10364 }
10365 case Intrinsic::amdgcn_raw_tbuffer_load:
10366 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
10367 MemSDNode *M = cast<MemSDNode>(Op);
10368 EVT LoadVT = Op.getValueType();
10369 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
10370 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(3), DAG);
10371 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
10372
10373 SDValue Ops[] = {
10374 Op.getOperand(0), // Chain
10375 Rsrc, // rsrc
10376 DAG.getConstant(0, DL, MVT::i32), // vindex
10377 VOffset, // voffset
10378 SOffset, // soffset
10379 Offset, // offset
10380 Op.getOperand(5), // format
10381 Op.getOperand(6), // cachepolicy, swizzled buffer
10382 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
10383 };
10384
10385 if (LoadVT.getScalarType() == MVT::f16)
10386 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG,
10387 Ops);
10388 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
10389 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
10390 DAG);
10391 }
10392 case Intrinsic::amdgcn_struct_tbuffer_load:
10393 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
10394 MemSDNode *M = cast<MemSDNode>(Op);
10395 EVT LoadVT = Op.getValueType();
10396 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
10397 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
10398 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
10399
10400 SDValue Ops[] = {
10401 Op.getOperand(0), // Chain
10402 Rsrc, // rsrc
10403 Op.getOperand(3), // vindex
10404 VOffset, // voffset
10405 SOffset, // soffset
10406 Offset, // offset
10407 Op.getOperand(6), // format
10408 Op.getOperand(7), // cachepolicy, swizzled buffer
10409 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
10410 };
10411
10412 if (LoadVT.getScalarType() == MVT::f16)
10413 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG,
10414 Ops);
10415 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
10416 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
10417 DAG);
10418 }
10419 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
10420 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
10421 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
10422 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
10423 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
10424 return lowerStructBufferAtomicIntrin(Op, DAG,
10426 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
10427 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
10428 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
10429 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
10430 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
10431 return lowerStructBufferAtomicIntrin(Op, DAG,
10433 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
10434 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
10435 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
10436 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
10437 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
10438 return lowerStructBufferAtomicIntrin(Op, DAG,
10440 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
10441 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
10442 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
10443 case Intrinsic::amdgcn_raw_buffer_atomic_add:
10444 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
10445 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
10446 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
10447 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
10448 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
10449 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
10450 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
10451 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
10452 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
10453 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
10454 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
10455 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
10456 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
10457 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
10458 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
10459 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
10460 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
10461 case Intrinsic::amdgcn_raw_buffer_atomic_and:
10462 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
10463 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
10464 case Intrinsic::amdgcn_raw_buffer_atomic_or:
10465 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
10466 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
10467 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
10468 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
10469 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
10470 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
10471 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
10472 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
10473 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
10474 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
10475 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
10476 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
10477 return lowerRawBufferAtomicIntrin(Op, DAG,
10479 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
10480 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
10481 return lowerStructBufferAtomicIntrin(Op, DAG,
10483 case Intrinsic::amdgcn_struct_buffer_atomic_add:
10484 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
10485 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
10486 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
10487 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
10488 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
10489 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
10490 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
10491 return lowerStructBufferAtomicIntrin(Op, DAG,
10493 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
10494 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
10495 return lowerStructBufferAtomicIntrin(Op, DAG,
10497 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
10498 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
10499 return lowerStructBufferAtomicIntrin(Op, DAG,
10501 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
10502 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
10503 return lowerStructBufferAtomicIntrin(Op, DAG,
10505 case Intrinsic::amdgcn_struct_buffer_atomic_and:
10506 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
10507 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
10508 case Intrinsic::amdgcn_struct_buffer_atomic_or:
10509 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
10510 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
10511 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
10512 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
10513 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
10514 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
10515 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
10516 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
10517 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
10518 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
10519 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
10520 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
10521 return lowerStructBufferAtomicIntrin(Op, DAG,
10523
10524 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
10525 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
10526 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG);
10527 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
10528 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
10529 SDValue Ops[] = {
10530 Op.getOperand(0), // Chain
10531 Op.getOperand(2), // src
10532 Op.getOperand(3), // cmp
10533 Rsrc, // rsrc
10534 DAG.getConstant(0, DL, MVT::i32), // vindex
10535 VOffset, // voffset
10536 SOffset, // soffset
10537 Offset, // offset
10538 Op.getOperand(7), // cachepolicy
10539 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
10540 };
10541 EVT VT = Op.getValueType();
10542 auto *M = cast<MemSDNode>(Op);
10543
10545 Op->getVTList(), Ops, VT,
10546 M->getMemOperand());
10547 }
10548 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
10549 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
10550 SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG);
10551 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(6), DAG);
10552 auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget);
10553 SDValue Ops[] = {
10554 Op.getOperand(0), // Chain
10555 Op.getOperand(2), // src
10556 Op.getOperand(3), // cmp
10557 Rsrc, // rsrc
10558 Op.getOperand(5), // vindex
10559 VOffset, // voffset
10560 SOffset, // soffset
10561 Offset, // offset
10562 Op.getOperand(8), // cachepolicy
10563 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
10564 };
10565 EVT VT = Op.getValueType();
10566 auto *M = cast<MemSDNode>(Op);
10567
10569 Op->getVTList(), Ops, VT,
10570 M->getMemOperand());
10571 }
10572 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
10573 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
10574 MemSDNode *M = cast<MemSDNode>(Op);
10575 SDValue NodePtr = M->getOperand(2);
10576 SDValue RayExtent = M->getOperand(3);
10577 SDValue InstanceMask = M->getOperand(4);
10578 SDValue RayOrigin = M->getOperand(5);
10579 SDValue RayDir = M->getOperand(6);
10580 SDValue Offsets = M->getOperand(7);
10581 SDValue TDescr = M->getOperand(8);
10582
10583 assert(NodePtr.getValueType() == MVT::i64);
10584 assert(RayDir.getValueType() == MVT::v3f32);
10585
10586 if (!Subtarget->hasBVHDualAndBVH8Insts()) {
10587 emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
10588 return SDValue();
10589 }
10590
10591 bool IsBVH8 = IntrID == Intrinsic::amdgcn_image_bvh8_intersect_ray;
10592 const unsigned NumVDataDwords = 10;
10593 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
10594 int Opcode = AMDGPU::getMIMGOpcode(
10595 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
10596 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
10597 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
10598 assert(Opcode != -1);
10599
10601 Ops.push_back(NodePtr);
10602 Ops.push_back(DAG.getBuildVector(
10603 MVT::v2i32, DL,
10604 {DAG.getBitcast(MVT::i32, RayExtent),
10605 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, InstanceMask)}));
10606 Ops.push_back(RayOrigin);
10607 Ops.push_back(RayDir);
10608 Ops.push_back(Offsets);
10609 Ops.push_back(TDescr);
10610 Ops.push_back(M->getChain());
10611
10612 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
10613 MachineMemOperand *MemRef = M->getMemOperand();
10614 DAG.setNodeMemRefs(NewNode, {MemRef});
10615 return SDValue(NewNode, 0);
10616 }
10617 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
10618 MemSDNode *M = cast<MemSDNode>(Op);
10619 SDValue NodePtr = M->getOperand(2);
10620 SDValue RayExtent = M->getOperand(3);
10621 SDValue RayOrigin = M->getOperand(4);
10622 SDValue RayDir = M->getOperand(5);
10623 SDValue RayInvDir = M->getOperand(6);
10624 SDValue TDescr = M->getOperand(7);
10625
10626 assert(NodePtr.getValueType() == MVT::i32 ||
10627 NodePtr.getValueType() == MVT::i64);
10628 assert(RayDir.getValueType() == MVT::v3f16 ||
10629 RayDir.getValueType() == MVT::v3f32);
10630
10631 if (!Subtarget->hasGFX10_AEncoding()) {
10632 emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
10633 return SDValue();
10634 }
10635
10636 const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget);
10637 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
10638 const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
10639 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
10640 const bool Is64 = NodePtr.getValueType() == MVT::i64;
10641 const unsigned NumVDataDwords = 4;
10642 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
10643 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
10644 const bool UseNSA = (Subtarget->hasNSAEncoding() &&
10645 NumVAddrs <= Subtarget->getNSAMaxSize()) ||
10646 IsGFX12Plus;
10647 const unsigned BaseOpcodes[2][2] = {
10648 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
10649 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
10650 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
10651 int Opcode;
10652 if (UseNSA) {
10653 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
10654 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
10655 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
10656 : AMDGPU::MIMGEncGfx10NSA,
10657 NumVDataDwords, NumVAddrDwords);
10658 } else {
10659 assert(!IsGFX12Plus);
10660 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
10661 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
10662 : AMDGPU::MIMGEncGfx10Default,
10663 NumVDataDwords, NumVAddrDwords);
10664 }
10665 assert(Opcode != -1);
10666
10668
10669 auto packLanes = [&DAG, &Ops, &DL](SDValue Op, bool IsAligned) {
10671 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
10672 if (Lanes[0].getValueSizeInBits() == 32) {
10673 for (unsigned I = 0; I < 3; ++I)
10674 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
10675 } else {
10676 if (IsAligned) {
10677 Ops.push_back(DAG.getBitcast(
10678 MVT::i32,
10679 DAG.getBuildVector(MVT::v2f16, DL, {Lanes[0], Lanes[1]})));
10680 Ops.push_back(Lanes[2]);
10681 } else {
10682 SDValue Elt0 = Ops.pop_back_val();
10683 Ops.push_back(DAG.getBitcast(
10684 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, {Elt0, Lanes[0]})));
10685 Ops.push_back(DAG.getBitcast(
10686 MVT::i32,
10687 DAG.getBuildVector(MVT::v2f16, DL, {Lanes[1], Lanes[2]})));
10688 }
10689 }
10690 };
10691
10692 if (UseNSA && IsGFX11Plus) {
10693 Ops.push_back(NodePtr);
10694 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
10695 Ops.push_back(RayOrigin);
10696 if (IsA16) {
10697 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
10698 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
10699 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
10700 for (unsigned I = 0; I < 3; ++I) {
10701 MergedLanes.push_back(DAG.getBitcast(
10702 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
10703 {DirLanes[I], InvDirLanes[I]})));
10704 }
10705 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
10706 } else {
10707 Ops.push_back(RayDir);
10708 Ops.push_back(RayInvDir);
10709 }
10710 } else {
10711 if (Is64)
10712 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
10713 2);
10714 else
10715 Ops.push_back(NodePtr);
10716
10717 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
10718 packLanes(RayOrigin, true);
10719 packLanes(RayDir, true);
10720 packLanes(RayInvDir, false);
10721 }
10722
10723 if (!UseNSA) {
10724 // Build a single vector containing all the operands so far prepared.
10725 if (NumVAddrDwords > 12) {
10726 SDValue Undef = DAG.getPOISON(MVT::i32);
10727 Ops.append(16 - Ops.size(), Undef);
10728 }
10729 assert(Ops.size() >= 8 && Ops.size() <= 12);
10730 SDValue MergedOps =
10731 DAG.getBuildVector(MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
10732 Ops.clear();
10733 Ops.push_back(MergedOps);
10734 }
10735
10736 Ops.push_back(TDescr);
10737 Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1));
10738 Ops.push_back(M->getChain());
10739
10740 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
10741 MachineMemOperand *MemRef = M->getMemOperand();
10742 DAG.setNodeMemRefs(NewNode, {MemRef});
10743 return SDValue(NewNode, 0);
10744 }
10745 case Intrinsic::amdgcn_global_atomic_fmin_num:
10746 case Intrinsic::amdgcn_global_atomic_fmax_num:
10747 case Intrinsic::amdgcn_flat_atomic_fmin_num:
10748 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10749 MemSDNode *M = cast<MemSDNode>(Op);
10750 SDValue Ops[] = {
10751 M->getOperand(0), // Chain
10752 M->getOperand(2), // Ptr
10753 M->getOperand(3) // Value
10754 };
10755 unsigned Opcode = 0;
10756 switch (IntrID) {
10757 case Intrinsic::amdgcn_global_atomic_fmin_num:
10758 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
10759 Opcode = ISD::ATOMIC_LOAD_FMIN;
10760 break;
10761 }
10762 case Intrinsic::amdgcn_global_atomic_fmax_num:
10763 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10764 Opcode = ISD::ATOMIC_LOAD_FMAX;
10765 break;
10766 }
10767 default:
10768 llvm_unreachable("unhandled atomic opcode");
10769 }
10770 return DAG.getAtomic(Opcode, SDLoc(Op), M->getMemoryVT(), M->getVTList(),
10771 Ops, M->getMemOperand());
10772 }
10773 case Intrinsic::amdgcn_s_get_barrier_state:
10774 case Intrinsic::amdgcn_s_get_named_barrier_state: {
10775 SDValue Chain = Op->getOperand(0);
10777 unsigned Opc;
10778
10779 if (isa<ConstantSDNode>(Op->getOperand(2))) {
10780 uint64_t BarID = cast<ConstantSDNode>(Op->getOperand(2))->getZExtValue();
10781 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state)
10782 BarID = (BarID >> 4) & 0x3F;
10783 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
10784 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
10785 Ops.push_back(K);
10786 Ops.push_back(Chain);
10787 } else {
10788 Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
10789 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state) {
10790 SDValue M0Val;
10791 M0Val = DAG.getNode(ISD::SRL, DL, MVT::i32, Op->getOperand(2),
10792 DAG.getShiftAmountConstant(4, MVT::i32, DL));
10793 M0Val = SDValue(
10794 DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, M0Val,
10795 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
10796 0);
10797 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
10798 } else
10799 Ops.push_back(copyToM0(DAG, Chain, DL, Op->getOperand(2)).getValue(0));
10800 }
10801
10802 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
10803 return SDValue(NewMI, 0);
10804 }
10805 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
10806 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
10807 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
10808 MemIntrinsicSDNode *MII = cast<MemIntrinsicSDNode>(Op);
10809 SDValue Chain = Op->getOperand(0);
10810 SDValue Ptr = Op->getOperand(2);
10811 EVT VT = Op->getValueType(0);
10812 return DAG.getAtomicLoad(ISD::NON_EXTLOAD, DL, MII->getMemoryVT(), VT,
10813 Chain, Ptr, MII->getMemOperand());
10814 }
10815 default:
10816
10817 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10819 return lowerImage(Op, ImageDimIntr, DAG, true);
10820
10821 return SDValue();
10822 }
10823}
10824
10825// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
10826// dwordx4 if on SI and handle TFE loads.
10827SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
10828 SDVTList VTList,
10829 ArrayRef<SDValue> Ops, EVT MemVT,
10830 MachineMemOperand *MMO,
10831 SelectionDAG &DAG) const {
10832 LLVMContext &C = *DAG.getContext();
10833 MachineFunction &MF = DAG.getMachineFunction();
10834 EVT VT = VTList.VTs[0];
10835
10836 assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
10837 bool IsTFE = VTList.NumVTs == 3;
10838 if (IsTFE) {
10839 unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
10840 unsigned NumOpDWords = NumValueDWords + 1;
10841 EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
10842 SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
10843 MachineMemOperand *OpDWordsMMO =
10844 MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
10845 SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
10846 OpDWordsVT, OpDWordsMMO, DAG);
10847 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
10848 DAG.getVectorIdxConstant(NumValueDWords, DL));
10849 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
10850 SDValue ValueDWords =
10851 NumValueDWords == 1
10852 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
10854 EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
10855 ZeroIdx);
10856 SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
10857 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
10858 }
10859
10860 if (!Subtarget->hasDwordx3LoadStores() &&
10861 (VT == MVT::v3i32 || VT == MVT::v3f32)) {
10862 EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
10863 EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
10864 MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
10865 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
10866 SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
10867 WidenedMemVT, WidenedMMO);
10869 DAG.getVectorIdxConstant(0, DL));
10870 return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
10871 }
10872
10873 return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
10874}
10875
10876SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
10877 bool ImageStore) const {
10878 EVT StoreVT = VData.getValueType();
10879
10880 // No change for f16 and legal vector D16 types.
10881 if (!StoreVT.isVector())
10882 return VData;
10883
10884 SDLoc DL(VData);
10885 unsigned NumElements = StoreVT.getVectorNumElements();
10886
10887 if (Subtarget->hasUnpackedD16VMem()) {
10888 // We need to unpack the packed data to store.
10889 EVT IntStoreVT = StoreVT.changeTypeToInteger();
10890 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
10891
10892 EVT EquivStoreVT =
10893 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
10894 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
10895 return DAG.UnrollVectorOp(ZExt.getNode());
10896 }
10897
10898 // The sq block of gfx8.1 does not estimate register use correctly for d16
10899 // image store instructions. The data operand is computed as if it were not a
10900 // d16 image instruction.
10901 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
10902 // Bitcast to i16
10903 EVT IntStoreVT = StoreVT.changeTypeToInteger();
10904 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
10905
10906 // Decompose into scalars
10908 DAG.ExtractVectorElements(IntVData, Elts);
10909
10910 // Group pairs of i16 into v2i16 and bitcast to i32
10911 SmallVector<SDValue, 4> PackedElts;
10912 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
10913 SDValue Pair =
10914 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
10915 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
10916 PackedElts.push_back(IntPair);
10917 }
10918 if ((NumElements % 2) == 1) {
10919 // Handle v3i16
10920 unsigned I = Elts.size() / 2;
10921 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
10922 {Elts[I * 2], DAG.getPOISON(MVT::i16)});
10923 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
10924 PackedElts.push_back(IntPair);
10925 }
10926
10927 // Pad using UNDEF
10928 PackedElts.resize(Elts.size(), DAG.getPOISON(MVT::i32));
10929
10930 // Build final vector
10931 EVT VecVT =
10932 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
10933 return DAG.getBuildVector(VecVT, DL, PackedElts);
10934 }
10935
10936 if (NumElements == 3) {
10937 EVT IntStoreVT =
10939 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
10940
10941 EVT WidenedStoreVT = EVT::getVectorVT(
10942 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
10943 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
10944 WidenedStoreVT.getStoreSizeInBits());
10945 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
10946 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
10947 }
10948
10949 assert(isTypeLegal(StoreVT));
10950 return VData;
10951}
10952
10953SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10954 SelectionDAG &DAG) const {
10955 SDLoc DL(Op);
10956 SDValue Chain = Op.getOperand(0);
10957 unsigned IntrinsicID = Op.getConstantOperandVal(1);
10958 MachineFunction &MF = DAG.getMachineFunction();
10959
10960 switch (IntrinsicID) {
10961 case Intrinsic::amdgcn_exp_compr: {
10962 if (!Subtarget->hasCompressedExport()) {
10963 DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
10965 "intrinsic not supported on subtarget", DL.getDebugLoc()));
10966 }
10967 SDValue Src0 = Op.getOperand(4);
10968 SDValue Src1 = Op.getOperand(5);
10969 // Hack around illegal type on SI by directly selecting it.
10970 if (isTypeLegal(Src0.getValueType()))
10971 return SDValue();
10972
10973 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
10974 SDValue Undef = DAG.getPOISON(MVT::f32);
10975 const SDValue Ops[] = {
10976 Op.getOperand(2), // tgt
10977 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
10978 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
10979 Undef, // src2
10980 Undef, // src3
10981 Op.getOperand(7), // vm
10982 DAG.getTargetConstant(1, DL, MVT::i1), // compr
10983 Op.getOperand(3), // en
10984 Op.getOperand(0) // Chain
10985 };
10986
10987 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
10988 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
10989 }
10990
10991 case Intrinsic::amdgcn_struct_tbuffer_store:
10992 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
10993 SDValue VData = Op.getOperand(2);
10994 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
10995 if (IsD16)
10996 VData = handleD16VData(VData, DAG);
10997 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
10998 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
10999 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
11000 SDValue Ops[] = {
11001 Chain,
11002 VData, // vdata
11003 Rsrc, // rsrc
11004 Op.getOperand(4), // vindex
11005 VOffset, // voffset
11006 SOffset, // soffset
11007 Offset, // offset
11008 Op.getOperand(7), // format
11009 Op.getOperand(8), // cachepolicy, swizzled buffer
11010 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
11011 };
11012 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16
11014 MemSDNode *M = cast<MemSDNode>(Op);
11015 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
11016 M->getMemoryVT(), M->getMemOperand());
11017 }
11018
11019 case Intrinsic::amdgcn_raw_tbuffer_store:
11020 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
11021 SDValue VData = Op.getOperand(2);
11022 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
11023 if (IsD16)
11024 VData = handleD16VData(VData, DAG);
11025 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
11026 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
11027 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
11028 SDValue Ops[] = {
11029 Chain,
11030 VData, // vdata
11031 Rsrc, // rsrc
11032 DAG.getConstant(0, DL, MVT::i32), // vindex
11033 VOffset, // voffset
11034 SOffset, // soffset
11035 Offset, // offset
11036 Op.getOperand(6), // format
11037 Op.getOperand(7), // cachepolicy, swizzled buffer
11038 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
11039 };
11040 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16
11042 MemSDNode *M = cast<MemSDNode>(Op);
11043 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
11044 M->getMemoryVT(), M->getMemOperand());
11045 }
11046
11047 case Intrinsic::amdgcn_raw_buffer_store:
11048 case Intrinsic::amdgcn_raw_ptr_buffer_store:
11049 case Intrinsic::amdgcn_raw_buffer_store_format:
11050 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
11051 const bool IsFormat =
11052 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
11053 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
11054
11055 SDValue VData = Op.getOperand(2);
11056 EVT VDataVT = VData.getValueType();
11057 EVT EltType = VDataVT.getScalarType();
11058 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
11059 if (IsD16) {
11060 VData = handleD16VData(VData, DAG);
11061 VDataVT = VData.getValueType();
11062 }
11063
11064 if (!isTypeLegal(VDataVT)) {
11065 VData =
11066 DAG.getNode(ISD::BITCAST, DL,
11067 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
11068 }
11069
11070 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
11071 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
11072 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
11073 SDValue Ops[] = {
11074 Chain,
11075 VData,
11076 Rsrc,
11077 DAG.getConstant(0, DL, MVT::i32), // vindex
11078 VOffset, // voffset
11079 SOffset, // soffset
11080 Offset, // offset
11081 Op.getOperand(6), // cachepolicy, swizzled buffer
11082 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
11083 };
11084 unsigned Opc =
11087 MemSDNode *M = cast<MemSDNode>(Op);
11088
11089 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
11090 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
11091 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
11092
11093 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
11094 M->getMemoryVT(), M->getMemOperand());
11095 }
11096
11097 case Intrinsic::amdgcn_struct_buffer_store:
11098 case Intrinsic::amdgcn_struct_ptr_buffer_store:
11099 case Intrinsic::amdgcn_struct_buffer_store_format:
11100 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
11101 const bool IsFormat =
11102 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
11103 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
11104
11105 SDValue VData = Op.getOperand(2);
11106 EVT VDataVT = VData.getValueType();
11107 EVT EltType = VDataVT.getScalarType();
11108 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
11109
11110 if (IsD16) {
11111 VData = handleD16VData(VData, DAG);
11112 VDataVT = VData.getValueType();
11113 }
11114
11115 if (!isTypeLegal(VDataVT)) {
11116 VData =
11117 DAG.getNode(ISD::BITCAST, DL,
11118 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
11119 }
11120
11121 auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
11122 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
11123 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
11124 SDValue Ops[] = {
11125 Chain,
11126 VData,
11127 Rsrc,
11128 Op.getOperand(4), // vindex
11129 VOffset, // voffset
11130 SOffset, // soffset
11131 Offset, // offset
11132 Op.getOperand(7), // cachepolicy, swizzled buffer
11133 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
11134 };
11135 unsigned Opc =
11138 MemSDNode *M = cast<MemSDNode>(Op);
11139
11140 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
11141 EVT VDataType = VData.getValueType().getScalarType();
11142 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
11143 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
11144
11145 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
11146 M->getMemoryVT(), M->getMemOperand());
11147 }
11148 case Intrinsic::amdgcn_raw_buffer_load_lds:
11149 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
11150 case Intrinsic::amdgcn_struct_buffer_load_lds:
11151 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
11152 if (!Subtarget->hasVMemToLDSLoad())
11153 return SDValue();
11154 unsigned Opc;
11155 bool HasVIndex =
11156 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
11157 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
11158 unsigned OpOffset = HasVIndex ? 1 : 0;
11159 SDValue VOffset = Op.getOperand(5 + OpOffset);
11160 bool HasVOffset = !isNullConstant(VOffset);
11161 unsigned Size = Op->getConstantOperandVal(4);
11162
11163 switch (Size) {
11164 default:
11165 return SDValue();
11166 case 1:
11167 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
11168 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
11169 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
11170 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
11171 break;
11172 case 2:
11173 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
11174 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
11175 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
11176 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
11177 break;
11178 case 4:
11179 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
11180 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
11181 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
11182 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
11183 break;
11184 case 12:
11185 if (!Subtarget->hasLDSLoadB96_B128())
11186 return SDValue();
11187 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_BOTHEN
11188 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_IDXEN
11189 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFEN
11190 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFSET;
11191 break;
11192 case 16:
11193 if (!Subtarget->hasLDSLoadB96_B128())
11194 return SDValue();
11195 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_BOTHEN
11196 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_IDXEN
11197 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFEN
11198 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFSET;
11199 break;
11200 }
11201
11202 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
11203
11205
11206 if (HasVIndex && HasVOffset)
11207 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
11208 {Op.getOperand(5), // VIndex
11209 VOffset}));
11210 else if (HasVIndex)
11211 Ops.push_back(Op.getOperand(5));
11212 else if (HasVOffset)
11213 Ops.push_back(VOffset);
11214
11215 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
11216 Ops.push_back(Rsrc);
11217 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
11218 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
11219 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
11220 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
11221 Ops.push_back(DAG.getTargetConstant(
11222 Aux & (IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12),
11223 DL, MVT::i8)); // cpol
11224 Ops.push_back(DAG.getTargetConstant(
11225 Aux & (IsGFX12Plus ? AMDGPU::CPol::SWZ : AMDGPU::CPol::SWZ_pregfx12)
11226 ? 1
11227 : 0,
11228 DL, MVT::i8)); // swz
11229 Ops.push_back(M0Val.getValue(0)); // Chain
11230 Ops.push_back(M0Val.getValue(1)); // Glue
11231
11232 auto *M = cast<MemSDNode>(Op);
11233 MachineMemOperand *LoadMMO = M->getMemOperand();
11234 // Don't set the offset value here because the pointer points to the base of
11235 // the buffer.
11236 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
11237
11238 MachinePointerInfo StorePtrI = LoadPtrI;
11239 LoadPtrI.V = PoisonValue::get(
11243
11244 auto F = LoadMMO->getFlags() &
11246 LoadMMO =
11248 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
11249
11250 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
11251 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t),
11252 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
11253
11254 auto *Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
11255 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
11256
11257 return SDValue(Load, 0);
11258 }
11259 // Buffers are handled by LowerBufferFatPointers, and we're going to go
11260 // for "trust me" that the remaining cases are global pointers until
11261 // such time as we can put two mem operands on an intrinsic.
11262 case Intrinsic::amdgcn_load_to_lds:
11263 case Intrinsic::amdgcn_global_load_lds: {
11264 if (!Subtarget->hasVMemToLDSLoad())
11265 return SDValue();
11266
11267 unsigned Opc;
11268 unsigned Size = Op->getConstantOperandVal(4);
11269 switch (Size) {
11270 default:
11271 return SDValue();
11272 case 1:
11273 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
11274 break;
11275 case 2:
11276 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
11277 break;
11278 case 4:
11279 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
11280 break;
11281 case 12:
11282 if (!Subtarget->hasLDSLoadB96_B128())
11283 return SDValue();
11284 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX3;
11285 break;
11286 case 16:
11287 if (!Subtarget->hasLDSLoadB96_B128())
11288 return SDValue();
11289 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX4;
11290 break;
11291 }
11292
11293 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
11294
11296
11297 SDValue Addr = Op.getOperand(2); // Global ptr
11298 SDValue VOffset;
11299 // Try to split SAddr and VOffset. Global and LDS pointers share the same
11300 // immediate offset, so we cannot use a regular SelectGlobalSAddr().
11301 if (Addr->isDivergent() && Addr->isAnyAdd()) {
11302 SDValue LHS = Addr.getOperand(0);
11303 SDValue RHS = Addr.getOperand(1);
11304
11305 if (LHS->isDivergent())
11306 std::swap(LHS, RHS);
11307
11308 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
11309 RHS.getOperand(0).getValueType() == MVT::i32) {
11310 // add (i64 sgpr), (zero_extend (i32 vgpr))
11311 Addr = LHS;
11312 VOffset = RHS.getOperand(0);
11313 }
11314 }
11315
11316 Ops.push_back(Addr);
11317 if (!Addr->isDivergent()) {
11319 if (!VOffset)
11320 VOffset =
11321 SDValue(DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
11322 DAG.getTargetConstant(0, DL, MVT::i32)),
11323 0);
11324 Ops.push_back(VOffset);
11325 }
11326
11327 Ops.push_back(Op.getOperand(5)); // Offset
11328 Ops.push_back(Op.getOperand(6)); // CPol
11329 Ops.push_back(M0Val.getValue(0)); // Chain
11330 Ops.push_back(M0Val.getValue(1)); // Glue
11331
11332 auto *M = cast<MemSDNode>(Op);
11333 MachineMemOperand *LoadMMO = M->getMemOperand();
11334 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
11335 LoadPtrI.Offset = Op->getConstantOperandVal(5);
11336 MachinePointerInfo StorePtrI = LoadPtrI;
11337 LoadPtrI.V = PoisonValue::get(
11341 auto F = LoadMMO->getFlags() &
11343 LoadMMO =
11345 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
11346 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
11347 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4),
11348 LoadMMO->getAAInfo());
11349
11350 auto *Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
11351 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
11352
11353 return SDValue(Load, 0);
11354 }
11355 case Intrinsic::amdgcn_end_cf:
11356 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
11357 Op->getOperand(2), Chain),
11358 0);
11359 case Intrinsic::amdgcn_s_barrier_init:
11360 case Intrinsic::amdgcn_s_barrier_signal_var: {
11361 // these two intrinsics have two operands: barrier pointer and member count
11362 SDValue Chain = Op->getOperand(0);
11364 SDValue BarOp = Op->getOperand(2);
11365 SDValue CntOp = Op->getOperand(3);
11366 SDValue M0Val;
11367 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_s_barrier_init
11368 ? AMDGPU::S_BARRIER_INIT_M0
11369 : AMDGPU::S_BARRIER_SIGNAL_M0;
11370 // extract the BarrierID from bits 4-9 of BarOp
11371 SDValue BarID;
11372 BarID = DAG.getNode(ISD::SRL, DL, MVT::i32, BarOp,
11373 DAG.getShiftAmountConstant(4, MVT::i32, DL));
11374 BarID =
11375 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, BarID,
11376 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
11377 0);
11378 // Member count should be put into M0[ShAmt:+6]
11379 // Barrier ID should be put into M0[5:0]
11380 M0Val =
11381 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, CntOp,
11382 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
11383 0);
11384 constexpr unsigned ShAmt = 16;
11385 M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, CntOp,
11386 DAG.getShiftAmountConstant(ShAmt, MVT::i32, DL));
11387
11388 M0Val = SDValue(
11389 DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, M0Val, BarID), 0);
11390
11391 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
11392
11393 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
11394 return SDValue(NewMI, 0);
11395 }
11396 case Intrinsic::amdgcn_s_barrier_join: {
11397 // these three intrinsics have one operand: barrier pointer
11398 SDValue Chain = Op->getOperand(0);
11400 SDValue BarOp = Op->getOperand(2);
11401 unsigned Opc;
11402
11403 if (isa<ConstantSDNode>(BarOp)) {
11404 uint64_t BarVal = cast<ConstantSDNode>(BarOp)->getZExtValue();
11405 Opc = AMDGPU::S_BARRIER_JOIN_IMM;
11406
11407 // extract the BarrierID from bits 4-9 of the immediate
11408 unsigned BarID = (BarVal >> 4) & 0x3F;
11409 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
11410 Ops.push_back(K);
11411 Ops.push_back(Chain);
11412 } else {
11413 Opc = AMDGPU::S_BARRIER_JOIN_M0;
11414
11415 // extract the BarrierID from bits 4-9 of BarOp, copy to M0[5:0]
11416 SDValue M0Val;
11417 M0Val = DAG.getNode(ISD::SRL, DL, MVT::i32, BarOp,
11418 DAG.getShiftAmountConstant(4, MVT::i32, DL));
11419 M0Val =
11420 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, M0Val,
11421 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
11422 0);
11423 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
11424 }
11425
11426 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
11427 return SDValue(NewMI, 0);
11428 }
11429 case Intrinsic::amdgcn_s_prefetch_data: {
11430 // For non-global address space preserve the chain and remove the call.
11432 return Op.getOperand(0);
11433 return Op;
11434 }
11435 case Intrinsic::amdgcn_s_buffer_prefetch_data: {
11436 SDValue Ops[] = {
11437 Chain, bufferRsrcPtrToVector(Op.getOperand(2), DAG),
11438 Op.getOperand(3), // offset
11439 Op.getOperand(4), // length
11440 };
11441
11442 MemSDNode *M = cast<MemSDNode>(Op);
11444 Op->getVTList(), Ops, M->getMemoryVT(),
11445 M->getMemOperand());
11446 }
11447 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
11448 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
11449 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
11450 MemIntrinsicSDNode *MII = cast<MemIntrinsicSDNode>(Op);
11451 SDValue Chain = Op->getOperand(0);
11452 SDValue Ptr = Op->getOperand(2);
11453 SDValue Val = Op->getOperand(3);
11454 return DAG.getAtomic(ISD::ATOMIC_STORE, DL, MII->getMemoryVT(), Chain, Val,
11455 Ptr, MII->getMemOperand());
11456 }
11457 default: {
11458 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
11460 return lowerImage(Op, ImageDimIntr, DAG, true);
11461
11462 return Op;
11463 }
11464 }
11465}
11466
11467// Return whether the operation has NoUnsignedWrap property.
11468static bool isNoUnsignedWrap(SDValue Addr) {
11469 return (Addr.getOpcode() == ISD::ADD &&
11470 Addr->getFlags().hasNoUnsignedWrap()) ||
11471 Addr->getOpcode() == ISD::OR;
11472}
11473
11475 EVT PtrVT) const {
11476 return UseSelectionDAGPTRADD && PtrVT == MVT::i64;
11477}
11478
11480 EVT PtrVT) const {
11481 return true;
11482}
11483
11484// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
11485// offset (the offset that is included in bounds checking and swizzling, to be
11486// split between the instruction's voffset and immoffset fields) and soffset
11487// (the offset that is excluded from bounds checking and swizzling, to go in
11488// the instruction's soffset field). This function takes the first kind of
11489// offset and figures out how to split it between voffset and immoffset.
11490std::pair<SDValue, SDValue>
11491SITargetLowering::splitBufferOffsets(SDValue Offset, SelectionDAG &DAG) const {
11492 SDLoc DL(Offset);
11493 const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
11494 SDValue N0 = Offset;
11495 ConstantSDNode *C1 = nullptr;
11496
11497 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
11498 N0 = SDValue();
11499 else if (DAG.isBaseWithConstantOffset(N0)) {
11500 // On GFX1250+, voffset and immoffset are zero-extended from 32 bits before
11501 // being added, so we can only safely match a 32-bit addition with no
11502 // unsigned overflow.
11503 bool CheckNUW = AMDGPU::isGFX1250(*Subtarget);
11504 if (!CheckNUW || isNoUnsignedWrap(N0)) {
11505 C1 = cast<ConstantSDNode>(N0.getOperand(1));
11506 N0 = N0.getOperand(0);
11507 }
11508 }
11509
11510 if (C1) {
11511 unsigned ImmOffset = C1->getZExtValue();
11512 // If the immediate value is too big for the immoffset field, put only bits
11513 // that would normally fit in the immoffset field. The remaining value that
11514 // is copied/added for the voffset field is a large power of 2, and it
11515 // stands more chance of being CSEd with the copy/add for another similar
11516 // load/store.
11517 // However, do not do that rounding down if that is a negative
11518 // number, as it appears to be illegal to have a negative offset in the
11519 // vgpr, even if adding the immediate offset makes it positive.
11520 unsigned Overflow = ImmOffset & ~MaxImm;
11521 ImmOffset -= Overflow;
11522 if ((int32_t)Overflow < 0) {
11523 Overflow += ImmOffset;
11524 ImmOffset = 0;
11525 }
11526 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
11527 if (Overflow) {
11528 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
11529 if (!N0)
11530 N0 = OverflowVal;
11531 else {
11532 SDValue Ops[] = {N0, OverflowVal};
11533 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
11534 }
11535 }
11536 }
11537 if (!N0)
11538 N0 = DAG.getConstant(0, DL, MVT::i32);
11539 if (!C1)
11540 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
11541 return {N0, SDValue(C1, 0)};
11542}
11543
11544// Analyze a combined offset from an amdgcn_s_buffer_load intrinsic and store
11545// the three offsets (voffset, soffset and instoffset) into the SDValue[3] array
11546// pointed to by Offsets.
11547void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
11548 SelectionDAG &DAG, SDValue *Offsets,
11549 Align Alignment) const {
11550 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11551 SDLoc DL(CombinedOffset);
11552 if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
11553 uint32_t Imm = C->getZExtValue();
11554 uint32_t SOffset, ImmOffset;
11555 if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
11556 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
11557 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
11558 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
11559 return;
11560 }
11561 }
11562 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
11563 SDValue N0 = CombinedOffset.getOperand(0);
11564 SDValue N1 = CombinedOffset.getOperand(1);
11565 uint32_t SOffset, ImmOffset;
11566 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
11567 if (Offset >= 0 &&
11568 TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) {
11569 Offsets[0] = N0;
11570 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
11571 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
11572 return;
11573 }
11574 }
11575
11576 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
11577 ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32)
11578 : DAG.getConstant(0, DL, MVT::i32);
11579
11580 Offsets[0] = CombinedOffset;
11581 Offsets[1] = SOffsetZero;
11582 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
11583}
11584
11585SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer,
11586 SelectionDAG &DAG) const {
11587 if (!MaybePointer.getValueType().isScalarInteger())
11588 return MaybePointer;
11589
11590 SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer);
11591 return Rsrc;
11592}
11593
11594// Wrap a global or flat pointer into a buffer intrinsic using the flags
11595// specified in the intrinsic.
