41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsR600.h"
53#define DEBUG_TYPE "si-lower"
59 cl::desc(
"Do not align and prefetch loops"),
63 "amdgpu-use-divergent-register-indexing",
cl::Hidden,
64 cl::desc(
"Use indirect register addressing for divergent indexes"),
78 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
79 for (
unsigned Reg = 0;
Reg < NumSGPRs; ++
Reg) {
81 return AMDGPU::SGPR0 +
Reg;
153 if (Subtarget->has16BitInsts()) {
154 if (Subtarget->useRealTrue16Insts()) {
196 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
197 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
198 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
199 MVT::i1, MVT::v32i32},
203 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
204 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
205 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
206 MVT::i1, MVT::v32i32},
213 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT,
214 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI,
215 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2,
216 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10,
217 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT,
275 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1},
Expand);
282 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
283 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
284 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
287 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
288 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
289 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
293 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
294 MVT::v3i16, MVT::v4i16, MVT::Other},
299 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64},
Expand);
315 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
316 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
317 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
318 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
319 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
320 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
321 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
322 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
354 for (
MVT Vec64 : {MVT::v2i64, MVT::v2f64}) {
368 for (
MVT Vec64 : {MVT::v3i64, MVT::v3f64}) {
382 for (
MVT Vec64 : {MVT::v4i64, MVT::v4f64}) {
396 for (
MVT Vec64 : {MVT::v8i64, MVT::v8f64}) {
410 for (
MVT Vec64 : {MVT::v16i64, MVT::v16f64}) {
425 {MVT::v4i32, MVT::v4f32, MVT::v8i32, MVT::v8f32,
426 MVT::v16i32, MVT::v16f32, MVT::v32i32, MVT::v32f32},
429 if (Subtarget->hasPkMovB32()) {
450 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
451 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
456 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32},
Custom);
460 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
461 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
462 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
463 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
487 if (Subtarget->hasSMemRealTime() ||
492 if (Subtarget->has16BitInsts()) {
499 if (Subtarget->hasMadMacF32Insts())
502 if (!Subtarget->hasBFI())
506 if (!Subtarget->hasBCNT(32))
509 if (!Subtarget->hasBCNT(64))
512 if (Subtarget->hasFFBH())
515 if (Subtarget->hasFFBL())
526 if (Subtarget->hasBFE())
530 if (Subtarget->hasIntClamp())
533 if (Subtarget->hasAddNoCarry())
538 {ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
539 {MVT::f32, MVT::f64},
Custom);
545 {MVT::f32, MVT::f64},
Legal);
547 if (Subtarget->haveRoundOpsF64())
570 if (Subtarget->has16BitInsts()) {
619 ISD::FSIN, ISD::FROUND},
623 if (Subtarget->hasBF16TransInsts())
642 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
643 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
644 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
777 {MVT::v2f16, MVT::v2bf16, MVT::v4f16, MVT::v4bf16,
778 MVT::v8f16, MVT::v8bf16, MVT::v16f16, MVT::v16bf16,
779 MVT::v32f16, MVT::v32bf16},
783 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
789 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
793 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
797 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
798 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
806 if (Subtarget->hasVOP3PInsts()) {
817 {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
Custom);
820 {MVT::v4f16, MVT::v4i16, MVT::v4bf16, MVT::v8f16,
821 MVT::v8i16, MVT::v8bf16, MVT::v16f16, MVT::v16i16,
822 MVT::v16bf16, MVT::v32f16, MVT::v32i16, MVT::v32bf16},
825 for (
MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
833 for (
MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
839 {ISD::FMAXNUM, ISD::FMINNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM},
840 {MVT::v2f16, MVT::v4f16},
Custom);
846 if (Subtarget->hasBF16PackedInsts()) {
847 for (
MVT VT : {MVT::v4bf16, MVT::v8bf16, MVT::v16bf16, MVT::v32bf16})
853 if (Subtarget->hasPackedFP32Ops()) {
857 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
864 if (Subtarget->has16BitInsts()) {
877 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
878 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
879 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
880 MVT::v32f16, MVT::v32bf16},
885 if (Subtarget->hasVectorMulU64())
887 else if (Subtarget->hasScalarSMulU64())
890 if (Subtarget->hasMad64_32())
893 if (Subtarget->hasSafeSmemPrefetch() || Subtarget->hasVmemPrefInsts())
896 if (Subtarget->hasIEEEMinimumMaximumInsts()) {
898 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16},
Legal);
901 if (Subtarget->hasMinimum3Maximum3F32())
904 if (Subtarget->hasMinimum3Maximum3PKF16()) {
908 if (!Subtarget->hasMinimum3Maximum3F16())
913 if (Subtarget->hasVOP3PInsts()) {
916 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
920 if (Subtarget->hasIntMinMax64())
925 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
926 MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128,
931 {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16,
932 MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16,
933 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16,
934 MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
938 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16,
939 MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16,
940 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
941 MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
956 if (Subtarget->hasBF16ConversionInsts()) {
961 if (Subtarget->hasBF16PackedInsts()) {
967 if (Subtarget->hasBF16TransInsts()) {
971 if (Subtarget->hasCvtPkF16F32Inst()) {
973 {MVT::v2f16, MVT::v4f16, MVT::v8f16, MVT::v16f16},
1023 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
1032 ISD::ATOMIC_CMP_SWAP,
1033 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
1035 ISD::ATOMIC_LOAD_ADD,
1036 ISD::ATOMIC_LOAD_SUB,
1037 ISD::ATOMIC_LOAD_AND,
1038 ISD::ATOMIC_LOAD_OR,
1039 ISD::ATOMIC_LOAD_XOR,
1040 ISD::ATOMIC_LOAD_NAND,
1041 ISD::ATOMIC_LOAD_MIN,
1042 ISD::ATOMIC_LOAD_MAX,
1043 ISD::ATOMIC_LOAD_UMIN,
1044 ISD::ATOMIC_LOAD_UMAX,
1045 ISD::ATOMIC_LOAD_FADD,
1046 ISD::ATOMIC_LOAD_FMIN,
1047 ISD::ATOMIC_LOAD_FMAX,
1048 ISD::ATOMIC_LOAD_UINC_WRAP,
1049 ISD::ATOMIC_LOAD_UDEC_WRAP,
1062 static const MCPhysReg RCRegs[] = {AMDGPU::MODE};
1075 EVT DestVT,
EVT SrcVT)
const {
1077 ((((Opcode ==
ISD::FMAD && Subtarget->hasMadMixInsts()) ||
1078 (Opcode ==
ISD::FMA && Subtarget->hasFmaMixInsts())) &&
1080 (Opcode ==
ISD::FMA && Subtarget->hasFmaMixBF16Insts() &&
1087 LLT DestTy,
LLT SrcTy)
const {
1088 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
1089 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
1091 SrcTy.getScalarSizeInBits() == 16 &&
1112 if (Subtarget->has16BitInsts()) {
1115 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1117 return VT.
isInteger() ? MVT::i32 : MVT::f32;
1121 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1143 if (
Size == 16 && Subtarget->has16BitInsts())
1144 return (NumElts + 1) / 2;
1150 return NumElts * ((
Size + 31) / 32);
1159 unsigned &NumIntermediates,
MVT &RegisterVT)
const {
1167 if (
Size == 16 && Subtarget->has16BitInsts()) {
1168 if (ScalarVT == MVT::bf16) {
1169 RegisterVT = MVT::i32;
1170 IntermediateVT = MVT::v2bf16;
1172 RegisterVT = VT.
isInteger() ? MVT::v2i16 : MVT::v2f16;
1173 IntermediateVT = RegisterVT;
1175 NumIntermediates = (NumElts + 1) / 2;
1176 return NumIntermediates;
1181 IntermediateVT = RegisterVT;
1182 NumIntermediates = NumElts;
1183 return NumIntermediates;
1188 RegisterVT = MVT::i16;
1189 IntermediateVT = ScalarVT;
1190 NumIntermediates = NumElts;
1191 return NumIntermediates;
1195 RegisterVT = MVT::i32;
1196 IntermediateVT = ScalarVT;
1197 NumIntermediates = NumElts;
1198 return NumIntermediates;
1202 RegisterVT = MVT::i32;
1203 IntermediateVT = RegisterVT;
1204 NumIntermediates = NumElts * ((
Size + 31) / 32);
1205 return NumIntermediates;
1210 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1215 unsigned MaxNumLanes) {
1216 assert(MaxNumLanes != 0);
1220 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1231 unsigned MaxNumLanes) {
1237 assert(ST->getNumContainedTypes() == 2 &&
1238 ST->getContainedType(1)->isIntegerTy(32));
1252 return MVT::amdgpuBufferFatPointer;
1254 DL.getPointerSizeInBits(AS) == 192)
1255 return MVT::amdgpuBufferStridedPointer;
1264 DL.getPointerSizeInBits(AS) == 160) ||
1266 DL.getPointerSizeInBits(AS) == 192))
1273 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1274 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1275 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1277 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1278 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1279 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1280 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1281 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1283 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1284 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1285 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1286 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1287 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1289 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1290 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1291 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1292 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
1293 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
1332 unsigned IntrID)
const {
1334 if (CI.
hasMetadata(LLVMContext::MD_invariant_load))
1352 if (RsrcIntr->IsImage) {
1367 Info.ptrVal = RsrcArg;
1370 bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data;
1379 if (RsrcIntr->IsImage) {
1380 unsigned MaxNumLanes = 4;
1395 std::numeric_limits<unsigned>::max());
1405 if (RsrcIntr->IsImage) {
1426 if ((RsrcIntr->IsImage && BaseOpcode->
NoReturn) || IsSPrefetch) {
1428 Info.memVT = MVT::i32;
1435 case Intrinsic::amdgcn_raw_buffer_load_lds:
1436 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1437 case Intrinsic::amdgcn_struct_buffer_load_lds:
1438 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1444 case Intrinsic::amdgcn_raw_atomic_buffer_load:
1445 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
1446 case Intrinsic::amdgcn_struct_atomic_buffer_load:
1447 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
1450 std::numeric_limits<unsigned>::max());
1460 case Intrinsic::amdgcn_ds_ordered_add:
1461 case Intrinsic::amdgcn_ds_ordered_swap: {
1474 case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1475 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1478 Info.ptrVal =
nullptr;
1483 case Intrinsic::amdgcn_ds_append:
1484 case Intrinsic::amdgcn_ds_consume: {
1497 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1498 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64: {
1499 Info.opc = (IntrID == Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64)
1504 Info.memVT = MVT::i64;
1510 case Intrinsic::amdgcn_global_atomic_csub: {
1519 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
1520 case Intrinsic::amdgcn_image_bvh_intersect_ray:
1521 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
1524 MVT::getVT(IntrID == Intrinsic::amdgcn_image_bvh_intersect_ray
1527 ->getElementType(0));
1535 case Intrinsic::amdgcn_global_atomic_fmin_num:
1536 case Intrinsic::amdgcn_global_atomic_fmax_num:
1537 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1538 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1539 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1540 case Intrinsic::amdgcn_atomic_cond_sub_u32: {
1550 case Intrinsic::amdgcn_flat_load_monitor_b32:
1551 case Intrinsic::amdgcn_flat_load_monitor_b64:
1552 case Intrinsic::amdgcn_flat_load_monitor_b128:
1553 case Intrinsic::amdgcn_global_load_monitor_b32:
1554 case Intrinsic::amdgcn_global_load_monitor_b64:
1555 case Intrinsic::amdgcn_global_load_monitor_b128:
1556 case Intrinsic::amdgcn_cluster_load_b32:
1557 case Intrinsic::amdgcn_cluster_load_b64:
1558 case Intrinsic::amdgcn_cluster_load_b128:
1559 case Intrinsic::amdgcn_ds_load_tr6_b96:
1560 case Intrinsic::amdgcn_ds_load_tr4_b64:
1561 case Intrinsic::amdgcn_ds_load_tr8_b64:
1562 case Intrinsic::amdgcn_ds_load_tr16_b128:
1563 case Intrinsic::amdgcn_global_load_tr6_b96:
1564 case Intrinsic::amdgcn_global_load_tr4_b64:
1565 case Intrinsic::amdgcn_global_load_tr_b64:
1566 case Intrinsic::amdgcn_global_load_tr_b128:
1567 case Intrinsic::amdgcn_ds_read_tr4_b64:
1568 case Intrinsic::amdgcn_ds_read_tr6_b96:
1569 case Intrinsic::amdgcn_ds_read_tr8_b64:
1570 case Intrinsic::amdgcn_ds_read_tr16_b64: {
1578 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
1579 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
1580 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
1588 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
1589 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
1590 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
1598 case Intrinsic::amdgcn_ds_gws_init:
1599 case Intrinsic::amdgcn_ds_gws_barrier:
1600 case Intrinsic::amdgcn_ds_gws_sema_v:
1601 case Intrinsic::amdgcn_ds_gws_sema_br:
1602 case Intrinsic::amdgcn_ds_gws_sema_p:
1603 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1613 Info.memVT = MVT::i32;
1615 Info.align =
Align(4);
1617 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1623 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1624 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1625 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1626 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1627 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1628 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1629 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1630 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128: {
1637 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1638 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1639 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1640 case Intrinsic::amdgcn_global_store_async_from_lds_b128: {
1647 case Intrinsic::amdgcn_load_to_lds:
1648 case Intrinsic::amdgcn_global_load_lds: {
1656 case Intrinsic::amdgcn_ds_bvh_stack_rtn:
1657 case Intrinsic::amdgcn_ds_bvh_stack_push4_pop1_rtn:
1658 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop1_rtn:
1659 case Intrinsic::amdgcn_ds_bvh_stack_push8_pop2_rtn: {
1669 Info.memVT = MVT::i32;
1671 Info.align =
Align(4);
1676 case Intrinsic::amdgcn_s_prefetch_data:
1677 case Intrinsic::amdgcn_flat_prefetch:
1678 case Intrinsic::amdgcn_global_prefetch: {
1693 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1696 unsigned SrcAS =
I.getOperand(0)->getType()->getPointerAddressSpace();
1697 unsigned DstAS =
I.getType()->getPointerAddressSpace();
1709 Type *&AccessTy)
const {
1711 switch (
II->getIntrinsicID()) {
1712 case Intrinsic::amdgcn_atomic_cond_sub_u32:
1713 case Intrinsic::amdgcn_cluster_load_b128:
1714 case Intrinsic::amdgcn_cluster_load_b64:
1715 case Intrinsic::amdgcn_cluster_load_b32:
1716 case Intrinsic::amdgcn_ds_append:
1717 case Intrinsic::amdgcn_ds_consume:
1718 case Intrinsic::amdgcn_ds_load_tr8_b64:
1719 case Intrinsic::amdgcn_ds_load_tr16_b128:
1720 case Intrinsic::amdgcn_ds_load_tr4_b64:
1721 case Intrinsic::amdgcn_ds_load_tr6_b96:
1722 case Intrinsic::amdgcn_ds_read_tr4_b64:
1723 case Intrinsic::amdgcn_ds_read_tr6_b96:
1724 case Intrinsic::amdgcn_ds_read_tr8_b64:
1725 case Intrinsic::amdgcn_ds_read_tr16_b64:
1726 case Intrinsic::amdgcn_ds_ordered_add:
1727 case Intrinsic::amdgcn_ds_ordered_swap:
1728 case Intrinsic::amdgcn_ds_atomic_async_barrier_arrive_b64:
1729 case Intrinsic::amdgcn_ds_atomic_barrier_arrive_rtn_b64:
1730 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1731 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1732 case Intrinsic::amdgcn_flat_load_monitor_b128:
1733 case Intrinsic::amdgcn_flat_load_monitor_b32:
1734 case Intrinsic::amdgcn_flat_load_monitor_b64:
1735 case Intrinsic::amdgcn_global_atomic_csub:
1736 case Intrinsic::amdgcn_global_atomic_fmax_num:
1737 case Intrinsic::amdgcn_global_atomic_fmin_num:
1738 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1739 case Intrinsic::amdgcn_global_load_monitor_b128:
1740 case Intrinsic::amdgcn_global_load_monitor_b32:
1741 case Intrinsic::amdgcn_global_load_monitor_b64:
1742 case Intrinsic::amdgcn_global_load_tr_b64:
1743 case Intrinsic::amdgcn_global_load_tr_b128:
1744 case Intrinsic::amdgcn_global_load_tr4_b64:
1745 case Intrinsic::amdgcn_global_load_tr6_b96:
1746 case Intrinsic::amdgcn_global_store_async_from_lds_b8:
1747 case Intrinsic::amdgcn_global_store_async_from_lds_b32:
1748 case Intrinsic::amdgcn_global_store_async_from_lds_b64:
1749 case Intrinsic::amdgcn_global_store_async_from_lds_b128:
1750 Ptr =
II->getArgOperand(0);
1752 case Intrinsic::amdgcn_load_to_lds:
1753 case Intrinsic::amdgcn_global_load_lds:
1754 case Intrinsic::amdgcn_global_load_async_to_lds_b8:
1755 case Intrinsic::amdgcn_global_load_async_to_lds_b32:
1756 case Intrinsic::amdgcn_global_load_async_to_lds_b64:
1757 case Intrinsic::amdgcn_global_load_async_to_lds_b128:
1758 case Intrinsic::amdgcn_cluster_load_async_to_lds_b8:
1759 case Intrinsic::amdgcn_cluster_load_async_to_lds_b32:
1760 case Intrinsic::amdgcn_cluster_load_async_to_lds_b64:
1761 case Intrinsic::amdgcn_cluster_load_async_to_lds_b128:
1762 Ptr =
II->getArgOperand(1);
1767 AccessTy =
II->getType();
1773 unsigned AddrSpace)
const {
1774 if (!Subtarget->hasFlatInstOffsets()) {
1785 return AM.
Scale == 0 &&
1786 (AM.
BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1787 AM.
BaseOffs, AddrSpace, FlatVariant));
1791 if (Subtarget->hasFlatGlobalInsts())
1794 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1807 return isLegalMUBUFAddressingMode(AM);
1810bool SITargetLowering::isLegalMUBUFAddressingMode(
const AddrMode &AM)
const {
1821 if (!
TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1833 if (AM.HasBaseReg) {
1865 return isLegalMUBUFAddressingMode(AM);
1867 if (!Subtarget->hasScalarSubwordLoads()) {
1872 if (Ty->isSized() &&
DL.getTypeStoreSize(Ty) < 4)
1920 return Subtarget->enableFlatScratch()
1922 : isLegalMUBUFAddressingMode(AM);
1969 unsigned Size,
unsigned AddrSpace,
Align Alignment,
1978 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment <
Align(4))
1981 Align RequiredAlignment(
1983 if (Subtarget->hasLDSMisalignedBug() &&
Size > 32 &&
1984 Alignment < RequiredAlignment)
1999 if (!Subtarget->hasUsableDSOffset() && Alignment <
Align(8))
2005 RequiredAlignment =
Align(4);
2007 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2023 *IsFast = (Alignment >= RequiredAlignment) ? 64
2024 : (Alignment <
Align(4)) ? 32
2031 if (!Subtarget->hasDS96AndDS128())
2037 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2046 *IsFast = (Alignment >= RequiredAlignment) ? 96
2047 : (Alignment <
Align(4)) ? 32
2054 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
2060 RequiredAlignment =
Align(8);
2062 if (Subtarget->hasUnalignedDSAccessEnabled()) {
2071 *IsFast = (Alignment >= RequiredAlignment) ? 128
2072 : (Alignment <
Align(4)) ? 32
2089 *IsFast = (Alignment >= RequiredAlignment) ?
Size : 0;
2091 return Alignment >= RequiredAlignment ||
2092 Subtarget->hasUnalignedDSAccessEnabled();
2100 bool AlignedBy4 = Alignment >=
Align(4);
2101 if (Subtarget->hasUnalignedScratchAccessEnabled()) {
2103 *IsFast = AlignedBy4 ?
Size : 1;
2108 *IsFast = AlignedBy4;
2119 return Alignment >=
Align(4) ||
2120 Subtarget->hasUnalignedBufferAccessEnabled();
2132 if (!Subtarget->hasRelaxedBufferOOBMode() &&
2147 return Size >= 32 && Alignment >=
Align(4);
2152 unsigned *IsFast)
const {
2154 Alignment, Flags, IsFast);
2159 const AttributeList &FuncAttributes)
const {
2165 if (
Op.size() >= 16 &&
2169 if (
Op.size() >= 8 &&
Op.isDstAligned(
Align(4)))
2187 unsigned DestAS)
const {
2190 Subtarget->hasGloballyAddressableScratch()) {
2220 unsigned Index)
const {
2236 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
2263 auto [InputPtrReg, RC, ArgTy] =
2273 Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
2279 const SDLoc &SL)
const {
2286 const SDLoc &SL)
const {
2289 std::optional<uint32_t> KnownSize =
2291 if (KnownSize.has_value())
2317 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
2326SDValue SITargetLowering::lowerKernargMemParameter(
2338 int64_t OffsetDiff =
Offset - AlignDownOffset;
2344 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
2353 ArgVal = DAG.
getNode(ISD::BITCAST, SL, MemVT, ArgVal);
2354 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal,
Signed, Arg);
2364 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load,
Signed, Arg);
2373 const SDLoc &SL)
const {
2383 return DAG.
getNode(ISD::BITCAST, SL, ValVT, Val);
2442 ExtType, SL, VA.
getLocVT(), Chain, FIN,
2445 SDValue ConvertedVal = convertABITypeToValueType(DAG, ArgValue, VA, SL);
2446 if (ConvertedVal == ArgValue)
2447 return ConvertedVal;
2452SDValue SITargetLowering::lowerWorkGroupId(
2457 if (!Subtarget->hasClusters())
2458 return getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2466 SDValue ClusterIdXYZ = getPreloadedValue(DAG, MFI, VT, WorkGroupIdPV);
2467 SDLoc SL(ClusterIdXYZ);
2468 SDValue ClusterMaxIdXYZ = getPreloadedValue(DAG, MFI, VT, ClusterMaxIdPV);
2471 SDValue ClusterWorkGroupIdXYZ =
2472 getPreloadedValue(DAG, MFI, VT, ClusterWorkGroupIdPV);
2482 return ClusterIdXYZ;
2484 using namespace AMDGPU::Hwreg;
2488 DAG.
getMachineNode(AMDGPU::S_GETREG_B32_const, SL, VT, ClusterIdField);
2499SDValue SITargetLowering::getPreloadedValue(
2502 const ArgDescriptor *
Reg =
nullptr;
2503 const TargetRegisterClass *RC;
2507 const ArgDescriptor WorkGroupIDX =
2515 const ArgDescriptor WorkGroupIDZ =
2517 const ArgDescriptor ClusterWorkGroupIDX =
2519 const ArgDescriptor ClusterWorkGroupIDY =
2521 const ArgDescriptor ClusterWorkGroupIDZ =
2523 const ArgDescriptor ClusterWorkGroupMaxIDX =
2525 const ArgDescriptor ClusterWorkGroupMaxIDY =
2527 const ArgDescriptor ClusterWorkGroupMaxIDZ =
2529 const ArgDescriptor ClusterWorkGroupMaxFlatID =
2532 auto LoadConstant = [&](
unsigned N) {
2536 if (Subtarget->hasArchitectedSGPRs() &&
2543 Reg = &WorkGroupIDX;
2544 RC = &AMDGPU::SReg_32RegClass;
2548 Reg = &WorkGroupIDY;
2549 RC = &AMDGPU::SReg_32RegClass;
2553 Reg = &WorkGroupIDZ;
2554 RC = &AMDGPU::SReg_32RegClass;
2558 if (HasFixedDims && ClusterDims.
getDims()[0] == 1)
2559 return LoadConstant(0);
2560 Reg = &ClusterWorkGroupIDX;
2561 RC = &AMDGPU::SReg_32RegClass;
2565 if (HasFixedDims && ClusterDims.
getDims()[1] == 1)
2566 return LoadConstant(0);
2567 Reg = &ClusterWorkGroupIDY;
2568 RC = &AMDGPU::SReg_32RegClass;
2572 if (HasFixedDims && ClusterDims.
getDims()[2] == 1)
2573 return LoadConstant(0);
2574 Reg = &ClusterWorkGroupIDZ;
2575 RC = &AMDGPU::SReg_32RegClass;
2580 return LoadConstant(ClusterDims.
getDims()[0] - 1);
2581 Reg = &ClusterWorkGroupMaxIDX;
2582 RC = &AMDGPU::SReg_32RegClass;
2587 return LoadConstant(ClusterDims.
getDims()[1] - 1);
2588 Reg = &ClusterWorkGroupMaxIDY;
2589 RC = &AMDGPU::SReg_32RegClass;
2594 return LoadConstant(ClusterDims.
getDims()[2] - 1);
2595 Reg = &ClusterWorkGroupMaxIDZ;
2596 RC = &AMDGPU::SReg_32RegClass;
2600 Reg = &ClusterWorkGroupMaxFlatID;
2601 RC = &AMDGPU::SReg_32RegClass;
2632 for (
unsigned I = 0,
E = Ins.size(), PSInputNum = 0;
I !=
E; ++
I) {
2636 "vector type argument should have been split");
2641 bool SkipArg = !Arg->
Used && !
Info->isPSInputAllocated(PSInputNum);
2649 "unexpected vector split in ps argument type");
2663 Info->markPSInputAllocated(PSInputNum);
2665 Info->markPSInputEnabled(PSInputNum);
2681 if (Info.hasWorkItemIDX()) {
2687 (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
2691 if (Info.hasWorkItemIDY()) {
2692 assert(Info.hasWorkItemIDX());
2693 if (Subtarget->hasPackedTID()) {
2694 Info.setWorkItemIDY(
2697 unsigned Reg = AMDGPU::VGPR1;
2705 if (Info.hasWorkItemIDZ()) {
2706 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2707 if (Subtarget->hasPackedTID()) {
2708 Info.setWorkItemIDZ(
2711 unsigned Reg = AMDGPU::VGPR2;
2731 if (RegIdx == ArgVGPRs.
size()) {
2738 unsigned Reg = ArgVGPRs[RegIdx];
2750 unsigned NumArgRegs) {
2753 if (RegIdx == ArgSGPRs.
size())
2756 unsigned Reg = ArgSGPRs[RegIdx];
2798 const unsigned Mask = 0x3ff;
2801 if (Info.hasWorkItemIDX()) {
2803 Info.setWorkItemIDX(Arg);
2806 if (Info.hasWorkItemIDY()) {
2808 Info.setWorkItemIDY(Arg);
2811 if (Info.hasWorkItemIDZ())
2823 const unsigned Mask = 0x3ff;
2832 auto &
ArgInfo = Info.getArgInfo();
2844 if (Info.hasImplicitArgPtr())
2852 if (Info.hasWorkGroupIDX())
2855 if (Info.hasWorkGroupIDY())
2858 if (Info.hasWorkGroupIDZ())
2861 if (Info.hasLDSKernelId())
2872 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(
TRI);
2873 MF.
addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2879 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(
TRI);
2880 MF.
addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2885 Register DispatchPtrReg = Info.addDispatchPtr(
TRI);
2886 MF.
addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2892 MF.
addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2898 Register InputPtrReg = Info.addKernargSegmentPtr(
TRI);
2907 MF.
addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2912 Register FlatScratchInitReg = Info.addFlatScratchInit(
TRI);
2913 MF.
addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2918 Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(
TRI);
2919 MF.
addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass);
2934 unsigned LastExplicitArgOffset = Subtarget->getExplicitKernelArgOffset();
2936 bool InPreloadSequence =
true;
2938 bool AlignedForImplictArgs =
false;
2939 unsigned ImplicitArgOffset = 0;
2940 for (
auto &Arg :
F.args()) {
2941 if (!InPreloadSequence || !Arg.hasInRegAttr())
2944 unsigned ArgIdx = Arg.getArgNo();
2947 if (InIdx < Ins.size() &&
2948 (!Ins[InIdx].isOrigArg() || Ins[InIdx].getOrigArgIndex() != ArgIdx))
2951 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2952 Ins[InIdx].getOrigArgIndex() == ArgIdx;
2954 assert(ArgLocs[ArgIdx].isMemLoc());
2955 auto &ArgLoc = ArgLocs[InIdx];
2957 unsigned ArgOffset = ArgLoc.getLocMemOffset();
2959 unsigned NumAllocSGPRs =
2960 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2963 if (Arg.hasAttribute(
"amdgpu-hidden-argument")) {
2964 if (!AlignedForImplictArgs) {
2966 alignTo(LastExplicitArgOffset,
2967 Subtarget->getAlignmentForImplicitArgPtr()) -
2968 LastExplicitArgOffset;
2969 AlignedForImplictArgs =
true;
2971 ArgOffset += ImplicitArgOffset;
2975 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2976 assert(InIdx >= 1 &&
"No previous SGPR");
2977 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2978 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2982 unsigned Padding = ArgOffset - LastExplicitArgOffset;
2983 unsigned PaddingSGPRs =
alignTo(Padding, 4) / 4;
2986 InPreloadSequence =
false;
2992 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2994 Info.addPreloadedKernArg(
TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2996 if (PreloadRegs->
size() > 1)
2997 RC = &AMDGPU::SGPR_32RegClass;
2998 for (
auto &Reg : *PreloadRegs) {
3004 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
3013 if (Info.hasLDSKernelId()) {
3014 Register Reg = Info.addLDSKernelId();
3015 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3024 bool IsShader)
const {
3025 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
3026 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
3032 assert(!HasArchitectedSGPRs &&
"Unhandled feature for the subtarget");
3034 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
3038 unsigned NumRequiredSystemSGPRs =
3039 Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() +
3040 Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo();
3041 for (
unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
3042 Register Reg = Info.addReservedUserSGPR();
3043 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3048 if (!HasArchitectedSGPRs) {
3049 if (Info.hasWorkGroupIDX()) {
3050 Register Reg = Info.addWorkGroupIDX();
3051 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3055 if (Info.hasWorkGroupIDY()) {
3056 Register Reg = Info.addWorkGroupIDY();
3057 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3061 if (Info.hasWorkGroupIDZ()) {
3062 Register Reg = Info.addWorkGroupIDZ();
3063 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3068 if (Info.hasWorkGroupInfo()) {
3069 Register Reg = Info.addWorkGroupInfo();
3070 MF.
addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
3074 if (Info.hasPrivateSegmentWaveByteOffset()) {
3076 unsigned PrivateSegmentWaveByteOffsetReg;
3079 PrivateSegmentWaveByteOffsetReg =
3080 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
3084 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
3086 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
3089 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
3091 MF.
addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
3092 CCInfo.
AllocateReg(PrivateSegmentWaveByteOffsetReg);
3095 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
3096 Info.getNumPreloadedSGPRs() >= 16);
3111 if (HasStackObjects)
3112 Info.setHasNonSpillStackObjects(
true);
3117 HasStackObjects =
true;
3121 bool RequiresStackAccess = HasStackObjects || MFI.
hasCalls();
3123 if (!ST.enableFlatScratch()) {
3124 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.
getFunction())) {
3131 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
3133 unsigned ReservedBufferReg =
TRI.reservedPrivateSegmentBufferReg(MF);
3143 Info.setScratchRSrcReg(ReservedBufferReg);
3162 if (!
