LLVM 22.0.0git
AArch64A57FPLoadBalancing.cpp
Go to the documentation of this file.
1//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// For best-case performance on Cortex-A57, we should try to use a balanced
9// mix of odd and even D-registers when performing a critical sequence of
10// independent, non-quadword FP/ASIMD floating-point multiply or
11// multiply-accumulate operations.
12//
13// This pass attempts to detect situations where the register allocation may
14// adversely affect this load balancing and to change the registers used so as
15// to better utilize the CPU.
16//
17// Ideally we'd just take each multiply or multiply-accumulate in turn and
18// allocate it alternating even or odd registers. However, multiply-accumulates
19// are most efficiently performed in the same functional unit as their
20// accumulation operand. Therefore this pass tries to find maximal sequences
21// ("Chains") of multiply-accumulates linked via their accumulation operand,
22// and assign them all the same "color" (oddness/evenness).
23//
24// This optimization affects S-register and D-register floating point
25// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27// not affected.
28//===----------------------------------------------------------------------===//
29
30#include "AArch64.h"
31#include "AArch64InstrInfo.h"
32#include "AArch64Subtarget.h"
42#include "llvm/Support/Debug.h"
44using namespace llvm;
45
46#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
47
48// Enforce the algorithm to use the scavenged register even when the original
49// destination register is the correct color. Used for testing.
50static cl::opt<bool>
51TransformAll("aarch64-a57-fp-load-balancing-force-all",
52 cl::desc("Always modify dest registers regardless of color"),
53 cl::init(false), cl::Hidden);
54
55// Never use the balance information obtained from chains - return a specific
56// color always. Used for testing.
58OverrideBalance("aarch64-a57-fp-load-balancing-override",
59 cl::desc("Ignore balance information, always return "
60 "(1: Even, 2: Odd)."),
62
63//===----------------------------------------------------------------------===//
64// Helper functions
65
66// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
67static bool isMul(MachineInstr *MI) {
68 switch (MI->getOpcode()) {
69 case AArch64::FMULSrr:
70 case AArch64::FNMULSrr:
71 case AArch64::FMULDrr:
72 case AArch64::FNMULDrr:
73 return true;
74 default:
75 return false;
76 }
77}
78
79// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
80static bool isMla(MachineInstr *MI) {
81 switch (MI->getOpcode()) {
82 case AArch64::FMSUBSrrr:
83 case AArch64::FMADDSrrr:
84 case AArch64::FNMSUBSrrr:
85 case AArch64::FNMADDSrrr:
86 case AArch64::FMSUBDrrr:
87 case AArch64::FMADDDrrr:
88 case AArch64::FNMSUBDrrr:
89 case AArch64::FNMADDDrrr:
90 return true;
91 default:
92 return false;
93 }
94}
95
96//===----------------------------------------------------------------------===//
97
98namespace {
99/// A "color", which is either even or odd. Yes, these aren't really colors
100/// but the algorithm is conceptually doing two-color graph coloring.
101enum class Color { Even, Odd };
102#ifndef NDEBUG
103static const char *ColorNames[2] = { "Even", "Odd" };
104#endif
105
106class Chain;
107
108class AArch64A57FPLoadBalancing : public MachineFunctionPass {
110 const TargetRegisterInfo *TRI;
112
113public:
114 static char ID;
115 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {}
116
117 bool runOnMachineFunction(MachineFunction &F) override;
118
120 return MachineFunctionProperties().setNoVRegs();
121 }
122
123 StringRef getPassName() const override {
124 return "A57 FP Anti-dependency breaker";
125 }
126
127 void getAnalysisUsage(AnalysisUsage &AU) const override {
128 AU.setPreservesCFG();
130 }
131
132private:
134 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
135 int &Balance);
136 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
137 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
138 void scanInstruction(MachineInstr *MI, unsigned Idx,
139 std::map<unsigned, Chain*> &Active,
140 std::vector<std::unique_ptr<Chain>> &AllChains);
141 void maybeKillChain(MachineOperand &MO, unsigned Idx,
142 std::map<unsigned, Chain*> &RegChains);
143 Color getColor(unsigned Register);
144 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
145};
146}
147
148char AArch64A57FPLoadBalancing::ID = 0;
149
150INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
151 "AArch64 A57 FP Load-Balancing", false, false)
152INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
153 "AArch64 A57 FP Load-Balancing", false, false)
154
155namespace {
156/// A Chain is a sequence of instructions that are linked together by
157/// an accumulation operand. For example:
158///
159/// fmul def d0, ?