11596SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op,
11597 SelectionDAG &DAG) const {
11598 SDLoc Loc(Op);
11599
11600 SDValue Pointer = Op->getOperand(1);
11601 SDValue Stride = Op->getOperand(2);
11602 SDValue NumRecords = Op->getOperand(3);
11603 SDValue Flags = Op->getOperand(4);
11604
11605 auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
11606 SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32);
11607 SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask);
11608 std::optional<uint32_t> ConstStride = std::nullopt;
11609 if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
11610 ConstStride = ConstNode->getZExtValue();
11611
11612 SDValue NewHighHalf = Masked;
11613 if (!ConstStride || *ConstStride != 0) {
11614 SDValue ShiftedStride;
11615 if (ConstStride) {
11616 ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32);
11617 } else {
11618 SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32);
11619 ShiftedStride =
11620 DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride,
11621 DAG.getShiftAmountConstant(16, MVT::i32, Loc));
11622 }
11623 NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride);
11624 }
11625
11626 SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf,
11627 NewHighHalf, NumRecords, Flags);
11628 SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
11629 return RsrcPtr;
11630}
11631
11632// Handle 8 bit and 16 bit buffer loads
11633SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
11634 EVT LoadVT, SDLoc DL,
11636 MachineMemOperand *MMO,
11637 bool IsTFE) const {
11638 EVT IntVT = LoadVT.changeTypeToInteger();
11639
11640 if (IsTFE) {
11641 unsigned Opc = (LoadVT.getScalarType() == MVT::i8)
11644 MachineFunction &MF = DAG.getMachineFunction();
11645 MachineMemOperand *OpMMO = MF.getMachineMemOperand(MMO, 0, 8);
11646 SDVTList VTs = DAG.getVTList(MVT::v2i32, MVT::Other);
11647 SDValue Op = getMemIntrinsicNode(Opc, DL, VTs, Ops, MVT::v2i32, OpMMO, DAG);
11648 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
11649 DAG.getConstant(1, DL, MVT::i32));
11650 SDValue Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
11651 DAG.getConstant(0, DL, MVT::i32));
11652 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Data);
11653 SDValue Value = DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc);
11654 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
11655 }
11656
11657 unsigned Opc = LoadVT.getScalarType() == MVT::i8
11660
11661 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
11662 SDValue BufferLoad =
11663 DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO);
11664 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
11665 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
11666
11667 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
11668}
11669
11670// Handle 8 bit and 16 bit buffer stores
11671SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
11672 EVT VDataType, SDLoc DL,
11673 SDValue Ops[],
11674 MemSDNode *M) const {
11675 if (VDataType == MVT::f16 || VDataType == MVT::bf16)
11676 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
11677
11678 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
11679 Ops[1] = BufferStoreExt;
11680 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE
11681 : AMDGPUISD::BUFFER_STORE_SHORT;
11682 ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
11683 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
11684 M->getMemOperand());
11685}
11686
11688 SDValue Op, const SDLoc &SL, EVT VT) {
11689 if (VT.bitsLT(Op.getValueType()))
11690 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
11691
11692 switch (ExtType) {
11693 case ISD::SEXTLOAD:
11694 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
11695 case ISD::ZEXTLOAD:
11696 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
11697 case ISD::EXTLOAD:
11698 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
11699 case ISD::NON_EXTLOAD:
11700 return Op;
11701 }
11702
11703 llvm_unreachable("invalid ext type");
11704}
11705
11706// Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads.
11707// TODO: Skip this on GFX12 which does have scalar sub-dword loads.
11708SDValue SITargetLowering::widenLoad(LoadSDNode *Ld,
11709 DAGCombinerInfo &DCI) const {
11710 SelectionDAG &DAG = DCI.DAG;
11711 if (Ld->getAlign() < Align(4) || Ld->isDivergent())
11712 return SDValue();
11713
11714 // FIXME: Constant loads should all be marked invariant.
11715 unsigned AS = Ld->getAddressSpace();
11716 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
11718 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
11719 return SDValue();
11720
11721 // Don't do this early, since it may interfere with adjacent load merging for
11722 // illegal types. We can avoid losing alignment information for exotic types
11723 // pre-legalize.
11724 EVT MemVT = Ld->getMemoryVT();
11725 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
11726 MemVT.getSizeInBits() >= 32)
11727 return SDValue();
11728
11729 SDLoc SL(Ld);
11730
11731 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
11732 "unexpected vector extload");
11733
11734 // TODO: Drop only high part of range.
11735 SDValue Ptr = Ld->getBasePtr();
11736 SDValue NewLoad = DAG.getLoad(
11737 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
11738 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
11739 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
11740 nullptr); // Drop ranges
11741
11742 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
11743 if (MemVT.isFloatingPoint()) {
11745 "unexpected fp extload");
11746 TruncVT = MemVT.changeTypeToInteger();
11747 }
11748
11749 SDValue Cvt = NewLoad;
11750 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
11751 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
11752 DAG.getValueType(TruncVT));
11753 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
11755 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
11756 } else {
11758 }
11759
11760 EVT VT = Ld->getValueType(0);
11761 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
11762
11763 DCI.AddToWorklist(Cvt.getNode());
11764
11765 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
11766 // the appropriate extension from the 32-bit load.
11767 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
11768 DCI.AddToWorklist(Cvt.getNode());
11769
11770 // Handle conversion back to floating point if necessary.
11771 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
11772
11773 return DAG.getMergeValues({Cvt, NewLoad.getValue(1)}, SL);
11774}
11775
11777 const SIMachineFunctionInfo &Info) {
11778 // TODO: Should check if the address can definitely not access stack.
11779 if (Info.isEntryFunction())
11780 return Info.getUserSGPRInfo().hasFlatScratchInit();
11781 return true;
11782}
11783
11784SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
11785 SDLoc DL(Op);
11786 LoadSDNode *Load = cast<LoadSDNode>(Op);
11787 ISD::LoadExtType ExtType = Load->getExtensionType();
11788 EVT MemVT = Load->getMemoryVT();
11789 MachineMemOperand *MMO = Load->getMemOperand();
11790
11791 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
11792 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
11793 return SDValue();
11794
11795 // FIXME: Copied from PPC
11796 // First, load into 32 bits, then truncate to 1 bit.
11797
11798 SDValue Chain = Load->getChain();
11799 SDValue BasePtr = Load->getBasePtr();
11800
11801 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
11802
11803 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr,
11804 RealMemVT, MMO);
11805
11806 if (!MemVT.isVector()) {
11807 SDValue Ops[] = {DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
11808 NewLD.getValue(1)};
11809
11810 return DAG.getMergeValues(Ops, DL);
11811 }
11812
11814 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
11815 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
11816 DAG.getConstant(I, DL, MVT::i32));
11817
11818 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
11819 }
11820
11821 SDValue Ops[] = {DAG.getBuildVector(MemVT, DL, Elts), NewLD.getValue(1)};
11822
11823 return DAG.getMergeValues(Ops, DL);
11824 }
11825
11826 if (!MemVT.isVector())
11827 return SDValue();
11828
11829 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
11830 "Custom lowering for non-i32 vectors hasn't been implemented.");
11831
11832 Align Alignment = Load->getAlign();
11833 unsigned AS = Load->getAddressSpace();
11834 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
11835 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
11836 return SplitVectorLoad(Op, DAG);
11837 }
11838
11839 MachineFunction &MF = DAG.getMachineFunction();
11840 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
11841 // If there is a possibility that flat instruction access scratch memory
11842 // then we need to use the same legalization rules we use for private.
11843 if (AS == AMDGPUAS::FLAT_ADDRESS &&
11844 !Subtarget->hasMultiDwordFlatScratchAddressing())
11845 AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI)
11848
11849 unsigned NumElements = MemVT.getVectorNumElements();
11850
11851 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
11853 (AS == AMDGPUAS::GLOBAL_ADDRESS &&
11854 Subtarget->getScalarizeGlobalBehavior() && Load->isSimple() &&
11856 if ((!Op->isDivergent() || AMDGPU::isUniformMMO(MMO)) &&
11857 Alignment >= Align(4) && NumElements < 32) {
11858 if (MemVT.isPow2VectorType() ||
11859 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
11860 return SDValue();
11861 return WidenOrSplitVectorLoad(Op, DAG);
11862 }
11863 // Non-uniform loads will be selected to MUBUF instructions, so they
11864 // have the same legalization requirements as global and private
11865 // loads.
11866 //
11867 }
11868 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
11871 if (NumElements > 4)
11872 return SplitVectorLoad(Op, DAG);
11873 // v3 loads not supported on SI.
11874 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11875 return WidenOrSplitVectorLoad(Op, DAG);
11876
11877 // v3 and v4 loads are supported for private and global memory.
11878 return SDValue();
11879 }
11880 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
11881 // Depending on the setting of the private_element_size field in the
11882 // resource descriptor, we can only make private accesses up to a certain
11883 // size.
11884 switch (Subtarget->getMaxPrivateElementSize()) {
11885 case 4: {
11886 auto [Op0, Op1] = scalarizeVectorLoad(Load, DAG);
11887 return DAG.getMergeValues({Op0, Op1}, DL);
11888 }
11889 case 8:
11890 if (NumElements > 2)
11891 return SplitVectorLoad(Op, DAG);
11892 return SDValue();
11893 case 16:
11894 // Same as global/flat
11895 if (NumElements > 4)
11896 return SplitVectorLoad(Op, DAG);
11897 // v3 loads not supported on SI.
11898 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11899 return WidenOrSplitVectorLoad(Op, DAG);
11900
11901 return SDValue();
11902 default:
11903 llvm_unreachable("unsupported private_element_size");
11904 }
11905 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
11906 unsigned Fast = 0;
11907 auto Flags = Load->getMemOperand()->getFlags();
11909 Load->getAlign(), Flags, &Fast) &&
11910 Fast > 1)
11911 return SDValue();
11912
11913 if (MemVT.isVector())
11914 return SplitVectorLoad(Op, DAG);
11915 }
11916
11918 MemVT, *Load->getMemOperand())) {
11919 auto [Op0, Op1] = expandUnalignedLoad(Load, DAG);
11920 return DAG.getMergeValues({Op0, Op1}, DL);
11921 }
11922
11923 return SDValue();
11924}
11925
11926SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
11927 EVT VT = Op.getValueType();
11928 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 ||
11929 VT.getSizeInBits() == 512)
11930 return splitTernaryVectorOp(Op, DAG);
11931
11932 assert(VT.getSizeInBits() == 64);
11933
11934 SDLoc DL(Op);
11935 SDValue Cond = DAG.getFreeze(Op.getOperand(0));
11936
11937 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
11938 SDValue One = DAG.getConstant(1, DL, MVT::i32);
11939
11940 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
11941 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
11942
11943 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
11944 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
11945
11946 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
11947
11948 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
11949 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
11950
11951 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
11952
11953 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
11954 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
11955}
11956
11957// Catch division cases where we can use shortcuts with rcp and rsq
11958// instructions.
11959SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
11960 SelectionDAG &DAG) const {
11961 SDLoc SL(Op);
11962 SDValue LHS = Op.getOperand(0);
11963 SDValue RHS = Op.getOperand(1);
11964 EVT VT = Op.getValueType();
11965 const SDNodeFlags Flags = Op->getFlags();
11966
11967 bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
11968
11969 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
11970 // Without !fpmath accuracy information, we can't do more because we don't
11971 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
11972 // f16 is always accurate enough
11973 if (!AllowInaccurateRcp && VT != MVT::f16 && VT != MVT::bf16)
11974 return SDValue();
11975
11976 if (CLHS->isExactlyValue(1.0)) {
11977 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
11978 // the CI documentation has a worst case error of 1 ulp.
11979 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
11980 // use it as long as we aren't trying to use denormals.
11981 //
11982 // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp.
11983
11984 // 1.0 / sqrt(x) -> rsq(x)
11985
11986 // XXX - Is afn sufficient to do this for f64? The maximum ULP
11987 // error seems really high at 2^29 ULP.
11988 // 1.0 / x -> rcp(x)
11989 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
11990 }
11991
11992 // Same as for 1.0, but expand the sign out of the constant.
11993 if (CLHS->isExactlyValue(-1.0)) {
11994 // -1.0 / x -> rcp (fneg x)
11995 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
11996 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
11997 }
11998 }
11999
12000 // For f16 and bf16 require afn or arcp.
12001 // For f32 require afn.
12002 if (!AllowInaccurateRcp &&
12003 ((VT != MVT::f16 && VT != MVT::bf16) || !Flags.hasAllowReciprocal()))
12004 return SDValue();
12005
12006 // Turn into multiply by the reciprocal.
12007 // x / y -> x * (1.0 / y)
12008 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
12009 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
12010}
12011
12012SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
12013 SelectionDAG &DAG) const {
12014 SDLoc SL(Op);
12015 SDValue X = Op.getOperand(0);
12016 SDValue Y = Op.getOperand(1);
12017 EVT VT = Op.getValueType();
12018 const SDNodeFlags Flags = Op->getFlags();
12019
12020 bool AllowInaccurateDiv = Flags.hasApproximateFuncs();
12021 if (!AllowInaccurateDiv)
12022 return SDValue();
12023
12024 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
12025 SDValue One = DAG.getConstantFP(1.0, SL, VT);
12026
12027 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
12028 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
12029
12030 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
12031 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
12032 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
12033 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
12034 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
12035 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
12036}
12037
12038static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
12039 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
12040 SDNodeFlags Flags) {
12041 if (GlueChain->getNumValues() <= 1) {
12042 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
12043 }
12044
12045 assert(GlueChain->getNumValues() == 3);
12046
12047 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
12048 switch (Opcode) {
12049 default:
12050 llvm_unreachable("no chain equivalent for opcode");
12051 case ISD::FMUL:
12052 Opcode = AMDGPUISD::FMUL_W_CHAIN;
12053 break;
12054 }
12055
12056 return DAG.getNode(Opcode, SL, VTList,
12057 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
12058 Flags);
12059}
12060
12061static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
12062 EVT VT, SDValue A, SDValue B, SDValue C,
12063 SDValue GlueChain, SDNodeFlags Flags) {
12064 if (GlueChain->getNumValues() <= 1) {
12065 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
12066 }
12067
12068 assert(GlueChain->getNumValues() == 3);
12069
12070 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
12071 switch (Opcode) {
12072 default:
12073 llvm_unreachable("no chain equivalent for opcode");
12074 case ISD::FMA:
12075 Opcode = AMDGPUISD::FMA_W_CHAIN;
12076 break;
12077 }
12078
12079 return DAG.getNode(Opcode, SL, VTList,
12080 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
12081 Flags);
12082}
12083
12084SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
12085 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
12086 return FastLowered;
12087
12088 SDLoc SL(Op);
12089 EVT VT = Op.getValueType();
12090 SDValue LHS = Op.getOperand(0);
12091 SDValue RHS = Op.getOperand(1);
12092
12093 SDValue LHSExt = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, LHS);
12094 SDValue RHSExt = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, RHS);
12095
12096 if (VT == MVT::bf16) {
12097 SDValue ExtDiv =
12098 DAG.getNode(ISD::FDIV, SL, MVT::f32, LHSExt, RHSExt, Op->getFlags());
12099 return DAG.getNode(ISD::FP_ROUND, SL, MVT::bf16, ExtDiv,
12100 DAG.getTargetConstant(0, SL, MVT::i32));
12101 }
12102
12103 assert(VT == MVT::f16);
12104
12105 // a32.u = opx(V_CVT_F32_F16, a.u); // CVT to F32
12106 // b32.u = opx(V_CVT_F32_F16, b.u); // CVT to F32
12107 // r32.u = opx(V_RCP_F32, b32.u); // rcp = 1 / d
12108 // q32.u = opx(V_MUL_F32, a32.u, r32.u); // q = n * rcp
12109 // e32.u = opx(V_MAD_F32, (b32.u^_neg32), q32.u, a32.u); // err = -d * q + n
12110 // q32.u = opx(V_MAD_F32, e32.u, r32.u, q32.u); // q = n * rcp
12111 // e32.u = opx(V_MAD_F32, (b32.u^_neg32), q32.u, a32.u); // err = -d * q + n
12112 // tmp.u = opx(V_MUL_F32, e32.u, r32.u);
12113 // tmp.u = opx(V_AND_B32, tmp.u, 0xff800000)
12114 // q32.u = opx(V_ADD_F32, tmp.u, q32.u);
12115 // q16.u = opx(V_CVT_F16_F32, q32.u);
12116 // q16.u = opx(V_DIV_FIXUP_F16, q16.u, b.u, a.u); // q = touchup(q, d, n)
12117
12118 // We will use ISD::FMA on targets that don't support ISD::FMAD.
12119 unsigned FMADOpCode =
12121 SDValue NegRHSExt = DAG.getNode(ISD::FNEG, SL, MVT::f32, RHSExt);
12122 SDValue Rcp =
12123 DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, RHSExt, Op->getFlags());
12124 SDValue Quot =
12125 DAG.getNode(ISD::FMUL, SL, MVT::f32, LHSExt, Rcp, Op->getFlags());
12126 SDValue Err = DAG.getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12127 Op->getFlags());
12128 Quot = DAG.getNode(FMADOpCode, SL, MVT::f32, Err, Rcp, Quot, Op->getFlags());
12129 Err = DAG.getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12130 Op->getFlags());
12131 SDValue Tmp = DAG.getNode(ISD::FMUL, SL, MVT::f32, Err, Rcp, Op->getFlags());
12132 SDValue TmpCast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Tmp);
12133 TmpCast = DAG.getNode(ISD::AND, SL, MVT::i32, TmpCast,
12134 DAG.getConstant(0xff800000, SL, MVT::i32));
12135 Tmp = DAG.getNode(ISD::BITCAST, SL, MVT::f32, TmpCast);
12136 Quot = DAG.getNode(ISD::FADD, SL, MVT::f32, Tmp, Quot, Op->getFlags());
12137 SDValue RDst = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot,
12138 DAG.getTargetConstant(0, SL, MVT::i32));
12139 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, RDst, RHS, LHS,
12140 Op->getFlags());
12141}
12142
12143// Faster 2.5 ULP division that does not support denormals.
12144SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
12145 SDNodeFlags Flags = Op->getFlags();
12146 SDLoc SL(Op);
12147 SDValue LHS = Op.getOperand(1);
12148 SDValue RHS = Op.getOperand(2);
12149
12150 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags);
12151
12152 const APFloat K0Val(0x1p+96f);
12153 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
12154
12155 const APFloat K1Val(0x1p-32f);
12156 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
12157
12158 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
12159
12160 EVT SetCCVT =
12161 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
12162
12163 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
12164
12165 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags);
12166
12167 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags);
12168
12169 // rcp does not support denormals.
12170 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags);
12171
12172 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags);
12173
12174 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags);
12175}
12176
12177// Returns immediate value for setting the F32 denorm mode when using the
12178// S_DENORM_MODE instruction.
12181 const GCNSubtarget *ST) {
12182 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
12183 uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue();
12184 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
12185 return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32);
12186}
12187
12188SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
12189 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
12190 return FastLowered;
12191
12192 // The selection matcher assumes anything with a chain selecting to a
12193 // mayRaiseFPException machine instruction. Since we're introducing a chain
12194 // here, we need to explicitly report nofpexcept for the regular fdiv
12195 // lowering.
12196 SDNodeFlags Flags = Op->getFlags();
12197 Flags.setNoFPExcept(true);
12198
12199 SDLoc SL(Op);
12200 SDValue LHS = Op.getOperand(0);
12201 SDValue RHS = Op.getOperand(1);
12202
12203 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
12204
12205 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
12206
12207 SDValue DenominatorScaled =
12208 DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {RHS, RHS, LHS}, Flags);
12209 SDValue NumeratorScaled =
12210 DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {LHS, RHS, LHS}, Flags);
12211
12212 // Denominator is scaled to not be denormal, so using rcp is ok.
12213 SDValue ApproxRcp =
12214 DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled, Flags);
12215 SDValue NegDivScale0 =
12216 DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags);
12217
12218 using namespace AMDGPU::Hwreg;
12219 const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
12220 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
12221
12222 const MachineFunction &MF = DAG.getMachineFunction();
12223 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12224 const DenormalMode DenormMode = Info->getMode().FP32Denormals;
12225
12226 const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE();
12227 const bool HasDynamicDenormals =
12228 (DenormMode.Input == DenormalMode::Dynamic) ||
12229 (DenormMode.Output == DenormalMode::Dynamic);
12230
12231 SDValue SavedDenormMode;
12232
12233 if (!PreservesDenormals) {
12234 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
12235 // lowering. The chain dependence is insufficient, and we need glue. We do
12236 // not need the glue variants in a strictfp function.
12237
12238 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
12239
12240 SDValue Glue = DAG.getEntryNode();
12241 if (HasDynamicDenormals) {
12242 SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL,
12243 DAG.getVTList(MVT::i32, MVT::Glue),
12244 {BitField, Glue});
12245 SavedDenormMode = SDValue(GetReg, 0);
12246
12247 Glue = DAG.getMergeValues(
12248 {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL);
12249 }
12250
12251 SDNode *EnableDenorm;
12252 if (Subtarget->hasDenormModeInst()) {
12253 const SDValue EnableDenormValue =
12255
12256 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue,
12257 EnableDenormValue)
12258 .getNode();
12259 } else {
12260 const SDValue EnableDenormValue =
12261 DAG.getConstant(FP_DENORM_FLUSH_NONE, SL, MVT::i32);
12262 EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
12263 {EnableDenormValue, BitField, Glue});
12264 }
12265
12266 SDValue Ops[3] = {NegDivScale0, SDValue(EnableDenorm, 0),
12267 SDValue(EnableDenorm, 1)};
12268
12269 NegDivScale0 = DAG.getMergeValues(Ops, SL);
12270 }
12271
12272 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
12273 ApproxRcp, One, NegDivScale0, Flags);
12274
12275 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
12276 ApproxRcp, Fma0, Flags);
12277
12278 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1,
12279 Fma1, Flags);
12280
12281 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
12282 NumeratorScaled, Mul, Flags);
12283
12284 SDValue Fma3 =
12285 getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2, Flags);
12286
12287 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
12288 NumeratorScaled, Fma3, Flags);
12289
12290 if (!PreservesDenormals) {
12291 SDNode *DisableDenorm;
12292 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
12293 const SDValue DisableDenormValue = getSPDenormModeValue(
12294 FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget);
12295
12296 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
12297 DisableDenorm =
12298 DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
12299 Fma4.getValue(1), DisableDenormValue, Fma4.getValue(2))
12300 .getNode();
12301 } else {
12302 assert(HasDynamicDenormals == (bool)SavedDenormMode);
12303 const SDValue DisableDenormValue =
12304 HasDynamicDenormals
12305 ? SavedDenormMode
12306 : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
12307
12308 DisableDenorm = DAG.getMachineNode(
12309 AMDGPU::S_SETREG_B32, SL, MVT::Other,
12310 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
12311 }
12312
12313 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
12314 SDValue(DisableDenorm, 0), DAG.getRoot());
12315 DAG.setRoot(OutputChain);
12316 }
12317
12318 SDValue Scale = NumeratorScaled.getValue(1);
12319 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
12320 {Fma4, Fma1, Fma3, Scale}, Flags);
12321
12322 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
12323}
12324
12325SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
12326 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
12327 return FastLowered;
12328
12329 SDLoc SL(Op);
12330 SDValue X = Op.getOperand(0);
12331 SDValue Y = Op.getOperand(1);
12332
12333 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
12334
12335 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
12336
12337 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
12338
12339 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
12340
12341 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
12342
12343 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
12344
12345 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
12346
12347 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
12348
12349 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
12350
12351 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
12352 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
12353
12354 SDValue Fma4 =
12355 DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1);
12356
12357 SDValue Scale;
12358
12359 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
12360 // Workaround a hardware bug on SI where the condition output from div_scale
12361 // is not usable.
12362
12363 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
12364
12365 // Figure out if the scale to use for div_fmas.
12366 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
12367 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
12368 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
12369 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
12370
12371 SDValue NumHi =
12372 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
12373 SDValue DenHi =
12374 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
12375
12376 SDValue Scale0Hi =
12377 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
12378 SDValue Scale1Hi =
12379 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
12380
12381 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
12382 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
12383 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
12384 } else {
12385 Scale = DivScale1.getValue(1);
12386 }
12387
12388 SDValue Fmas =
12389 DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale);
12390
12391 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
12392}
12393
12394SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
12395 EVT VT = Op.getValueType();
12396
12397 if (VT == MVT::f32)
12398 return LowerFDIV32(Op, DAG);
12399
12400 if (VT == MVT::f64)
12401 return LowerFDIV64(Op, DAG);
12402
12403 if (VT == MVT::f16 || VT == MVT::bf16)
12404 return LowerFDIV16(Op, DAG);
12405
12406 llvm_unreachable("Unexpected type for fdiv");
12407}
12408
12409SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const {
12410 SDLoc dl(Op);
12411 SDValue Val = Op.getOperand(0);
12412 EVT VT = Val.getValueType();
12413 EVT ResultExpVT = Op->getValueType(1);
12414 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
12415
12416 SDValue Mant = DAG.getNode(
12418 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val);
12419
12420 SDValue Exp = DAG.getNode(
12421 ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT,
12422 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val);
12423
12424 if (Subtarget->hasFractBug()) {
12425 SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val);
12426 SDValue Inf =
12428
12429 SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT);
12430 SDValue Zero = DAG.getConstant(0, dl, InstrExpVT);
12431 Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero);
12432 Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val);
12433 }
12434
12435 SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT);
12436 return DAG.getMergeValues({Mant, CastExp}, dl);
12437}
12438
12439SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
12440 SDLoc DL(Op);
12441 StoreSDNode *Store = cast<StoreSDNode>(Op);
12442 EVT VT = Store->getMemoryVT();
12443
12444 if (VT == MVT::i1) {
12445 return DAG.getTruncStore(
12446 Store->getChain(), DL,
12447 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
12448 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
12449 }
12450
12451 assert(VT.isVector() &&
12452 Store->getValue().getValueType().getScalarType() == MVT::i32);
12453
12454 unsigned AS = Store->getAddressSpace();
12455 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
12456 Store->getAlign().value() < VT.getStoreSize() &&
12457 VT.getSizeInBits() > 32) {
12458 return SplitVectorStore(Op, DAG);
12459 }
12460
12461 MachineFunction &MF = DAG.getMachineFunction();
12462 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
12463 // If there is a possibility that flat instruction access scratch memory
12464 // then we need to use the same legalization rules we use for private.
12465 if (AS == AMDGPUAS::FLAT_ADDRESS &&
12466 !Subtarget->hasMultiDwordFlatScratchAddressing())
12467 AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI)
12470
12471 unsigned NumElements = VT.getVectorNumElements();
12473 if (NumElements > 4)
12474 return SplitVectorStore(Op, DAG);
12475 // v3 stores not supported on SI.
12476 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
12477 return SplitVectorStore(Op, DAG);
12478
12480 VT, *Store->getMemOperand()))
12481 return expandUnalignedStore(Store, DAG);
12482
12483 return SDValue();
12484 }
12485 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
12486 switch (Subtarget->getMaxPrivateElementSize()) {
12487 case 4:
12488 return scalarizeVectorStore(Store, DAG);
12489 case 8:
12490 if (NumElements > 2)
12491 return SplitVectorStore(Op, DAG);
12492 return SDValue();
12493 case 16:
12494 if (NumElements > 4 ||
12495 (NumElements == 3 && !Subtarget->enableFlatScratch()))
12496 return SplitVectorStore(Op, DAG);
12497 return SDValue();
12498 default:
12499 llvm_unreachable("unsupported private_element_size");
12500 }
12501 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
12502 unsigned Fast = 0;
12503 auto Flags = Store->getMemOperand()->getFlags();
12505 Store->getAlign(), Flags, &Fast) &&
12506 Fast > 1)
12507 return SDValue();
12508
12509 if (VT.isVector())
12510 return SplitVectorStore(Op, DAG);
12511
12512 return expandUnalignedStore(Store, DAG);
12513 }
12514
12515 // Probably an invalid store. If so we'll end up emitting a selection error.
12516 return SDValue();
12517}
12518
12519// Avoid the full correct expansion for f32 sqrt when promoting from f16.
12520SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const {
12521 SDLoc SL(Op);
12522 assert(!Subtarget->has16BitInsts());
12523 SDNodeFlags Flags = Op->getFlags();
12524 SDValue Ext =
12525 DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags);
12526
12527 SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32);
12528 SDValue Sqrt =
12529 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags);
12530
12531 return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt,
12532 DAG.getTargetConstant(0, SL, MVT::i32), Flags);
12533}
12534
12535SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const {
12536 SDLoc DL(Op);
12537 SDNodeFlags Flags = Op->getFlags();
12538 MVT VT = Op.getValueType().getSimpleVT();
12539 const SDValue X = Op.getOperand(0);
12540
12541 if (allowApproxFunc(DAG, Flags)) {
12542 // Instruction is 1ulp but ignores denormals.
12543 return DAG.getNode(
12545 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags);
12546 }
12547
12548 SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT);
12549 SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT);
12550
12551 SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT);
12552
12553 SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags);
12554
12555 SDValue SqrtX =
12556 DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags);
12557
12558 SDValue SqrtS;
12559 if (needsDenormHandlingF32(DAG, X, Flags)) {
12560 SDValue SqrtID =
12561 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32);
12562 SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags);
12563
12564 SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS);
12565 SDValue SqrtSNextDownInt =
12566 DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
12567 DAG.getAllOnesConstant(DL, MVT::i32));
12568 SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt);
12569
12570 SDValue NegSqrtSNextDown =
12571 DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags);
12572
12573 SDValue SqrtVP =
12574 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
12575
12576 SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
12577 DAG.getConstant(1, DL, MVT::i32));
12578 SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt);
12579
12580 SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags);
12581 SDValue SqrtVS =
12582 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
12583
12584 SDValue Zero = DAG.getConstantFP(0.0f, DL, VT);
12585 SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE);
12586
12587 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS,
12588 Flags);
12589
12590 SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT);
12591 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS,
12592 Flags);
12593 } else {
12594 SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags);
12595
12596 SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags);
12597
12598 SDValue Half = DAG.getConstantFP(0.5f, DL, VT);
12599 SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags);
12600 SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags);
12601
12602 SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags);
12603 SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags);
12604 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags);
12605
12606 SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags);
12607 SDValue SqrtD =
12608 DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags);
12609 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags);
12610 }
12611
12612 SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT);
12613
12614 SDValue ScaledDown =
12615 DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags);
12616
12617 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags);
12618 SDValue IsZeroOrInf =
12619 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
12620 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
12621
12622 return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags);
12623}
12624
12625SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const {
12626 // For double type, the SQRT and RSQ instructions don't have required
12627 // precision, we apply Goldschmidt's algorithm to improve the result:
12628 //
12629 // y0 = rsq(x)
12630 // g0 = x * y0
12631 // h0 = 0.5 * y0
12632 //
12633 // r0 = 0.5 - h0 * g0
12634 // g1 = g0 * r0 + g0
12635 // h1 = h0 * r0 + h0
12636 //
12637 // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1
12638 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1
12639 // h2 = h1 * r1 + h1
12640 //
12641 // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2
12642 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2
12643 //
12644 // sqrt(x) = g3
12645
12646 SDNodeFlags Flags = Op->getFlags();
12647
12648 SDLoc DL(Op);
12649
12650 SDValue X = Op.getOperand(0);
12651 SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64);
12652
12653 SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT);
12654
12655 SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32);
12656
12657 // Scale up input if it is too small.
12658 SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32);
12659 SDValue ScaleUp =
12660 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt);
12661 SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags);
12662
12663 SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX);
12664
12665 SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY);
12666
12667 SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64);
12668 SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half);
12669
12670 SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0);
12671 SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half);
12672
12673 SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0);
12674
12675 SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0);
12676
12677 SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1);
12678 SDValue SqrtD0 =
12679 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX);
12680
12681 SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1);
12682
12683 SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2);
12684 SDValue SqrtD1 =
12685 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX);
12686
12687 SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2);
12688
12689 SDValue ScaleDownFactor = DAG.getSignedConstant(-128, DL, MVT::i32);
12690 SDValue ScaleDown =
12691 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt);
12692 SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags);
12693
12694 // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check
12695 // with finite only or nsz because rsq(+/-0) = +/-inf
12696
12697 // TODO: Check for DAZ and expand to subnormals
12698 SDValue IsZeroOrInf =
12699 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
12700 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
12701
12702 // If x is +INF, +0, or -0, use its original value
12703 return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet,
12704 Flags);
12705}
12706
12707SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
12708 SDLoc DL(Op);
12709 EVT VT = Op.getValueType();
12710 SDValue Arg = Op.getOperand(0);
12711 SDValue TrigVal;
12712
12713 // Propagate fast-math flags so that the multiply we introduce can be folded
12714 // if Arg is already the result of a multiply by constant.
12715 auto Flags = Op->getFlags();
12716
12717 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
12718
12719 if (Subtarget->hasTrigReducedRange()) {
12720 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
12721 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
12722 } else {
12723 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
12724 }
12725
12726 switch (Op.getOpcode()) {
12727 case ISD::FCOS:
12728 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
12729 case ISD::FSIN:
12730 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
12731 default:
12732 llvm_unreachable("Wrong trig opcode");
12733 }
12734}
12735
12736SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
12737 SelectionDAG &DAG) const {
12738 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
12739 assert(AtomicNode->isCompareAndSwap());
12740 unsigned AS = AtomicNode->getAddressSpace();
12741
12742 // No custom lowering required for local address space
12744 return Op;
12745
12746 // Non-local address space requires custom lowering for atomic compare
12747 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
12748 SDLoc DL(Op);
12749 SDValue ChainIn = Op.getOperand(0);
12750 SDValue Addr = Op.getOperand(1);
12751 SDValue Old = Op.getOperand(2);
12752 SDValue New = Op.getOperand(3);
12753 EVT VT = Op.getValueType();
12754 MVT SimpleVT = VT.getSimpleVT();
12755 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
12756
12757 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
12758 SDValue Ops[] = {ChainIn, Addr, NewOld};
12759
12761 Op->getVTList(), Ops, VT,
12762 AtomicNode->getMemOperand());
12763}
12764
12765//===----------------------------------------------------------------------===//
12766// Custom DAG optimizations
12767//===----------------------------------------------------------------------===//
12768
12769SDValue
12770SITargetLowering::performUCharToFloatCombine(SDNode *N,
12771 DAGCombinerInfo &DCI) const {
12772 EVT VT = N->getValueType(0);
12773 EVT ScalarVT = VT.getScalarType();
12774 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
12775 return SDValue();
12776
12777 SelectionDAG &DAG = DCI.DAG;
12778 SDLoc DL(N);
12779
12780 SDValue Src = N->getOperand(0);
12781 EVT SrcVT = Src.getValueType();
12782
12783 // TODO: We could try to match extracting the higher bytes, which would be
12784 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
12785 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
12786 // about in practice.
12787 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
12788 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
12789 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
12790 DCI.AddToWorklist(Cvt.getNode());
12791
12792 // For the f16 case, fold to a cast to f32 and then cast back to f16.
12793 if (ScalarVT != MVT::f32) {
12794 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
12795 DAG.getTargetConstant(0, DL, MVT::i32));
12796 }
12797 return Cvt;
12798 }
12799 }
12800
12801 return SDValue();
12802}
12803
12804SDValue SITargetLowering::performFCopySignCombine(SDNode *N,
12805 DAGCombinerInfo &DCI) const {
12806 SDValue MagnitudeOp = N->getOperand(0);
12807 SDValue SignOp = N->getOperand(1);
12808
12809 // The generic combine for fcopysign + fp cast is too conservative with
12810 // vectors, and also gets confused by the splitting we will perform here, so
12811 // peek through FP casts.
12812 if (SignOp.getOpcode() == ISD::FP_EXTEND ||
12813 SignOp.getOpcode() == ISD::FP_ROUND)
12814 SignOp = SignOp.getOperand(0);
12815
12816 SelectionDAG &DAG = DCI.DAG;
12817 SDLoc DL(N);
12818 EVT SignVT = SignOp.getValueType();
12819
12820 // f64 fcopysign is really an f32 copysign on the high bits, so replace the
12821 // lower half with a copy.
12822 // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y)
12823 EVT MagVT = MagnitudeOp.getValueType();
12824
12825 unsigned NumElts = MagVT.isVector() ? MagVT.getVectorNumElements() : 1;
12826
12827 if (MagVT.getScalarType() == MVT::f64) {
12828 EVT F32VT = MagVT.isVector()
12829 ? EVT::getVectorVT(*DAG.getContext(), MVT::f32, 2 * NumElts)
12830 : MVT::v2f32;
12831
12832 SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, F32VT, MagnitudeOp);
12833
12835 for (unsigned I = 0; I != NumElts; ++I) {
12836 SDValue MagLo =
12837 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
12838 DAG.getConstant(2 * I, DL, MVT::i32));
12839 SDValue MagHi =
12840 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector,
12841 DAG.getConstant(2 * I + 1, DL, MVT::i32));
12842
12843 SDValue SignOpElt =
12844 MagVT.isVector()
12846 SignOp, DAG.getConstant(I, DL, MVT::i32))
12847 : SignOp;
12848
12849 SDValue HiOp =
12850 DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOpElt);
12851
12852 SDValue Vector =
12853 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp);
12854
12855 SDValue NewElt = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector);
12856 NewElts.push_back(NewElt);
12857 }
12858
12859 if (NewElts.size() == 1)
12860 return NewElts[0];
12861
12862 return DAG.getNode(ISD::BUILD_VECTOR, DL, MagVT, NewElts);
12863 }
12864
12865 if (SignVT.getScalarType() != MVT::f64)
12866 return SDValue();
12867
12868 // Reduce width of sign operand, we only need the highest bit.
12869 //
12870 // fcopysign f64:x, f64:y ->
12871 // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1)
12872 // TODO: In some cases it might make sense to go all the way to f16.
12873
12874 EVT F32VT = MagVT.isVector()
12875 ? EVT::getVectorVT(*DAG.getContext(), MVT::f32, 2 * NumElts)
12876 : MVT::v2f32;
12877
12878 SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, F32VT, SignOp);
12879
12880 SmallVector<SDValue, 8> F32Signs;
12881 for (unsigned I = 0; I != NumElts; ++I) {
12882 // Take sign from odd elements of cast vector
12883 SDValue SignAsF32 =
12884 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector,
12885 DAG.getConstant(2 * I + 1, DL, MVT::i32));
12886 F32Signs.push_back(SignAsF32);
12887 }
12888
12889 SDValue NewSign =
12890 NumElts == 1
12891 ? F32Signs.back()
12893 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumElts),
12894 F32Signs);
12895
12896 return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0),
12897 NewSign);
12898}
12899
12900// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
12901// (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no
12902// bits
12903
12904// This is a variant of
12905// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
12906//
12907// The normal DAG combiner will do this, but only if the add has one use since
12908// that would increase the number of instructions.