MRI.isLiveIn(AMDGPU::SGPR32)) {
3163 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
3170 for (
unsigned Reg : AMDGPU::SGPR_32RegClass) {
3171 if (!
MRI.isLiveIn(
Reg)) {
3172 Info.setStackPtrOffsetReg(
Reg);
3177 if (
Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
3184 if (ST.getFrameLowering()->hasFP(MF)) {
3185 Info.setFrameOffsetReg(AMDGPU::SGPR33);
3201 const MCPhysReg *IStart =
TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
3210 if (AMDGPU::SReg_64RegClass.
contains(*
I))
3211 RC = &AMDGPU::SGPR_64RegClass;
3212 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
3213 RC = &AMDGPU::SGPR_32RegClass;
3219 Entry->addLiveIn(*
I);
3224 for (
auto *Exit : Exits)
3226 TII->get(TargetOpcode::COPY), *
I)
3241 bool IsError =
false;
3245 Fn,
"unsupported non-compute shaders with HSA",
DL.getDebugLoc()));
3263 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
3264 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
3266 if (!Subtarget->enableFlatScratch())
3271 !Subtarget->hasArchitectedSGPRs())
3272 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
3273 !Info->hasWorkGroupIDZ());
3276 bool IsWholeWaveFunc = Info->isWholeWaveFunction();
3294 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
3295 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
3298 Info->markPSInputAllocated(0);
3299 Info->markPSInputEnabled(0);
3301 if (Subtarget->isAmdPalOS()) {
3310 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
3311 if ((PsInputBits & 0x7F) == 0 ||
3312 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
3315 }
else if (IsKernel) {
3316 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
3318 Splits.
append(IsWholeWaveFunc ? std::next(Ins.begin()) : Ins.begin(),
3328 if (IsKernel && Subtarget->hasKernargPreload())
3332 }
else if (!IsGraphics) {
3337 if (!Subtarget->enableFlatScratch())
3349 Info->setNumWaveDispatchSGPRs(
3351 Info->setNumWaveDispatchVGPRs(
3353 }
else if (Info->getNumKernargPreloadedSGPRs()) {
3354 Info->setNumWaveDispatchSGPRs(Info->getNumUserSGPRs());
3359 if (IsWholeWaveFunc) {
3361 {MVT::i1, MVT::Other}, Chain);
3373 for (
unsigned i = IsWholeWaveFunc ? 1 : 0, e = Ins.size(), ArgIdx = 0; i != e;
3384 if (IsEntryFunc && VA.
isMemLoc()) {
3407 if (Arg.
isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
3411 int64_t OffsetDiff =
Offset - AlignDownOffset;
3418 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
3428 ArgVal = DAG.
getNode(ISD::BITCAST,
DL, MemVT, ArgVal);
3429 NewArg = convertArgType(DAG, VT, MemVT,
DL, ArgVal,
3430 Ins[i].Flags.isSExt(), &Ins[i]);
3438 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
3441 if (PreloadRegs.
size() == 1) {
3442 Register VReg =
MRI.getLiveInVirtReg(PreloadRegs[0]);
3447 TRI->getRegSizeInBits(*RC)));
3455 for (
auto Reg : PreloadRegs) {
3462 PreloadRegs.size()),
3479 NewArg = convertArgType(DAG, VT, MemVT,
DL, NewArg,
3480 Ins[i].Flags.isSExt(), &Ins[i]);
3492 "hidden argument in kernel signature was not preloaded",
3498 lowerKernargMemParameter(DAG, VT, MemVT,
DL, Chain,
Offset,
3499 Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
3519 if (!IsEntryFunc && VA.
isMemLoc()) {
3520 SDValue Val = lowerStackParameter(DAG, VA,
DL, Chain, Arg);
3531 if (AMDGPU::VGPR_32RegClass.
contains(Reg))
3532 RC = &AMDGPU::VGPR_32RegClass;
3533 else if (AMDGPU::SGPR_32RegClass.
contains(Reg))
3534 RC = &AMDGPU::SGPR_32RegClass;
3554 Val = convertABITypeToValueType(DAG, Val, VA,
DL);
3570 Info->setBytesInStackArgArea(StackArgSize);
3572 return Chains.
empty() ? Chain
3581 const Type *RetTy)
const {
3589 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3594 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
3595 unsigned TotalNumVGPRs = Subtarget->getAddressableNumArchVGPRs();
3596 for (
unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3597 if (CCInfo.
isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3620 Info->setIfReturnsVoid(Outs.
empty());
3621 bool IsWaveEnd = Info->returnsVoid() && IsShader;
3640 for (
unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.
size();
I != E;
3641 ++
I, ++RealRVLocIdx) {
3645 SDValue Arg = OutVals[RealRVLocIdx];
3668 ReadFirstLane, Arg);
3675 if (!Info->isEntryFunction()) {
3681 if (AMDGPU::SReg_64RegClass.
contains(*
I))
3683 else if (AMDGPU::SReg_32RegClass.
contains(*
I))
3784 auto &ArgUsageInfo =
3786 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3814 const auto [OutgoingArg, ArgRC, ArgTy] =
3819 const auto [IncomingArg, IncomingArgRC, Ty] =
3821 assert(IncomingArgRC == ArgRC);
3824 EVT ArgVT =
TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3832 InputReg = getImplicitArgPtr(DAG,
DL);
3834 std::optional<uint32_t> Id =
3836 if (Id.has_value()) {
3847 if (OutgoingArg->isRegister()) {
3848 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3849 if (!CCInfo.
AllocateReg(OutgoingArg->getRegister()))
3852 unsigned SpecialArgOffset =
3863 auto [OutgoingArg, ArgRC, Ty] =
3866 std::tie(OutgoingArg, ArgRC, Ty) =
3869 std::tie(OutgoingArg, ArgRC, Ty) =
3884 const bool NeedWorkItemIDX = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-x");
3885 const bool NeedWorkItemIDY = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-y");
3886 const bool NeedWorkItemIDZ = !CLI.
CB->
hasFnAttr(
"amdgpu-no-workitem-id-z");
3891 if (Subtarget->getMaxWorkitemID(
F, 0) != 0) {
3899 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(
F, 1) != 0) {
3909 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(
F, 2) != 0) {
3918 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3919 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3930 : IncomingArgY ? *IncomingArgY
3937 if (OutgoingArg->isRegister()) {
3939 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3965 if (Callee->isDivergent())
3972 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
3976 if (!CallerPreserved)
3979 bool CCMatch = CallerCC == CalleeCC;
3992 if (Arg.hasByValAttr())
4006 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
4007 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
4016 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
4029 for (
const auto &[CCVA, ArgVal] :
zip_equal(ArgLocs, OutVals)) {
4031 if (!CCVA.isRegLoc())
4036 if (ArgVal->
isDivergent() &&
TRI->isSGPRPhysReg(CCVA.getLocReg())) {
4038 dbgs() <<
"Cannot tail call due to divergent outgoing argument in "
4062enum ChainCallArgIdx {
4084 bool UsesDynamicVGPRs =
false;
4085 if (IsChainCallConv) {
4090 auto RequestedExecIt =
4092 return Arg.OrigArgIndex == 2;
4094 assert(RequestedExecIt != CLI.
Outs.end() &&
"No node for EXEC");
4096 size_t SpecialArgsBeginIdx = RequestedExecIt - CLI.
Outs.begin();
4099 CLI.
Outs.erase(RequestedExecIt, CLI.
Outs.end());
4102 "Haven't popped all the special args");
4105 CLI.
Args[ChainCallArgIdx::Exec];
4106 if (!RequestedExecArg.
Ty->
isIntegerTy(Subtarget->getWavefrontSize()))
4114 ArgNode->getAPIntValue(),
DL, ArgNode->getValueType(0)));
4116 ChainCallSpecialArgs.
push_back(Arg.Node);
4119 PushNodeOrTargetConstant(RequestedExecArg);
4125 if (FlagsValue.
isZero()) {
4126 if (CLI.
Args.size() > ChainCallArgIdx::Flags + 1)
4128 "no additional args allowed if flags == 0");
4130 if (CLI.
Args.size() != ChainCallArgIdx::FallbackCallee + 1) {
4134 if (!Subtarget->isWave32()) {
4136 CLI, InVals,
"dynamic VGPR mode is only supported for wave32");
4139 UsesDynamicVGPRs =
true;
4140 std::for_each(CLI.
Args.begin() + ChainCallArgIdx::NumVGPRs,
4141 CLI.
Args.end(), PushNodeOrTargetConstant);
4150 bool IsSibCall =
false;
4164 "unsupported call to variadic function ");
4172 "unsupported required tail call to function ");
4177 Outs, OutVals, Ins, DAG);
4181 "site marked musttail or on llvm.amdgcn.cs.chain");
4188 if (!TailCallOpt && IsTailCall)
4228 auto *
TRI = Subtarget->getRegisterInfo();
4235 if (!IsSibCall || IsChainCallConv) {
4236 if (!Subtarget->enableFlatScratch()) {
4242 RegsToPass.emplace_back(IsChainCallConv
4243 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
4244 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
4251 const unsigned NumSpecialInputs = RegsToPass.size();
4253 MVT PtrVT = MVT::i32;
4256 for (
unsigned i = 0, e = ArgLocs.
size(); i != e; ++i) {
4284 RegsToPass.push_back(std::pair(VA.
getLocReg(), Arg));
4292 int32_t
Offset = LocMemOffset;
4299 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize()
4305 ? Flags.getNonZeroByValAlign()
4332 if (Outs[i].Flags.isByVal()) {
4334 DAG.
getConstant(Outs[i].Flags.getByValSize(),
DL, MVT::i32);
4337 Outs[i].Flags.getNonZeroByValAlign(),
4339 nullptr, std::nullopt, DstInfo,
4345 DAG.
getStore(Chain,
DL, Arg, DstAddr, DstInfo, Alignment);
4351 if (!MemOpChains.
empty())
4359 TokenGlue = DAG.
getNode(ISD::CONVERGENCECTRL_GLUE,
DL, MVT::Glue,
4367 unsigned ArgIdx = 0;
4368 for (
auto [Reg, Val] : RegsToPass) {
4369 if (ArgIdx++ >= NumSpecialInputs &&
4370 (IsChainCallConv || !Val->
isDivergent()) &&
TRI->isSGPRPhysReg(Reg)) {
4396 if (IsTailCall && !IsSibCall) {
4401 std::vector<SDValue>
Ops({Chain});
4407 Ops.push_back(Callee);
4424 Ops.push_back(Callee);
4435 if (IsChainCallConv)
4440 for (
auto &[Reg, Val] : RegsToPass)
4444 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
4445 assert(Mask &&
"Missing call preserved mask for calling convention");
4455 MVT::Glue, GlueOps),
4460 Ops.push_back(InGlue);
4480 if (Info->isWholeWaveFunction())
4488 Chain =
Call.getValue(0);
4489 InGlue =
Call.getValue(1);
4491 uint64_t CalleePopBytes = NumBytes;
4512 EVT VT =
Op.getValueType();
4526 "Stack grows upwards for AMDGPU");
4528 Chain = BaseAddr.getValue(1);
4530 if (Alignment > StackAlign) {
4532 << Subtarget->getWavefrontSizeLog2();
4533 uint64_t StackAlignMask = ScaledAlignment - 1;
4540 assert(
Size.getValueType() == MVT::i32 &&
"Size must be 32-bit");
4546 DAG.
getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4557 DAG.
getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4573 if (
Op.getValueType() != MVT::i32)
4592 assert(
Op.getValueType() == MVT::i32);
4601 Op.getOperand(0), IntrinID, GetRoundBothImm);
4635 SDValue RoundModeTimesNumBits =
4655 TableEntry, EnumOffset);
4671 static_cast<uint32_t>(ConstMode->getZExtValue()),
4683 if (UseReducedTable) {
4689 SDValue RoundModeTimesNumBits =
4709 SDValue RoundModeTimesNumBits =
4718 NewMode = TruncTable;
4727 ReadFirstLaneID, NewMode);
4740 IntrinID, RoundBothImm, NewMode);
4746 if (
Op->isDivergent() &&
4747 (!Subtarget->hasVmemPrefInsts() || !
Op.getConstantOperandVal(4)))
4757 if (Subtarget->hasSafeSmemPrefetch())
4765 if (!Subtarget->hasSafeSmemPrefetch() && !
Op.getConstantOperandVal(4))
4774 SDValue Src =
Op.getOperand(IsStrict ? 1 : 0);
4775 EVT SrcVT = Src.getValueType();
4784 EVT DstVT =
Op.getValueType();
4788 return DAG.
getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
4793 if (
Op.getValueType() != MVT::i64)
4807 Op.getOperand(0), IntrinID, ModeHwRegImm);
4809 Op.getOperand(0), IntrinID, TrapHwRegImm);
4816 SDValue Result = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
4823 if (
Op.getOperand(1).getValueType() != MVT::i64)
4835 ReadFirstLaneID, NewModeReg);
4837 ReadFirstLaneID, NewTrapReg);
4839 unsigned ModeHwReg =
4842 unsigned TrapHwReg =
4850 IntrinID, ModeHwRegImm, NewModeReg);
4853 IntrinID, TrapHwRegImm, NewTrapReg);
4862 .
Case(
"m0", AMDGPU::M0)
4863 .
Case(
"exec", AMDGPU::EXEC)
4864 .
Case(
"exec_lo", AMDGPU::EXEC_LO)
4865 .
Case(
"exec_hi", AMDGPU::EXEC_HI)
4866 .
Case(
"flat_scratch", AMDGPU::FLAT_SCR)
4867 .
Case(
"flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4868 .
Case(
"flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4873 if (!Subtarget->hasFlatScrRegister() &&
4874 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
4876 "\" for subtarget."));
4881 case AMDGPU::EXEC_LO:
4882 case AMDGPU::EXEC_HI:
4883 case AMDGPU::FLAT_SCR_LO:
4884 case AMDGPU::FLAT_SCR_HI:
4889 case AMDGPU::FLAT_SCR:
4908 MI.setDesc(
TII->getKillTerminatorFromPseudo(
MI.getOpcode()));
4917static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4939 auto Next = std::next(
I);
4950 MBB.addSuccessor(LoopBB);
4952 return std::pair(LoopBB, RemainderBB);
4959 auto I =
MI.getIterator();
4960 auto E = std::next(
I);
4982 Src->setIsKill(
false);
4992 BuildMI(*LoopBB, LoopBB->begin(),
DL,
TII->get(AMDGPU::S_SETREG_IMM32_B32))
4998 Register Reg =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5001 BuildMI(*LoopBB,
I,
DL,
TII->get(AMDGPU::S_GETREG_B32), Reg)
5025 unsigned InitReg,
unsigned ResultReg,
unsigned PhiReg,
5026 unsigned InitSaveExecReg,
int Offset,
bool UseGPRIdxMode,
5036 Register PhiExec =
MRI.createVirtualRegister(BoolRC);
5037 Register NewExec =
MRI.createVirtualRegister(BoolRC);
5039 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5040 Register CondReg =
MRI.createVirtualRegister(BoolRC);
5048 BuildMI(LoopBB,
I,
DL,
TII->get(TargetOpcode::PHI), PhiExec)
5055 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
5059 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
5067 MRI.setSimpleHint(NewExec, CondReg);
5069 if (UseGPRIdxMode) {
5071 SGPRIdxReg = CurrentIdxReg;
5073 SGPRIdxReg =
MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
5074 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
5084 BuildMI(LoopBB,
I,
DL,
TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
5115 unsigned InitResultReg,
unsigned PhiReg,
int Offset,
5116 bool UseGPRIdxMode,
Register &SGPRIdxReg) {
5124 const auto *BoolXExecRC =
TRI->getWaveMaskRegClass();
5126 Register SaveExec =
MRI.createVirtualRegister(BoolXExecRC);
5127 Register TmpExec =
MRI.createVirtualRegister(BoolXExecRC);
5143 InitResultReg, DstReg, PhiReg, TmpExec,
5144 Offset, UseGPRIdxMode, SGPRIdxReg);
5150 LoopBB->removeSuccessor(RemainderBB);
5152 LoopBB->addSuccessor(LandingPad);
5163static std::pair<unsigned, int>
5167 int NumElts =
TRI.getRegSizeInBits(*SuperRC) / 32;
5172 return std::pair(AMDGPU::sub0,
Offset);
5212 Register Tmp =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5229 Register SrcReg =
TII->getNamedOperand(
MI, AMDGPU::OpName::src)->getReg();
5230 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
5239 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5242 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5246 if (UseGPRIdxMode) {
5253 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
5266 MI.eraseFromParent();
5275 Register PhiReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5276 Register InitReg =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5282 UseGPRIdxMode, SGPRIdxReg);
5286 if (UseGPRIdxMode) {
5288 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
true);
5290 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
5295 BuildMI(*LoopBB, InsPt,
DL,
TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
5300 MI.eraseFromParent();
5317 int Offset =
TII->getNamedOperand(
MI, AMDGPU::OpName::offset)->getImm();
5327 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
5329 if (Idx->
getReg() == AMDGPU::NoRegister) {
5340 MI.eraseFromParent();
5345 if (
TII->getRegisterInfo().isSGPRClass(IdxRC)) {
5349 if (UseGPRIdxMode) {
5353 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
5362 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
5363 TRI.getRegSizeInBits(*VecRC), 32,
false);
5369 MI.eraseFromParent();
5379 Register PhiReg =
MRI.createVirtualRegister(VecRC);
5383 UseGPRIdxMode, SGPRIdxReg);
5386 if (UseGPRIdxMode) {
5388 TII->getIndirectGPRIDXPseudo(
TRI.getRegSizeInBits(*VecRC),
false);
5390 BuildMI(*LoopBB, InsPt,
DL, GPRIDXDesc, Dst)
5396 const MCInstrDesc &MovRelDesc =
TII->getIndirectRegWriteMovRelPseudo(
5397 TRI.getRegSizeInBits(*VecRC), 32,
false);
5398 BuildMI(*LoopBB, InsPt,
DL, MovRelDesc, Dst)
5404 MI.eraseFromParent();
5420 bool IsAdd = (
MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
5421 if (ST.hasScalarAddSub64()) {
5422 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
5432 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5433 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5436 MI,
MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5438 MI,
MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5441 MI,
MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5443 MI,
MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5445 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
5446 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
5455 MI.eraseFromParent();
5461 case AMDGPU::S_MIN_U32:
5462 return std::numeric_limits<uint32_t>::max();
5463 case AMDGPU::S_MIN_I32:
5464 return std::numeric_limits<int32_t>::max();
5465 case AMDGPU::S_MAX_U32:
5466 return std::numeric_limits<uint32_t>::min();
5467 case AMDGPU::S_MAX_I32:
5468 return std::numeric_limits<int32_t>::min();
5469 case AMDGPU::S_ADD_I32:
5470 case AMDGPU::S_SUB_I32:
5471 case AMDGPU::S_OR_B32:
5472 case AMDGPU::S_XOR_B32:
5473 return std::numeric_limits<uint32_t>::min();
5474 case AMDGPU::S_AND_B32:
5475 return std::numeric_limits<uint32_t>::max();
5478 "Unexpected opcode in getIdentityValueFor32BitWaveReduction");
5484 case AMDGPU::V_CMP_LT_U64_e64:
5485 return std::numeric_limits<uint64_t>::max();
5486 case AMDGPU::V_CMP_LT_I64_e64:
5487 return std::numeric_limits<int64_t>::max();
5488 case AMDGPU::V_CMP_GT_U64_e64:
5489 return std::numeric_limits<uint64_t>::min();
5490 case AMDGPU::V_CMP_GT_I64_e64:
5491 return std::numeric_limits<int64_t>::min();
5492 case AMDGPU::S_ADD_U64_PSEUDO:
5493 case AMDGPU::S_SUB_U64_PSEUDO:
5494 case AMDGPU::S_OR_B64:
5495 case AMDGPU::S_XOR_B64:
5496 return std::numeric_limits<uint64_t>::min();
5497 case AMDGPU::S_AND_B64:
5498 return std::numeric_limits<uint64_t>::max();
5501 "Unexpected opcode in getIdentityValueFor64BitWaveReduction");
5506 return Opc == AMDGPU::S_MIN_U32 ||
Opc == AMDGPU::S_MIN_I32 ||
5507 Opc == AMDGPU::S_MAX_U32 ||
Opc == AMDGPU::S_MAX_I32 ||
5508 Opc == AMDGPU::S_ADD_I32 ||
Opc == AMDGPU::S_SUB_I32 ||
5509 Opc == AMDGPU::S_AND_B32 ||
Opc == AMDGPU::S_OR_B32 ||
5510 Opc == AMDGPU::S_XOR_B32;
5524 bool isSGPR =
TRI->isSGPRClass(
MRI.getRegClass(SrcReg));
5529 case AMDGPU::S_MIN_U32:
5530 case AMDGPU::S_MIN_I32:
5531 case AMDGPU::S_MAX_U32:
5532 case AMDGPU::S_MAX_I32:
5533 case AMDGPU::S_AND_B32:
5534 case AMDGPU::S_OR_B32: {
5540 case AMDGPU::V_CMP_LT_U64_e64:
5541 case AMDGPU::V_CMP_LT_I64_e64:
5542 case AMDGPU::V_CMP_GT_U64_e64:
5543 case AMDGPU::V_CMP_GT_I64_e64:
5544 case AMDGPU::S_AND_B64:
5545 case AMDGPU::S_OR_B64: {
5551 case AMDGPU::S_XOR_B32:
5552 case AMDGPU::S_XOR_B64:
5553 case AMDGPU::S_ADD_I32:
5554 case AMDGPU::S_ADD_U64_PSEUDO:
5555 case AMDGPU::S_SUB_I32:
5556 case AMDGPU::S_SUB_U64_PSEUDO: {
5559 Register ExecMask =
MRI.createVirtualRegister(WaveMaskRegClass);
5561 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5563 bool IsWave32 = ST.isWave32();
5564 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5565 MCRegister ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5566 unsigned BitCountOpc =
5567 IsWave32 ? AMDGPU::S_BCNT1_I32_B32 : AMDGPU::S_BCNT1_I32_B64;
5571 auto NewAccumulator =
5576 case AMDGPU::S_XOR_B32:
5577 case AMDGPU::S_XOR_B64: {
5583 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5586 .
addReg(NewAccumulator->getOperand(0).getReg())
5589 if (
Opc == AMDGPU::S_XOR_B32) {
5595 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5597 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5601 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5604 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5606 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5616 BuildMI(BB,
MI,
DL,
TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5624 case AMDGPU::S_SUB_I32: {
5625 Register NegatedVal =
MRI.createVirtualRegister(DstRegClass);
5633 .
addReg(NewAccumulator->getOperand(0).getReg());
5636 case AMDGPU::S_ADD_I32: {
5639 .
addReg(NewAccumulator->getOperand(0).getReg());
5642 case AMDGPU::S_ADD_U64_PSEUDO:
5643 case AMDGPU::S_SUB_U64_PSEUDO: {
5644 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5645 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5647 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5649 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5650 Register CarryReg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5651 Register AddReg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5653 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5655 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5659 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub0);
5662 MI,
MRI,
MI.getOperand(1), Src1RC, AMDGPU::sub0, Src1SubRC);
5664 MI,
MRI,
MI.getOperand(1), Src1RC, AMDGPU::sub1, Src1SubRC);
5666 if (
Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5669 .
addReg(NewAccumulator->getOperand(0).getReg())
5679 Register LowOpcode =
Opc == AMDGPU::S_SUB_U64_PSEUDO
5681 : NewAccumulator->getOperand(0).getReg();
5692 Register HiVal =
Opc == AMDGPU::S_SUB_U64_PSEUDO ? AddReg : DestSub1;
5698 if (
Opc == AMDGPU::S_SUB_U64_PSEUDO) {
5704 BuildMI(BB,
MI,
DL,
TII->get(TargetOpcode::REG_SEQUENCE), DstReg)
5736 Register LoopIterator =
MRI.createVirtualRegister(WaveMaskRegClass);
5737 Register IdentityValReg =
MRI.createVirtualRegister(DstRegClass);
5738 Register AccumulatorReg =
MRI.createVirtualRegister(DstRegClass);
5739 Register ActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5740 Register NewActiveBitsReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5741 Register FF1Reg =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5742 Register LaneValueReg =
MRI.createVirtualRegister(DstRegClass);
5744 bool IsWave32 = ST.isWave32();
5745 unsigned MovOpcForExec = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5746 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5753 BuildMI(BB,
I,
DL,
TII->get(AMDGPU::S_MOV_B32), IdentityValReg)
5757 BuildMI(BB,
I,
DL,
TII->get(AMDGPU::S_MOV_B64_IMM_PSEUDO), IdentityValReg)
5766 I = ComputeLoop->begin();
5768 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), AccumulatorReg)
5772 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::PHI), ActiveBitsReg)
5776 I = ComputeLoop->end();
5779 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
5783 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5792 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5794 MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5795 Register LaneValReg =
MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
5798 TRI->getSubRegisterClass(SrcRC, AMDGPU::sub0);
5800 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub0, SrcSubRC);
5802 MI,
MRI,
MI.getOperand(1), SrcRC, AMDGPU::sub1, SrcSubRC);
5804 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5808 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::V_READLANE_B32),
5812 auto LaneValue =
BuildMI(*ComputeLoop,
I,
DL,
5813 TII->get(TargetOpcode::REG_SEQUENCE), LaneValReg)
5819 case AMDGPU::S_OR_B64:
5820 case AMDGPU::S_AND_B64:
5821 case AMDGPU::S_XOR_B64: {
5824 .
addReg(LaneValue->getOperand(0).getReg())
5828 case AMDGPU::V_CMP_GT_I64_e64:
5829 case AMDGPU::V_CMP_GT_U64_e64:
5830 case AMDGPU::V_CMP_LT_I64_e64:
5831 case AMDGPU::V_CMP_LT_U64_e64: {
5832 Register LaneMaskReg =
MRI.createVirtualRegister(WaveMaskRegClass);
5834 MRI.createVirtualRegister(WaveMaskRegClass);
5837 TRI->getSubRegisterClass(VregClass, AMDGPU::sub0);
5838 Register AccumulatorVReg =
MRI.createVirtualRegister(VregClass);
5841 VregClass, AMDGPU::sub0, VSubRegClass);
5844 VregClass, AMDGPU::sub1, VSubRegClass);
5845 BuildMI(*ComputeLoop,
I,
DL,
TII->get(TargetOpcode::REG_SEQUENCE),
5852 .
addReg(LaneValue->getOperand(0).getReg())
5853 .
addReg(AccumulatorVReg);
5855 unsigned AndOpc = IsWave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
5856 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AndOpc), ComparisonResultReg)
5860 NewAccumulator =
BuildMI(*ComputeLoop,
I,
DL,
5861 TII->get(AMDGPU::S_CSELECT_B64), DstReg)
5862 .
addReg(LaneValue->getOperand(0).getReg())
5866 case AMDGPU::S_ADD_U64_PSEUDO:
5867 case AMDGPU::S_SUB_U64_PSEUDO: {
5870 .
addReg(LaneValue->getOperand(0).getReg());
5877 unsigned BITSETOpc =
5878 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
5879 BuildMI(*ComputeLoop,
I,
DL,
TII->get(BITSETOpc), NewActiveBitsReg)
5885 ActiveBits.addReg(NewActiveBitsReg).addMBB(ComputeLoop);
5888 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
5890 .