160/// fmla def d1, ?, ?, killed d0
161/// fmla def d2, ?, ?, killed d1
162///
163/// There may be other instructions interleaved in the sequence that
164/// do not belong to the chain. These other instructions must not use
165/// the "chain" register at any point.
166///
167/// We currently only support chains where the "chain" operand is killed
168/// at each link in the chain for simplicity.
169/// A chain has three important instructions - Start, Last and Kill.
170/// * The start instruction is the first instruction in the chain.
171/// * Last is the final instruction in the chain.
172/// * Kill may or may not be defined. If defined, Kill is the instruction
173/// where the outgoing value of the Last instruction is killed.
174/// This information is important as if we know the outgoing value is
175/// killed with no intervening uses, we can safely change its register.
176///
177/// Without a kill instruction, we must assume the outgoing value escapes
178/// beyond our model and either must not change its register or must
179/// create a fixup FMOV to keep the old register value consistent.
180///
181class Chain {
182public:
183 /// The important (marker) instructions.
184 MachineInstr *StartInst, *LastInst, *KillInst;
185 /// The index, from the start of the basic block, that each marker
186 /// appears. These are stored so we can do quick interval tests.
187 unsigned StartInstIdx, LastInstIdx, KillInstIdx;
188 /// All instructions in the chain.
189 std::set<MachineInstr*> Insts;
190 /// True if KillInst cannot be modified. If this is true,
191 /// we cannot change LastInst's outgoing register.
192 /// This will be true for tied values and regmasks.
194 /// The "color" of LastInst. This will be the preferred chain color,
195 /// as changing intermediate nodes is easy but changing the last
196 /// instruction can be more tricky.
198
199 Chain(MachineInstr *MI, unsigned Idx, Color C)
200 : StartInst(MI), LastInst(MI), KillInst(nullptr),
201 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
202 LastColor(C) {
203 Insts.insert(MI);
204 }
205
206 /// Add a new instruction into the chain. The instruction's dest operand
207 /// has the given color.
208 void add(MachineInstr *MI, unsigned Idx, Color C) {
209 LastInst = MI;
210 LastInstIdx = Idx;
211 LastColor = C;
212 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
213 "Chain: broken invariant. A Chain can only be killed after its last "
214 "def");
215
216 Insts.insert(MI);
217 }
218
219 /// Return true if MI is a member of the chain.
220 bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
221
222 /// Return the number of instructions in the chain.
223 unsigned size() const {
224 return Insts.size();
225 }
226
227 /// Inform the chain that its last active register (the dest register of
228 /// LastInst) is killed by MI with no intervening uses or defs.
229 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
230 KillInst = MI;
231 KillInstIdx = Idx;
232 KillIsImmutable = Immutable;
233 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
234 "Chain: broken invariant. A Chain can only be killed after its last "
235 "def");
236 }
237
238 /// Return the first instruction in the chain.
239 MachineInstr *getStart() const { return StartInst; }
240 /// Return the last instruction in the chain.
241 MachineInstr *getLast() const { return LastInst; }
242 /// Return the "kill" instruction (as set with setKill()) or NULL.
243 MachineInstr *getKill() const { return KillInst; }
244 /// Return an instruction that can be used as an iterator for the end
245 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
247 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
248 }
249 MachineBasicBlock::iterator begin() const { return getStart(); }
250
251 /// Can the Kill instruction (assuming one exists) be modified?
252 bool isKillImmutable() const { return KillIsImmutable; }
253
254 /// Return the preferred color of this chain.
256 if (OverrideBalance != 0)
257 return OverrideBalance == 1 ? Color::Even : Color::Odd;
258 return LastColor;
259 }
260
261 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
262 bool rangeOverlapsWith(const Chain &Other) const {
263 unsigned End = KillInst ? KillInstIdx : LastInstIdx;
264 unsigned OtherEnd = Other.KillInst ?
265 Other.KillInstIdx : Other.LastInstIdx;
266
267 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
268 }
269
270 /// Return true if this chain starts before Other.
271 bool startsBefore(const Chain *Other) const {
272 return StartInstIdx < Other->StartInstIdx;
273 }
274
275 /// Return true if the group will require a fixup MOV at the end.
276 bool requiresFixup() const {
277 return (getKill() && isKillImmutable()) || !getKill();
278 }
279
280 /// Return a simple string representation of the chain.
281 std::string str() const {
282 std::string S;
284
285 OS << "{";
286 StartInst->print(OS, /* SkipOpers= */true);
287 OS << " -> ";
288 LastInst->print(OS, /* SkipOpers= */true);
289 if (KillInst) {
290 OS << " (kill @ ";
291 KillInst->print(OS, /* SkipOpers= */true);
292 OS << ")";
293 }
294 OS << "}";
295
296 return OS.str();
297 }
298
299};
300
301} // end anonymous namespace
302
303//===----------------------------------------------------------------------===//
304
305bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
306 if (skipFunction(F.getFunction()))
307 return false;
308
309 if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
310 return false;
311
312 bool Changed = false;
313 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
314
315 MRI = &F.getRegInfo();
316 TRI = F.getRegInfo().getTargetRegisterInfo();
318
319 for (auto &MBB : F) {
320 Changed |= runOnBasicBlock(MBB);
321 }
322
323 return Changed;
324}
325
326bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
327 bool Changed = false;
328 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
329 << " - scanning instructions...\n");
330
331 // First, scan the basic block producing a set of chains.
332
333 // The currently "active" chains - chains that can be added to and haven't
334 // been killed yet. This is keyed by register - all chains can only have one
335 // "link" register between each inst in the chain.
336 std::map<unsigned, Chain*> ActiveChains;
337 std::vector<std::unique_ptr<Chain>> AllChains;
338 unsigned Idx = 0;
339 for (auto &MI : MBB)
340 scanInstruction(&MI, Idx++, ActiveChains, AllChains);
341
342 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
343 << " chains created.\n");
344
345 // Group the chains into disjoint sets based on their liveness range. This is
346 // a poor-man's version of graph coloring. Ideally we'd create an interference
347 // graph and perform full-on graph coloring on that, but;
348 // (a) That's rather heavyweight for only two colors.
349 // (b) We expect multiple disjoint interference regions - in practice the live
350 // range of chains is quite small and they are clustered between loads
351 // and stores.
353 for (auto &I : AllChains)
354 EC.insert(I.get());
355
356 for (auto &I : AllChains)
357 for (auto &J : AllChains)
358 if (I != J && I->rangeOverlapsWith(*J))
359 EC.unionSets(I.get(), J.get());
360 LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
361
362 // Now we assume that every member of an equivalence class interferes
363 // with every other member of that class, and with no members of other classes.
364
365 // Convert the EquivalenceClasses to a simpler set of sets.
366 std::vector<std::vector<Chain*> > V;
367 for (const auto &E : EC) {
368 if (!E->isLeader())
369 continue;
370 std::vector<Chain *> Cs(EC.member_begin(*E), EC.member_end());
371 if (Cs.empty()) continue;
372 V.push_back(std::move(Cs));
373 }
374
375 // Now we have a set of sets, order them by start address so
376 // we can iterate over them sequentially.
377 llvm::sort(V,
378 [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
379 return A.front()->startsBefore(B.front());
380 });
381
382 // As we only have two colors, we can track the global (BB-level) balance of
383 // odds versus evens. We aim to keep this near zero to keep both execution
384 // units fed.
385 // Positive means we're even-heavy, negative we're odd-heavy.
386 //
387 // FIXME: If chains have interdependencies, for example:
388 // mul r0, r1, r2
389 // mul r3, r0, r1
390 // We do not model this and may color each one differently, assuming we'll
391 // get ILP when we obviously can't. This hasn't been seen to be a problem
392 // in practice so far, so we simplify the algorithm by ignoring it.
393 int Parity = 0;
394
395 for (auto &I : V)
396 Changed |= colorChainSet(std::move(I), MBB, Parity);
397
398 return Changed;
399}
400
401Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
402 std::vector<Chain*> &L) {
403 if (L.empty())
404 return nullptr;
405
406 // We try and get the best candidate from L to color next, given that our
407 // preferred color is "PreferredColor". L is ordered from larger to smaller
408 // chains. It is beneficial to color the large chains before the small chains,
409 // but if we can't find a chain of the maximum length with the preferred color,
410 // we fuzz the size and look for slightly smaller chains before giving up and
411 // returning a chain that must be recolored.
412
413 // FIXME: Does this need to be configurable?
414 const unsigned SizeFuzz = 1;
415 unsigned MinSize = L.front()->size() - SizeFuzz;
416 for (auto I = L.begin(), E = L.end(); I != E; ++I) {
417 if ((*I)->size() <= MinSize) {
418 // We've gone past the size limit. Return the previous item.
419 Chain *Ch = *--I;
420 L.erase(I);
421 return Ch;
422 }
423
424 if ((*I)->getPreferredColor() == PreferredColor) {
425 Chain *Ch = *I;
426 L.erase(I);
427 return Ch;
428 }
429 }
430
431 // Bailout case - just return the first item.
432 Chain *Ch = L.front();
433 L.erase(L.begin());
434 return Ch;
435}
436
437bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
439 int &Parity) {
440 bool Changed = false;
441 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
442
443 // Sort by descending size order so that we allocate the most important
444 // sets first.
445 // Tie-break equivalent sizes by sorting chains requiring fixups before
446 // those without fixups. The logic here is that we should look at the
447 // chains that we cannot change before we look at those we can,
448 // so the parity counter is updated and we know what color we should
449 // change them to!
450 // Final tie-break with instruction order so pass output is stable (i.e. not
451 // dependent on malloc'd pointer values).
452 llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
453 if (G1->size() != G2->size())
454 return G1->size() > G2->size();
455 if (G1->requiresFixup() != G2->requiresFixup())
456 return G1->requiresFixup() > G2->requiresFixup();
457 // Make sure startsBefore() produces a stable final order.
458 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
459 "Starts before not total order!");
460 return G1->startsBefore(G2);
461 });
462
463 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
464 while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
465 // Start off by assuming we'll color to our own preferred color.
466 Color C = PreferredColor;
467 if (Parity == 0)
468 // But if we really don't care, use the chain's preferred color.
469 C = G->getPreferredColor();
470
471 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
472 << ", Color=" << ColorNames[(int)C] << "\n");
473
474 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
475 // happens infrequently and when it does it has at least a 50% chance of
476 // slowing code down instead of speeding it up.
477 if (G->requiresFixup() && C != G->getPreferredColor()) {
478 C = G->getPreferredColor();
479 LLVM_DEBUG(dbgs() << " - " << G->str()
480 << " - not worthwhile changing; "
481 "color remains "
482 << ColorNames[(int)C] << "\n");
483 }
484
485 Changed |= colorChain(G, C, MBB);
486
487 Parity += (C == Color::Even) ? G->size() : -G->size();
488 PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
489 }
490
491 return Changed;
492}
493
494int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
496 // Can we find an appropriate register that is available throughout the life
497 // of the chain? Simulate liveness backwards until the end of the chain.
498 LiveRegUnits Units(*TRI);
499 Units.addLiveOuts(MBB);
501 MachineBasicBlock::iterator ChainEnd = G->end();
502 while (I != ChainEnd) {
503 --I;
504 Units.stepBackward(*I);
505 }
506
507 // Check which register units are alive throughout the chain.
508 MachineBasicBlock::iterator ChainBegin = G->begin();
509 assert(ChainBegin != ChainEnd && "Chain should contain instructions");
510 do {
511 --I;
512 Units.accumulate(*I);
513 } while (I != ChainBegin);
514
515 // Make sure we allocate in-order, to get the cheapest registers first.
516 unsigned RegClassID = ChainBegin->getDesc().operands()[0].RegClass;
517 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
518 for (auto Reg : Ord) {
519 if (!Units.available(Reg))
520 continue;
521 if (C == getColor(Reg))
522 return Reg;
523 }
524
525 return -1;
526}
527
528bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
530 bool Changed = false;
531 LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
532 << ColorNames[(int)C] << ")\n");
533
534 // Try and obtain a free register of the right class. Without a register
535 // to play with we cannot continue.
536 int Reg = scavengeRegister(G, C, MBB);
537 if (Reg == -1) {
538 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
539 return false;
540 }
541 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
542
543 std::map<unsigned, unsigned> Substs;
544 for (MachineInstr &I : *G) {
545 if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
546 continue;
547
548 // I is a member of G, or I is a mutable instruction that kills G.