12909//
12910// This prevents us from seeing a constant offset that can be folded into a
12911// memory instruction's addressing mode. If we know the resulting add offset of
12912// a pointer can be folded into an addressing offset, we can replace the pointer
12913// operand with the add of new constant offset. This eliminates one of the uses,
12914// and may allow the remaining use to also be simplified.
12915//
12916SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace,
12917 EVT MemVT,
12918 DAGCombinerInfo &DCI) const {
12919 SDValue N0 = N->getOperand(0);
12920 SDValue N1 = N->getOperand(1);
12921
12922 // We only do this to handle cases where it's profitable when there are
12923 // multiple uses of the add, so defer to the standard combine.
12924 if ((!N0->isAnyAdd() && N0.getOpcode() != ISD::OR) || N0->hasOneUse())
12925 return SDValue();
12926
12927 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
12928 if (!CN1)
12929 return SDValue();
12930
12931 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12932 if (!CAdd)
12933 return SDValue();
12934
12935 SelectionDAG &DAG = DCI.DAG;
12936
12937 if (N0->getOpcode() == ISD::OR &&
12938 !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1)))
12939 return SDValue();
12940
12941 // If the resulting offset is too large, we can't fold it into the
12942 // addressing mode offset.
12943 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
12944 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
12945
12946 AddrMode AM;
12947 AM.HasBaseReg = true;
12948 AM.BaseOffs = Offset.getSExtValue();
12949 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
12950 return SDValue();
12951
12952 SDLoc SL(N);
12953 EVT VT = N->getValueType(0);
12954
12955 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
12956 SDValue COffset = DAG.getConstant(Offset, SL, VT);
12957
12958 SDNodeFlags Flags;
12959 Flags.setNoUnsignedWrap(
12960 N->getFlags().hasNoUnsignedWrap() &&
12961 (N0.getOpcode() == ISD::OR || N0->getFlags().hasNoUnsignedWrap()));
12962
12963 // Use ISD::ADD even if the original operation was ISD::PTRADD, since we can't
12964 // be sure that the new left operand is a proper base pointer.
12965 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
12966}
12967
12968/// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
12969/// by the chain and intrinsic ID. Theoretically we would also need to check the
12970/// specific intrinsic, but they all place the pointer operand first.
12971static unsigned getBasePtrIndex(const MemSDNode *N) {
12972 switch (N->getOpcode()) {
12973 case ISD::STORE:
12976 return 2;
12977 default:
12978 return 1;
12979 }
12980}
12981
12982SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
12983 DAGCombinerInfo &DCI) const {
12984 SelectionDAG &DAG = DCI.DAG;
12985
12986 unsigned PtrIdx = getBasePtrIndex(N);
12987 SDValue Ptr = N->getOperand(PtrIdx);
12988
12989 // TODO: We could also do this for multiplies.
12990 if (Ptr.getOpcode() == ISD::SHL) {
12991 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
12992 N->getMemoryVT(), DCI);
12993 if (NewPtr) {
12994 SmallVector<SDValue, 8> NewOps(N->ops());
12995
12996 NewOps[PtrIdx] = NewPtr;
12997 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
12998 }
12999 }
13000
13001 return SDValue();
13002}
13003
13004static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
13005 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
13006 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
13007 (Opc == ISD::XOR && Val == 0);
13008}
13009
13010// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
13011// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
13012// integer combine opportunities since most 64-bit operations are decomposed
13013// this way. TODO: We won't want this for SALU especially if it is an inline
13014// immediate.
13015SDValue SITargetLowering::splitBinaryBitConstantOp(
13016 DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS,
13017 const ConstantSDNode *CRHS) const {
13018 uint64_t Val = CRHS->getZExtValue();
13019 uint32_t ValLo = Lo_32(Val);
13020 uint32_t ValHi = Hi_32(Val);
13021 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13022
13023 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
13025 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
13026 // We have 64-bit scalar and/or/xor, but do not have vector forms.
13027 if (Subtarget->has64BitLiterals() && CRHS->hasOneUse() &&
13028 !CRHS->user_begin()->isDivergent())
13029 return SDValue();
13030
13031 // If we need to materialize a 64-bit immediate, it will be split up later
13032 // anyway. Avoid creating the harder to understand 64-bit immediate
13033 // materialization.
13034 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
13035 }
13036
13037 return SDValue();
13038}
13039
13041 if (V.getValueType() != MVT::i1)
13042 return false;
13043 switch (V.getOpcode()) {
13044 default:
13045 break;
13046 case ISD::SETCC:
13047 case ISD::IS_FPCLASS:
13049 return true;
13050 case ISD::AND:
13051 case ISD::OR:
13052 case ISD::XOR:
13053 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
13054 case ISD::SADDO:
13055 case ISD::UADDO:
13056 case ISD::SSUBO:
13057 case ISD::USUBO:
13058 case ISD::SMULO:
13059 case ISD::UMULO:
13060 return V.getResNo() == 1;
13062 unsigned IntrinsicID = V.getConstantOperandVal(0);
13063 switch (IntrinsicID) {
13064 case Intrinsic::amdgcn_is_shared:
13065 case Intrinsic::amdgcn_is_private:
13066 return true;
13067 default:
13068 return false;
13069 }
13070
13071 return false;
13072 }
13073 }
13074 return false;
13075}
13076
13077// If a constant has all zeroes or all ones within each byte return it.
13078// Otherwise return 0.
13080 // 0xff for any zero byte in the mask
13081 uint32_t ZeroByteMask = 0;
13082 if (!(C & 0x000000ff))
13083 ZeroByteMask |= 0x000000ff;
13084 if (!(C & 0x0000ff00))
13085 ZeroByteMask |= 0x0000ff00;
13086 if (!(C & 0x00ff0000))
13087 ZeroByteMask |= 0x00ff0000;
13088 if (!(C & 0xff000000))
13089 ZeroByteMask |= 0xff000000;
13090 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
13091 if ((NonZeroByteMask & C) != NonZeroByteMask)
13092 return 0; // Partial bytes selected.
13093 return C;
13094}
13095
13096// Check if a node selects whole bytes from its operand 0 starting at a byte
13097// boundary while masking the rest. Returns select mask as in the v_perm_b32
13098// or -1 if not succeeded.
13099// Note byte select encoding:
13100// value 0-3 selects corresponding source byte;
13101// value 0xc selects zero;
13102// value 0xff selects 0xff.
13104 assert(V.getValueSizeInBits() == 32);
13105
13106 if (V.getNumOperands() != 2)
13107 return ~0;
13108
13109 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
13110 if (!N1)
13111 return ~0;
13112
13113 uint32_t C = N1->getZExtValue();
13114
13115 switch (V.getOpcode()) {
13116 default:
13117 break;
13118 case ISD::AND:
13119 if (uint32_t ConstMask = getConstantPermuteMask(C))
13120 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
13121 break;
13122
13123 case ISD::OR:
13124 if (uint32_t ConstMask = getConstantPermuteMask(C))
13125 return (0x03020100 & ~ConstMask) | ConstMask;
13126 break;
13127
13128 case ISD::SHL:
13129 if (C % 8)
13130 return ~0;
13131
13132 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
13133
13134 case ISD::SRL:
13135 if (C % 8)
13136 return ~0;
13137
13138 return uint32_t(0x0c0c0c0c03020100ull >> C);
13139 }
13140
13141 return ~0;
13142}
13143
13144SDValue SITargetLowering::performAndCombine(SDNode *N,
13145 DAGCombinerInfo &DCI) const {
13146 if (DCI.isBeforeLegalize())
13147 return SDValue();
13148
13149 SelectionDAG &DAG = DCI.DAG;
13150 EVT VT = N->getValueType(0);
13151 SDValue LHS = N->getOperand(0);
13152 SDValue RHS = N->getOperand(1);
13153
13154 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
13155 if (VT == MVT::i64 && CRHS) {
13156 if (SDValue Split =
13157 splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
13158 return Split;
13159 }
13160
13161 if (CRHS && VT == MVT::i32) {
13162 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
13163 // nb = number of trailing zeroes in mask
13164 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
13165 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
13166 uint64_t Mask = CRHS->getZExtValue();
13167 unsigned Bits = llvm::popcount(Mask);
13168 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
13169 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
13170 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
13171 unsigned Shift = CShift->getZExtValue();
13172 unsigned NB = CRHS->getAPIntValue().countr_zero();
13173 unsigned Offset = NB + Shift;
13174 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
13175 SDLoc SL(N);
13176 SDValue BFE =
13177 DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, LHS->getOperand(0),
13178 DAG.getConstant(Offset, SL, MVT::i32),
13179 DAG.getConstant(Bits, SL, MVT::i32));
13180 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
13181 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
13182 DAG.getValueType(NarrowVT));
13183 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
13184 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
13185 return Shl;
13186 }
13187 }
13188 }
13189
13190 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
13191 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
13192 isa<ConstantSDNode>(LHS.getOperand(2))) {
13193 uint32_t Sel = getConstantPermuteMask(Mask);
13194 if (!Sel)
13195 return SDValue();
13196
13197 // Select 0xc for all zero bytes
13198 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
13199 SDLoc DL(N);
13200 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
13201 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
13202 }
13203 }
13204
13205 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
13206 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
13207 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
13208 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
13209 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
13210
13211 SDValue X = LHS.getOperand(0);
13212 SDValue Y = RHS.getOperand(0);
13213 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
13214 !isTypeLegal(X.getValueType()))
13215 return SDValue();
13216
13217 if (LCC == ISD::SETO) {
13218 if (X != LHS.getOperand(1))
13219 return SDValue();
13220
13221 if (RCC == ISD::SETUNE) {
13222 const ConstantFPSDNode *C1 =
13223 dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
13224 if (!C1 || !C1->isInfinity() || C1->isNegative())
13225 return SDValue();
13226
13227 const uint32_t Mask = SIInstrFlags::N_NORMAL |
13231
13232 static_assert(
13235 0x3ff) == Mask,
13236 "mask not equal");
13237
13238 SDLoc DL(N);
13239 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X,
13240 DAG.getConstant(Mask, DL, MVT::i32));
13241 }
13242 }
13243 }
13244
13245 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
13246 std::swap(LHS, RHS);
13247
13248 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
13249 RHS.hasOneUse()) {
13250 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
13251 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan |
13252 // n_nan) and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan
13253 // | n_nan)
13254 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
13255 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
13256 (RHS.getOperand(0) == LHS.getOperand(0) &&
13257 LHS.getOperand(0) == LHS.getOperand(1))) {
13258 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
13259 unsigned NewMask = LCC == ISD::SETO ? Mask->getZExtValue() & ~OrdMask
13260 : Mask->getZExtValue() & OrdMask;
13261
13262 SDLoc DL(N);
13263 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
13264 DAG.getConstant(NewMask, DL, MVT::i32));
13265 }
13266 }
13267
13268 if (VT == MVT::i32 && (RHS.getOpcode() == ISD::SIGN_EXTEND ||
13269 LHS.getOpcode() == ISD::SIGN_EXTEND)) {
13270 // and x, (sext cc from i1) => select cc, x, 0
13271 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
13272 std::swap(LHS, RHS);
13273 if (isBoolSGPR(RHS.getOperand(0)))
13274 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), LHS,
13275 DAG.getConstant(0, SDLoc(N), MVT::i32));
13276 }
13277
13278 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
13279 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13280 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
13281 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13282 uint32_t LHSMask = getPermuteMask(LHS);
13283 uint32_t RHSMask = getPermuteMask(RHS);
13284 if (LHSMask != ~0u && RHSMask != ~0u) {
13285 // Canonicalize the expression in an attempt to have fewer unique masks
13286 // and therefore fewer registers used to hold the masks.
13287 if (LHSMask > RHSMask) {
13288 std::swap(LHSMask, RHSMask);
13289 std::swap(LHS, RHS);
13290 }
13291
13292 // Select 0xc for each lane used from source operand. Zero has 0xc mask
13293 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
13294 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13295 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13296
13297 // Check of we need to combine values from two sources within a byte.
13298 if (!(LHSUsedLanes & RHSUsedLanes) &&
13299 // If we select high and lower word keep it for SDWA.
13300 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
13301 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
13302 // Each byte in each mask is either selector mask 0-3, or has higher
13303 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
13304 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
13305 // mask which is not 0xff wins. By anding both masks we have a correct
13306 // result except that 0x0c shall be corrected to give 0x0c only.
13307 uint32_t Mask = LHSMask & RHSMask;
13308 for (unsigned I = 0; I < 32; I += 8) {
13309 uint32_t ByteSel = 0xff << I;
13310 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
13311 Mask &= (0x0c << I) & 0xffffffff;
13312 }
13313
13314 // Add 4 to each active LHS lane. It will not affect any existing 0xff
13315 // or 0x0c.
13316 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
13317 SDLoc DL(N);
13318
13319 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
13320 RHS.getOperand(0),
13321 DAG.getConstant(Sel, DL, MVT::i32));
13322 }
13323 }
13324 }
13325
13326 return SDValue();
13327}
13328
13329// A key component of v_perm is a mapping between byte position of the src
13330// operands, and the byte position of the dest. To provide such, we need: 1. the
13331// node that provides x byte of the dest of the OR, and 2. the byte of the node
13332// used to provide that x byte. calculateByteProvider finds which node provides
13333// a certain byte of the dest of the OR, and calculateSrcByte takes that node,
13334// and finds an ultimate src and byte position For example: The supported
13335// LoadCombine pattern for vector loads is as follows
13336// t1
13337// or
13338// / \
13339// t2 t3
13340// zext shl
13341// | | \
13342// t4 t5 16
13343// or anyext
13344// / \ |
13345// t6 t7 t8
13346// srl shl or
13347// / | / \ / \
13348// t9 t10 t11 t12 t13 t14
13349// trunc* 8 trunc* 8 and and
13350// | | / | | \
13351// t15 t16 t17 t18 t19 t20
13352// trunc* 255 srl -256
13353// | / \
13354// t15 t15 16
13355//
13356// *In this example, the truncs are from i32->i16
13357//
13358// calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3
13359// respectively. calculateSrcByte would find (given node) -> ultimate src &
13360// byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3.
13361// After finding the mapping, we can combine the tree into vperm t15, t16,
13362// 0x05000407
13363
13364// Find the source and byte position from a node.
13365// \p DestByte is the byte position of the dest of the or that the src
13366// ultimately provides. \p SrcIndex is the byte of the src that maps to this
13367// dest of the or byte. \p Depth tracks how many recursive iterations we have
13368// performed.
13369static const std::optional<ByteProvider<SDValue>>
13370calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0,
13371 unsigned Depth = 0) {
13372 // We may need to recursively traverse a series of SRLs
13373 if (Depth >= 6)
13374 return std::nullopt;
13375
13376 if (Op.getValueSizeInBits() < 8)
13377 return std::nullopt;
13378
13379 if (Op.getValueType().isVector())
13380 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
13381
13382 switch (Op->getOpcode()) {
13383 case ISD::TRUNCATE: {
13384 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
13385 }
13386
13387 case ISD::SIGN_EXTEND:
13388 case ISD::ZERO_EXTEND:
13390 SDValue NarrowOp = Op->getOperand(0);
13391 auto NarrowVT = NarrowOp.getValueType();
13392 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) {
13393 auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
13394 NarrowVT = VTSign->getVT();
13395 }
13396 if (!NarrowVT.isByteSized())
13397 return std::nullopt;
13398 uint64_t NarrowByteWidth = NarrowVT.getStoreSize();
13399
13400 if (SrcIndex >= NarrowByteWidth)
13401 return std::nullopt;
13402 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
13403 }
13404
13405 case ISD::SRA:
13406 case ISD::SRL: {
13407 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13408 if (!ShiftOp)
13409 return std::nullopt;
13410
13411 uint64_t BitShift = ShiftOp->getZExtValue();
13412
13413 if (BitShift % 8 != 0)
13414 return std::nullopt;
13415
13416 SrcIndex += BitShift / 8;
13417
13418 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
13419 }
13420
13421 default: {
13422 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
13423 }
13424 }
13425 llvm_unreachable("fully handled switch");
13426}
13427
13428// For a byte position in the result of an Or, traverse the tree and find the
13429// node (and the byte of the node) which ultimately provides this {Or,
13430// BytePosition}. \p Op is the operand we are currently examining. \p Index is
13431// the byte position of the Op that corresponds with the originally requested
13432// byte of the Or \p Depth tracks how many recursive iterations we have
13433// performed. \p StartingIndex is the originally requested byte of the Or
13434static const std::optional<ByteProvider<SDValue>>
13435calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth,
13436 unsigned StartingIndex = 0) {
13437 // Finding Src tree of RHS of or typically requires at least 1 additional
13438 // depth
13439 if (Depth > 6)
13440 return std::nullopt;
13441
13442 unsigned BitWidth = Op.getScalarValueSizeInBits();
13443 if (BitWidth % 8 != 0)
13444 return std::nullopt;
13445 if (Index > BitWidth / 8 - 1)
13446 return std::nullopt;
13447
13448 bool IsVec = Op.getValueType().isVector();
13449 switch (Op.getOpcode()) {
13450 case ISD::OR: {
13451 if (IsVec)
13452 return std::nullopt;
13453
13454 auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1,
13455 StartingIndex);
13456 if (!RHS)
13457 return std::nullopt;
13458 auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
13459 StartingIndex);
13460 if (!LHS)
13461 return std::nullopt;
13462 // A well formed Or will have two ByteProviders for each byte, one of which
13463 // is constant zero
13464 if (!LHS->isConstantZero() && !RHS->isConstantZero())
13465 return std::nullopt;
13466 if (!LHS || LHS->isConstantZero())
13467 return RHS;
13468 if (!RHS || RHS->isConstantZero())
13469 return LHS;
13470 return std::nullopt;
13471 }
13472
13473 case ISD::AND: {
13474 if (IsVec)
13475 return std::nullopt;
13476
13477 auto *BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13478 if (!BitMaskOp)
13479 return std::nullopt;
13480
13481 uint32_t BitMask = BitMaskOp->getZExtValue();
13482 // Bits we expect for our StartingIndex
13483 uint32_t IndexMask = 0xFF << (Index * 8);
13484
13485 if ((IndexMask & BitMask) != IndexMask) {
13486 // If the result of the and partially provides the byte, then it
13487 // is not well formatted
13488 if (IndexMask & BitMask)
13489 return std::nullopt;
13491 }
13492
13493 return calculateSrcByte(Op->getOperand(0), StartingIndex, Index);
13494 }
13495
13496 case ISD::FSHR: {
13497 if (IsVec)
13498 return std::nullopt;
13499
13500 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
13501 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2));
13502 if (!ShiftOp || Op.getValueType().isVector())
13503 return std::nullopt;
13504
13505 uint64_t BitsProvided = Op.getValueSizeInBits();
13506 if (BitsProvided % 8 != 0)
13507 return std::nullopt;
13508
13509 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
13510 if (BitShift % 8)
13511 return std::nullopt;
13512
13513 uint64_t ConcatSizeInBytes = BitsProvided / 4;
13514 uint64_t ByteShift = BitShift / 8;
13515
13516 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
13517 uint64_t BytesProvided = BitsProvided / 8;
13518 SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
13519 NewIndex %= BytesProvided;
13520 return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex);
13521 }
13522
13523 case ISD::SRA:
13524 case ISD::SRL: {
13525 if (IsVec)
13526 return std::nullopt;
13527
13528 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13529 if (!ShiftOp)
13530 return std::nullopt;
13531
13532 uint64_t BitShift = ShiftOp->getZExtValue();
13533 if (BitShift % 8)
13534 return std::nullopt;
13535
13536 auto BitsProvided = Op.getScalarValueSizeInBits();
13537 if (BitsProvided % 8 != 0)
13538 return std::nullopt;
13539
13540 uint64_t BytesProvided = BitsProvided / 8;
13541 uint64_t ByteShift = BitShift / 8;
13542 // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes.
13543 // If the byte we are trying to provide (as tracked by index) falls in this
13544 // range, then the SRL provides the byte. The byte of interest of the src of
13545 // the SRL is Index + ByteShift
13546 return BytesProvided - ByteShift > Index
13547 ? calculateSrcByte(Op->getOperand(0), StartingIndex,
13548 Index + ByteShift)
13550 }
13551
13552 case ISD::SHL: {
13553 if (IsVec)
13554 return std::nullopt;
13555
13556 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13557 if (!ShiftOp)
13558 return std::nullopt;
13559
13560 uint64_t BitShift = ShiftOp->getZExtValue();
13561 if (BitShift % 8 != 0)
13562 return std::nullopt;
13563 uint64_t ByteShift = BitShift / 8;
13564
13565 // If we are shifting by an amount greater than (or equal to)
13566 // the index we are trying to provide, then it provides 0s. If not,
13567 // then this bytes are not definitively 0s, and the corresponding byte
13568 // of interest is Index - ByteShift of the src
13569 return Index < ByteShift
13571 : calculateByteProvider(Op.getOperand(0), Index - ByteShift,
13572 Depth + 1, StartingIndex);
13573 }
13574 case ISD::ANY_EXTEND:
13575 case ISD::SIGN_EXTEND:
13576 case ISD::ZERO_EXTEND:
13578 case ISD::AssertZext:
13579 case ISD::AssertSext: {
13580 if (IsVec)
13581 return std::nullopt;
13582
13583 SDValue NarrowOp = Op->getOperand(0);
13584 unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits();
13585 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG ||
13586 Op->getOpcode() == ISD::AssertZext ||
13587 Op->getOpcode() == ISD::AssertSext) {
13588 auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
13589 NarrowBitWidth = VTSign->getVT().getSizeInBits();
13590 }
13591 if (NarrowBitWidth % 8 != 0)
13592 return std::nullopt;
13593 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13594
13595 if (Index >= NarrowByteWidth)
13596 return Op.getOpcode() == ISD::ZERO_EXTEND
13597 ? std::optional<ByteProvider<SDValue>>(
13599 : std::nullopt;
13600 return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex);
13601 }
13602
13603 case ISD::TRUNCATE: {
13604 if (IsVec)
13605 return std::nullopt;
13606
13607 uint64_t NarrowByteWidth = BitWidth / 8;
13608
13609 if (NarrowByteWidth >= Index) {
13610 return calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
13611 StartingIndex);
13612 }
13613
13614 return std::nullopt;
13615 }
13616
13617 case ISD::CopyFromReg: {
13618 if (BitWidth / 8 > Index)
13619 return calculateSrcByte(Op, StartingIndex, Index);
13620
13621 return std::nullopt;
13622 }
13623
13624 case ISD::LOAD: {
13625 auto *L = cast<LoadSDNode>(Op.getNode());
13626
13627 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
13628 if (NarrowBitWidth % 8 != 0)
13629 return std::nullopt;
13630 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13631
13632 // If the width of the load does not reach byte we are trying to provide for
13633 // and it is not a ZEXTLOAD, then the load does not provide for the byte in
13634 // question
13635 if (Index >= NarrowByteWidth) {
13636 return L->getExtensionType() == ISD::ZEXTLOAD
13637 ? std::optional<ByteProvider<SDValue>>(
13639 : std::nullopt;
13640 }
13641
13642 if (NarrowByteWidth > Index) {
13643 return calculateSrcByte(Op, StartingIndex, Index);
13644 }
13645
13646 return std::nullopt;
13647 }
13648
13649 case ISD::BSWAP: {
13650 if (IsVec)
13651 return std::nullopt;
13652
13653 return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1,
13654 Depth + 1, StartingIndex);
13655 }
13656
13658 auto *IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13659 if (!IdxOp)
13660 return std::nullopt;
13661 auto VecIdx = IdxOp->getZExtValue();
13662 auto ScalarSize = Op.getScalarValueSizeInBits();
13663 if (ScalarSize < 32)
13664 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
13665 return calculateSrcByte(ScalarSize >= 32 ? Op : Op.getOperand(0),
13666 StartingIndex, Index);
13667 }
13668
13669 case AMDGPUISD::PERM: {
13670 if (IsVec)
13671 return std::nullopt;
13672
13673 auto *PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2));
13674 if (!PermMask)
13675 return std::nullopt;
13676
13677 auto IdxMask =
13678 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
13679 if (IdxMask > 0x07 && IdxMask != 0x0c)
13680 return std::nullopt;
13681
13682 auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1);
13683 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
13684
13685 return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex)
13688 }
13689
13690 default: {
13691 return std::nullopt;
13692 }
13693 }
13694
13695 llvm_unreachable("fully handled switch");
13696}
13697
13698// Returns true if the Operand is a scalar and is 16 bits
13699static bool isExtendedFrom16Bits(SDValue &Operand) {
13700
13701 switch (Operand.getOpcode()) {
13702 case ISD::ANY_EXTEND:
13703 case ISD::SIGN_EXTEND:
13704 case ISD::ZERO_EXTEND: {
13705 auto OpVT = Operand.getOperand(0).getValueType();
13706 return !OpVT.isVector() && OpVT.getSizeInBits() == 16;
13707 }
13708 case ISD::LOAD: {
13709 LoadSDNode *L = cast<LoadSDNode>(Operand.getNode());
13710 auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
13711 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD ||
13712 ExtType == ISD::EXTLOAD) {
13713 auto MemVT = L->getMemoryVT();
13714 return !MemVT.isVector() && MemVT.getSizeInBits() == 16;
13715 }
13716 return L->getMemoryVT().getSizeInBits() == 16;
13717 }
13718 default:
13719 return false;
13720 }
13721}
13722
13723// Returns true if the mask matches consecutive bytes, and the first byte
13724// begins at a power of 2 byte offset from 0th byte
13725static bool addresses16Bits(int Mask) {
13726 int Low8 = Mask & 0xff;
13727 int Hi8 = (Mask & 0xff00) >> 8;
13728
13729 assert(Low8 < 8 && Hi8 < 8);
13730 // Are the bytes contiguous in the order of increasing addresses.
13731 bool IsConsecutive = (Hi8 - Low8 == 1);
13732 // Is the first byte at location that is aligned for 16 bit instructions.
13733 // A counter example is taking 2 consecutive bytes starting at the 8th bit.
13734 // In this case, we still need code to extract the 16 bit operand, so it
13735 // is better to use i8 v_perm
13736 bool Is16Aligned = !(Low8 % 2);
13737
13738 return IsConsecutive && Is16Aligned;
13739}
13740
13741// Do not lower into v_perm if the operands are actually 16 bit
13742// and the selected bits (based on PermMask) correspond with two
13743// easily addressable 16 bit operands.
13745 SDValue &OtherOp) {
13746 int Low16 = PermMask & 0xffff;
13747 int Hi16 = (PermMask & 0xffff0000) >> 16;
13748
13749 auto TempOp = peekThroughBitcasts(Op);
13750 auto TempOtherOp = peekThroughBitcasts(OtherOp);
13751
13752 auto OpIs16Bit =
13753 TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp);
13754 if (!OpIs16Bit)
13755 return true;
13756
13757 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
13758 isExtendedFrom16Bits(TempOtherOp);
13759 if (!OtherOpIs16Bit)
13760 return true;
13761
13762 // Do we cleanly address both
13763 return !addresses16Bits(Low16) || !addresses16Bits(Hi16);
13764}
13765
13767 unsigned DWordOffset) {
13768 SDValue Ret;
13769
13770 auto TypeSize = Src.getValueSizeInBits().getFixedValue();
13771 // ByteProvider must be at least 8 bits
13772 assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
13773
13774 if (TypeSize <= 32)
13775 return DAG.getBitcastedAnyExtOrTrunc(Src, SL, MVT::i32);
13776
13777 if (Src.getValueType().isVector()) {
13778 auto ScalarTySize = Src.getScalarValueSizeInBits();
13779 auto ScalarTy = Src.getValueType().getScalarType();
13780 if (ScalarTySize == 32) {
13781 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Src,
13782 DAG.getConstant(DWordOffset, SL, MVT::i32));
13783 }
13784 if (ScalarTySize > 32) {
13785 Ret = DAG.getNode(
13786 ISD::EXTRACT_VECTOR_ELT, SL, ScalarTy, Src,
13787 DAG.getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
13788 auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
13789 if (ShiftVal)
13790 Ret = DAG.getNode(ISD::SRL, SL, Ret.getValueType(), Ret,
13791 DAG.getConstant(ShiftVal, SL, MVT::i32));
13792 return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
13793 }
13794
13795 assert(ScalarTySize < 32);
13796 auto NumElements = TypeSize / ScalarTySize;
13797 auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
13798 auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
13799 auto NumElementsIn32 = 32 / ScalarTySize;
13800 auto NumAvailElements = DWordOffset < Trunc32Elements
13801 ? NumElementsIn32
13802 : NumElements - NormalizedTrunc;
13803
13805 DAG.ExtractVectorElements(Src, VecSrcs, DWordOffset * NumElementsIn32,
13806 NumAvailElements);
13807
13808 Ret = DAG.getBuildVector(
13809 MVT::getVectorVT(MVT::getIntegerVT(ScalarTySize), NumAvailElements), SL,
13810 VecSrcs);
13811 return Ret = DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
13812 }
13813
13814 /// Scalar Type
13815 auto ShiftVal = 32 * DWordOffset;
13816 Ret = DAG.getNode(ISD::SRL, SL, Src.getValueType(), Src,
13817 DAG.getConstant(ShiftVal, SL, MVT::i32));
13818 return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
13819}
13820
13822 SelectionDAG &DAG = DCI.DAG;
13823 [[maybe_unused]] EVT VT = N->getValueType(0);
13825
13826 // VT is known to be MVT::i32, so we need to provide 4 bytes.
13827 assert(VT == MVT::i32);
13828 for (int i = 0; i < 4; i++) {
13829 // Find the ByteProvider that provides the ith byte of the result of OR
13830 std::optional<ByteProvider<SDValue>> P =
13831 calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i);
13832 // TODO support constantZero
13833 if (!P || P->isConstantZero())
13834 return SDValue();
13835
13836 PermNodes.push_back(*P);
13837 }
13838 if (PermNodes.size() != 4)
13839 return SDValue();
13840
13841 std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
13842 std::optional<std::pair<unsigned, unsigned>> SecondSrc;
13843 uint64_t PermMask = 0x00000000;
13844 for (size_t i = 0; i < PermNodes.size(); i++) {
13845 auto PermOp = PermNodes[i];
13846 // Since the mask is applied to Src1:Src2, Src1 bytes must be offset
13847 // by sizeof(Src2) = 4
13848 int SrcByteAdjust = 4;
13849
13850 // If the Src uses a byte from a different DWORD, then it corresponds
13851 // with a difference source
13852 if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
13853 ((PermOp.SrcOffset / 4) != FirstSrc.second)) {
13854 if (SecondSrc)
13855 if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
13856 ((PermOp.SrcOffset / 4) != SecondSrc->second))
13857 return SDValue();
13858
13859 // Set the index of the second distinct Src node
13860 SecondSrc = {i, PermNodes[i].SrcOffset / 4};
13861 assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
13862 SrcByteAdjust = 0;
13863 }
13864 assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
13866 PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
13867 }
13868 SDLoc DL(N);
13869 SDValue Op = *PermNodes[FirstSrc.first].Src;
13870 Op = getDWordFromOffset(DAG, DL, Op, FirstSrc.second);
13871 assert(Op.getValueSizeInBits() == 32);
13872
13873 // Check that we are not just extracting the bytes in order from an op
13874 if (!SecondSrc) {
13875 int Low16 = PermMask & 0xffff;
13876 int Hi16 = (PermMask & 0xffff0000) >> 16;
13877
13878 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
13879 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
13880
13881 // The perm op would really just produce Op. So combine into Op
13882 if (WellFormedLow && WellFormedHi)
13883 return DAG.getBitcast(MVT::getIntegerVT(32), Op);
13884 }
13885
13886 SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src : Op;
13887
13888 if (SecondSrc) {
13889 OtherOp = getDWordFromOffset(DAG, DL, OtherOp, SecondSrc->second);
13890 assert(OtherOp.getValueSizeInBits() == 32);
13891 }
13892
13893 if (hasNon16BitAccesses(PermMask, Op, OtherOp)) {
13894
13895 assert(Op.getValueType().isByteSized() &&
13896 OtherOp.getValueType().isByteSized());
13897
13898 // If the ultimate src is less than 32 bits, then we will only be
13899 // using bytes 0: Op.getValueSizeInBytes() - 1 in the or.
13900 // CalculateByteProvider would not have returned Op as source if we
13901 // used a byte that is outside its ValueType. Thus, we are free to
13902 // ANY_EXTEND as the extended bits are dont-cares.
13903 Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32);
13904 OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32);
13905
13906 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp,
13907 DAG.getConstant(PermMask, DL, MVT::i32));
13908 }
13909 return SDValue();
13910}
13911
13912SDValue SITargetLowering::performOrCombine(SDNode *N,
13913 DAGCombinerInfo &DCI) const {
13914 SelectionDAG &DAG = DCI.DAG;
13915 SDValue LHS = N->getOperand(0);
13916 SDValue RHS = N->getOperand(1);
13917
13918 EVT VT = N->getValueType(0);
13919 if (VT == MVT::i1) {
13920 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
13921 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
13922 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
13923 SDValue Src = LHS.getOperand(0);
13924 if (Src != RHS.getOperand(0))
13925 return SDValue();
13926
13927 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
13928 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
13929 if (!CLHS || !CRHS)
13930 return SDValue();
13931
13932 // Only 10 bits are used.
13933 static const uint32_t MaxMask = 0x3ff;
13934
13935 uint32_t NewMask =
13936 (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
13937 SDLoc DL(N);
13938 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src,
13939 DAG.getConstant(NewMask, DL, MVT::i32));
13940 }
13941
13942 return SDValue();
13943 }
13944
13945 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
13947 LHS.getOpcode() == AMDGPUISD::PERM &&
13948 isa<ConstantSDNode>(LHS.getOperand(2))) {
13949 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
13950 if (!Sel)
13951 return SDValue();
13952
13953 Sel |= LHS.getConstantOperandVal(2);
13954 SDLoc DL(N);
13955 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
13956 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
13957 }
13958
13959 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
13960 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13961 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
13962 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13963
13964 // If all the uses of an or need to extract the individual elements, do not
13965 // attempt to lower into v_perm
13966 auto usesCombinedOperand = [](SDNode *OrUse) {
13967 // If we have any non-vectorized use, then it is a candidate for v_perm
13968 if (OrUse->getOpcode() != ISD::BITCAST ||
13969 !OrUse->getValueType(0).isVector())
13970 return true;
13971
13972 // If we have any non-vectorized use, then it is a candidate for v_perm
13973 for (auto *VUser : OrUse->users()) {
13974 if (!VUser->getValueType(0).isVector())
13975 return true;
13976
13977 // If the use of a vector is a store, then combining via a v_perm
13978 // is beneficial.
13979 // TODO -- whitelist more uses
13980 for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg})
13981 if (VUser->getOpcode() == VectorwiseOp)
13982 return true;
13983 }
13984 return false;
13985 };
13986
13987 if (!any_of(N->users(), usesCombinedOperand))
13988 return SDValue();
13989
13990 uint32_t LHSMask = getPermuteMask(LHS);
13991 uint32_t RHSMask = getPermuteMask(RHS);
13992
13993 if (LHSMask != ~0u && RHSMask != ~0u) {
13994 // Canonicalize the expression in an attempt to have fewer unique masks
13995 // and therefore fewer registers used to hold the masks.
13996 if (LHSMask > RHSMask) {
13997 std::swap(LHSMask, RHSMask);
13998 std::swap(LHS, RHS);
13999 }
14000
14001 // Select 0xc for each lane used from source operand. Zero has 0xc mask
14002 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
14003 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14004 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14005
14006 // Check of we need to combine values from two sources within a byte.
14007 if (!(LHSUsedLanes & RHSUsedLanes) &&
14008 // If we select high and lower word keep it for SDWA.
14009 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
14010 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
14011 // Kill zero bytes selected by other mask. Zero value is 0xc.
14012 LHSMask &= ~RHSUsedLanes;
14013 RHSMask &= ~LHSUsedLanes;
14014 // Add 4 to each active LHS lane
14015 LHSMask |= LHSUsedLanes & 0x04040404;
14016 // Combine masks
14017 uint32_t Sel = LHSMask | RHSMask;
14018 SDLoc DL(N);
14019
14020 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
14021 RHS.getOperand(0),
14022 DAG.getConstant(Sel, DL, MVT::i32));
14023 }
14024 }
14025 if (LHSMask == ~0u || RHSMask == ~0u) {
14026 if (SDValue Perm = matchPERM(N, DCI))
14027 return Perm;
14028 }
14029 }
14030
14031 // Detect identity v2i32 OR and replace with identity source node.
14032 // Specifically an Or that has operands constructed from the same source node
14033 // via extract_vector_elt and build_vector. I.E.
14034 // v2i32 or(
14035 // v2i32 build_vector(
14036 // i32 extract_elt(%IdentitySrc, 0),
14037 // i32 0
14038 // ),
14039 // v2i32 build_vector(
14040 // i32 0,
14041 // i32 extract_elt(%IdentitySrc, 1)
14042 // ) )
14043 // =>
14044 // v2i32 %IdentitySrc
14045
14046 if (VT == MVT::v2i32 && LHS->getOpcode() == ISD::BUILD_VECTOR &&
14047 RHS->getOpcode() == ISD::BUILD_VECTOR) {
14048
14049 ConstantSDNode *LC = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
14050 ConstantSDNode *RC = dyn_cast<ConstantSDNode>(RHS->getOperand(0));
14051
14052 // Test for and normalise build vectors.
14053 if (LC && RC && LC->getZExtValue() == 0 && RC->getZExtValue() == 0) {
14054
14055 // Get the extract_vector_element operands.
14056 SDValue LEVE = LHS->getOperand(0);
14057 SDValue REVE = RHS->getOperand(1);
14058
14059 if (LEVE->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14061 // Check that different elements from the same vector are
14062 // extracted.
14063 if (LEVE->getOperand(0) == REVE->getOperand(0) &&
14064 LEVE->getOperand(1) != REVE->getOperand(1)) {
14065 SDValue IdentitySrc = LEVE.getOperand(0);
14066 return IdentitySrc;
14067 }
14068 }
14069 }
14070 }
14071
14072 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
14073 return SDValue();
14074
14075 // TODO: This could be a generic combine with a predicate for extracting the
14076 // high half of an integer being free.