addReg(NewActiveBitsReg)
5892 BuildMI(*ComputeLoop,
I,
DL,
TII->get(AMDGPU::S_CBRANCH_SCC1))
5897 MI.eraseFromParent();
5912 switch (
MI.getOpcode()) {
5913 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
5915 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U64:
5917 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I32:
5919 case AMDGPU::WAVE_REDUCE_MIN_PSEUDO_I64:
5921 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
5923 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U64:
5925 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I32:
5927 case AMDGPU::WAVE_REDUCE_MAX_PSEUDO_I64:
5929 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_I32:
5931 case AMDGPU::WAVE_REDUCE_ADD_PSEUDO_U64:
5933 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_I32:
5935 case AMDGPU::WAVE_REDUCE_SUB_PSEUDO_U64:
5937 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B32:
5939 case AMDGPU::WAVE_REDUCE_AND_PSEUDO_B64:
5941 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B32:
5943 case AMDGPU::WAVE_REDUCE_OR_PSEUDO_B64:
5945 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B32:
5947 case AMDGPU::WAVE_REDUCE_XOR_PSEUDO_B64:
5949 case AMDGPU::S_UADDO_PSEUDO:
5950 case AMDGPU::S_USUBO_PSEUDO: {
5956 unsigned Opc = (
MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
5958 : AMDGPU::S_SUB_U32;
5966 Subtarget->isWave64() ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
5969 MI.eraseFromParent();
5972 case AMDGPU::S_ADD_U64_PSEUDO:
5973 case AMDGPU::S_SUB_U64_PSEUDO: {
5976 case AMDGPU::V_ADD_U64_PSEUDO:
5977 case AMDGPU::V_SUB_U64_PSEUDO: {
5978 bool IsAdd = (
MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
5984 if (ST.hasAddSubU64Insts()) {
5986 TII->get(IsAdd ? AMDGPU::V_ADD_U64_e64
5987 : AMDGPU::V_SUB_U64_e64),
5992 TII->legalizeOperands(*
I);
5993 MI.eraseFromParent();
5997 if (IsAdd && ST.hasLshlAddU64Inst()) {
6003 TII->legalizeOperands(*
Add);
6004 MI.eraseFromParent();
6008 const auto *CarryRC =
TRI->getWaveMaskRegClass();
6010 Register DestSub0 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6011 Register DestSub1 =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6013 Register CarryReg =
MRI.createVirtualRegister(CarryRC);
6014 Register DeadCarryReg =
MRI.createVirtualRegister(CarryRC);
6018 : &AMDGPU::VReg_64RegClass;
6021 : &AMDGPU::VReg_64RegClass;
6024 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6026 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6029 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6031 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6034 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6036 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6039 IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
6046 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
6060 TII->legalizeOperands(*LoHalf);
6061 TII->legalizeOperands(*HiHalf);
6062 MI.eraseFromParent();
6065 case AMDGPU::S_ADD_CO_PSEUDO:
6066 case AMDGPU::S_SUB_CO_PSEUDO: {
6076 unsigned Opc = (
MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
6077 ? AMDGPU::S_ADDC_U32
6078 : AMDGPU::S_SUBB_U32;
6080 Register RegOp0 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6081 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
6086 Register RegOp1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6087 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
6091 Register RegOp2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6093 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
6098 if (ST.isWave64()) {
6099 if (ST.hasScalarCompareEq64()) {
6106 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
6108 MII,
MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
6110 MII,
MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
6111 Register Src2_32 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6113 BuildMI(*BB, MII,
DL,
TII->get(AMDGPU::S_OR_B32), Src2_32)
6134 ST.isWave64() ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
6140 MI.eraseFromParent();
6143 case AMDGPU::SI_INIT_M0: {
6146 TII->get(M0Init.
isReg() ? AMDGPU::COPY : AMDGPU::S_MOV_B32),
6149 MI.eraseFromParent();
6152 case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM: {
6155 TII->get(AMDGPU::S_CMP_EQ_U32))
6160 case AMDGPU::GET_GROUPSTATICSIZE: {
6164 .
add(
MI.getOperand(0))
6166 MI.eraseFromParent();
6169 case AMDGPU::GET_SHADERCYCLESHILO: {
6182 Register RegHi1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6184 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6185 Register RegLo1 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6187 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
6188 Register RegHi2 =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6190 .
addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
6194 Register RegLo =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6199 .
add(
MI.getOperand(0))
6204 MI.eraseFromParent();
6207 case AMDGPU::SI_INDIRECT_SRC_V1:
6208 case AMDGPU::SI_INDIRECT_SRC_V2:
6209 case AMDGPU::SI_INDIRECT_SRC_V4:
6210 case AMDGPU::SI_INDIRECT_SRC_V8:
6211 case AMDGPU::SI_INDIRECT_SRC_V9:
6212 case AMDGPU::SI_INDIRECT_SRC_V10:
6213 case AMDGPU::SI_INDIRECT_SRC_V11:
6214 case AMDGPU::SI_INDIRECT_SRC_V12:
6215 case AMDGPU::SI_INDIRECT_SRC_V16:
6216 case AMDGPU::SI_INDIRECT_SRC_V32:
6218 case AMDGPU::SI_INDIRECT_DST_V1:
6219 case AMDGPU::SI_INDIRECT_DST_V2:
6220 case AMDGPU::SI_INDIRECT_DST_V4:
6221 case AMDGPU::SI_INDIRECT_DST_V8:
6222 case AMDGPU::SI_INDIRECT_DST_V9:
6223 case AMDGPU::SI_INDIRECT_DST_V10:
6224 case AMDGPU::SI_INDIRECT_DST_V11:
6225 case AMDGPU::SI_INDIRECT_DST_V12:
6226 case AMDGPU::SI_INDIRECT_DST_V16:
6227 case AMDGPU::SI_INDIRECT_DST_V32:
6229 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
6230 case AMDGPU::SI_KILL_I1_PSEUDO:
6232 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
6236 Register SrcCond =
MI.getOperand(3).getReg();
6238 Register DstLo =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6239 Register DstHi =
MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6240 const auto *CondRC =
TRI->getWaveMaskRegClass();
6241 Register SrcCondCopy =
MRI.createVirtualRegister(CondRC);
6245 : &AMDGPU::VReg_64RegClass;
6248 : &AMDGPU::VReg_64RegClass;
6251 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
6253 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
6256 MI,
MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
6258 MI,
MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
6261 MI,
MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
6263 MI,
MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
6284 MI.eraseFromParent();
6287 case AMDGPU::SI_BR_UNDEF: {
6289 .
add(
MI.getOperand(0));
6291 MI.eraseFromParent();
6294 case AMDGPU::ADJCALLSTACKUP:
6295 case AMDGPU::ADJCALLSTACKDOWN: {
6302 case AMDGPU::SI_CALL_ISEL: {
6303 unsigned ReturnAddrReg =
TII->getRegisterInfo().getReturnAddressReg(*MF);
6306 MIB =
BuildMI(*BB,
MI,
DL,
TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
6312 MI.eraseFromParent();
6315 case AMDGPU::V_ADD_CO_U32_e32:
6316 case AMDGPU::V_SUB_CO_U32_e32:
6317 case AMDGPU::V_SUBREV_CO_U32_e32: {
6319 unsigned Opc =
MI.getOpcode();
6321 bool NeedClampOperand =
false;
6322 if (
TII->pseudoToMCOpcode(
Opc) == -1) {
6324 NeedClampOperand =
true;
6328 if (
TII->isVOP3(*
I)) {
6331 I.add(
MI.getOperand(1)).add(
MI.getOperand(2));
6332 if (NeedClampOperand)
6335 TII->legalizeOperands(*
I);
6337 MI.eraseFromParent();
6340 case AMDGPU::V_ADDC_U32_e32:
6341 case AMDGPU::V_SUBB_U32_e32:
6342 case AMDGPU::V_SUBBREV_U32_e32:
6345 TII->legalizeOperands(
MI);
6347 case AMDGPU::DS_GWS_INIT:
6348 case AMDGPU::DS_GWS_SEMA_BR:
6349 case AMDGPU::DS_GWS_BARRIER:
6350 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::data0);
6352 case AMDGPU::DS_GWS_SEMA_V:
6353 case AMDGPU::DS_GWS_SEMA_P:
6354 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
6362 case AMDGPU::S_SETREG_B32: {
6378 const unsigned SetMask = WidthMask <<
Offset;
6381 unsigned SetDenormOp = 0;
6382 unsigned SetRoundOp = 0;
6390 SetRoundOp = AMDGPU::S_ROUND_MODE;
6391 SetDenormOp = AMDGPU::S_DENORM_MODE;
6393 SetRoundOp = AMDGPU::S_ROUND_MODE;
6395 SetDenormOp = AMDGPU::S_DENORM_MODE;
6398 if (SetRoundOp || SetDenormOp) {
6400 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
6401 unsigned ImmVal = Def->getOperand(1).getImm();
6415 MI.eraseFromParent();
6424 MI.setDesc(
TII->get(AMDGPU::S_SETREG_B32_mode));
6428 case AMDGPU::S_INVERSE_BALLOT_U32:
6429 case AMDGPU::S_INVERSE_BALLOT_U64:
6432 MI.setDesc(
TII->get(AMDGPU::COPY));
6434 case AMDGPU::ENDPGM_TRAP: {
6436 MI.setDesc(
TII->get(AMDGPU::S_ENDPGM));
6456 MI.eraseFromParent();
6459 case AMDGPU::SIMULATED_TRAP: {
6460 assert(Subtarget->hasPrivEnabledTrap2NopBug());
6462 TII->insertSimulatedTrap(
MRI, *BB,
MI,
MI.getDebugLoc());
6463 MI.eraseFromParent();
6466 case AMDGPU::SI_TCRETURN_GFX_WholeWave:
6467 case AMDGPU::SI_WHOLE_WAVE_FUNC_RETURN: {
6473 assert(Setup &&
"Couldn't find SI_SETUP_WHOLE_WAVE_FUNC");
6474 Register OriginalExec = Setup->getOperand(0).getReg();
6476 MI.getOperand(0).setReg(OriginalExec);
6513 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
6517 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
6544 if (!Subtarget->hasMadMacF32Insts())
6545 return Subtarget->hasFastFMAF32();
6551 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
6554 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
6570 switch (Ty.getScalarSizeInBits()) {
6588 if (Ty.getScalarSizeInBits() == 16)
6590 if (Ty.getScalarSizeInBits() == 32)
6591 return Subtarget->hasMadMacF32Insts() &&
6601 EVT VT =
N->getValueType(0);
6603 return Subtarget->hasMadMacF32Insts() &&
6605 if (VT == MVT::f16) {
6606 return Subtarget->hasMadF16() &&
6621 unsigned Opc =
Op.getOpcode();
6622 EVT VT =
Op.getValueType();
6623 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16 ||
6624 VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 ||
6625 VT == MVT::v8bf16 || VT == MVT::v16i16 || VT == MVT::v16f16 ||
6626 VT == MVT::v16bf16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6627 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16 ||
6628 VT == MVT::v32bf16);
6644 [[maybe_unused]]
EVT VT =
Op.getValueType();
6646 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v8i32 ||
6647 VT == MVT::v16i32) &&
6648 "Unexpected ValueType.");
6657 unsigned Opc =
Op.getOpcode();
6658 EVT VT =
Op.getValueType();
6659 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16 ||
6660 VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 ||
6661 VT == MVT::v8bf16 || VT == MVT::v16i16 || VT == MVT::v16f16 ||
6662 VT == MVT::v16bf16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6663 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16 ||
6664 VT == MVT::v32bf16);
6672 DAG.
getNode(
Opc, SL, Lo0.getValueType(), Lo0, Lo1,
Op->getFlags());
6674 DAG.
getNode(
Opc, SL, Hi0.getValueType(), Hi0, Hi1,
Op->getFlags());
6681 unsigned Opc =
Op.getOpcode();
6682 EVT VT =
Op.getValueType();
6683 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
6684 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
6685 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
6686 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
6687 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
6688 VT == MVT::v32bf16);
6693 : std::pair(Op0, Op0);
6702 DAG.
getNode(
Opc, SL, ResVT.first, Lo0, Lo1, Lo2,
Op->getFlags());
6704 DAG.
getNode(
Opc, SL, ResVT.second, Hi0, Hi1, Hi2,
Op->getFlags());
6710 switch (
Op.getOpcode()) {
6714 return LowerBRCOND(
Op, DAG);
6716 return LowerRETURNADDR(
Op, DAG);
6719 assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) &&
6720 "Load should return a value and a chain");
6724 EVT VT =
Op.getValueType();
6726 return lowerFSQRTF32(
Op, DAG);
6728 return lowerFSQRTF64(
Op, DAG);
6733 return LowerTrig(
Op, DAG);
6735 return LowerSELECT(
Op, DAG);
6737 return LowerFDIV(
Op, DAG);
6739 return LowerFFREXP(
Op, DAG);
6740 case ISD::ATOMIC_CMP_SWAP:
6741 return LowerATOMIC_CMP_SWAP(
Op, DAG);
6743 return LowerSTORE(
Op, DAG);
6747 return LowerGlobalAddress(MFI,
Op, DAG);
6750 return LowerINTRINSIC_WO_CHAIN(
Op, DAG);
6752 return LowerINTRINSIC_W_CHAIN(
Op, DAG);
6754 return LowerINTRINSIC_VOID(
Op, DAG);
6755 case ISD::ADDRSPACECAST:
6756 return lowerADDRSPACECAST(
Op, DAG);
6758 return lowerINSERT_SUBVECTOR(
Op, DAG);
6760 return lowerINSERT_VECTOR_ELT(
Op, DAG);
6762 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
6764 return lowerVECTOR_SHUFFLE(
Op, DAG);
6766 return lowerSCALAR_TO_VECTOR(
Op, DAG);
6768 return lowerBUILD_VECTOR(
Op, DAG);
6771 return lowerFP_ROUND(
Op, DAG);
6773 return lowerTRAP(
Op, DAG);
6774 case ISD::DEBUGTRAP:
6775 return lowerDEBUGTRAP(
Op, DAG);
6784 return lowerFMINNUM_FMAXNUM(
Op, DAG);
6785 case ISD::FMINIMUMNUM:
6786 case ISD::FMAXIMUMNUM:
6787 return lowerFMINIMUMNUM_FMAXIMUMNUM(
Op, DAG);
6790 return lowerFMINIMUM_FMAXIMUM(
Op, DAG);
6793 return lowerFLDEXP(
Op, DAG);
6810 case ISD::FMINNUM_IEEE:
6811 case ISD::FMAXNUM_IEEE:
6818 return lowerFCOPYSIGN(
Op, DAG);
6820 return lowerMUL(
Op, DAG);
6823 return lowerXMULO(
Op, DAG);
6826 return lowerXMUL_LOHI(
Op, DAG);
6827 case ISD::DYNAMIC_STACKALLOC:
6829 case ISD::STACKSAVE:
6833 case ISD::SET_ROUNDING:
6837 case ISD::FP_EXTEND:
6840 case ISD::GET_FPENV:
6842 case ISD::SET_FPENV:
6861 EVT FittingLoadVT = LoadVT;
6886 return DAG.
getNode(ISD::BITCAST,
DL, FittingLoadVT, Result);
6890 return DAG.
getNode(ISD::BITCAST,
DL, FittingLoadVT, Result);
6893SDValue SITargetLowering::adjustLoadValueType(
unsigned Opcode,
MemSDNode *M,
6896 bool IsIntrinsic)
const {
6899 bool Unpacked = Subtarget->hasUnpackedD16VMem();
6900 EVT LoadVT =
M->getValueType(0);
6902 EVT EquivLoadVT = LoadVT;
6916 SDVTList VTList = DAG.
getVTList(EquivLoadVT, MVT::Other);
6920 M->getMemoryVT(),
M->getMemOperand());
6931 EVT LoadVT =
M->getValueType(0);
6937 assert(
M->getNumValues() == 2 ||
M->getNumValues() == 3);
6938 bool IsTFE =
M->getNumValues() == 3;
6951 return handleByteShortBufferLoads(DAG, LoadVT,
DL,
Ops,
M->getMemOperand(),
6955 return getMemIntrinsicNode(
Opc,
DL,
M->getVTList(),
Ops, IntVT,
6956 M->getMemOperand(), DAG);
6960 SDVTList VTList = DAG.
getVTList(CastVT, MVT::Other);
6962 M->getMemOperand(), DAG);
6970 EVT VT =
N->getValueType(0);
6971 unsigned CondCode =
N->getConstantOperandVal(3);
6982 EVT CmpVT =
LHS.getValueType();
6983 if (CmpVT == MVT::i16 && !TLI.
isTypeLegal(MVT::i16)) {
6984 unsigned PromoteOp =
7004 EVT VT =
N->getValueType(0);
7006 unsigned CondCode =
N->getConstantOperandVal(3);
7015 if (CmpVT == MVT::f16 && !TLI.
isTypeLegal(CmpVT)) {
7016 Src0 = DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
7017 Src1 = DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
7033 EVT VT =
N->getValueType(0);
7040 Src.getOperand(1), Src.getOperand(2));
7051 Exec = AMDGPU::EXEC_LO;
7053 Exec = AMDGPU::EXEC;
7070 EVT VT =
N->getValueType(0);
7072 unsigned IID =
N->getConstantOperandVal(0);
7073 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
7074 IID == Intrinsic::amdgcn_permlanex16;
7075 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
7076 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
7080 unsigned SplitSize = 32;
7081 if (IID == Intrinsic::amdgcn_update_dpp && (ValSize % 64 == 0) &&
7082 ST->hasDPALU_DPP() &&
7090 case Intrinsic::amdgcn_permlane16:
7091 case Intrinsic::amdgcn_permlanex16:
7092 case Intrinsic::amdgcn_update_dpp:
7097 case Intrinsic::amdgcn_writelane:
7100 case Intrinsic::amdgcn_readlane:
7101 case Intrinsic::amdgcn_set_inactive:
7102 case Intrinsic::amdgcn_set_inactive_chain_arg:
7103 case Intrinsic::amdgcn_mov_dpp8:
7106 case Intrinsic::amdgcn_readfirstlane:
7107 case Intrinsic::amdgcn_permlane64:
7117 if (
SDNode *GL =
N->getGluedNode()) {
7118 assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
7119 GL = GL->getOperand(0).getNode();
7120 Operands.push_back(DAG.
getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
7129 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
7130 IID == Intrinsic::amdgcn_mov_dpp8 ||
7131 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7132 Src1 =
N->getOperand(2);
7133 if (IID == Intrinsic::amdgcn_writelane ||
7134 IID == Intrinsic::amdgcn_update_dpp || IsPermLane16)
7135 Src2 =
N->getOperand(3);
7138 if (ValSize == SplitSize) {
7148 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
7153 if (IID == Intrinsic::amdgcn_writelane) {
7158 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32);
7160 return IsFloat ? DAG.
getBitcast(VT, Trunc) : Trunc;
7163 if (ValSize % SplitSize != 0)
7167 EVT VT =
N->getValueType(0);
7171 unsigned NumOperands =
N->getNumOperands();
7173 SDNode *GL =
N->getGluedNode();
7178 for (
unsigned i = 0; i != NE; ++i) {
7179 for (
unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e;
7181 SDValue Operand =
N->getOperand(j);
7196 DAG.
getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
7211 if (SplitSize == 32) {
7213 return unrollLaneOp(LaneOp.
getNode());
7219 unsigned SubVecNumElt =
7223 SDValue Src0SubVec, Src1SubVec, Src2SubVec;
7224 for (
unsigned i = 0, EltIdx = 0; i < ValSize / SplitSize; i++) {
7228 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive ||
7233 if (IID == Intrinsic::amdgcn_writelane)
7238 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16
7239 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT)
7240 : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT));
7241 EltIdx += SubVecNumElt;
7255 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
7258 if (IID == Intrinsic::amdgcn_writelane)
7261 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT);
7269 switch (
N->getOpcode()) {
7281 unsigned IID =
N->getConstantOperandVal(0);
7283 case Intrinsic::amdgcn_make_buffer_rsrc:
7284 Results.push_back(lowerPointerAsRsrcIntrin(
N, DAG));
7286 case Intrinsic::amdgcn_cvt_pkrtz: {
7292 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
7295 case Intrinsic::amdgcn_cvt_pknorm_i16:
7296 case Intrinsic::amdgcn_cvt_pknorm_u16:
7297 case Intrinsic::amdgcn_cvt_pk_i16:
7298 case Intrinsic::amdgcn_cvt_pk_u16: {
7304 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
7306 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
7308 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
7313 EVT VT =
N->getValueType(0);
7318 Results.push_back(DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
7322 case Intrinsic::amdgcn_s_buffer_load: {
7328 if (!Subtarget->hasScalarSubwordLoads())
7334 EVT VT =
Op.getValueType();
7335 assert(VT == MVT::i8 &&
"Expected 8-bit s_buffer_load intrinsics.\n");
7347 if (!
Offset->isDivergent()) {
7366 LoadVal = handleByteShortBufferLoads(DAG, VT,
DL,
Ops, MMO);
7371 case Intrinsic::amdgcn_dead: {
7372 for (
unsigned I = 0, E =
N->getNumValues();
I < E; ++
I)
7383 for (
unsigned I = 0;
I < Res.getNumOperands();
I++) {
7384 Results.push_back(Res.getOperand(
I));
7388 Results.push_back(Res.getValue(1));
7397 EVT VT =
N->getValueType(0);
7402 EVT SelectVT = NewVT;
7403 if (NewVT.
bitsLT(MVT::i32)) {
7406 SelectVT = MVT::i32;
7412 if (NewVT != SelectVT)
7418 if (
N->getValueType(0) != MVT::v2f16)
7422 SDValue BC = DAG.
getNode(ISD::BITCAST, SL, MVT::i32,
N->getOperand(0));
7430 if (
N->getValueType(0) != MVT::v2f16)
7434 SDValue BC = DAG.
getNode(ISD::BITCAST, SL, MVT::i32,
N->getOperand(0));
7442 if (
N->getValueType(0) != MVT::f16)
7457 if (U.get() !=
Value)
7460 if (U.getUser()->getOpcode() == Opcode)
7466unsigned SITargetLowering::isCFIntrinsic(
const SDNode *Intr)
const {
7469 case Intrinsic::amdgcn_if:
7471 case Intrinsic::amdgcn_else:
7473 case Intrinsic::amdgcn_loop:
7475 case Intrinsic::amdgcn_end_cf:
7495 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
7522 SDNode *Intr = BRCOND.getOperand(1).getNode();
7539 Intr =
LHS.getNode();
7547 assert(BR &&
"brcond missing unconditional branch user");
7552 unsigned CFNode = isCFIntrinsic(Intr);
7572 Ops.push_back(Target);
7595 for (
unsigned i = 1, e = Intr->
getNumValues() - 1; i != e; ++i) {
7614 MVT VT =
Op.getSimpleValueType();
7617 if (
Op.getConstantOperandVal(0) != 0)
7621 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7623 if (
Info->isEntryFunction())
7640 return Op.getValueType().bitsLE(VT)
7648 EVT DstVT =
Op.getValueType();
7655 unsigned Opc =
Op.getOpcode();
7667 EVT SrcVT = Src.getValueType();
7668 EVT DstVT =
Op.getValueType();
7671 assert(Subtarget->hasCvtPkF16F32Inst() &&
"support v_cvt_pk_f16_f32");
7674 return SrcVT == MVT::v2f32 ?
Op : splitFP_ROUNDVectorOp(
Op, DAG);
7681 if (DstVT == MVT::f16) {
7686 if (!Subtarget->has16BitInsts()) {
7689 return DAG.
getNode(ISD::BITCAST,
DL, MVT::f16, Trunc);
7691 if (
Op->getFlags().hasApproximateFuncs()) {
7698 return DAG.
getNode(ISD::BITCAST,
DL, MVT::f16, Trunc);
7702 "custom lower FP_ROUND for f16 or bf16");
7703 assert(Subtarget->hasBF16ConversionInsts() &&
"f32 -> bf16 is legal");
7716 EVT VT =
Op.getValueType();
7718 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7719 bool IsIEEEMode =
Info->getMode().IEEE;
7728 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7735SITargetLowering::lowerFMINIMUMNUM_FMAXIMUMNUM(
SDValue Op,
7737 EVT VT =
Op.getValueType();
7739 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
7740 bool IsIEEEMode =
Info->getMode().IEEE;
7745 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
7753 EVT VT =
Op.getValueType();
7757 assert(!Subtarget->hasIEEEMinimumMaximumInsts() &&
7758 !Subtarget->hasMinimum3Maximum3F16() &&
7759 Subtarget->hasMinimum3Maximum3PKF16() && VT == MVT::f16 &&
7760 "should not need to widen f16 minimum/maximum to v2f16");
7774 DAG.
getNode(
Op.getOpcode(), SL, MVT::v2f16, WideSrc0, WideSrc1);
7782 EVT VT =
Op.getValueType();
7786 EVT ExpVT =
Exp.getValueType();
7787 if (ExpVT == MVT::i16)
7808 {
Op.getOperand(0),
Op.getOperand(1), TruncExp});
7811 return DAG.
getNode(ISD::FLDEXP,
DL, VT,
Op.getOperand(0), TruncExp);
7815 switch (
Op->getOpcode()) {
7845 DAGCombinerInfo &DCI)
const {
7846 const unsigned Opc =
Op.getOpcode();
7854 :
Op->getOperand(0).getValueType();
7857 if (DCI.isBeforeLegalizeOps() ||
7861 auto &DAG = DCI.DAG;
7867 LHS =
Op->getOperand(1);
7868 RHS =
Op->getOperand(2);
7870 LHS =
Op->getOperand(0);
7871 RHS =
Op->getOperand(1);
7910 if (MagVT == SignVT)
7917 SDValue SignAsInt32 = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, Sign);
7920 SDValue SignAsHalf16 = DAG.
getNode(ISD::BITCAST, SL, MagVT, SignAsInt16);
7927 EVT VT =
Op.getValueType();
7933 assert(VT == MVT::i64 &&
"The following code is a special for s_mul_u64");
7960 if (
Op->isDivergent())
7973 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
7975 DAG.
getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
7978 if (Op0SignBits >= 33 && Op1SignBits >= 33)
7980 DAG.
getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
7986 EVT VT =
Op.getValueType();
7993 const APInt &
C = RHSC->getAPIntValue();
7995 if (
C.isPowerOf2()) {
7997 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
8024 if (
Op->isDivergent()) {
8028 if (Subtarget->hasSMulHi()) {
8039 if (!Subtarget->isTrapHandlerEnabled() ||
8041 return lowerTrapEndpgm(
Op, DAG);
8043 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(
Op, DAG)
8044 : lowerTrapHsaQueuePtr(
Op, DAG);
8054SITargetLowering::loadImplicitKernelArgument(
SelectionDAG &DAG,
MVT VT,
8056 ImplicitParameter Param)
const {
8076 loadImplicitKernelArgument(DAG, MVT::i64, SL,
Align(8),
QUEUE_PTR);
8079 SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
8082 if (UserSGPR == AMDGPU::NoRegister) {
8108 if (Subtarget->hasPrivEnabledTrap2NopBug())
8121 if (!Subtarget->isTrapHandlerEnabled() ||
8125 "debugtrap handler not supported",
8136SDValue SITargetLowering::getSegmentAperture(
unsigned AS,
const SDLoc &
DL,
8138 if (Subtarget->hasApertureRegs()) {
8140 ? AMDGPU::SRC_SHARED_BASE
8141 : AMDGPU::SRC_PRIVATE_BASE;
8142 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
8143 !Subtarget->hasGloballyAddressableScratch()) &&
8144 "Cannot use src_private_base with globally addressable scratch!");
8165 return loadImplicitKernelArgument(DAG, MVT::i32,
DL,
Align(4), Param);
8169 SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
8171 if (UserSGPR == AMDGPU::NoRegister) {
8205 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
8216 const AMDGPUTargetMachine &TM =
8219 unsigned DestAS, SrcAS;
8221 bool IsNonNull =
false;
8223 SrcAS = ASC->getSrcAddressSpace();
8224 Src = ASC->getOperand(0);
8225 DestAS = ASC->getDestAddressSpace();
8228 Op.getConstantOperandVal(0) ==
8229 Intrinsic::amdgcn_addrspacecast_nonnull);
8230 Src =
Op->getOperand(1);
8231 SrcAS =
Op->getConstantOperandVal(2);
8232 DestAS =
Op->getConstantOperandVal(3);
8245 Subtarget->hasGloballyAddressableScratch()) {
8250 AMDGPU::S_MOV_B32, SL, MVT::i32,
8251 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO, MVT::i32)),
8259 unsigned NullVal = TM.getNullPointerValue(DestAS);
8274 Subtarget->hasGloballyAddressableScratch()) {
8283 if (Subtarget->isWave64())
8289 57 - 32 - Subtarget->getWavefrontSizeLog2(), MVT::i32, SL);
8292 CvtPtr = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8297 AMDGPU::S_MOV_B64, SL, MVT::i64,
8298 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE, MVT::i64)),
8300 CvtPtr = DAG.
getNode(
ISD::ADD, SL, MVT::i64, CvtPtr, FlatScratchBase);
8302 SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
8304 CvtPtr = DAG.
getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
8310 unsigned NullVal = TM.getNullPointerValue(SrcAS);
8322 Op.getValueType() == MVT::i64) {
8323 const SIMachineFunctionInfo *
Info =
8327 return DAG.
getNode(ISD::BITCAST, SL, MVT::i64, Vec);
8331 Src.getValueType() == MVT::i64)
8351 EVT InsVT =
Ins.getValueType();
8359 assert(InsNumElts % 2 == 0 &&
"expect legal vector types");
8364 EVT NewInsVT = InsNumElts == 2 ? MVT::i32
8366 MVT::i32, InsNumElts / 2);
8368 Vec = DAG.
getNode(ISD::BITCAST, SL, NewVecVT, Vec);
8369 Ins = DAG.
getNode(ISD::BITCAST, SL, NewInsVT, Ins);
8371 for (
unsigned I = 0;
I != InsNumElts / 2; ++
I) {
8373 if (InsNumElts == 2) {
8383 return DAG.