549
550 std::vector<unsigned> ToErase;
551 for (auto &U : I.operands()) {
552 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
553 Register OrigReg = U.getReg();
554 U.setReg(Substs[OrigReg]);
555 if (U.isKill())
556 // Don't erase straight away, because there may be other operands
557 // that also reference this substitution!
558 ToErase.push_back(OrigReg);
559 } else if (U.isRegMask()) {
560 for (auto J : Substs) {
561 if (U.clobbersPhysReg(J.first))
562 ToErase.push_back(J.first);
563 }
564 }
565 }
566 // Now it's safe to remove the substs identified earlier.
567 for (auto J : ToErase)
568 Substs.erase(J);
569
570 // Only change the def if this isn't the last instruction.
571 if (&I != G->getKill()) {
572 MachineOperand &MO = I.getOperand(0);
573
574 bool Change = TransformAll || getColor(MO.getReg()) != C;
575 if (G->requiresFixup() && &I == G->getLast())
576 Change = false;
577
578 if (Change) {
579 Substs[MO.getReg()] = Reg;
580 MO.setReg(Reg);
581
582 Changed = true;
583 }
584 }
585 }
586 assert(Substs.size() == 0 && "No substitutions should be left active!");
587
588 if (G->getKill()) {
589 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
590 } else {
591 // We didn't have a kill instruction, but we didn't seem to need to change
592 // the destination register anyway.
593 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
594 }
595 return Changed;
596}
597
598void AArch64A57FPLoadBalancing::scanInstruction(
599 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
600 std::vector<std::unique_ptr<Chain>> &AllChains) {
601 // Inspect "MI", updating ActiveChains and AllChains.
602
603 if (isMul(MI)) {
604
605 for (auto &I : MI->uses())
606 maybeKillChain(I, Idx, ActiveChains);
607 for (auto &I : MI->defs())
608 maybeKillChain(I, Idx, ActiveChains);
609
610 // Create a new chain. Multiplies don't require forwarding so can go on any
611 // unit.
612 Register DestReg = MI->getOperand(0).getReg();
613
614 LLVM_DEBUG(dbgs() << "New chain started for register "
615 << printReg(DestReg, TRI) << " at " << *MI);
616
617 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
618 ActiveChains[DestReg] = G.get();
619 AllChains.push_back(std::move(G));
620
621 } else if (isMla(MI)) {
622
623 // It is beneficial to keep MLAs on the same functional unit as their
624 // accumulator operand.
625 Register DestReg = MI->getOperand(0).getReg();
626 Register AccumReg = MI->getOperand(3).getReg();
627
628 maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
629 maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
630 if (DestReg != AccumReg)
631 maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
632
633 if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
634 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
635 << printReg(AccumReg, TRI) << " in MI " << *MI);
636
637 // For simplicity we only chain together sequences of MULs/MLAs where the
638 // accumulator register is killed on each instruction. This means we don't
639 // need to track other uses of the registers we want to rewrite.
640 //
641 // FIXME: We could extend to handle the non-kill cases for more coverage.
642 if (MI->getOperand(3).isKill()) {
643 // Add to chain.
644 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
645 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
646 // Handle cases where the destination is not the same as the accumulator.
647 if (DestReg != AccumReg) {
648 ActiveChains[DestReg] = ActiveChains[AccumReg];
649 ActiveChains.erase(AccumReg);
650 }
651 return;
652 }
653
655 dbgs() << "Cannot add to chain because accumulator operand wasn't "
656 << "marked <kill>!\n");
657 maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
658 }
659
660 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
661 << printReg(DestReg, TRI) << "\n");
662 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
663 ActiveChains[DestReg] = G.get();
664 AllChains.push_back(std::move(G));
665
666 } else {
667
668 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
669 // lists.
670 for (auto &I : MI->uses())
671 maybeKillChain(I, Idx, ActiveChains);
672 for (auto &I : MI->defs())
673 maybeKillChain(I, Idx, ActiveChains);
674
675 }
676}
677
678void AArch64A57FPLoadBalancing::
679maybeKillChain(MachineOperand &MO, unsigned Idx,
680 std::map<unsigned, Chain*> &ActiveChains) {
681 // Given an operand and the set of active chains (keyed by register),
682 // determine if a chain should be ended and remove from ActiveChains.
683 MachineInstr *MI = MO.getParent();
684
685 if (MO.isReg()) {
686
687 // If this is a KILL of a current chain, record it.
688 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
689 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
690 << "\n");
691 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
692 }
693 ActiveChains.erase(MO.getReg());
694
695 } else if (MO.isRegMask()) {
696
697 for (auto I = ActiveChains.begin(), E = ActiveChains.end();
698 I != E;) {
699 if (MO.clobbersPhysReg(I->first)) {
700 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
701 << printReg(I->first, TRI) << "\n");
702 I->second->setKill(MI, Idx, /*Immutable=*/true);
703 ActiveChains.erase(I++);
704 } else
705 ++I;
706 }
707
708 }
709}
710
711Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
712 if ((TRI->getEncodingValue(Reg) % 2) == 0)
713 return Color::Even;
714 else
715 return Color::Odd;
716}
717
718// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
720 return new AArch64A57FPLoadBalancing();
721}
AArch64 A57 FP Load Balancing
static bool isMul(MachineInstr *MI)
static cl::opt< unsigned > OverrideBalance("aarch64-a57-fp-load-balancing-override", cl::desc("Ignore balance information, always return " "(1: Even, 2: Odd)."), cl::init(0), cl::Hidden)
static cl::opt< bool > TransformAll("aarch64-a57-fp-load-balancing-force-all", cl::desc("Always modify dest registers regardless of color"), cl::init(false), cl::Hidden)
#define DEBUG_TYPE
static bool isMla(MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1328
bool End
Definition: ELF_riscv.cpp:480
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
static bool runOnBasicBlock(MachineBasicBlock *MBB, unsigned BasicBlockNum, VRegRenamer &Renamer)
Register const TargetRegisterInfo * TRI
if(PassOpts->AAPipeline)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
This file declares the machine register scavenger class.
raw_pwrite_stream & OS
#define LLVM_DEBUG(...)
Definition: Debug.h:119
A Chain is a sequence of instructions that are linked together by an accumulation operand.
MachineBasicBlock::iterator begin() const
bool isKillImmutable() const
Can the Kill instruction (assuming one exists) be modified?
void add(MachineInstr *MI, unsigned Idx, Color C)
Add a new instruction into the chain.
bool contains(MachineInstr &MI)
Return true if MI is a member of the chain.
Color LastColor
The "color" of LastInst.
bool requiresFixup() const
Return true if the group will require a fixup MOV at the end.
MachineInstr * getLast() const
Return the last instruction in the chain.
bool KillIsImmutable
True if KillInst cannot be modified.
bool rangeOverlapsWith(const Chain &Other) const
Return true if this chain (StartInst..KillInst) overlaps with Other.
MachineInstr * getStart() const
Return the first instruction in the chain.
unsigned size() const
Return the number of instructions in the chain.
MachineBasicBlock::iterator end() const
Return an instruction that can be used as an iterator for the end of the chain.
void setKill(MachineInstr *MI, unsigned Idx, bool Immutable)
Inform the chain that its last active register (the dest register of LastInst) is killed by MI with n...
MachineInstr * getKill() const
Return the "kill" instruction (as set with setKill()) or NULL.
Color getPreferredColor()
Return the preferred color of this chain.
std::string str() const
Return a simple string representation of the chain.
std::set< MachineInstr * > Insts
All instructions in the chain.
Chain(MachineInstr *MI, unsigned Idx, Color C)
bool startsBefore(const Chain *Other) const
Return true if this chain starts before Other.
Represent the analysis usage information of a pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:270
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:31
MachineInstrBundleIterator< MachineInstr > iterator
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
Representation of each machine instruction.
Definition: MachineInstr.h:72
LLVM_ABI void print(raw_ostream &OS, bool IsStandalone=true, bool SkipOpers=false, bool SkipDebugLoc=false, bool AddNewLine=true, const TargetInstrInfo *TII=nullptr) const
Print this MI to OS.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
LLVM_ABI void runOnMachineFunction(const MachineFunction &MF, bool Rev=false)
runOnFunction - Prepare to answer questions about MF.
ArrayRef< MCPhysReg > getOrder(const TargetRegisterClass *RC) const
getOrder - Returns the preferred allocation order for RC.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:662
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
FunctionPass * createAArch64A57FPLoadBalancing()
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1669
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.