14077
14078 // (or i64:x, (zero_extend i32:y)) ->
14079 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
14080 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
14081 RHS.getOpcode() != ISD::ZERO_EXTEND)
14082 std::swap(LHS, RHS);
14083
14084 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
14085 SDValue ExtSrc = RHS.getOperand(0);
14086 EVT SrcVT = ExtSrc.getValueType();
14087 if (SrcVT == MVT::i32) {
14088 SDLoc SL(N);
14089 auto [LowLHS, HiBits] = split64BitValue(LHS, DAG);
14090 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
14091
14092 DCI.AddToWorklist(LowOr.getNode());
14093 DCI.AddToWorklist(HiBits.getNode());
14094
14095 SDValue Vec =
14096 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits);
14097 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
14098 }
14099 }
14100
14101 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
14102 if (CRHS) {
14103 if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
14104 N->getOperand(0), CRHS))
14105 return Split;
14106 }
14107
14108 return SDValue();
14109}
14110
14111SDValue SITargetLowering::performXorCombine(SDNode *N,
14112 DAGCombinerInfo &DCI) const {
14113 if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
14114 return RV;
14115
14116 SDValue LHS = N->getOperand(0);
14117 SDValue RHS = N->getOperand(1);
14118
14119 const ConstantSDNode *CRHS = isConstOrConstSplat(RHS);
14120 SelectionDAG &DAG = DCI.DAG;
14121
14122 EVT VT = N->getValueType(0);
14123 if (CRHS && VT == MVT::i64) {
14124 if (SDValue Split =
14125 splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
14126 return Split;
14127 }
14128
14129 // v2i32 (xor (vselect cc, x, y), K) ->
14130 // (v2i32 svelect cc, (xor x, K), (xor y, K)) This enables the xor to be
14131 // replaced with source modifiers when the select is lowered to CNDMASK.
14132 unsigned Opc = LHS.getOpcode();
14133 if (((Opc == ISD::VSELECT && VT == MVT::v2i32) ||
14134 (Opc == ISD::SELECT && VT == MVT::i64)) &&
14135 CRHS && CRHS->getAPIntValue().isSignMask()) {
14136 SDValue CC = LHS->getOperand(0);
14137 SDValue TRUE = LHS->getOperand(1);
14138 SDValue FALSE = LHS->getOperand(2);
14139 SDValue XTrue = DAG.getNode(ISD::XOR, SDLoc(N), VT, TRUE, RHS);
14140 SDValue XFalse = DAG.getNode(ISD::XOR, SDLoc(N), VT, FALSE, RHS);
14141 SDValue XSelect =
14142 DAG.getNode(ISD::VSELECT, SDLoc(N), VT, CC, XTrue, XFalse);
14143 return XSelect;
14144 }
14145
14146 // Make sure to apply the 64-bit constant splitting fold before trying to fold
14147 // fneg-like xors into 64-bit select.
14148 if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) {
14149 // This looks like an fneg, try to fold as a source modifier.
14150 if (CRHS && CRHS->getAPIntValue().isSignMask() &&
14152 // xor (select c, a, b), 0x80000000 ->
14153 // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b)))
14154 SDLoc DL(N);
14155 SDValue CastLHS =
14156 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1));
14157 SDValue CastRHS =
14158 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2));
14159 SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS);
14160 SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS);
14161 SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32,
14162 LHS->getOperand(0), FNegLHS, FNegRHS);
14163 return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect);
14164 }
14165 }
14166
14167 return SDValue();
14168}
14169
14170SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
14171 DAGCombinerInfo &DCI) const {
14172 if (!Subtarget->has16BitInsts() ||
14173 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
14174 return SDValue();
14175
14176 EVT VT = N->getValueType(0);
14177 if (VT != MVT::i32)
14178 return SDValue();
14179
14180 SDValue Src = N->getOperand(0);
14181 if (Src.getValueType() != MVT::i16)
14182 return SDValue();
14183
14184 return SDValue();
14185}
14186
14187SDValue
14188SITargetLowering::performSignExtendInRegCombine(SDNode *N,
14189 DAGCombinerInfo &DCI) const {
14190 SDValue Src = N->getOperand(0);
14191 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
14192
14193 // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them
14194 // with s_buffer_load_i8 and s_buffer_load_i16 respectively.
14195 if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE &&
14196 VTSign->getVT() == MVT::i8) ||
14197 (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT &&
14198 VTSign->getVT() == MVT::i16))) {
14199 assert(Subtarget->hasScalarSubwordLoads() &&
14200 "s_buffer_load_{u8, i8} are supported "
14201 "in GFX12 (or newer) architectures.");
14202 EVT VT = Src.getValueType();
14203 unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE)
14206 SDLoc DL(N);
14207 SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
14208 SDValue Ops[] = {
14209 Src.getOperand(0), // source register
14210 Src.getOperand(1), // offset
14211 Src.getOperand(2) // cachePolicy
14212 };
14213 auto *M = cast<MemSDNode>(Src);
14214 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
14215 Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand());
14216 SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
14217 return LoadVal;
14218 }
14219 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
14220 VTSign->getVT() == MVT::i8) ||
14221 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
14222 VTSign->getVT() == MVT::i16)) &&
14223 Src.hasOneUse()) {
14224 auto *M = cast<MemSDNode>(Src);
14225 SDValue Ops[] = {Src.getOperand(0), // Chain
14226 Src.getOperand(1), // rsrc
14227 Src.getOperand(2), // vindex
14228 Src.getOperand(3), // voffset
14229 Src.getOperand(4), // soffset
14230 Src.getOperand(5), // offset
14231 Src.getOperand(6), Src.getOperand(7)};
14232 // replace with BUFFER_LOAD_BYTE/SHORT
14233 SDVTList ResList =
14234 DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType());
14235 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE)
14238 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(
14239 Opc, SDLoc(N), ResList, Ops, M->getMemoryVT(), M->getMemOperand());
14240 return DCI.DAG.getMergeValues(
14241 {BufferLoadSignExt, BufferLoadSignExt.getValue(1)}, SDLoc(N));
14242 }
14243 return SDValue();
14244}
14245
14246SDValue SITargetLowering::performClassCombine(SDNode *N,
14247 DAGCombinerInfo &DCI) const {
14248 SelectionDAG &DAG = DCI.DAG;
14249 SDValue Mask = N->getOperand(1);
14250
14251 // fp_class x, 0 -> false
14252 if (isNullConstant(Mask))
14253 return DAG.getConstant(0, SDLoc(N), MVT::i1);
14254
14255 if (N->getOperand(0).isUndef())
14256 return DAG.getUNDEF(MVT::i1);
14257
14258 return SDValue();
14259}
14260
14261SDValue SITargetLowering::performRcpCombine(SDNode *N,
14262 DAGCombinerInfo &DCI) const {
14263 EVT VT = N->getValueType(0);
14264 SDValue N0 = N->getOperand(0);
14265
14266 if (N0.isUndef()) {
14267 return DCI.DAG.getConstantFP(APFloat::getQNaN(VT.getFltSemantics()),
14268 SDLoc(N), VT);
14269 }
14270
14271 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
14272 N0.getOpcode() == ISD::SINT_TO_FP)) {
14273 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
14274 N->getFlags());
14275 }
14276
14277 // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here.
14278 if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) &&
14279 N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) {
14280 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, N0.getOperand(0),
14281 N->getFlags());
14282 }
14283
14285}
14286
14288 unsigned MaxDepth) const {
14289 unsigned Opcode = Op.getOpcode();
14290 if (Opcode == ISD::FCANONICALIZE)
14291 return true;
14292
14293 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
14294 const auto &F = CFP->getValueAPF();
14295 if (F.isNaN() && F.isSignaling())
14296 return false;
14297 if (!F.isDenormal())
14298 return true;
14299
14300 DenormalMode Mode =
14301 DAG.getMachineFunction().getDenormalMode(F.getSemantics());
14302 return Mode == DenormalMode::getIEEE();
14303 }
14304
14305 // If source is a result of another standard FP operation it is already in
14306 // canonical form.
14307 if (MaxDepth == 0)
14308 return false;
14309
14310 switch (Opcode) {
14311 // These will flush denorms if required.
14312 case ISD::FADD:
14313 case ISD::FSUB:
14314 case ISD::FMUL:
14315 case ISD::FCEIL:
14316 case ISD::FFLOOR:
14317 case ISD::FMA:
14318 case ISD::FMAD:
14319 case ISD::FSQRT:
14320 case ISD::FDIV:
14321 case ISD::FREM:
14322 case ISD::FP_ROUND:
14323 case ISD::FP_EXTEND:
14324 case ISD::FP16_TO_FP:
14325 case ISD::FP_TO_FP16:
14326 case ISD::BF16_TO_FP:
14327 case ISD::FP_TO_BF16:
14328 case ISD::FLDEXP:
14331 case AMDGPUISD::RCP:
14332 case AMDGPUISD::RSQ:
14336 case AMDGPUISD::LOG:
14337 case AMDGPUISD::EXP:
14341 case AMDGPUISD::FRACT:
14348 case AMDGPUISD::SIN_HW:
14349 case AMDGPUISD::COS_HW:
14350 return true;
14351
14352 // It can/will be lowered or combined as a bit operation.
14353 // Need to check their input recursively to handle.
14354 case ISD::FNEG:
14355 case ISD::FABS:
14356 case ISD::FCOPYSIGN:
14357 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
14358
14359 case ISD::AND:
14360 if (Op.getValueType() == MVT::i32) {
14361 // Be careful as we only know it is a bitcast floating point type. It
14362 // could be f32, v2f16, we have no way of knowing. Luckily the constant
14363 // value that we optimize for, which comes up in fp32 to bf16 conversions,
14364 // is valid to optimize for all types.
14365 if (auto *RHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14366 if (RHS->getZExtValue() == 0xffff0000) {
14367 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
14368 }
14369 }
14370 }
14371 break;
14372
14373 case ISD::FSIN:
14374 case ISD::FCOS:
14375 case ISD::FSINCOS:
14376 return Op.getValueType().getScalarType() != MVT::f16;
14377
14378 case ISD::FMINNUM:
14379 case ISD::FMAXNUM:
14380 case ISD::FMINNUM_IEEE:
14381 case ISD::FMAXNUM_IEEE:
14382 case ISD::FMINIMUM:
14383 case ISD::FMAXIMUM:
14384 case ISD::FMINIMUMNUM:
14385 case ISD::FMAXIMUMNUM:
14386 case AMDGPUISD::CLAMP:
14387 case AMDGPUISD::FMED3:
14388 case AMDGPUISD::FMAX3:
14389 case AMDGPUISD::FMIN3:
14391 case AMDGPUISD::FMINIMUM3: {
14392 // FIXME: Shouldn't treat the generic operations different based these.
14393 // However, we aren't really required to flush the result from
14394 // minnum/maxnum..
14395
14396 // snans will be quieted, so we only need to worry about denormals.
14397 if (Subtarget->supportsMinMaxDenormModes() ||
14398 // FIXME: denormalsEnabledForType is broken for dynamic
14399 denormalsEnabledForType(DAG, Op.getValueType()))
14400 return true;
14401
14402 // Flushing may be required.
14403 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
14404 // targets need to check their input recursively.
14405
14406 // FIXME: Does this apply with clamp? It's implemented with max.
14407 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
14408 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
14409 return false;
14410 }
14411
14412 return true;
14413 }
14414 case ISD::SELECT: {
14415 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
14416 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
14417 }
14418 case ISD::BUILD_VECTOR: {
14419 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
14420 SDValue SrcOp = Op.getOperand(i);
14421 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
14422 return false;
14423 }
14424
14425 return true;
14426 }
14429 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
14430 }
14432 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
14433 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
14434 }
14435 case ISD::UNDEF:
14436 // Could be anything.
14437 return false;
14438
14439 case ISD::BITCAST:
14440 // TODO: This is incorrect as it loses track of the operand's type. We may
14441 // end up effectively bitcasting from f32 to v2f16 or vice versa, and the
14442 // same bits that are canonicalized in one type need not be in the other.
14443 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
14444 case ISD::TRUNCATE: {
14445 // Hack round the mess we make when legalizing extract_vector_elt
14446 if (Op.getValueType() == MVT::i16) {
14447 SDValue TruncSrc = Op.getOperand(0);
14448 if (TruncSrc.getValueType() == MVT::i32 &&
14449 TruncSrc.getOpcode() == ISD::BITCAST &&
14450 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
14451 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
14452 }
14453 }
14454 return false;
14455 }
14457 unsigned IntrinsicID = Op.getConstantOperandVal(0);
14458 // TODO: Handle more intrinsics
14459 switch (IntrinsicID) {
14460 case Intrinsic::amdgcn_cvt_pkrtz:
14461 case Intrinsic::amdgcn_cubeid:
14462 case Intrinsic::amdgcn_frexp_mant:
14463 case Intrinsic::amdgcn_fdot2:
14464 case Intrinsic::amdgcn_rcp:
14465 case Intrinsic::amdgcn_rsq:
14466 case Intrinsic::amdgcn_rsq_clamp:
14467 case Intrinsic::amdgcn_rcp_legacy:
14468 case Intrinsic::amdgcn_rsq_legacy:
14469 case Intrinsic::amdgcn_trig_preop:
14470 case Intrinsic::amdgcn_tanh:
14471 case Intrinsic::amdgcn_log:
14472 case Intrinsic::amdgcn_exp2:
14473 case Intrinsic::amdgcn_sqrt:
14474 return true;
14475 default:
14476 break;
14477 }
14478
14479 break;
14480 }
14481 default:
14482 break;
14483 }
14484
14485 // FIXME: denormalsEnabledForType is broken for dynamic
14486 return denormalsEnabledForType(DAG, Op.getValueType()) &&
14487 DAG.isKnownNeverSNaN(Op);
14488}
14489
14491 unsigned MaxDepth) const {
14492 const MachineRegisterInfo &MRI = MF.getRegInfo();
14493 MachineInstr *MI = MRI.getVRegDef(Reg);
14494 unsigned Opcode = MI->getOpcode();
14495
14496 if (Opcode == AMDGPU::G_FCANONICALIZE)
14497 return true;
14498
14499 std::optional<FPValueAndVReg> FCR;
14500 // Constant splat (can be padded with undef) or scalar constant.
14502 if (FCR->Value.isSignaling())
14503 return false;
14504 if (!FCR->Value.isDenormal())
14505 return true;
14506
14507 DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics());
14508 return Mode == DenormalMode::getIEEE();
14509 }
14510
14511 if (MaxDepth == 0)
14512 return false;
14513
14514 switch (Opcode) {
14515 case AMDGPU::G_FADD:
14516 case AMDGPU::G_FSUB:
14517 case AMDGPU::G_FMUL:
14518 case AMDGPU::G_FCEIL:
14519 case AMDGPU::G_FFLOOR:
14520 case AMDGPU::G_FRINT:
14521 case AMDGPU::G_FNEARBYINT:
14522 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
14523 case AMDGPU::G_INTRINSIC_TRUNC:
14524 case AMDGPU::G_INTRINSIC_ROUNDEVEN:
14525 case AMDGPU::G_FMA:
14526 case AMDGPU::G_FMAD:
14527 case AMDGPU::G_FSQRT:
14528 case AMDGPU::G_FDIV:
14529 case AMDGPU::G_FREM:
14530 case AMDGPU::G_FPOW:
14531 case AMDGPU::G_FPEXT:
14532 case AMDGPU::G_FLOG:
14533 case AMDGPU::G_FLOG2:
14534 case AMDGPU::G_FLOG10:
14535 case AMDGPU::G_FPTRUNC:
14536 case AMDGPU::G_AMDGPU_RCP_IFLAG:
14537 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
14538 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
14539 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
14540 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
14541 return true;
14542 case AMDGPU::G_FNEG:
14543 case AMDGPU::G_FABS:
14544 case AMDGPU::G_FCOPYSIGN:
14545 return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
14546 case AMDGPU::G_FMINNUM:
14547 case AMDGPU::G_FMAXNUM:
14548 case AMDGPU::G_FMINNUM_IEEE:
14549 case AMDGPU::G_FMAXNUM_IEEE:
14550 case AMDGPU::G_FMINIMUM:
14551 case AMDGPU::G_FMAXIMUM:
14552 case AMDGPU::G_FMINIMUMNUM:
14553 case AMDGPU::G_FMAXIMUMNUM: {
14554 if (Subtarget->supportsMinMaxDenormModes() ||
14555 // FIXME: denormalsEnabledForType is broken for dynamic
14556 denormalsEnabledForType(MRI.getType(Reg), MF))
14557 return true;
14558
14559 [[fallthrough]];
14560 }
14561 case AMDGPU::G_BUILD_VECTOR:
14562 for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
14563 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
14564 return false;
14565 return true;
14566 case AMDGPU::G_INTRINSIC:
14567 case AMDGPU::G_INTRINSIC_CONVERGENT:
14568 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
14569 case Intrinsic::amdgcn_fmul_legacy:
14570 case Intrinsic::amdgcn_fmad_ftz:
14571 case Intrinsic::amdgcn_sqrt:
14572 case Intrinsic::amdgcn_fmed3:
14573 case Intrinsic::amdgcn_sin:
14574 case Intrinsic::amdgcn_cos:
14575 case Intrinsic::amdgcn_log:
14576 case Intrinsic::amdgcn_exp2:
14577 case Intrinsic::amdgcn_log_clamp:
14578 case Intrinsic::amdgcn_rcp:
14579 case Intrinsic::amdgcn_rcp_legacy:
14580 case Intrinsic::amdgcn_rsq:
14581 case Intrinsic::amdgcn_rsq_clamp:
14582 case Intrinsic::amdgcn_rsq_legacy:
14583 case Intrinsic::amdgcn_div_scale:
14584 case Intrinsic::amdgcn_div_fmas:
14585 case Intrinsic::amdgcn_div_fixup:
14586 case Intrinsic::amdgcn_fract:
14587 case Intrinsic::amdgcn_cvt_pkrtz:
14588 case Intrinsic::amdgcn_cubeid:
14589 case Intrinsic::amdgcn_cubema:
14590 case Intrinsic::amdgcn_cubesc:
14591 case Intrinsic::amdgcn_cubetc:
14592 case Intrinsic::amdgcn_frexp_mant:
14593 case Intrinsic::amdgcn_fdot2:
14594 case Intrinsic::amdgcn_trig_preop:
14595 case Intrinsic::amdgcn_tanh:
14596 return true;
14597 default:
14598 break;
14599 }
14600
14601 [[fallthrough]];
14602 default:
14603 return false;
14604 }
14605
14606 llvm_unreachable("invalid operation");
14607}
14608
14609// Constant fold canonicalize.
14610SDValue SITargetLowering::getCanonicalConstantFP(SelectionDAG &DAG,
14611 const SDLoc &SL, EVT VT,
14612 const APFloat &C) const {
14613 // Flush denormals to 0 if not enabled.
14614 if (C.isDenormal()) {
14615 DenormalMode Mode =
14616 DAG.getMachineFunction().getDenormalMode(C.getSemantics());
14617 if (Mode == DenormalMode::getPreserveSign()) {
14618 return DAG.getConstantFP(
14619 APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT);
14620 }
14621
14622 if (Mode != DenormalMode::getIEEE())
14623 return SDValue();
14624 }
14625
14626 if (C.isNaN()) {
14627 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
14628 if (C.isSignaling()) {
14629 // Quiet a signaling NaN.
14630 // FIXME: Is this supposed to preserve payload bits?
14631 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
14632 }
14633
14634 // Make sure it is the canonical NaN bitpattern.
14635 //
14636 // TODO: Can we use -1 as the canonical NaN value since it's an inline
14637 // immediate?
14638 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
14639 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
14640 }
14641
14642 // Already canonical.
14643 return DAG.getConstantFP(C, SL, VT);
14644}
14645
14647 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
14648}
14649
14650SDValue
14651SITargetLowering::performFCanonicalizeCombine(SDNode *N,
14652 DAGCombinerInfo &DCI) const {
14653 SelectionDAG &DAG = DCI.DAG;
14654 SDValue N0 = N->getOperand(0);
14655 EVT VT = N->getValueType(0);
14656
14657 // fcanonicalize undef -> qnan
14658 if (N0.isUndef()) {
14660 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
14661 }
14662
14663 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
14664 EVT VT = N->getValueType(0);
14665 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
14666 }
14667
14668 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
14669 // (fcanonicalize k)
14670 //
14671 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
14672
14673 // TODO: This could be better with wider vectors that will be split to v2f16,
14674 // and to consider uses since there aren't that many packed operations.
14675 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
14676 isTypeLegal(MVT::v2f16)) {
14677 SDLoc SL(N);
14678 SDValue NewElts[2];
14679 SDValue Lo = N0.getOperand(0);
14680 SDValue Hi = N0.getOperand(1);
14681 EVT EltVT = Lo.getValueType();
14682
14684 for (unsigned I = 0; I != 2; ++I) {
14685 SDValue Op = N0.getOperand(I);
14686 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
14687 NewElts[I] =
14688 getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF());
14689 } else if (Op.isUndef()) {
14690 // Handled below based on what the other operand is.
14691 NewElts[I] = Op;
14692 } else {
14693 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
14694 }
14695 }
14696
14697 // If one half is undef, and one is constant, prefer a splat vector rather
14698 // than the normal qNaN. If it's a register, prefer 0.0 since that's
14699 // cheaper to use and may be free with a packed operation.
14700 if (NewElts[0].isUndef()) {
14701 if (isa<ConstantFPSDNode>(NewElts[1]))
14702 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1])
14703 ? NewElts[1]
14704 : DAG.getConstantFP(0.0f, SL, EltVT);
14705 }
14706
14707 if (NewElts[1].isUndef()) {
14708 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0])
14709 ? NewElts[0]
14710 : DAG.getConstantFP(0.0f, SL, EltVT);
14711 }
14712
14713 return DAG.getBuildVector(VT, SL, NewElts);
14714 }
14715 }
14716
14717 return SDValue();
14718}
14719
14720static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
14721 switch (Opc) {
14722 case ISD::FMAXNUM:
14723 case ISD::FMAXNUM_IEEE:
14724 case ISD::FMAXIMUMNUM:
14725 return AMDGPUISD::FMAX3;
14726 case ISD::FMAXIMUM:
14727 return AMDGPUISD::FMAXIMUM3;
14728 case ISD::SMAX:
14729 return AMDGPUISD::SMAX3;
14730 case ISD::UMAX:
14731 return AMDGPUISD::UMAX3;
14732 case ISD::FMINNUM:
14733 case ISD::FMINNUM_IEEE:
14734 case ISD::FMINIMUMNUM:
14735 return AMDGPUISD::FMIN3;
14736 case ISD::FMINIMUM:
14737 return AMDGPUISD::FMINIMUM3;
14738 case ISD::SMIN:
14739 return AMDGPUISD::SMIN3;
14740 case ISD::UMIN:
14741 return AMDGPUISD::UMIN3;
14742 default:
14743 llvm_unreachable("Not a min/max opcode");
14744 }
14745}
14746
14747SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG,
14748 const SDLoc &SL, SDValue Src,
14749 SDValue MinVal,
14750 SDValue MaxVal,
14751 bool Signed) const {
14752
14753 // med3 comes from
14754 // min(max(x, K0), K1), K0 < K1
14755 // max(min(x, K0), K1), K1 < K0
14756 //
14757 // "MinVal" and "MaxVal" respectively refer to the rhs of the
14758 // min/max op.
14759 ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal);
14760 ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal);
14761
14762 if (!MinK || !MaxK)
14763 return SDValue();
14764
14765 if (Signed) {
14766 if (MaxK->getAPIntValue().sge(MinK->getAPIntValue()))
14767 return SDValue();
14768 } else {
14769 if (MaxK->getAPIntValue().uge(MinK->getAPIntValue()))
14770 return SDValue();
14771 }
14772
14773 EVT VT = MinK->getValueType(0);
14774 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
14775 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
14776 return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
14777
14778 // Note: we could also extend to i32 and use i32 med3 if i16 med3 is
14779 // not available, but this is unlikely to be profitable as constants
14780 // will often need to be materialized & extended, especially on
14781 // pre-GFX10 where VOP3 instructions couldn't take literal operands.
14782 return SDValue();
14783}
14784
14787 return C;
14788
14790 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
14791 return C;
14792 }
14793
14794 return nullptr;
14795}
14796
14797SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
14798 const SDLoc &SL, SDValue Op0,
14799 SDValue Op1) const {
14800 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
14801 if (!K1)
14802 return SDValue();
14803
14804 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
14805 if (!K0)
14806 return SDValue();
14807
14808 // Ordered >= (although NaN inputs should have folded away by now).
14809 if (K0->getValueAPF() > K1->getValueAPF())
14810 return SDValue();
14811
14812 // med3 with a nan input acts like
14813 // v_min_f32(v_min_f32(S0.f32, S1.f32), S2.f32)
14814 //
14815 // So the result depends on whether the IEEE mode bit is enabled or not with a
14816 // signaling nan input.
14817 // ieee=1
14818 // s0 snan: yields s2
14819 // s1 snan: yields s2
14820 // s2 snan: qnan
14821
14822 // s0 qnan: min(s1, s2)
14823 // s1 qnan: min(s0, s2)
14824 // s2 qnan: min(s0, s1)
14825
14826 // ieee=0
14827 // s0 snan: min(s1, s2)
14828 // s1 snan: min(s0, s2)
14829 // s2 snan: qnan
14830
14831 // s0 qnan: min(s1, s2)
14832 // s1 qnan: min(s0, s2)
14833 // s2 qnan: min(s0, s1)
14834 const MachineFunction &MF = DAG.getMachineFunction();
14835 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
14836
14837 // TODO: Check IEEE bit enabled. We can form fmed3 with IEEE=0 regardless of
14838 // whether the input is a signaling nan if op0 is fmaximum or fmaximumnum. We
14839 // can only form if op0 is fmaxnum_ieee if IEEE=1.
14840 EVT VT = Op0.getValueType();
14841 if (Info->getMode().DX10Clamp) {
14842 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
14843 // hardware fmed3 behavior converting to a min.
14844 // FIXME: Should this be allowing -0.0?
14845 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
14846 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
14847 }
14848
14849 // med3 for f16 is only available on gfx9+, and not available for v2f16.
14850 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
14851 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
14852 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
14853 // then give the other result, which is different from med3 with a NaN
14854 // input.
14855 SDValue Var = Op0.getOperand(0);
14856 if (!DAG.isKnownNeverSNaN(Var))
14857 return SDValue();
14858
14859 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14860
14861 if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF())) &&
14862 (!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF()))) {
14863 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var,
14864 SDValue(K0, 0), SDValue(K1, 0));
14865 }
14866 }
14867
14868 return SDValue();
14869}
14870
14871/// \return true if the subtarget supports minimum3 and maximum3 with the given
14872/// base min/max opcode \p Opc for type \p VT.
14873static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc,
14874 EVT VT) {
14875 switch (Opc) {
14876 case ISD::FMINNUM:
14877 case ISD::FMAXNUM:
14878 case ISD::FMINNUM_IEEE:
14879 case ISD::FMAXNUM_IEEE:
14880 case ISD::FMINIMUMNUM:
14881 case ISD::FMAXIMUMNUM:
14884 return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.hasMin3Max3_16()) ||
14885 (VT == MVT::v2f16 && Subtarget.hasMin3Max3PKF16());
14886 case ISD::FMINIMUM:
14887 case ISD::FMAXIMUM:
14888 return (VT == MVT::f32 && Subtarget.hasMinimum3Maximum3F32()) ||
14889 (VT == MVT::f16 && Subtarget.hasMinimum3Maximum3F16()) ||
14890 (VT == MVT::v2f16 && Subtarget.hasMinimum3Maximum3PKF16());
14891 case ISD::SMAX:
14892 case ISD::SMIN:
14893 case ISD::UMAX:
14894 case ISD::UMIN:
14895 return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.hasMin3Max3_16());
14896 default:
14897 return false;
14898 }
14899
14900 llvm_unreachable("not a min/max opcode");
14901}
14902
14903SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
14904 DAGCombinerInfo &DCI) const {
14905 SelectionDAG &DAG = DCI.DAG;
14906
14907 EVT VT = N->getValueType(0);
14908 unsigned Opc = N->getOpcode();
14909 SDValue Op0 = N->getOperand(0);
14910 SDValue Op1 = N->getOperand(1);
14911
14912 // Only do this if the inner op has one use since this will just increases
14913 // register pressure for no benefit.
14914
14915 if (supportsMin3Max3(*Subtarget, Opc, VT)) {
14916 // max(max(a, b), c) -> max3(a, b, c)
14917 // min(min(a, b), c) -> min3(a, b, c)
14918 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
14919 SDLoc DL(N);
14920 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0),
14921 Op0.getOperand(0), Op0.getOperand(1), Op1);
14922 }
14923
14924 // Try commuted.
14925 // max(a, max(b, c)) -> max3(a, b, c)
14926 // min(a, min(b, c)) -> min3(a, b, c)
14927 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
14928 SDLoc DL(N);
14929 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0),
14930 Op0, Op1.getOperand(0), Op1.getOperand(1));
14931 }
14932 }
14933
14934 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
14935 // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0)
14936 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
14937 if (SDValue Med3 = performIntMed3ImmCombine(
14938 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true))
14939 return Med3;
14940 }
14941 if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) {
14942 if (SDValue Med3 = performIntMed3ImmCombine(
14943 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true))
14944 return Med3;
14945 }
14946
14947 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
14948 if (SDValue Med3 = performIntMed3ImmCombine(
14949 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false))
14950 return Med3;
14951 }
14952 if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) {
14953 if (SDValue Med3 = performIntMed3ImmCombine(
14954 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false))
14955 return Med3;
14956 }
14957
14958 // if !is_snan(x):
14959 // fminnum(fmaxnum(x, K0), K1), K0 < K1 -> fmed3(x, K0, K1)
14960 // fminnum_ieee(fmaxnum_ieee(x, K0), K1), K0 < K1 -> fmed3(x, K0, K1)
14961 // fminnumnum(fmaxnumnum(x, K0), K1), K0 < K1 -> fmed3(x, K0, K1)
14962 // fmin_legacy(fmax_legacy(x, K0), K1), K0 < K1 -> fmed3(x, K0, K1)
14963 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
14964 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
14965 (Opc == ISD::FMINIMUMNUM && Op0.getOpcode() == ISD::FMAXIMUMNUM) ||
14967 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
14968 (VT == MVT::f32 || VT == MVT::f64 ||
14969 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
14970 (VT == MVT::bf16 && Subtarget->hasBF16PackedInsts()) ||
14971 (VT == MVT::v2bf16 && Subtarget->hasBF16PackedInsts()) ||
14972 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
14973 Op0.hasOneUse()) {
14974 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
14975 return Res;
14976 }
14977
14978 // Prefer fminnum_ieee over fminimum. For gfx950, minimum/maximum are legal
14979 // for some types, but at a higher cost since it's implemented with a 3
14980 // operand form.
14981 const SDNodeFlags Flags = N->getFlags();
14982 if ((Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM) &&
14983 !Subtarget->hasIEEEMinimumMaximumInsts() && Flags.hasNoNaNs()) {
14984 unsigned NewOpc =
14985 Opc == ISD::FMINIMUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
14986 return DAG.getNode(NewOpc, SDLoc(N), VT, Op0, Op1, Flags);
14987 }
14988
14989 return SDValue();
14990}
14991
14995 // FIXME: Should this be allowing -0.0?
14996 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
14997 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
14998 }
14999 }
15000
15001 return false;
15002}
15003
15004// FIXME: Should only worry about snans for version with chain.
15005SDValue SITargetLowering::performFMed3Combine(SDNode *N,
15006 DAGCombinerInfo &DCI) const {
15007 EVT VT = N->getValueType(0);
15008 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
15009 // NaNs. With a NaN input, the order of the operands may change the result.
15010
15011 SelectionDAG &DAG = DCI.DAG;
15012 SDLoc SL(N);
15013
15014 SDValue Src0 = N->getOperand(0);
15015 SDValue Src1 = N->getOperand(1);
15016 SDValue Src2 = N->getOperand(2);
15017
15018 if (isClampZeroToOne(Src0, Src1)) {
15019 // const_a, const_b, x -> clamp is safe in all cases including signaling
15020 // nans.
15021 // FIXME: Should this be allowing -0.0?
15022 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
15023 }
15024
15025 const MachineFunction &MF = DAG.getMachineFunction();
15026 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
15027
15028 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
15029 // handling no dx10-clamp?
15030 if (Info->getMode().DX10Clamp) {
15031 // If NaNs is clamped to 0, we are free to reorder the inputs.
15032
15033 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
15034 std::swap(Src0, Src1);
15035
15036 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
15037 std::swap(Src1, Src2);
15038
15039 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
15040 std::swap(Src0, Src1);
15041
15042 if (isClampZeroToOne(Src1, Src2))
15043 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
15044 }
15045
15046 return SDValue();
15047}
15048
15049SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
15050 DAGCombinerInfo &DCI) const {
15051 SDValue Src0 = N->getOperand(0);
15052 SDValue Src1 = N->getOperand(1);
15053 if (Src0.isUndef() && Src1.isUndef())
15054 return DCI.DAG.getUNDEF(N->getValueType(0));
15055 return SDValue();
15056}
15057
15058// Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
15059// expanded into a set of cmp/select instructions.
15061 unsigned NumElem,
15062 bool IsDivergentIdx,
15063 const GCNSubtarget *Subtarget) {
15065 return false;
15066
15067 unsigned VecSize = EltSize * NumElem;
15068
15069 // Sub-dword vectors of size 2 dword or less have better implementation.
15070 if (VecSize <= 64 && EltSize < 32)
15071 return false;
15072
15073 // Always expand the rest of sub-dword instructions, otherwise it will be
15074 // lowered via memory.
15075 if (EltSize < 32)
15076 return true;
15077
15078 // Always do this if var-idx is divergent, otherwise it will become a loop.
15079 if (IsDivergentIdx)
15080 return true;
15081
15082 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
15083 unsigned NumInsts = NumElem /* Number of compares */ +
15084 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
15085
15086 // On some architectures (GFX9) movrel is not available and it's better
15087 // to expand.
15088 if (Subtarget->useVGPRIndexMode())
15089 return NumInsts <= 16;
15090
15091 // If movrel is available, use it instead of expanding for vector of 8
15092 // elements.
15093 if (Subtarget->hasMovrel())
15094 return NumInsts <= 15;
15095
15096 return true;
15097}
15098
15100 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
15101 if (isa<ConstantSDNode>(Idx))
15102 return false;
15103
15104 SDValue Vec = N->getOperand(0);
15105 EVT VecVT = Vec.getValueType();
15106 EVT EltVT = VecVT.getVectorElementType();
15107 unsigned EltSize = EltVT.getSizeInBits();
15108 unsigned NumElem = VecVT.getVectorNumElements();
15109
15111 EltSize, NumElem, Idx->isDivergent(), getSubtarget());
15112}
15113
15114SDValue
15115SITargetLowering::performExtractVectorEltCombine(SDNode *N,
15116 DAGCombinerInfo &DCI) const {
15117 SDValue Vec = N->getOperand(0);
15118 SelectionDAG &DAG = DCI.DAG;
15119
15120 EVT VecVT = Vec.getValueType();
15121 EVT VecEltVT = VecVT.getVectorElementType();
15122 EVT ResVT = N->getValueType(0);
15123
15124 unsigned VecSize = VecVT.getSizeInBits();
15125 unsigned VecEltSize = VecEltVT.getSizeInBits();
15126
15127 if ((Vec.getOpcode() == ISD::FNEG || Vec.getOpcode() == ISD::FABS) &&
15129 SDLoc SL(N);
15130 SDValue Idx = N->getOperand(1);
15131 SDValue Elt =
15132 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
15133 return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
15134 }
15135
15136 // (extract_vector_element (and {y0, y1}, (build_vector 0x1f, 0x1f)), index)
15137 // -> (and (extract_vector_element {y0, y1}, index), 0x1f)
15138 // There are optimisations to transform 64-bit shifts into 32-bit shifts
15139 // depending on the shift operand. See e.g. performSraCombine().
15140 // This combine ensures that the optimisation is compatible with v2i32
15141 // legalised AND.
15142 if (VecVT == MVT::v2i32 && Vec->getOpcode() == ISD::AND &&
15143 Vec->getOperand(1)->getOpcode() == ISD::BUILD_VECTOR) {
15144
15146 if (!C || C->getZExtValue() != 0x1f)
15147 return SDValue();
15148
15149 SDLoc SL(N);
15150 SDValue AndMask = DAG.getConstant(0x1f, SL, MVT::i32);
15151 SDValue EVE = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
15152 Vec->getOperand(0), N->getOperand(1));
15153 SDValue A = DAG.getNode(ISD::AND, SL, MVT::i32, EVE, AndMask);
15154 DAG.ReplaceAllUsesWith(N, A.getNode());
15155 }
15156
15157 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
15158 // =>
15159 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
15160 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
15161 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
15162 if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
15163 SDLoc SL(N);
15164 SDValue Idx = N->getOperand(1);
15165 unsigned Opc = Vec.getOpcode();
15166
15167 switch (Opc) {
15168 default:
15169 break;
15170 // TODO: Support other binary operations.