getNode(ISD::BITCAST, SL, VecVT, Vec);
8386 for (
unsigned I = 0;
I != InsNumElts; ++
I) {
8409 if (NumElts == 4 && EltSize == 16 && KIdx) {
8417 SDValue LoVec = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
8418 SDValue HiVec = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
8420 unsigned Idx = KIdx->getZExtValue();
8421 bool InsertLo = Idx < 2;
8424 DAG.
getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
8425 DAG.
getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
8427 InsHalf = DAG.
getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
8431 : DAG.getBuildVector(MVT::v2i32, SL, {LoHalf, InsHalf});
8444 assert(VecSize <= 64 &&
"Expected target vector size to be <= 64 bits");
8472 return DAG.
getNode(ISD::BITCAST, SL, VecVT, BFI);
8479 EVT ResultVT =
Op.getValueType();
8492 if (
SDValue Combined = performExtractVectorEltCombine(
Op.getNode(), DCI))
8495 if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
8499 if (VecSize == 128) {
8507 }
else if (VecSize == 256) {
8510 for (
unsigned P = 0;
P < 4; ++
P) {
8516 Parts[0], Parts[1]));
8518 Parts[2], Parts[3]));
8524 for (
unsigned P = 0;
P < 8; ++
P) {
8531 Parts[0], Parts[1], Parts[2], Parts[3]));
8534 Parts[4], Parts[5], Parts[6], Parts[7]));
8554 Src = DAG.
getBitcast(Src.getValueType().changeTypeToInteger(), Src);
8569 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
8571 return DAG.
getNode(ISD::BITCAST, SL, ResultVT, Result);
8579 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
8584 return Mask[Elt] >= 0 && Mask[Elt + 1] >= 0 && (Mask[Elt] & 1) &&
8585 !(Mask[Elt + 1] & 1);
8591 EVT ResultVT =
Op.getValueType();
8594 const int NewSrcNumElts = 2;
8596 int SrcNumElts =
Op.getOperand(0).getValueType().getVectorNumElements();
8612 const bool ShouldUseConsecutiveExtract = EltVT.
getSizeInBits() == 16;
8634 if (ShouldUseConsecutiveExtract &&
8637 int VecIdx = Idx < SrcNumElts ? 0 : 1;
8638 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
8650 if (Idx0 >= SrcNumElts) {
8655 if (Idx1 >= SrcNumElts) {
8660 int AlignedIdx0 = Idx0 & ~(NewSrcNumElts - 1);
8661 int AlignedIdx1 = Idx1 & ~(NewSrcNumElts - 1);
8669 int NewMaskIdx0 = Idx0 - AlignedIdx0;
8670 int NewMaskIdx1 = Idx1 - AlignedIdx1;
8675 if (SubVec0 != SubVec1) {
8676 NewMaskIdx1 += NewSrcNumElts;
8683 {NewMaskIdx0, NewMaskIdx1});
8688 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
8689 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
8690 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
8691 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
8710 EVT ResultVT =
Op.getValueType();
8726 EVT VT =
Op.getValueType();
8728 if (VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16) {
8729 assert(!Subtarget->hasVOP3PInsts() &&
"this should be legal");
8738 return DAG.
getNode(ISD::BITCAST, SL, VT, ExtLo);
8747 return DAG.
getNode(ISD::BITCAST, SL, VT, ShlHi);
8754 return DAG.
getNode(ISD::BITCAST, SL, VT,
Or);
8763 for (
unsigned P = 0;
P < NumParts; ++
P) {
8765 PartVT, SL, {
Op.getOperand(
P * 2),
Op.getOperand(
P * 2 + 1)});
8771 return DAG.
getNode(ISD::BITCAST, SL, VT, Blend);
8784 if (!Subtarget->isAmdHsaOS())
8844 EVT PtrVT =
Op.getValueType();
8846 const GlobalValue *GV = GSD->
getGlobal();
8860 assert(PtrVT == MVT::i32 &&
"32-bit pointer is expected.");
8878 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
8879 if (Subtarget->has64BitLiterals()) {
8910 MachinePointerInfo PtrInfo =
8938 SDValue Param = lowerKernargMemParameter(
8949 "non-hsa intrinsic with hsa target",
DL.getDebugLoc()));
8957 "intrinsic not supported on subtarget",
DL.getDebugLoc()));
8965 unsigned NumElts = Elts.
size();
8967 if (NumElts <= 12) {
8976 for (
unsigned i = 0; i < Elts.
size(); ++i) {
8982 for (
unsigned i = Elts.
size(); i < NumElts; ++i)
8992 EVT SrcVT = Src.getValueType();
9013 bool Unpacked,
bool IsD16,
int DMaskPop,
9014 int NumVDataDwords,
bool IsAtomicPacked16Bit,
9018 EVT ReqRetVT = ResultTypes[0];
9020 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
9021 ? (ReqRetNumElts + 1) / 2
9024 int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2;
9035 if (DMaskPop > 0 &&
Data.getValueType() != MaskPopVT) {
9046 if (DataDwordVT.
isVector() && !IsAtomicPacked16Bit)
9048 NumDataDwords - MaskPopDwords);
9053 EVT LegalReqRetVT = ReqRetVT;
9055 if (!
Data.getValueType().isInteger())
9057 Data.getValueType().changeTypeToInteger(),
Data);
9078 if (Result->getNumValues() == 1)
9085 SDValue *LWE,
bool &IsTexFail) {
9105 unsigned DimIdx,
unsigned EndIdx,
9106 unsigned NumGradients) {
9108 for (
unsigned I = DimIdx;
I < EndIdx;
I++) {
9116 if (((
I + 1) >= EndIdx) ||
9117 ((NumGradients / 2) % 2 == 1 && (
I == DimIdx + (NumGradients / 2) - 1 ||
9118 I == DimIdx + NumGradients - 1))) {
9137 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
9151 int NumVDataDwords = 0;
9152 bool AdjustRetType =
false;
9153 bool IsAtomicPacked16Bit =
false;
9156 const unsigned ArgOffset = WithChain ? 2 : 1;
9159 unsigned DMaskLanes = 0;
9161 if (BaseOpcode->Atomic) {
9162 VData =
Op.getOperand(2);
9164 IsAtomicPacked16Bit =
9165 (Intr->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
9166 Intr->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
9169 if (BaseOpcode->AtomicX2) {
9176 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
9177 DMask = Is64Bit ? 0xf : 0x3;
9178 NumVDataDwords = Is64Bit ? 4 : 2;
9180 DMask = Is64Bit ? 0x3 : 0x1;
9181 NumVDataDwords = Is64Bit ? 2 : 1;
9184 DMask =
Op->getConstantOperandVal(ArgOffset + Intr->
DMaskIndex);
9187 if (BaseOpcode->Store) {
9188 VData =
Op.getOperand(2);
9192 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9196 VData = handleD16VData(VData, DAG,
true);
9199 NumVDataDwords = (VData.
getValueType().getSizeInBits() + 31) / 32;
9200 }
else if (!BaseOpcode->NoReturn) {
9205 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
9213 (!LoadVT.
isVector() && DMaskLanes > 1))
9219 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
9220 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
9221 NumVDataDwords = (DMaskLanes + 1) / 2;
9223 NumVDataDwords = DMaskLanes;
9225 AdjustRetType =
true;
9229 unsigned VAddrEnd = ArgOffset + Intr->
VAddrEnd;
9236 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9237 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9239 VAddrVT =
Op.getOperand(ArgOffset + Intr->
CoordStart).getSimpleValueType();
9241 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
9242 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
9246 if (IsA16 && (
Op.getOperand(ArgOffset +
I).getValueType() == MVT::f16)) {
9252 {
Op.getOperand(ArgOffset +
I), DAG.
getPOISON(MVT::f16)});
9256 "Bias needs to be converted to 16 bit in A16 mode");
9261 if (BaseOpcode->Gradients && !
ST->hasG16() && (IsA16 != IsG16)) {
9265 dbgs() <<
"Failed to lower image intrinsic: 16 bit addresses "
9266 "require 16 bit args for both gradients and addresses");
9271 if (!
ST->hasA16()) {
9272 LLVM_DEBUG(
dbgs() <<
"Failed to lower image intrinsic: Target does not "
9273 "support 16 bit addresses\n");
9283 if (BaseOpcode->Gradients && IsG16 &&
ST->hasG16()) {
9285 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
9287 IntrOpcode = G16MappingInfo->
G16;
9310 for (
unsigned I = ArgOffset + Intr->
CoordStart;
I < VAddrEnd;
I++)
9328 const unsigned NSAMaxSize =
ST->getNSAMaxSize(BaseOpcode->Sampler);
9329 const bool HasPartialNSAEncoding =
ST->hasPartialNSAEncoding();
9330 const bool UseNSA =
ST->hasNSAEncoding() &&
9331 VAddrs.
size() >=
ST->getNSAThreshold(MF) &&
9332 (VAddrs.
size() <= NSAMaxSize || HasPartialNSAEncoding);
9333 const bool UsePartialNSA =
9334 UseNSA && HasPartialNSAEncoding && VAddrs.
size() > NSAMaxSize;
9337 if (UsePartialNSA) {
9339 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
9340 }
else if (!UseNSA) {
9347 if (!BaseOpcode->Sampler) {
9350 uint64_t UnormConst =
9351 Op.getConstantOperandVal(ArgOffset + Intr->
UnormIndex);
9353 Unorm = UnormConst ? True : False;
9359 bool IsTexFail =
false;
9360 if (!
parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
9371 NumVDataDwords += 1;
9372 AdjustRetType =
true;
9377 if (AdjustRetType) {
9380 if (DMaskLanes == 0 && !BaseOpcode->Store) {
9389 MVT::i32, NumVDataDwords)
9392 ResultTypes[0] = NewVT;
9393 if (ResultTypes.size() == 3) {
9397 ResultTypes.erase(&ResultTypes[1]);
9402 if (BaseOpcode->Atomic)
9409 if (BaseOpcode->Store || BaseOpcode->Atomic)
9410 Ops.push_back(VData);
9411 if (UsePartialNSA) {
9413 Ops.push_back(VAddr);
9417 Ops.push_back(VAddr);
9420 if (RsrcVT != MVT::v4i32 && RsrcVT != MVT::v8i32)
9422 Ops.push_back(Rsrc);
9423 if (BaseOpcode->Sampler) {
9427 Ops.push_back(Samp);
9432 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9433 Ops.push_back(Unorm);
9435 Ops.push_back(IsA16 &&
9436 ST->hasFeature(AMDGPU::FeatureR128A16)
9440 Ops.push_back(IsA16 ? True : False);
9442 if (!Subtarget->hasGFX90AInsts())
9447 "TFE is not supported on this GPU",
DL.getDebugLoc()));
9450 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
9453 Ops.push_back(DimInfo->
DA ? True : False);
9454 if (BaseOpcode->HasD16)
9455 Ops.push_back(IsD16 ? True : False);
9457 Ops.push_back(
Op.getOperand(0));
9459 int NumVAddrDwords =
9465 NumVDataDwords, NumVAddrDwords);
9466 }
else if (IsGFX11Plus) {
9468 UseNSA ? AMDGPU::MIMGEncGfx11NSA
9469 : AMDGPU::MIMGEncGfx11Default,
9470 NumVDataDwords, NumVAddrDwords);
9471 }
else if (IsGFX10Plus) {
9473 UseNSA ? AMDGPU::MIMGEncGfx10NSA
9474 : AMDGPU::MIMGEncGfx10Default,
9475 NumVDataDwords, NumVAddrDwords);
9477 if (Subtarget->hasGFX90AInsts()) {
9479 NumVDataDwords, NumVAddrDwords);
9483 "requested image instruction is not supported on this GPU",
9488 for (EVT VT : OrigResultTypes) {
9489 if (VT == MVT::Other)
9490 RetValues[Idx++] =
Op.getOperand(0);
9501 NumVDataDwords, NumVAddrDwords);
9504 NumVDataDwords, NumVAddrDwords);
9511 MachineMemOperand *MemRef = MemOp->getMemOperand();
9515 if (BaseOpcode->AtomicX2) {
9520 if (BaseOpcode->NoReturn)
9523 Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
9524 NumVDataDwords, IsAtomicPacked16Bit,
DL);
9537 MachinePointerInfo(),
9542 if (!
Offset->isDivergent()) {
9549 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9558 !Subtarget->hasScalarDwordx3Loads()) {
9585 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
9587 return handleByteShortBufferLoads(DAG, VT,
DL,
Ops, MMO);
9591 unsigned NumLoads = 1;
9597 if (NumElts == 8 || NumElts == 16) {
9598 NumLoads = NumElts / 4;
9602 SDVTList VTList = DAG.
getVTList({LoadVT, MVT::Other});
9607 NumLoads > 1 ?
Align(16 * NumLoads) :
Align(4));
9609 uint64_t InstOffset =
Ops[5]->getAsZExtVal();
9610 for (
unsigned i = 0; i < NumLoads; ++i) {
9616 if (NumElts == 8 || NumElts == 16)
9624 if (!Subtarget->hasArchitectedSGPRs())
9636 unsigned Width)
const {
9638 using namespace AMDGPU::Hwreg;
9640 AMDGPU::S_GETREG_B32_const, SL, MVT::i32,
9679 auto *MFI = MF.
getInfo<SIMachineFunctionInfo>();
9681 EVT VT =
Op.getValueType();
9683 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
9687 switch (IntrinsicID) {
9688 case Intrinsic::amdgcn_implicit_buffer_ptr: {
9691 return getPreloadedValue(DAG, *MFI, VT,
9694 case Intrinsic::amdgcn_dispatch_ptr:
9695 case Intrinsic::amdgcn_queue_ptr: {
9696 if (!Subtarget->isAmdHsaOrMesa(MF.
getFunction())) {
9698 MF.
getFunction(),
"unsupported hsa intrinsic without hsa target",
9703 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr
9706 return getPreloadedValue(DAG, *MFI, VT, RegID);
9708 case Intrinsic::amdgcn_implicitarg_ptr: {
9710 return getImplicitArgPtr(DAG,
DL);
9711 return getPreloadedValue(DAG, *MFI, VT,
9714 case Intrinsic::amdgcn_kernarg_segment_ptr: {
9720 return getPreloadedValue(DAG, *MFI, VT,
9723 case Intrinsic::amdgcn_dispatch_id: {
9726 case Intrinsic::amdgcn_rcp:
9728 case Intrinsic::amdgcn_rsq:
9730 case Intrinsic::amdgcn_rsq_legacy:
9734 case Intrinsic::amdgcn_rcp_legacy:
9738 case Intrinsic::amdgcn_rsq_clamp: {
9749 return DAG.
getNode(ISD::FMAXNUM,
DL, VT, Tmp,
9752 case Intrinsic::r600_read_ngroups_x:
9753 if (Subtarget->isAmdHsaOS())
9756 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9759 case Intrinsic::r600_read_ngroups_y:
9760 if (Subtarget->isAmdHsaOS())
9763 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9766 case Intrinsic::r600_read_ngroups_z:
9767 if (Subtarget->isAmdHsaOS())
9770 return lowerKernargMemParameter(DAG, VT, VT,
DL, DAG.
getEntryNode(),
9773 case Intrinsic::r600_read_local_size_x:
9774 if (Subtarget->isAmdHsaOS())
9777 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9779 case Intrinsic::r600_read_local_size_y:
9780 if (Subtarget->isAmdHsaOS())
9783 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9785 case Intrinsic::r600_read_local_size_z:
9786 if (Subtarget->isAmdHsaOS())
9789 return lowerImplicitZextParam(DAG,
Op, MVT::i16,
9791 case Intrinsic::amdgcn_workgroup_id_x:
9792 return lowerWorkGroupId(DAG, *MFI, VT,
9796 case Intrinsic::amdgcn_workgroup_id_y:
9797 return lowerWorkGroupId(DAG, *MFI, VT,
9801 case Intrinsic::amdgcn_workgroup_id_z:
9802 return lowerWorkGroupId(DAG, *MFI, VT,
9806 case Intrinsic::amdgcn_cluster_id_x:
9807 return Subtarget->hasClusters()
9808 ? getPreloadedValue(DAG, *MFI, VT,
9810 : DAG.getPOISON(VT);
9811 case Intrinsic::amdgcn_cluster_id_y:
9812 return Subtarget->hasClusters()
9813 ? getPreloadedValue(DAG, *MFI, VT,
9816 case Intrinsic::amdgcn_cluster_id_z:
9817 return Subtarget->hasClusters()
9818 ? getPreloadedValue(DAG, *MFI, VT,
9821 case Intrinsic::amdgcn_cluster_workgroup_id_x:
9822 return Subtarget->hasClusters()
9823 ? getPreloadedValue(
9827 case Intrinsic::amdgcn_cluster_workgroup_id_y:
9828 return Subtarget->hasClusters()
9829 ? getPreloadedValue(
9833 case Intrinsic::amdgcn_cluster_workgroup_id_z:
9834 return Subtarget->hasClusters()
9835 ? getPreloadedValue(
9839 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
9840 return Subtarget->hasClusters()
9843 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
9844 return Subtarget->hasClusters()
9845 ? getPreloadedValue(
9849 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
9850 return Subtarget->hasClusters()
9851 ? getPreloadedValue(
9855 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
9856 return Subtarget->hasClusters()
9857 ? getPreloadedValue(
9861 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
9862 return Subtarget->hasClusters()
9863 ? getPreloadedValue(
9867 case Intrinsic::amdgcn_wave_id:
9868 return lowerWaveID(DAG,
Op);
9869 case Intrinsic::amdgcn_lds_kernel_id: {
9871 return getLDSKernelId(DAG,
DL);
9872 return getPreloadedValue(DAG, *MFI, VT,
9875 case Intrinsic::amdgcn_workitem_id_x:
9876 return lowerWorkitemID(DAG,
Op, 0, MFI->getArgInfo().WorkItemIDX);
9877 case Intrinsic::amdgcn_workitem_id_y:
9878 return lowerWorkitemID(DAG,
Op, 1, MFI->getArgInfo().WorkItemIDY);
9879 case Intrinsic::amdgcn_workitem_id_z:
9880 return lowerWorkitemID(DAG,
Op, 2, MFI->getArgInfo().WorkItemIDZ);
9881 case Intrinsic::amdgcn_wavefrontsize:
9883 SDLoc(
Op), MVT::i32);
9884 case Intrinsic::amdgcn_s_buffer_load: {
9885 unsigned CPol =
Op.getConstantOperandVal(3);
9892 return lowerSBuffer(VT,
DL,
Op.getOperand(1),
Op.getOperand(2),
9893 Op.getOperand(3), DAG);
9895 case Intrinsic::amdgcn_fdiv_fast:
9896 return lowerFDIV_FAST(
Op, DAG);
9897 case Intrinsic::amdgcn_sin:
9900 case Intrinsic::amdgcn_cos:
9903 case Intrinsic::amdgcn_mul_u24:
9906 case Intrinsic::amdgcn_mul_i24:
9910 case Intrinsic::amdgcn_log_clamp: {
9916 case Intrinsic::amdgcn_fract:
9919 case Intrinsic::amdgcn_class:
9922 case Intrinsic::amdgcn_div_fmas:
9924 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
9926 case Intrinsic::amdgcn_div_fixup:
9928 Op.getOperand(2),
Op.getOperand(3));
9930 case Intrinsic::amdgcn_div_scale: {
9943 SDValue Src0 =
Param->isAllOnes() ? Numerator : Denominator;
9946 Denominator, Numerator);
9948 case Intrinsic::amdgcn_icmp: {
9950 if (
Op.getOperand(1).getValueType() == MVT::i1 &&
9951 Op.getConstantOperandVal(2) == 0 &&
9956 case Intrinsic::amdgcn_fcmp: {
9959 case Intrinsic::amdgcn_ballot:
9961 case Intrinsic::amdgcn_fmed3:
9963 Op.getOperand(2),
Op.getOperand(3));
9964 case Intrinsic::amdgcn_fdot2:
9966 Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
9967 case Intrinsic::amdgcn_fmul_legacy:
9970 case Intrinsic::amdgcn_sffbh:
9972 case Intrinsic::amdgcn_sbfe:
9974 Op.getOperand(2),
Op.getOperand(3));
9975 case Intrinsic::amdgcn_ubfe:
9977 Op.getOperand(2),
Op.getOperand(3));
9978 case Intrinsic::amdgcn_cvt_pkrtz:
9979 case Intrinsic::amdgcn_cvt_pknorm_i16:
9980 case Intrinsic::amdgcn_cvt_pknorm_u16:
9981 case Intrinsic::amdgcn_cvt_pk_i16:
9982 case Intrinsic::amdgcn_cvt_pk_u16: {
9984 EVT VT =
Op.getValueType();
9987 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
9989 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
9991 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
9993 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
9999 return DAG.
getNode(Opcode,
DL, VT,
Op.getOperand(1),
Op.getOperand(2));
10002 DAG.
getNode(Opcode,
DL, MVT::i32,
Op.getOperand(1),
Op.getOperand(2));
10003 return DAG.
getNode(ISD::BITCAST,
DL, VT, Node);
10005 case Intrinsic::amdgcn_fmad_ftz:
10007 Op.getOperand(2),
Op.getOperand(3));
10009 case Intrinsic::amdgcn_if_break:
10011 Op->getOperand(1),
Op->getOperand(2)),
10014 case Intrinsic::amdgcn_groupstaticsize: {
10020 const GlobalValue *GV =
10026 case Intrinsic::amdgcn_is_shared:
10027 case Intrinsic::amdgcn_is_private: {
10030 DAG.
getNode(ISD::BITCAST,
DL, MVT::v2i32,
Op.getOperand(1));
10034 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared)
10038 Subtarget->hasGloballyAddressableScratch()) {
10041 AMDGPU::S_MOV_B32,
DL, MVT::i32,
10042 DAG.
getRegister(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI, MVT::i32)),
10051 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
10054 case Intrinsic::amdgcn_perm:
10056 Op.getOperand(2),
Op.getOperand(3));
10057 case Intrinsic::amdgcn_reloc_constant: {
10067 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
10068 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
10069 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
10070 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
10071 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
10072 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
10073 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
10074 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
10075 if (
Op.getOperand(4).getValueType() == MVT::i32)
10081 Op.getOperand(0),
Op.getOperand(1),
Op.getOperand(2),
10082 Op.getOperand(3), IndexKeyi32);
10084 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
10085 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
10086 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
10087 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
10088 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
10089 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
10090 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
10091 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
10092 if (
Op.getOperand(4).getValueType() == MVT::i64)
10098 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10099 Op.getOperand(3), IndexKeyi64, Op.getOperand(5),
10100 Op.getOperand(6)});
10102 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
10103 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
10104 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
10105 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
10106 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
10107 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8: {
10108 EVT IndexKeyTy = IntrinsicID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
10111 if (
Op.getOperand(6).getValueType() == IndexKeyTy)
10117 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10118 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10119 IndexKey, Op.getOperand(7),
10120 Op.getOperand(8)});
10122 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
10123 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
10124 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
10125 if (
Op.getOperand(6).getValueType() == MVT::i32)
10131 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
10132 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
10133 IndexKeyi32, Op.getOperand(7)});
10135 case Intrinsic::amdgcn_addrspacecast_nonnull:
10136 return lowerADDRSPACECAST(
Op, DAG);
10137 case Intrinsic::amdgcn_readlane:
10138 case Intrinsic::amdgcn_readfirstlane:
10139 case Intrinsic::amdgcn_writelane:
10140 case Intrinsic::amdgcn_permlane16:
10141 case Intrinsic::amdgcn_permlanex16:
10142 case Intrinsic::amdgcn_permlane64:
10143 case Intrinsic::amdgcn_set_inactive:
10144 case Intrinsic::amdgcn_set_inactive_chain_arg:
10145 case Intrinsic::amdgcn_mov_dpp8:
10146 case Intrinsic::amdgcn_update_dpp:
10148 case Intrinsic::amdgcn_dead: {
10150 for (
const EVT ValTy :
Op.getNode()->values())
10155 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10157 return lowerImage(
Op, ImageDimIntr, DAG,
false);
10168 return DAG.
getRegister(AMDGPU::SGPR_NULL, MVT::i32);
10174 unsigned NewOpcode)
const {
10178 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10179 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10197 M->getMemOperand());
10202 unsigned NewOpcode)
const {
10206 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10207 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
10225 M->getMemOperand());
10230 unsigned IntrID =
Op.getConstantOperandVal(1);
10234 case Intrinsic::amdgcn_ds_ordered_add:
10235 case Intrinsic::amdgcn_ds_ordered_swap: {
10240 unsigned IndexOperand =
M->getConstantOperandVal(7);
10241 unsigned WaveRelease =
M->getConstantOperandVal(8);
10242 unsigned WaveDone =
M->getConstantOperandVal(9);
10244 unsigned OrderedCountIndex = IndexOperand & 0x3f;
10245 IndexOperand &= ~0x3f;
10246 unsigned CountDw = 0;
10249 CountDw = (IndexOperand >> 24) & 0xf;
10250 IndexOperand &= ~(0xf << 24);
10252 if (CountDw < 1 || CountDw > 4) {
10255 Fn,
"ds_ordered_count: dword count must be between 1 and 4",
10256 DL.getDebugLoc()));
10261 if (IndexOperand) {
10264 Fn,
"ds_ordered_count: bad index operand",
DL.getDebugLoc()));
10267 if (WaveDone && !WaveRelease) {
10271 Fn,
"ds_ordered_count: wave_done requires wave_release",
10272 DL.getDebugLoc()));
10275 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
10276 unsigned ShaderType =
10278 unsigned Offset0 = OrderedCountIndex << 2;
10279 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
10282 Offset1 |= (CountDw - 1) << 6;
10285 Offset1 |= ShaderType << 2;
10287 unsigned Offset = Offset0 | (Offset1 << 8);
10294 M->getVTList(),
Ops,
M->getMemoryVT(),
10295 M->getMemOperand());
10297 case Intrinsic::amdgcn_raw_buffer_load:
10298 case Intrinsic::amdgcn_raw_ptr_buffer_load:
10299 case Intrinsic::amdgcn_raw_atomic_buffer_load:
10300 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
10301 case Intrinsic::amdgcn_raw_buffer_load_format:
10302 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
10303 const bool IsFormat =
10304 IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
10305 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
10307 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10308 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
10322 return lowerIntrinsicLoad(M, IsFormat, DAG,
Ops);
10324 case Intrinsic::amdgcn_struct_buffer_load:
10325 case Intrinsic::amdgcn_struct_ptr_buffer_load:
10326 case Intrinsic::amdgcn_struct_buffer_load_format:
10327 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
10328 case Intrinsic::amdgcn_struct_atomic_buffer_load:
10329 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
10330 const bool IsFormat =
10331 IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
10332 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
10334 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10335 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10350 case Intrinsic::amdgcn_raw_tbuffer_load:
10351 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
10353 EVT LoadVT =
Op.getValueType();
10354 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10355 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(3), DAG);
10374 Op->getVTList(),
Ops, LoadVT,
M->getMemOperand(),
10377 case Intrinsic::amdgcn_struct_tbuffer_load:
10378 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
10380 EVT LoadVT =
Op.getValueType();
10381 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
10382 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
10401 Op->getVTList(),
Ops, LoadVT,
M->getMemOperand(),
10404 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
10405 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
10407 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
10408 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
10409 return lowerStructBufferAtomicIntrin(
Op, DAG,
10411 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
10412 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
10414 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
10415 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
10416 return lowerStructBufferAtomicIntrin(
Op, DAG,
10418 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
10419 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
10421 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
10422 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
10423 return lowerStructBufferAtomicIntrin(
Op, DAG,
10425 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
10426 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
10428 case Intrinsic::amdgcn_raw_buffer_atomic_add:
10429 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
10431 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
10432 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
10434 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
10435 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
10437 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
10438 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
10440 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
10441 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
10443 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
10444 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
10446 case Intrinsic::amdgcn_raw_buffer_atomic_and:
10447 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
10449 case Intrinsic::amdgcn_raw_buffer_atomic_or:
10450 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
10452 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
10453 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
10455 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
10456 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
10458 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
10459 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
10461 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
10462 return lowerRawBufferAtomicIntrin(
Op, DAG,
10464 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
10465 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
10466 return lowerStructBufferAtomicIntrin(
Op, DAG,
10468 case Intrinsic::amdgcn_struct_buffer_atomic_add:
10469 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
10471 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
10472 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
10474 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
10475 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
10476 return lowerStructBufferAtomicIntrin(
Op, DAG,
10478 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
10479 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
10480 return lowerStructBufferAtomicIntrin(
Op, DAG,
10482 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
10483 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
10484 return lowerStructBufferAtomicIntrin(
Op, DAG,
10486 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
10487 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
10488 return lowerStructBufferAtomicIntrin(
Op, DAG,
10490 case Intrinsic::amdgcn_struct_buffer_atomic_and:
10491 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
10493 case Intrinsic::amdgcn_struct_buffer_atomic_or:
10494 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
10496 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
10497 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
10499 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
10500 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
10502 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
10503 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
10505 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
10506 return lowerStructBufferAtomicIntrin(
Op, DAG,
10509 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
10510 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
10511 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(4), DAG);
10512 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
10526 EVT VT =
Op.getValueType();
10530 Op->getVTList(),
Ops, VT,
10531 M->getMemOperand());
10533 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
10534 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
10535 SDValue Rsrc = bufferRsrcPtrToVector(
Op->getOperand(4), DAG);
10536 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(6), DAG);
10550 EVT VT =
Op.getValueType();
10554 Op->getVTList(),
Ops, VT,
10555 M->getMemOperand());
10557 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
10558 case Intrinsic::amdgcn_image_bvh8_intersect_ray: {
10560 SDValue NodePtr =
M->getOperand(2);
10561 SDValue RayExtent =
M->getOperand(3);
10562 SDValue InstanceMask =
M->getOperand(4);
10563 SDValue RayOrigin =
M->getOperand(5);
10564 SDValue RayDir =
M->getOperand(6);
10566 SDValue TDescr =
M->getOperand(8);
10571 if (!Subtarget->hasBVHDualAndBVH8Insts()) {
10576 bool IsBVH8 = IntrID == Intrinsic::amdgcn_image_bvh8_intersect_ray;
10577 const unsigned NumVDataDwords = 10;
10578 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
10580 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
10581 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
10582 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
10586 Ops.push_back(NodePtr);
10589 {DAG.getBitcast(MVT::i32, RayExtent),
10590 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, InstanceMask)}));
10591 Ops.push_back(RayOrigin);
10592 Ops.push_back(RayDir);
10593 Ops.push_back(Offsets);
10594 Ops.push_back(TDescr);
10595 Ops.push_back(
M->getChain());
10598 MachineMemOperand *MemRef =
M->getMemOperand();
10602 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
10604 SDValue NodePtr =
M->getOperand(2);
10605 SDValue RayExtent =
M->getOperand(3);
10606 SDValue RayOrigin =
M->getOperand(4);
10607 SDValue RayDir =
M->getOperand(5);
10608 SDValue RayInvDir =
M->getOperand(6);
10609 SDValue TDescr =
M->getOperand(7);
10616 if (!Subtarget->hasGFX10_AEncoding()) {
10626 const unsigned NumVDataDwords = 4;
10627 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
10628 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
10629 const bool UseNSA = (Subtarget->hasNSAEncoding() &&
10632 const unsigned BaseOpcodes[2][2] = {
10633 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
10634 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
10635 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
10639 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
10640 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
10641 : AMDGPU::MIMGEncGfx10NSA,
10642 NumVDataDwords, NumVAddrDwords);
10646 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
10647 : AMDGPU::MIMGEncGfx10Default,
10648 NumVDataDwords, NumVAddrDwords);
10654 auto packLanes = [&DAG, &
Ops, &
DL](
SDValue Op,
bool IsAligned) {
10657 if (Lanes[0].getValueSizeInBits() == 32) {
10658 for (
unsigned I = 0;
I < 3; ++
I)
10665 Ops.push_back(Lanes[2]);
10677 if (UseNSA && IsGFX11Plus) {
10678 Ops.push_back(NodePtr);
10680 Ops.push_back(RayOrigin);
10685 for (
unsigned I = 0;
I < 3; ++
I) {
10688 {DirLanes[I], InvDirLanes[I]})));
10692 Ops.push_back(RayDir);
10693 Ops.push_back(RayInvDir);
10700 Ops.push_back(NodePtr);
10703 packLanes(RayOrigin,
true);
10704 packLanes(RayDir,
true);
10705 packLanes(RayInvDir,
false);
10710 if (NumVAddrDwords > 12) {
10712 Ops.append(16 -
Ops.size(), Undef);
10718 Ops.push_back(MergedOps);
10721 Ops.push_back(TDescr);
10723 Ops.push_back(
M->getChain());
10726 MachineMemOperand *MemRef =
M->getMemOperand();
10730 case Intrinsic::amdgcn_global_atomic_fmin_num:
10731 case Intrinsic::amdgcn_global_atomic_fmax_num:
10732 case Intrinsic::amdgcn_flat_atomic_fmin_num:
10733 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10740 unsigned Opcode = 0;
10742 case Intrinsic::amdgcn_global_atomic_fmin_num:
10743 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
10744 Opcode = ISD::ATOMIC_LOAD_FMIN;
10747 case Intrinsic::amdgcn_global_atomic_fmax_num:
10748 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
10749 Opcode = ISD::ATOMIC_LOAD_FMAX;
10755 return DAG.
getAtomic(Opcode, SDLoc(
Op),
M->getMemoryVT(),
M->getVTList(),
10756 Ops,
M->getMemOperand());
10758 case Intrinsic::amdgcn_s_get_barrier_state:
10759 case Intrinsic::amdgcn_s_get_named_barrier_state: {
10766 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state)
10767 BarID = (BarID >> 4) & 0x3F;
10768 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
10771 Ops.push_back(Chain);
10773 Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
10774 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state) {
10782 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
10790 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
10791 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
10792 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B: {
10796 EVT VT =
Op->getValueType(0);
10802 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10804 return lowerImage(
Op, ImageDimIntr, DAG,
true);
10812SDValue SITargetLowering::getMemIntrinsicNode(
unsigned Opcode,
const SDLoc &
DL,
10819 EVT VT = VTList.
VTs[0];
10822 bool IsTFE = VTList.
NumVTs == 3;
10825 unsigned NumOpDWords = NumValueDWords + 1;
10827 SDVTList OpDWordsVTList = DAG.
getVTList(OpDWordsVT, VTList.
VTs[2]);
10828 MachineMemOperand *OpDWordsMMO =
10830 SDValue Op = getMemIntrinsicNode(Opcode,
DL, OpDWordsVTList,
Ops,
10831 OpDWordsVT, OpDWordsMMO, DAG);
10836 NumValueDWords == 1
10845 if (!Subtarget->hasDwordx3LoadStores() &&
10846 (VT == MVT::v3i32 || VT == MVT::v3f32)) {
10850 SDVTList WidenedVTList = DAG.
getVTList(WidenedVT, VTList.
VTs[1]);
10852 WidenedMemVT, WidenedMMO);
10862 bool ImageStore)
const {
10872 if (Subtarget->hasUnpackedD16VMem()) {
10886 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
10897 for (
unsigned I = 0;
I < Elts.
size() / 2;
I += 1) {
10903 if ((NumElements % 2) == 1) {
10905 unsigned I = Elts.
size() / 2;
10921 if (NumElements == 3) {
10931 return DAG.
getNode(ISD::BITCAST,
DL, WidenedStoreVT, ZExt);
10942 unsigned IntrinsicID =
Op.getConstantOperandVal(1);
10945 switch (IntrinsicID) {
10946 case Intrinsic::amdgcn_exp_compr: {
10947 if (!Subtarget->hasCompressedExport()) {
10950 "intrinsic not supported on subtarget",
DL.getDebugLoc()));
10962 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Src0),
10963 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Src1),
10972 unsigned Opc =
Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
10976 case Intrinsic::amdgcn_struct_tbuffer_store:
10977 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
10979 bool IsD16 = (VData.
getValueType().getScalarType() == MVT::f16);
10981 VData = handleD16VData(VData, DAG);
10982 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
10983 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
11001 M->getMemoryVT(),
M->getMemOperand());
11004 case Intrinsic::amdgcn_raw_tbuffer_store:
11005 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
11007 bool IsD16 = (VData.
getValueType().getScalarType() == MVT::f16);
11009 VData = handleD16VData(VData, DAG);
11010 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11011 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
11029 M->getMemoryVT(),
M->getMemOperand());
11032 case Intrinsic::amdgcn_raw_buffer_store:
11033 case Intrinsic::amdgcn_raw_ptr_buffer_store:
11034 case Intrinsic::amdgcn_raw_buffer_store_format:
11035 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
11036 const bool IsFormat =
11037 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
11038 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
11045 VData = handleD16VData(VData, DAG);
11055 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11056 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(4), DAG);
11076 return handleByteShortBufferStores(DAG, VDataVT,
DL,
Ops, M);
11079 M->getMemoryVT(),
M->getMemOperand());
11082 case Intrinsic::amdgcn_struct_buffer_store:
11083 case Intrinsic::amdgcn_struct_ptr_buffer_store:
11084 case Intrinsic::amdgcn_struct_buffer_store_format:
11085 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
11086 const bool IsFormat =
11087 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
11088 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
11096 VData = handleD16VData(VData, DAG);
11106 auto Rsrc = bufferRsrcPtrToVector(
Op.getOperand(3), DAG);
11107 auto [VOffset,
Offset] = splitBufferOffsets(
Op.getOperand(5), DAG);
11126 EVT VDataType = VData.getValueType().getScalarType();
11128 return handleByteShortBufferStores(DAG, VDataType,
DL,
Ops, M);
11131 M->getMemoryVT(),
M->getMemOperand());
11133 case Intrinsic::amdgcn_raw_buffer_load_lds:
11134 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
11135 case Intrinsic::amdgcn_struct_buffer_load_lds:
11136 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
11137 if (!Subtarget->hasVMemToLDSLoad())
11141 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
11142 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
11143 unsigned OpOffset = HasVIndex ? 1 : 0;
11144 SDValue VOffset =
Op.getOperand(5 + OpOffset);
11146 unsigned Size =
Op->getConstantOperandVal(4);
11152 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
11153 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
11154 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
11155 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
11158 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
11159 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
11160 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
11161 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
11164 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
11165 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
11166 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
11167 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
11170 if (!Subtarget->hasLDSLoadB96_B128())
11172 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_BOTHEN
11173 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_IDXEN
11174 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFEN
11175 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFSET;
11178 if (!Subtarget->hasLDSLoadB96_B128())
11180 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_BOTHEN
11181 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_IDXEN
11182 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFEN
11183 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFSET;
11191 if (HasVIndex && HasVOffset)
11195 else if (HasVIndex)
11196 Ops.push_back(
Op.getOperand(5));
11197 else if (HasVOffset)
11198 Ops.push_back(VOffset);
11200 SDValue Rsrc = bufferRsrcPtrToVector(
Op.getOperand(2), DAG);
11201 Ops.push_back(Rsrc);
11202 Ops.push_back(
Op.getOperand(6 + OpOffset));
11203 Ops.push_back(
Op.getOperand(7 + OpOffset));
11205 unsigned Aux =
Op.getConstantOperandVal(8 + OpOffset);
11218 MachineMemOperand *LoadMMO =
M->getMemOperand();
11223 MachinePointerInfo StorePtrI = LoadPtrI;
11247 case Intrinsic::amdgcn_load_to_lds:
11248 case Intrinsic::amdgcn_global_load_lds: {
11249 if (!Subtarget->hasVMemToLDSLoad())
11253 unsigned Size =
Op->getConstantOperandVal(4);
11258 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
11261 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
11264 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
11267 if (!Subtarget->hasLDSLoadB96_B128())
11269 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX3;
11272 if (!Subtarget->hasLDSLoadB96_B128())
11274 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX4;
11290 if (
LHS->isDivergent())
11294 RHS.getOperand(0).getValueType() == MVT::i32) {
11297 VOffset =
RHS.getOperand(0);
11301 Ops.push_back(Addr);
11309 Ops.push_back(VOffset);
11312 Ops.push_back(
Op.getOperand(5));
11313 Ops.push_back(
Op.getOperand(6));
11318 MachineMemOperand *LoadMMO =
M->getMemOperand();
11320 LoadPtrI.
Offset =
Op->getConstantOperandVal(5);
11321 MachinePointerInfo StorePtrI = LoadPtrI;
11340 case Intrinsic::amdgcn_end_cf:
11342 Op->getOperand(2), Chain),
11344 case Intrinsic::amdgcn_s_barrier_init:
11345 case Intrinsic::amdgcn_s_barrier_signal_var: {
11352 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_s_barrier_init
11353 ? AMDGPU::S_BARRIER_INIT_M0
11354 : AMDGPU::S_BARRIER_SIGNAL_M0;
11369 constexpr unsigned ShAmt = 16;
11376 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
11381 case Intrinsic::amdgcn_s_barrier_join: {
11390 Opc = AMDGPU::S_BARRIER_JOIN_IMM;
11393 unsigned BarID = (BarVal >> 4) & 0x3F;
11396 Ops.push_back(Chain);
11398 Opc = AMDGPU::S_BARRIER_JOIN_M0;
11408 Ops.push_back(
copyToM0(DAG, Chain,
DL, M0Val).getValue(0));
11414 case Intrinsic::amdgcn_s_prefetch_data: {
11417 return Op.getOperand(0);
11420 case Intrinsic::amdgcn_s_buffer_prefetch_data: {
11422 Chain, bufferRsrcPtrToVector(
Op.getOperand(2), DAG),
11429 Op->getVTList(),
Ops,
M->getMemoryVT(),
11430 M->getMemOperand());
11432 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
11433 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
11434 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
11443 if (
const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
11445 return lowerImage(
Op, ImageDimIntr, DAG,
true);
11461 return PtrVT == MVT::i64;
11475std::pair<SDValue, SDValue>
11505 unsigned Overflow = ImmOffset & ~MaxImm;
11506 ImmOffset -= Overflow;
11507 if ((int32_t)Overflow < 0) {
11508 Overflow += ImmOffset;
11513 auto OverflowVal = DAG.
getConstant(Overflow,
DL, MVT::i32);
11532void SITargetLowering::setBufferOffsets(
SDValue CombinedOffset,
11534 Align Alignment)
const {
11536 SDLoc
DL(CombinedOffset);
11538 uint32_t
Imm =
C->getZExtValue();
11539 uint32_t SOffset, ImmOffset;
11540 if (
TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
11550 uint32_t SOffset, ImmOffset;
11553 TII->splitMUBUFOffset(
Offset, SOffset, ImmOffset, Alignment)) {
11561 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
11570SDValue SITargetLowering::bufferRsrcPtrToVector(
SDValue MaybePointer,
11573 return MaybePointer;
11587 SDValue NumRecords =
Op->getOperand(3);
11593 if (Subtarget->has45BitNumRecordsBufferResource()) {
11612 SDValue ExtShiftedStrideVec =
11615 DAG.
getNode(ISD::BITCAST, Loc, MVT::i64, ExtShiftedStrideVec);
11622 DAG.
getNode(ISD::BITCAST, Loc, MVT::i64, ExtShiftedFlagsVec);
11624 DAG.
getNode(
ISD::OR, Loc, MVT::i64, NumRecordsRHS, ExtShiftedStride);
11626 DAG.
getNode(
ISD::OR, Loc, MVT::i64, CombinedFields, ExtShiftedFlags);
11631 auto [LowHalf, HighHalf] =
11632 DAG.
SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
11642 NumRecords, Flags);
11645 SDValue RsrcPtr = DAG.
getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
11654 bool IsTFE)
const {
11663 SDVTList VTs = DAG.
getVTList(MVT::v2i32, MVT::Other);
11678 SDVTList ResList = DAG.
getVTList(MVT::i32, MVT::Other);
11682 LoadVal = DAG.
getNode(ISD::BITCAST,
DL, LoadVT, LoadVal);
11692 if (VDataType == MVT::f16 || VDataType == MVT::bf16)
11696 Ops[1] = BufferStoreExt;
11701 M->getMemOperand());
11726 DAGCombinerInfo &DCI)
const {
11727 SelectionDAG &DAG = DCI.DAG;
11742 if ((MemVT.
isSimple() && !DCI.isAfterLegalizeDAG()) ||
11749 "unexpected vector extload");
11762 "unexpected fp extload");
11780 DCI.AddToWorklist(Cvt.
getNode());
11785 DCI.AddToWorklist(Cvt.
getNode());
11788 Cvt = DAG.
getNode(ISD::BITCAST, SL, VT, Cvt);
11796 if (
Info.isEntryFunction())
11797 return Info.getUserSGPRInfo().hasFlatScratchInit();
11805 EVT MemVT =
Load->getMemoryVT();
11806 MachineMemOperand *MMO =
Load->getMemOperand();
11818 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
11846 assert(
Op.getValueType().getVectorElementType() == MVT::i32 &&
11847 "Custom lowering for non-i32 vectors hasn't been implemented.");
11850 unsigned AS =
Load->getAddressSpace();
11857 SIMachineFunctionInfo *MFI = MF.
getInfo<SIMachineFunctionInfo>();
11861 !Subtarget->hasMultiDwordFlatScratchAddressing())
11871 Subtarget->getScalarizeGlobalBehavior() &&
Load->isSimple() &&
11874 Alignment >=
Align(4) && NumElements < 32) {
11876 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
11888 if (NumElements > 4)
11891 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11901 switch (Subtarget->getMaxPrivateElementSize()) {
11907 if (NumElements > 2)
11912 if (NumElements > 4)
11915 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11924 auto Flags =
Load->getMemOperand()->getFlags();
11926 Load->getAlign(), Flags, &
Fast) &&
11935 MemVT, *
Load->getMemOperand())) {
11944 EVT VT =
Op.getValueType();
11971 return DAG.
getNode(ISD::BITCAST,
DL, VT, Res);
11981 EVT VT =
Op.getValueType();
11982 const SDNodeFlags
Flags =
Op->getFlags();
11984 bool AllowInaccurateRcp =
Flags.hasApproximateFuncs();
11990 if (!AllowInaccurateRcp && VT != MVT::f16 && VT != MVT::bf16)
11993 if (CLHS->isExactlyValue(1.0)) {
12010 if (CLHS->isExactlyValue(-1.0)) {
12019 if (!AllowInaccurateRcp &&
12020 ((VT != MVT::f16 && VT != MVT::bf16) || !
Flags.hasAllowReciprocal()))
12034 EVT VT =
Op.getValueType();
12035 const SDNodeFlags
Flags =
Op->getFlags();
12037 bool AllowInaccurateDiv =
Flags.hasApproximateFuncs();
12038 if (!AllowInaccurateDiv)
12059 return DAG.
getNode(Opcode, SL, VT,
A,
B, Flags);
12073 return DAG.
getNode(Opcode, SL, VTList,
12082 return DAG.
getNode(Opcode, SL, VT, {
A,
B,
C}, Flags);
12096 return DAG.
getNode(Opcode, SL, VTList,
12102 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
12103 return FastLowered;
12106 EVT VT =
Op.getValueType();
12113 if (VT == MVT::bf16) {
12136 unsigned FMADOpCode =
12138 SDValue NegRHSExt = DAG.
getNode(ISD::FNEG, SL, MVT::f32, RHSExt);
12143 SDValue Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12145 Quot = DAG.
getNode(FMADOpCode, SL, MVT::f32, Err, Rcp, Quot,
Op->getFlags());
12146 Err = DAG.
getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
12152 Tmp = DAG.
getNode(ISD::BITCAST, SL, MVT::f32, TmpCast);
12162 SDNodeFlags
Flags =
Op->getFlags();
12169 const APFloat K0Val(0x1p+96f);
12172 const APFloat K1Val(0x1p-32f);
12199 assert(ST->hasDenormModeInst() &&
"Requires S_DENORM_MODE");
12200 uint32_t DPDenormModeDefault =
Info->getMode().fpDenormModeDPValue();
12201 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
12206 if (
SDValue FastLowered = lowerFastUnsafeFDIV(
Op, DAG))
12207 return FastLowered;
12213 SDNodeFlags
Flags =
Op->getFlags();
12214 Flags.setNoFPExcept(
true);
12222 SDVTList ScaleVT = DAG.
getVTList(MVT::f32, MVT::i1);
12233 DAG.
getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags);
12235 using namespace AMDGPU::Hwreg;
12236 const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
12240 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
12241 const DenormalMode DenormMode =
Info->getMode().FP32Denormals;
12244 const bool HasDynamicDenormals =
12250 if (!PreservesDenormals) {
12255 SDVTList BindParamVTs = DAG.
getVTList(MVT::Other, MVT::Glue);
12258 if (HasDynamicDenormals) {
12262 SavedDenormMode =
SDValue(GetReg, 0);
12268 SDNode *EnableDenorm;
12269 if (Subtarget->hasDenormModeInst()) {
12270 const SDValue EnableDenormValue =
12277 const SDValue EnableDenormValue =
12279 EnableDenorm = DAG.
getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
12280 {EnableDenormValue,
BitField, Glue});
12290 ApproxRcp, One, NegDivScale0, Flags);
12293 ApproxRcp, Fma0, Flags);
12299 NumeratorScaled,
Mul, Flags);
12305 NumeratorScaled, Fma3, Flags);
12307 if (!PreservesDenormals) {
12308 SDNode *DisableDenorm;
12309 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
12313 SDVTList BindParamVTs = DAG.
getVTList(MVT::Other, MVT::Glue);
12319 assert(HasDynamicDenormals == (
bool)SavedDenormMode);
12320 const SDValue DisableDenormValue =
12321 HasDynamicDenormals
12326 AMDGPU::S_SETREG_B32, SL, MVT::Other,
12337 {Fma4, Fma1, Fma3, Scale},
Flags);
12343 if (
SDValue FastLowered = lowerFastUnsafeFDIV64(
Op, DAG))
12344 return FastLowered;
12352 SDVTList ScaleVT = DAG.
getVTList(MVT::f64, MVT::i1);
12356 SDValue NegDivScale0 = DAG.
getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
12376 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
12385 SDValue Scale0BC = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
12386 SDValue Scale1BC = DAG.
getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
12412 EVT VT =
Op.getValueType();
12414 if (VT == MVT::f32)
12415 return LowerFDIV32(
Op, DAG);
12417 if (VT == MVT::f64)
12418 return LowerFDIV64(
Op, DAG);
12420 if (VT == MVT::f16 || VT == MVT::bf16)
12421 return LowerFDIV16(
Op, DAG);
12430 EVT ResultExpVT =
Op->getValueType(1);
12431 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
12441 if (Subtarget->hasFractBug()) {
12459 EVT VT =
Store->getMemoryVT();
12461 if (VT == MVT::i1) {
12465 Store->getBasePtr(), MVT::i1,
Store->getMemOperand());
12469 Store->getValue().getValueType().getScalarType() == MVT::i32);
12471 unsigned AS =
Store->getAddressSpace();
12479 SIMachineFunctionInfo *MFI = MF.
getInfo<SIMachineFunctionInfo>();
12483 !Subtarget->hasMultiDwordFlatScratchAddressing())
12490 if (NumElements > 4)
12493 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
12497 VT, *
Store->getMemOperand()))
12503 switch (Subtarget->getMaxPrivateElementSize()) {
12507 if (NumElements > 2)
12511 if (NumElements > 4 ||
12512 (NumElements == 3 && !Subtarget->enableFlatScratch()))
12520 auto Flags =
Store->getMemOperand()->getFlags();
12539 assert(!Subtarget->has16BitInsts());
12540 SDNodeFlags
Flags =
Op->getFlags();
12542 DAG.
getNode(ISD::FP_EXTEND, SL, MVT::f32,
Op.getOperand(0), Flags);
12554 SDNodeFlags
Flags =
Op->getFlags();
12555 MVT VT =
Op.getValueType().getSimpleVT();
12585 SDValue SqrtSNextDown = DAG.
getNode(ISD::BITCAST,
DL, VT, SqrtSNextDownInt);
12588 DAG.
getNode(ISD::FNEG,
DL, VT, SqrtSNextDown, Flags);
12597 SDValue NegSqrtSNextUp = DAG.
getNode(ISD::FNEG,
DL, VT, SqrtSNextUp, Flags);
12663 SDNodeFlags
Flags =
Op->getFlags();
12709 SqrtRet = DAG.
getNode(ISD::FLDEXP,
DL, MVT::f64, SqrtRet, ScaleDown, Flags);
12726 EVT VT =
Op.getValueType();
12736 if (Subtarget->hasTrigReducedRange()) {
12743 switch (
Op.getOpcode()) {
12770 EVT VT =
Op.getValueType();
12778 Op->getVTList(),
Ops, VT,
12787SITargetLowering::performUCharToFloatCombine(
SDNode *
N,
12788 DAGCombinerInfo &DCI)
const {
12789 EVT VT =
N->getValueType(0);
12791 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
12794 SelectionDAG &DAG = DCI.DAG;
12798 EVT SrcVT = Src.getValueType();
12804 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
12807 DCI.AddToWorklist(Cvt.
getNode());
12810 if (ScalarVT != MVT::f32) {
12822 DAGCombinerInfo &DCI)
const {
12829 if (SignOp.
getOpcode() == ISD::FP_EXTEND ||
12833 SelectionDAG &DAG = DCI.DAG;
12852 for (
unsigned I = 0;
I != NumElts; ++
I) {
12876 if (NewElts.
size() == 1)
12898 for (
unsigned I = 0;
I != NumElts; ++
I) {
12933SDValue SITargetLowering::performSHLPtrCombine(
SDNode *
N,
unsigned AddrSpace,
12935 DAGCombinerInfo &DCI)
const {
12952 SelectionDAG &DAG = DCI.DAG;
12965 AM.BaseOffs =
Offset.getSExtValue();
12970 EVT VT =
N->getValueType(0);
12976 Flags.setNoUnsignedWrap(
12977 N->getFlags().hasNoUnsignedWrap() &&
12989 switch (
N->getOpcode()) {
13000 DAGCombinerInfo &DCI)
const {
13001 SelectionDAG &DAG = DCI.DAG;
13008 SDValue NewPtr = performSHLPtrCombine(
Ptr.getNode(),
N->getAddressSpace(),
13009 N->getMemoryVT(), DCI);
13013 NewOps[PtrIdx] = NewPtr;
13022 return (
Opc ==
ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
13023 (
Opc ==
ISD::OR && (Val == 0xffffffff || Val == 0)) ||
13032SDValue SITargetLowering::splitBinaryBitConstantOp(
13036 uint32_t ValLo =
Lo_32(Val);
13037 uint32_t ValHi =
Hi_32(Val);
13044 if (Subtarget->has64BitLiterals() && CRHS->
hasOneUse() &&
13058 if (V.getValueType() != MVT::i1)
13060 switch (V.getOpcode()) {
13077 return V.getResNo() == 1;
13079 unsigned IntrinsicID = V.getConstantOperandVal(0);
13080 switch (IntrinsicID) {
13081 case Intrinsic::amdgcn_is_shared:
13082 case Intrinsic::amdgcn_is_private:
13099 if (!(
C & 0x000000ff))
13100 ZeroByteMask |= 0x000000ff;
13101 if (!(
C & 0x0000ff00))
13102 ZeroByteMask |= 0x0000ff00;
13103 if (!(
C & 0x00ff0000))
13104 ZeroByteMask |= 0x00ff0000;
13105 if (!(
C & 0xff000000))
13106 ZeroByteMask |= 0xff000000;
13107 uint32_t NonZeroByteMask = ~ZeroByteMask;
13108 if ((NonZeroByteMask &
C) != NonZeroByteMask)
13121 assert(V.getValueSizeInBits() == 32);
13123 if (V.getNumOperands() != 2)
13132 switch (V.getOpcode()) {
13137 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
13142 return (0x03020100 & ~ConstMask) | ConstMask;
13149 return uint32_t((0x030201000c0c0c0cull <<
C) >> 32);
13155 return uint32_t(0x0c0c0c0c03020100ull >>
C);
13162 DAGCombinerInfo &DCI)
const {
13163 if (DCI.isBeforeLegalize())
13166 SelectionDAG &DAG = DCI.DAG;
13167 EVT VT =
N->getValueType(0);
13172 if (VT == MVT::i64 && CRHS) {
13174 splitBinaryBitConstantOp(DCI, SDLoc(
N),
ISD::AND,
LHS, CRHS))
13178 if (CRHS && VT == MVT::i32) {
13188 unsigned Shift = CShift->getZExtValue();
13190 unsigned Offset = NB + Shift;
13191 if ((
Offset & (Bits - 1)) == 0) {
13215 Sel = (
LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
13230 if (
Y.getOpcode() != ISD::FABS ||
Y.getOperand(0) !=
X ||
13235 if (
X !=
LHS.getOperand(1))
13239 const ConstantFPSDNode *C1 =
13273 (
RHS.getOperand(0) ==
LHS.getOperand(0) &&
13274 LHS.getOperand(0) ==
LHS.getOperand(1))) {
13276 unsigned NewMask = LCC ==
ISD::SETO ?
Mask->getZExtValue() & ~OrdMask
13277 :
Mask->getZExtValue() & OrdMask;
13298 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13301 if (LHSMask != ~0u && RHSMask != ~0u) {
13304 if (LHSMask > RHSMask) {
13311 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13312 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
13315 if (!(LHSUsedLanes & RHSUsedLanes) &&
13318 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
13324 uint32_t
Mask = LHSMask & RHSMask;
13325 for (
unsigned I = 0;
I < 32;
I += 8) {
13326 uint32_t ByteSel = 0xff <<
I;
13327 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
13328 Mask &= (0x0c <<
I) & 0xffffffff;
13333 uint32_t Sel =
Mask | (LHSUsedLanes & 0x04040404);
13386static const std::optional<ByteProvider<SDValue>>
13388 unsigned Depth = 0) {
13391 return std::nullopt;
13393 if (
Op.getValueSizeInBits() < 8)
13394 return std::nullopt;
13396 if (
Op.getValueType().isVector())
13399 switch (
Op->getOpcode()) {
13411 NarrowVT = VTSign->getVT();
13414 return std::nullopt;
13417 if (SrcIndex >= NarrowByteWidth)
13418 return std::nullopt;
13426 return std::nullopt;
13428 uint64_t BitShift = ShiftOp->getZExtValue();
13430 if (BitShift % 8 != 0)
13431 return std::nullopt;
13433 SrcIndex += BitShift / 8;
13451static const std::optional<ByteProvider<SDValue>>
13453 unsigned StartingIndex = 0) {
13457 return std::nullopt;
13459 unsigned BitWidth =
Op.getScalarValueSizeInBits();
13461 return std::nullopt;
13463 return std::nullopt;
13465 bool IsVec =
Op.getValueType().isVector();
13466 switch (
Op.getOpcode()) {
13469 return std::nullopt;
13474 return std::nullopt;
13478 return std::nullopt;
13481 if (!
LHS->isConstantZero() && !
RHS->isConstantZero())
13482 return std::nullopt;
13483 if (!
LHS ||
LHS->isConstantZero())
13485 if (!
RHS ||
RHS->isConstantZero())
13487 return std::nullopt;
13492 return std::nullopt;
13496 return std::nullopt;
13498 uint32_t BitMask = BitMaskOp->getZExtValue();
13500 uint32_t IndexMask = 0xFF << (Index * 8);
13502 if ((IndexMask & BitMask) != IndexMask) {
13505 if (IndexMask & BitMask)
13506 return std::nullopt;
13515 return std::nullopt;
13519 if (!ShiftOp ||
Op.getValueType().isVector())
13520 return std::nullopt;
13522 uint64_t BitsProvided =
Op.getValueSizeInBits();
13523 if (BitsProvided % 8 != 0)
13524 return std::nullopt;
13526 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
13528 return std::nullopt;
13530 uint64_t ConcatSizeInBytes = BitsProvided / 4;
13531 uint64_t ByteShift = BitShift / 8;
13533 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
13534 uint64_t BytesProvided = BitsProvided / 8;
13535 SDValue NextOp =
Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
13536 NewIndex %= BytesProvided;
13543 return std::nullopt;
13547 return std::nullopt;
13549 uint64_t BitShift = ShiftOp->getZExtValue();
13551 return std::nullopt;
13553 auto BitsProvided =
Op.getScalarValueSizeInBits();
13554 if (BitsProvided % 8 != 0)
13555 return std::nullopt;
13557 uint64_t BytesProvided = BitsProvided / 8;
13558 uint64_t ByteShift = BitShift / 8;
13563 return BytesProvided - ByteShift > Index
13571 return std::nullopt;
13575 return std::nullopt;
13577 uint64_t BitShift = ShiftOp->getZExtValue();
13578 if (BitShift % 8 != 0)
13579 return std::nullopt;
13580 uint64_t ByteShift = BitShift / 8;
13586 return Index < ByteShift
13589 Depth + 1, StartingIndex);
13598 return std::nullopt;
13606 NarrowBitWidth = VTSign->getVT().getSizeInBits();
13608 if (NarrowBitWidth % 8 != 0)
13609 return std::nullopt;
13610 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13612 if (Index >= NarrowByteWidth)
13614 ? std::optional<ByteProvider<SDValue>>(
13622 return std::nullopt;
13626 if (NarrowByteWidth >= Index) {
13631 return std::nullopt;
13638 return std::nullopt;
13644 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
13645 if (NarrowBitWidth % 8 != 0)
13646 return std::nullopt;
13647 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
13652 if (Index >= NarrowByteWidth) {
13654 ? std::optional<ByteProvider<SDValue>>(
13659 if (NarrowByteWidth > Index) {
13663 return std::nullopt;
13668 return std::nullopt;
13671 Depth + 1, StartingIndex);
13677 return std::nullopt;
13678 auto VecIdx = IdxOp->getZExtValue();
13679 auto ScalarSize =
Op.getScalarValueSizeInBits();
13680 if (ScalarSize < 32)
13681 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
13683 StartingIndex, Index);
13688 return std::nullopt;
13692 return std::nullopt;
13695 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
13696 if (IdxMask > 0x07 && IdxMask != 0x0c)
13697 return std::nullopt;
13699 auto NextOp =
Op.getOperand(IdxMask > 0x03 ? 0 : 1);
13700 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
13702 return IdxMask != 0x0c ?
calculateSrcByte(NextOp, StartingIndex, NextIndex)
13708 return std::nullopt;
13723 return !OpVT.
isVector() && OpVT.getSizeInBits() == 16;
13730 auto MemVT = L->getMemoryVT();
13733 return L->getMemoryVT().getSizeInBits() == 16;
13743 int Low8 = Mask & 0xff;
13744 int Hi8 = (Mask & 0xff00) >> 8;
13746 assert(Low8 < 8 && Hi8 < 8);
13748 bool IsConsecutive = (Hi8 - Low8 == 1);
13753 bool Is16Aligned = !(Low8 % 2);
13755 return IsConsecutive && Is16Aligned;
13763 int Low16 = PermMask & 0xffff;
13764 int Hi16 = (PermMask & 0xffff0000) >> 16;
13774 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
13776 if (!OtherOpIs16Bit)
13784 unsigned DWordOffset) {
13789 assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
13794 if (Src.getValueType().isVector()) {
13795 auto ScalarTySize = Src.getScalarValueSizeInBits();
13796 auto ScalarTy = Src.getValueType().getScalarType();
13797 if (ScalarTySize == 32) {
13801 if (ScalarTySize > 32) {
13804 DAG.
getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
13805 auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
13812 assert(ScalarTySize < 32);
13813 auto NumElements =
TypeSize / ScalarTySize;
13814 auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
13815 auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
13816 auto NumElementsIn32 = 32 / ScalarTySize;
13817 auto NumAvailElements = DWordOffset < Trunc32Elements
13819 : NumElements - NormalizedTrunc;
13832 auto ShiftVal = 32 * DWordOffset;
13840 [[maybe_unused]]
EVT VT =
N->getValueType(0);
13845 for (
int i = 0; i < 4; i++) {
13847 std::optional<ByteProvider<SDValue>>
P =
13850 if (!
P ||
P->isConstantZero())
13855 if (PermNodes.
size() != 4)
13858 std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
13859 std::optional<std::pair<unsigned, unsigned>> SecondSrc;
13861 for (
size_t i = 0; i < PermNodes.
size(); i++) {
13862 auto PermOp = PermNodes[i];
13865 int SrcByteAdjust = 4;
13869 if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
13870 ((PermOp.SrcOffset / 4) != FirstSrc.second)) {
13872 if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
13873 ((PermOp.SrcOffset / 4) != SecondSrc->second))
13877 SecondSrc = {i, PermNodes[i].SrcOffset / 4};
13878 assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
13881 assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
13883 PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
13886 SDValue Op = *PermNodes[FirstSrc.first].Src;
13888 assert(
Op.getValueSizeInBits() == 32);
13892 int Low16 = PermMask & 0xffff;
13893 int Hi16 = (PermMask & 0xffff0000) >> 16;
13895 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
13896 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
13899 if (WellFormedLow && WellFormedHi)
13903 SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src :
Op;
13912 assert(
Op.getValueType().isByteSized() &&
13930 DAGCombinerInfo &DCI)
const {
13931 SelectionDAG &DAG = DCI.DAG;
13935 EVT VT =
N->getValueType(0);
13936 if (VT == MVT::i1) {
13941 if (Src !=
RHS.getOperand(0))
13946 if (!CLHS || !CRHS)
13950 static const uint32_t MaxMask = 0x3ff;
13970 Sel |=
LHS.getConstantOperandVal(2);
13979 N->isDivergent() &&
TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
13983 auto usesCombinedOperand = [](SDNode *OrUse) {
13985 if (OrUse->getOpcode() != ISD::BITCAST ||
13986 !OrUse->getValueType(0).isVector())
13990 for (
auto *VUser : OrUse->users()) {
13991 if (!VUser->getValueType(0).isVector())
13998 if (VUser->getOpcode() == VectorwiseOp)
14004 if (!
any_of(
N->users(), usesCombinedOperand))
14010 if (LHSMask != ~0u && RHSMask != ~0u) {
14013 if (LHSMask > RHSMask) {
14020 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14021 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
14024 if (!(LHSUsedLanes & RHSUsedLanes) &&
14027 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
14029 LHSMask &= ~RHSUsedLanes;
14030 RHSMask &= ~LHSUsedLanes;
14032 LHSMask |= LHSUsedLanes & 0x04040404;
14034 uint32_t Sel = LHSMask | RHSMask;
14042 if (LHSMask == ~0u || RHSMask == ~0u) {
14083 return IdentitySrc;
14089 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
14104 if (SrcVT == MVT::i32) {
14109 DCI.AddToWorklist(LowOr.
getNode());
14110 DCI.AddToWorklist(HiBits.getNode());
14114 return DAG.
getNode(ISD::BITCAST, SL, MVT::i64, Vec);
14121 N->getOperand(0), CRHS))
14129 DAGCombinerInfo &DCI)
const {
14130 if (
SDValue RV = reassociateScalarOps(
N, DCI.DAG))
14137 SelectionDAG &DAG = DCI.DAG;
14139 EVT VT =
N->getValueType(0);
14140 if (CRHS && VT == MVT::i64) {
14142 splitBinaryBitConstantOp(DCI, SDLoc(
N),
ISD::XOR,
LHS, CRHS))
14149 unsigned Opc =
LHS.getOpcode();
14173 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32,
LHS->getOperand(1));
14175 DAG.
getNode(ISD::BITCAST,
DL, MVT::f32,
LHS->getOperand(2));
14179 LHS->getOperand(0), FNegLHS, FNegRHS);
14180 return DAG.
getNode(ISD::BITCAST,
DL, VT, NewSelect);
14188 DAGCombinerInfo &DCI)
const {
14189 if (!Subtarget->has16BitInsts() ||
14193 EVT VT =
N->getValueType(0);
14194 if (VT != MVT::i32)
14198 if (Src.getValueType() != MVT::i16)
14205SITargetLowering::performSignExtendInRegCombine(
SDNode *
N,
14206 DAGCombinerInfo &DCI)
const {
14213 VTSign->getVT() == MVT::i8) ||
14215 VTSign->getVT() == MVT::i16))) {
14216 assert(Subtarget->hasScalarSubwordLoads() &&
14217 "s_buffer_load_{u8, i8} are supported "
14218 "in GFX12 (or newer) architectures.");
14219 EVT VT = Src.getValueType();
14224 SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
14231 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
14232 Opc,
DL, ResList,
Ops,
M->getMemoryVT(),
M->getMemOperand());
14237 VTSign->getVT() == MVT::i8) ||
14239 VTSign->getVT() == MVT::i16)) &&
14248 Src.getOperand(6), Src.getOperand(7)};
14251 DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType());
14255 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(
14256 Opc, SDLoc(
N), ResList,
Ops,
M->getMemoryVT(),
M->getMemOperand());
14257 return DCI.DAG.getMergeValues(
14258 {BufferLoadSignExt, BufferLoadSignExt.
getValue(1)}, SDLoc(
N));
14264 DAGCombinerInfo &DCI)
const {
14265 SelectionDAG &DAG = DCI.DAG;
14272 if (
N->getOperand(0).isUndef())
14279 DAGCombinerInfo &DCI)
const {
14280 EVT VT =
N->getValueType(0);
14295 if ((VT == MVT::f16 && N0.
getOpcode() == ISD::FSQRT) &&
14305 unsigned MaxDepth)
const {
14306 unsigned Opcode =
Op.getOpcode();
14311 const auto &
F = CFP->getValueAPF();
14312 if (
F.isNaN() &&
F.isSignaling())
14314 if (!
F.isDenormal())
14340 case ISD::FP_EXTEND:
14341 case ISD::FP16_TO_FP:
14342 case ISD::FP_TO_FP16:
14343 case ISD::BF16_TO_FP:
14344 case ISD::FP_TO_BF16:
14377 if (
Op.getValueType() == MVT::i32) {
14383 if (RHS->getZExtValue() == 0xffff0000) {
14393 return Op.getValueType().getScalarType() != MVT::f16;
14397 case ISD::FMINNUM_IEEE:
14398 case ISD::FMAXNUM_IEEE:
14399 case ISD::FMINIMUM:
14400 case ISD::FMAXIMUM:
14401 case ISD::FMINIMUMNUM:
14402 case ISD::FMAXIMUMNUM:
14414 if (Subtarget->supportsMinMaxDenormModes() ||
14424 for (
unsigned I = 0, E =
Op.getNumOperands();
I != E; ++
I) {
14436 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
14463 if (
Op.getValueType() == MVT::i16) {
14466 TruncSrc.
getOpcode() == ISD::BITCAST &&
14474 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
14476 switch (IntrinsicID) {
14477 case Intrinsic::amdgcn_cvt_pkrtz:
14478 case Intrinsic::amdgcn_cubeid:
14479 case Intrinsic::amdgcn_frexp_mant:
14480 case Intrinsic::amdgcn_fdot2:
14481 case Intrinsic::amdgcn_rcp:
14482 case Intrinsic::amdgcn_rsq:
14483 case Intrinsic::amdgcn_rsq_clamp:
14484 case Intrinsic::amdgcn_rcp_legacy:
14485 case Intrinsic::amdgcn_rsq_legacy:
14486 case Intrinsic::amdgcn_trig_preop:
14487 case Intrinsic::amdgcn_tanh:
14488 case Intrinsic::amdgcn_log:
14489 case Intrinsic::amdgcn_exp2:
14490 case Intrinsic::amdgcn_sqrt:
14508 unsigned MaxDepth)
const {
14511 unsigned Opcode =
MI->getOpcode();
14513 if (Opcode == AMDGPU::G_FCANONICALIZE)
14516 std::optional<FPValueAndVReg> FCR;
14519 if (FCR->Value.isSignaling())
14521 if (!FCR->Value.isDenormal())
14532 case AMDGPU::G_FADD:
14533 case AMDGPU::G_FSUB:
14534 case AMDGPU::G_FMUL:
14535 case AMDGPU::G_FCEIL:
14536 case AMDGPU::G_FFLOOR:
14537 case AMDGPU::G_FRINT:
14538 case AMDGPU::G_FNEARBYINT:
14539 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
14540 case AMDGPU::G_INTRINSIC_TRUNC:
14541 case AMDGPU::G_INTRINSIC_ROUNDEVEN:
14542 case AMDGPU::G_FMA:
14543 case AMDGPU::G_FMAD:
14544 case AMDGPU::G_FSQRT:
14545 case AMDGPU::G_FDIV:
14546 case AMDGPU::G_FREM:
14547 case AMDGPU::G_FPOW:
14548 case AMDGPU::G_FPEXT:
14549 case AMDGPU::G_FLOG:
14550 case AMDGPU::G_FLOG2:
14551 case AMDGPU::G_FLOG10:
14552 case AMDGPU::G_FPTRUNC:
14553 case AMDGPU::G_AMDGPU_RCP_IFLAG:
14554 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
14555 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
14556 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
14557 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
14559 case AMDGPU::G_FNEG:
14560 case AMDGPU::G_FABS:
14561 case AMDGPU::G_FCOPYSIGN:
14563 case AMDGPU::G_FMINNUM:
14564 case AMDGPU::G_FMAXNUM:
14565 case AMDGPU::G_FMINNUM_IEEE:
14566 case AMDGPU::G_FMAXNUM_IEEE:
14567 case AMDGPU::G_FMINIMUM:
14568 case AMDGPU::G_FMAXIMUM:
14569 case AMDGPU::G_FMINIMUMNUM:
14570 case AMDGPU::G_FMAXIMUMNUM: {
14571 if (Subtarget->supportsMinMaxDenormModes() ||
14578 case AMDGPU::G_BUILD_VECTOR:
14583 case AMDGPU::G_INTRINSIC:
14584 case AMDGPU::G_INTRINSIC_CONVERGENT:
14586 case Intrinsic::amdgcn_fmul_legacy:
14587 case Intrinsic::amdgcn_fmad_ftz:
14588 case Intrinsic::amdgcn_sqrt:
14589 case Intrinsic::amdgcn_fmed3:
14590 case Intrinsic::amdgcn_sin:
14591 case Intrinsic::amdgcn_cos:
14592 case Intrinsic::amdgcn_log:
14593 case Intrinsic::amdgcn_exp2:
14594 case Intrinsic::amdgcn_log_clamp:
14595 case Intrinsic::amdgcn_rcp:
14596 case Intrinsic::amdgcn_rcp_legacy:
14597 case Intrinsic::amdgcn_rsq:
14598 case Intrinsic::amdgcn_rsq_clamp:
14599 case Intrinsic::amdgcn_rsq_legacy:
14600 case Intrinsic::amdgcn_div_scale:
14601 case Intrinsic::amdgcn_div_fmas:
14602 case Intrinsic::amdgcn_div_fixup:
14603 case Intrinsic::amdgcn_fract:
14604 case Intrinsic::amdgcn_cvt_pkrtz:
14605 case Intrinsic::amdgcn_cubeid:
14606 case Intrinsic::amdgcn_cubema:
14607 case Intrinsic::amdgcn_cubesc:
14608 case Intrinsic::amdgcn_cubetc:
14609 case Intrinsic::amdgcn_frexp_mant:
14610 case Intrinsic::amdgcn_fdot2:
14611 case Intrinsic::amdgcn_trig_preop:
14612 case Intrinsic::amdgcn_tanh:
14631 if (
C.isDenormal()) {
14645 if (
C.isSignaling()) {
14668SITargetLowering::performFCanonicalizeCombine(
SDNode *
N,
14669 DAGCombinerInfo &DCI)
const {
14670 SelectionDAG &DAG = DCI.DAG;
14672 EVT VT =
N->getValueType(0);
14681 EVT VT =
N->getValueType(0);
14682 return getCanonicalConstantFP(DAG, SDLoc(
N), VT, CFP->getValueAPF());
14698 EVT EltVT =
Lo.getValueType();
14701 for (
unsigned I = 0;
I != 2; ++
I) {
14705 getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF());
14706 }
else if (
Op.isUndef()) {
14740 case ISD::FMAXNUM_IEEE:
14741 case ISD::FMAXIMUMNUM:
14743 case ISD::FMAXIMUM:
14750 case ISD::FMINNUM_IEEE:
14751 case ISD::FMINIMUMNUM:
14753 case ISD::FMINIMUM:
14779 if (!MinK || !MaxK)
14792 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
14793 return DAG.
getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
14852 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
14858 if (
Info->getMode().DX10Clamp) {
14867 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
14895 case ISD::FMINNUM_IEEE:
14896 case ISD::FMAXNUM_IEEE:
14897 case ISD::FMINIMUMNUM:
14898 case ISD::FMAXIMUMNUM:
14901 return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.
hasMin3Max3_16()) ||
14903 case ISD::FMINIMUM:
14904 case ISD::FMAXIMUM:
14912 return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.
hasMin3Max3_16());
14921 DAGCombinerInfo &DCI)
const {
14922 SelectionDAG &DAG = DCI.DAG;
14954 if (
SDValue Med3 = performIntMed3ImmCombine(
14959 if (
SDValue Med3 = performIntMed3ImmCombine(
14965 if (
SDValue Med3 = performIntMed3ImmCombine(
14970 if (
SDValue Med3 = performIntMed3ImmCombine(
14980 if (((
Opc == ISD::FMINNUM && Op0.
getOpcode() == ISD::FMAXNUM) ||
14981 (
Opc == ISD::FMINNUM_IEEE && Op0.
getOpcode() == ISD::FMAXNUM_IEEE) ||
14982 (
Opc == ISD::FMINIMUMNUM && Op0.
getOpcode() == ISD::FMAXIMUMNUM) ||
14985 (VT == MVT::f32 || VT == MVT::f64 ||
14986 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
14987 (VT == MVT::bf16 && Subtarget->hasBF16PackedInsts()) ||
14988 (VT == MVT::v2bf16 && Subtarget->hasBF16PackedInsts()) ||
14989 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
14991 if (
SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(
N), Op0, Op1))
14998 const SDNodeFlags
Flags =
N->getFlags();
14999 if ((
Opc == ISD::FMINIMUM ||
Opc == ISD::FMAXIMUM) &&
15000 !Subtarget->hasIEEEMinimumMaximumInsts() &&
Flags.hasNoNaNs()) {
15002 Opc == ISD::FMINIMUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
15003 return DAG.
getNode(NewOpc, SDLoc(
N), VT, Op0, Op1, Flags);
15013 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
15014 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
15023 DAGCombinerInfo &DCI)
const {
15024 EVT VT =
N->getValueType(0);
15028 SelectionDAG &DAG = DCI.DAG;
15043 const SIMachineFunctionInfo *
Info = MF.
getInfo<SIMachineFunctionInfo>();
15047 if (
Info->getMode().DX10Clamp) {
15067 DAGCombinerInfo &DCI)
const {
15071 return DCI.DAG.getUNDEF(
N->getValueType(0));
15079 bool IsDivergentIdx,
15084 unsigned VecSize = EltSize * NumElem;
15087 if (VecSize <= 64 && EltSize < 32)
15096 if (IsDivergentIdx)
15100 unsigned NumInsts = NumElem +
15101 ((EltSize + 31) / 32) * NumElem ;
15105 if (Subtarget->useVGPRIndexMode())
15106 return NumInsts <= 16;
15110 if (Subtarget->hasMovrel())
15111 return NumInsts <= 15;
15117 SDValue Idx =
N->getOperand(
N->getNumOperands() - 1);
15132SITargetLowering::performExtractVectorEltCombine(
SDNode *
N,
15133 DAGCombinerInfo &DCI)
const {
15139 EVT ResVT =
N->getValueType(0);
15163 if (!
C ||
C->getZExtValue() != 0x1f)
15179 if (Vec.
hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
15198 case ISD::FMAXNUM_IEEE:
15199 case ISD::FMINNUM_IEEE:
15200 case ISD::FMAXIMUM:
15201 case ISD::FMINIMUM: {
15207 DCI.AddToWorklist(Elt0.
getNode());
15208 DCI.AddToWorklist(Elt1.
getNode());
15230 if (!DCI.isBeforeLegalize())
15238 VecSize > 32 && VecSize % 32 == 0 && Idx) {
15241 unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
15242 unsigned EltIdx = BitIndex / 32;
15243 unsigned LeftoverBitIdx = BitIndex % 32;
15247 DCI.AddToWorklist(Cast.
getNode());
15251 DCI.AddToWorklist(Elt.
getNode());
15254 DCI.AddToWorklist(Srl.
getNode());
15258 DCI.AddToWorklist(Trunc.
getNode());
15260 if (VecEltVT == ResVT) {
15261 return DAG.
getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
15272SITargetLowering::performInsertVectorEltCombine(
SDNode *
N,
15273 DAGCombinerInfo &DCI)
const {
15284 SelectionDAG &DAG = DCI.DAG;
15303 if (Src.getOpcode() == ISD::FP_EXTEND &&
15304 Src.getOperand(0).getValueType() == MVT::f16) {
15305 return Src.getOperand(0);
15309 APFloat Val = CFP->getValueAPF();
15310 bool LosesInfo =
true;
15320 DAGCombinerInfo &DCI)
const {
15321 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
15322 "combine only useful on gfx8");
15324 SDValue TruncSrc =
N->getOperand(0);
15325 EVT VT =
N->getValueType(0);
15326 if (VT != MVT::f16)
15333 SelectionDAG &DAG = DCI.DAG;
15361 return DAG.
getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
15364unsigned SITargetLowering::getFusedOpcode(
const SelectionDAG &DAG,
15366 const SDNode *N1)
const {
15371 if (((VT == MVT::f32 &&
15373 (VT == MVT::f16 && Subtarget->hasMadF16() &&
15393 EVT VT =
N->getValueType(0);
15394 if (VT != MVT::i32 && VT != MVT::i64)
15400 unsigned Opc =
N->getOpcode();
15455 if (!Const ||
Hi_32(Const->getZExtValue()) !=
uint32_t(-1))
15474 DAGCombinerInfo &DCI)
const {
15477 SelectionDAG &DAG = DCI.DAG;
15478 EVT VT =
N->getValueType(0);
15488 if (!
N->isDivergent() && Subtarget->hasSMulHi())
15492 if (NumBits <= 32 || NumBits > 64)
15503 if (!Subtarget->hasFullRate64Ops()) {
15504 unsigned NumUsers = 0;
15505 for (SDNode *User :
LHS->
users()) {
15508 if (!
User->isAnyAdd())
15532 bool MulSignedLo =
false;
15533 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
15542 if (VT != MVT::i64) {
15565 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
15567 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
15568 auto [AccumLo, AccumHi] = DAG.
SplitScalar(Accum, SL, MVT::i32, MVT::i32);
15570 if (!MulLHSUnsigned32) {
15577 if (!MulRHSUnsigned32) {
15588 if (VT != MVT::i64)
15594SITargetLowering::foldAddSub64WithZeroLowBitsTo32(
SDNode *
N,
15595 DAGCombinerInfo &DCI)
const {
15605 SelectionDAG &DAG = DCI.DAG;
15620 unsigned Opcode =
N->getOpcode();
15621 if (Opcode == ISD::PTRADD)
15624 DAG.
getNode(Opcode, SL, MVT::i32,
Hi, ConstHi32,
N->getFlags());
15635static std::optional<ByteProvider<SDValue>>
15638 if (!Byte0 || Byte0->isConstantZero()) {
15639 return std::nullopt;
15642 if (Byte1 && !Byte1->isConstantZero()) {
15643 return std::nullopt;
15649 unsigned FirstCs =
First & 0x0c0c0c0c;
15650 unsigned SecondCs = Second & 0x0c0c0c0c;
15651 unsigned FirstNoCs =
First & ~0x0c0c0c0c;
15652 unsigned SecondNoCs = Second & ~0x0c0c0c0c;
15654 assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
15655 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
15656 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
15657 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
15659 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
15683 for (
int BPI = 0; BPI < 2; BPI++) {
15686 BPP = {Src1, Src0};
15688 unsigned ZeroMask = 0x0c0c0c0c;
15689 unsigned FMask = 0xFF << (8 * (3 - Step));
15691 unsigned FirstMask =
15692 (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15693 unsigned SecondMask =
15694 (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
15698 int FirstGroup = -1;
15699 for (
int I = 0;
I < 2;
I++) {
15701 auto MatchesFirst = [&BPP](
DotSrc &IterElt) {
15702 return IterElt.SrcOp == *BPP.first.Src &&
15703 (IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
15707 if (Match != Srcs.
end()) {
15708 Match->PermMask =
addPermMasks(FirstMask, Match->PermMask);
15713 if (FirstGroup != -1) {
15715 auto MatchesSecond = [&BPP](
DotSrc &IterElt) {
15716 return IterElt.SrcOp == *BPP.second.Src &&
15717 (IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
15720 if (Match != Srcs.
end()) {
15721 Match->PermMask =
addPermMasks(SecondMask, Match->PermMask);
15723 Srcs.
push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
15731 unsigned ZeroMask = 0x0c0c0c0c;
15732 unsigned FMask = 0xFF << (8 * (3 - Step));
15736 ((Src0.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15740 ((Src1.
SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
15749 if (Srcs.
size() == 1) {
15750 auto *Elt = Srcs.
begin();
15754 if (Elt->PermMask == 0x3020100)
15761 auto *FirstElt = Srcs.
begin();
15762 auto *SecondElt = std::next(FirstElt);
15769 auto FirstMask = FirstElt->PermMask;
15770 auto SecondMask = SecondElt->PermMask;
15772 unsigned FirstCs = FirstMask & 0x0c0c0c0c;
15773 unsigned FirstPlusFour = FirstMask | 0x04040404;
15776 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
15788 FirstElt = std::next(SecondElt);
15789 if (FirstElt == Srcs.
end())
15792 SecondElt = std::next(FirstElt);
15795 if (SecondElt == Srcs.
end()) {
15801 DAG.
getConstant(FirstElt->PermMask, SL, MVT::i32)));
15807 return Perms.
size() == 2
15813 for (
auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
15814 EntryMask = EntryMask >> ((4 - ChainLength) * 8);
15815 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
15816 EntryMask += ZeroMask;
15821 auto Opcode =
Op.getOpcode();
15827static std::optional<bool>
15838 bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
15841 bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
15843 assert(!(S0IsUnsigned && S0IsSigned));
15844 assert(!(S1IsUnsigned && S1IsSigned));
15852 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
15858 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
15859 return std::nullopt;
15871 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
15872 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
15877 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
15883 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
15884 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
15885 return std::nullopt;
15891 DAGCombinerInfo &DCI)
const {
15892 SelectionDAG &DAG = DCI.DAG;
15893 EVT VT =
N->getValueType(0);
15899 if (Subtarget->hasMad64_32()) {
15900 if (
SDValue Folded = tryFoldToMad64_32(
N, DCI))
15905 if (
SDValue V = reassociateScalarOps(
N, DAG)) {
15909 if (VT == MVT::i64) {
15910 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
15915 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
15917 std::optional<bool> IsSigned;
15923 int ChainLength = 0;
15924 for (
int I = 0;
I < 4;
I++) {
15928 auto Src0 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
15931 auto Src1 =
handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
15936 TempNode->getOperand(MulIdx), *Src0, *Src1,
15937 TempNode->getOperand(MulIdx)->getOperand(0),
15938 TempNode->getOperand(MulIdx)->getOperand(1), DAG);
15942 IsSigned = *IterIsSigned;
15943 if (*IterIsSigned != *IsSigned)
15946 auto AddIdx = 1 - MulIdx;
15949 if (
I == 2 &&
isMul(TempNode->getOperand(AddIdx))) {
15950 Src2s.
push_back(TempNode->getOperand(AddIdx));
15960 TempNode->getOperand(AddIdx), *Src0, *Src1,
15961 TempNode->getOperand(AddIdx)->getOperand(0),
15962 TempNode->getOperand(AddIdx)->getOperand(1), DAG);
15966 if (*IterIsSigned != *IsSigned)
15970 ChainLength =
I + 2;
15974 TempNode = TempNode->getOperand(AddIdx);
15976 ChainLength =
I + 1;
15977 if (TempNode->getNumOperands() < 2)
15979 LHS = TempNode->getOperand(0);
15980 RHS = TempNode->getOperand(1);
15983 if (ChainLength < 2)
15989 if (ChainLength < 4) {
15999 bool UseOriginalSrc =
false;
16000 if (ChainLength == 4 && Src0s.
size() == 1 && Src1s.
size() == 1 &&
16001 Src0s.
begin()->PermMask == Src1s.
begin()->PermMask &&
16002 Src0s.
begin()->SrcOp.getValueSizeInBits() >= 32 &&
16003 Src1s.
begin()->SrcOp.getValueSizeInBits() >= 32) {
16004 SmallVector<unsigned, 4> SrcBytes;
16005 auto Src0Mask = Src0s.
begin()->PermMask;
16006 SrcBytes.
push_back(Src0Mask & 0xFF000000);
16007 bool UniqueEntries =
true;
16008 for (
auto I = 1;
I < 4;
I++) {
16009 auto NextByte = Src0Mask & (0xFF << ((3 -
I) * 8));
16012 UniqueEntries =
false;
16018 if (UniqueEntries) {
16019 UseOriginalSrc =
true;
16021 auto *FirstElt = Src0s.
begin();
16025 auto *SecondElt = Src1s.
begin();
16027 SecondElt->DWordOffset);
16036 if (!UseOriginalSrc) {
16043 DAG.
getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
16046 : Intrinsic::amdgcn_udot4,
16056 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
16061 unsigned Opc =
LHS.getOpcode();
16073 auto Cond =
RHS.getOperand(0);
16078 SDVTList VTList = DAG.
getVTList(MVT::i32, MVT::i1);
16095 DAGCombinerInfo &DCI)
const {
16096 SelectionDAG &DAG = DCI.DAG;
16098 EVT VT =
N->getValueType(0);
16111 SDNodeFlags ShlFlags = N1->
getFlags();
16115 SDNodeFlags NewShlFlags =
16120 DCI.AddToWorklist(Inner.
getNode());
16127 if (Subtarget->hasMad64_32()) {
16128 if (
SDValue Folded = tryFoldToMad64_32(
N, DCI))
16137 if (VT == MVT::i64) {
16138 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
16151 if (!YIsConstant && !ZIsConstant && !
X->isDivergent() &&
16152 Y->isDivergent() !=
Z->isDivergent()) {
16161 if (
Y->isDivergent())
16164 SDNodeFlags ReassocFlags =
16167 DCI.AddToWorklist(UniformInner.
getNode());
16175 DAGCombinerInfo &DCI)
const {
16176 SelectionDAG &DAG = DCI.DAG;
16177 EVT VT =
N->getValueType(0);
16179 if (VT == MVT::i64) {
16180 if (
SDValue Folded = foldAddSub64WithZeroLowBitsTo32(
N, DCI))
16184 if (VT != MVT::i32)
16193 unsigned Opc =
RHS.getOpcode();
16200 auto Cond =
RHS.getOperand(0);
16205 SDVTList VTList = DAG.
getVTList(MVT::i32, MVT::i1);
16223SITargetLowering::performAddCarrySubCarryCombine(
SDNode *
N,
16224 DAGCombinerInfo &DCI)
const {
16226 if (
N->getValueType(0) != MVT::i32)
16232 SelectionDAG &DAG = DCI.DAG;
16237 unsigned LHSOpc =
LHS.getOpcode();
16238 unsigned Opc =
N->getOpcode();
16242 return DAG.
getNode(
Opc, SDLoc(
N),
N->getVTList(), Args);
16248 DAGCombinerInfo &DCI)
const {
16252 SelectionDAG &DAG = DCI.DAG;
16253 EVT VT =
N->getValueType(0);
16265 if (
A ==
LHS.getOperand(1)) {
16266 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
16267 if (FusedOp != 0) {
16269 return DAG.
getNode(FusedOp, SL, VT,
A, Two,
RHS);
16277 if (
A ==
RHS.getOperand(1)) {
16278 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
16279 if (FusedOp != 0) {
16281 return DAG.
getNode(FusedOp, SL, VT,
A, Two,
LHS);
16290 DAGCombinerInfo &DCI)
const {
16294 SelectionDAG &DAG = DCI.DAG;
16296 EVT VT =
N->getValueType(0);
16309 if (
A ==
LHS.getOperand(1)) {
16310 unsigned FusedOp = getFusedOpcode(DAG,
N,
LHS.getNode());
16311 if (FusedOp != 0) {
16315 return DAG.
getNode(FusedOp, SL, VT,
A, Two, NegRHS);
16324 if (
A ==
RHS.getOperand(1)) {
16325 unsigned FusedOp = getFusedOpcode(DAG,
N,
RHS.getNode());
16326 if (FusedOp != 0) {
16328 return DAG.
getNode(FusedOp, SL, VT,
A, NegTwo,
LHS);
16337 DAGCombinerInfo &DCI)
const {
16338 SelectionDAG &DAG = DCI.DAG;
16340 EVT VT =
N->getValueType(0);
16341 if ((VT != MVT::f16 && VT != MVT::bf16) || !Subtarget->has16BitInsts())
16347 SDNodeFlags
Flags =
N->getFlags();
16348 SDNodeFlags RHSFlags =
RHS->getFlags();
16354 bool IsNegative =
false;
16355 if (CLHS->isExactlyValue(1.0) ||
16356 (IsNegative = CLHS->isExactlyValue(-1.0))) {
16359 if (
RHS.getOpcode() == ISD::FSQRT) {
16363 return IsNegative ? DAG.
getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
16372 DAGCombinerInfo &DCI)
const {
16373 SelectionDAG &DAG = DCI.DAG;
16374 EVT VT =
N->getValueType(0);
16378 if (!
N->isDivergent() &&
getSubtarget()->hasSALUFloatInsts() &&
16379 (ScalarVT == MVT::f32 || ScalarVT == MVT::f16)) {
16394 if ((ScalarVT == MVT::f64 || ScalarVT == MVT::f32 || ScalarVT == MVT::f16) &&
16399 const ConstantFPSDNode *FalseNode =
16409 if (ScalarVT == MVT::f32 &&
16415 if (TrueNodeExpVal == INT_MIN)
16418 if (FalseNodeExpVal == INT_MIN)
16431 return DAG.
getNode(ISD::FLDEXP, SL, VT,
LHS, SelectNode,
N->getFlags());
16438 DAGCombinerInfo &DCI)
const {
16439 SelectionDAG &DAG = DCI.DAG;
16440 EVT VT =
N->getValueType(0);
16443 if (!Subtarget->hasDot10Insts() || VT != MVT::f32)
16461 (
N->getFlags().hasAllowContract() &&
16462 FMA->getFlags().hasAllowContract())) {
16477 if (FMAOp1.
getOpcode() != ISD::FP_EXTEND ||
16496 if (Vec1 == Vec2 || Vec3 == Vec4)
16502 if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) {
16511 DAGCombinerInfo &DCI)
const {
16512 SelectionDAG &DAG = DCI.DAG;
16517 EVT VT =
LHS.getValueType();
16546 return LHS.getOperand(0);
16554 LHS.getConstantOperandVal(1) !=
LHS.getConstantOperandVal(2) &&
16561 const APInt &CT =
LHS.getConstantOperandAPInt(1);
16562 const APInt &CF =
LHS.getConstantOperandAPInt(2);
16570 return LHS.getOperand(0);
16574 if (VT != MVT::f32 && VT != MVT::f64 &&
16575 (!Subtarget->has16BitInsts() || VT != MVT::f16))
16583 LHS.getOpcode() == ISD::FABS) {
16590 const unsigned IsInfMask =
16592 const unsigned IsFiniteMask =
16606SITargetLowering::performCvtF32UByteNCombine(
SDNode *
N,
16607 DAGCombinerInfo &DCI)
const {
16608 SelectionDAG &DAG = DCI.DAG;
16629 unsigned ShiftOffset = 8 *
Offset;
16631 ShiftOffset -=
C->getZExtValue();
16633 ShiftOffset +=
C->getZExtValue();
16635 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
16637 MVT::f32, Shifted);
16648 DCI.AddToWorklist(
N);
16655 return DAG.
getNode(
N->getOpcode(), SL, MVT::f32, DemandedSrc);
16661 DAGCombinerInfo &DCI)
const {
16666 const MachineFunction &MF = DCI.DAG.getMachineFunction();
16670 (
F.isNaN() && MF.
getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
16671 return DCI.DAG.getConstantFP(Zero, SDLoc(
N),
N->getValueType(0));
16674 APFloat One(
F.getSemantics(),
"1.0");
16676 return DCI.DAG.getConstantFP(One, SDLoc(
N),
N->getValueType(0));
16682 DAGCombinerInfo &DCI)
const {
16703 bool isFloatingPoint =
LHS.getValueType().isFloatingPoint();
16704 bool isInteger =
LHS.getValueType().isInteger();
16707 if (!isFloatingPoint && !isInteger)
16712 if (!isEquality && !isNonEquality)
16729 if (isFloatingPoint) {
16731 if (!Val.
isNormal() || Subtarget->getInstrInfo()->isInlineConstant(Val))
16742 if (!(isEquality && TrueVal == ConstVal) &&
16743 !(isNonEquality && FalseVal == ConstVal))
16750 SelectLHS, SelectRHS);
16755 switch (
N->getOpcode()) {
16771 if (
auto Res = promoteUniformOpToI32(
SDValue(
N, 0), DCI))
16781 switch (
N->getOpcode()) {
16783 return performAddCombine(
N, DCI);
16785 return performPtrAddCombine(
N, DCI);
16787 return performSubCombine(
N, DCI);
16790 return performAddCarrySubCarryCombine(
N, DCI);
16792 return performFAddCombine(
N, DCI);
16794 return performFSubCombine(
N, DCI);
16796 return performFDivCombine(
N, DCI);
16798 return performFMulCombine(
N, DCI);
16800 return performSetCCCombine(
N, DCI);
16802 if (
auto Res = performSelectCombine(
N, DCI))
16807 case ISD::FMAXNUM_IEEE:
16808 case ISD::FMINNUM_IEEE:
16809 case ISD::FMAXIMUM:
16810 case ISD::FMINIMUM:
16811 case ISD::FMAXIMUMNUM:
16812 case ISD::FMINIMUMNUM:
16819 return performMinMaxCombine(
N, DCI);
16821 return performFMACombine(
N, DCI);
16823 return performAndCombine(
N, DCI);
16825 return performOrCombine(
N, DCI);
16828 if (
N->getValueType(0) == MVT::i32 &&
N->isDivergent() &&
16829 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
16835 return performXorCombine(
N, DCI);
16837 return performZeroExtendCombine(
N, DCI);
16839 return performSignExtendInRegCombine(
N, DCI);
16841 return performClassCombine(
N, DCI);
16843 return performFCanonicalizeCombine(
N, DCI);
16845 return performRcpCombine(
N, DCI);
16860 return performUCharToFloatCombine(
N, DCI);
16862 return performFCopySignCombine(
N, DCI);
16867 return performCvtF32UByteNCombine(
N, DCI);
16869 return performFMed3Combine(
N, DCI);
16871 return performCvtPkRTZCombine(
N, DCI);
16873 return performClampCombine(
N, DCI);
16876 EVT VT =
N->getValueType(0);
16879 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
16882 EVT EltVT = Src.getValueType();
16883 if (EltVT != MVT::i16)
16884 Src = DAG.
getNode(ISD::BITCAST, SL, MVT::i16, Src);
16887 return DAG.
getNode(ISD::BITCAST, SL, VT, Ext);
16893 return performExtractVectorEltCombine(
N, DCI);
16895 return performInsertVectorEltCombine(
N, DCI);
16897 return performFPRoundCombine(
N, DCI);
16906 return performMemSDNodeCombine(MemNode, DCI);
16937 unsigned Opcode =
Node->getMachineOpcode();
16940 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
16941 if (D16Idx >= 0 &&
Node->getConstantOperandVal(D16Idx))
16944 SDNode *
Users[5] = {
nullptr};
16946 unsigned DmaskIdx =
16947 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
16948 unsigned OldDmask =
Node->getConstantOperandVal(DmaskIdx);
16949 unsigned NewDmask = 0;
16950 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
16951 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
16952 bool UsesTFC = (int(TFEIdx) >= 0 &&
Node->getConstantOperandVal(TFEIdx)) ||
16953 (
int(LWEIdx) >= 0 &&
Node->getConstantOperandVal(LWEIdx));
16954 unsigned TFCLane = 0;
16955 bool HasChain =
Node->getNumValues() > 1;
16957 if (OldDmask == 0) {
16965 TFCLane = OldBitsSet;
16969 for (SDUse &Use :
Node->uses()) {
16972 if (
Use.getResNo() != 0)
16975 SDNode *
User =
Use.getUser();
16978 if (!
User->isMachineOpcode() ||
16979 User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
16991 if (UsesTFC && Lane == TFCLane) {
16996 for (
unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
16998 Dmask &= ~(1 << Comp);
17006 NewDmask |= 1 << Comp;
17011 bool NoChannels = !NewDmask;
17018 if (OldBitsSet == 1)
17024 if (NewDmask == OldDmask)
17033 unsigned NewChannels = BitsSet + UsesTFC;
17037 assert(NewOpcode != -1 &&
17038 NewOpcode !=
static_cast<int>(
Node->getMachineOpcode()) &&
17039 "failed to find equivalent MIMG op");
17047 MVT SVT =
Node->getValueType(0).getVectorElementType().getSimpleVT();
17049 MVT ResultVT = NewChannels == 1
17052 : NewChannels == 5 ? 8
17054 SDVTList NewVTList =
17057 MachineSDNode *NewNode =
17066 if (NewChannels == 1) {
17076 for (
unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
17081 if (i || !NoChannels)
17086 if (NewUser != User) {
17096 Idx = AMDGPU::sub1;
17099 Idx = AMDGPU::sub2;
17102 Idx = AMDGPU::sub3;
17105 Idx = AMDGPU::sub4;
17116 Op =
Op.getOperand(0);
17137 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
17141 Node->getOperand(0), SL, VReg, SrcVal,
17147 return ToResultReg.
getNode();
17152 for (
unsigned i = 0; i <
Node->getNumOperands(); ++i) {
17154 Ops.push_back(
Node->getOperand(i));
17160 Node->getOperand(i).getValueType(),
17161 Node->getOperand(i)),
17173 unsigned Opcode =
Node->getMachineOpcode();
17175 if (
TII->isImage(Opcode) && !
TII->get(Opcode).mayStore() &&
17176 !
TII->isGather4(Opcode) &&
17178 return adjustWritemask(
Node, DAG);
17181 if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) {
17187 case AMDGPU::V_DIV_SCALE_F32_e64:
17188 case AMDGPU::V_DIV_SCALE_F64_e64: {
17198 (Src0 == Src1 || Src0 == Src2))
17254 AMDGPU::getNamedOperandIdx(
MI.getOpcode(), AMDGPU::OpName::vdata);
17255 unsigned InitIdx = 0;
17257 if (
TII->isImage(
MI)) {
17265 unsigned TFEVal = TFE ? TFE->
getImm() : 0;
17266 unsigned LWEVal = LWE ? LWE->
getImm() : 0;
17267 unsigned D16Val = D16 ? D16->getImm() : 0;
17269 if (!TFEVal && !LWEVal)
17280 assert(MO_Dmask &&
"Expected dmask operand in instruction");
17282 unsigned dmask = MO_Dmask->
getImm();
17287 bool Packed = !Subtarget->hasUnpackedD16VMem();
17289 InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
17295 TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
17296 if (DstSize < InitIdx)
17299 InitIdx =
TRI.getRegSizeInBits(*
TII->getOpRegClass(
MI, DstIdx)) / 32;
17307 Register PrevDst =
MRI.cloneVirtualRegister(
MI.getOperand(DstIdx).getReg());
17308 unsigned NewDst = 0;
17313 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
17314 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
17317 for (; SizeLeft; SizeLeft--, CurrIdx++) {
17318 NewDst =
MRI.createVirtualRegister(
TII->getOpRegClass(
MI, DstIdx));
17338 MI.tieOperands(DstIdx,
MI.getNumOperands() - 1);
17351 if (
TII->isVOP3(
MI.getOpcode())) {
17353 TII->legalizeOperandsVOP3(
MRI,
MI);
17358 if (!
MI.getDesc().operands().empty()) {
17359 unsigned Opc =
MI.getOpcode();
17360 bool HasAGPRs = Info->mayNeedAGPRs();
17362 int16_t Src2Idx = AMDGPU::getNamedOperandIdx(
Opc, AMDGPU::OpName::src2);
17364 {AMDGPU::getNamedOperandIdx(
Opc, AMDGPU::OpName::src0),
17365 AMDGPU::getNamedOperandIdx(
Opc, AMDGPU::OpName::src1), Src2Idx}) {
17368 if ((
I == Src2Idx) && (HasAGPRs))
17371 if (!
Op.isReg() || !
Op.getReg().isVirtual())
17373 auto *RC =
TRI->getRegClassForReg(
MRI,
Op.getReg());
17374 if (!
TRI->hasAGPRs(RC))
17376 auto *Src =
MRI.getUniqueVRegDef(
Op.getReg());
17377 if (!Src || !Src->isCopy() ||
17378 !
TRI->isSGPRReg(
MRI, Src->getOperand(1).getReg()))
17380 auto *NewRC =
TRI->getEquivalentVGPRClass(RC);
17384 MRI.setRegClass(
Op.getReg(), NewRC);
17387 if (
TII->isMAI(
MI)) {
17392 int Src0Idx = AMDGPU::getNamedOperandIdx(
MI.getOpcode(),
17393 AMDGPU::OpName::scale_src0);
17394 if (Src0Idx != -1) {
17395 int Src1Idx = AMDGPU::getNamedOperandIdx(
MI.getOpcode(),
17396 AMDGPU::OpName::scale_src1);
17397 if (
TII->usesConstantBus(
MRI,
MI, Src0Idx) &&
17398 TII->usesConstantBus(
MRI,
MI, Src1Idx))
17399 TII->legalizeOpWithMove(
MI, Src1Idx);
17407 if (
auto *Src2 =
TII->getNamedOperand(
MI, AMDGPU::OpName::src2)) {
17408 if (Src2->isReg() && Src2->getReg().isVirtual()) {
17409 auto *RC =
TRI->getRegClassForReg(
MRI, Src2->getReg());
17410 if (
TRI->isVectorSuperClass(RC)) {
17411 auto *NewRC =
TRI->getEquivalentAGPRClass(RC);
17412 MRI.setRegClass(Src2->getReg(), NewRC);
17413 if (Src2->isTied())
17414 MRI.setRegClass(
MI.getOperand(0).getReg(), NewRC);
17423 if (
TII->isImage(
MI))
17424 TII->enforceOperandRCAlignment(
MI, AMDGPU::OpName::vaddr);
17498std::pair<unsigned, const TargetRegisterClass *>
17505 if (Constraint.
size() == 1) {
17509 if (VT == MVT::Other)
17512 switch (Constraint[0]) {
17519 RC = &AMDGPU::SReg_32RegClass;
17522 RC = &AMDGPU::SGPR_64RegClass;
17527 return std::pair(0U,
nullptr);
17534 RC = Subtarget->useRealTrue16Insts() ? &AMDGPU::VGPR_16RegClass
17535 : &AMDGPU::VGPR_32_Lo256RegClass;
17538 RC = Subtarget->has1024AddressableVGPRs()
17539 ?
TRI->getAlignedLo256VGPRClassForBitWidth(
BitWidth)
17542 return std::pair(0U,
nullptr);
17547 if (!Subtarget->hasMAIInsts())
17551 RC = &AMDGPU::AGPR_32RegClass;
17556 return std::pair(0U,
nullptr);
17561 }
else if (Constraint ==
"VA" && Subtarget->hasGFX90AInsts()) {
17565 RC = &AMDGPU::AV_32RegClass;
17568 RC =
TRI->getVectorSuperClassForBitWidth(
BitWidth);
17570 return std::pair(0U,
nullptr);
17579 return std::pair(0U, RC);
17582 if (Kind !=
'\0') {
17584 RC = &AMDGPU::VGPR_32_Lo256RegClass;
17585 }
else if (Kind ==
's') {
17586 RC = &AMDGPU::SGPR_32RegClass;
17587 }
else if (Kind ==
'a') {
17588 RC = &AMDGPU::AGPR_32RegClass;
17594 return std::pair(0U,
nullptr);
17600 return std::pair(0U,
nullptr);
17604 RC =
TRI->getVGPRClassForBitWidth(Width);
17606 RC =
TRI->getSGPRClassForBitWidth(Width);
17608 RC =
TRI->getAGPRClassForBitWidth(Width);
17610 Reg =
TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
17615 return std::pair(0U,
nullptr);
17617 return std::pair(Reg, RC);
17623 return std::pair(0U,
nullptr);
17624 if (Idx < RC->getNumRegs())
17626 return std::pair(0U,
nullptr);
17632 Ret.second =
TRI->getPhysRegBaseClass(Ret.first);
17638 if (Constraint.
size() == 1) {
17639 switch (Constraint[0]) {
17649 }
else if (Constraint ==
"DA" || Constraint ==
"DB") {
17657 if (Constraint.
size() == 1) {
17658 switch (Constraint[0]) {
17666 }
else if (Constraint.
size() == 2) {
17667 if (Constraint ==
"VA")
17685 std::vector<SDValue> &
Ops,
17700 unsigned Size =
Op.getScalarValueSizeInBits();
17704 if (
Size == 16 && !Subtarget->has16BitInsts())
17708 Val =
C->getSExtValue();
17712 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
17716 if (
Size != 16 ||
Op.getNumOperands() != 2)
17718 if (
Op.getOperand(0).isUndef() ||
Op.getOperand(1).isUndef())
17721 Val =
C->getSExtValue();
17725 Val =
C->getValueAPF().bitcastToAPInt().getSExtValue();
17735 if (Constraint.
size() == 1) {
17736 switch (Constraint[0]) {
17751 }
else if (Constraint.
size() == 2) {
17752 if (Constraint ==
"DA") {
17753 int64_t HiBits =
static_cast<int32_t
>(Val >> 32);
17754 int64_t LoBits =
static_cast<int32_t
>(Val);
17758 if (Constraint ==
"DB") {
17766 unsigned MaxSize)
const {
17767 unsigned Size = std::min<unsigned>(
Op.getScalarValueSizeInBits(), MaxSize);
17768 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
17770 MVT VT =
Op.getSimpleValueType();
17795 switch (UnalignedClassID) {
17796 case AMDGPU::VReg_64RegClassID:
17797 return AMDGPU::VReg_64_Align2RegClassID;
17798 case AMDGPU::VReg_96RegClassID:
17799 return AMDGPU::VReg_96_Align2RegClassID;
17800 case AMDGPU::VReg_128RegClassID:
17801 return AMDGPU::VReg_128_Align2RegClassID;
17802 case AMDGPU::VReg_160RegClassID:
17803 return AMDGPU::VReg_160_Align2RegClassID;
17804 case AMDGPU::VReg_192RegClassID:
17805 return AMDGPU::VReg_192_Align2RegClassID;
17806 case AMDGPU::VReg_224RegClassID:
17807 return AMDGPU::VReg_224_Align2RegClassID;
17808 case AMDGPU::VReg_256RegClassID:
17809 return AMDGPU::VReg_256_Align2RegClassID;
17810 case AMDGPU::VReg_288RegClassID:
17811 return AMDGPU::VReg_288_Align2RegClassID;
17812 case AMDGPU::VReg_320RegClassID:
17813 return AMDGPU::VReg_320_Align2RegClassID;
17814 case AMDGPU::VReg_352RegClassID:
17815 return AMDGPU::VReg_352_Align2RegClassID;
17816 case AMDGPU::VReg_384RegClassID:
17817 return AMDGPU::VReg_384_Align2RegClassID;
17818 case AMDGPU::VReg_512RegClassID:
17819 return AMDGPU::VReg_512_Align2RegClassID;
17820 case AMDGPU::VReg_1024RegClassID:
17821 return AMDGPU::VReg_1024_Align2RegClassID;
17822 case AMDGPU::AReg_64RegClassID:
17823 return AMDGPU::AReg_64_Align2RegClassID;
17824 case AMDGPU::AReg_96RegClassID:
17825 return AMDGPU::AReg_96_Align2RegClassID;
17826 case AMDGPU::AReg_128RegClassID:
17827 return AMDGPU::AReg_128_Align2RegClassID;
17828 case AMDGPU::AReg_160RegClassID:
17829 return AMDGPU::AReg_160_Align2RegClassID;
17830 case AMDGPU::AReg_192RegClassID:
17831 return AMDGPU::AReg_192_Align2RegClassID;
17832 case AMDGPU::AReg_256RegClassID:
17833 return AMDGPU::AReg_256_Align2RegClassID;
17834 case AMDGPU::AReg_512RegClassID:
17835 return AMDGPU::AReg_512_Align2RegClassID;
17836 case AMDGPU::AReg_1024RegClassID:
17837 return AMDGPU::AReg_1024_Align2RegClassID;
17853 if (Info->isEntryFunction()) {
17860 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
17862 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
17863 :
TRI->getAlignedHighSGPRForRC(MF, 2,
17864 &AMDGPU::SGPR_64RegClass);
17865 Info->setSGPRForEXECCopy(SReg);
17867 assert(!
TRI->isSubRegister(Info->getScratchRSrcReg(),
17868 Info->getStackPtrOffsetReg()));
17869 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
17870 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
17874 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
17875 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
17877 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
17878 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
17880 Info->limitOccupancy(MF);
17882 if (ST.isWave32() && !MF.
empty()) {
17883 for (
auto &
MBB : MF) {
17884 for (
auto &
MI :
MBB) {
17885 TII->fixImplicitOperands(
MI);
17895 if (ST.needsAlignedVGPRs()) {
17896 for (
unsigned I = 0, E =
MRI.getNumVirtRegs();
I != E; ++
I) {
17902 if (NewClassID != -1)
17903 MRI.setRegClass(Reg,
TRI->getRegClass(NewClassID));
17912 const APInt &DemandedElts,
17914 unsigned Depth)
const {
17916 unsigned Opc =
Op.getOpcode();
17919 unsigned IID =
Op.getConstantOperandVal(0);
17921 case Intrinsic::amdgcn_mbcnt_lo:
17922 case Intrinsic::amdgcn_mbcnt_hi: {
17928 IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5);
17938 Op, Known, DemandedElts, DAG,
Depth);
17954 unsigned MaxValue =
17961 unsigned BFEWidth,
bool SExt,
unsigned Depth) {
17965 unsigned Src1Cst = 0;
17966 if (Src1.
isImm()) {
17967 Src1Cst = Src1.
getImm();
17968 }
else if (Src1.
isReg()) {
17972 Src1Cst = Cst->Value.getZExtValue();
17983 if (Width >= BFEWidth)
17992 Known = Known.
sext(BFEWidth);
17994 Known = Known.
zext(BFEWidth);
18000 unsigned Depth)
const {
18003 switch (
MI->getOpcode()) {
18004 case AMDGPU::S_BFE_I32:
18007 case AMDGPU::S_BFE_U32:
18010 case AMDGPU::S_BFE_I64:
18013 case AMDGPU::S_BFE_U64:
18016 case AMDGPU::G_INTRINSIC:
18017 case AMDGPU::G_INTRINSIC_CONVERGENT: {
18020 case Intrinsic::amdgcn_workitem_id_x:
18023 case Intrinsic::amdgcn_workitem_id_y:
18026 case Intrinsic::amdgcn_workitem_id_z:
18029 case Intrinsic::amdgcn_mbcnt_lo:
18030 case Intrinsic::amdgcn_mbcnt_hi: {
18042 case Intrinsic::amdgcn_groupstaticsize: {
18053 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
18056 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
18059 case AMDGPU::G_AMDGPU_SMED3:
18060 case AMDGPU::G_AMDGPU_UMED3: {
18061 auto [Dst, Src0, Src1, Src2] =
MI->getFirst4Regs();
18088 unsigned Depth)
const {
18095 AttributeList Attrs =
18097 if (
MaybeAlign RetAlign = Attrs.getRetAlignment())
18124 if (Header->getAlignment() != PrefAlign)
18125 return Header->getAlignment();
18127 unsigned LoopSize = 0;
18132 LoopSize +=
MBB->getAlignment().value() / 2;
18135 LoopSize +=
TII->getInstSizeInBytes(
MI);
18136 if (LoopSize > 192)
18141 if (LoopSize <= 64)
18144 if (LoopSize <= 128)
18145 return CacheLineAlign;
18151 auto I = Exit->getFirstNonDebugInstr();
18152 if (
I != Exit->end() &&
I->getOpcode() == AMDGPU::S_INST_PREFETCH)
18153 return CacheLineAlign;
18162 if (PreTerm == Pre->
begin() ||
18163 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
18167 auto ExitHead = Exit->getFirstNonDebugInstr();
18168 if (ExitHead == Exit->end() ||
18169 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
18174 return CacheLineAlign;
18182 N =
N->getOperand(0).getNode();
18183 if (
N->getOpcode() == ISD::INLINEASM ||
N->getOpcode() == ISD::INLINEASM_BR)
18192 switch (
N->getOpcode()) {
18200 if (Reg.isPhysical() ||
MRI.isLiveIn(Reg))
18201 return !
TRI->isSGPRReg(
MRI, Reg);
18207 return !
TRI->isSGPRReg(
MRI, Reg);
18211 unsigned AS = L->getAddressSpace();
18215 case ISD::CALLSEQ_END:
18244 return A->readMem() &&
A->writeMem();
18265 switch (Ty.getScalarSizeInBits()) {
18277 const APInt &DemandedElts,
18280 unsigned Depth)
const {
18285 if (Info->getMode().DX10Clamp)
18297 if (RMW->
hasMetadata(
"amdgpu.ignore.denormal.mode"))
18317 <<
"Hardware instruction generated for atomic "
18319 <<
" operation at memory scope " << MemScope;
18324 Type *EltTy = VT->getElementType();
18325 return VT->getNumElements() == 2 &&
18345 unsigned BW =
IT->getBitWidth();
18346 return BW == 32 || BW == 64;
18360 unsigned BW =
DL.getPointerSizeInBits(PT->getAddressSpace());
18361 return BW == 32 || BW == 64;
18364 if (Ty->isFloatTy() || Ty->isDoubleTy())
18368 return VT->getNumElements() == 2 &&
18369 VT->getElementType()->getPrimitiveSizeInBits() == 16;
18379 bool HasSystemScope) {
18386 if (HasSystemScope) {
18395 return RMW->
hasMetadata(
"amdgpu.no.fine.grained.memory");
18408 const MDNode *MD =
I->getMetadata(LLVMContext::MD_noalias_addrspace);
18434 DL.getTypeSizeInBits(RMW->
getType()) == 64 &&
18447 bool HasSystemScope =
18473 if (Subtarget->hasEmulatedSystemScopeAtomics())
18489 if (!HasSystemScope &&
18490 Subtarget->supportsAgentScopeFineGrainedRemoteMemoryAtomics())
18502 if (RMW->
hasMetadata(
"amdgpu.no.fine.grained.memory"))
18510 ConstVal && ConstVal->isNullValue())
18548 if (Ty->isFloatTy()) {
18553 if (Ty->isDoubleTy()) {
18574 if (Ty->isFloatTy() &&
18575 !Subtarget->hasMemoryAtomicFaddF32DenormalSupport() &&
18588 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() &&
isV2F16(Ty))
18592 if (Subtarget->hasAtomicGlobalPkAddBF16Inst() &&
isV2BF16(Ty))
18596 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() &&
isV2F16(Ty))
18601 if (Subtarget->hasAtomicBufferPkAddBF16Inst() &&
isV2BF16(Ty))
18606 if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy())
18610 if (Ty->isFloatTy()) {
18613 if (RMW->
use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18616 if (!RMW->
use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18621 Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() &&
18629 if (Subtarget->hasFlatAtomicFaddF32Inst())
18638 if (Subtarget->hasLDSFPAtomicAddF32()) {
18639 if (RMW->
use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
18641 if (!RMW->
use_empty() && Subtarget->hasAtomicFaddRtnInsts())
18669 if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy())
18671 if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy())
18675 if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy())
18677 if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy())
18730 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
18731 return Subtarget->isWave64() ? &AMDGPU::SReg_64RegClass
18732 : &AMDGPU::SReg_32RegClass;
18733 if (!
TRI->isSGPRClass(RC) && !isDivergent)
18734 return TRI->getEquivalentSGPRClass(RC);
18735 if (
TRI->isSGPRClass(RC) && isDivergent)
18736 return TRI->getEquivalentVGPRClass(RC);
18748 unsigned WaveSize) {
18753 if (!
IT ||
IT->getBitWidth() != WaveSize)
18758 if (!Visited.
insert(V).second)
18760 bool Result =
false;
18761 for (
const auto *U : V->users()) {
18763 if (V == U->getOperand(1)) {
18768 case Intrinsic::amdgcn_if_break:
18769 case Intrinsic::amdgcn_if:
18770 case Intrinsic::amdgcn_else:
18775 if (V == U->getOperand(0)) {
18780 case Intrinsic::amdgcn_end_cf:
18781 case Intrinsic::amdgcn_loop:
18787 Result =
hasCFUser(U, Visited, WaveSize);
18796 const Value *V)
const {
18798 if (CI->isInlineAsm()) {
18807 for (
auto &TC : TargetConstraints) {
18821 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
18849 return MRI.hasOneNonDBGUse(N0);
18856 if (
I.getMetadata(
"amdgpu.noclobber"))
18858 if (
I.getMetadata(
"amdgpu.last.use"))
18868 if (!Def->isMachineOpcode())
18878 if (
II.isCompare() &&
II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
18879 PhysReg = AMDGPU::SCC;
18881 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
18947 Alignment = RMW->getAlign();
18960 bool FullFlatEmulation =
18962 ((Subtarget->hasAtomicFaddInsts() && RMW->getType()->isFloatTy()) ||
18963 (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() &&
18964 RMW->getType()->isDoubleTy()));
18967 bool ReturnValueIsUsed = !AI->
use_empty();
18976 if (FullFlatEmulation) {
18987 std::prev(BB->
end())->eraseFromParent();
18988 Builder.SetInsertPoint(BB);
18990 Value *LoadedShared =
nullptr;
18991 if (FullFlatEmulation) {
18992 CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared,
18993 {Addr},
nullptr,
"is.shared");
18994 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
18995 Builder.SetInsertPoint(SharedBB);
18996 Value *CastToLocal = Builder.CreateAddrSpaceCast(
19002 LoadedShared = Clone;
19004 Builder.CreateBr(PhiBB);
19005 Builder.SetInsertPoint(CheckPrivateBB);
19008 CallInst *IsPrivate = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_private,
19009 {Addr},
nullptr,
"is.private");
19010 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
19012 Builder.SetInsertPoint(PrivateBB);
19014 Value *CastToPrivate = Builder.CreateAddrSpaceCast(
19017 Value *LoadedPrivate;
19019 LoadedPrivate = Builder.CreateAlignedLoad(
19020 RMW->getType(), CastToPrivate, RMW->getAlign(),
"loaded.private");
19023 LoadedPrivate, RMW->getValOperand());
19025 Builder.CreateAlignedStore(NewVal, CastToPrivate, RMW->getAlign());
19027 auto [ResultLoad, Equal] =
19033 LoadedPrivate = Builder.CreateInsertValue(Insert, Equal, 1);
19036 Builder.CreateBr(PhiBB);
19038 Builder.SetInsertPoint(GlobalBB);
19042 if (FullFlatEmulation) {
19043 Value *CastToGlobal = Builder.CreateAddrSpaceCast(
19052 if (!FullFlatEmulation) {
19057 MDNode *RangeNotPrivate =
19060 LoadedGlobal->
setMetadata(LLVMContext::MD_noalias_addrspace,
19064 Builder.CreateBr(PhiBB);
19066 Builder.SetInsertPoint(PhiBB);
19068 if (ReturnValueIsUsed) {
19071 if (FullFlatEmulation)
19078 Builder.CreateBr(ExitBB);
19082 unsigned PtrOpIdx) {
19083 Value *PtrOp =
I->getOperand(PtrOpIdx);
19090 I->setOperand(PtrOpIdx, ASCast);
19102 ConstVal && ConstVal->isNullValue()) {
19132 "Expand Atomic Load only handles SCRATCH -> FLAT conversion");
19140 "Expand Atomic Store only handles SCRATCH -> FLAT conversion");
19155 LoadInst *LI = Builder.CreateAlignedLoad(
static bool isMul(MachineInstr *MI)
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static constexpr std::pair< ImplicitArgumentMask, StringLiteral > ImplicitAttrs[]
static bool allUsesHaveSourceMods(MachineInstr &MI, MachineRegisterInfo &MRI, unsigned CostThreshold=4)
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static bool isNoUnsignedWrap(MachineInstr *Addr)
static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE, bool &IsTexFail)
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Function Alias Analysis Results
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
#define LLVM_ATTRIBUTE_UNUSED
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
static bool isSigned(unsigned int Opcode)
Utilities for dealing with flags related to floating point properties and mode controls.
AMD GCN specific subclass of TargetSubtarget.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Contains matchers for matching SSA Machine Instructions.
mir Rename Register Operands
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
uint64_t IntrinsicInst * II
static constexpr MCPhysReg SPReg
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Contains matchers for matching SelectionDAG nodes and values.
static void r0(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r3(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
#define FP_DENORM_FLUSH_NONE
#define FP_DENORM_FLUSH_IN_FLUSH_OUT
static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info)
static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked)
static MachineBasicBlock * emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF)
static bool isAtomicRMWLegalIntTy(Type *Ty)
static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelValueTracking &VT, KnownBits &Known, unsigned Dim)
static bool flatInstrMayAccessPrivate(const Instruction *I)
Return if a flat address space atomicrmw can access private memory.
static std::pair< unsigned, int > computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset)
static bool denormalModeIsFlushAllF32(const MachineFunction &MF)
static bool addresses16Bits(int Mask)
static bool isClampZeroToOne(SDValue A, SDValue B)
static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, EVT VT)
static unsigned findFirstFreeSGPR(CCState &CCInfo)
static uint32_t getPermuteMask(SDValue V)
static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static int getAlignedAGPRClassID(unsigned UnalignedClassID)
static void processPSInputArgs(SmallVectorImpl< ISD::InputArg > &Splits, CallingConv::ID CallConv, ArrayRef< ISD::InputArg > Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info)
static void getCoopAtomicOperandsInfo(const CallInst &CI, bool IsLoad, TargetLoweringBase::IntrinsicInfo &Info)
static uint64_t getIdentityValueFor64BitWaveReduction(unsigned Opc)
static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, const GCNSubtarget *Subtarget)
static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT)
static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget, const AtomicRMWInst *RMW, bool HasSystemScope)
static void fixMasks(SmallVectorImpl< DotSrc > &Srcs, unsigned ChainLength)
static bool is32bitWaveReduceOperation(unsigned Opc)
static TargetLowering::AtomicExpansionKind atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW)
static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src)
Return the source of an fp_extend from f16 to f32, or a converted FP constant.
static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW)
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val)
static void convertScratchAtomicToFlatAtomic(Instruction *I, unsigned PtrOpIdx)
static bool elementPairIsOddToEven(ArrayRef< int > Mask, int Elt)
static cl::opt< bool > DisableLoopAlignment("amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false))
static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, unsigned DWordOffset)
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static bool isImmConstraint(StringRef Constraint)
static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts)
static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static bool hasCFUser(const Value *V, SmallPtrSet< const Value *, 16 > &Visited, unsigned WaveSize)
static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW)
static unsigned SubIdx2Lane(unsigned Idx)
Helper function for adjustWritemask.
static TargetLowering::AtomicExpansionKind getPrivateAtomicExpansionKind(const GCNSubtarget &STI)
static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, const SIMachineFunctionInfo &Info)
static MachineBasicBlock * lowerWaveReduce(MachineInstr &MI, MachineBasicBlock &BB, const GCNSubtarget &ST, unsigned Opc)
static bool elementPairIsContiguous(ArrayRef< int > Mask, int Elt)
static bool isV2BF16(Type *Ty)
static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs)
static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed)
static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, SmallVectorImpl< DotSrc > &Srcs, bool IsSigned, bool IsAny)
static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, SDValue &OtherOp)
static void placeSources(ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, SmallVectorImpl< DotSrc > &Src0s, SmallVectorImpl< DotSrc > &Src1s, int Step)
static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg)
static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isFrameIndexOp(SDValue Op)
static ConstantFPSDNode * getSplatConstantFP(SDValue Op)
static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg)
static void knownBitsForSBFE(const MachineInstr &MI, GISelValueTracking &VT, KnownBits &Known, const APInt &DemandedElts, unsigned BFEWidth, bool SExt, unsigned Depth)
static bool isExtendedFrom16Bits(SDValue &Operand)
static std::optional< bool > checkDot4MulSignedness(const SDValue &N, ByteProvider< SDValue > &Src0, ByteProvider< SDValue > &Src1, const SDValue &S0Op, const SDValue &S1Op, const SelectionDAG &DAG)
static bool vectorEltWillFoldAway(SDValue Op)
static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, const SIMachineFunctionInfo *Info, const GCNSubtarget *ST)
static uint32_t getConstantPermuteMask(uint32_t C)
static MachineBasicBlock * emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST)
static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask=~0u, ArgDescriptor Arg=ArgDescriptor())
static MachineBasicBlock * Expand64BitScalarArithmetic(MachineInstr &MI, MachineBasicBlock *BB)
static std::pair< MachineBasicBlock *, MachineBasicBlock * > splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop)
static uint32_t getIdentityValueFor32BitWaveReduction(unsigned Opc)
static unsigned getBasePtrIndex(const MemSDNode *N)
MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset by the chain and intrinsi...
static LLVM_ATTRIBUTE_UNUSED bool isCopyFromRegOfInlineAsm(const SDNode *N)
static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg)
static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef< EVT > ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, bool IsAtomicPacked16Bit, const SDLoc &DL)
static std::optional< ByteProvider< SDValue > > handleMulOperand(const SDValue &MulOperand)
static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset)
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, const DataLayout &DL, Type *Ty, unsigned MaxNumLanes)
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc)
static unsigned getExtOpcodeForPromotedOp(SDValue Op)
static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG)
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val)
static SDValue tryFoldMADwithSRL(SelectionDAG &DAG, const SDLoc &SL, SDValue MulLHS, SDValue MulRHS, SDValue AddRHS)
static unsigned getIntrMemWidth(unsigned IntrID)
static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef< SDValue > Elts)
static SDNode * findUser(SDValue Value, unsigned Opcode)
Helper function for LowerBRCOND.
static unsigned addPermMasks(unsigned First, unsigned Second)
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags)
static bool isV2F16OrV2BF16(Type *Ty)
static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW)
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT)
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags)
static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags=SIInstrInfo::MO_NONE)
static cl::opt< bool > UseDivergentRegisterIndexing("amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false))
static const std::optional< ByteProvider< SDValue > > calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex=0, unsigned Depth=0)
static bool isV2F16(Type *Ty)
static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg)
SI DAG Lowering interface definition.
Interface definition for SIRegisterInfo.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
static const AMDGPUFunctionArgInfo FixedABIFunctionInfo
void setFuncArgInfo(const Function &F, const AMDGPUFunctionArgInfo &ArgInfo)
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
uint32_t getLDSSize() const
void setUsesDynamicLDS(bool DynLDS)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
bool isEntryFunction() const
unsigned getWavefrontSize() const
static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG)
SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Split a vector load into 2 loads of half the vector.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerF64ToF16Safe(SDValue Src, const SDLoc &DL, SelectionDAG &DAG) const
SDValue storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const
Split the 64-bit value LHS into two 32-bit components, and perform the binary operation Opc to it wit...
SDValue lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals, StringRef Reason) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
static bool needsDenormHandlingF32(const SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags)
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const
static EVT getEquivalentMemType(LLVMContext &Context, EVT VT)
SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg=false) const
Helper function that adds Reg to the LiveIn list of the DAG's MachineFunction.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const
Split a vector store into 2 stores of half the vector.
std::pair< SDValue, SDValue > split64BitValue(SDValue Op, SelectionDAG &DAG) const
Return 64-bit value Op as two 32-bit integers.
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI)
static CCAssignFn * CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg)
static CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg)
Selects the correct CCAssignFn for a given CallingConvention value.
static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG)
static bool allowApproxFunc(const SelectionDAG &DAG, SDNodeFlags Flags)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const
static bool shouldFoldFNegIntoSrc(SDNode *FNeg, SDValue FNegSrc)
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const
Widen a suitably aligned v3 load.
SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast between SrcAS and DestAS is a noop.
const std::array< unsigned, 3 > & getDims() const
static const LaneMaskConstants & get(const GCNSubtarget &ST)
const unsigned XorTermOpc
const unsigned AndSaveExecOpc
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_READONLY int getExactLog2Abs() const
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
const Function * getParent() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getNewValOperand()
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Value * getCompareOperand()
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
static unsigned getPointerOperandIndex()
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ Min
*p = old <signed v ? old : v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
void setOperation(BinOp Operation)
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM_ABI MemoryEffects getMemoryEffects() const
LLVM_ABI bool getValueAsBool() const
Return the attribute's value as a boolean.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< ISelOp > Val, int64_t ByteOffset, int64_t VectorOffset)
std::optional< ISelOp > Src
CCState - This class holds information needed while lowering arguments and return values.
MachineFunction & getMachineFunction() const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
static LLVM_ABI bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
LLVM_ABI void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
LLVM_ABI bool CheckReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
CheckReturn - Analyze the return values of a function, returning true if the return can be performed ...
LLVM_ABI void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
int64_t AllocateStack(unsigned Size, Align Alignment)
AllocateStack - Allocate a chunk of stack space with the specified size and alignment.
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
bool isAllocated(MCRegister Reg) const
isAllocated - Return true if the specified register (or an alias) is allocated.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
static bool isFPPredicate(Predicate P)
static bool isIntPredicate(Predicate P)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
This is the shared class of boolean and integer constants.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Diagnostic information for unsupported feature in backend.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Register DemoteRegister
DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg allocated to hold a pointer to ...
const Value * getValueFromVirtualReg(Register Vreg)
This method is called from TargetLowerinInfo::isSDNodeSourceOfDivergence to get the Value correspondi...
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
iterator_range< arg_iterator > args()
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Argument * getArg(unsigned i) const
bool hasMinimum3Maximum3F32() const
bool supportsAgentScopeFineGrainedRemoteMemoryAtomics() const
const SIInstrInfo * getInstrInfo() const override
bool hasMin3Max3PKF16() const
const SIRegisterInfo * getRegisterInfo() const override
bool hasMinimum3Maximum3PKF16() const
bool hasGloballyAddressableScratch() const
bool hasMinimum3Maximum3F16() const
bool hasRestrictedSOffset() const
bool hasMin3Max3_16() const
bool hasEmulatedSystemScopeAtomics() const
unsigned getKnownHighZeroBitsForFrameIndex() const
Return the number of high bits known to be zero for a frame index.
bool hasShaderCyclesHiLoRegisters() const
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
bool hasKernargSegmentPtr() const
bool hasDispatchID() const
bool hasPrivateSegmentBuffer() const
unsigned getNumFreeUserSGPRs()
bool hasImplicitBufferPtr() const
bool hasPrivateSegmentSize() const
bool hasDispatchPtr() const
bool hasFlatScratchInit() const
const MachineFunction & getMachineFunction() const
void computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth=0)
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool hasExternalLinkage() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
Class to represent integer types.
A wrapper class for inspecting calls to intrinsic functions.
constexpr unsigned getScalarSizeInBits() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI SyncScope::ID getOrInsertSyncScopeID(StringRef SSN)
getOrInsertSyncScopeID - Maps synchronization scope name to synchronization scope ID.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
static unsigned getPointerOperandIndex()
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
LLVM_ABI MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
const MDOperand & getOperand(unsigned I) const
Helper class for constructing bundles of MachineInstrs.
MachineBasicBlock::instr_iterator begin() const
Return an iterator to the first bundled instruction.
uint64_t getScalarSizeInBits() const
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasCalls() const
Return true if the current function has any function calls.
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
bool hasStackObjects() const
Return true if there are any stack objects in this function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setOperandDead(unsigned OpIdx) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI void clearKillFlags(Register Reg) const
clearKillFlags - Iterate over all the uses of the given register and clear the kill flag from the Mac...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This is an abstract virtual class for memory operations.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
value_iterator value_end() const
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
op_iterator op_end() const
bool isAnyAdd() const
Returns true if the node type is ADD or PTRADD.
value_iterator value_begin() const
op_iterator op_begin() const
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isMachineOpcode() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getMachineOpcode() const
unsigned getOpcode() const
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
static unsigned getDSShaderTypeValue(const MachineFunction &MF)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool isWholeWaveFunction() const
bool hasWorkGroupIDZ() const
AMDGPU::ClusterDimsAttr getClusterDims() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
unsigned getBytesInStackArgArea() const
const AMDGPUGWSResourcePseudoSourceValue * getGWSPSV(const AMDGPUTargetMachine &TM)
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
static bool isVGPRClass(const TargetRegisterClass *RC)
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isTypeDesirableForOp(unsigned Op, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDNode * PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const override
Fold the instructions after selecting them.
SDValue splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const
MachineSDNode * wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
bool requiresUniformRegister(MachineFunction &MF, const Value *V) const override
Allows target to decide about the register class of the specific value that is live outside the defin...
bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const override
Returns true if be combined with to form an ISD::FMAD.
AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void bundleInstWithWaitcnt(MachineInstr &MI) const
Insert MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
SDValue lowerROTR(SDValue Op, SelectionDAG &DAG) const
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
MVT getPointerTy(const DataLayout &DL, unsigned AS) const override
Map address space 7 to MVT::amdgpuBufferFatPointer because that's its in-memory representation.
bool denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const
void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const override
Insert explicit copies in entry and exit blocks.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
SDNode * legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const
Legalize target independent instructions (e.g.
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const
const GCNSubtarget * getSubtarget() const
bool enableAggressiveFMAFusion(EVT VT) const override
Return true if target always benefits from combining into FMA for a given value type.
bool shouldEmitGOTReloc(const GlobalValue *GV) const
bool isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth=5) const
void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const override
SDValue splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const
SDValue lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const
bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, MCRegister &PhysReg, int &Cost) const override
Allows the target to handle physreg-carried dependency in target-specific way.
void allocateSpecialInputSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const override
void allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
ArrayRef< MCPhysReg > getRoundingControlRegisters() const override
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent) const override
Return the register class that should be used for the specified value type.
void AddMemOpInit(MachineInstr &MI) const
MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const override
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
bool isLegalGlobalAddressingMode(const AddrMode &AM) const
void computeKnownBitsForFrameIndex(int FrameIdx, KnownBits &Known, const MachineFunction &MF) const override
Determine which of the bits of FrameIndex FIOp are known to be 0.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Return true if it is beneficial to convert a load of a constant to just the constant itself.
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
void emitExpandAtomicStore(StoreInst *SI) const override
Perform a atomic store using a target-specific way.
AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine the known alignment for the pointer value R.
bool getAsmOperandConstVal(SDValue Op, uint64_t &Val) const
bool isShuffleMaskLegal(ArrayRef< int >, EVT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
void emitExpandAtomicLoad(LoadInst *LI) const override
Perform a atomic load using a target-specific way.
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
LLT getPreferredShiftAmountTy(LLT Ty) const override
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
SDValue lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const
bool shouldPreservePtrArith(const Function &F, EVT PtrVT) const override
True if target has some particular form of dealing with pointer arithmetic semantics for pointers wit...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const
void allocateSpecialInputVGPRsFixed(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments in fixed registers.
LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
MachineBasicBlock * emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const
bool getAddrModeArguments(const IntrinsicInst *I, SmallVectorImpl< Value * > &Ops, Type *&AccessTy) const override
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
bool checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize=64) const
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool shouldEmitFixup(const GlobalValue *GV) const
MachineBasicBlock * splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const
void emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const override
Perform a cmpxchg expansion using a target-specific method.
bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const override
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
bool hasMemSDNodeUser(SDNode *N) const
bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const override
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool isEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SmallVectorImpl< ISD::InputArg > &Ins, SelectionDAG &DAG) const
bool isMemOpHasNoClobberedMemOperand(const SDNode *N) const
bool isLegalFlatAddressingMode(const AddrMode &AM, unsigned AddrSpace) const
SDValue LowerCallResult(SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals, bool isThisReturn, SDValue ThisVal) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const override
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override
Assign the register class depending on the number of bits set in the writemask.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void allocateSpecialInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
Allocate implicit function VGPR arguments at the end of allocated user arguments.
void finalizeLowering(MachineFunction &MF) const override
Execute target specific actions to finalize target lowering.
static bool isNonGlobalAddrSpace(unsigned AS)
void emitExpandAtomicAddrSpacePredicate(Instruction *AI) const
MachineSDNode * buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const
Return a resource descriptor with the 'Add TID' bit enabled The TID (Thread ID) is multiplied by the ...
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool mayBeEmittedAsTailCall(const CallInst *) const override
Return true if the target may be able emit the call instruction as a tail call.
void passSpecialInputs(CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl< std::pair< unsigned, SDValue > > &RegsToPass, SmallVectorImpl< SDValue > &MemOpChains, SDValue Chain) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool checkAsmConstraintVal(SDValue Op, StringRef Constraint, uint64_t Val) const
bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const override
If SNaN is false,.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
static bool shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget)
Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be expanded into a set of cmp...
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool supportSplitCSR(MachineFunction *MF) const override
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
LLT handling variant.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const
SITargetLowering(const TargetMachine &tm, const GCNSubtarget &STI)
void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
bool shouldEmitPCReloc(const GlobalValue *GV) const
void initializeSplitCSR(MachineBasicBlock *Entry) const override
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
void allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
void allocatePreloadKernArgSGPRs(CCState &CCInfo, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ISD::InputArg > &Ins, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const
SDValue copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const
bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &MF, unsigned IntrinsicID) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
SDValue splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
MVT getPointerMemTy(const DataLayout &DL, unsigned AS) const override
Similarly, the in-memory representation of a p7 is {p8, i32}, aka v8i32 when padding is added.
void allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
const Pass * getPass() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Information about stack frame layout on the target.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
Type * Ty
Same as OrigTy, or partially legalized for soft float libcalls.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
TargetLowering(const TargetLowering &)=delete
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned getNumRegs() const
Return the number of registers in this class.
unsigned getID() const
Return the register class ID number.
MCRegister getRegister(unsigned i) const
Return the specified register in the class.
int getCopyCost() const
Return the cost of copying a value between two registers in this class.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
OSType getOS() const
Get the parsed operating system type of this triple.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isFunctionTy() const
True if this is an instance of FunctionType.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isZero() const
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ STREAMOUT_REGISTER
Internal address spaces. Can be freely renumbered.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
@ BUFFER_ATOMIC_COND_SUB_U32
@ TBUFFER_LOAD_FORMAT_D16
@ TBUFFER_STORE_FORMAT_D16
@ BUFFER_STORE_FORMAT_D16
@ TC_RETURN_GFX_WholeWave
@ CLAMP
CLAMP value between 0.0 and 1.0.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
LLVM_READONLY const MIMGG16MappingInfo * getMIMGG16MappingInfo(unsigned G)
LLVM_READONLY int getGlobalSaddrOp(uint16_t Opcode)
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isFlatGlobalAddrSpace(unsigned AS)
const uint64_t FltRoundToHWConversionTable
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool isGFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
LLVM_READNONE constexpr bool mayTailCallThisCC(CallingConv::ID CC)
Return true if we might ever do TCO for calls with this calling convention.
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
bool getMUBUFTfe(unsigned Opc)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
bool isGFX10Plus(const MCSubtargetInfo &STI)
LLVM_READONLY int getVOPe64(uint16_t Opcode)
@ TowardZeroF32_TowardNegativeF64
bool isUniformMMO(const MachineMemOperand *MMO)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
uint32_t decodeFltRoundToHWConversionTable(uint32_t FltRounds)
Read the hardware rounding mode equivalent of a AMDGPUFltRounds value.
bool isGFX1250(const MCSubtargetInfo &STI)
bool isExtendedGlobalAddrSpace(unsigned AS)
LLVM_READONLY const MIMGDimInfo * getMIMGDimInfo(unsigned DimEnum)
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
LLVM_READNONE constexpr bool isChainCC(CallingConv::ID CC)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
LLVM_READNONE constexpr bool canGuaranteeTCO(CallingConv::ID CC)
LLVM_READNONE constexpr bool isGraphics(CallingConv::ID CC)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const RsrcIntrinsic * lookupRsrcIntrinsic(unsigned Intr)
const uint64_t FltRoundConversionTable
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SMULO
Same for multiplication.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
LLVM_ABI AttributeSet getFnAttributes(LLVMContext &C, ID id)
Return the function attributes for an intrinsic.
LLVM_ABI AttributeList getAttributes(LLVMContext &C, ID id, FunctionType *FT)
Return the attributes for an intrinsic.
LLVM_ABI FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys={})
Return the function type for an intrinsic.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
GFCstOrSplatGFCstMatch m_GFCstOrSplat(std::optional< FPValueAndVReg > &FPValReg)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
@ System
Synchronized with respect to all concurrently executing threads.
initializer< Ty > init(const Ty &Val)
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
LLVM_ABI void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
std::pair< Value *, Value * > buildCmpXchgValue(IRBuilderBase &Builder, Value *Ptr, Value *Cmp, Value *Val, Align Alignment)
Emit IR to implement the given cmpxchg operation on values in registers, returning the new value.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
constexpr int64_t minIntN(int64_t N)
Gets the minimum value for a N-bit signed integer.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool isReleaseOrStronger(AtomicOrdering AO)
static const MachineMemOperand::Flags MONoClobber
Mark the MMO of a uniform load if there are no potentially clobbering stores on any path from the sta...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
AtomicOrderingCABI
Atomic ordering for C11 / C++11's memory models.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
bool isBoolSGPR(SDValue V)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
static const MachineMemOperand::Flags MOCooperative
Mark the MMO of cooperative load/store atomics.
Value * buildAtomicRMWValue(AtomicRMWInst::BinOp Op, IRBuilderBase &Builder, Value *Loaded, Value *Val)
Emit IR to implement the given atomicrmw operation on values in registers, returning the new value.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
unsigned getUndefRegState(bool B)
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
constexpr T maskTrailingOnes(unsigned N)
Create a bitmask with the N right-most bits set to 1, and all other bits set to 0.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
int popcount(T Value) noexcept
Count the number of set bits in a value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
@ CLUSTER_WORKGROUP_MAX_ID_X
@ CLUSTER_WORKGROUP_MAX_ID_Z
@ CLUSTER_WORKGROUP_MAX_FLAT_ID
@ CLUSTER_WORKGROUP_MAX_ID_Y
ArgDescriptor WorkItemIDZ
ArgDescriptor WorkItemIDY
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(PreloadedValue Value) const
ArgDescriptor WorkItemIDX
static constexpr uint64_t encode(Fields... Values)
static std::tuple< typename Fields::ValueType... > decode(uint64_t Encoded)
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
static ArgDescriptor createStack(unsigned Offset, unsigned Mask=~0u)
MCRegister getRegister() const
static ArgDescriptor createArg(const ArgDescriptor &Arg, unsigned Mask)
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
Helper struct shared between Function Specialization and SCCP Solver.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
EVT changeElementType(EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
uint64_t getScalarSizeInBits() const
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
unsigned getPointerAddrSpace() const
unsigned getByValSize() const
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
int64_t Offset
Offset - This is an offset from the base Value*.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasAllowContract() const
bool hasNoSignedWrap() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SDValue ConvergenceControlToken
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalize() const