15171 case ISD::FADD:
15172 case ISD::FSUB:
15173 case ISD::FMUL:
15174 case ISD::ADD:
15175 case ISD::UMIN:
15176 case ISD::UMAX:
15177 case ISD::SMIN:
15178 case ISD::SMAX:
15179 case ISD::FMAXNUM:
15180 case ISD::FMINNUM:
15181 case ISD::FMAXNUM_IEEE:
15182 case ISD::FMINNUM_IEEE:
15183 case ISD::FMAXIMUM:
15184 case ISD::FMINIMUM: {
15185 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
15186 Vec.getOperand(0), Idx);
15187 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
15188 Vec.getOperand(1), Idx);
15189
15190 DCI.AddToWorklist(Elt0.getNode());
15191 DCI.AddToWorklist(Elt1.getNode());
15192 return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
15193 }
15194 }
15195 }
15196
15197 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
15199 SDLoc SL(N);
15200 SDValue Idx = N->getOperand(1);
15201 SDValue V;
15202 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
15203 SDValue IC = DAG.getVectorIdxConstant(I, SL);
15204 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
15205 if (I == 0)
15206 V = Elt;
15207 else
15208 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
15209 }
15210 return V;
15211 }
15212
15213 // EXTRACT_VECTOR_ELT (v2i32 bitcast (i64/f64:k), Idx)
15214 // =>
15215 // i32:Lo(k) if Idx == 0, or
15216 // i32:Hi(k) if Idx == 1
15217 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
15218 if (Vec.getOpcode() == ISD::BITCAST && VecVT == MVT::v2i32 && Idx) {
15219 SDLoc SL(N);
15220 SDValue PeekThrough = Vec.getOperand(0);
15221 auto *KImm = dyn_cast<ConstantSDNode>(PeekThrough);
15222 if (KImm && KImm->getValueType(0).getSizeInBits() == 64) {
15223 uint64_t KImmValue = KImm->getZExtValue();
15224 return DAG.getConstant(
15225 (KImmValue >> (32 * Idx->getZExtValue())) & 0xffffffff, SL, MVT::i32);
15226 }
15227 auto *KFPImm = dyn_cast<ConstantFPSDNode>(PeekThrough);
15228 if (KFPImm && KFPImm->getValueType(0).getSizeInBits() == 64) {
15229 uint64_t KFPImmValue =
15230 KFPImm->getValueAPF().bitcastToAPInt().getZExtValue();
15231 return DAG.getConstant((KFPImmValue >> (32 * Idx->getZExtValue())) &
15232 0xffffffff,
15233 SL, MVT::i32);
15234 }
15235 }
15236
15237 if (!DCI.isBeforeLegalize())
15238 return SDValue();
15239
15240 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
15241 // elements. This exposes more load reduction opportunities by replacing
15242 // multiple small extract_vector_elements with a single 32-bit extract.
15243 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
15244 VecSize > 32 && VecSize % 32 == 0 && Idx) {
15245 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
15246
15247 unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
15248 unsigned EltIdx = BitIndex / 32;
15249 unsigned LeftoverBitIdx = BitIndex % 32;
15250 SDLoc SL(N);
15251
15252 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
15253 DCI.AddToWorklist(Cast.getNode());
15254
15255 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
15256 DAG.getConstant(EltIdx, SL, MVT::i32));
15257 DCI.AddToWorklist(Elt.getNode());
15258 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
15259 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
15260 DCI.AddToWorklist(Srl.getNode());
15261
15262 EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
15263 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
15264 DCI.AddToWorklist(Trunc.getNode());
15265
15266 if (VecEltVT == ResVT) {
15267 return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
15268 }
15269
15270 assert(ResVT.isScalarInteger());
15271 return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
15272 }
15273
15274 return SDValue();
15275}
15276
15277SDValue
15278SITargetLowering::performInsertVectorEltCombine(SDNode *N,
15279 DAGCombinerInfo &DCI) const {
15280 SDValue Vec = N->getOperand(0);
15281 SDValue Idx = N->getOperand(2);
15282 EVT VecVT = Vec.getValueType();
15283 EVT EltVT = VecVT.getVectorElementType();
15284
15285 // INSERT_VECTOR_ELT (<n x e>, var-idx)
15286 // => BUILD_VECTOR n x select (e, const-idx)
15288 return SDValue();
15289
15290 SelectionDAG &DAG = DCI.DAG;
15291 SDLoc SL(N);
15292 SDValue Ins = N->getOperand(1);
15293 EVT IdxVT = Idx.getValueType();
15294
15296 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
15297 SDValue IC = DAG.getConstant(I, SL, IdxVT);
15298 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
15299 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
15300 Ops.push_back(V);
15301 }
15302
15303 return DAG.getBuildVector(VecVT, SL, Ops);
15304}
15305
15306/// Return the source of an fp_extend from f16 to f32, or a converted FP
15307/// constant.
15309 if (Src.getOpcode() == ISD::FP_EXTEND &&
15310 Src.getOperand(0).getValueType() == MVT::f16) {
15311 return Src.getOperand(0);
15312 }
15313
15314 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
15315 APFloat Val = CFP->getValueAPF();
15316 bool LosesInfo = true;
15318 if (!LosesInfo)
15319 return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16);
15320 }
15321
15322 return SDValue();
15323}
15324
15325SDValue SITargetLowering::performFPRoundCombine(SDNode *N,
15326 DAGCombinerInfo &DCI) const {
15327 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
15328 "combine only useful on gfx8");
15329
15330 SDValue TruncSrc = N->getOperand(0);
15331 EVT VT = N->getValueType(0);
15332 if (VT != MVT::f16)
15333 return SDValue();
15334
15335 if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 ||
15336 TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse())
15337 return SDValue();
15338
15339 SelectionDAG &DAG = DCI.DAG;
15340 SDLoc SL(N);
15341
15342 // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3,
15343 // and expanding it with min/max saves 1 instruction vs. casting to f32 and
15344 // casting back.
15345
15346 // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) =>
15347 // fmin(fmax(a, b), fmax(fmin(a, b), c))
15348 SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0));
15349 if (!A)
15350 return SDValue();
15351
15352 SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1));
15353 if (!B)
15354 return SDValue();
15355
15356 SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2));
15357 if (!C)
15358 return SDValue();
15359
15360 // This changes signaling nan behavior. If an input is a signaling nan, it
15361 // would have been quieted by the fpext originally. We don't care because
15362 // these are unconstrained ops. If we needed to insert quieting canonicalizes
15363 // we would be worse off than just doing the promotion.
15364 SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B);
15365 SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B);
15366 SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C);
15367 return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
15368}
15369
15370unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
15371 const SDNode *N0,
15372 const SDNode *N1) const {
15373 EVT VT = N0->getValueType(0);
15374
15375 // Only do this if we are not trying to support denormals. v_mad_f32 does not
15376 // support denormals ever.
15377 if (((VT == MVT::f32 &&
15379 (VT == MVT::f16 && Subtarget->hasMadF16() &&
15382 return ISD::FMAD;
15383
15384 const TargetOptions &Options = DAG.getTarget().Options;
15385 if ((Options.AllowFPOpFusion == FPOpFusion::Fast ||
15386 (N0->getFlags().hasAllowContract() &&
15387 N1->getFlags().hasAllowContract())) &&
15389 return ISD::FMA;
15390 }
15391
15392 return 0;
15393}
15394
15395// For a reassociatable opcode perform:
15396// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
15397SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
15398 SelectionDAG &DAG) const {
15399 EVT VT = N->getValueType(0);
15400 if (VT != MVT::i32 && VT != MVT::i64)
15401 return SDValue();
15402
15403 if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
15404 return SDValue();
15405
15406 unsigned Opc = N->getOpcode();
15407 SDValue Op0 = N->getOperand(0);
15408 SDValue Op1 = N->getOperand(1);
15409
15410 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
15411 return SDValue();
15412
15413 if (Op0->isDivergent())
15414 std::swap(Op0, Op1);
15415
15416 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
15417 return SDValue();
15418
15419 SDValue Op2 = Op1.getOperand(1);
15420 Op1 = Op1.getOperand(0);
15421 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
15422 return SDValue();
15423
15424 if (Op1->isDivergent())
15425 std::swap(Op1, Op2);
15426
15427 SDLoc SL(N);
15428 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
15429 return DAG.getNode(Opc, SL, VT, Add1, Op2);
15430}
15431
15432static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT,
15433 SDValue N0, SDValue N1, SDValue N2, bool Signed) {
15435 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
15436 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
15437 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
15438}
15439
15440// Fold
15441// y = lshr i64 x, 32
15442// res = add (mul i64 y, Const), x where "Const" is a 64-bit constant
15443// with Const.hi == -1
15444// To
15445// res = mad_u64_u32 y.lo ,Const.lo, x.lo
15447 SDValue MulLHS, SDValue MulRHS,
15448 SDValue AddRHS) {
15449 if (MulRHS.getOpcode() == ISD::SRL)
15450 std::swap(MulLHS, MulRHS);
15451
15452 if (MulLHS.getValueType() != MVT::i64 || MulLHS.getOpcode() != ISD::SRL)
15453 return SDValue();
15454
15455 ConstantSDNode *ShiftVal = dyn_cast<ConstantSDNode>(MulLHS.getOperand(1));
15456 if (!ShiftVal || ShiftVal->getAsZExtVal() != 32 ||
15457 MulLHS.getOperand(0) != AddRHS)
15458 return SDValue();
15459
15461 if (!Const || Hi_32(Const->getZExtValue()) != uint32_t(-1))
15462 return SDValue();
15463
15464 SDValue ConstMul =
15465 DAG.getConstant(Lo_32(Const->getZExtValue()), SL, MVT::i32);
15466 return getMad64_32(DAG, SL, MVT::i64,
15467 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS), ConstMul,
15468 DAG.getZeroExtendInReg(AddRHS, SL, MVT::i32), false);
15469}
15470
15471// Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
15472// multiplies, if any.
15473//
15474// Full 64-bit multiplies that feed into an addition are lowered here instead
15475// of using the generic expansion. The generic expansion ends up with
15476// a tree of ADD nodes that prevents us from using the "add" part of the
15477// MAD instruction. The expansion produced here results in a chain of ADDs
15478// instead of a tree.
15479SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
15480 DAGCombinerInfo &DCI) const {
15481 assert(N->isAnyAdd());
15482
15483 SelectionDAG &DAG = DCI.DAG;
15484 EVT VT = N->getValueType(0);
15485 SDLoc SL(N);
15486 SDValue LHS = N->getOperand(0);
15487 SDValue RHS = N->getOperand(1);
15488
15489 if (VT.isVector())
15490 return SDValue();
15491
15492 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
15493 // result in scalar registers for uniform values.
15494 if (!N->isDivergent() && Subtarget->hasSMulHi())
15495 return SDValue();
15496
15497 unsigned NumBits = VT.getScalarSizeInBits();
15498 if (NumBits <= 32 || NumBits > 64)
15499 return SDValue();
15500
15501 if (LHS.getOpcode() != ISD::MUL) {
15502 assert(RHS.getOpcode() == ISD::MUL);
15503 std::swap(LHS, RHS);
15504 }
15505
15506 // Avoid the fold if it would unduly increase the number of multiplies due to
15507 // multiple uses, except on hardware with full-rate multiply-add (which is
15508 // part of full-rate 64-bit ops).
15509 if (!Subtarget->hasFullRate64Ops()) {
15510 unsigned NumUsers = 0;
15511 for (SDNode *User : LHS->users()) {
15512 // There is a use that does not feed into addition, so the multiply can't
15513 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
15514 if (!User->isAnyAdd())
15515 return SDValue();
15516
15517 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
15518 // MUL + 3xADD + 3xADDC over 3xMAD.
15519 ++NumUsers;
15520 if (NumUsers >= 3)
15521 return SDValue();
15522 }
15523 }
15524
15525 SDValue MulLHS = LHS.getOperand(0);
15526 SDValue MulRHS = LHS.getOperand(1);
15527 SDValue AddRHS = RHS;
15528
15529 if (SDValue FoldedMAD = tryFoldMADwithSRL(DAG, SL, MulLHS, MulRHS, AddRHS))
15530 return FoldedMAD;
15531
15532 // Always check whether operands are small unsigned values, since that
15533 // knowledge is useful in more cases. Check for small signed values only if
15534 // doing so can unlock a shorter code sequence.
15535 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
15536 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
15537
15538 bool MulSignedLo = false;
15539 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
15540 MulSignedLo =
15541 numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32;
15542 }
15543
15544 // The operands and final result all have the same number of bits. If
15545 // operands need to be extended, they can be extended with garbage. The
15546 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
15547 // truncated away in the end.
15548 if (VT != MVT::i64) {
15549 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
15550 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
15551 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
15552 }
15553
15554 // The basic code generated is conceptually straightforward. Pseudo code:
15555 //
15556 // accum = mad_64_32 lhs.lo, rhs.lo, accum
15557 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
15558 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
15559 //
15560 // The second and third lines are optional, depending on whether the factors
15561 // are {sign,zero}-extended or not.
15562 //
15563 // The actual DAG is noisier than the pseudo code, but only due to
15564 // instructions that disassemble values into low and high parts, and
15565 // assemble the final result.
15566 SDValue One = DAG.getConstant(1, SL, MVT::i32);
15567
15568 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
15569 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
15570 SDValue Accum =
15571 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
15572
15573 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
15574 auto [AccumLo, AccumHi] = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32);
15575
15576 if (!MulLHSUnsigned32) {
15577 auto MulLHSHi =
15578 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
15579 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
15580 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
15581 }
15582
15583 if (!MulRHSUnsigned32) {
15584 auto MulRHSHi =
15585 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
15586 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
15587 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
15588 }
15589
15590 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
15591 Accum = DAG.getBitcast(MVT::i64, Accum);
15592 }
15593
15594 if (VT != MVT::i64)
15595 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
15596 return Accum;
15597}
15598
15599SDValue
15600SITargetLowering::foldAddSub64WithZeroLowBitsTo32(SDNode *N,
15601 DAGCombinerInfo &DCI) const {
15602 SDValue RHS = N->getOperand(1);
15603 auto *CRHS = dyn_cast<ConstantSDNode>(RHS);
15604 if (!CRHS)
15605 return SDValue();
15606
15607 // TODO: Worth using computeKnownBits? Maybe expensive since it's so
15608 // common.
15609 uint64_t Val = CRHS->getZExtValue();
15610 if (countr_zero(Val) >= 32) {
15611 SelectionDAG &DAG = DCI.DAG;
15612 SDLoc SL(N);
15613 SDValue LHS = N->getOperand(0);
15614
15615 // Avoid carry machinery if we know the low half of the add does not
15616 // contribute to the final result.
15617 //
15618 // add i64:x, K if computeTrailingZeros(K) >= 32
15619 // => build_pair (add x.hi, K.hi), x.lo
15620
15621 // Breaking the 64-bit add here with this strange constant is unlikely
15622 // to interfere with addressing mode patterns.
15623
15624 SDValue Hi = getHiHalf64(LHS, DAG);
15625 SDValue ConstHi32 = DAG.getConstant(Hi_32(Val), SL, MVT::i32);
15626 unsigned Opcode = N->getOpcode();
15627 if (Opcode == ISD::PTRADD)
15628 Opcode = ISD::ADD;
15629 SDValue AddHi =
15630 DAG.getNode(Opcode, SL, MVT::i32, Hi, ConstHi32, N->getFlags());
15631
15632 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
15633 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Lo, AddHi);
15634 }
15635
15636 return SDValue();
15637}
15638
15639// Collect the ultimate src of each of the mul node's operands, and confirm
15640// each operand is 8 bytes.
15641static std::optional<ByteProvider<SDValue>>
15642handleMulOperand(const SDValue &MulOperand) {
15643 auto Byte0 = calculateByteProvider(MulOperand, 0, 0);
15644 if (!Byte0 || Byte0->isConstantZero()) {
15645 return std::nullopt;
15646 }
15647 auto Byte1 = calculateByteProvider(MulOperand, 1, 0);
15648 if (Byte1 && !Byte1->isConstantZero()) {
15649 return std::nullopt;
15650 }
15651 return Byte0;
15652}
15653
15654static unsigned addPermMasks(unsigned First, unsigned Second) {
15655 unsigned FirstCs = First & 0x0c0c0c0c;
15656 unsigned SecondCs = Second & 0x0c0c0c0c;
15657 unsigned FirstNoCs = First & ~0x0c0c0c0c;
15658 unsigned SecondNoCs = Second & ~0x0c0c0c0c;
15659
15660 assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
15661 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
15662 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
15663 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
15664
15665 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
15666}
15667
15668struct DotSrc {
15670 int64_t PermMask;
15672};
15673
15677 SmallVectorImpl<DotSrc> &Src1s, int Step) {
15678
15679 assert(Src0.Src.has_value() && Src1.Src.has_value());
15680 // Src0s and Src1s are empty, just place arbitrarily.
15681 if (Step == 0) {
15682 Src0s.push_back({*Src0.Src, ((Src0.SrcOffset % 4) << 24) + 0x0c0c0c,
15683 Src0.SrcOffset / 4});
15684 Src1s.push_back({*Src1.Src, ((Src1.SrcOffset % 4) << 24) + 0x0c0c0c,
15685 Src1.SrcOffset / 4});
15686 return;
15687 }
15688
15689 for (int BPI = 0; BPI < 2; BPI++) {
15690 std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1};
15691 if (BPI == 1) {
15692 BPP = {Src1, Src0};
15693 }
15694 unsigned ZeroMask = 0x0c0c0c0c;
15695 unsigned FMask = 0xFF << (8 * (3 - Step));
15696
15697 unsigned FirstMask =
15698 (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15699 unsigned SecondMask =
15700 (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15701 // Attempt to find Src vector which contains our SDValue, if so, add our
15702 // perm mask to the existing one. If we are unable to find a match for the
15703 // first SDValue, attempt to find match for the second.
15704 int FirstGroup = -1;
15705 for (int I = 0; I < 2; I++) {
15706 SmallVectorImpl<DotSrc> &Srcs = I == 0 ? Src0s : Src1s;
15707 auto MatchesFirst = [&BPP](DotSrc &IterElt) {
15708 return IterElt.SrcOp == *BPP.first.Src &&
15709 (IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
15710 };
15711
15712 auto *Match = llvm::find_if(Srcs, MatchesFirst);
15713 if (Match != Srcs.end()) {
15714 Match->PermMask = addPermMasks(FirstMask, Match->PermMask);
15715 FirstGroup = I;
15716 break;
15717 }
15718 }
15719 if (FirstGroup != -1) {
15720 SmallVectorImpl<DotSrc> &Srcs = FirstGroup == 1 ? Src0s : Src1s;
15721 auto MatchesSecond = [&BPP](DotSrc &IterElt) {
15722 return IterElt.SrcOp == *BPP.second.Src &&
15723 (IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
15724 };
15725 auto *Match = llvm::find_if(Srcs, MatchesSecond);
15726 if (Match != Srcs.end()) {
15727 Match->PermMask = addPermMasks(SecondMask, Match->PermMask);
15728 } else
15729 Srcs.push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
15730 return;
15731 }
15732 }
15733
15734 // If we have made it here, then we could not find a match in Src0s or Src1s
15735 // for either Src0 or Src1, so just place them arbitrarily.
15736
15737 unsigned ZeroMask = 0x0c0c0c0c;
15738 unsigned FMask = 0xFF << (8 * (3 - Step));
15739
15740 Src0s.push_back(
15741 {*Src0.Src,
15742 ((Src0.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15743 Src0.SrcOffset / 4});
15744 Src1s.push_back(
15745 {*Src1.Src,
15746 ((Src1.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15747 Src1.SrcOffset / 4});
15748}
15749
15751 SmallVectorImpl<DotSrc> &Srcs, bool IsSigned,
15752 bool IsAny) {
15753
15754 // If we just have one source, just permute it accordingly.
15755 if (Srcs.size() == 1) {
15756 auto *Elt = Srcs.begin();
15757 auto EltOp = getDWordFromOffset(DAG, SL, Elt->SrcOp, Elt->DWordOffset);
15758
15759 // v_perm will produce the original value
15760 if (Elt->PermMask == 0x3020100)
15761 return EltOp;
15762
15763 return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
15764 DAG.getConstant(Elt->PermMask, SL, MVT::i32));
15765 }
15766
15767 auto *FirstElt = Srcs.begin();
15768 auto *SecondElt = std::next(FirstElt);
15769
15771
15772 // If we have multiple sources in the chain, combine them via perms (using
15773 // calculated perm mask) and Ors.
15774 while (true) {
15775 auto FirstMask = FirstElt->PermMask;
15776 auto SecondMask = SecondElt->PermMask;
15777
15778 unsigned FirstCs = FirstMask & 0x0c0c0c0c;
15779 unsigned FirstPlusFour = FirstMask | 0x04040404;
15780 // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any
15781 // original 0x0C.
15782 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
15783
15784 auto PermMask = addPermMasks(FirstMask, SecondMask);
15785 auto FirstVal =
15786 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
15787 auto SecondVal =
15788 getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset);
15789
15790 Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal,
15791 SecondVal,
15792 DAG.getConstant(PermMask, SL, MVT::i32)));
15793
15794 FirstElt = std::next(SecondElt);
15795 if (FirstElt == Srcs.end())
15796 break;
15797
15798 SecondElt = std::next(FirstElt);
15799 // If we only have a FirstElt, then just combine that into the cumulative
15800 // source node.
15801 if (SecondElt == Srcs.end()) {
15802 auto EltOp =
15803 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
15804
15805 Perms.push_back(
15806 DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
15807 DAG.getConstant(FirstElt->PermMask, SL, MVT::i32)));
15808 break;
15809 }
15810 }
15811
15812 assert(Perms.size() == 1 || Perms.size() == 2);
15813 return Perms.size() == 2
15814 ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1])
15815 : Perms[0];
15816}
15817
15818static void fixMasks(SmallVectorImpl<DotSrc> &Srcs, unsigned ChainLength) {
15819 for (auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
15820 EntryMask = EntryMask >> ((4 - ChainLength) * 8);
15821 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
15822 EntryMask += ZeroMask;
15823 }
15824}
15825
15826static bool isMul(const SDValue Op) {
15827 auto Opcode = Op.getOpcode();
15828
15829 return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 ||
15830 Opcode == AMDGPUISD::MUL_I24);
15831}
15832
15833static std::optional<bool>
15835 ByteProvider<SDValue> &Src1, const SDValue &S0Op,
15836 const SDValue &S1Op, const SelectionDAG &DAG) {
15837 // If we both ops are i8s (pre legalize-dag), then the signedness semantics
15838 // of the dot4 is irrelevant.
15839 if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8)
15840 return false;
15841
15842 auto Known0 = DAG.computeKnownBits(S0Op, 0);
15843 bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0;
15844 bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
15845 auto Known1 = DAG.computeKnownBits(S1Op, 0);
15846 bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0;
15847 bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
15848
15849 assert(!(S0IsUnsigned && S0IsSigned));
15850 assert(!(S1IsUnsigned && S1IsSigned));
15851
15852 // There are 9 possible permutations of
15853 // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned}
15854
15855 // In two permutations, the sign bits are known to be the same for both Ops,
15856 // so simply return Signed / Unsigned corresponding to the MSB
15857
15858 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
15859 return S0IsSigned;
15860
15861 // In another two permutations, the sign bits are known to be opposite. In
15862 // this case return std::nullopt to indicate a bad match.
15863
15864 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
15865 return std::nullopt;
15866
15867 // In the remaining five permutations, we don't know the value of the sign
15868 // bit for at least one Op. Since we have a valid ByteProvider, we know that
15869 // the upper bits must be extension bits. Thus, the only ways for the sign
15870 // bit to be unknown is if it was sign extended from unknown value, or if it
15871 // was any extended. In either case, it is correct to use the signed
15872 // version of the signedness semantics of dot4
15873
15874 // In two of such permutations, we known the sign bit is set for
15875 // one op, and the other is unknown. It is okay to used signed version of
15876 // dot4.
15877 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
15878 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
15879 return true;
15880
15881 // In one such permutation, we don't know either of the sign bits. It is okay
15882 // to used the signed version of dot4.
15883 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
15884 return true;
15885
15886 // In two of such permutations, we known the sign bit is unset for
15887 // one op, and the other is unknown. Return std::nullopt to indicate a
15888 // bad match.
15889 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
15890 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
15891 return std::nullopt;
15892
15893 llvm_unreachable("Fully covered condition");
15894}
15895
15896SDValue SITargetLowering::performAddCombine(SDNode *N,
15897 DAGCombinerInfo &DCI) const {
15898 SelectionDAG &DAG = DCI.DAG;
15899 EVT VT = N->getValueType(0);
15900 SDLoc SL(N);
15901 SDValue LHS = N->getOperand(0);
15902 SDValue RHS = N->getOperand(1);
15903
15904 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
15905 if (Subtarget->hasMad64_32()) {
15906 if (SDValue Folded = tryFoldToMad64_32(N, DCI))
15907 return Folded;
15908 }
15909 }
15910
15911 if (SDValue V = reassociateScalarOps(N, DAG)) {
15912 return V;
15913 }
15914
15915 if (VT == MVT::i64) {
15916 if (SDValue Folded = foldAddSub64WithZeroLowBitsTo32(N, DCI))
15917 return Folded;
15918 }
15919
15920 if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() &&
15921 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
15922 SDValue TempNode(N, 0);
15923 std::optional<bool> IsSigned;
15927
15928 // Match the v_dot4 tree, while collecting src nodes.
15929 int ChainLength = 0;
15930 for (int I = 0; I < 4; I++) {
15931 auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1;
15932 if (MulIdx == -1)
15933 break;
15934 auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
15935 if (!Src0)
15936 break;
15937 auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
15938 if (!Src1)
15939 break;
15940
15941 auto IterIsSigned = checkDot4MulSignedness(
15942 TempNode->getOperand(MulIdx), *Src0, *Src1,
15943 TempNode->getOperand(MulIdx)->getOperand(0),
15944 TempNode->getOperand(MulIdx)->getOperand(1), DAG);
15945 if (!IterIsSigned)
15946 break;
15947 if (!IsSigned)
15948 IsSigned = *IterIsSigned;
15949 if (*IterIsSigned != *IsSigned)
15950 break;
15951 placeSources(*Src0, *Src1, Src0s, Src1s, I);
15952 auto AddIdx = 1 - MulIdx;
15953 // Allow the special case where add (add (mul24, 0), mul24) became ->
15954 // add (mul24, mul24).
15955 if (I == 2 && isMul(TempNode->getOperand(AddIdx))) {
15956 Src2s.push_back(TempNode->getOperand(AddIdx));
15957 auto Src0 =
15958 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0));
15959 if (!Src0)
15960 break;
15961 auto Src1 =
15962 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1));
15963 if (!Src1)
15964 break;
15965 auto IterIsSigned = checkDot4MulSignedness(
15966 TempNode->getOperand(AddIdx), *Src0, *Src1,
15967 TempNode->getOperand(AddIdx)->getOperand(0),
15968 TempNode->getOperand(AddIdx)->getOperand(1), DAG);
15969 if (!IterIsSigned)
15970 break;
15971 assert(IsSigned);
15972 if (*IterIsSigned != *IsSigned)
15973 break;
15974 placeSources(*Src0, *Src1, Src0s, Src1s, I + 1);
15975 Src2s.push_back(DAG.getConstant(0, SL, MVT::i32));
15976 ChainLength = I + 2;
15977 break;
15978 }
15979
15980 TempNode = TempNode->getOperand(AddIdx);
15981 Src2s.push_back(TempNode);
15982 ChainLength = I + 1;
15983 if (TempNode->getNumOperands() < 2)
15984 break;
15985 LHS = TempNode->getOperand(0);
15986 RHS = TempNode->getOperand(1);
15987 }
15988
15989 if (ChainLength < 2)
15990 return SDValue();
15991
15992 // Masks were constructed with assumption that we would find a chain of
15993 // length 4. If not, then we need to 0 out the MSB bits (via perm mask of
15994 // 0x0c) so they do not affect dot calculation.
15995 if (ChainLength < 4) {
15996 fixMasks(Src0s, ChainLength);
15997 fixMasks(Src1s, ChainLength);
15998 }
15999
16000 SDValue Src0, Src1;
16001
16002 // If we are just using a single source for both, and have permuted the
16003 // bytes consistently, we can just use the sources without permuting
16004 // (commutation).
16005 bool UseOriginalSrc = false;
16006 if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 &&
16007 Src0s.begin()->PermMask == Src1s.begin()->PermMask &&
16008 Src0s.begin()->SrcOp.getValueSizeInBits() >= 32 &&
16009 Src1s.begin()->SrcOp.getValueSizeInBits() >= 32) {
16010 SmallVector<unsigned, 4> SrcBytes;
16011 auto Src0Mask = Src0s.begin()->PermMask;
16012 SrcBytes.push_back(Src0Mask & 0xFF000000);
16013 bool UniqueEntries = true;
16014 for (auto I = 1; I < 4; I++) {
16015 auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8));
16016
16017 if (is_contained(SrcBytes, NextByte)) {
16018 UniqueEntries = false;
16019 break;
16020 }
16021 SrcBytes.push_back(NextByte);
16022 }
16023
16024 if (UniqueEntries) {
16025 UseOriginalSrc = true;
16026
16027 auto *FirstElt = Src0s.begin();
16028 auto FirstEltOp =
16029 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
16030
16031 auto *SecondElt = Src1s.begin();
16032 auto SecondEltOp = getDWordFromOffset(DAG, SL, SecondElt->SrcOp,
16033 SecondElt->DWordOffset);
16034
16035 Src0 = DAG.getBitcastedAnyExtOrTrunc(FirstEltOp, SL,
16036 MVT::getIntegerVT(32));
16037 Src1 = DAG.getBitcastedAnyExtOrTrunc(SecondEltOp, SL,
16038 MVT::getIntegerVT(32));
16039 }
16040 }
16041
16042 if (!UseOriginalSrc) {
16043 Src0 = resolveSources(DAG, SL, Src0s, false, true);
16044 Src1 = resolveSources(DAG, SL, Src1s, false, true);
16045 }
16046
16047 assert(IsSigned);
16048 SDValue Src2 =
16049 DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
16050
16051 SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4
16052 : Intrinsic::amdgcn_udot4,
16053 SL, MVT::i64);
16054
16055 assert(!VT.isVector());
16056 auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0,
16057 Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1));
16058
16059 return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT);
16060 }
16061
16062 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
16063 return SDValue();
16064
16065 // add x, zext (setcc) => uaddo_carry x, 0, setcc
16066 // add x, sext (setcc) => usubo_carry x, 0, setcc
16067 unsigned Opc = LHS.getOpcode();
16070 std::swap(RHS, LHS);
16071
16072 Opc = RHS.getOpcode();
16073 switch (Opc) {
16074 default:
16075 break;
16076 case ISD::ZERO_EXTEND:
16077 case ISD::SIGN_EXTEND:
16078 case ISD::ANY_EXTEND: {
16079 auto Cond = RHS.getOperand(0);
16080 // If this won't be a real VOPC output, we would still need to insert an
16081 // extra instruction anyway.
16082 if (!isBoolSGPR(Cond))
16083 break;
16084 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
16085 SDValue Args[] = {LHS, DAG.getConstant(0, SL, MVT::i32), Cond};
16087 return DAG.getNode(Opc, SL, VTList, Args);
16088 }
16089 case ISD::UADDO_CARRY: {
16090 // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc
16091 if (!isNullConstant(RHS.getOperand(1)))
16092 break;
16093 SDValue Args[] = {LHS, RHS.getOperand(0), RHS.getOperand(2)};
16094 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args);
16095 }
16096 }
16097 return SDValue();
16098}
16099
16100SDValue SITargetLowering::performPtrAddCombine(SDNode *N,
16101 DAGCombinerInfo &DCI) const {
16102 SelectionDAG &DAG = DCI.DAG;
16103 SDLoc DL(N);
16104 EVT VT = N->getValueType(0);
16105 SDValue N0 = N->getOperand(0);
16106 SDValue N1 = N->getOperand(1);
16107
16108 // The following folds transform PTRADDs into regular arithmetic in cases
16109 // where the PTRADD wouldn't be folded as an immediate offset into memory
16110 // instructions anyway. They are target-specific in that other targets might
16111 // prefer to not lose information about the pointer arithmetic.
16112
16113 // Fold (ptradd x, shl(0 - v, k)) -> sub(x, shl(v, k)).
16114 // Adapted from DAGCombiner::visitADDLikeCommutative.
16115 SDValue V, K;
16116 if (sd_match(N1, m_Shl(m_Neg(m_Value(V)), m_Value(K)))) {
16117 SDNodeFlags ShlFlags = N1->getFlags();
16118 // If the original shl is NUW and NSW, the first k+1 bits of 0-v are all 0,
16119 // so v is either 0 or the first k+1 bits of v are all 1 -> NSW can be
16120 // preserved.
16121 SDNodeFlags NewShlFlags =
16122 ShlFlags.hasNoUnsignedWrap() && ShlFlags.hasNoSignedWrap()
16124 : SDNodeFlags();
16125 SDValue Inner = DAG.getNode(ISD::SHL, DL, VT, V, K, NewShlFlags);
16126 DCI.AddToWorklist(Inner.getNode());
16127 return DAG.getNode(ISD::SUB, DL, VT, N0, Inner);
16128 }
16129
16130 // Fold into Mad64 if the right-hand side is a MUL. Analogous to a fold in
16131 // performAddCombine.
16132 if (N1.getOpcode() == ISD::MUL) {
16133 if (Subtarget->hasMad64_32()) {
16134 if (SDValue Folded = tryFoldToMad64_32(N, DCI))
16135 return Folded;
16136 }
16137 }
16138
16139 // If the 32 low bits of the constant are all zero, there is nothing to fold
16140 // into an immediate offset, so it's better to eliminate the unnecessary
16141 // addition for the lower 32 bits than to preserve the PTRADD.
16142 // Analogous to a fold in performAddCombine.
16143 if (VT == MVT::i64) {
16144 if (SDValue Folded = foldAddSub64WithZeroLowBitsTo32(N, DCI))
16145 return Folded;
16146 }
16147
16148 if (N1.getOpcode() != ISD::ADD || !N1.hasOneUse())
16149 return SDValue();
16150
16151 SDValue X = N0;
16152 SDValue Y = N1.getOperand(0);
16153 SDValue Z = N1.getOperand(1);
16154 bool YIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Y);
16155 bool ZIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Z);
16156
16157 if (!YIsConstant && !ZIsConstant && !X->isDivergent() &&
16158 Y->isDivergent() != Z->isDivergent()) {
16159 // Reassociate (ptradd x, (add y, z)) -> (ptradd (ptradd x, y), z) if x and
16160 // y are uniform and z isn't.
16161 // Reassociate (ptradd x, (add y, z)) -> (ptradd (ptradd x, z), y) if x and
16162 // z are uniform and y isn't.
16163 // The goal is to push uniform operands up in the computation, so that they
16164 // can be handled with scalar operations. We can't use reassociateScalarOps
16165 // for this since it requires two identical commutative operations to
16166 // reassociate.
16167 if (Y->isDivergent())
16168 std::swap(Y, Z);
16169 // If both additions in the original were NUW, reassociation preserves that.
16170 SDNodeFlags ReassocFlags =
16171 (N->getFlags() & N1->getFlags()) & SDNodeFlags::NoUnsignedWrap;
16172 SDValue UniformInner = DAG.getMemBasePlusOffset(X, Y, DL, ReassocFlags);
16173 DCI.AddToWorklist(UniformInner.getNode());
16174 return DAG.getMemBasePlusOffset(UniformInner, Z, DL, ReassocFlags);
16175 }
16176
16177 return SDValue();
16178}
16179
16180SDValue SITargetLowering::performSubCombine(SDNode *N,
16181 DAGCombinerInfo &DCI) const {
16182 SelectionDAG &DAG = DCI.DAG;
16183 EVT VT = N->getValueType(0);
16184
16185 if (VT == MVT::i64) {
16186 if (SDValue Folded = foldAddSub64WithZeroLowBitsTo32(N, DCI))
16187 return Folded;
16188 }
16189
16190 if (VT != MVT::i32)
16191 return SDValue();
16192
16193 SDLoc SL(N);
16194 SDValue LHS = N->getOperand(0);
16195 SDValue RHS = N->getOperand(1);
16196
16197 // sub x, zext (setcc) => usubo_carry x, 0, setcc
16198 // sub x, sext (setcc) => uaddo_carry x, 0, setcc
16199 unsigned Opc = RHS.getOpcode();
16200 switch (Opc) {
16201 default:
16202 break;
16203 case ISD::ZERO_EXTEND:
16204 case ISD::SIGN_EXTEND:
16205 case ISD::ANY_EXTEND: {
16206 auto Cond = RHS.getOperand(0);
16207 // If this won't be a real VOPC output, we would still need to insert an
16208 // extra instruction anyway.
16209 if (!isBoolSGPR(Cond))
16210 break;
16211 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
16212 SDValue Args[] = {LHS, DAG.getConstant(0, SL, MVT::i32), Cond};
16214 return DAG.getNode(Opc, SL, VTList, Args);
16215 }
16216 }
16217
16218 if (LHS.getOpcode() == ISD::USUBO_CARRY) {
16219 // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc
16220 if (!isNullConstant(LHS.getOperand(1)))
16221 return SDValue();
16222 SDValue Args[] = {LHS.getOperand(0), RHS, LHS.getOperand(2)};
16223 return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args);
16224 }
16225 return SDValue();
16226}
16227
16228SDValue
16229SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
16230 DAGCombinerInfo &DCI) const {
16231
16232 if (N->getValueType(0) != MVT::i32)
16233 return SDValue();
16234
16235 if (!isNullConstant(N->getOperand(1)))
16236 return SDValue();
16237
16238 SelectionDAG &DAG = DCI.DAG;
16239 SDValue LHS = N->getOperand(0);
16240
16241 // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc
16242 // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc
16243 unsigned LHSOpc = LHS.getOpcode();
16244 unsigned Opc = N->getOpcode();
16245 if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) ||
16246 (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) {
16247 SDValue Args[] = {LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2)};
16248 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
16249 }
16250 return SDValue();
16251}
16252
16253SDValue SITargetLowering::performFAddCombine(SDNode *N,
16254 DAGCombinerInfo &DCI) const {
16255 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
16256 return SDValue();
16257
16258 SelectionDAG &DAG = DCI.DAG;
16259 EVT VT = N->getValueType(0);
16260
16261 SDLoc SL(N);
16262 SDValue LHS = N->getOperand(0);
16263 SDValue RHS = N->getOperand(1);
16264
16265 // These should really be instruction patterns, but writing patterns with
16266 // source modifiers is a pain.
16267
16268 // fadd (fadd (a, a), b) -> mad 2.0, a, b
16269 if (LHS.getOpcode() == ISD::FADD) {
16270 SDValue A = LHS.getOperand(0);
16271 if (A == LHS.getOperand(1)) {
16272 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
16273 if (FusedOp != 0) {
16274 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
16275 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
16276 }
16277 }
16278 }
16279
16280 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
16281 if (RHS.getOpcode() == ISD::FADD) {
16282 SDValue A = RHS.getOperand(0);
16283 if (A == RHS.getOperand(1)) {
16284 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
16285 if (FusedOp != 0) {
16286 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
16287 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
16288 }
16289 }
16290 }
16291
16292 return SDValue();
16293}
16294
16295SDValue SITargetLowering::performFSubCombine(SDNode *N,
16296 DAGCombinerInfo &DCI) const {
16297 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
16298 return SDValue();
16299
16300 SelectionDAG &DAG = DCI.DAG;
16301 SDLoc SL(N);
16302 EVT VT = N->getValueType(0);
16303 assert(!VT.isVector());
16304
16305 // Try to get the fneg to fold into the source modifier. This undoes generic
16306 // DAG combines and folds them into the mad.
16307 //
16308 // Only do this if we are not trying to support denormals. v_mad_f32 does
16309 // not support denormals ever.
16310 SDValue LHS = N->getOperand(0);
16311 SDValue RHS = N->getOperand(1);
16312 if (LHS.getOpcode() == ISD::FADD) {
16313 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
16314 SDValue A = LHS.getOperand(0);
16315 if (A == LHS.getOperand(1)) {
16316 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
16317 if (FusedOp != 0) {
16318 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
16319 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
16320
16321 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
16322 }
16323 }
16324 }
16325
16326 if (RHS.getOpcode() == ISD::FADD) {
16327 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
16328
16329 SDValue A = RHS.getOperand(0);
16330 if (A == RHS.getOperand(1)) {
16331 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
16332 if (FusedOp != 0) {
16333 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
16334 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
16335 }
16336 }
16337 }
16338
16339 return SDValue();
16340}
16341
16342SDValue SITargetLowering::performFDivCombine(SDNode *N,
16343 DAGCombinerInfo &DCI) const {
16344 SelectionDAG &DAG = DCI.DAG;
16345 SDLoc SL(N);
16346 EVT VT = N->getValueType(0);
16347 if ((VT != MVT::f16 && VT != MVT::bf16) || !Subtarget->has16BitInsts())
16348 return SDValue();
16349
16350 SDValue LHS = N->getOperand(0);
16351 SDValue RHS = N->getOperand(1);
16352
16353 SDNodeFlags Flags = N->getFlags();
16354 SDNodeFlags RHSFlags = RHS->getFlags();
16355 if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() ||
16356 !RHS->hasOneUse())
16357 return SDValue();
16358
16359 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
16360 bool IsNegative = false;
16361 if (CLHS->isExactlyValue(1.0) ||
16362 (IsNegative = CLHS->isExactlyValue(-1.0))) {
16363 // fdiv contract 1.0, (sqrt contract x) -> rsq for f16
16364 // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16
16365 if (RHS.getOpcode() == ISD::FSQRT) {
16366 // TODO: Or in RHS flags, somehow missing from SDNodeFlags
16367 SDValue Rsq =
16368 DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags);
16369 return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
16370 }
16371 }
16372 }
16373
16374 return SDValue();
16375}
16376
16377SDValue SITargetLowering::performFMulCombine(SDNode *N,
16378 DAGCombinerInfo &DCI) const {
16379 SelectionDAG &DAG = DCI.DAG;
16380 EVT VT = N->getValueType(0);
16381 EVT ScalarVT = VT.getScalarType();
16382 EVT IntVT = VT.changeElementType(MVT::i32);
16383
16384 if (!N->isDivergent() && getSubtarget()->hasSALUFloatInsts() &&
16385 (ScalarVT == MVT::f32 || ScalarVT == MVT::f16)) {
16386 // Prefer to use s_mul_f16/f32 instead of v_ldexp_f16/f32.
16387 return SDValue();
16388 }
16389
16390 SDValue LHS = N->getOperand(0);
16391 SDValue RHS = N->getOperand(1);
16392
16393 // It is cheaper to realize i32 inline constants as compared against
16394 // materializing f16 or f64 (or even non-inline f32) values,
16395 // possible via ldexp usage, as shown below :
16396 //
16397 // Given : A = 2^a & B = 2^b ; where a and b are integers.
16398 // fmul x, (select y, A, B) -> ldexp( x, (select i32 y, a, b) )
16399 // fmul x, (select y, -A, -B) -> ldexp( (fneg x), (select i32 y, a, b) )
16400 if ((ScalarVT == MVT::f64 || ScalarVT == MVT::f32 || ScalarVT == MVT::f16) &&
16401 (RHS.hasOneUse() && RHS.getOpcode() == ISD::SELECT)) {
16402 const ConstantFPSDNode *TrueNode = isConstOrConstSplatFP(RHS.getOperand(1));
16403 if (!TrueNode)
16404 return SDValue();
16405 const ConstantFPSDNode *FalseNode =
16406 isConstOrConstSplatFP(RHS.getOperand(2));
16407 if (!FalseNode)
16408 return SDValue();
16409
16410 if (TrueNode->isNegative() != FalseNode->isNegative())
16411 return SDValue();
16412
16413 // For f32, only non-inline constants should be transformed.
16414 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
16415 if (ScalarVT == MVT::f32 &&
16416 TII->isInlineConstant(TrueNode->getValueAPF()) &&
16417 TII->isInlineConstant(FalseNode->getValueAPF()))
16418 return SDValue();
16419
16420 int TrueNodeExpVal = TrueNode->getValueAPF().getExactLog2Abs();
16421 if (TrueNodeExpVal == INT_MIN)
16422 return SDValue();
16423 int FalseNodeExpVal = FalseNode->getValueAPF().getExactLog2Abs();
16424 if (FalseNodeExpVal == INT_MIN)
16425 return SDValue();
16426
16427 SDLoc SL(N);
16428 SDValue SelectNode =
16429 DAG.getNode(ISD::SELECT, SL, IntVT, RHS.getOperand(0),
16430 DAG.getSignedConstant(TrueNodeExpVal, SL, IntVT),
16431 DAG.getSignedConstant(FalseNodeExpVal, SL, IntVT));
16432
16433 LHS = TrueNode->isNegative()
16434 ? DAG.getNode(ISD::FNEG, SL, VT, LHS, LHS->getFlags())
16435 : LHS;
16436
16437 return DAG.getNode(ISD::FLDEXP, SL, VT, LHS, SelectNode, N->getFlags());
16438 }
16439
16440 return SDValue();
16441}
16442
16443SDValue SITargetLowering::performFMACombine(SDNode *N,
16444 DAGCombinerInfo &DCI) const {
16445 SelectionDAG &DAG = DCI.DAG;
16446 EVT VT = N->getValueType(0);
16447 SDLoc SL(N);
16448
16449 if (!Subtarget->hasDot10Insts() || VT != MVT::f32)
16450 return SDValue();
16451
16452 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
16453 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
16454 SDValue Op1 = N->getOperand(0);
16455 SDValue Op2 = N->getOperand(1);
16456 SDValue FMA = N->getOperand(2);
16457
16458 if (FMA.getOpcode() != ISD::FMA || Op1.getOpcode() != ISD::FP_EXTEND ||
16459 Op2.getOpcode() != ISD::FP_EXTEND)
16460 return SDValue();
16461
16462 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
16463 // regardless of the denorm mode setting. Therefore,
16464 // fp-contract is sufficient to allow generating fdot2.
16465 const TargetOptions &Options = DAG.getTarget().Options;
16466 if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
16467 (N->getFlags().hasAllowContract() &&
16468 FMA->getFlags().hasAllowContract())) {
16469 Op1 = Op1.getOperand(0);
16470 Op2 = Op2.getOperand(0);
16471 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
16473 return SDValue();
16474
16475 SDValue Vec1 = Op1.getOperand(0);
16476 SDValue Idx1 = Op1.getOperand(1);
16477 SDValue Vec2 = Op2.getOperand(0);
16478
16479 SDValue FMAOp1 = FMA.getOperand(0);
16480 SDValue FMAOp2 = FMA.getOperand(1);
16481 SDValue FMAAcc = FMA.getOperand(2);
16482
16483 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
16484 FMAOp2.getOpcode() != ISD::FP_EXTEND)
16485 return SDValue();
16486
16487 FMAOp1 = FMAOp1.getOperand(0);
16488 FMAOp2 = FMAOp2.getOperand(0);
16489 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
16491 return SDValue();
16492
16493 SDValue Vec3 = FMAOp1.getOperand(0);
16494 SDValue Vec4 = FMAOp2.getOperand(0);
16495 SDValue Idx2 = FMAOp1.getOperand(1);
16496
16497 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
16498 // Idx1 and Idx2 cannot be the same.
16499 Idx1 == Idx2)
16500 return SDValue();
16501
16502 if (Vec1 == Vec2 || Vec3 == Vec4)
16503 return SDValue();
16504
16505 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
16506 return SDValue();
16507
16508 if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) {
16509 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
16510 DAG.getTargetConstant(0, SL, MVT::i1));
16511 }
16512 }
16513 return SDValue();
16514}
16515
16516SDValue SITargetLowering::performSetCCCombine(SDNode *N,
16517 DAGCombinerInfo &DCI) const {
16518 SelectionDAG &DAG = DCI.DAG;
16519 SDLoc SL(N);
16520
16521 SDValue LHS = N->getOperand(0);
16522 SDValue RHS = N->getOperand(1);
16523 EVT VT = LHS.getValueType();
16524 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
16525
16526 auto *CRHS = dyn_cast<ConstantSDNode>(RHS);
16527 if (!CRHS) {
16529 if (CRHS) {
16530 std::swap(LHS, RHS);
16531 CC = getSetCCSwappedOperands(CC);
16532 }
16533 }
16534
16535 if (CRHS) {
16536 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
16537 isBoolSGPR(LHS.getOperand(0))) {
16538 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
16539 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
16540 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
16541 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
16542 if ((CRHS->isAllOnes() &&
16543 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
16544 (CRHS->isZero() &&
16545 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
16546 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
16547 DAG.getAllOnesConstant(SL, MVT::i1));
16548 if ((CRHS->isAllOnes() &&
16549 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
16550 (CRHS->isZero() &&
16551 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
16552 return LHS.getOperand(0);
16553 }
16554
16555 const APInt &CRHSVal = CRHS->getAPIntValue();
16556 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
16557 LHS.getOpcode() == ISD::SELECT &&
16558 isa<ConstantSDNode>(LHS.getOperand(1)) &&
16559 isa<ConstantSDNode>(LHS.getOperand(2)) &&
16560 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
16561 isBoolSGPR(LHS.getOperand(0))) {
16562 // Given CT != FT:
16563 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
16564 // setcc (select cc, CT, CF), CF, ne => cc
16565 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
16566 // setcc (select cc, CT, CF), CT, eq => cc
16567 const APInt &CT = LHS.getConstantOperandAPInt(1);
16568 const APInt &CF = LHS.getConstantOperandAPInt(2);
16569
16570 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
16571 (CT == CRHSVal && CC == ISD::SETNE))
16572 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
16573 DAG.getAllOnesConstant(SL, MVT::i1));
16574 if ((CF == CRHSVal && CC == ISD::SETNE) ||
16575 (CT == CRHSVal && CC == ISD::SETEQ))
16576 return LHS.getOperand(0);
16577 }
16578 }
16579
16580 if (VT != MVT::f32 && VT != MVT::f64 &&
16581 (!Subtarget->has16BitInsts() || VT != MVT::f16))
16582 return SDValue();
16583
16584 // Match isinf/isfinite pattern
16585 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
16586 // (fcmp one (fabs x), inf) -> (fp_class x,
16587 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
16588 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) &&
16589 LHS.getOpcode() == ISD::FABS) {
16590 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
16591 if (!CRHS)
16592 return SDValue();
16593
16594 const APFloat &APF = CRHS->getValueAPF();
16595 if (APF.isInfinity() && !APF.isNegative()) {
16596 const unsigned IsInfMask =
16598 const unsigned IsFiniteMask =
16602 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
16603 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
16604 DAG.getConstant(Mask, SL, MVT::i32));
16605 }
16606 }
16607
16608 return SDValue();
16609}
16610
16611SDValue
16612SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
16613 DAGCombinerInfo &DCI) const {
16614 SelectionDAG &DAG = DCI.DAG;
16615 SDLoc SL(N);
16616 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
16617
16618 SDValue Src = N->getOperand(0);
16619 SDValue Shift = N->getOperand(0);
16620
16621 // TODO: Extend type shouldn't matter (assuming legal types).
16622 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
16623 Shift = Shift.getOperand(0);
16624
16625 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
16626 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
16627 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
16628 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
16629 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
16630 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
16631 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
16632 SDValue Shifted = DAG.getZExtOrTrunc(
16633 Shift.getOperand(0), SDLoc(Shift.getOperand(0)), MVT::i32);
16634
16635 unsigned ShiftOffset = 8 * Offset;
16636 if (Shift.getOpcode() == ISD::SHL)
16637 ShiftOffset -= C->getZExtValue();
16638 else
16639 ShiftOffset += C->getZExtValue();
16640
16641 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
16642 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
16643 MVT::f32, Shifted);
16644 }
16645 }
16646 }
16647
16648 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16649 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
16650 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
16651 // We simplified Src. If this node is not dead, visit it again so it is
16652 // folded properly.
16653 if (N->getOpcode() != ISD::DELETED_NODE)
16654 DCI.AddToWorklist(N);
16655 return SDValue(N, 0);
16656 }
16657
16658 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
16659 if (SDValue DemandedSrc =
16660 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
16661 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
16662
16663 return SDValue();
16664}
16665
16666SDValue SITargetLowering::performClampCombine(SDNode *N,
16667 DAGCombinerInfo &DCI) const {
16668 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
16669 if (!CSrc)
16670 return SDValue();
16671
16672 const MachineFunction &MF = DCI.DAG.getMachineFunction();
16673 const APFloat &F = CSrc->getValueAPF();
16674 APFloat Zero = APFloat::getZero(F.getSemantics());
16675 if (F < Zero ||
16676 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
16677 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
16678 }
16679
16680 APFloat One(F.getSemantics(), "1.0");
16681 if (F > One)
16682 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
16683
16684 return SDValue(CSrc, 0);
16685}
16686
16687SDValue SITargetLowering::performSelectCombine(SDNode *N,
16688 DAGCombinerInfo &DCI) const {
16689
16690 // Try to fold CMP + SELECT patterns with shared constants (both FP and
16691 // integer).
16692 // Detect when CMP and SELECT use the same constant and fold them to avoid
16693 // loading the constant twice. Specifically handles patterns like:
16694 // %cmp = icmp eq i32 %val, 4242
16695 // %sel = select i1 %cmp, i32 4242, i32 %other
16696 // It can be optimized to reuse %val instead of 4242 in select.
16697 SDValue Cond = N->getOperand(0);
16698 SDValue TrueVal = N->getOperand(1);
16699 SDValue FalseVal = N->getOperand(2);
16700
16701 // Check if condition is a comparison.
16702 if (Cond.getOpcode() != ISD::SETCC)
16703 return SDValue();
16704
16705 SDValue LHS = Cond.getOperand(0);
16706 SDValue RHS = Cond.getOperand(1);
16707 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16708
16709 bool isFloatingPoint = LHS.getValueType().isFloatingPoint();
16710 bool isInteger = LHS.getValueType().isInteger();
16711
16712 // Handle simple floating-point and integer types only.
16713 if (!isFloatingPoint && !isInteger)
16714 return SDValue();
16715
16716 bool isEquality = CC == (isFloatingPoint ? ISD::SETOEQ : ISD::SETEQ);
16717 bool isNonEquality = CC == (isFloatingPoint ? ISD::SETONE : ISD::SETNE);
16718 if (!isEquality && !isNonEquality)
16719 return SDValue();
16720
16721 SDValue ArgVal, ConstVal;
16722 if ((isFloatingPoint && isa<ConstantFPSDNode>(RHS)) ||
16723 (isInteger && isa<ConstantSDNode>(RHS))) {
16724 ConstVal = RHS;
16725 ArgVal = LHS;
16726 } else if ((isFloatingPoint && isa<ConstantFPSDNode>(LHS)) ||
16727 (isInteger && isa<ConstantSDNode>(LHS))) {
16728 ConstVal = LHS;
16729 ArgVal = RHS;
16730 } else {
16731 return SDValue();
16732 }
16733
16734 // Skip optimization for inlinable immediates.
16735 if (isFloatingPoint) {
16736 const APFloat &Val = cast<ConstantFPSDNode>(ConstVal)->getValueAPF();
16737 if (!Val.isNormal() || Subtarget->getInstrInfo()->isInlineConstant(Val))
16738 return SDValue();
16739 } else {
16741 cast<ConstantSDNode>(ConstVal)->getSExtValue()))
16742 return SDValue();
16743 }
16744
16745 // For equality and non-equality comparisons, patterns:
16746 // select (setcc x, const), const, y -> select (setcc x, const), x, y
16747 // select (setccinv x, const), y, const -> select (setccinv x, const), y, x
16748 if (!(isEquality && TrueVal == ConstVal) &&
16749 !(isNonEquality && FalseVal == ConstVal))
16750 return SDValue();
16751
16752 SDValue SelectLHS = (isEquality && TrueVal == ConstVal) ? ArgVal : TrueVal;
16753 SDValue SelectRHS =
16754 (isNonEquality && FalseVal == ConstVal) ? ArgVal : FalseVal;
16755 return DCI.DAG.getNode(ISD::SELECT, SDLoc(N), N->getValueType(0), Cond,
16756 SelectLHS, SelectRHS);
16757}
16758
16760 DAGCombinerInfo &DCI) const {
16761 switch (N->getOpcode()) {
16762 case ISD::ADD:
16763 case ISD::SUB:
16764 case ISD::SHL:
16765 case ISD::SRL:
16766 case ISD::SRA:
16767 case ISD::AND:
16768 case ISD::OR:
16769 case ISD::XOR:
16770 case ISD::MUL:
16771 case ISD::SETCC:
16772 case ISD::SELECT:
16773 case ISD::SMIN:
16774 case ISD::SMAX:
16775 case ISD::UMIN:
16776 case ISD::UMAX:
16777 if (auto Res = promoteUniformOpToI32(SDValue(N, 0), DCI))
16778 return Res;
16779 break;
16780 default:
16781 break;
16782 }
16783
16784 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
16785 return SDValue();
16786
16787 switch (N->getOpcode()) {
16788 case ISD::ADD:
16789 return performAddCombine(N, DCI);
16790 case ISD::PTRADD:
16791 return performPtrAddCombine(N, DCI);
16792 case ISD::SUB:
16793 return performSubCombine(N, DCI);
16794 case ISD::UADDO_CARRY:
16795 case ISD::USUBO_CARRY:
16796 return performAddCarrySubCarryCombine(N, DCI);
16797 case ISD::FADD:
16798 return performFAddCombine(N, DCI);
16799 case ISD::FSUB:
16800 return performFSubCombine(N, DCI);
16801 case ISD::FDIV:
16802 return performFDivCombine(N, DCI);
16803 case ISD::FMUL:
16804 return performFMulCombine(N, DCI);
16805 case ISD::SETCC:
16806 return performSetCCCombine(N, DCI);
16807 case ISD::SELECT:
16808 if (auto Res = performSelectCombine(N, DCI))
16809 return Res;
16810 break;
16811 case ISD::FMAXNUM:
16812 case ISD::FMINNUM:
16813 case ISD::FMAXNUM_IEEE:
16814 case ISD::FMINNUM_IEEE:
16815 case ISD::FMAXIMUM:
16816 case ISD::FMINIMUM:
16817 case ISD::FMAXIMUMNUM:
16818 case ISD::FMINIMUMNUM:
16819 case ISD::SMAX:
16820 case ISD::SMIN:
16821 case ISD::UMAX:
16822 case ISD::UMIN:
16825 return performMinMaxCombine(N, DCI);
16826 case ISD::FMA:
16827 return performFMACombine(N, DCI);
16828 case ISD::AND:
16829 return performAndCombine(N, DCI);
16830 case ISD::OR:
16831 return performOrCombine(N, DCI);
16832 case ISD::FSHR: {
16834 if (N->getValueType(0) == MVT::i32 && N->isDivergent() &&
16835 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
16836 return matchPERM(N, DCI);
16837 }
16838 break;
16839 }
16840 case ISD::XOR:
16841 return performXorCombine(N, DCI);
16842 case ISD::ZERO_EXTEND:
16843 return performZeroExtendCombine(N, DCI);
16845 return performSignExtendInRegCombine(N, DCI);
16847 return performClassCombine(N, DCI);
16848 case ISD::FCANONICALIZE:
16849 return performFCanonicalizeCombine(N, DCI);
16850 case AMDGPUISD::RCP:
16851 return performRcpCombine(N, DCI);
16852 case ISD::FLDEXP:
16853 case AMDGPUISD::FRACT:
16854 case AMDGPUISD::RSQ:
16857 case AMDGPUISD::RSQ_CLAMP: {
16858 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
16859 SDValue Src = N->getOperand(0);
16860 if (Src.isUndef())
16861 return Src;
16862 break;
16863 }
16864 case ISD::SINT_TO_FP:
16865 case ISD::UINT_TO_FP:
16866 return performUCharToFloatCombine(N, DCI);
16867 case ISD::FCOPYSIGN:
16868 return performFCopySignCombine(N, DCI);
16873 return performCvtF32UByteNCombine(N, DCI);
16874 case AMDGPUISD::FMED3:
16875 return performFMed3Combine(N, DCI);
16877 return performCvtPkRTZCombine(N, DCI);
16878 case AMDGPUISD::CLAMP:
16879 return performClampCombine(N, DCI);
16880 case ISD::SCALAR_TO_VECTOR: {
16881 SelectionDAG &DAG = DCI.DAG;
16882 EVT VT = N->getValueType(0);
16883
16884 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
16885 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
16886 SDLoc SL(N);
16887 SDValue Src = N->getOperand(0);
16888 EVT EltVT = Src.getValueType();
16889 if (EltVT != MVT::i16)
16890 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
16891
16892 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
16893 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
16894 }
16895
16896 break;
16897 }
16899 return performExtractVectorEltCombine(N, DCI);
16901 return performInsertVectorEltCombine(N, DCI);
16902 case ISD::FP_ROUND:
16903 return performFPRoundCombine(N, DCI);
16904 case ISD::LOAD: {
16905 if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI))
16906 return Widened;
16907 [[fallthrough]];
16908 }
16909 default: {
16910 if (!DCI.isBeforeLegalize()) {
16911 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
16912 return performMemSDNodeCombine(MemNode, DCI);
16913 }
16914
16915 break;
16916 }
16917 }
16918
16920}
16921
16922/// Helper function for adjustWritemask
16923static unsigned SubIdx2Lane(unsigned Idx) {
16924 switch (Idx) {
16925 default:
16926 return ~0u;
16927 case AMDGPU::sub0:
16928 return 0;
16929 case AMDGPU::sub1:
16930 return 1;
16931 case AMDGPU::sub2:
16932 return 2;
16933 case AMDGPU::sub3:
16934 return 3;
16935 case AMDGPU::sub4:
16936 return 4; // Possible with TFE/LWE
16937 }
16938}
16939
16940/// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions
16941SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
16942 SelectionDAG &DAG) const {
16943 unsigned Opcode = Node->getMachineOpcode();
16944
16945 // Subtract 1 because the vdata output is not a MachineSDNode operand.
16946 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
16947 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
16948 return Node; // not implemented for D16
16949
16950 SDNode *Users[5] = {nullptr};
16951 unsigned Lane = 0;
16952 unsigned DmaskIdx =
16953 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
16954 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
16955 unsigned NewDmask = 0;
16956 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
16957 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
16958 bool UsesTFC = (int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
16959 (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx));
16960 unsigned TFCLane = 0;
16961 bool HasChain = Node->getNumValues() > 1;
16962
16963 if (OldDmask == 0) {
16964 // These are folded out, but on the chance it happens don't assert.
16965 return Node;
16966 }
16967
16968 unsigned OldBitsSet = llvm::popcount(OldDmask);
16969 // Work out which is the TFE/LWE lane if that is enabled.
16970 if (UsesTFC) {
16971 TFCLane = OldBitsSet;
16972 }
16973
16974 // Try to figure out the used register components
16975 for (SDUse &Use : Node->uses()) {
16976
16977 // Don't look at users of the chain.
16978 if (Use.getResNo() != 0)
16979 continue;
16980
16981 SDNode *User = Use.getUser();
16982
16983 // Abort if we can't understand the usage
16984 if (!User->isMachineOpcode() ||
16985 User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
16986 return Node;
16987
16988 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
16989 // Note that subregs are packed, i.e. Lane==0 is the first bit set
16990 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
16991 // set, etc.
16992 Lane = SubIdx2Lane(User->getConstantOperandVal(1));
16993 if (Lane == ~0u)
16994 return Node;
16995
16996 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
16997 if (UsesTFC && Lane == TFCLane) {
16998 Users[Lane] = User;
16999 } else {
17000 // Set which texture component corresponds to the lane.
17001 unsigned Comp;
17002 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
17003 Comp = llvm::countr_zero(Dmask);
17004 Dmask &= ~(1 << Comp);
17005 }
17006
17007 // Abort if we have more than one user per component.
17008 if (Users[Lane])
17009 return Node;
17010
17011 Users[Lane] = User;
17012 NewDmask |= 1 << Comp;
17013 }
17014 }
17015
17016 // Don't allow 0 dmask, as hardware assumes one channel enabled.
17017 bool NoChannels = !NewDmask;
17018 if (NoChannels) {
17019 if (!UsesTFC) {
17020 // No uses of the result and not using TFC. Then do nothing.
17021 return Node;
17022 }
17023 // If the original dmask has one channel - then nothing to do
17024 if (OldBitsSet == 1)
17025 return Node;
17026 // Use an arbitrary dmask - required for the instruction to work
17027 NewDmask = 1;
17028 }
17029 // Abort if there's no change
17030 if (NewDmask == OldDmask)
17031 return Node;
17032
17033 unsigned BitsSet = llvm::popcount(NewDmask);
17034
17035 // Check for TFE or LWE - increase the number of channels by one to account
17036 // for the extra return value
17037 // This will need adjustment for D16 if this is also included in
17038 // adjustWriteMask (this function) but at present D16 are excluded.
17039 unsigned NewChannels = BitsSet + UsesTFC;
17040
17041 int NewOpcode =
17042 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
17043 assert(NewOpcode != -1 &&
17044 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
17045 "failed to find equivalent MIMG op");
17046
17047 // Adjust the writemask in the node
17049 llvm::append_range(Ops, Node->ops().take_front(DmaskIdx));
17050 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
17051 llvm::append_range(Ops, Node->ops().drop_front(DmaskIdx + 1));
17052
17053 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
17054
17055 MVT ResultVT = NewChannels == 1
17056 ? SVT
17057 : MVT::getVectorVT(SVT, NewChannels == 3 ? 4
17058 : NewChannels == 5 ? 8
17059 : NewChannels);
17060 SDVTList NewVTList =
17061 HasChain ? DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
17062
17063 MachineSDNode *NewNode =
17064 DAG.getMachineNode(NewOpcode, SDLoc(Node), NewVTList, Ops);
17065
17066 if (HasChain) {
17067 // Update chain.
17068 DAG.setNodeMemRefs(NewNode, Node->memoperands());
17069 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
17070 }
17071
17072 if (NewChannels == 1) {
17073 assert(Node->hasNUsesOfValue(1, 0));
17074 SDNode *Copy =
17075 DAG.getMachineNode(TargetOpcode::COPY, SDLoc(Node),
17076 Users[Lane]->getValueType(0), SDValue(NewNode, 0));
17077 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
17078 return nullptr;
17079 }
17080
17081 // Update the users of the node with the new indices
17082 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
17083 SDNode *User = Users[i];
17084 if (!User) {
17085 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
17086 // Users[0] is still nullptr because channel 0 doesn't really have a use.
17087 if (i || !NoChannels)
17088 continue;
17089 } else {
17090 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
17091 SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
17092 if (NewUser != User) {
17093 DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0));
17094 DAG.RemoveDeadNode(User);
17095 }
17096 }
17097
17098 switch (Idx) {
17099 default:
17100 break;
17101 case AMDGPU::sub0:
17102 Idx = AMDGPU::sub1;
17103 break;
17104 case AMDGPU::sub1:
17105 Idx = AMDGPU::sub2;
17106 break;
17107 case AMDGPU::sub2:
17108 Idx = AMDGPU::sub3;
17109 break;
17110 case AMDGPU::sub3:
17111 Idx = AMDGPU::sub4;
17112 break;
17113 }
17114 }
17115
17116 DAG.RemoveDeadNode(Node);
17117 return nullptr;
17118}
17119
17121 if (Op.getOpcode() == ISD::AssertZext)
17122 Op = Op.getOperand(0);
17123
17124 return isa<FrameIndexSDNode>(Op);
17125}
17126
17127/// Legalize target independent instructions (e.g. INSERT_SUBREG)
17128/// with frame index operands.
17129/// LLVM assumes that inputs are to these instructions are registers.
17130SDNode *
17132 SelectionDAG &DAG) const {
17133 if (Node->getOpcode() == ISD::CopyToReg) {
17134 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
17135 SDValue SrcVal = Node->getOperand(2);
17136
17137 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
17138 // to try understanding copies to physical registers.
17139 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
17140 SDLoc SL(Node);
17142 SDValue VReg = DAG.getRegister(
17143 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
17144
17145 SDNode *Glued = Node->getGluedNode();
17146 SDValue ToVReg = DAG.getCopyToReg(
17147 Node->getOperand(0), SL, VReg, SrcVal,
17148 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
17149 SDValue ToResultReg = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
17150 VReg, ToVReg.getValue(1));
17151 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
17152 DAG.RemoveDeadNode(Node);
17153 return ToResultReg.getNode();
17154 }
17155 }
17156
17158 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
17159 if (!isFrameIndexOp(Node->getOperand(i))) {
17160 Ops.push_back(Node->getOperand(i));
17161 continue;
17162 }
17163
17164 SDLoc DL(Node);
17165 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
17166 Node->getOperand(i).getValueType(),
17167 Node->getOperand(i)),
17168 0));
17169 }
17170
17171 return DAG.UpdateNodeOperands(Node, Ops);
17172}
17173
17174/// Fold the instructions after selecting them.
17175/// Returns null if users were already updated.
17177 SelectionDAG &DAG) const {
17179 unsigned Opcode = Node->getMachineOpcode();
17180
17181 if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() &&
17182 !TII->isGather4(Opcode) &&
17183 AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
17184 return adjustWritemask(Node, DAG);
17185 }
17186
17187 if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) {
17189 return Node;
17190 }
17191
17192 switch (Opcode) {
17193 case AMDGPU::V_DIV_SCALE_F32_e64:
17194 case AMDGPU::V_DIV_SCALE_F64_e64: {
17195 // Satisfy the operand register constraint when one of the inputs is
17196 // undefined. Ordinarily each undef value will have its own implicit_def of
17197 // a vreg, so force these to use a single register.
17198 SDValue Src0 = Node->getOperand(1);
17199 SDValue Src1 = Node->getOperand(3);
17200 SDValue Src2 = Node->getOperand(5);
17201
17202 if ((Src0.isMachineOpcode() &&
17203 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
17204 (Src0 == Src1 || Src0 == Src2))
17205 break;
17206
17207 MVT VT = Src0.getValueType().getSimpleVT();
17208 const TargetRegisterClass *RC =
17209 getRegClassFor(VT, Src0.getNode()->isDivergent());
17210
17212 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
17213
17214 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), UndefReg,
17215 Src0, SDValue());
17216
17217 // src0 must be the same register as src1 or src2, even if the value is
17218 // undefined, so make sure we don't violate this constraint.
17219 if (Src0.isMachineOpcode() &&
17220 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
17221 if (Src1.isMachineOpcode() &&
17222 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
17223 Src0 = Src1;
17224 else if (Src2.isMachineOpcode() &&
17225 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
17226 Src0 = Src2;
17227 else {
17228 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
17229 Src0 = UndefReg;
17230 Src1 = UndefReg;
17231 }
17232 } else
17233 break;
17234
17236 Ops[1] = Src0;
17237 Ops[3] = Src1;
17238 Ops[5] = Src2;
17239 Ops.push_back(ImpDef.getValue(1));
17240 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
17241 }
17242 default:
17243 break;
17244 }
17245
17246 return Node;
17247}
17248
17249// Any MIMG instructions that use tfe or lwe require an initialization of the
17250// result register that will be written in the case of a memory access failure.
17251// The required code is also added to tie this init code to the result of the
17252// img instruction.
17255 const SIRegisterInfo &TRI = TII->getRegisterInfo();
17256 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
17257 MachineBasicBlock &MBB = *MI.getParent();
17258
17259 int DstIdx =
17260 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
17261 unsigned InitIdx = 0;
17262
17263 if (TII->isImage(MI)) {
17264 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
17265 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
17266 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
17267
17268 if (!TFE && !LWE) // intersect_ray
17269 return;
17270
17271 unsigned TFEVal = TFE ? TFE->getImm() : 0;
17272 unsigned LWEVal = LWE ? LWE->getImm() : 0;
17273 unsigned D16Val = D16 ? D16->getImm() : 0;
17274
17275 if (!TFEVal && !LWEVal)
17276 return;
17277
17278 // At least one of TFE or LWE are non-zero
17279 // We have to insert a suitable initialization of the result value and
17280 // tie this to the dest of the image instruction.
17281
17282 // Calculate which dword we have to initialize to 0.
17283 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
17284
17285 // check that dmask operand is found.
17286 assert(MO_Dmask && "Expected dmask operand in instruction");
17287
17288 unsigned dmask = MO_Dmask->getImm();
17289 // Determine the number of active lanes taking into account the
17290 // Gather4 special case
17291 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
17292
17293 bool Packed = !Subtarget->hasUnpackedD16VMem();
17294
17295 InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
17296
17297 // Abandon attempt if the dst size isn't large enough
17298 // - this is in fact an error but this is picked up elsewhere and
17299 // reported correctly.
17300 uint32_t DstSize =
17301 TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
17302 if (DstSize < InitIdx)
17303 return;
17304 } else if (TII->isMUBUF(MI) && AMDGPU::getMUBUFTfe(MI.getOpcode())) {
17305 InitIdx = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
17306 } else {
17307 return;
17308 }
17309
17310 const DebugLoc &DL = MI.getDebugLoc();
17311
17312 // Create a register for the initialization value.
17313 Register PrevDst = MRI.cloneVirtualRegister(MI.getOperand(DstIdx).getReg());
17314 unsigned NewDst = 0; // Final initialized value will be in here
17315
17316 // If PRTStrictNull feature is enabled (the default) then initialize
17317 // all the result registers to 0, otherwise just the error indication
17318 // register (VGPRn+1)
17319 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
17320 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
17321
17322 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
17323 for (; SizeLeft; SizeLeft--, CurrIdx++) {
17324 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
17325 // Initialize dword
17326 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
17327 // clang-format off
17328 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
17329 .addImm(0);
17330 // clang-format on
17331 // Insert into the super-reg
17332 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
17333 .addReg(PrevDst)
17334 .addReg(SubReg)
17336
17337 PrevDst = NewDst;
17338 }
17339
17340 // Add as an implicit operand
17341 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
17342
17343 // Tie the just added implicit operand to the dst
17344 MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
17345}
17346
17347/// Assign the register class depending on the number of
17348/// bits set in the writemask
17350 SDNode *Node) const {
17352
17353 MachineFunction *MF = MI.getParent()->getParent();
17356
17357 if (TII->isVOP3(MI.getOpcode())) {
17358 // Make sure constant bus requirements are respected.
17359 TII->legalizeOperandsVOP3(MRI, MI);
17360
17361 // Prefer VGPRs over AGPRs in mAI instructions where possible.
17362 // This saves a chain-copy of registers and better balance register
17363 // use between vgpr and agpr as agpr tuples tend to be big.
17364 if (!MI.getDesc().operands().empty()) {
17365 unsigned Opc = MI.getOpcode();
17366 bool HasAGPRs = Info->mayNeedAGPRs();
17367 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
17368 int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
17369 for (auto I :
17370 {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
17371 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) {
17372 if (I == -1)
17373 break;
17374 if ((I == Src2Idx) && (HasAGPRs))
17375 break;
17376 MachineOperand &Op = MI.getOperand(I);
17377 if (!Op.isReg() || !Op.getReg().isVirtual())
17378 continue;
17379 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
17380 if (!TRI->hasAGPRs(RC))
17381 continue;
17382 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
17383 if (!Src || !Src->isCopy() ||
17384 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
17385 continue;
17386 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
17387 // All uses of agpr64 and agpr32 can also accept vgpr except for
17388 // v_accvgpr_read, but we do not produce agpr reads during selection,
17389 // so no use checks are needed.
17390 MRI.setRegClass(Op.getReg(), NewRC);
17391 }
17392
17393 if (TII->isMAI(MI)) {
17394 // The ordinary src0, src1, src2 were legalized above.
17395 //
17396 // We have to also legalize the appended v_mfma_ld_scale_b32 operands,
17397 // as a separate instruction.
17398 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
17399 AMDGPU::OpName::scale_src0);
17400 if (Src0Idx != -1) {
17401 int Src1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
17402 AMDGPU::OpName::scale_src1);
17403 if (TII->usesConstantBus(MRI, MI, Src0Idx) &&
17404 TII->usesConstantBus(MRI, MI, Src1Idx))
17405 TII->legalizeOpWithMove(MI, Src1Idx);
17406 }
17407 }
17408
17409 if (!HasAGPRs)
17410 return;
17411
17412 // Resolve the rest of AV operands to AGPRs.
17413 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
17414 if (Src2->isReg() && Src2->getReg().isVirtual()) {
17415 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
17416 if (TRI->isVectorSuperClass(RC)) {
17417 auto *NewRC = TRI->getEquivalentAGPRClass(RC);
17418 MRI.setRegClass(Src2->getReg(), NewRC);
17419 if (Src2->isTied())
17420 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
17421 }
17422 }
17423 }
17424 }
17425
17426 return;
17427 }
17428
17429 if (TII->isImage(MI))
17430 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
17431}
17432
17434 uint64_t Val) {
17435 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
17436 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
17437}
17438
17440 const SDLoc &DL,
17441 SDValue Ptr) const {
17443
17444 // Build the half of the subregister with the constants before building the
17445 // full 128-bit register. If we are building multiple resource descriptors,
17446 // this will allow CSEing of the 2-component register.
17447 const SDValue Ops0[] = {
17448 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
17449 buildSMovImm32(DAG, DL, 0),
17450 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
17451 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
17452 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
17453
17454 SDValue SubRegHi = SDValue(
17455 DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0);
17456
17457 // Combine the constants and the pointer.
17458 const SDValue Ops1[] = {
17459 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), Ptr,
17460 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi,
17461 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)};
17462
17463 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
17464}
17465
17466/// Return a resource descriptor with the 'Add TID' bit enabled
17467/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
17468/// of the resource descriptor) to create an offset, which is added to
17469/// the resource pointer.
17471 SDValue Ptr, uint32_t RsrcDword1,
17472 uint64_t RsrcDword2And3) const {
17473 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
17474 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
17475 if (RsrcDword1) {
17476 PtrHi =
17477 SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
17478 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
17479 0);
17480 }
17481
17482 SDValue DataLo =
17483 buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
17484 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
17485
17486 const SDValue Ops[] = {
17487 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
17488 PtrLo,
17489 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
17490 PtrHi,
17491 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
17492 DataLo,
17493 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
17494 DataHi,
17495 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)};
17496
17497 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
17498}
17499
17500//===----------------------------------------------------------------------===//
17501// SI Inline Assembly Support
17502//===----------------------------------------------------------------------===//
17503
17504std::pair<unsigned, const TargetRegisterClass *>
17506 StringRef Constraint,
17507 MVT VT) const {
17508 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
17509
17510 const TargetRegisterClass *RC = nullptr;
17511 if (Constraint.size() == 1) {
17512 // Check if we cannot determine the bit size of the given value type. This
17513 // can happen, for example, in this situation where we have an empty struct
17514 // (size 0): `call void asm "", "v"({} poison)`-
17515 if (VT == MVT::Other)
17516 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
17517 const unsigned BitWidth = VT.getSizeInBits();
17518 switch (Constraint[0]) {
17519 default:
17520 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
17521 case 's':
17522 case 'r':
17523 switch (BitWidth) {
17524 case 16:
17525 RC = &AMDGPU::SReg_32RegClass;
17526 break;
17527 case 64:
17528 RC = &AMDGPU::SGPR_64RegClass;
17529 break;
17530 default:
17532 if (!RC)
17533 return std::pair(0U, nullptr);
17534 break;
17535 }
17536 break;
17537 case 'v':
17538 switch (BitWidth) {
17539 case 16:
17540 RC = Subtarget->useRealTrue16Insts() ? &AMDGPU::VGPR_16RegClass
17541 : &AMDGPU::VGPR_32_Lo256RegClass;
17542 break;
17543 default:
17544 RC = Subtarget->has1024AddressableVGPRs()
17545 ? TRI->getAlignedLo256VGPRClassForBitWidth(BitWidth)
17546 : TRI->getVGPRClassForBitWidth(BitWidth);
17547 if (!RC)
17548 return std::pair(0U, nullptr);
17549 break;
17550 }
17551 break;
17552 case 'a':
17553 if (!Subtarget->hasMAIInsts())
17554 break;
17555 switch (BitWidth) {
17556 case 16:
17557 RC = &AMDGPU::AGPR_32RegClass;
17558 break;
17559 default:
17560 RC = TRI->getAGPRClassForBitWidth(BitWidth);
17561 if (!RC)
17562 return std::pair(0U, nullptr);
17563 break;
17564 }
17565 break;
17566 }
17567 } else if (Constraint == "VA" && Subtarget->hasGFX90AInsts()) {
17568 const unsigned BitWidth = VT.getSizeInBits();
17569 switch (BitWidth) {
17570 case 16:
17571 RC = &AMDGPU::AV_32RegClass;
17572 break;
17573 default:
17574 RC = TRI->getVectorSuperClassForBitWidth(BitWidth);
17575 if (!RC)
17576 return std::pair(0U, nullptr);
17577 break;
17578 }
17579 }
17580
17581 // We actually support i128, i16 and f16 as inline parameters
17582 // even if they are not reported as legal
17583 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
17584 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
17585 return std::pair(0U, RC);
17586
17587 auto [Kind, Idx, NumRegs] = AMDGPU::parseAsmConstraintPhysReg(Constraint);
17588 if (Kind != '\0') {
17589 if (Kind == 'v') {
17590 RC = &AMDGPU::VGPR_32_Lo256RegClass;
17591 } else if (Kind == 's') {
17592 RC = &AMDGPU::SGPR_32RegClass;
17593 } else if (Kind == 'a') {
17594 RC = &AMDGPU::AGPR_32RegClass;
17595 }
17596
17597 if (RC) {
17598 if (NumRegs > 1) {
17599 if (Idx >= RC->getNumRegs() || Idx + NumRegs - 1 >= RC->getNumRegs())
17600 return std::pair(0U, nullptr);
17601
17602 uint32_t Width = NumRegs * 32;
17603 // Prohibit constraints for register ranges with a width that does not
17604 // match the required type.
17605 if (VT.SimpleTy != MVT::Other && Width != VT.getSizeInBits())
17606 return std::pair(0U, nullptr);
17607
17608 MCRegister Reg = RC->getRegister(Idx);
17610 RC = TRI->getVGPRClassForBitWidth(Width);
17611 else if (SIRegisterInfo::isSGPRClass(RC))
17612 RC = TRI->getSGPRClassForBitWidth(Width);
17613 else if (SIRegisterInfo::isAGPRClass(RC))
17614 RC = TRI->getAGPRClassForBitWidth(Width);
17615 if (RC) {
17616 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
17617 if (!Reg) {
17618 // The register class does not contain the requested register,
17619 // e.g., because it is an SGPR pair that would violate alignment
17620 // requirements.
17621 return std::pair(0U, nullptr);
17622 }
17623 return std::pair(Reg, RC);
17624 }
17625 }
17626
17627 // Check for lossy scalar/vector conversions.
17628 if (VT.isVector() && VT.getSizeInBits() != 32)
17629 return std::pair(0U, nullptr);
17630 if (Idx < RC->getNumRegs())
17631 return std::pair(RC->getRegister(Idx), RC);
17632 return std::pair(0U, nullptr);
17633 }
17634 }
17635
17636 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
17637 if (Ret.first)
17638 Ret.second = TRI->getPhysRegBaseClass(Ret.first);
17639
17640 return Ret;
17641}
17642
17643static bool isImmConstraint(StringRef Constraint) {
17644 if (Constraint.size() == 1) {
17645 switch (Constraint[0]) {
17646 default:
17647 break;
17648 case 'I':
17649 case 'J':
17650 case 'A':
17651 case 'B':
17652 case 'C':
17653 return true;
17654 }
17655 } else if (Constraint == "DA" || Constraint == "DB") {
17656 return true;
17657 }
17658 return false;
17659}
17660
17663 if (Constraint.size() == 1) {
17664 switch (Constraint[0]) {
17665 default:
17666 break;
17667 case 's':
17668 case 'v':
17669 case 'a':
17670 return C_RegisterClass;
17671 }
17672 } else if (Constraint.size() == 2) {
17673 if (Constraint == "VA")
17674 return C_RegisterClass;
17675 }
17676 if (isImmConstraint(Constraint)) {
17677 return C_Other;
17678 }
17679 return TargetLowering::getConstraintType(Constraint);
17680}
17681
17682static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
17684 Val = Val & maskTrailingOnes<uint64_t>(Size);
17685 }
17686 return Val;
17687}
17688
17690 StringRef Constraint,
17691 std::vector<SDValue> &Ops,
17692 SelectionDAG &DAG) const {
17693 if (isImmConstraint(Constraint)) {
17694 uint64_t Val;
17695 if (getAsmOperandConstVal(Op, Val) &&
17696 checkAsmConstraintVal(Op, Constraint, Val)) {
17697 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
17698 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
17699 }
17700 } else {
17702 }
17703}
17704
17706 unsigned Size = Op.getScalarValueSizeInBits();
17707 if (Size > 64)
17708 return false;
17709
17710 if (Size == 16 && !Subtarget->has16BitInsts())
17711 return false;
17712
17714 Val = C->getSExtValue();
17715 return true;
17716 }
17718 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
17719 return true;
17720 }
17722 if (Size != 16 || Op.getNumOperands() != 2)
17723 return false;
17724 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
17725 return false;
17726 if (ConstantSDNode *C = V->getConstantSplatNode()) {
17727 Val = C->getSExtValue();
17728 return true;
17729 }
17730 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
17731 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
17732 return true;
17733 }
17734 }
17735
17736 return false;
17737}
17738
17740 uint64_t Val) const {
17741 if (Constraint.size() == 1) {
17742 switch (Constraint[0]) {
17743 case 'I':
17745 case 'J':
17746 return isInt<16>(Val);
17747 case 'A':
17748 return checkAsmConstraintValA(Op, Val);
17749 case 'B':
17750 return isInt<32>(Val);
17751 case 'C':
17752 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
17754 default:
17755 break;
17756 }
17757 } else if (Constraint.size() == 2) {
17758 if (Constraint == "DA") {
17759 int64_t HiBits = static_cast<int32_t>(Val >> 32);
17760 int64_t LoBits = static_cast<int32_t>(Val);
17761 return checkAsmConstraintValA(Op, HiBits, 32) &&
17762 checkAsmConstraintValA(Op, LoBits, 32);
17763 }
17764 if (Constraint == "DB") {
17765 return true;
17766 }
17767 }
17768 llvm_unreachable("Invalid asm constraint");
17769}
17770
17772 unsigned MaxSize) const {
17773 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
17774 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
17775 if (Size == 16) {
17776 MVT VT = Op.getSimpleValueType();
17777 switch (VT.SimpleTy) {
17778 default:
17779 return false;
17780 case MVT::i16:
17781 return AMDGPU::isInlinableLiteralI16(Val, HasInv2Pi);
17782 case MVT::f16:
17783 return AMDGPU::isInlinableLiteralFP16(Val, HasInv2Pi);
17784 case MVT::bf16:
17785 return AMDGPU::isInlinableLiteralBF16(Val, HasInv2Pi);
17786 case MVT::v2i16:
17787 return AMDGPU::getInlineEncodingV2I16(Val).has_value();
17788 case MVT::v2f16:
17789 return AMDGPU::getInlineEncodingV2F16(Val).has_value();
17790 case MVT::v2bf16:
17791 return AMDGPU::getInlineEncodingV2BF16(Val).has_value();
17792 }
17793 }
17794 if ((Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
17795 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi)))
17796 return true;
17797 return false;
17798}
17799
17800static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
17801 switch (UnalignedClassID) {
17802 case AMDGPU::VReg_64RegClassID:
17803 return AMDGPU::VReg_64_Align2RegClassID;
17804 case AMDGPU::VReg_96RegClassID:
17805 return AMDGPU::VReg_96_Align2RegClassID;
17806 case AMDGPU::VReg_128RegClassID:
17807 return AMDGPU::VReg_128_Align2RegClassID;
17808 case AMDGPU::VReg_160RegClassID:
17809 return AMDGPU::VReg_160_Align2RegClassID;
17810 case AMDGPU::VReg_192RegClassID:
17811 return AMDGPU::VReg_192_Align2RegClassID;
17812 case AMDGPU::VReg_224RegClassID:
17813 return AMDGPU::VReg_224_Align2RegClassID;
17814 case AMDGPU::VReg_256RegClassID:
17815 return AMDGPU::VReg_256_Align2RegClassID;
17816 case AMDGPU::VReg_288RegClassID:
17817 return AMDGPU::VReg_288_Align2RegClassID;
17818 case AMDGPU::VReg_320RegClassID:
17819 return AMDGPU::VReg_320_Align2RegClassID;
17820 case AMDGPU::VReg_352RegClassID:
17821 return AMDGPU::VReg_352_Align2RegClassID;
17822 case AMDGPU::VReg_384RegClassID:
17823 return AMDGPU::VReg_384_Align2RegClassID;
17824 case AMDGPU::VReg_512RegClassID:
17825 return AMDGPU::VReg_512_Align2RegClassID;
17826 case AMDGPU::VReg_1024RegClassID:
17827 return AMDGPU::VReg_1024_Align2RegClassID;
17828 case AMDGPU::AReg_64RegClassID:
17829 return AMDGPU::AReg_64_Align2RegClassID;
17830 case AMDGPU::AReg_96RegClassID:
17831 return AMDGPU::AReg_96_Align2RegClassID;
17832 case AMDGPU::AReg_128RegClassID:
17833 return AMDGPU::AReg_128_Align2RegClassID;
17834 case AMDGPU::AReg_160RegClassID:
17835 return AMDGPU::AReg_160_Align2RegClassID;
17836 case AMDGPU::AReg_192RegClassID:
17837 return AMDGPU::AReg_192_Align2RegClassID;
17838 case AMDGPU::AReg_256RegClassID:
17839 return AMDGPU::AReg_256_Align2RegClassID;
17840 case AMDGPU::AReg_512RegClassID:
17841 return AMDGPU::AReg_512_Align2RegClassID;
17842 case AMDGPU::AReg_1024RegClassID:
17843 return AMDGPU::AReg_1024_Align2RegClassID;
17844 default:
17845 return -1;
17846 }
17847}
17848
17849// Figure out which registers should be reserved for stack access. Only after
17850// the function is legalized do we know all of the non-spill stack objects or if
17851// calls are present.
17855 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
17856 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
17857 const SIInstrInfo *TII = ST.getInstrInfo();
17858
17859 if (Info->isEntryFunction()) {
17860 // Callable functions have fixed registers used for stack access.
17862 }
17863
17864 // TODO: Move this logic to getReservedRegs()
17865 // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling.
17866 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
17867 Register SReg = ST.isWave32()
17868 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
17869 : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2,
17870 &AMDGPU::SGPR_64RegClass);
17871 Info->setSGPRForEXECCopy(SReg);
17872
17873 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
17874 Info->getStackPtrOffsetReg()));
17875 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
17876 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
17877
17878 // We need to worry about replacing the default register with itself in case
17879 // of MIR testcases missing the MFI.
17880 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
17881 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
17882
17883 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
17884 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
17885
17886 Info->limitOccupancy(MF);
17887
17888 if (ST.isWave32() && !MF.empty()) {
17889 for (auto &MBB : MF) {
17890 for (auto &MI : MBB) {
17891 TII->fixImplicitOperands(MI);
17892 }
17893 }
17894 }
17895
17896 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
17897 // classes if required. Ideally the register class constraints would differ
17898 // per-subtarget, but there's no easy way to achieve that right now. This is
17899 // not a problem for VGPRs because the correctly aligned VGPR class is implied
17900 // from using them as the register class for legal types.
17901 if (ST.needsAlignedVGPRs()) {
17902 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
17903 const Register Reg = Register::index2VirtReg(I);
17904 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
17905 if (!RC)
17906 continue;
17907 int NewClassID = getAlignedAGPRClassID(RC->getID());
17908 if (NewClassID != -1)
17909 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
17910 }
17911 }
17912
17914}
17915
17917 KnownBits &Known,
17918 const APInt &DemandedElts,
17919 const SelectionDAG &DAG,
17920 unsigned Depth) const {
17921 Known.resetAll();
17922 unsigned Opc = Op.getOpcode();
17923 switch (Opc) {
17925 unsigned IID = Op.getConstantOperandVal(0);
17926 switch (IID) {
17927 case Intrinsic::amdgcn_mbcnt_lo:
17928 case Intrinsic::amdgcn_mbcnt_hi: {
17929 const GCNSubtarget &ST =
17931 // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at
17932 // most 31 + src1.
17933 Known.Zero.setBitsFrom(
17934 IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5);
17935 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
17936 Known = KnownBits::add(Known, Known2);
17937 return;
17938 }
17939 }
17940 break;
17941 }
17942 }
17944 Op, Known, DemandedElts, DAG, Depth);
17945}
17946
17948 const int FI, KnownBits &Known, const MachineFunction &MF) const {
17950
17951 // Set the high bits to zero based on the maximum allowed scratch size per
17952 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
17953 // calculation won't overflow, so assume the sign bit is never set.
17954 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
17955}
17956
17958 GISelValueTracking &VT, KnownBits &Known,
17959 unsigned Dim) {
17960 unsigned MaxValue =
17961 ST.getMaxWorkitemID(VT.getMachineFunction().getFunction(), Dim);
17962 Known.Zero.setHighBits(llvm::countl_zero(MaxValue));
17963}
17964
17966 KnownBits &Known, const APInt &DemandedElts,
17967 unsigned BFEWidth, bool SExt, unsigned Depth) {
17969 const MachineOperand &Src1 = MI.getOperand(2);
17970
17971 unsigned Src1Cst = 0;
17972 if (Src1.isImm()) {
17973 Src1Cst = Src1.getImm();
17974 } else if (Src1.isReg()) {
17975 auto Cst = getIConstantVRegValWithLookThrough(Src1.getReg(), MRI);
17976 if (!Cst)
17977 return;
17978 Src1Cst = Cst->Value.getZExtValue();
17979 } else {
17980 return;
17981 }
17982
17983 // Offset is at bits [4:0] for 32 bit, [5:0] for 64 bit.
17984 // Width is always [22:16].
17985 const unsigned Offset =
17986 Src1Cst & maskTrailingOnes<unsigned>((BFEWidth == 32) ? 5 : 6);
17987 const unsigned Width = (Src1Cst >> 16) & maskTrailingOnes<unsigned>(6);
17988
17989 if (Width >= BFEWidth) // Ill-formed.
17990 return;
17991
17992 VT.computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
17993 Depth + 1);
17994
17995 Known = Known.extractBits(Width, Offset);
17996
17997 if (SExt)
17998 Known = Known.sext(BFEWidth);
17999 else
18000 Known = Known.zext(BFEWidth);
18001}
18002
18004 GISelValueTracking &VT, Register R, KnownBits &Known,
18005 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
18006 unsigned Depth) const {
18007 Known.resetAll();
18008 const MachineInstr *MI = MRI.getVRegDef(R);
18009 switch (MI->getOpcode()) {
18010 case AMDGPU::S_BFE_I32:
18011 return knownBitsForSBFE(*MI, VT, Known, DemandedElts, /*Width=*/32,
18012 /*SExt=*/true, Depth);
18013 case AMDGPU::S_BFE_U32:
18014 return knownBitsForSBFE(*MI, VT, Known, DemandedElts, /*Width=*/32,
18015 /*SExt=*/false, Depth);
18016 case AMDGPU::S_BFE_I64:
18017 return knownBitsForSBFE(*MI, VT, Known, DemandedElts, /*Width=*/64,
18018 /*SExt=*/true, Depth);
18019 case AMDGPU::S_BFE_U64:
18020 return knownBitsForSBFE(*MI, VT, Known, DemandedElts, /*Width=*/64,
18021 /*SExt=*/false, Depth);
18022 case AMDGPU::G_INTRINSIC:
18023 case AMDGPU::G_INTRINSIC_CONVERGENT: {
18024 Intrinsic::ID IID = cast<GIntrinsic>(MI)->getIntrinsicID();
18025 switch (IID) {
18026 case Intrinsic::amdgcn_workitem_id_x:
18027 knownBitsForWorkitemID(*getSubtarget(), VT, Known, 0);
18028 break;
18029 case Intrinsic::amdgcn_workitem_id_y:
18030 knownBitsForWorkitemID(*getSubtarget(), VT, Known, 1);
18031 break;
18032 case Intrinsic::amdgcn_workitem_id_z:
18033 knownBitsForWorkitemID(*getSubtarget(), VT, Known, 2);
18034 break;
18035 case Intrinsic::amdgcn_mbcnt_lo:
18036 case Intrinsic::amdgcn_mbcnt_hi: {
18037 // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at
18038 // most 31 + src1.
18039 Known.Zero.setBitsFrom(IID == Intrinsic::amdgcn_mbcnt_lo
18040 ? getSubtarget()->getWavefrontSizeLog2()
18041 : 5);
18042 KnownBits Known2;
18043 VT.computeKnownBitsImpl(MI->getOperand(3).getReg(), Known2, DemandedElts,
18044 Depth + 1);
18045 Known = KnownBits::add(Known, Known2);
18046 break;
18047 }
18048 case Intrinsic::amdgcn_groupstaticsize: {
18049 // We can report everything over the maximum size as 0. We can't report
18050 // based on the actual size because we don't know if it's accurate or not
18051 // at any given point.
18052 Known.Zero.setHighBits(
18053 llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize()));
18054 break;
18055 }
18056 }
18057 break;
18058 }
18059 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
18060 Known.Zero.setHighBits(24);
18061 break;
18062 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
18063 Known.Zero.setHighBits(16);
18064 break;
18065 case AMDGPU::G_AMDGPU_SMED3:
18066 case AMDGPU::G_AMDGPU_UMED3: {
18067 auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs();
18068
18069 KnownBits Known2;
18070 VT.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1);
18071 if (Known2.isUnknown())
18072 break;
18073
18074 KnownBits Known1;
18075 VT.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1);
18076 if (Known1.isUnknown())
18077 break;
18078
18079 KnownBits Known0;
18080 VT.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1);
18081 if (Known0.isUnknown())
18082 break;
18083
18084 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
18085 Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero;
18086 Known.One = Known0.One & Known1.One & Known2.One;
18087 break;
18088 }
18089 }
18090}
18091
18094 unsigned Depth) const {
18095 const MachineInstr *MI = MRI.getVRegDef(R);
18096 if (auto *GI = dyn_cast<GIntrinsic>(MI)) {
18097 // FIXME: Can this move to generic code? What about the case where the call
18098 // site specifies a lower alignment?
18099 Intrinsic::ID IID = GI->getIntrinsicID();
18101 AttributeList Attrs =
18102 Intrinsic::getAttributes(Ctx, IID, Intrinsic::getType(Ctx, IID));
18103 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
18104 return *RetAlign;
18105 }
18106 return Align(1);
18107}
18108
18111 const Align CacheLineAlign = Align(64);
18112
18113 // Pre-GFX10 target did not benefit from loop alignment
18114 if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
18115 getSubtarget()->hasInstFwdPrefetchBug())
18116 return PrefAlign;
18117
18118 // On GFX10 I$ is 4 x 64 bytes cache lines.
18119 // By default prefetcher keeps one cache line behind and reads two ahead.
18120 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
18121 // behind and one ahead.
18122 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
18123 // If loop fits 64 bytes it always spans no more than two cache lines and
18124 // does not need an alignment.
18125 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
18126 // Else if loop is less or equal 192 bytes we need two lines behind.
18127
18129 const MachineBasicBlock *Header = ML->getHeader();
18130 if (Header->getAlignment() != PrefAlign)
18131 return Header->getAlignment(); // Already processed.
18132
18133 unsigned LoopSize = 0;
18134 for (const MachineBasicBlock *MBB : ML->blocks()) {
18135 // If inner loop block is aligned assume in average half of the alignment
18136 // size to be added as nops.
18137 if (MBB != Header)
18138 LoopSize += MBB->getAlignment().value() / 2;
18139
18140 for (const MachineInstr &MI : *MBB) {
18141 LoopSize += TII->getInstSizeInBytes(MI);
18142 if (LoopSize > 192)
18143 return PrefAlign;
18144 }
18145 }
18146
18147 if (LoopSize <= 64)
18148 return PrefAlign;
18149
18150 if (LoopSize <= 128)
18151 return CacheLineAlign;
18152
18153 // If any of parent loops is surrounded by prefetch instructions do not
18154 // insert new for inner loop, which would reset parent's settings.
18155 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
18156 if (MachineBasicBlock *Exit = P->getExitBlock()) {
18157 auto I = Exit->getFirstNonDebugInstr();
18158 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
18159 return CacheLineAlign;
18160 }
18161 }
18162
18163 MachineBasicBlock *Pre = ML->getLoopPreheader();
18164 MachineBasicBlock *Exit = ML->getExitBlock();
18165
18166 if (Pre && Exit) {
18167 auto PreTerm = Pre->getFirstTerminator();
18168 if (PreTerm == Pre->begin() ||
18169 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
18170 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
18171 .addImm(1); // prefetch 2 lines behind PC
18172
18173 auto ExitHead = Exit->getFirstNonDebugInstr();
18174 if (ExitHead == Exit->end() ||
18175 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
18176 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
18177 .addImm(2); // prefetch 1 line behind PC
18178 }
18179
18180 return CacheLineAlign;
18181}
18182
18184static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
18185 assert(N->getOpcode() == ISD::CopyFromReg);
18186 do {
18187 // Follow the chain until we find an INLINEASM node.
18188 N = N->getOperand(0).getNode();
18189 if (N->getOpcode() == ISD::INLINEASM || N->getOpcode() == ISD::INLINEASM_BR)
18190 return true;
18191 } while (N->getOpcode() == ISD::CopyFromReg);
18192 return false;
18193}
18194
18197 UniformityInfo *UA) const {
18198 switch (N->getOpcode()) {
18199 case ISD::CopyFromReg: {
18200 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
18201 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
18202 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
18203 Register Reg = R->getReg();
18204
18205 // FIXME: Why does this need to consider isLiveIn?
18206 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
18207 return !TRI->isSGPRReg(MRI, Reg);
18208
18209 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
18210 return UA->isDivergent(V);
18211
18213 return !TRI->isSGPRReg(MRI, Reg);
18214 }
18215 case ISD::LOAD: {
18216 const LoadSDNode *L = cast<LoadSDNode>(N);
18217 unsigned AS = L->getAddressSpace();
18218 // A flat load may access private memory.
18220 }
18221 case ISD::CALLSEQ_END:
18222 return true;
18224 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0));
18226 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1));
18245 // Target-specific read-modify-write atomics are sources of divergence.
18246 return true;
18247 default:
18248 if (auto *A = dyn_cast<AtomicSDNode>(N)) {
18249 // Generic read-modify-write atomics are sources of divergence.
18250 return A->readMem() && A->writeMem();
18251 }
18252 return false;
18253 }
18254}
18255
18257 EVT VT) const {
18258 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
18259 case MVT::f32:
18261 case MVT::f64:
18262 case MVT::f16:
18264 default:
18265 return false;
18266 }
18267}
18268
18270 LLT Ty, const MachineFunction &MF) const {
18271 switch (Ty.getScalarSizeInBits()) {
18272 case 32:
18273 return !denormalModeIsFlushAllF32(MF);
18274 case 64:
18275 case 16:
18276 return !denormalModeIsFlushAllF64F16(MF);
18277 default:
18278 return false;
18279 }
18280}
18281
18283 const APInt &DemandedElts,
18284 const SelectionDAG &DAG,
18285 bool SNaN,
18286 unsigned Depth) const {
18287 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
18288 const MachineFunction &MF = DAG.getMachineFunction();
18290
18291 if (Info->getMode().DX10Clamp)
18292 return true; // Clamped to 0.
18293 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
18294 }
18295
18297 DAG, SNaN, Depth);
18298}
18299
18300// On older subtargets, global FP atomic instructions have a hardcoded FP mode
18301// and do not support FP32 denormals, and only support v2f16/f64 denormals.
18303 if (RMW->hasMetadata("amdgpu.ignore.denormal.mode"))
18304 return true;
18305
18307 auto DenormMode = RMW->getFunction()->getDenormalMode(Flt);
18308 if (DenormMode == DenormalMode::getPreserveSign())
18309 return true;
18310
18311 // TODO: Remove this.
18312 return RMW->getFunction()
18313 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
18314 .getValueAsBool();
18315}
18316
18318 LLVMContext &Ctx = RMW->getContext();
18319 StringRef MemScope =
18320 Ctx.getSyncScopeName(RMW->getSyncScopeID()).value_or("system");
18321
18322 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
18323 << "Hardware instruction generated for atomic "
18324 << RMW->getOperationName(RMW->getOperation())
18325 << " operation at memory scope " << MemScope;
18326}
18327
18328static bool isV2F16OrV2BF16(Type *Ty) {
18329 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
18330 Type *EltTy = VT->getElementType();
18331 return VT->getNumElements() == 2 &&
18332 (EltTy->isHalfTy() || EltTy->isBFloatTy());
18333 }
18334
18335 return false;
18336}
18337
18338static bool isV2F16(Type *Ty) {
18340 return VT && VT->getNumElements() == 2 && VT->getElementType()->isHalfTy();
18341}
18342
18343static bool isV2BF16(Type *Ty) {
18345 return VT && VT->getNumElements() == 2 && VT->getElementType()->isBFloatTy();
18346}
18347
18348/// \return true if atomicrmw integer ops work for the type.
18349static bool isAtomicRMWLegalIntTy(Type *Ty) {
18350 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
18351 unsigned BW = IT->getBitWidth();
18352 return BW == 32 || BW == 64;
18353 }
18354
18355 return false;
18356}
18357
18358/// \return true if this atomicrmw xchg type can be selected.
18359static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW) {
18360 Type *Ty = RMW->getType();
18361 if (isAtomicRMWLegalIntTy(Ty))
18362 return true;
18363
18364 if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
18365 const DataLayout &DL = RMW->getFunction()->getParent()->getDataLayout();
18366 unsigned BW = DL.getPointerSizeInBits(PT->getAddressSpace());
18367 return BW == 32 || BW == 64;
18368 }
18369
18370 if (Ty->isFloatTy() || Ty->isDoubleTy())
18371 return true;
18372
18374 return VT->getNumElements() == 2 &&
18375 VT->getElementType()->getPrimitiveSizeInBits() == 16;
18376 }
18377
18378 return false;
18379}
18380
18381/// \returns true if it's valid to emit a native instruction for \p RMW, based
18382/// on the properties of the target memory.
18383static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget,
18384 const AtomicRMWInst *RMW,
18385 bool HasSystemScope) {
18386 // The remote/fine-grained access logic is different from the integer
18387 // atomics. Without AgentScopeFineGrainedRemoteMemoryAtomics support,
18388 // fine-grained access does not work, even for a device local allocation.
18389 //
18390 // With AgentScopeFineGrainedRemoteMemoryAtomics, system scoped device local
18391 // allocations work.
18392 if (HasSystemScope) {
18394 RMW->hasMetadata("amdgpu.no.remote.memory"))
18395 return true;
18396 if (Subtarget.hasEmulatedSystemScopeAtomics())
18397 return true;
18399 return true;
18400
18401 return RMW->hasMetadata("amdgpu.no.fine.grained.memory");
18402}
18403
18404/// \return Action to perform on AtomicRMWInsts for integer operations.
18411
18412/// Return if a flat address space atomicrmw can access private memory.
18414 const MDNode *MD = I->getMetadata(LLVMContext::MD_noalias_addrspace);
18415 return !MD ||
18417}
18418
18426
18429 unsigned AS = RMW->getPointerAddressSpace();
18430 if (AS == AMDGPUAS::PRIVATE_ADDRESS)
18432
18433 // 64-bit flat atomics that dynamically reside in private memory will silently
18434 // be dropped.
18435 //
18436 // Note that we will emit a new copy of the original atomic in the expansion,
18437 // which will be incrementally relegalized.
18438 const DataLayout &DL = RMW->getFunction()->getDataLayout();
18439 if (AS == AMDGPUAS::FLAT_ADDRESS &&
18440 DL.getTypeSizeInBits(RMW->getType()) == 64 &&
18443
18444 auto ReportUnsafeHWInst = [=](TargetLowering::AtomicExpansionKind Kind) {
18446 ORE.emit([=]() {
18447 return emitAtomicRMWLegalRemark(RMW) << " due to an unsafe request.";
18448 });
18449 return Kind;
18450 };
18451
18452 auto SSID = RMW->getSyncScopeID();
18453 bool HasSystemScope =
18454 SSID == SyncScope::System ||
18455 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
18456
18457 auto Op = RMW->getOperation();
18458 switch (Op) {
18460 // PCIe supports add and xchg for system atomics.
18461 return isAtomicRMWLegalXChgTy(RMW)
18464 case AtomicRMWInst::Add:
18465 // PCIe supports add and xchg for system atomics.
18467 case AtomicRMWInst::Sub:
18468 case AtomicRMWInst::And:
18469 case AtomicRMWInst::Or:
18470 case AtomicRMWInst::Xor:
18471 case AtomicRMWInst::Max:
18472 case AtomicRMWInst::Min:
18479 if (Subtarget->hasEmulatedSystemScopeAtomics())
18481
18482 // On most subtargets, for atomicrmw operations other than add/xchg,
18483 // whether or not the instructions will behave correctly depends on where
18484 // the address physically resides and what interconnect is used in the
18485 // system configuration. On some some targets the instruction will nop,
18486 // and in others synchronization will only occur at degraded device scope.
18487 //
18488 // If the allocation is known local to the device, the instructions should
18489 // work correctly.
18490 if (RMW->hasMetadata("amdgpu.no.remote.memory"))
18492
18493 // If fine-grained remote memory works at device scope, we don't need to
18494 // do anything.
18495 if (!HasSystemScope &&
18496 Subtarget->supportsAgentScopeFineGrainedRemoteMemoryAtomics())
18498
18499 // If we are targeting a remote allocated address, it depends what kind of
18500 // allocation the address belongs to.
18501 //
18502 // If the allocation is fine-grained (in host memory, or in PCIe peer
18503 // device memory), the operation will fail depending on the target.
18504 //
18505 // Note fine-grained host memory access does work on APUs or if XGMI is
18506 // used, but we do not know if we are targeting an APU or the system
18507 // configuration from the ISA version/target-cpu.
18508 if (RMW->hasMetadata("amdgpu.no.fine.grained.memory"))
18510
18513 // Atomic sub/or/xor do not work over PCI express, but atomic add
18514 // does. InstCombine transforms these with 0 to or, so undo that.
18515 if (Constant *ConstVal = dyn_cast<Constant>(RMW->getValOperand());
18516 ConstVal && ConstVal->isNullValue())
18518 }
18519
18520 // If the allocation could be in remote, fine-grained memory, the rmw
18521 // instructions may fail. cmpxchg should work, so emit that. On some
18522 // system configurations, PCIe atomics aren't supported so cmpxchg won't
18523 // even work, so you're out of luck anyway.
18524
18525 // In summary:
18526 //
18527 // Cases that may fail:
18528 // - fine-grained pinned host memory
18529 // - fine-grained migratable host memory
18530 // - fine-grained PCIe peer device
18531 //
18532 // Cases that should work, but may be treated overly conservatively.
18533 // - fine-grained host memory on an APU
18534 // - fine-grained XGMI peer device
18536 }
18537
18539 }
18540 case AtomicRMWInst::FAdd: {
18541 Type *Ty = RMW->getType();
18542
18543 // TODO: Handle REGION_ADDRESS
18544 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
18545 // DS F32 FP atomics do respect the denormal mode, but the rounding mode
18546 // is fixed to round-to-nearest-even.
18547 //
18548 // F64 / PK_F16 / PK_BF16 never flush and are also fixed to
18549 // round-to-nearest-even.
18550 //
18551 // We ignore the rounding mode problem, even in strictfp. The C++ standard
18552 // suggests it is OK if the floating-point mode may not match the calling
18553 // thread.
18554 if (Ty->isFloatTy()) {
18555 return Subtarget->hasLDSFPAtomicAddF32() ? AtomicExpansionKind::None
18557 }
18558
18559 if (Ty->isDoubleTy()) {
18560 // Ignores denormal mode, but we don't consider flushing mandatory.
18561 return Subtarget->hasLDSFPAtomicAddF64() ? AtomicExpansionKind::None
18563 }
18564
18565 if (Subtarget->hasAtomicDsPkAdd16Insts() && isV2F16OrV2BF16(Ty))
18567
18569 }
18570
18571 // LDS atomics respect the denormal mode from the mode register.
18572 //
18573 // Traditionally f32 global/buffer memory atomics would unconditionally
18574 // flush denormals, but newer targets do not flush. f64/f16/bf16 cases never
18575 // flush.
18576 //
18577 // On targets with flat atomic fadd, denormals would flush depending on
18578 // whether the target address resides in LDS or global memory. We consider
18579 // this flat-maybe-flush as will-flush.
18580 if (Ty->isFloatTy() &&
18581 !Subtarget->hasMemoryAtomicFaddF32DenormalSupport() &&
18584
18585 // FIXME: These ReportUnsafeHWInsts are imprecise. Some of these cases are
18586 // safe. The message phrasing also should be better.
18587 if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) {
18588 if (AS == AMDGPUAS::FLAT_ADDRESS) {
18589 // gfx942, gfx12
18590 if (Subtarget->hasAtomicFlatPkAdd16Insts() && isV2F16OrV2BF16(Ty))
18591 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18592 } else if (AMDGPU::isExtendedGlobalAddrSpace(AS)) {
18593 // gfx90a, gfx942, gfx12
18594 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty))
18595 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18596
18597 // gfx942, gfx12
18598 if (Subtarget->hasAtomicGlobalPkAddBF16Inst() && isV2BF16(Ty))
18599 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18600 } else if (AS == AMDGPUAS::BUFFER_FAT_POINTER) {
18601 // gfx90a, gfx942, gfx12
18602 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty))
18603 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18604
18605 // While gfx90a/gfx942 supports v2bf16 for global/flat, it does not for
18606 // buffer. gfx12 does have the buffer version.
18607 if (Subtarget->hasAtomicBufferPkAddBF16Inst() && isV2BF16(Ty))
18608 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18609 }
18610
18611 // global and flat atomic fadd f64: gfx90a, gfx942.
18612 if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy())
18613 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18614
18615 if (AS != AMDGPUAS::FLAT_ADDRESS) {
18616 if (Ty->isFloatTy()) {
18617 // global/buffer atomic fadd f32 no-rtn: gfx908, gfx90a, gfx942,
18618 // gfx11+.
18619 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18620 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18621 // global/buffer atomic fadd f32 rtn: gfx90a, gfx942, gfx11+.
18622 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18623 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18624 } else {
18625 // gfx908
18626 if (RMW->use_empty() &&
18627 Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() &&
18628 isV2F16(Ty))
18629 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18630 }
18631 }
18632
18633 // flat atomic fadd f32: gfx942, gfx11+.
18634 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy()) {
18635 if (Subtarget->hasFlatAtomicFaddF32Inst())
18636 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18637
18638 // If it is in flat address space, and the type is float, we will try to
18639 // expand it, if the target supports global and lds atomic fadd. The
18640 // reason we need that is, in the expansion, we emit the check of
18641 // address space. If it is in global address space, we emit the global
18642 // atomic fadd; if it is in shared address space, we emit the LDS atomic
18643 // fadd.
18644 if (Subtarget->hasLDSFPAtomicAddF32()) {
18645 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18647 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18649 }
18650 }
18651 }
18652
18654 }
18656 case AtomicRMWInst::FMax: {
18657 Type *Ty = RMW->getType();
18658
18659 // LDS float and double fmin/fmax were always supported.
18660 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
18661 return Ty->isFloatTy() || Ty->isDoubleTy() ? AtomicExpansionKind::None
18663 }
18664
18665 if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) {
18666 // For flat and global cases:
18667 // float, double in gfx7. Manual claims denormal support.
18668 // Removed in gfx8.
18669 // float, double restored in gfx10.
18670 // double removed again in gfx11, so only f32 for gfx11/gfx12.
18671 //
18672 // For gfx9, gfx90a and gfx942 support f64 for global (same as fadd), but
18673 // no f32.
18674 if (AS == AMDGPUAS::FLAT_ADDRESS) {
18675 if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy())
18676 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18677 if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy())
18678 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18679 } else if (AMDGPU::isExtendedGlobalAddrSpace(AS) ||
18681 if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy())
18682 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18683 if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy())
18684 return ReportUnsafeHWInst(AtomicExpansionKind::None);
18685 }
18686 }
18687
18689 }
18692 default:
18694 }
18695
18696 llvm_unreachable("covered atomicrmw op switch");
18697}
18698
18705
18712
18715 unsigned AddrSpace = CmpX->getPointerAddressSpace();
18716 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
18718
18719 if (AddrSpace != AMDGPUAS::FLAT_ADDRESS || !flatInstrMayAccessPrivate(CmpX))
18721
18722 const DataLayout &DL = CmpX->getDataLayout();
18723
18724 Type *ValTy = CmpX->getNewValOperand()->getType();
18725
18726 // If a 64-bit flat atomic may alias private, we need to avoid using the
18727 // atomic in the private case.
18728 return DL.getTypeSizeInBits(ValTy) == 64 ? AtomicExpansionKind::CustomExpand
18730}
18731
18732const TargetRegisterClass *
18733SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
18735 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
18736 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
18737 return Subtarget->isWave64() ? &AMDGPU::SReg_64RegClass
18738 : &AMDGPU::SReg_32RegClass;
18739 if (!TRI->isSGPRClass(RC) && !isDivergent)
18740 return TRI->getEquivalentSGPRClass(RC);
18741 if (TRI->isSGPRClass(RC) && isDivergent)
18742 return TRI->getEquivalentVGPRClass(RC);
18743
18744 return RC;
18745}
18746
18747// FIXME: This is a workaround for DivergenceAnalysis not understanding always
18748// uniform values (as produced by the mask results of control flow intrinsics)
18749// used outside of divergent blocks. The phi users need to also be treated as
18750// always uniform.
18751//
18752// FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis?
18753static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
18754 unsigned WaveSize) {
18755 // FIXME: We assume we never cast the mask results of a control flow
18756 // intrinsic.
18757 // Early exit if the type won't be consistent as a compile time hack.
18758 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
18759 if (!IT || IT->getBitWidth() != WaveSize)
18760 return false;
18761
18762 if (!isa<Instruction>(V))
18763 return false;
18764 if (!Visited.insert(V).second)
18765 return false;
18766 bool Result = false;
18767 for (const auto *U : V->users()) {
18769 if (V == U->getOperand(1)) {
18770 switch (Intrinsic->getIntrinsicID()) {
18771 default:
18772 Result = false;
18773 break;
18774 case Intrinsic::amdgcn_if_break:
18775 case Intrinsic::amdgcn_if:
18776 case Intrinsic::amdgcn_else:
18777 Result = true;
18778 break;
18779 }
18780 }
18781 if (V == U->getOperand(0)) {
18782 switch (Intrinsic->getIntrinsicID()) {
18783 default:
18784 Result = false;
18785 break;
18786 case Intrinsic::amdgcn_end_cf:
18787 case Intrinsic::amdgcn_loop:
18788 Result = true;
18789 break;
18790 }
18791 }
18792 } else {
18793 Result = hasCFUser(U, Visited, WaveSize);
18794 }
18795 if (Result)
18796 break;
18797 }
18798 return Result;
18799}
18800
18802 const Value *V) const {
18803 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
18804 if (CI->isInlineAsm()) {
18805 // FIXME: This cannot give a correct answer. This should only trigger in
18806 // the case where inline asm returns mixed SGPR and VGPR results, used
18807 // outside the defining block. We don't have a specific result to
18808 // consider, so this assumes if any value is SGPR, the overall register
18809 // also needs to be SGPR.
18810 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
18812 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
18813 for (auto &TC : TargetConstraints) {
18814 if (TC.Type == InlineAsm::isOutput) {
18816 const TargetRegisterClass *RC =
18817 getRegForInlineAsmConstraint(SIRI, TC.ConstraintCode,
18818 TC.ConstraintVT)
18819 .second;
18820 if (RC && SIRI->isSGPRClass(RC))
18821 return true;
18822 }
18823 }
18824 }
18825 }
18827 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
18828}
18829
18831 for (SDUse &Use : N->uses()) {
18833 if (getBasePtrIndex(M) == Use.getOperandNo())
18834 return true;
18835 }
18836 }
18837 return false;
18838}
18839
18841 SDValue N1) const {
18842 if (!N0.hasOneUse())
18843 return false;
18844 // Take care of the opportunity to keep N0 uniform
18845 if (N0->isDivergent() || !N1->isDivergent())
18846 return true;
18847 // Check if we have a good chance to form the memory access pattern with the
18848 // base and offset
18849 return (DAG.isBaseWithConstantOffset(N0) &&
18851}
18852
18854 Register N0, Register N1) const {
18855 return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks
18856}
18857
18860 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
18862 if (I.getMetadata("amdgpu.noclobber"))
18863 Flags |= MONoClobber;
18864 if (I.getMetadata("amdgpu.last.use"))
18865 Flags |= MOLastUse;
18866 return Flags;
18867}
18868
18870 SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
18871 const TargetInstrInfo *TII, MCRegister &PhysReg, int &Cost) const {
18872 if (User->getOpcode() != ISD::CopyToReg)
18873 return false;
18874 if (!Def->isMachineOpcode())
18875 return false;
18877 if (!MDef)
18878 return false;
18879
18880 unsigned ResNo = User->getOperand(Op).getResNo();
18881 if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
18882 return false;
18883 const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
18884 if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
18885 PhysReg = AMDGPU::SCC;
18886 const TargetRegisterClass *RC =
18887 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
18888 Cost = RC->getCopyCost();
18889 return true;
18890 }
18891 return false;
18892}
18893
18895 Instruction *AI) const {
18896 // Given: atomicrmw fadd ptr %addr, float %val ordering
18897 //
18898 // With this expansion we produce the following code:
18899 // [...]
18900 // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr)
18901 // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
18902 //
18903 // atomicrmw.shared:
18904 // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3)
18905 // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared,
18906 // float %val ordering
18907 // br label %atomicrmw.phi
18908 //
18909 // atomicrmw.check.private:
18910 // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr)
18911 // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
18912 //
18913 // atomicrmw.private:
18914 // %cast.private = addrspacecast ptr %addr to ptr addrspace(5)
18915 // %loaded.private = load float, ptr addrspace(5) %cast.private
18916 // %val.new = fadd float %loaded.private, %val
18917 // store float %val.new, ptr addrspace(5) %cast.private
18918 // br label %atomicrmw.phi
18919 //
18920 // atomicrmw.global:
18921 // %cast.global = addrspacecast ptr %addr to ptr addrspace(1)
18922 // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global,
18923 // float %val ordering
18924 // br label %atomicrmw.phi
18925 //
18926 // atomicrmw.phi:
18927 // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
18928 // [ %loaded.private, %atomicrmw.private ],
18929 // [ %loaded.global, %atomicrmw.global ]
18930 // br label %atomicrmw.end
18931 //
18932 // atomicrmw.end:
18933 // [...]
18934 //
18935 //
18936 // For 64-bit atomics which may reside in private memory, we perform a simpler
18937 // version that only inserts the private check, and uses the flat operation.
18938
18939 IRBuilder<> Builder(AI);
18940 LLVMContext &Ctx = Builder.getContext();
18941
18942 auto *RMW = dyn_cast<AtomicRMWInst>(AI);
18943 const unsigned PtrOpIdx = RMW ? AtomicRMWInst::getPointerOperandIndex()
18945 Value *Addr = AI->getOperand(PtrOpIdx);
18946
18947 /// TODO: Only need to check private, then emit flat-known-not private (no
18948 /// need for shared block, or cast to global).
18950
18951 Align Alignment;
18952 if (RMW)
18953 Alignment = RMW->getAlign();
18954 else if (CX)
18955 Alignment = CX->getAlign();
18956 else
18957 llvm_unreachable("unhandled atomic operation");
18958
18959 // FullFlatEmulation is true if we need to issue the private, shared, and
18960 // global cases.
18961 //
18962 // If this is false, we are only dealing with the flat-targeting-private case,
18963 // where we only insert a check for private and still use the flat instruction
18964 // for global and shared.
18965
18966 bool FullFlatEmulation =
18967 RMW && RMW->getOperation() == AtomicRMWInst::FAdd &&
18968 ((Subtarget->hasAtomicFaddInsts() && RMW->getType()->isFloatTy()) ||
18969 (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() &&
18970 RMW->getType()->isDoubleTy()));
18971
18972 // If the return value isn't used, do not introduce a false use in the phi.
18973 bool ReturnValueIsUsed = !AI->use_empty();
18974
18975 BasicBlock *BB = Builder.GetInsertBlock();
18976 Function *F = BB->getParent();
18977 BasicBlock *ExitBB =
18978 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
18979 BasicBlock *SharedBB = nullptr;
18980
18981 BasicBlock *CheckPrivateBB = BB;
18982 if (FullFlatEmulation) {
18983 SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
18984 CheckPrivateBB =
18985 BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
18986 }
18987
18988 BasicBlock *PrivateBB =
18989 BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
18990 BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
18991 BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
18992
18993 std::prev(BB->end())->eraseFromParent();
18994 Builder.SetInsertPoint(BB);
18995
18996 Value *LoadedShared = nullptr;
18997 if (FullFlatEmulation) {
18998 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared,
18999 {Addr}, nullptr, "is.shared");
19000 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
19001 Builder.SetInsertPoint(SharedBB);
19002 Value *CastToLocal = Builder.CreateAddrSpaceCast(
19004
19005 Instruction *Clone = AI->clone();
19006 Clone->insertInto(SharedBB, SharedBB->end());
19007 Clone->getOperandUse(PtrOpIdx).set(CastToLocal);
19008 LoadedShared = Clone;
19009
19010 Builder.CreateBr(PhiBB);
19011 Builder.SetInsertPoint(CheckPrivateBB);
19012 }
19013
19014 CallInst *IsPrivate = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_private,
19015 {Addr}, nullptr, "is.private");
19016 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
19017
19018 Builder.SetInsertPoint(PrivateBB);
19019
19020 Value *CastToPrivate = Builder.CreateAddrSpaceCast(
19022
19023 Value *LoadedPrivate;
19024 if (RMW) {
19025 LoadedPrivate = Builder.CreateAlignedLoad(
19026 RMW->getType(), CastToPrivate, RMW->getAlign(), "loaded.private");
19027
19028 Value *NewVal = buildAtomicRMWValue(RMW->getOperation(), Builder,
19029 LoadedPrivate, RMW->getValOperand());
19030
19031 Builder.CreateAlignedStore(NewVal, CastToPrivate, RMW->getAlign());
19032 } else {
19033 auto [ResultLoad, Equal] =
19034 buildCmpXchgValue(Builder, CastToPrivate, CX->getCompareOperand(),
19035 CX->getNewValOperand(), CX->getAlign());
19036
19037 Value *Insert = Builder.CreateInsertValue(PoisonValue::get(CX->getType()),
19038 ResultLoad, 0);
19039 LoadedPrivate = Builder.CreateInsertValue(Insert, Equal, 1);
19040 }
19041
19042 Builder.CreateBr(PhiBB);
19043
19044 Builder.SetInsertPoint(GlobalBB);
19045
19046 // Continue using a flat instruction if we only emitted the check for private.
19047 Instruction *LoadedGlobal = AI;
19048 if (FullFlatEmulation) {
19049 Value *CastToGlobal = Builder.CreateAddrSpaceCast(
19051 AI->getOperandUse(PtrOpIdx).set(CastToGlobal);
19052 }
19053
19054 AI->removeFromParent();
19055 AI->insertInto(GlobalBB, GlobalBB->end());
19056
19057 // The new atomicrmw may go through another round of legalization later.
19058 if (!FullFlatEmulation) {
19059 // We inserted the runtime check already, make sure we do not try to
19060 // re-expand this.
19061 // TODO: Should union with any existing metadata.
19062 MDBuilder MDB(F->getContext());
19063 MDNode *RangeNotPrivate =
19066 LoadedGlobal->setMetadata(LLVMContext::MD_noalias_addrspace,
19067 RangeNotPrivate);
19068 }
19069
19070 Builder.CreateBr(PhiBB);
19071
19072 Builder.SetInsertPoint(PhiBB);
19073
19074 if (ReturnValueIsUsed) {
19075 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 3);
19076 AI->replaceAllUsesWith(Loaded);
19077 if (FullFlatEmulation)
19078 Loaded->addIncoming(LoadedShared, SharedBB);
19079 Loaded->addIncoming(LoadedPrivate, PrivateBB);
19080 Loaded->addIncoming(LoadedGlobal, GlobalBB);
19081 Loaded->takeName(AI);
19082 }
19083
19084 Builder.CreateBr(ExitBB);
19085}
19086
19088 unsigned PtrOpIdx) {
19089 Value *PtrOp = I->getOperand(PtrOpIdx);
19092
19093 Type *FlatPtr = PointerType::get(I->getContext(), AMDGPUAS::FLAT_ADDRESS);
19094 Value *ASCast = CastInst::CreatePointerCast(PtrOp, FlatPtr, "scratch.ascast",
19095 I->getIterator());
19096 I->setOperand(PtrOpIdx, ASCast);
19097}
19098
19101
19104
19107 if (const auto *ConstVal = dyn_cast<Constant>(AI->getValOperand());
19108 ConstVal && ConstVal->isNullValue()) {
19109 // atomicrmw or %ptr, 0 -> atomicrmw add %ptr, 0
19111
19112 // We may still need the private-alias-flat handling below.
19113
19114 // TODO: Skip this for cases where we cannot access remote memory.
19115 }
19116 }
19117
19118 // The non-flat expansions should only perform the de-canonicalization of
19119 // identity values.
19121 return;
19122
19124}
19125
19132
19136
19138 "Expand Atomic Load only handles SCRATCH -> FLAT conversion");
19139}
19140
19142 if (SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
19143 return convertScratchAtomicToFlatAtomic(SI, SI->getPointerOperandIndex());
19144
19146 "Expand Atomic Store only handles SCRATCH -> FLAT conversion");
19147}
19148
19149LoadInst *
19151 IRBuilder<> Builder(AI);
19152 auto Order = AI->getOrdering();
19153
19154 // The optimization removes store aspect of the atomicrmw. Therefore, cache
19155 // must be flushed if the atomic ordering had a release semantics. This is
19156 // not necessary a fence, a release fence just coincides to do that flush.
19157 // Avoid replacing of an atomicrmw with a release semantics.
19158 if (isReleaseOrStronger(Order))
19159 return nullptr;
19160
19161 LoadInst *LI = Builder.CreateAlignedLoad(
19162 AI->getType(), AI->getPointerOperand(), AI->getAlign());
19163 LI->setAtomic(Order, AI->getSyncScopeID());
19164 LI->copyMetadata(*AI);
19165 LI->takeName(AI);
19166 AI->replaceAllUsesWith(LI);
19167 AI->eraseFromParent();
19168 return LI;
19169}
static bool isMul(MachineInstr *MI)
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static constexpr std::pair< ImplicitArgumentMask, StringLiteral > ImplicitAttrs[]
static bool allUsesHaveSourceMods(MachineInstr &MI, MachineRegisterInfo &MRI, unsigned CostThreshold=4)
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static bool isNoUnsignedWrap(MachineInstr *Addr)
static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE, bool &IsTexFail)
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
constexpr LLT S32
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ATTRIBUTE_UNUSED
Definition Compiler.h:298
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
dxil translate DXIL Translate Metadata
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
AMD GCN specific subclass of TargetSubtarget.
Provides analysis for querying information about KnownBits during GISel passes.
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
iv Induction Variable Users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Contains matchers for matching SSA Machine Instructions.
mir Rename Register Operands
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
uint64_t IntrinsicInst * II
#define P(N)
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Contains matchers for matching SelectionDAG nodes and values.
static void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition SHA1.cpp:39
static void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition SHA1.cpp:57
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition SHA1.cpp:51
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition SHA1.cpp:45
#define FP_DENORM_FLUSH_NONE
Definition SIDefines.h:1254
#define FP_DENORM_FLUSH_IN_FLUSH_OUT
Definition SIDefines.h:1251
static cl::opt< bool > UseSelectionDAGPTRADD("amdgpu-use-sdag-ptradd", cl::Hidden, cl::desc("Generate ISD::PTRADD nodes for 64-bit pointer arithmetic in the " "SelectionDAG ISel"), cl::init(false))
static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info)
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked)
static MachineBasicBlock * emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF)
static bool isAtomicRMWLegalIntTy(Type *Ty)
static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelValueTracking &VT, KnownBits &Known, unsigned Dim)
static bool flatInstrMayAccessPrivate(const Instruction *I)
Return if a flat address space atomicrmw can access private memory.
static std::pair< unsigned, int > computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset)
static bool denormalModeIsFlushAllF32(const MachineFunction &MF)
static bool addresses16Bits(int Mask)
static bool isClampZeroToOne(SDValue A, SDValue B)
static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, EVT VT)
static unsigned findFirstFreeSGPR(CCState &CCInfo)
static uint32_t getPermuteMask(SDValue V)
static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static int getAlignedAGPRClassID(unsigned UnalignedClassID)
static void processPSInputArgs(SmallVectorImpl< ISD::InputArg > &Splits, CallingConv::ID CallConv, ArrayRef< ISD::InputArg > Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info)
static void getCoopAtomicOperandsInfo(const CallInst &CI, bool IsLoad, TargetLoweringBase::IntrinsicInfo &Info)
static uint64_t getIdentityValueFor64BitWaveReduction(unsigned Opc)
static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, const GCNSubtarget *Subtarget)
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT)
static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget, const AtomicRMWInst *RMW, bool HasSystemScope)
static void fixMasks(SmallVectorImpl< DotSrc > &Srcs, unsigned ChainLength)
static bool is32bitWaveReduceOperation(unsigned Opc)
static TargetLowering::AtomicExpansionKind atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW)
static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src)
Return the source of an fp_extend from f16 to f32, or a converted FP constant.
static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW)
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val)
static void convertScratchAtomicToFlatAtomic(Instruction *I, unsigned PtrOpIdx)
static bool elementPairIsOddToEven(ArrayRef< int > Mask, int Elt)
static cl::opt< bool > DisableLoopAlignment("amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false))
static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, unsigned DWordOffset)
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static bool isImmConstraint(StringRef Constraint)
static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts)
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static bool hasCFUser(const Value *V, SmallPtrSet< const Value *, 16 > &Visited, unsigned WaveSize)
static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW)
static unsigned SubIdx2Lane(unsigned Idx)
Helper function for adjustWritemask.
static TargetLowering::AtomicExpansionKind getPrivateAtomicExpansionKind(const GCNSubtarget &STI)
static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, const SIMachineFunctionInfo &Info)
static MachineBasicBlock * lowerWaveReduce(MachineInstr &MI, MachineBasicBlock &BB, const GCNSubtarget &ST, unsigned Opc)
static bool elementPairIsContiguous(ArrayRef< int > Mask, int Elt)
static bool isV2BF16(Type *Ty)
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs)
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed)
static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, SmallVectorImpl< DotSrc > &Srcs, bool IsSigned, bool IsAny)
static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, SDValue &OtherOp)
static void placeSources(ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, SmallVectorImpl< DotSrc > &Src0s, SmallVectorImpl< DotSrc > &Src1s, int Step)
static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isFrameIndexOp(SDValue Op)
static ConstantFPSDNode * getSplatConstantFP(SDValue Op)
static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg)
static void knownBitsForSBFE(const MachineInstr &MI, GISelValueTracking &VT, KnownBits &Known, const APInt &DemandedElts, unsigned BFEWidth, bool SExt, unsigned Depth)
static bool isExtendedFrom16Bits(SDValue &Operand)
static std::optional< bool > checkDot4MulSignedness(const SDValue &N, ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, const SDValue &S0Op, const SDValue &S1Op, const SelectionDAG &DAG)
static bool vectorEltWillFoldAway(SDValue Op)
static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, const SIMachineFunctionInfo *Info, const GCNSubtarget *ST)
static uint32_t getConstantPermuteMask(uint32_t C)
static MachineBasicBlock * emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask=~0u, ArgDescriptor Arg=ArgDescriptor())
static MachineBasicBlock * Expand64BitScalarArithmetic(MachineInstr &MI, MachineBasicBlock *BB)
static std::pair< MachineBasicBlock *, MachineBasicBlock * > splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop)
static uint32_t getIdentityValueFor32BitWaveReduction(unsigned Opc)
static unsigned getBasePtrIndex(const MemSDNode *N)
MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset by the chain and intrinsi...
static LLVM_ATTRIBUTE_UNUSED bool isCopyFromRegOfInlineAsm(const SDNode *N)
static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg)
static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef< EVT > ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, bool IsAtomicPacked16Bit, const SDLoc &DL)
static std::optional< ByteProvider< SDValue > > handleMulOperand(const SDValue &MulOperand)
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc)
static unsigned getExtOpcodeForPromotedOp(SDValue Op)
static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val)
static SDValue tryFoldMADwithSRL(SelectionDAG &DAG, const SDLoc &SL, SDValue MulLHS, SDValue MulRHS, SDValue AddRHS)
static unsigned getIntrMemWidth(unsigned IntrID)
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef< SDValue > Elts)
static SDNode * findUser(SDValue Value, unsigned Opcode)
Helper function for LowerBRCOND.
static unsigned addPermMasks(unsigned First, unsigned Second)
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags)
static bool isV2F16OrV2BF16(Type *Ty)
static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW)
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags)
static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags=SIInstrInfo::MO_NONE)
static cl::opt< bool > UseDivergentRegisterIndexing("amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false))
static const std::optional< ByteProvider< SDValue > > calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex=0, unsigned Depth=0)
static bool isV2F16(Type *Ty)
static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg)
SI DAG Lowering interface definition.
Interface definition for SIRegisterInfo.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LLVM IR instance of the generic uniformity analysis.
static constexpr int Concat[]
Value * RHS
Value * LHS
The Input class is used to parse a yaml document into in-memory structs and vectors.
static const AMDGPUFunctionArgInfo FixedABIFunctionInfo
void setFuncArgInfo(const Function &F, const AMDGPUFunctionArgInfo &ArgInfo)
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
unsigned getWavefrontSize() const
static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG)
SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Split a vector load into 2 loads of half the vector.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerF64ToF16Safe(SDValue Src, const SDLoc &DL, SelectionDAG &DAG) const
SDValue storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const
Split the 64-bit value LHS into two 32-bit components, and perform the binary operation Opc to it wit...
SDValue lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals, StringRef Reason) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
static bool needsDenormHandlingF32(const SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags)
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const
static EVT getEquivalentMemType(LLVMContext &Context, EVT VT)
SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg=false) const
Helper function that adds Reg to the LiveIn list of the DAG's MachineFunction.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const
Split a vector store into 2 stores of half the vector.
std::pair< SDValue, SDValue > split64BitValue(SDValue Op, SelectionDAG &DAG) const
Return 64-bit value Op as two 32-bit integers.
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI)
static CCAssignFn * CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg)
static CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg)
Selects the correct CCAssignFn for a given CallingConvention value.
static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG)
static bool allowApproxFunc(const SelectionDAG &DAG, SDNodeFlags Flags)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const
static bool shouldFoldFNegIntoSrc(SDNode *FNeg, SDValue FNegSrc)
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Widen a suitably aligned v3 load.
SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast between SrcAS and DestAS is a noop.
const std::array< unsigned, 3 > & getDims() const
static const LaneMaskConstants & get(const GCNSubtarget &ST)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
LLVM_READONLY int getExactLog2Abs() const
Definition APFloat.h:1497
bool isNegative() const
Definition APFloat.h:1449
bool isNormal() const
Definition APFloat.h:1453
APInt bitcastToAPInt() const
Definition APFloat.h:1353
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
bool isInfinity() const
Definition APFloat.h:1446
Class for arbitrary precision integers.
Definition APInt.h:78
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
Definition APInt.h:366
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:296
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
const Function * getParent() const
Definition Argument.h:44
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
An instruction that atomically checks whether a specified value is in a memory location,...
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Add
*p = old + v
@ FAdd
*p = old + v
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
Value * getPointerOperand()
void setOperation(BinOp Operation)
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM_ABI MemoryEffects getMemoryEffects() const
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
BitVector & set()
Definition BitVector.h:351
A "pseudo-class" with methods for operating on BUILD_VECTORs.
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< ISelOp > Val, int64_t ByteOffset, int64_t VectorOffset)
std::optional< ISelOp > Src
CCState - This class holds information needed while lowering arguments and return values.
MachineFunction & getMachineFunction() const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
static LLVM_ABI bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
LLVM_ABI void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
LLVM_ABI bool CheckReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
CheckReturn - Analyze the return values of a function, returning true if the return can be performed ...
LLVM_ABI void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
bool isAllocated(MCRegister Reg) const
isAllocated - Return true if the specified register (or an alias) is allocated.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_NE
not equal
Definition InstrTypes.h:700
bool isSigned() const
Definition InstrTypes.h:932
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:772
static bool isIntPredicate(Predicate P)
Definition InstrTypes.h:778
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
bool isBigEndian() const
Definition DataLayout.h:199
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
A debug info location.
Definition DebugLoc.h:124
Diagnostic information for unsupported feature in backend.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Register DemoteRegister
DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg allocated to hold a pointer to ...
const Value * getValueFromVirtualReg(Register Vreg)
This method is called from TargetLowerinInfo::isSDNodeSourceOfDivergence to get the Value correspondi...
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition Function.cpp:363
iterator_range< arg_iterator > args()
Definition Function.h:890
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:762
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:803
Argument * getArg(unsigned i) const
Definition Function.h:884
bool hasMinimum3Maximum3F32() const
bool supportsAgentScopeFineGrainedRemoteMemoryAtomics() const
const SIInstrInfo * getInstrInfo() const override
bool hasMadF16() const
bool hasMin3Max3PKF16() const
const SIRegisterInfo * getRegisterInfo() const override
bool hasMinimum3Maximum3PKF16() const
bool hasGloballyAddressableScratch() const
bool hasMinimum3Maximum3F16() const
bool hasRestrictedSOffset() const
bool hasMin3Max3_16() const
bool hasEmulatedSystemScopeAtomics() const
unsigned getKnownHighZeroBitsForFrameIndex() const
Return the number of high bits known to be zero for a frame index.
bool hasShaderCyclesHiLoRegisters() const
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
bool hasPrivateSegmentBuffer() const
const MachineFunction & getMachineFunction() const
void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
bool isDivergent(ConstValueRefT V) const
Whether V is divergent at its definition.
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool hasExternalLinkage() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
Class to represent integer types.
A wrapper class for inspecting calls to intrinsic functions.
constexpr unsigned getScalarSizeInBits() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
static unsigned getPointerOperandIndex()
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
LLVM_ABI MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
Definition MDBuilder.cpp:96
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
Helper class for constructing bundles of MachineInstrs.
MachineBasicBlock::instr_iterator begin() const
Return an iterator to the first bundled instruction.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasCalls() const
Return true if the current function has any function calls.
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
bool hasStackObjects() const
Return true if there are any stack objects in this function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setOperandDead(unsigned OpIdx) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI void clearKillFlags(Register Reg) const
clearKillFlags - Iterate over all the uses of the given register and clear the kill flag from the Mac...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This is an abstract virtual class for memory operations.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
bool isInvariant() const
EVT getMemoryVT() const
Return the type of the in-memory value.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
Definition ModRef.h:221
bool doesNotAccessMemory() const
Whether this function accesses no memory.
Definition ModRef.h:215
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
Definition ModRef.h:218
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition Register.h:67
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
bool hasOneUse() const
Return true if there is exactly one use of this node.
value_iterator value_end() const
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
op_iterator op_end() const
bool isAnyAdd() const
Returns true if the node type is ADD or PTRADD.
value_iterator value_begin() const
op_iterator op_begin() const
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isMachineOpcode() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getMachineOpcode() const
unsigned getOpcode() const
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
static unsigned getDSShaderTypeValue(const MachineFunction &MF)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
AMDGPU::ClusterDimsAttr getClusterDims() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
const AMDGPUGWSResourcePseudoSourceValue * getGWSPSV(const AMDGPUTargetMachine &TM)
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
static bool isVGPRClass(const TargetRegisterClass *RC)
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isTypeDesirableForOp(unsigned Op, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDNode * PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override
Fold the instructions after selecting them.
SDValue splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const
MachineSDNode * wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
bool requiresUniformRegister(MachineFunction &MF, const Value *V) const override
Allows target to decide about the register class of the specific value that is live outside the defin...
bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const override
Returns true if be combined with to form an ISD::FMAD.
AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void bundleInstWithWaitcnt(MachineInstr &MI) const
Insert MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
SDValue lowerROTR(SDValue Op, SelectionDAG &DAG) const
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
MVT getPointerTy(const DataLayout &DL, unsigned AS) const override
Map address space 7 to MVT::amdgpuBufferFatPointer because that's its in-memory representation.
bool denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const
void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const override
Insert explicit copies in entry and exit blocks.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
SDNode * legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const
Legalize target independent instructions (e.g.
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const
const GCNSubtarget * getSubtarget() const
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
bool shouldEmitGOTReloc(const GlobalValue *GV) const
bool isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth=5) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
SDValue splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const
SDValue lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const
bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, MCRegister &PhysReg, int &Cost) const override
Allows the target to handle physreg-carried dependency in target-specific way.
void allocateSpecialInputSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const override
void allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
ArrayRef< MCPhysReg > getRoundingControlRegisters() const override
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent) const override
Return the register class that should be used for the specified value type.
void AddMemOpInit(MachineInstr &MI) const
MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const override
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
bool isLegalGlobalAddressingMode(const AddrMode &AM) const
void computeKnownBitsForFrameIndex(int FrameIdx, KnownBits &Known, const MachineFunction &MF) const override
Determine which of the bits of FrameIndex FIOp are known to be 0.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Return true if it is beneficial to convert a load of a constant to just the constant itself.
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
void emitExpandAtomicStore(StoreInst *SI) const override
Perform a atomic store using a target-specific way.
AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine the known alignment for the pointer value R.
bool getAsmOperandConstVal(SDValue Op, uint64_t &Val) const
bool isShuffleMaskLegal(ArrayRef< int >, EVT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
void emitExpandAtomicLoad(LoadInst *LI) const override
Perform a atomic load using a target-specific way.
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
LLT getPreferredShiftAmountTy(LLT Ty) const override
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
SDValue lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const
bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const override
True if target has some particular form of dealing with pointer arithmetic semantics for pointers wit...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputVGPRsFixed(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments in fixed registers.
LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
MachineBasicBlock * emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const
bool getAddrModeArguments(const IntrinsicInst *I, SmallVectorImpl< Value * > &Ops, Type *&AccessTy) const override
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize=64) const
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool shouldEmitFixup(const GlobalValue *GV) const
MachineBasicBlock * splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const
void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const override
Perform a cmpxchg expansion using a target-specific method.
bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const override
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
bool hasMemSDNodeUser(SDNode *N) const
bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const override
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SmallVectorImpl< ISD::InputArg > &Ins, SelectionDAG &DAG) const
bool isMemOpHasNoClobberedMemOperand(const SDNode *N) const
bool isLegalFlatAddressingMode(const AddrMode &AM, unsigned AddrSpace) const
SDValue LowerCallResult(SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals, bool isThisReturn, SDValue ThisVal) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override
Assign the register class depending on the number of bits set in the writemask.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void allocateSpecialInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments at the end of allocated user arguments.
void finalizeLowering(MachineFunction &MF) const override
Execute target specific actions to finalize target lowering.
static bool isNonGlobalAddrSpace(unsigned AS)
void emitExpandAtomicAddrSpacePredicate(Instruction *AI) const
MachineSDNode * buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const
Return a resource descriptor with the 'Add TID' bit enabled The TID (Thread ID) is multiplied by the ...
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool mayBeEmittedAsTailCall(const CallInst *) const override
Return true if the target may be able emit the call instruction as a tail call.
void passSpecialInputs(CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl< std::pair< unsigned, SDValue > > &RegsToPass, SmallVectorImpl< SDValue > &MemOpChains, SDValue Chain) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool checkAsmConstraintVal(SDValue Op, StringRef Constraint, uint64_t Val) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
static bool shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget)
Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be expanded into a set of cmp...
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool supportSplitCSR(MachineFunction *MF) const override
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
LLT handling variant.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const
SITargetLowering(const TargetMachine &tm, const GCNSubtarget &STI)
void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool shouldEmitPCReloc(const GlobalValue *GV) const
void initializeSplitCSR(MachineBasicBlock *Entry) const override
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
void allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocatePreloadKernArgSGPRs(CCState &CCInfo, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ISD::InputArg > &Ins, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const
bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &MF, unsigned IntrinsicID) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
MVT getPointerMemTy(const DataLayout &DL, unsigned AS) const override
Similarly, the in-memory representation of a p7 is {p8, i32}, aka v8i32 when padding is added.
void allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
const Pass * getPass() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:151
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:154
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Information about stack frame layout on the target.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
Type * Ty
Same as OrigTy, or partially legalized for soft float libcalls.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
TargetLowering(const TargetLowering &)=delete
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
TargetOptions Options
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned getNumRegs() const
Return the number of registers in this class.
unsigned getID() const
Return the register class ID number.
MCRegister getRegister(unsigned i) const
Return the specified register in the class.
int getCopyCost() const
Return the cost of copying a value between two registers in this class.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:420
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
Definition Type.h:145
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition Type.h:258
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition Use.cpp:35
const Use & getOperandUse(unsigned i) const
Definition User.h:245
Value * getOperand(unsigned i) const
Definition User.h:232
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
iterator_range< use_iterator > uses()
Definition Value.h:380
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isZero() const
Definition TypeSize.h:154
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:130
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ STREAMOUT_REGISTER
Internal address spaces. Can be freely renumbered.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
@ CLAMP
CLAMP value between 0.0 and 1.0.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
LLVM_READONLY const MIMGG16MappingInfo * getMIMGG16MappingInfo(unsigned G)
LLVM_READONLY int getGlobalSaddrOp(uint16_t Opcode)
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isFlatGlobalAddrSpace(unsigned AS)
const uint64_t FltRoundToHWConversionTable
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool isGFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
LLVM_READNONE constexpr bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
bool getMUBUFTfe(unsigned Opc)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
bool isGFX10Plus(const MCSubtargetInfo &STI)
LLVM_READONLY int getVOPe64(uint16_t Opcode)
bool isUniformMMO(const MachineMemOperand *MMO)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
uint32_t decodeFltRoundToHWConversionTable(uint32_t FltRounds)
Read the hardware rounding mode equivalent of a AMDGPUFltRounds value.
bool isGFX1250(const MCSubtargetInfo &STI)
bool isExtendedGlobalAddrSpace(unsigned AS)
LLVM_READONLY const MIMGDimInfo * getMIMGDimInfo(unsigned DimEnum)
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
LLVM_READNONE constexpr bool isChainCC(CallingConv::ID CC)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool canGuaranteeTCO(CallingConv::ID CC)
LLVM_READNONE constexpr bool isGraphics(CallingConv::ID CC)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const RsrcIntrinsic * lookupRsrcIntrinsic(unsigned Intr)
const uint64_t FltRoundConversionTable
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:535
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:952
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
LLVM_ABI AttributeList getAttributes(LLVMContext &C, ID id, FunctionType *FT)
Return the attributes for an intrinsic.
LLVM_ABI FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys={})
Return the function type for an intrinsic.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
GFCstOrSplatGFCstMatch m_GFCstOrSplat(std::optional< FPValueAndVReg > &FPValReg)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Dead
Unused definition.
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
Offsets
Offsets in bytes from the start of the input buffer.
@ System
Synchronized with respect to all concurrently executing threads.
Definition LLVMContext.h:58
initializer< Ty > init(const Ty &Val)
constexpr double inv_pi
Definition MathExtras.h:54
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
LLVM_ABI void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
Definition STLExtras.h:841
InstructionCost Cost
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
std::pair< Value *, Value * > buildCmpXchgValue(IRBuilderBase &Builder, Value *Ptr, Value *Cmp, Value *Val, Align Alignment)
Emit IR to implement the given cmpxchg operation on values in registers, returning the new value.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
@ Done
Definition Threading.h:60
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
constexpr int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
Definition MathExtras.h:232
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:557
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
Definition ModRef.h:296
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:186
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition MathExtras.h:282
bool isReleaseOrStronger(AtomicOrdering AO)
static const MachineMemOperand::Flags MONoClobber
Mark the MMO of a uniform load if there are no potentially clobbering stores on any path from the sta...
Definition SIInstrInfo.h:44
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
AtomicOrderingCABI
Atomic ordering for C11 / C++11's memory models.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition bit.h:222
bool isBoolSGPR(SDValue V)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition MathExtras.h:159
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:207
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:164
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
static const MachineMemOperand::Flags MOCooperative
Mark the MMO of cooperative load/store atomics.
Definition SIInstrInfo.h:52
Value * buildAtomicRMWValue(AtomicRMWInst::BinOp Op, IRBuilderBase &Builder, Value *Loaded, Value *Val)
Emit IR to implement the given atomicrmw operation on values in registers, returning the new value.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
unsigned getUndefRegState(bool B)
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Add
Sum of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
Definition VE.h:376
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
Definition MathExtras.h:241
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
Definition Utils.cpp:433
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
Definition SIInstrInfo.h:48
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
constexpr T maskTrailingOnes(unsigned N)
Create a bitmask with the N right-most bits set to 1, and all other bits set to 0.
Definition MathExtras.h:86
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
int64_t DWordOffset
int64_t PermMask
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(PreloadedValue Value) const
static constexpr uint64_t encode(Fields... Values)
static std::tuple< typename Fields::ValueType... > decode(uint64_t Encoded)
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:85
static ArgDescriptor createStack(unsigned Offset, unsigned Mask=~0u)
MCRegister getRegister() const
static ArgDescriptor createArg(const ArgDescriptor &Arg, unsigned Mask)
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
Helper struct shared between Function Specialization and SCCP Solver.
Definition SCCPSolver.h:42
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
EVT changeElementType(EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
unsigned getPointerAddrSpace() const
unsigned getByValSize() const
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
MVT VT
Legalized type of this argument part.
unsigned getOrigArgIndex() const
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:165
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:218
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:173
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
Definition KnownBits.h:340
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:241
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
int64_t Offset
Offset - This is an offset from the base Value*.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasAllowContract() const
bool hasNoSignedWrap() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs