LLVM 22.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97
98 // tblgen-erated 'select' implementation, used as the initial selector for
99 // the patterns that don't require complex C++.
100 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
101
102 // All instruction-specific selection that didn't happen in "select()".
103 // Is basically a large Switch/Case delegating to all other select method.
104 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
105 MachineInstr &I) const;
106
107 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
108 MachineInstr &I, bool IsSigned) const;
109
110 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
111 MachineInstr &I) const;
112
113 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
114 MachineInstr &I, unsigned ExtendOpcode,
115 unsigned BitSetOpcode) const;
116
117 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
118 MachineInstr &I, Register SrcReg,
119 unsigned BitSetOpcode) const;
120
121 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
122 MachineInstr &I, Register SrcReg,
123 unsigned BitSetOpcode, bool SwapPrimarySide) const;
124
125 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
126 MachineInstr &I, Register SrcReg,
127 unsigned BitSetOpcode,
128 bool SwapPrimarySide) const;
129
130 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
131 const MachineInstr *Init = nullptr) const;
132
133 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
134 MachineInstr &I, std::vector<Register> SrcRegs,
135 unsigned Opcode) const;
136
137 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
138 unsigned Opcode) const;
139
140 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
141 MachineInstr &I) const;
142
143 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
144 MachineInstr &I) const;
145 bool selectStore(MachineInstr &I) const;
146
147 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
148 MachineInstr &I) const;
149 bool selectStackRestore(MachineInstr &I) const;
150
151 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
152
153 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
154 MachineInstr &I, unsigned NewOpcode,
155 unsigned NegateOpcode = 0) const;
156
157 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
158 MachineInstr &I) const;
159
160 bool selectFence(MachineInstr &I) const;
161
162 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
166 MachineInstr &I, unsigned OpType) const;
167
168 bool selectAll(Register ResVReg, const SPIRVType *ResType,
169 MachineInstr &I) const;
170
171 bool selectAny(Register ResVReg, const SPIRVType *ResType,
172 MachineInstr &I) const;
173
174 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
175 MachineInstr &I) const;
176
177 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
178 MachineInstr &I) const;
179 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
183 unsigned comparisonOpcode, MachineInstr &I) const;
184 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
188 MachineInstr &I) const;
189 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectSign(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194
195 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
196 MachineInstr &I) const;
197
198 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
199 MachineInstr &I, unsigned Opcode) const;
200
201 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
202 MachineInstr &I, bool Signed) const;
203
204 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
205 MachineInstr &I) const;
206
207 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
208 MachineInstr &I) const;
209
210 template <bool Signed>
211 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
212 MachineInstr &I) const;
213 template <bool Signed>
214 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
215 MachineInstr &I) const;
216
217 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
218 MachineInstr &I, bool IsUnsigned) const;
219
220 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
221 MachineInstr &I) const;
222
223 bool selectConst(Register ResVReg, const SPIRVType *ResType,
224 MachineInstr &I) const;
225
226 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
227 MachineInstr &I) const;
228 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
229 MachineInstr &I, bool IsSigned) const;
230 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
231 bool IsSigned, unsigned Opcode) const;
232 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
233 bool IsSigned) const;
234
235 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
236 MachineInstr &I) const;
237
238 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
239 bool IsSigned) const;
240
241 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
242 const SPIRVType *intTy, const SPIRVType *boolTy) const;
243
244 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
245 MachineInstr &I) const;
246 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
247 MachineInstr &I) const;
248 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
249 MachineInstr &I) const;
250 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
251 MachineInstr &I) const;
252 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
253 MachineInstr &I) const;
254 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
255 MachineInstr &I) const;
256 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
257 MachineInstr &I) const;
258 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
259 MachineInstr &I) const;
260
261 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
262 MachineInstr &I) const;
263 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
264 MachineInstr &I) const;
265
266 bool selectBranch(MachineInstr &I) const;
267 bool selectBranchCond(MachineInstr &I) const;
268
269 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
270 MachineInstr &I) const;
271
272 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
273 MachineInstr &I, GL::GLSLExtInst GLInst) const;
274 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
275 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
276 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
277 MachineInstr &I, CL::OpenCLExtInst CLInst,
278 GL::GLSLExtInst GLInst) const;
279 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
280 MachineInstr &I, const ExtInstList &ExtInsts) const;
281
282 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
283 MachineInstr &I) const;
284
285 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
286 MachineInstr &I) const;
287
288 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
289 MachineInstr &I, unsigned Opcode) const;
290
291 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
292 MachineInstr &I) const;
293
295
296 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
297 MachineInstr &I) const;
298
299 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
300 MachineInstr &I) const;
301 bool selectImageWriteIntrinsic(MachineInstr &I) const;
302 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
303 MachineInstr &I) const;
304 bool selectModf(Register ResVReg, const SPIRVType *ResType,
305 MachineInstr &I) const;
306
307 // Utilities
308 std::pair<Register, bool>
309 buildI32Constant(uint32_t Val, MachineInstr &I,
310 const SPIRVType *ResType = nullptr) const;
311
312 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
313 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
314 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
315 MachineInstr &I) const;
316 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
317
318 bool wrapIntoSpecConstantOp(MachineInstr &I,
319 SmallVector<Register> &CompositeArgs) const;
320
321 Register getUcharPtrTypeReg(MachineInstr &I,
322 SPIRV::StorageClass::StorageClass SC) const;
323 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
324 Register Src, Register DestType,
325 uint32_t Opcode) const;
326 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
327 SPIRVType *SrcPtrTy) const;
328 Register buildPointerToResource(const SPIRVType *ResType,
329 SPIRV::StorageClass::StorageClass SC,
331 uint32_t ArraySize, Register IndexReg,
332 bool IsNonUniform, StringRef Name,
333 MachineIRBuilder MIRBuilder) const;
334 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
335 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
336 Register &ReadReg, MachineInstr &InsertionPoint) const;
337 bool generateImageRead(Register &ResVReg, const SPIRVType *ResType,
338 Register ImageReg, Register IdxReg, DebugLoc Loc,
339 MachineInstr &Pos) const;
340 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
341 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
342 Register ResVReg, const SPIRVType *ResType,
343 MachineInstr &I) const;
344 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
345 Register ResVReg, const SPIRVType *ResType,
346 MachineInstr &I) const;
347 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
348 GIntrinsic &HandleDef, MachineInstr &Pos) const;
349};
350
351bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
352 const TargetExtType *TET = cast<TargetExtType>(HandleType);
353 if (TET->getTargetExtName() == "spirv.Image") {
354 return false;
355 }
356 assert(TET->getTargetExtName() == "spirv.SignedImage");
357 return TET->getTypeParameter(0)->isIntegerTy();
358}
359} // end anonymous namespace
360
361#define GET_GLOBALISEL_IMPL
362#include "SPIRVGenGlobalISel.inc"
363#undef GET_GLOBALISEL_IMPL
364
365SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
366 const SPIRVSubtarget &ST,
367 const RegisterBankInfo &RBI)
368 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
369 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
370 MRI(nullptr),
372#include "SPIRVGenGlobalISel.inc"
375#include "SPIRVGenGlobalISel.inc"
377{
378}
379
380void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
382 CodeGenCoverage *CoverageInfo,
384 BlockFrequencyInfo *BFI) {
385 MRI = &MF.getRegInfo();
386 GR.setCurrentFunc(MF);
387 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
388}
389
390// Ensure that register classes correspond to pattern matching rules.
391void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
392 if (HasVRegsReset == &MF)
393 return;
394 HasVRegsReset = &MF;
395
396 MachineRegisterInfo &MRI = MF.getRegInfo();
397 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
398 Register Reg = Register::index2VirtReg(I);
399 LLT RegType = MRI.getType(Reg);
400 if (RegType.isScalar())
401 MRI.setType(Reg, LLT::scalar(64));
402 else if (RegType.isPointer())
403 MRI.setType(Reg, LLT::pointer(0, 64));
404 else if (RegType.isVector())
405 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
406 }
407 for (const auto &MBB : MF) {
408 for (const auto &MI : MBB) {
409 if (isPreISelGenericOpcode(MI.getOpcode()))
410 GR.erase(&MI);
411 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
412 continue;
413
414 Register DstReg = MI.getOperand(0).getReg();
415 LLT DstType = MRI.getType(DstReg);
416 Register SrcReg = MI.getOperand(1).getReg();
417 LLT SrcType = MRI.getType(SrcReg);
418 if (DstType != SrcType)
419 MRI.setType(DstReg, MRI.getType(SrcReg));
420
421 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
422 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
423 if (DstRC != SrcRC && SrcRC)
424 MRI.setRegClass(DstReg, SrcRC);
425 }
426 }
427}
428
429// Return true if the type represents a constant register
432 OpDef = passCopy(OpDef, MRI);
433
434 if (Visited.contains(OpDef))
435 return true;
436 Visited.insert(OpDef);
437
438 unsigned Opcode = OpDef->getOpcode();
439 switch (Opcode) {
440 case TargetOpcode::G_CONSTANT:
441 case TargetOpcode::G_FCONSTANT:
442 return true;
443 case TargetOpcode::G_INTRINSIC:
444 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
445 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
446 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
447 Intrinsic::spv_const_composite;
448 case TargetOpcode::G_BUILD_VECTOR:
449 case TargetOpcode::G_SPLAT_VECTOR: {
450 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
451 i++) {
452 MachineInstr *OpNestedDef =
453 OpDef->getOperand(i).isReg()
454 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
455 : nullptr;
456 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
457 return false;
458 }
459 return true;
460 case SPIRV::OpConstantTrue:
461 case SPIRV::OpConstantFalse:
462 case SPIRV::OpConstantI:
463 case SPIRV::OpConstantF:
464 case SPIRV::OpConstantComposite:
465 case SPIRV::OpConstantCompositeContinuedINTEL:
466 case SPIRV::OpConstantSampler:
467 case SPIRV::OpConstantNull:
468 case SPIRV::OpUndef:
469 case SPIRV::OpConstantFunctionPointerINTEL:
470 return true;
471 }
472 }
473 return false;
474}
475
476// Return true if the virtual register represents a constant
479 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
480 return isConstReg(MRI, OpDef, Visited);
481 return false;
482}
483
485 for (const auto &MO : MI.all_defs()) {
486 Register Reg = MO.getReg();
487 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
488 return false;
489 }
490 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
491 MI.isLifetimeMarker())
492 return false;
493 if (MI.isPHI())
494 return true;
495 if (MI.mayStore() || MI.isCall() ||
496 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
497 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo())
498 return false;
499 return true;
500}
501
502bool SPIRVInstructionSelector::select(MachineInstr &I) {
503 resetVRegsType(*I.getParent()->getParent());
504
505 assert(I.getParent() && "Instruction should be in a basic block!");
506 assert(I.getParent()->getParent() && "Instruction should be in a function!");
507
508 Register Opcode = I.getOpcode();
509 // If it's not a GMIR instruction, we've selected it already.
510 if (!isPreISelGenericOpcode(Opcode)) {
511 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
512 Register DstReg = I.getOperand(0).getReg();
513 Register SrcReg = I.getOperand(1).getReg();
514 auto *Def = MRI->getVRegDef(SrcReg);
515 if (isTypeFoldingSupported(Def->getOpcode()) &&
516 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
517 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
518 bool Res = false;
519 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
520 Register SelectDstReg = Def->getOperand(0).getReg();
521 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
522 *Def);
524 Def->removeFromParent();
525 MRI->replaceRegWith(DstReg, SelectDstReg);
527 I.removeFromParent();
528 } else
529 Res = selectImpl(I, *CoverageInfo);
530 LLVM_DEBUG({
531 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
532 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
533 I.print(dbgs());
534 }
535 });
536 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
537 if (Res) {
538 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
539 DeadMIs.insert(Def);
540 return Res;
541 }
542 }
543 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
544 MRI->replaceRegWith(SrcReg, DstReg);
546 I.removeFromParent();
547 return true;
548 } else if (I.getNumDefs() == 1) {
549 // Make all vregs 64 bits (for SPIR-V IDs).
550 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
551 }
553 }
554
555 if (DeadMIs.contains(&I)) {
556 // if the instruction has been already made dead by folding it away
557 // erase it
558 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
561 I.eraseFromParent();
562 return true;
563 }
564
565 if (I.getNumOperands() != I.getNumExplicitOperands()) {
566 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
567 return false;
568 }
569
570 // Common code for getting return reg+type, and removing selected instr
571 // from parent occurs here. Instr-specific selection happens in spvSelect().
572 bool HasDefs = I.getNumDefs() > 0;
573 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
574 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
575 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
576 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
577 if (spvSelect(ResVReg, ResType, I)) {
578 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
579 for (unsigned i = 0; i < I.getNumDefs(); ++i)
580 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
582 I.removeFromParent();
583 return true;
584 }
585 return false;
586}
587
588static bool mayApplyGenericSelection(unsigned Opcode) {
589 switch (Opcode) {
590 case TargetOpcode::G_CONSTANT:
591 case TargetOpcode::G_FCONSTANT:
592 return false;
593 case TargetOpcode::G_SADDO:
594 case TargetOpcode::G_SSUBO:
595 return true;
596 }
597 return isTypeFoldingSupported(Opcode);
598}
599
600bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
601 MachineInstr &I) const {
602 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
603 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
604 if (DstRC != SrcRC && SrcRC)
605 MRI->setRegClass(DestReg, SrcRC);
606 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
607 TII.get(TargetOpcode::COPY))
608 .addDef(DestReg)
609 .addUse(SrcReg)
610 .constrainAllUses(TII, TRI, RBI);
611}
612
613bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
614 const SPIRVType *ResType,
615 MachineInstr &I) const {
616 const unsigned Opcode = I.getOpcode();
617 if (mayApplyGenericSelection(Opcode))
618 return selectImpl(I, *CoverageInfo);
619 switch (Opcode) {
620 case TargetOpcode::G_CONSTANT:
621 case TargetOpcode::G_FCONSTANT:
622 return selectConst(ResVReg, ResType, I);
623 case TargetOpcode::G_GLOBAL_VALUE:
624 return selectGlobalValue(ResVReg, I);
625 case TargetOpcode::G_IMPLICIT_DEF:
626 return selectOpUndef(ResVReg, ResType, I);
627 case TargetOpcode::G_FREEZE:
628 return selectFreeze(ResVReg, ResType, I);
629
630 case TargetOpcode::G_INTRINSIC:
631 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
632 case TargetOpcode::G_INTRINSIC_CONVERGENT:
633 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
634 return selectIntrinsic(ResVReg, ResType, I);
635 case TargetOpcode::G_BITREVERSE:
636 return selectBitreverse(ResVReg, ResType, I);
637
638 case TargetOpcode::G_BUILD_VECTOR:
639 return selectBuildVector(ResVReg, ResType, I);
640 case TargetOpcode::G_SPLAT_VECTOR:
641 return selectSplatVector(ResVReg, ResType, I);
642
643 case TargetOpcode::G_SHUFFLE_VECTOR: {
644 MachineBasicBlock &BB = *I.getParent();
645 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
646 .addDef(ResVReg)
647 .addUse(GR.getSPIRVTypeID(ResType))
648 .addUse(I.getOperand(1).getReg())
649 .addUse(I.getOperand(2).getReg());
650 for (auto V : I.getOperand(3).getShuffleMask())
651 MIB.addImm(V);
652 return MIB.constrainAllUses(TII, TRI, RBI);
653 }
654 case TargetOpcode::G_MEMMOVE:
655 case TargetOpcode::G_MEMCPY:
656 case TargetOpcode::G_MEMSET:
657 return selectMemOperation(ResVReg, I);
658
659 case TargetOpcode::G_ICMP:
660 return selectICmp(ResVReg, ResType, I);
661 case TargetOpcode::G_FCMP:
662 return selectFCmp(ResVReg, ResType, I);
663
664 case TargetOpcode::G_FRAME_INDEX:
665 return selectFrameIndex(ResVReg, ResType, I);
666
667 case TargetOpcode::G_LOAD:
668 return selectLoad(ResVReg, ResType, I);
669 case TargetOpcode::G_STORE:
670 return selectStore(I);
671
672 case TargetOpcode::G_BR:
673 return selectBranch(I);
674 case TargetOpcode::G_BRCOND:
675 return selectBranchCond(I);
676
677 case TargetOpcode::G_PHI:
678 return selectPhi(ResVReg, ResType, I);
679
680 case TargetOpcode::G_FPTOSI:
681 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
682 case TargetOpcode::G_FPTOUI:
683 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
684
685 case TargetOpcode::G_FPTOSI_SAT:
686 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
687 case TargetOpcode::G_FPTOUI_SAT:
688 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
689
690 case TargetOpcode::G_SITOFP:
691 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
692 case TargetOpcode::G_UITOFP:
693 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
694
695 case TargetOpcode::G_CTPOP:
696 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
697 case TargetOpcode::G_SMIN:
698 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
699 case TargetOpcode::G_UMIN:
700 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
701
702 case TargetOpcode::G_SMAX:
703 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
704 case TargetOpcode::G_UMAX:
705 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
706
707 case TargetOpcode::G_SCMP:
708 return selectSUCmp(ResVReg, ResType, I, true);
709 case TargetOpcode::G_UCMP:
710 return selectSUCmp(ResVReg, ResType, I, false);
711
712 case TargetOpcode::G_STRICT_FMA:
713 case TargetOpcode::G_FMA:
714 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
715
716 case TargetOpcode::G_STRICT_FLDEXP:
717 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
718
719 case TargetOpcode::G_FPOW:
720 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
721 case TargetOpcode::G_FPOWI:
722 return selectExtInst(ResVReg, ResType, I, CL::pown);
723
724 case TargetOpcode::G_FEXP:
725 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
726 case TargetOpcode::G_FEXP2:
727 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
728
729 case TargetOpcode::G_FLOG:
730 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
731 case TargetOpcode::G_FLOG2:
732 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
733 case TargetOpcode::G_FLOG10:
734 return selectLog10(ResVReg, ResType, I);
735
736 case TargetOpcode::G_FABS:
737 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
738 case TargetOpcode::G_ABS:
739 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
740
741 case TargetOpcode::G_FMINNUM:
742 case TargetOpcode::G_FMINIMUM:
743 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
744 case TargetOpcode::G_FMAXNUM:
745 case TargetOpcode::G_FMAXIMUM:
746 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
747
748 case TargetOpcode::G_FCOPYSIGN:
749 return selectExtInst(ResVReg, ResType, I, CL::copysign);
750
751 case TargetOpcode::G_FCEIL:
752 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
753 case TargetOpcode::G_FFLOOR:
754 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
755
756 case TargetOpcode::G_FCOS:
757 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
758 case TargetOpcode::G_FSIN:
759 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
760 case TargetOpcode::G_FTAN:
761 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
762 case TargetOpcode::G_FACOS:
763 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
764 case TargetOpcode::G_FASIN:
765 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
766 case TargetOpcode::G_FATAN:
767 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
768 case TargetOpcode::G_FATAN2:
769 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
770 case TargetOpcode::G_FCOSH:
771 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
772 case TargetOpcode::G_FSINH:
773 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
774 case TargetOpcode::G_FTANH:
775 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
776
777 case TargetOpcode::G_STRICT_FSQRT:
778 case TargetOpcode::G_FSQRT:
779 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
780
781 case TargetOpcode::G_CTTZ:
782 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
783 return selectExtInst(ResVReg, ResType, I, CL::ctz);
784 case TargetOpcode::G_CTLZ:
785 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
786 return selectExtInst(ResVReg, ResType, I, CL::clz);
787
788 case TargetOpcode::G_INTRINSIC_ROUND:
789 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
790 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
791 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
792 case TargetOpcode::G_INTRINSIC_TRUNC:
793 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
794 case TargetOpcode::G_FRINT:
795 case TargetOpcode::G_FNEARBYINT:
796 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
797
798 case TargetOpcode::G_SMULH:
799 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
800 case TargetOpcode::G_UMULH:
801 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
802
803 case TargetOpcode::G_SADDSAT:
804 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
805 case TargetOpcode::G_UADDSAT:
806 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
807 case TargetOpcode::G_SSUBSAT:
808 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
809 case TargetOpcode::G_USUBSAT:
810 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
811
812 case TargetOpcode::G_UADDO:
813 return selectOverflowArith(ResVReg, ResType, I,
814 ResType->getOpcode() == SPIRV::OpTypeVector
815 ? SPIRV::OpIAddCarryV
816 : SPIRV::OpIAddCarryS);
817 case TargetOpcode::G_USUBO:
818 return selectOverflowArith(ResVReg, ResType, I,
819 ResType->getOpcode() == SPIRV::OpTypeVector
820 ? SPIRV::OpISubBorrowV
821 : SPIRV::OpISubBorrowS);
822 case TargetOpcode::G_UMULO:
823 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
824 case TargetOpcode::G_SMULO:
825 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
826
827 case TargetOpcode::G_SEXT:
828 return selectExt(ResVReg, ResType, I, true);
829 case TargetOpcode::G_ANYEXT:
830 case TargetOpcode::G_ZEXT:
831 return selectExt(ResVReg, ResType, I, false);
832 case TargetOpcode::G_TRUNC:
833 return selectTrunc(ResVReg, ResType, I);
834 case TargetOpcode::G_FPTRUNC:
835 case TargetOpcode::G_FPEXT:
836 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
837
838 case TargetOpcode::G_PTRTOINT:
839 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
840 case TargetOpcode::G_INTTOPTR:
841 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
842 case TargetOpcode::G_BITCAST:
843 return selectBitcast(ResVReg, ResType, I);
844 case TargetOpcode::G_ADDRSPACE_CAST:
845 return selectAddrSpaceCast(ResVReg, ResType, I);
846 case TargetOpcode::G_PTR_ADD: {
847 // Currently, we get G_PTR_ADD only applied to global variables.
848 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
849 Register GV = I.getOperand(1).getReg();
850 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
851 (void)II;
852 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
853 (*II).getOpcode() == TargetOpcode::COPY ||
854 (*II).getOpcode() == SPIRV::OpVariable) &&
855 getImm(I.getOperand(2), MRI));
856 // It may be the initialization of a global variable.
857 bool IsGVInit = false;
859 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
860 UseEnd = MRI->use_instr_end();
861 UseIt != UseEnd; UseIt = std::next(UseIt)) {
862 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
863 (*UseIt).getOpcode() == SPIRV::OpVariable) {
864 IsGVInit = true;
865 break;
866 }
867 }
868 MachineBasicBlock &BB = *I.getParent();
869 if (!IsGVInit) {
870 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
871 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
872 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
873 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
874 // Build a new virtual register that is associated with the required
875 // data type.
876 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
877 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
878 // Having a correctly typed base we are ready to build the actually
879 // required GEP. It may not be a constant though, because all Operands
880 // of OpSpecConstantOp is to originate from other const instructions,
881 // and only the AccessChain named opcodes accept a global OpVariable
882 // instruction. We can't use an AccessChain opcode because of the type
883 // mismatch between result and base types.
884 if (!GR.isBitcastCompatible(ResType, GVType))
886 "incompatible result and operand types in a bitcast");
887 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
888 MachineInstrBuilder MIB =
889 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
890 .addDef(NewVReg)
891 .addUse(ResTypeReg)
892 .addUse(GV);
893 return MIB.constrainAllUses(TII, TRI, RBI) &&
894 BuildMI(BB, I, I.getDebugLoc(),
895 TII.get(STI.isLogicalSPIRV()
896 ? SPIRV::OpInBoundsAccessChain
897 : SPIRV::OpInBoundsPtrAccessChain))
898 .addDef(ResVReg)
899 .addUse(ResTypeReg)
900 .addUse(NewVReg)
901 .addUse(I.getOperand(2).getReg())
902 .constrainAllUses(TII, TRI, RBI);
903 } else {
904 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
905 .addDef(ResVReg)
906 .addUse(GR.getSPIRVTypeID(ResType))
907 .addImm(
908 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
909 .addUse(GV)
910 .addUse(I.getOperand(2).getReg())
911 .constrainAllUses(TII, TRI, RBI);
912 }
913 }
914 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
915 // initialize a global variable with a constant expression (e.g., the test
916 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
917 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
918 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
919 .addDef(ResVReg)
920 .addUse(GR.getSPIRVTypeID(ResType))
921 .addImm(static_cast<uint32_t>(
922 SPIRV::Opcode::InBoundsPtrAccessChain))
923 .addUse(GV)
924 .addUse(Idx)
925 .addUse(I.getOperand(2).getReg());
926 return MIB.constrainAllUses(TII, TRI, RBI);
927 }
928
929 case TargetOpcode::G_ATOMICRMW_OR:
930 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
931 case TargetOpcode::G_ATOMICRMW_ADD:
932 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
933 case TargetOpcode::G_ATOMICRMW_AND:
934 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
935 case TargetOpcode::G_ATOMICRMW_MAX:
936 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
937 case TargetOpcode::G_ATOMICRMW_MIN:
938 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
939 case TargetOpcode::G_ATOMICRMW_SUB:
940 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
941 case TargetOpcode::G_ATOMICRMW_XOR:
942 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
943 case TargetOpcode::G_ATOMICRMW_UMAX:
944 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
945 case TargetOpcode::G_ATOMICRMW_UMIN:
946 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
947 case TargetOpcode::G_ATOMICRMW_XCHG:
948 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
949 case TargetOpcode::G_ATOMIC_CMPXCHG:
950 return selectAtomicCmpXchg(ResVReg, ResType, I);
951
952 case TargetOpcode::G_ATOMICRMW_FADD:
953 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
954 case TargetOpcode::G_ATOMICRMW_FSUB:
955 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
956 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
957 SPIRV::OpFNegate);
958 case TargetOpcode::G_ATOMICRMW_FMIN:
959 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
960 case TargetOpcode::G_ATOMICRMW_FMAX:
961 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
962
963 case TargetOpcode::G_FENCE:
964 return selectFence(I);
965
966 case TargetOpcode::G_STACKSAVE:
967 return selectStackSave(ResVReg, ResType, I);
968 case TargetOpcode::G_STACKRESTORE:
969 return selectStackRestore(I);
970
971 case TargetOpcode::G_UNMERGE_VALUES:
972 return selectUnmergeValues(I);
973
974 // Discard gen opcodes for intrinsics which we do not expect to actually
975 // represent code after lowering or intrinsics which are not implemented but
976 // should not crash when found in a customer's LLVM IR input.
977 case TargetOpcode::G_TRAP:
978 case TargetOpcode::G_DEBUGTRAP:
979 case TargetOpcode::G_UBSANTRAP:
980 case TargetOpcode::DBG_LABEL:
981 return true;
982
983 default:
984 return false;
985 }
986}
987
988bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
989 const SPIRVType *ResType,
990 MachineInstr &I,
991 GL::GLSLExtInst GLInst) const {
992 if (!STI.canUseExtInstSet(
993 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
994 std::string DiagMsg;
995 raw_string_ostream OS(DiagMsg);
996 I.print(OS, true, false, false, false);
997 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
998 report_fatal_error(DiagMsg.c_str(), false);
999 }
1000 return selectExtInst(ResVReg, ResType, I,
1001 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1002}
1003
1004bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1005 const SPIRVType *ResType,
1006 MachineInstr &I,
1007 CL::OpenCLExtInst CLInst) const {
1008 return selectExtInst(ResVReg, ResType, I,
1009 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1010}
1011
1012bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1013 const SPIRVType *ResType,
1014 MachineInstr &I,
1015 CL::OpenCLExtInst CLInst,
1016 GL::GLSLExtInst GLInst) const {
1017 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1018 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1019 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1020}
1021
1022bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1023 const SPIRVType *ResType,
1024 MachineInstr &I,
1025 const ExtInstList &Insts) const {
1026
1027 for (const auto &Ex : Insts) {
1028 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1029 uint32_t Opcode = Ex.second;
1030 if (STI.canUseExtInstSet(Set)) {
1031 MachineBasicBlock &BB = *I.getParent();
1032 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1033 .addDef(ResVReg)
1034 .addUse(GR.getSPIRVTypeID(ResType))
1035 .addImm(static_cast<uint32_t>(Set))
1036 .addImm(Opcode);
1037 const unsigned NumOps = I.getNumOperands();
1038 unsigned Index = 1;
1039 if (Index < NumOps &&
1040 I.getOperand(Index).getType() ==
1041 MachineOperand::MachineOperandType::MO_IntrinsicID)
1042 Index = 2;
1043 for (; Index < NumOps; ++Index)
1044 MIB.add(I.getOperand(Index));
1045 return MIB.constrainAllUses(TII, TRI, RBI);
1046 }
1047 }
1048 return false;
1049}
1050
1051bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1052 const SPIRVType *ResType,
1053 MachineInstr &I,
1054 std::vector<Register> Srcs,
1055 unsigned Opcode) const {
1056 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1057 .addDef(ResVReg)
1058 .addUse(GR.getSPIRVTypeID(ResType));
1059 for (Register SReg : Srcs) {
1060 MIB.addUse(SReg);
1061 }
1062 return MIB.constrainAllUses(TII, TRI, RBI);
1063}
1064
1065bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1066 const SPIRVType *ResType,
1067 MachineInstr &I,
1068 unsigned Opcode) const {
1069 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1070 Register SrcReg = I.getOperand(1).getReg();
1071 bool IsGV = false;
1073 MRI->def_instr_begin(SrcReg);
1074 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1075 if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1076 (*DefIt).getOpcode() == SPIRV::OpVariable) {
1077 IsGV = true;
1078 break;
1079 }
1080 }
1081 if (IsGV) {
1082 uint32_t SpecOpcode = 0;
1083 switch (Opcode) {
1084 case SPIRV::OpConvertPtrToU:
1085 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1086 break;
1087 case SPIRV::OpConvertUToPtr:
1088 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1089 break;
1090 }
1091 if (SpecOpcode)
1092 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1093 TII.get(SPIRV::OpSpecConstantOp))
1094 .addDef(ResVReg)
1095 .addUse(GR.getSPIRVTypeID(ResType))
1096 .addImm(SpecOpcode)
1097 .addUse(SrcReg)
1098 .constrainAllUses(TII, TRI, RBI);
1099 }
1100 }
1101 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1102 Opcode);
1103}
1104
1105bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1106 const SPIRVType *ResType,
1107 MachineInstr &I) const {
1108 Register OpReg = I.getOperand(1).getReg();
1109 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1110 if (!GR.isBitcastCompatible(ResType, OpType))
1111 report_fatal_error("incompatible result and operand types in a bitcast");
1112 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1113}
1114
1117 MachineIRBuilder &MIRBuilder,
1118 SPIRVGlobalRegistry &GR) {
1119 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1120 if (MemOp->isVolatile())
1121 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1122 if (MemOp->isNonTemporal())
1123 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1124 if (MemOp->getAlign().value())
1125 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1126
1127 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1128 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1129 const SPIRVSubtarget *ST =
1130 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1131 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1132 if (auto *MD = MemOp->getAAInfo().Scope) {
1133 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1134 if (AliasList)
1135 SpvMemOp |=
1136 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1137 }
1138 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1139 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1140 if (NoAliasList)
1141 SpvMemOp |=
1142 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1143 }
1144 }
1145
1146 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1147 MIB.addImm(SpvMemOp);
1148 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1149 MIB.addImm(MemOp->getAlign().value());
1150 if (AliasList)
1151 MIB.addUse(AliasList->getOperand(0).getReg());
1152 if (NoAliasList)
1153 MIB.addUse(NoAliasList->getOperand(0).getReg());
1154 }
1155}
1156
1158 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1160 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1162 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1163
1164 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1165 MIB.addImm(SpvMemOp);
1166}
1167
1168bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1169 const SPIRVType *ResType,
1170 MachineInstr &I) const {
1171 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1172 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1173
1174 auto *PtrDef = getVRegDef(*MRI, Ptr);
1175 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1176 if (IntPtrDef &&
1177 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1178 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1179 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1180 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1181 Register NewHandleReg =
1182 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1183 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1184 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1185 return false;
1186 }
1187
1188 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1189 return generateImageRead(ResVReg, ResType, NewHandleReg, IdxReg,
1190 I.getDebugLoc(), I);
1191 }
1192 }
1193
1194 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1195 .addDef(ResVReg)
1196 .addUse(GR.getSPIRVTypeID(ResType))
1197 .addUse(Ptr);
1198 if (!I.getNumMemOperands()) {
1199 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1200 I.getOpcode() ==
1201 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1202 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1203 } else {
1204 MachineIRBuilder MIRBuilder(I);
1205 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1206 }
1207 return MIB.constrainAllUses(TII, TRI, RBI);
1208}
1209
1210bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1211 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1212 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1213 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1214
1215 auto *PtrDef = getVRegDef(*MRI, Ptr);
1216 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1217 if (IntPtrDef &&
1218 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1219 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1220 Register NewHandleReg =
1221 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1222 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1223 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1224 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1225 return false;
1226 }
1227
1228 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1229 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1230 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1231 TII.get(SPIRV::OpImageWrite))
1232 .addUse(NewHandleReg)
1233 .addUse(IdxReg)
1234 .addUse(StoreVal);
1235
1236 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1237 if (sampledTypeIsSignedInteger(LLVMHandleType))
1238 BMI.addImm(0x1000); // SignExtend
1239
1240 return BMI.constrainAllUses(TII, TRI, RBI);
1241 }
1242 }
1243
1244 MachineBasicBlock &BB = *I.getParent();
1245 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1246 .addUse(Ptr)
1247 .addUse(StoreVal);
1248 if (!I.getNumMemOperands()) {
1249 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1250 I.getOpcode() ==
1251 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1252 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1253 } else {
1254 MachineIRBuilder MIRBuilder(I);
1255 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1256 }
1257 return MIB.constrainAllUses(TII, TRI, RBI);
1258}
1259
1260bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1261 const SPIRVType *ResType,
1262 MachineInstr &I) const {
1263 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1265 "llvm.stacksave intrinsic: this instruction requires the following "
1266 "SPIR-V extension: SPV_INTEL_variable_length_array",
1267 false);
1268 MachineBasicBlock &BB = *I.getParent();
1269 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1270 .addDef(ResVReg)
1271 .addUse(GR.getSPIRVTypeID(ResType))
1272 .constrainAllUses(TII, TRI, RBI);
1273}
1274
1275bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1276 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1278 "llvm.stackrestore intrinsic: this instruction requires the following "
1279 "SPIR-V extension: SPV_INTEL_variable_length_array",
1280 false);
1281 if (!I.getOperand(0).isReg())
1282 return false;
1283 MachineBasicBlock &BB = *I.getParent();
1284 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1285 .addUse(I.getOperand(0).getReg())
1286 .constrainAllUses(TII, TRI, RBI);
1287}
1288
1289bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1290 MachineInstr &I) const {
1291 MachineBasicBlock &BB = *I.getParent();
1292 Register SrcReg = I.getOperand(1).getReg();
1293 bool Result = true;
1294 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1295 MachineIRBuilder MIRBuilder(I);
1296 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1297 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1298 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1299 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1300 Type *ArrTy = ArrayType::get(ValTy, Num);
1302 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1303
1304 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1305 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1306 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1307 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1308 Function &CurFunction = GR.CurMF->getFunction();
1309 Type *LLVMArrTy =
1310 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1311 // Module takes ownership of the global var.
1312 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1314 Constant::getNullValue(LLVMArrTy));
1315 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1316 auto MIBVar =
1317 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1318 .addDef(VarReg)
1319 .addUse(GR.getSPIRVTypeID(VarTy))
1320 .addImm(SPIRV::StorageClass::UniformConstant)
1321 .addUse(Const);
1322 Result &= MIBVar.constrainAllUses(TII, TRI, RBI);
1323
1324 GR.add(GV, MIBVar);
1325 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1326
1327 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1329 ValTy, I, SPIRV::StorageClass::UniformConstant);
1330 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1331 selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1332 }
1333 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1334 .addUse(I.getOperand(0).getReg())
1335 .addUse(SrcReg)
1336 .addUse(I.getOperand(2).getReg());
1337 if (I.getNumMemOperands()) {
1338 MachineIRBuilder MIRBuilder(I);
1339 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1340 }
1341 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1342 if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
1343 Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I);
1344 return Result;
1345}
1346
1347bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1348 const SPIRVType *ResType,
1349 MachineInstr &I,
1350 unsigned NewOpcode,
1351 unsigned NegateOpcode) const {
1352 bool Result = true;
1353 assert(I.hasOneMemOperand());
1354 const MachineMemOperand *MemOp = *I.memoperands_begin();
1355 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1356 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1357 auto ScopeConstant = buildI32Constant(Scope, I);
1358 Register ScopeReg = ScopeConstant.first;
1359 Result &= ScopeConstant.second;
1360
1361 Register Ptr = I.getOperand(1).getReg();
1362 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1363 // auto ScSem =
1364 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1365 AtomicOrdering AO = MemOp->getSuccessOrdering();
1366 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1367 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1368 Register MemSemReg = MemSemConstant.first;
1369 Result &= MemSemConstant.second;
1370
1371 Register ValueReg = I.getOperand(2).getReg();
1372 if (NegateOpcode != 0) {
1373 // Translation with negative value operand is requested
1374 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1375 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1376 ValueReg = TmpReg;
1377 }
1378
1379 return Result &&
1380 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1381 .addDef(ResVReg)
1382 .addUse(GR.getSPIRVTypeID(ResType))
1383 .addUse(Ptr)
1384 .addUse(ScopeReg)
1385 .addUse(MemSemReg)
1386 .addUse(ValueReg)
1387 .constrainAllUses(TII, TRI, RBI);
1388}
1389
1390bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1391 unsigned ArgI = I.getNumOperands() - 1;
1392 Register SrcReg =
1393 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1394 SPIRVType *DefType =
1395 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1396 if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
1398 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1399
1400 SPIRVType *ScalarType =
1401 GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
1402 MachineBasicBlock &BB = *I.getParent();
1403 bool Res = false;
1404 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1405 Register ResVReg = I.getOperand(i).getReg();
1406 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1407 if (!ResType) {
1408 // There was no "assign type" actions, let's fix this now
1409 ResType = ScalarType;
1410 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1411 MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
1412 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1413 }
1414 auto MIB =
1415 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1416 .addDef(ResVReg)
1417 .addUse(GR.getSPIRVTypeID(ResType))
1418 .addUse(SrcReg)
1419 .addImm(static_cast<int64_t>(i));
1420 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1421 }
1422 return Res;
1423}
1424
1425bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1426 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1427 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1428 auto MemSemConstant = buildI32Constant(MemSem, I);
1429 Register MemSemReg = MemSemConstant.first;
1430 bool Result = MemSemConstant.second;
1431 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1432 uint32_t Scope = static_cast<uint32_t>(
1433 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1434 auto ScopeConstant = buildI32Constant(Scope, I);
1435 Register ScopeReg = ScopeConstant.first;
1436 Result &= ScopeConstant.second;
1437 MachineBasicBlock &BB = *I.getParent();
1438 return Result &&
1439 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1440 .addUse(ScopeReg)
1441 .addUse(MemSemReg)
1442 .constrainAllUses(TII, TRI, RBI);
1443}
1444
1445bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1446 const SPIRVType *ResType,
1447 MachineInstr &I,
1448 unsigned Opcode) const {
1449 Type *ResTy = nullptr;
1450 StringRef ResName;
1451 if (!GR.findValueAttrs(&I, ResTy, ResName))
1453 "Not enough info to select the arithmetic with overflow instruction");
1454 if (!ResTy || !ResTy->isStructTy())
1455 report_fatal_error("Expect struct type result for the arithmetic "
1456 "with overflow instruction");
1457 // "Result Type must be from OpTypeStruct. The struct must have two members,
1458 // and the two members must be the same type."
1459 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1460 ResTy = StructType::get(ResElemTy, ResElemTy);
1461 // Build SPIR-V types and constant(s) if needed.
1462 MachineIRBuilder MIRBuilder(I);
1463 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1464 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1465 assert(I.getNumDefs() > 1 && "Not enought operands");
1466 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1467 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1468 if (N > 1)
1469 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1470 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1471 Register ZeroReg = buildZerosVal(ResType, I);
1472 // A new virtual register to store the result struct.
1473 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1474 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1475 // Build the result name if needed.
1476 if (ResName.size() > 0)
1477 buildOpName(StructVReg, ResName, MIRBuilder);
1478 // Build the arithmetic with overflow instruction.
1479 MachineBasicBlock &BB = *I.getParent();
1480 auto MIB =
1481 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1482 .addDef(StructVReg)
1483 .addUse(GR.getSPIRVTypeID(StructType));
1484 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1485 MIB.addUse(I.getOperand(i).getReg());
1486 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1487 // Build instructions to extract fields of the instruction's result.
1488 // A new virtual register to store the higher part of the result struct.
1489 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1490 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1491 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1492 auto MIB =
1493 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1494 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1495 .addUse(GR.getSPIRVTypeID(ResType))
1496 .addUse(StructVReg)
1497 .addImm(i);
1498 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1499 }
1500 // Build boolean value from the higher part.
1501 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1502 .addDef(I.getOperand(1).getReg())
1503 .addUse(BoolTypeReg)
1504 .addUse(HigherVReg)
1505 .addUse(ZeroReg)
1506 .constrainAllUses(TII, TRI, RBI);
1507}
1508
1509bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1510 const SPIRVType *ResType,
1511 MachineInstr &I) const {
1512 bool Result = true;
1513 Register ScopeReg;
1514 Register MemSemEqReg;
1515 Register MemSemNeqReg;
1516 Register Ptr = I.getOperand(2).getReg();
1517 if (!isa<GIntrinsic>(I)) {
1518 assert(I.hasOneMemOperand());
1519 const MachineMemOperand *MemOp = *I.memoperands_begin();
1520 unsigned Scope = static_cast<uint32_t>(getMemScope(
1521 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1522 auto ScopeConstant = buildI32Constant(Scope, I);
1523 ScopeReg = ScopeConstant.first;
1524 Result &= ScopeConstant.second;
1525
1526 unsigned ScSem = static_cast<uint32_t>(
1528 AtomicOrdering AO = MemOp->getSuccessOrdering();
1529 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1530 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1531 MemSemEqReg = MemSemEqConstant.first;
1532 Result &= MemSemEqConstant.second;
1533 AtomicOrdering FO = MemOp->getFailureOrdering();
1534 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1535 if (MemSemEq == MemSemNeq)
1536 MemSemNeqReg = MemSemEqReg;
1537 else {
1538 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1539 MemSemNeqReg = MemSemNeqConstant.first;
1540 Result &= MemSemNeqConstant.second;
1541 }
1542 } else {
1543 ScopeReg = I.getOperand(5).getReg();
1544 MemSemEqReg = I.getOperand(6).getReg();
1545 MemSemNeqReg = I.getOperand(7).getReg();
1546 }
1547
1548 Register Cmp = I.getOperand(3).getReg();
1549 Register Val = I.getOperand(4).getReg();
1550 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1551 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1552 const DebugLoc &DL = I.getDebugLoc();
1553 Result &=
1554 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1555 .addDef(ACmpRes)
1556 .addUse(GR.getSPIRVTypeID(SpvValTy))
1557 .addUse(Ptr)
1558 .addUse(ScopeReg)
1559 .addUse(MemSemEqReg)
1560 .addUse(MemSemNeqReg)
1561 .addUse(Val)
1562 .addUse(Cmp)
1563 .constrainAllUses(TII, TRI, RBI);
1564 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1565 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
1566 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1567 .addDef(CmpSuccReg)
1568 .addUse(GR.getSPIRVTypeID(BoolTy))
1569 .addUse(ACmpRes)
1570 .addUse(Cmp)
1571 .constrainAllUses(TII, TRI, RBI);
1572 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
1573 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1574 .addDef(TmpReg)
1575 .addUse(GR.getSPIRVTypeID(ResType))
1576 .addUse(ACmpRes)
1577 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1578 .addImm(0)
1579 .constrainAllUses(TII, TRI, RBI);
1580 return Result &&
1581 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1582 .addDef(ResVReg)
1583 .addUse(GR.getSPIRVTypeID(ResType))
1584 .addUse(CmpSuccReg)
1585 .addUse(TmpReg)
1586 .addImm(1)
1587 .constrainAllUses(TII, TRI, RBI);
1588}
1589
1590static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
1591 switch (SC) {
1592 case SPIRV::StorageClass::DeviceOnlyINTEL:
1593 case SPIRV::StorageClass::HostOnlyINTEL:
1594 return true;
1595 default:
1596 return false;
1597 }
1598}
1599
1600// Returns true ResVReg is referred only from global vars and OpName's.
1602 bool IsGRef = false;
1603 bool IsAllowedRefs =
1604 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
1605 unsigned Opcode = It.getOpcode();
1606 if (Opcode == SPIRV::OpConstantComposite ||
1607 Opcode == SPIRV::OpVariable ||
1608 isSpvIntrinsic(It, Intrinsic::spv_init_global))
1609 return IsGRef = true;
1610 return Opcode == SPIRV::OpName;
1611 });
1612 return IsAllowedRefs && IsGRef;
1613}
1614
1615Register SPIRVInstructionSelector::getUcharPtrTypeReg(
1616 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
1618 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
1619}
1620
1621MachineInstrBuilder
1622SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
1623 Register Src, Register DestType,
1624 uint32_t Opcode) const {
1625 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1626 TII.get(SPIRV::OpSpecConstantOp))
1627 .addDef(Dest)
1628 .addUse(DestType)
1629 .addImm(Opcode)
1630 .addUse(Src);
1631}
1632
1633MachineInstrBuilder
1634SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
1635 SPIRVType *SrcPtrTy) const {
1636 SPIRVType *GenericPtrTy =
1637 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1638 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
1640 SPIRV::StorageClass::Generic),
1641 GR.getPointerSize()));
1642 MachineFunction *MF = I.getParent()->getParent();
1643 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
1644 MachineInstrBuilder MIB = buildSpecConstantOp(
1645 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
1646 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
1647 GR.add(MIB.getInstr(), MIB);
1648 return MIB;
1649}
1650
1651// In SPIR-V address space casting can only happen to and from the Generic
1652// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
1653// pointers to and from Generic pointers. As such, we can convert e.g. from
1654// Workgroup to Function by going via a Generic pointer as an intermediary. All
1655// other combinations can only be done by a bitcast, and are probably not safe.
1656bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
1657 const SPIRVType *ResType,
1658 MachineInstr &I) const {
1659 MachineBasicBlock &BB = *I.getParent();
1660 const DebugLoc &DL = I.getDebugLoc();
1661
1662 Register SrcPtr = I.getOperand(1).getReg();
1663 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
1664
1665 // don't generate a cast for a null that may be represented by OpTypeInt
1666 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
1667 ResType->getOpcode() != SPIRV::OpTypePointer)
1668 return BuildCOPY(ResVReg, SrcPtr, I);
1669
1670 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
1671 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
1672
1673 if (isASCastInGVar(MRI, ResVReg)) {
1674 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
1675 // are expressed by OpSpecConstantOp with an Opcode.
1676 // TODO: maybe insert a check whether the Kernel capability was declared and
1677 // so PtrCastToGeneric/GenericCastToPtr are available.
1678 unsigned SpecOpcode =
1679 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
1680 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
1681 : (SrcSC == SPIRV::StorageClass::Generic &&
1683 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
1684 : 0);
1685 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
1686 // correct value of ResType and use general i8* instead. Maybe this should
1687 // be addressed in the emit-intrinsic step to infer a correct
1688 // OpConstantComposite type.
1689 if (SpecOpcode) {
1690 return buildSpecConstantOp(I, ResVReg, SrcPtr,
1691 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
1692 .constrainAllUses(TII, TRI, RBI);
1693 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1694 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
1695 return MIB.constrainAllUses(TII, TRI, RBI) &&
1696 buildSpecConstantOp(
1697 I, ResVReg, MIB->getOperand(0).getReg(),
1698 getUcharPtrTypeReg(I, DstSC),
1699 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
1700 .constrainAllUses(TII, TRI, RBI);
1701 }
1702 }
1703
1704 // don't generate a cast between identical storage classes
1705 if (SrcSC == DstSC)
1706 return BuildCOPY(ResVReg, SrcPtr, I);
1707
1708 if ((SrcSC == SPIRV::StorageClass::Function &&
1709 DstSC == SPIRV::StorageClass::Private) ||
1710 (DstSC == SPIRV::StorageClass::Function &&
1711 SrcSC == SPIRV::StorageClass::Private))
1712 return BuildCOPY(ResVReg, SrcPtr, I);
1713
1714 // Casting from an eligible pointer to Generic.
1715 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
1716 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1717 // Casting from Generic to an eligible pointer.
1718 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
1719 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1720 // Casting between 2 eligible pointers using Generic as an intermediary.
1721 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1722 SPIRVType *GenericPtrTy =
1723 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1724 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
1725 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
1726 .addDef(Tmp)
1727 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
1728 .addUse(SrcPtr)
1729 .constrainAllUses(TII, TRI, RBI);
1730 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
1731 .addDef(ResVReg)
1732 .addUse(GR.getSPIRVTypeID(ResType))
1733 .addUse(Tmp)
1734 .constrainAllUses(TII, TRI, RBI);
1735 }
1736
1737 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
1738 // be applied
1739 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
1740 return selectUnOp(ResVReg, ResType, I,
1741 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
1742 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
1743 return selectUnOp(ResVReg, ResType, I,
1744 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
1745 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
1746 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1747 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
1748 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1749
1750 // Bitcast for pointers requires that the address spaces must match
1751 return false;
1752}
1753
1754static unsigned getFCmpOpcode(unsigned PredNum) {
1755 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1756 switch (Pred) {
1757 case CmpInst::FCMP_OEQ:
1758 return SPIRV::OpFOrdEqual;
1759 case CmpInst::FCMP_OGE:
1760 return SPIRV::OpFOrdGreaterThanEqual;
1761 case CmpInst::FCMP_OGT:
1762 return SPIRV::OpFOrdGreaterThan;
1763 case CmpInst::FCMP_OLE:
1764 return SPIRV::OpFOrdLessThanEqual;
1765 case CmpInst::FCMP_OLT:
1766 return SPIRV::OpFOrdLessThan;
1767 case CmpInst::FCMP_ONE:
1768 return SPIRV::OpFOrdNotEqual;
1769 case CmpInst::FCMP_ORD:
1770 return SPIRV::OpOrdered;
1771 case CmpInst::FCMP_UEQ:
1772 return SPIRV::OpFUnordEqual;
1773 case CmpInst::FCMP_UGE:
1774 return SPIRV::OpFUnordGreaterThanEqual;
1775 case CmpInst::FCMP_UGT:
1776 return SPIRV::OpFUnordGreaterThan;
1777 case CmpInst::FCMP_ULE:
1778 return SPIRV::OpFUnordLessThanEqual;
1779 case CmpInst::FCMP_ULT:
1780 return SPIRV::OpFUnordLessThan;
1781 case CmpInst::FCMP_UNE:
1782 return SPIRV::OpFUnordNotEqual;
1783 case CmpInst::FCMP_UNO:
1784 return SPIRV::OpUnordered;
1785 default:
1786 llvm_unreachable("Unknown predicate type for FCmp");
1787 }
1788}
1789
1790static unsigned getICmpOpcode(unsigned PredNum) {
1791 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1792 switch (Pred) {
1793 case CmpInst::ICMP_EQ:
1794 return SPIRV::OpIEqual;
1795 case CmpInst::ICMP_NE:
1796 return SPIRV::OpINotEqual;
1797 case CmpInst::ICMP_SGE:
1798 return SPIRV::OpSGreaterThanEqual;
1799 case CmpInst::ICMP_SGT:
1800 return SPIRV::OpSGreaterThan;
1801 case CmpInst::ICMP_SLE:
1802 return SPIRV::OpSLessThanEqual;
1803 case CmpInst::ICMP_SLT:
1804 return SPIRV::OpSLessThan;
1805 case CmpInst::ICMP_UGE:
1806 return SPIRV::OpUGreaterThanEqual;
1807 case CmpInst::ICMP_UGT:
1808 return SPIRV::OpUGreaterThan;
1809 case CmpInst::ICMP_ULE:
1810 return SPIRV::OpULessThanEqual;
1811 case CmpInst::ICMP_ULT:
1812 return SPIRV::OpULessThan;
1813 default:
1814 llvm_unreachable("Unknown predicate type for ICmp");
1815 }
1816}
1817
1818static unsigned getPtrCmpOpcode(unsigned Pred) {
1819 switch (static_cast<CmpInst::Predicate>(Pred)) {
1820 case CmpInst::ICMP_EQ:
1821 return SPIRV::OpPtrEqual;
1822 case CmpInst::ICMP_NE:
1823 return SPIRV::OpPtrNotEqual;
1824 default:
1825 llvm_unreachable("Unknown predicate type for pointer comparison");
1826 }
1827}
1828
1829// Return the logical operation, or abort if none exists.
1830static unsigned getBoolCmpOpcode(unsigned PredNum) {
1831 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1832 switch (Pred) {
1833 case CmpInst::ICMP_EQ:
1834 return SPIRV::OpLogicalEqual;
1835 case CmpInst::ICMP_NE:
1836 return SPIRV::OpLogicalNotEqual;
1837 default:
1838 llvm_unreachable("Unknown predicate type for Bool comparison");
1839 }
1840}
1841
1842static APFloat getZeroFP(const Type *LLVMFloatTy) {
1843 if (!LLVMFloatTy)
1845 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1846 case Type::HalfTyID:
1848 default:
1849 case Type::FloatTyID:
1851 case Type::DoubleTyID:
1853 }
1854}
1855
1856static APFloat getOneFP(const Type *LLVMFloatTy) {
1857 if (!LLVMFloatTy)
1859 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1860 case Type::HalfTyID:
1862 default:
1863 case Type::FloatTyID:
1865 case Type::DoubleTyID:
1867 }
1868}
1869
1870bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
1871 const SPIRVType *ResType,
1872 MachineInstr &I,
1873 unsigned OpAnyOrAll) const {
1874 assert(I.getNumOperands() == 3);
1875 assert(I.getOperand(2).isReg());
1876 MachineBasicBlock &BB = *I.getParent();
1877 Register InputRegister = I.getOperand(2).getReg();
1878 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
1879
1880 if (!InputType)
1881 report_fatal_error("Input Type could not be determined.");
1882
1883 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
1884 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
1885 if (IsBoolTy && !IsVectorTy) {
1886 assert(ResVReg == I.getOperand(0).getReg());
1887 return BuildCOPY(ResVReg, InputRegister, I);
1888 }
1889
1890 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
1891 unsigned SpirvNotEqualId =
1892 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
1893 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
1894 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
1895 Register NotEqualReg = ResVReg;
1896
1897 if (IsVectorTy) {
1898 NotEqualReg =
1899 IsBoolTy ? InputRegister
1900 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
1901 const unsigned NumElts = InputType->getOperand(2).getImm();
1902 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
1903 }
1904
1905 bool Result = true;
1906 if (!IsBoolTy) {
1907 Register ConstZeroReg =
1908 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
1909
1910 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
1911 .addDef(NotEqualReg)
1912 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
1913 .addUse(InputRegister)
1914 .addUse(ConstZeroReg)
1915 .constrainAllUses(TII, TRI, RBI);
1916 }
1917
1918 if (!IsVectorTy)
1919 return Result;
1920
1921 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
1922 .addDef(ResVReg)
1923 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
1924 .addUse(NotEqualReg)
1925 .constrainAllUses(TII, TRI, RBI);
1926}
1927
1928bool SPIRVInstructionSelector::selectAll(Register ResVReg,
1929 const SPIRVType *ResType,
1930 MachineInstr &I) const {
1931 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
1932}
1933
1934bool SPIRVInstructionSelector::selectAny(Register ResVReg,
1935 const SPIRVType *ResType,
1936 MachineInstr &I) const {
1937 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
1938}
1939
1940// Select the OpDot instruction for the given float dot
1941bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
1942 const SPIRVType *ResType,
1943 MachineInstr &I) const {
1944 assert(I.getNumOperands() == 4);
1945 assert(I.getOperand(2).isReg());
1946 assert(I.getOperand(3).isReg());
1947
1948 [[maybe_unused]] SPIRVType *VecType =
1949 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
1950
1951 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
1952 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
1953 "dot product requires a vector of at least 2 components");
1954
1955 [[maybe_unused]] SPIRVType *EltType =
1956 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
1957
1958 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
1959
1960 MachineBasicBlock &BB = *I.getParent();
1961 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
1962 .addDef(ResVReg)
1963 .addUse(GR.getSPIRVTypeID(ResType))
1964 .addUse(I.getOperand(2).getReg())
1965 .addUse(I.getOperand(3).getReg())
1966 .constrainAllUses(TII, TRI, RBI);
1967}
1968
1969bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
1970 const SPIRVType *ResType,
1971 MachineInstr &I,
1972 bool Signed) const {
1973 assert(I.getNumOperands() == 4);
1974 assert(I.getOperand(2).isReg());
1975 assert(I.getOperand(3).isReg());
1976 MachineBasicBlock &BB = *I.getParent();
1977
1978 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
1979 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
1980 .addDef(ResVReg)
1981 .addUse(GR.getSPIRVTypeID(ResType))
1982 .addUse(I.getOperand(2).getReg())
1983 .addUse(I.getOperand(3).getReg())
1984 .constrainAllUses(TII, TRI, RBI);
1985}
1986
1987// Since pre-1.6 SPIRV has no integer dot implementation,
1988// expand by piecewise multiplying and adding the results
1989bool SPIRVInstructionSelector::selectIntegerDotExpansion(
1990 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
1991 assert(I.getNumOperands() == 4);
1992 assert(I.getOperand(2).isReg());
1993 assert(I.getOperand(3).isReg());
1994 MachineBasicBlock &BB = *I.getParent();
1995
1996 // Multiply the vectors, then sum the results
1997 Register Vec0 = I.getOperand(2).getReg();
1998 Register Vec1 = I.getOperand(3).getReg();
1999 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2000 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2001
2002 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2003 .addDef(TmpVec)
2004 .addUse(GR.getSPIRVTypeID(VecType))
2005 .addUse(Vec0)
2006 .addUse(Vec1)
2007 .constrainAllUses(TII, TRI, RBI);
2008
2009 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2010 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2011 "dot product requires a vector of at least 2 components");
2012
2013 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2014 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2015 .addDef(Res)
2016 .addUse(GR.getSPIRVTypeID(ResType))
2017 .addUse(TmpVec)
2018 .addImm(0)
2019 .constrainAllUses(TII, TRI, RBI);
2020
2021 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2022 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2023
2024 Result &=
2025 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2026 .addDef(Elt)
2027 .addUse(GR.getSPIRVTypeID(ResType))
2028 .addUse(TmpVec)
2029 .addImm(i)
2030 .constrainAllUses(TII, TRI, RBI);
2031
2032 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2033 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2034 : ResVReg;
2035
2036 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2037 .addDef(Sum)
2038 .addUse(GR.getSPIRVTypeID(ResType))
2039 .addUse(Res)
2040 .addUse(Elt)
2041 .constrainAllUses(TII, TRI, RBI);
2042 Res = Sum;
2043 }
2044
2045 return Result;
2046}
2047
2048bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2049 const SPIRVType *ResType,
2050 MachineInstr &I) const {
2051 MachineBasicBlock &BB = *I.getParent();
2052 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2053 .addDef(ResVReg)
2054 .addUse(GR.getSPIRVTypeID(ResType))
2055 .addUse(I.getOperand(2).getReg())
2056 .constrainAllUses(TII, TRI, RBI);
2057}
2058
2059template <bool Signed>
2060bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2061 const SPIRVType *ResType,
2062 MachineInstr &I) const {
2063 assert(I.getNumOperands() == 5);
2064 assert(I.getOperand(2).isReg());
2065 assert(I.getOperand(3).isReg());
2066 assert(I.getOperand(4).isReg());
2067 MachineBasicBlock &BB = *I.getParent();
2068
2069 Register Acc = I.getOperand(2).getReg();
2070 Register X = I.getOperand(3).getReg();
2071 Register Y = I.getOperand(4).getReg();
2072
2073 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2074 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2075 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2076 .addDef(Dot)
2077 .addUse(GR.getSPIRVTypeID(ResType))
2078 .addUse(X)
2079 .addUse(Y)
2080 .constrainAllUses(TII, TRI, RBI);
2081
2082 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2083 .addDef(ResVReg)
2084 .addUse(GR.getSPIRVTypeID(ResType))
2085 .addUse(Dot)
2086 .addUse(Acc)
2087 .constrainAllUses(TII, TRI, RBI);
2088}
2089
2090// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2091// extract the elements of the packed inputs, multiply them and add the result
2092// to the accumulator.
2093template <bool Signed>
2094bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2095 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2096 assert(I.getNumOperands() == 5);
2097 assert(I.getOperand(2).isReg());
2098 assert(I.getOperand(3).isReg());
2099 assert(I.getOperand(4).isReg());
2100 MachineBasicBlock &BB = *I.getParent();
2101
2102 bool Result = true;
2103
2104 Register Acc = I.getOperand(2).getReg();
2105 Register X = I.getOperand(3).getReg();
2106 Register Y = I.getOperand(4).getReg();
2107
2108 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2109 auto ExtractOp =
2110 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2111
2112 bool ZeroAsNull = !STI.isShader();
2113 // Extract the i8 element, multiply and add it to the accumulator
2114 for (unsigned i = 0; i < 4; i++) {
2115 // A[i]
2116 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2117 Result &=
2118 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2119 .addDef(AElt)
2120 .addUse(GR.getSPIRVTypeID(ResType))
2121 .addUse(X)
2122 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2123 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2124 .constrainAllUses(TII, TRI, RBI);
2125
2126 // B[i]
2127 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2128 Result &=
2129 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2130 .addDef(BElt)
2131 .addUse(GR.getSPIRVTypeID(ResType))
2132 .addUse(Y)
2133 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2134 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2135 .constrainAllUses(TII, TRI, RBI);
2136
2137 // A[i] * B[i]
2138 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2139 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2140 .addDef(Mul)
2141 .addUse(GR.getSPIRVTypeID(ResType))
2142 .addUse(AElt)
2143 .addUse(BElt)
2144 .constrainAllUses(TII, TRI, RBI);
2145
2146 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2147 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2148 Result &=
2149 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2150 .addDef(MaskMul)
2151 .addUse(GR.getSPIRVTypeID(ResType))
2152 .addUse(Mul)
2153 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2154 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2155 .constrainAllUses(TII, TRI, RBI);
2156
2157 // Acc = Acc + A[i] * B[i]
2158 Register Sum =
2159 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2160 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2161 .addDef(Sum)
2162 .addUse(GR.getSPIRVTypeID(ResType))
2163 .addUse(Acc)
2164 .addUse(MaskMul)
2165 .constrainAllUses(TII, TRI, RBI);
2166
2167 Acc = Sum;
2168 }
2169
2170 return Result;
2171}
2172
2173/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2174/// does not have a saturate builtin.
2175bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2176 const SPIRVType *ResType,
2177 MachineInstr &I) const {
2178 assert(I.getNumOperands() == 3);
2179 assert(I.getOperand(2).isReg());
2180 MachineBasicBlock &BB = *I.getParent();
2181 Register VZero = buildZerosValF(ResType, I);
2182 Register VOne = buildOnesValF(ResType, I);
2183
2184 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2185 .addDef(ResVReg)
2186 .addUse(GR.getSPIRVTypeID(ResType))
2187 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2188 .addImm(GL::FClamp)
2189 .addUse(I.getOperand(2).getReg())
2190 .addUse(VZero)
2191 .addUse(VOne)
2192 .constrainAllUses(TII, TRI, RBI);
2193}
2194
2195bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2196 const SPIRVType *ResType,
2197 MachineInstr &I) const {
2198 assert(I.getNumOperands() == 3);
2199 assert(I.getOperand(2).isReg());
2200 MachineBasicBlock &BB = *I.getParent();
2201 Register InputRegister = I.getOperand(2).getReg();
2202 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2203 auto &DL = I.getDebugLoc();
2204
2205 if (!InputType)
2206 report_fatal_error("Input Type could not be determined.");
2207
2208 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2209
2210 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2211 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2212
2213 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2214
2215 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2216 Register SignReg = NeedsConversion
2217 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2218 : ResVReg;
2219
2220 bool Result =
2221 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2222 .addDef(SignReg)
2223 .addUse(GR.getSPIRVTypeID(InputType))
2224 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2225 .addImm(SignOpcode)
2226 .addUse(InputRegister)
2227 .constrainAllUses(TII, TRI, RBI);
2228
2229 if (NeedsConversion) {
2230 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2231 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2232 .addDef(ResVReg)
2233 .addUse(GR.getSPIRVTypeID(ResType))
2234 .addUse(SignReg)
2235 .constrainAllUses(TII, TRI, RBI);
2236 }
2237
2238 return Result;
2239}
2240
2241bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2242 const SPIRVType *ResType,
2243 MachineInstr &I,
2244 unsigned Opcode) const {
2245 MachineBasicBlock &BB = *I.getParent();
2246 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2247
2248 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2249 .addDef(ResVReg)
2250 .addUse(GR.getSPIRVTypeID(ResType))
2251 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2252 IntTy, TII, !STI.isShader()));
2253
2254 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2255 BMI.addUse(I.getOperand(J).getReg());
2256 }
2257
2258 return BMI.constrainAllUses(TII, TRI, RBI);
2259}
2260
2261bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2262 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2263
2264 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2265 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2266 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2267 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2268 SPIRV::OpGroupNonUniformBallot);
2269
2270 MachineBasicBlock &BB = *I.getParent();
2271 Result &= BuildMI(BB, I, I.getDebugLoc(),
2272 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2273 .addDef(ResVReg)
2274 .addUse(GR.getSPIRVTypeID(ResType))
2275 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2276 TII, !STI.isShader()))
2277 .addImm(SPIRV::GroupOperation::Reduce)
2278 .addUse(BallotReg)
2279 .constrainAllUses(TII, TRI, RBI);
2280
2281 return Result;
2282}
2283
2284bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2285 const SPIRVType *ResType,
2286 MachineInstr &I,
2287 bool IsUnsigned) const {
2288 assert(I.getNumOperands() == 3);
2289 assert(I.getOperand(2).isReg());
2290 MachineBasicBlock &BB = *I.getParent();
2291 Register InputRegister = I.getOperand(2).getReg();
2292 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2293
2294 if (!InputType)
2295 report_fatal_error("Input Type could not be determined.");
2296
2297 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2298 // Retreive the operation to use based on input type
2299 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2300 auto IntegerOpcodeType =
2301 IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
2302 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
2303 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2304 .addDef(ResVReg)
2305 .addUse(GR.getSPIRVTypeID(ResType))
2306 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2307 !STI.isShader()))
2308 .addImm(SPIRV::GroupOperation::Reduce)
2309 .addUse(I.getOperand(2).getReg())
2310 .constrainAllUses(TII, TRI, RBI);
2311}
2312
2313bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2314 const SPIRVType *ResType,
2315 MachineInstr &I) const {
2316 assert(I.getNumOperands() == 3);
2317 assert(I.getOperand(2).isReg());
2318 MachineBasicBlock &BB = *I.getParent();
2319 Register InputRegister = I.getOperand(2).getReg();
2320 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2321
2322 if (!InputType)
2323 report_fatal_error("Input Type could not be determined.");
2324
2325 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2326 // Retreive the operation to use based on input type
2327 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2328 auto Opcode =
2329 IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
2330 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2331 .addDef(ResVReg)
2332 .addUse(GR.getSPIRVTypeID(ResType))
2333 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2334 !STI.isShader()))
2335 .addImm(SPIRV::GroupOperation::Reduce)
2336 .addUse(I.getOperand(2).getReg());
2337}
2338
2339bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2340 const SPIRVType *ResType,
2341 MachineInstr &I) const {
2342 MachineBasicBlock &BB = *I.getParent();
2343 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2344 .addDef(ResVReg)
2345 .addUse(GR.getSPIRVTypeID(ResType))
2346 .addUse(I.getOperand(1).getReg())
2347 .constrainAllUses(TII, TRI, RBI);
2348}
2349
2350bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2351 const SPIRVType *ResType,
2352 MachineInstr &I) const {
2353 // There is no way to implement `freeze` correctly without support on SPIR-V
2354 // standard side, but we may at least address a simple (static) case when
2355 // undef/poison value presence is obvious. The main benefit of even
2356 // incomplete `freeze` support is preventing of translation from crashing due
2357 // to lack of support on legalization and instruction selection steps.
2358 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2359 return false;
2360 Register OpReg = I.getOperand(1).getReg();
2361 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2362 if (Def->getOpcode() == TargetOpcode::COPY)
2363 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2364 Register Reg;
2365 switch (Def->getOpcode()) {
2366 case SPIRV::ASSIGN_TYPE:
2367 if (MachineInstr *AssignToDef =
2368 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2369 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2370 Reg = Def->getOperand(2).getReg();
2371 }
2372 break;
2373 case SPIRV::OpUndef:
2374 Reg = Def->getOperand(1).getReg();
2375 break;
2376 }
2377 unsigned DestOpCode;
2378 if (Reg.isValid()) {
2379 DestOpCode = SPIRV::OpConstantNull;
2380 } else {
2381 DestOpCode = TargetOpcode::COPY;
2382 Reg = OpReg;
2383 }
2384 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2385 .addDef(I.getOperand(0).getReg())
2386 .addUse(Reg)
2387 .constrainAllUses(TII, TRI, RBI);
2388 }
2389 return false;
2390}
2391
2392bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2393 const SPIRVType *ResType,
2394 MachineInstr &I) const {
2395 unsigned N = 0;
2396 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2397 N = GR.getScalarOrVectorComponentCount(ResType);
2398 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2399 N = getArrayComponentCount(MRI, ResType);
2400 else
2401 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2402 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2403 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2404
2405 // check if we may construct a constant vector
2406 bool IsConst = true;
2407 for (unsigned i = I.getNumExplicitDefs();
2408 i < I.getNumExplicitOperands() && IsConst; ++i)
2409 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2410 IsConst = false;
2411
2412 if (!IsConst && N < 2)
2414 "There must be at least two constituent operands in a vector");
2415
2416 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2417 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2418 TII.get(IsConst ? SPIRV::OpConstantComposite
2419 : SPIRV::OpCompositeConstruct))
2420 .addDef(ResVReg)
2421 .addUse(GR.getSPIRVTypeID(ResType));
2422 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2423 MIB.addUse(I.getOperand(i).getReg());
2424 return MIB.constrainAllUses(TII, TRI, RBI);
2425}
2426
2427bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2428 const SPIRVType *ResType,
2429 MachineInstr &I) const {
2430 unsigned N = 0;
2431 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2432 N = GR.getScalarOrVectorComponentCount(ResType);
2433 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2434 N = getArrayComponentCount(MRI, ResType);
2435 else
2436 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2437
2438 unsigned OpIdx = I.getNumExplicitDefs();
2439 if (!I.getOperand(OpIdx).isReg())
2440 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2441
2442 // check if we may construct a constant vector
2443 Register OpReg = I.getOperand(OpIdx).getReg();
2444 bool IsConst = isConstReg(MRI, OpReg);
2445
2446 if (!IsConst && N < 2)
2448 "There must be at least two constituent operands in a vector");
2449
2450 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2451 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2452 TII.get(IsConst ? SPIRV::OpConstantComposite
2453 : SPIRV::OpCompositeConstruct))
2454 .addDef(ResVReg)
2455 .addUse(GR.getSPIRVTypeID(ResType));
2456 for (unsigned i = 0; i < N; ++i)
2457 MIB.addUse(OpReg);
2458 return MIB.constrainAllUses(TII, TRI, RBI);
2459}
2460
2461bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2462 const SPIRVType *ResType,
2463 MachineInstr &I) const {
2464
2465 unsigned Opcode;
2466
2467 if (STI.canUseExtension(
2468 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2469 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2470 Opcode = SPIRV::OpDemoteToHelperInvocation;
2471 } else {
2472 Opcode = SPIRV::OpKill;
2473 // OpKill must be the last operation of any basic block.
2474 if (MachineInstr *NextI = I.getNextNode()) {
2475 GR.invalidateMachineInstr(NextI);
2476 NextI->removeFromParent();
2477 }
2478 }
2479
2480 MachineBasicBlock &BB = *I.getParent();
2481 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2482 .constrainAllUses(TII, TRI, RBI);
2483}
2484
2485bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2486 const SPIRVType *ResType,
2487 unsigned CmpOpc,
2488 MachineInstr &I) const {
2489 Register Cmp0 = I.getOperand(2).getReg();
2490 Register Cmp1 = I.getOperand(3).getReg();
2491 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2492 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2493 "CMP operands should have the same type");
2494 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2495 .addDef(ResVReg)
2496 .addUse(GR.getSPIRVTypeID(ResType))
2497 .addUse(Cmp0)
2498 .addUse(Cmp1)
2499 .constrainAllUses(TII, TRI, RBI);
2500}
2501
2502bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2503 const SPIRVType *ResType,
2504 MachineInstr &I) const {
2505 auto Pred = I.getOperand(1).getPredicate();
2506 unsigned CmpOpc;
2507
2508 Register CmpOperand = I.getOperand(2).getReg();
2509 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2510 CmpOpc = getPtrCmpOpcode(Pred);
2511 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2512 CmpOpc = getBoolCmpOpcode(Pred);
2513 else
2514 CmpOpc = getICmpOpcode(Pred);
2515 return selectCmp(ResVReg, ResType, CmpOpc, I);
2516}
2517
2518std::pair<Register, bool>
2519SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2520 const SPIRVType *ResType) const {
2521 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2522 const SPIRVType *SpvI32Ty =
2523 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2524 // Find a constant in DT or build a new one.
2525 auto ConstInt = ConstantInt::get(LLVMTy, Val);
2526 Register NewReg = GR.find(ConstInt, GR.CurMF);
2527 bool Result = true;
2528 if (!NewReg.isValid()) {
2529 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2530 MachineBasicBlock &BB = *I.getParent();
2531 MachineInstr *MI =
2532 Val == 0
2533 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2534 .addDef(NewReg)
2535 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2536 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2537 .addDef(NewReg)
2538 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2539 .addImm(APInt(32, Val).getZExtValue());
2541 GR.add(ConstInt, MI);
2542 }
2543 return {NewReg, Result};
2544}
2545
2546bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
2547 const SPIRVType *ResType,
2548 MachineInstr &I) const {
2549 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
2550 return selectCmp(ResVReg, ResType, CmpOp, I);
2551}
2552
2553Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
2554 MachineInstr &I) const {
2555 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2556 bool ZeroAsNull = !STI.isShader();
2557 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2558 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
2559 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2560}
2561
2562Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
2563 MachineInstr &I) const {
2564 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2565 bool ZeroAsNull = !STI.isShader();
2566 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
2567 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2568 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
2569 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
2570}
2571
2572Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
2573 MachineInstr &I) const {
2574 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2575 bool ZeroAsNull = !STI.isShader();
2576 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
2577 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2578 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
2579 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
2580}
2581
2582Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
2583 const SPIRVType *ResType,
2584 MachineInstr &I) const {
2585 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2586 APInt One =
2587 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
2588 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2589 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
2590 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
2591}
2592
2593bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
2594 const SPIRVType *ResType,
2595 MachineInstr &I) const {
2596 Register SelectFirstArg = I.getOperand(2).getReg();
2597 Register SelectSecondArg = I.getOperand(3).getReg();
2598 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
2599 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
2600
2601 bool IsFloatTy =
2602 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
2603 bool IsPtrTy =
2604 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
2605 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
2606 SPIRV::OpTypeVector;
2607
2608 bool IsScalarBool =
2609 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2610 unsigned Opcode;
2611 if (IsVectorTy) {
2612 if (IsFloatTy) {
2613 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
2614 } else if (IsPtrTy) {
2615 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
2616 } else {
2617 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
2618 }
2619 } else {
2620 if (IsFloatTy) {
2621 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
2622 } else if (IsPtrTy) {
2623 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
2624 } else {
2625 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2626 }
2627 }
2628 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2629 .addDef(ResVReg)
2630 .addUse(GR.getSPIRVTypeID(ResType))
2631 .addUse(I.getOperand(1).getReg())
2632 .addUse(SelectFirstArg)
2633 .addUse(SelectSecondArg)
2634 .constrainAllUses(TII, TRI, RBI);
2635}
2636
2637bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
2638 const SPIRVType *ResType,
2639 MachineInstr &I,
2640 bool IsSigned) const {
2641 // To extend a bool, we need to use OpSelect between constants.
2642 Register ZeroReg = buildZerosVal(ResType, I);
2643 Register OneReg = buildOnesVal(IsSigned, ResType, I);
2644 bool IsScalarBool =
2645 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2646 unsigned Opcode =
2647 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2648 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2649 .addDef(ResVReg)
2650 .addUse(GR.getSPIRVTypeID(ResType))
2651 .addUse(I.getOperand(1).getReg())
2652 .addUse(OneReg)
2653 .addUse(ZeroReg)
2654 .constrainAllUses(TII, TRI, RBI);
2655}
2656
2657bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
2658 const SPIRVType *ResType,
2659 MachineInstr &I, bool IsSigned,
2660 unsigned Opcode) const {
2661 Register SrcReg = I.getOperand(1).getReg();
2662 // We can convert bool value directly to float type without OpConvert*ToF,
2663 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
2664 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
2665 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2667 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
2668 const unsigned NumElts = ResType->getOperand(2).getImm();
2669 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
2670 }
2671 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
2672 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
2673 }
2674 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
2675}
2676
2677bool SPIRVInstructionSelector::selectExt(Register ResVReg,
2678 const SPIRVType *ResType,
2679 MachineInstr &I, bool IsSigned) const {
2680 Register SrcReg = I.getOperand(1).getReg();
2681 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
2682 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
2683
2684 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
2685 if (SrcType == ResType)
2686 return BuildCOPY(ResVReg, SrcReg, I);
2687
2688 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2689 return selectUnOp(ResVReg, ResType, I, Opcode);
2690}
2691
2692bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
2693 const SPIRVType *ResType,
2694 MachineInstr &I,
2695 bool IsSigned) const {
2696 MachineIRBuilder MIRBuilder(I);
2697 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2698 MachineBasicBlock &BB = *I.getParent();
2699 // Ensure we have bool.
2700 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
2701 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
2702 if (N > 1)
2703 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
2704 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
2705 // Build less-than-equal and less-than.
2706 // TODO: replace with one-liner createVirtualRegister() from
2707 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
2708 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2709 MRI->setType(IsLessEqReg, LLT::scalar(64));
2710 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
2711 bool Result = BuildMI(BB, I, I.getDebugLoc(),
2712 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
2713 : SPIRV::OpULessThanEqual))
2714 .addDef(IsLessEqReg)
2715 .addUse(BoolTypeReg)
2716 .addUse(I.getOperand(1).getReg())
2717 .addUse(I.getOperand(2).getReg())
2718 .constrainAllUses(TII, TRI, RBI);
2719 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2720 MRI->setType(IsLessReg, LLT::scalar(64));
2721 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
2722 Result &= BuildMI(BB, I, I.getDebugLoc(),
2723 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
2724 .addDef(IsLessReg)
2725 .addUse(BoolTypeReg)
2726 .addUse(I.getOperand(1).getReg())
2727 .addUse(I.getOperand(2).getReg())
2728 .constrainAllUses(TII, TRI, RBI);
2729 // Build selects.
2730 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
2731 Register NegOneOrZeroReg =
2732 MRI->createVirtualRegister(GR.getRegClass(ResType));
2733 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
2734 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
2735 unsigned SelectOpcode =
2736 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
2737 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2738 .addDef(NegOneOrZeroReg)
2739 .addUse(ResTypeReg)
2740 .addUse(IsLessReg)
2741 .addUse(buildOnesVal(true, ResType, I)) // -1
2742 .addUse(buildZerosVal(ResType, I))
2743 .constrainAllUses(TII, TRI, RBI);
2744 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2745 .addDef(ResVReg)
2746 .addUse(ResTypeReg)
2747 .addUse(IsLessEqReg)
2748 .addUse(NegOneOrZeroReg) // -1 or 0
2749 .addUse(buildOnesVal(false, ResType, I))
2750 .constrainAllUses(TII, TRI, RBI);
2751}
2752
2753bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
2754 Register ResVReg,
2755 MachineInstr &I,
2756 const SPIRVType *IntTy,
2757 const SPIRVType *BoolTy) const {
2758 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
2759 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
2760 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
2761 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
2762 Register Zero = buildZerosVal(IntTy, I);
2763 Register One = buildOnesVal(false, IntTy, I);
2764 MachineBasicBlock &BB = *I.getParent();
2765 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2766 .addDef(BitIntReg)
2767 .addUse(GR.getSPIRVTypeID(IntTy))
2768 .addUse(IntReg)
2769 .addUse(One)
2770 .constrainAllUses(TII, TRI, RBI);
2771 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
2772 .addDef(ResVReg)
2773 .addUse(GR.getSPIRVTypeID(BoolTy))
2774 .addUse(BitIntReg)
2775 .addUse(Zero)
2776 .constrainAllUses(TII, TRI, RBI);
2777}
2778
2779bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
2780 const SPIRVType *ResType,
2781 MachineInstr &I) const {
2782 Register IntReg = I.getOperand(1).getReg();
2783 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
2784 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
2785 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
2786 if (ArgType == ResType)
2787 return BuildCOPY(ResVReg, IntReg, I);
2788 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
2789 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2790 return selectUnOp(ResVReg, ResType, I, Opcode);
2791}
2792
2793bool SPIRVInstructionSelector::selectConst(Register ResVReg,
2794 const SPIRVType *ResType,
2795 MachineInstr &I) const {
2796 unsigned Opcode = I.getOpcode();
2797 unsigned TpOpcode = ResType->getOpcode();
2798 Register Reg;
2799 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
2800 assert(Opcode == TargetOpcode::G_CONSTANT &&
2801 I.getOperand(1).getCImm()->isZero());
2802 MachineBasicBlock &DepMBB = I.getMF()->front();
2803 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
2804 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
2805 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
2806 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
2807 ResType, TII, !STI.isShader());
2808 } else {
2809 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
2810 ResType, TII, !STI.isShader());
2811 }
2812 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
2813}
2814
2815bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
2816 const SPIRVType *ResType,
2817 MachineInstr &I) const {
2818 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2819 .addDef(ResVReg)
2820 .addUse(GR.getSPIRVTypeID(ResType))
2821 .constrainAllUses(TII, TRI, RBI);
2822}
2823
2824bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
2825 const SPIRVType *ResType,
2826 MachineInstr &I) const {
2827 MachineBasicBlock &BB = *I.getParent();
2828 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
2829 .addDef(ResVReg)
2830 .addUse(GR.getSPIRVTypeID(ResType))
2831 // object to insert
2832 .addUse(I.getOperand(3).getReg())
2833 // composite to insert into
2834 .addUse(I.getOperand(2).getReg());
2835 for (unsigned i = 4; i < I.getNumOperands(); i++)
2836 MIB.addImm(foldImm(I.getOperand(i), MRI));
2837 return MIB.constrainAllUses(TII, TRI, RBI);
2838}
2839
2840bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
2841 const SPIRVType *ResType,
2842 MachineInstr &I) const {
2843 MachineBasicBlock &BB = *I.getParent();
2844 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2845 .addDef(ResVReg)
2846 .addUse(GR.getSPIRVTypeID(ResType))
2847 .addUse(I.getOperand(2).getReg());
2848 for (unsigned i = 3; i < I.getNumOperands(); i++)
2849 MIB.addImm(foldImm(I.getOperand(i), MRI));
2850 return MIB.constrainAllUses(TII, TRI, RBI);
2851}
2852
2853bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
2854 const SPIRVType *ResType,
2855 MachineInstr &I) const {
2856 if (getImm(I.getOperand(4), MRI))
2857 return selectInsertVal(ResVReg, ResType, I);
2858 MachineBasicBlock &BB = *I.getParent();
2859 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
2860 .addDef(ResVReg)
2861 .addUse(GR.getSPIRVTypeID(ResType))
2862 .addUse(I.getOperand(2).getReg())
2863 .addUse(I.getOperand(3).getReg())
2864 .addUse(I.getOperand(4).getReg())
2865 .constrainAllUses(TII, TRI, RBI);
2866}
2867
2868bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
2869 const SPIRVType *ResType,
2870 MachineInstr &I) const {
2871 if (getImm(I.getOperand(3), MRI))
2872 return selectExtractVal(ResVReg, ResType, I);
2873 MachineBasicBlock &BB = *I.getParent();
2874 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
2875 .addDef(ResVReg)
2876 .addUse(GR.getSPIRVTypeID(ResType))
2877 .addUse(I.getOperand(2).getReg())
2878 .addUse(I.getOperand(3).getReg())
2879 .constrainAllUses(TII, TRI, RBI);
2880}
2881
2882bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
2883 const SPIRVType *ResType,
2884 MachineInstr &I) const {
2885 const bool IsGEPInBounds = I.getOperand(2).getImm();
2886
2887 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
2888 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
2889 // we have to use Op[InBounds]AccessChain.
2890 const unsigned Opcode = STI.isLogicalSPIRV()
2891 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
2892 : SPIRV::OpAccessChain)
2893 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
2894 : SPIRV::OpPtrAccessChain);
2895
2896 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2897 .addDef(ResVReg)
2898 .addUse(GR.getSPIRVTypeID(ResType))
2899 // Object to get a pointer to.
2900 .addUse(I.getOperand(3).getReg());
2901 // Adding indices.
2902 const unsigned StartingIndex =
2903 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
2904 ? 5
2905 : 4;
2906 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
2907 Res.addUse(I.getOperand(i).getReg());
2908 return Res.constrainAllUses(TII, TRI, RBI);
2909}
2910
2911// Maybe wrap a value into OpSpecConstantOp
2912bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
2913 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
2914 bool Result = true;
2915 unsigned Lim = I.getNumExplicitOperands();
2916 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
2917 Register OpReg = I.getOperand(i).getReg();
2918 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
2919 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
2920 SmallPtrSet<SPIRVType *, 4> Visited;
2921 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
2922 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2923 GR.isAggregateType(OpType)) {
2924 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
2925 // by selectAddrSpaceCast()
2926 CompositeArgs.push_back(OpReg);
2927 continue;
2928 }
2929 MachineFunction *MF = I.getMF();
2930 Register WrapReg = GR.find(OpDefine, MF);
2931 if (WrapReg.isValid()) {
2932 CompositeArgs.push_back(WrapReg);
2933 continue;
2934 }
2935 // Create a new register for the wrapper
2936 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
2937 CompositeArgs.push_back(WrapReg);
2938 // Decorate the wrapper register and generate a new instruction
2939 MRI->setType(WrapReg, LLT::pointer(0, 64));
2940 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
2941 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2942 TII.get(SPIRV::OpSpecConstantOp))
2943 .addDef(WrapReg)
2944 .addUse(GR.getSPIRVTypeID(OpType))
2945 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
2946 .addUse(OpReg);
2947 GR.add(OpDefine, MIB);
2948 Result = MIB.constrainAllUses(TII, TRI, RBI);
2949 if (!Result)
2950 break;
2951 }
2952 return Result;
2953}
2954
2955bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
2956 const SPIRVType *ResType,
2957 MachineInstr &I) const {
2958 MachineBasicBlock &BB = *I.getParent();
2959 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
2960 switch (IID) {
2961 case Intrinsic::spv_load:
2962 return selectLoad(ResVReg, ResType, I);
2963 case Intrinsic::spv_store:
2964 return selectStore(I);
2965 case Intrinsic::spv_extractv:
2966 return selectExtractVal(ResVReg, ResType, I);
2967 case Intrinsic::spv_insertv:
2968 return selectInsertVal(ResVReg, ResType, I);
2969 case Intrinsic::spv_extractelt:
2970 return selectExtractElt(ResVReg, ResType, I);
2971 case Intrinsic::spv_insertelt:
2972 return selectInsertElt(ResVReg, ResType, I);
2973 case Intrinsic::spv_gep:
2974 return selectGEP(ResVReg, ResType, I);
2975 case Intrinsic::spv_unref_global:
2976 case Intrinsic::spv_init_global: {
2977 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
2978 MachineInstr *Init = I.getNumExplicitOperands() > 2
2979 ? MRI->getVRegDef(I.getOperand(2).getReg())
2980 : nullptr;
2981 assert(MI);
2982 Register GVarVReg = MI->getOperand(0).getReg();
2983 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
2984 // We violate SSA form by inserting OpVariable and still having a gMIR
2985 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
2986 // the duplicated definition.
2987 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
2989 MI->removeFromParent();
2990 }
2991 return Res;
2992 }
2993 case Intrinsic::spv_undef: {
2994 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2995 .addDef(ResVReg)
2996 .addUse(GR.getSPIRVTypeID(ResType));
2997 return MIB.constrainAllUses(TII, TRI, RBI);
2998 }
2999 case Intrinsic::spv_const_composite: {
3000 // If no values are attached, the composite is null constant.
3001 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3002 SmallVector<Register> CompositeArgs;
3003 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3004
3005 // skip type MD node we already used when generated assign.type for this
3006 if (!IsNull) {
3007 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3008 return false;
3009 MachineIRBuilder MIR(I);
3010 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3011 MIR, SPIRV::OpConstantComposite, 3,
3012 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3013 GR.getSPIRVTypeID(ResType));
3014 for (auto *Instr : Instructions) {
3015 Instr->setDebugLoc(I.getDebugLoc());
3016 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3017 return false;
3018 }
3019 return true;
3020 } else {
3021 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3022 .addDef(ResVReg)
3023 .addUse(GR.getSPIRVTypeID(ResType));
3024 return MIB.constrainAllUses(TII, TRI, RBI);
3025 }
3026 }
3027 case Intrinsic::spv_assign_name: {
3028 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3029 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3030 for (unsigned i = I.getNumExplicitDefs() + 2;
3031 i < I.getNumExplicitOperands(); ++i) {
3032 MIB.addImm(I.getOperand(i).getImm());
3033 }
3034 return MIB.constrainAllUses(TII, TRI, RBI);
3035 }
3036 case Intrinsic::spv_switch: {
3037 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3038 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3039 if (I.getOperand(i).isReg())
3040 MIB.addReg(I.getOperand(i).getReg());
3041 else if (I.getOperand(i).isCImm())
3042 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3043 else if (I.getOperand(i).isMBB())
3044 MIB.addMBB(I.getOperand(i).getMBB());
3045 else
3046 llvm_unreachable("Unexpected OpSwitch operand");
3047 }
3048 return MIB.constrainAllUses(TII, TRI, RBI);
3049 }
3050 case Intrinsic::spv_loop_merge: {
3051 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3052 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3053 if (I.getOperand(i).isMBB())
3054 MIB.addMBB(I.getOperand(i).getMBB());
3055 else
3056 MIB.addImm(foldImm(I.getOperand(i), MRI));
3057 }
3058 return MIB.constrainAllUses(TII, TRI, RBI);
3059 }
3060 case Intrinsic::spv_selection_merge: {
3061 auto MIB =
3062 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3063 assert(I.getOperand(1).isMBB() &&
3064 "operand 1 to spv_selection_merge must be a basic block");
3065 MIB.addMBB(I.getOperand(1).getMBB());
3066 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3067 return MIB.constrainAllUses(TII, TRI, RBI);
3068 }
3069 case Intrinsic::spv_cmpxchg:
3070 return selectAtomicCmpXchg(ResVReg, ResType, I);
3071 case Intrinsic::spv_unreachable:
3072 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3073 .constrainAllUses(TII, TRI, RBI);
3074 case Intrinsic::spv_alloca:
3075 return selectFrameIndex(ResVReg, ResType, I);
3076 case Intrinsic::spv_alloca_array:
3077 return selectAllocaArray(ResVReg, ResType, I);
3078 case Intrinsic::spv_assume:
3079 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3080 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3081 .addUse(I.getOperand(1).getReg())
3082 .constrainAllUses(TII, TRI, RBI);
3083 break;
3084 case Intrinsic::spv_expect:
3085 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3086 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3087 .addDef(ResVReg)
3088 .addUse(GR.getSPIRVTypeID(ResType))
3089 .addUse(I.getOperand(2).getReg())
3090 .addUse(I.getOperand(3).getReg())
3091 .constrainAllUses(TII, TRI, RBI);
3092 break;
3093 case Intrinsic::arithmetic_fence:
3094 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3095 return BuildMI(BB, I, I.getDebugLoc(),
3096 TII.get(SPIRV::OpArithmeticFenceEXT))
3097 .addDef(ResVReg)
3098 .addUse(GR.getSPIRVTypeID(ResType))
3099 .addUse(I.getOperand(2).getReg())
3100 .constrainAllUses(TII, TRI, RBI);
3101 else
3102 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3103 break;
3104 case Intrinsic::spv_thread_id:
3105 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3106 // intrinsic in LLVM IR for SPIR-V backend.
3107 //
3108 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3109 // `GlobalInvocationId` builtin variable
3110 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3111 ResType, I);
3112 case Intrinsic::spv_thread_id_in_group:
3113 // The HLSL SV_GroupThreadId semantic is lowered to
3114 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3115 //
3116 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3117 // translated to a `LocalInvocationId` builtin variable
3118 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3119 ResType, I);
3120 case Intrinsic::spv_group_id:
3121 // The HLSL SV_GroupId semantic is lowered to
3122 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3123 //
3124 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3125 // builtin variable
3126 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3127 I);
3128 case Intrinsic::spv_flattened_thread_id_in_group:
3129 // The HLSL SV_GroupIndex semantic is lowered to
3130 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3131 // backend.
3132 //
3133 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3134 // a `LocalInvocationIndex` builtin variable
3135 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3136 ResType, I);
3137 case Intrinsic::spv_workgroup_size:
3138 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3139 ResType, I);
3140 case Intrinsic::spv_global_size:
3141 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3142 I);
3143 case Intrinsic::spv_global_offset:
3144 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3145 ResType, I);
3146 case Intrinsic::spv_num_workgroups:
3147 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3148 ResType, I);
3149 case Intrinsic::spv_subgroup_size:
3150 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3151 I);
3152 case Intrinsic::spv_num_subgroups:
3153 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3154 I);
3155 case Intrinsic::spv_subgroup_id:
3156 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3157 case Intrinsic::spv_subgroup_local_invocation_id:
3158 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3159 ResVReg, ResType, I);
3160 case Intrinsic::spv_subgroup_max_size:
3161 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3162 I);
3163 case Intrinsic::spv_fdot:
3164 return selectFloatDot(ResVReg, ResType, I);
3165 case Intrinsic::spv_udot:
3166 case Intrinsic::spv_sdot:
3167 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3168 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3169 return selectIntegerDot(ResVReg, ResType, I,
3170 /*Signed=*/IID == Intrinsic::spv_sdot);
3171 return selectIntegerDotExpansion(ResVReg, ResType, I);
3172 case Intrinsic::spv_dot4add_i8packed:
3173 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3174 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3175 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3176 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3177 case Intrinsic::spv_dot4add_u8packed:
3178 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3179 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3180 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3181 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3182 case Intrinsic::spv_all:
3183 return selectAll(ResVReg, ResType, I);
3184 case Intrinsic::spv_any:
3185 return selectAny(ResVReg, ResType, I);
3186 case Intrinsic::spv_cross:
3187 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3188 case Intrinsic::spv_distance:
3189 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3190 case Intrinsic::spv_lerp:
3191 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3192 case Intrinsic::spv_length:
3193 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3194 case Intrinsic::spv_degrees:
3195 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3196 case Intrinsic::spv_faceforward:
3197 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3198 case Intrinsic::spv_frac:
3199 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3200 case Intrinsic::spv_isinf:
3201 return selectOpIsInf(ResVReg, ResType, I);
3202 case Intrinsic::spv_normalize:
3203 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3204 case Intrinsic::spv_refract:
3205 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3206 case Intrinsic::spv_reflect:
3207 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3208 case Intrinsic::spv_rsqrt:
3209 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3210 case Intrinsic::spv_sign:
3211 return selectSign(ResVReg, ResType, I);
3212 case Intrinsic::spv_smoothstep:
3213 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3214 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3215 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3216 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3217 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3218 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3219 return selectFirstBitLow(ResVReg, ResType, I);
3220 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3221 bool Result = true;
3222 auto MemSemConstant =
3223 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3224 Register MemSemReg = MemSemConstant.first;
3225 Result &= MemSemConstant.second;
3226 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3227 Register ScopeReg = ScopeConstant.first;
3228 Result &= ScopeConstant.second;
3229 MachineBasicBlock &BB = *I.getParent();
3230 return Result &&
3231 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3232 .addUse(ScopeReg)
3233 .addUse(ScopeReg)
3234 .addUse(MemSemReg)
3235 .constrainAllUses(TII, TRI, RBI);
3236 }
3237 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3238 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3239 SPIRV::StorageClass::StorageClass ResSC =
3240 GR.getPointerStorageClass(ResType);
3241 if (!isGenericCastablePtr(ResSC))
3242 report_fatal_error("The target storage class is not castable from the "
3243 "Generic storage class");
3244 return BuildMI(BB, I, I.getDebugLoc(),
3245 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3246 .addDef(ResVReg)
3247 .addUse(GR.getSPIRVTypeID(ResType))
3248 .addUse(PtrReg)
3249 .addImm(ResSC)
3250 .constrainAllUses(TII, TRI, RBI);
3251 }
3252 case Intrinsic::spv_lifetime_start:
3253 case Intrinsic::spv_lifetime_end: {
3254 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3255 : SPIRV::OpLifetimeStop;
3256 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3257 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3258 if (Size == -1)
3259 Size = 0;
3260 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3261 .addUse(PtrReg)
3262 .addImm(Size)
3263 .constrainAllUses(TII, TRI, RBI);
3264 }
3265 case Intrinsic::spv_saturate:
3266 return selectSaturate(ResVReg, ResType, I);
3267 case Intrinsic::spv_nclamp:
3268 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3269 case Intrinsic::spv_uclamp:
3270 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3271 case Intrinsic::spv_sclamp:
3272 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3273 case Intrinsic::spv_wave_active_countbits:
3274 return selectWaveActiveCountBits(ResVReg, ResType, I);
3275 case Intrinsic::spv_wave_all:
3276 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3277 case Intrinsic::spv_wave_any:
3278 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3279 case Intrinsic::spv_wave_is_first_lane:
3280 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3281 case Intrinsic::spv_wave_reduce_umax:
3282 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3283 case Intrinsic::spv_wave_reduce_max:
3284 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3285 case Intrinsic::spv_wave_reduce_sum:
3286 return selectWaveReduceSum(ResVReg, ResType, I);
3287 case Intrinsic::spv_wave_readlane:
3288 return selectWaveOpInst(ResVReg, ResType, I,
3289 SPIRV::OpGroupNonUniformShuffle);
3290 case Intrinsic::spv_step:
3291 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3292 case Intrinsic::spv_radians:
3293 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3294 // Discard intrinsics which we do not expect to actually represent code after
3295 // lowering or intrinsics which are not implemented but should not crash when
3296 // found in a customer's LLVM IR input.
3297 case Intrinsic::instrprof_increment:
3298 case Intrinsic::instrprof_increment_step:
3299 case Intrinsic::instrprof_value_profile:
3300 break;
3301 // Discard internal intrinsics.
3302 case Intrinsic::spv_value_md:
3303 break;
3304 case Intrinsic::spv_resource_handlefrombinding: {
3305 return selectHandleFromBinding(ResVReg, ResType, I);
3306 }
3307 case Intrinsic::spv_resource_store_typedbuffer: {
3308 return selectImageWriteIntrinsic(I);
3309 }
3310 case Intrinsic::spv_resource_load_typedbuffer: {
3311 return selectReadImageIntrinsic(ResVReg, ResType, I);
3312 }
3313 case Intrinsic::spv_resource_getpointer: {
3314 return selectResourceGetPointer(ResVReg, ResType, I);
3315 }
3316 case Intrinsic::spv_discard: {
3317 return selectDiscard(ResVReg, ResType, I);
3318 }
3319 case Intrinsic::modf: {
3320 return selectModf(ResVReg, ResType, I);
3321 }
3322 default: {
3323 std::string DiagMsg;
3324 raw_string_ostream OS(DiagMsg);
3325 I.print(OS);
3326 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
3327 report_fatal_error(DiagMsg.c_str(), false);
3328 }
3329 }
3330 return true;
3331}
3332
3333bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
3334 const SPIRVType *ResType,
3335 MachineInstr &I) const {
3336 // The images need to be loaded in the same basic block as their use. We defer
3337 // loading the image to the intrinsic that uses it.
3338 if (ResType->getOpcode() == SPIRV::OpTypeImage)
3339 return true;
3340
3341 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
3342 *cast<GIntrinsic>(&I), I);
3343}
3344
3345bool SPIRVInstructionSelector::selectReadImageIntrinsic(
3346 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3347
3348 // If the load of the image is in a different basic block, then
3349 // this will generate invalid code. A proper solution is to move
3350 // the OpLoad from selectHandleFromBinding here. However, to do
3351 // that we will need to change the return type of the intrinsic.
3352 // We will do that when we can, but for now trying to move forward with other
3353 // issues.
3354 Register ImageReg = I.getOperand(2).getReg();
3355 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3356 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3357 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3358 *ImageDef, I)) {
3359 return false;
3360 }
3361
3362 Register IdxReg = I.getOperand(3).getReg();
3363 DebugLoc Loc = I.getDebugLoc();
3364 MachineInstr &Pos = I;
3365
3366 return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos);
3367}
3368
3369bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg,
3370 const SPIRVType *ResType,
3371 Register ImageReg,
3372 Register IdxReg, DebugLoc Loc,
3373 MachineInstr &Pos) const {
3374 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
3375 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
3376 "ImageReg is not an image type.");
3377 bool IsSignedInteger =
3378 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
3379
3380 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3381 if (ResultSize == 4) {
3382 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3383 .addDef(ResVReg)
3384 .addUse(GR.getSPIRVTypeID(ResType))
3385 .addUse(ImageReg)
3386 .addUse(IdxReg);
3387
3388 if (IsSignedInteger)
3389 BMI.addImm(0x1000); // SignExtend
3390 return BMI.constrainAllUses(TII, TRI, RBI);
3391 }
3392
3393 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
3394 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
3395 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3396 .addDef(ReadReg)
3397 .addUse(GR.getSPIRVTypeID(ReadType))
3398 .addUse(ImageReg)
3399 .addUse(IdxReg);
3400 if (IsSignedInteger)
3401 BMI.addImm(0x1000); // SignExtend
3402 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
3403 if (!Succeed)
3404 return false;
3405
3406 if (ResultSize == 1) {
3407 return BuildMI(*Pos.getParent(), Pos, Loc,
3408 TII.get(SPIRV::OpCompositeExtract))
3409 .addDef(ResVReg)
3410 .addUse(GR.getSPIRVTypeID(ResType))
3411 .addUse(ReadReg)
3412 .addImm(0)
3413 .constrainAllUses(TII, TRI, RBI);
3414 }
3415 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
3416}
3417
3418bool SPIRVInstructionSelector::selectResourceGetPointer(
3419 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3420 Register ResourcePtr = I.getOperand(2).getReg();
3421 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
3422 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
3423 // For texel buffers, the index into the image is part of the OpImageRead or
3424 // OpImageWrite instructions. So we will do nothing in this case. This
3425 // intrinsic will be combined with the load or store when selecting the load
3426 // or store.
3427 return true;
3428 }
3429
3430 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
3431 MachineIRBuilder MIRBuilder(I);
3432
3433 Register IndexReg = I.getOperand(3).getReg();
3434 Register ZeroReg =
3435 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
3436 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3437 TII.get(SPIRV::OpAccessChain))
3438 .addDef(ResVReg)
3439 .addUse(GR.getSPIRVTypeID(ResType))
3440 .addUse(ResourcePtr)
3441 .addUse(ZeroReg)
3442 .addUse(IndexReg)
3443 .constrainAllUses(TII, TRI, RBI);
3444}
3445
3446bool SPIRVInstructionSelector::extractSubvector(
3447 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
3448 MachineInstr &InsertionPoint) const {
3449 SPIRVType *InputType = GR.getResultType(ReadReg);
3450 [[maybe_unused]] uint64_t InputSize =
3451 GR.getScalarOrVectorComponentCount(InputType);
3452 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3453 assert(InputSize > 1 && "The input must be a vector.");
3454 assert(ResultSize > 1 && "The result must be a vector.");
3455 assert(ResultSize < InputSize &&
3456 "Cannot extract more element than there are in the input.");
3457 SmallVector<Register> ComponentRegisters;
3458 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
3459 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
3460 for (uint64_t I = 0; I < ResultSize; I++) {
3461 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
3462 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3463 InsertionPoint.getDebugLoc(),
3464 TII.get(SPIRV::OpCompositeExtract))
3465 .addDef(ComponentReg)
3466 .addUse(ScalarType->getOperand(0).getReg())
3467 .addUse(ReadReg)
3468 .addImm(I)
3469 .constrainAllUses(TII, TRI, RBI);
3470 if (!Succeed)
3471 return false;
3472 ComponentRegisters.emplace_back(ComponentReg);
3473 }
3474
3475 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3476 InsertionPoint.getDebugLoc(),
3477 TII.get(SPIRV::OpCompositeConstruct))
3478 .addDef(ResVReg)
3479 .addUse(GR.getSPIRVTypeID(ResType));
3480
3481 for (Register ComponentReg : ComponentRegisters)
3482 MIB.addUse(ComponentReg);
3483 return MIB.constrainAllUses(TII, TRI, RBI);
3484}
3485
3486bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
3487 MachineInstr &I) const {
3488 // If the load of the image is in a different basic block, then
3489 // this will generate invalid code. A proper solution is to move
3490 // the OpLoad from selectHandleFromBinding here. However, to do
3491 // that we will need to change the return type of the intrinsic.
3492 // We will do that when we can, but for now trying to move forward with other
3493 // issues.
3494 Register ImageReg = I.getOperand(1).getReg();
3495 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3496 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3497 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3498 *ImageDef, I)) {
3499 return false;
3500 }
3501
3502 Register CoordinateReg = I.getOperand(2).getReg();
3503 Register DataReg = I.getOperand(3).getReg();
3504 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
3506 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3507 TII.get(SPIRV::OpImageWrite))
3508 .addUse(NewImageReg)
3509 .addUse(CoordinateReg)
3510 .addUse(DataReg)
3511 .constrainAllUses(TII, TRI, RBI);
3512}
3513
3514Register SPIRVInstructionSelector::buildPointerToResource(
3515 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
3516 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
3517 bool IsNonUniform, StringRef Name, MachineIRBuilder MIRBuilder) const {
3518 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
3519 if (ArraySize == 1) {
3520 SPIRVType *PtrType =
3521 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3522 assert(GR.getPointeeType(PtrType) == SpirvResType &&
3523 "SpirvResType did not have an explicit layout.");
3524 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
3525 MIRBuilder);
3526 }
3527
3528 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
3529 SPIRVType *VarPointerType =
3530 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
3532 VarPointerType, Set, Binding, Name, MIRBuilder);
3533
3534 SPIRVType *ResPointerType =
3535 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3536
3537 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
3538 if (IsNonUniform) {
3539 // It is unclear which value needs to be marked an non-uniform, so both
3540 // the index and the access changed are decorated as non-uniform.
3541 buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3542 buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3543 }
3544
3545 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
3546 .addDef(AcReg)
3547 .addUse(GR.getSPIRVTypeID(ResPointerType))
3548 .addUse(VarReg)
3549 .addUse(IndexReg);
3550
3551 return AcReg;
3552}
3553
3554bool SPIRVInstructionSelector::selectFirstBitSet16(
3555 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3556 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
3557 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3558 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
3559 ExtendOpcode);
3560
3561 return Result &&
3562 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
3563}
3564
3565bool SPIRVInstructionSelector::selectFirstBitSet32(
3566 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3567 Register SrcReg, unsigned BitSetOpcode) const {
3568 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
3569 .addDef(ResVReg)
3570 .addUse(GR.getSPIRVTypeID(ResType))
3571 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
3572 .addImm(BitSetOpcode)
3573 .addUse(SrcReg)
3574 .constrainAllUses(TII, TRI, RBI);
3575}
3576
3577bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
3578 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3579 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3580
3581 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
3582 // requires creating a param register and return register with an invalid
3583 // vector size. If that is resolved, then this function can be used for
3584 // vectors of any component size.
3585 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3586 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
3587
3588 MachineIRBuilder MIRBuilder(I);
3590 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
3591 SPIRVType *I64x2Type =
3592 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
3593 SPIRVType *Vec2ResType =
3594 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
3595
3596 std::vector<Register> PartialRegs;
3597
3598 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
3599 unsigned CurrentComponent = 0;
3600 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
3601 // This register holds the firstbitX result for each of the i64x2 vectors
3602 // extracted from SrcReg
3603 Register BitSetResult =
3604 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
3605
3606 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3607 TII.get(SPIRV::OpVectorShuffle))
3608 .addDef(BitSetResult)
3609 .addUse(GR.getSPIRVTypeID(I64x2Type))
3610 .addUse(SrcReg)
3611 .addUse(SrcReg)
3612 .addImm(CurrentComponent)
3613 .addImm(CurrentComponent + 1);
3614
3615 if (!MIB.constrainAllUses(TII, TRI, RBI))
3616 return false;
3617
3618 Register SubVecBitSetReg =
3619 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
3620
3621 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
3622 BitSetOpcode, SwapPrimarySide))
3623 return false;
3624
3625 PartialRegs.push_back(SubVecBitSetReg);
3626 }
3627
3628 // On odd component counts we need to handle one more component
3629 if (CurrentComponent != ComponentCount) {
3630 bool ZeroAsNull = !STI.isShader();
3631 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
3632 Register ConstIntLastIdx = GR.getOrCreateConstInt(
3633 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
3634
3635 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
3636 SPIRV::OpVectorExtractDynamic))
3637 return false;
3638
3639 Register FinalElemBitSetReg =
3640 MRI->createVirtualRegister(GR.getRegClass(BaseType));
3641
3642 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
3643 BitSetOpcode, SwapPrimarySide))
3644 return false;
3645
3646 PartialRegs.push_back(FinalElemBitSetReg);
3647 }
3648
3649 // Join all the resulting registers back into the return type in order
3650 // (ie i32x2, i32x2, i32x1 -> i32x5)
3651 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
3652 SPIRV::OpCompositeConstruct);
3653}
3654
3655bool SPIRVInstructionSelector::selectFirstBitSet64(
3656 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3657 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3658 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3660 bool ZeroAsNull = !STI.isShader();
3661 Register ConstIntZero =
3662 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
3663 Register ConstIntOne =
3664 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
3665
3666 // SPIRV doesn't support vectors with more than 4 components. Since the
3667 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
3668 // operate on vectors with 2 or less components. When largers vectors are
3669 // seen. Split them, recurse, then recombine them.
3670 if (ComponentCount > 2) {
3671 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
3672 BitSetOpcode, SwapPrimarySide);
3673 }
3674
3675 // 1. Split int64 into 2 pieces using a bitcast
3676 MachineIRBuilder MIRBuilder(I);
3677 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
3678 BaseType, 2 * ComponentCount, MIRBuilder, false);
3679 Register BitcastReg =
3680 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3681
3682 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
3683 SPIRV::OpBitcast))
3684 return false;
3685
3686 // 2. Find the first set bit from the primary side for all the pieces in #1
3687 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3688 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
3689 return false;
3690
3691 // 3. Split result vector into high bits and low bits
3692 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3693 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3694
3695 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
3696 if (IsScalarRes) {
3697 // if scalar do a vector extract
3698 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
3699 SPIRV::OpVectorExtractDynamic))
3700 return false;
3701 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
3702 SPIRV::OpVectorExtractDynamic))
3703 return false;
3704 } else {
3705 // if vector do a shufflevector
3706 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3707 TII.get(SPIRV::OpVectorShuffle))
3708 .addDef(HighReg)
3709 .addUse(GR.getSPIRVTypeID(ResType))
3710 .addUse(FBSReg)
3711 // Per the spec, repeat the vector if only one vec is needed
3712 .addUse(FBSReg);
3713
3714 // high bits are stored in even indexes. Extract them from FBSReg
3715 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
3716 MIB.addImm(J);
3717 }
3718
3719 if (!MIB.constrainAllUses(TII, TRI, RBI))
3720 return false;
3721
3722 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3723 TII.get(SPIRV::OpVectorShuffle))
3724 .addDef(LowReg)
3725 .addUse(GR.getSPIRVTypeID(ResType))
3726 .addUse(FBSReg)
3727 // Per the spec, repeat the vector if only one vec is needed
3728 .addUse(FBSReg);
3729
3730 // low bits are stored in odd indexes. Extract them from FBSReg
3731 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
3732 MIB.addImm(J);
3733 }
3734 if (!MIB.constrainAllUses(TII, TRI, RBI))
3735 return false;
3736 }
3737
3738 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
3739 // primary
3740 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
3741 Register NegOneReg;
3742 Register Reg0;
3743 Register Reg32;
3744 unsigned SelectOp;
3745 unsigned AddOp;
3746
3747 if (IsScalarRes) {
3748 NegOneReg =
3749 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
3750 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
3751 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
3752 SelectOp = SPIRV::OpSelectSISCond;
3753 AddOp = SPIRV::OpIAddS;
3754 } else {
3755 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
3756 MIRBuilder, false);
3757 NegOneReg =
3758 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
3759 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
3760 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
3761 SelectOp = SPIRV::OpSelectVIVCond;
3762 AddOp = SPIRV::OpIAddV;
3763 }
3764
3765 Register PrimaryReg = HighReg;
3766 Register SecondaryReg = LowReg;
3767 Register PrimaryShiftReg = Reg32;
3768 Register SecondaryShiftReg = Reg0;
3769
3770 // By default the emitted opcodes check for the set bit from the MSB side.
3771 // Setting SwapPrimarySide checks the set bit from the LSB side
3772 if (SwapPrimarySide) {
3773 PrimaryReg = LowReg;
3774 SecondaryReg = HighReg;
3775 PrimaryShiftReg = Reg0;
3776 SecondaryShiftReg = Reg32;
3777 }
3778
3779 // Check if the primary bits are == -1
3780 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
3781 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
3782 SPIRV::OpIEqual))
3783 return false;
3784
3785 // Select secondary bits if true in BReg, otherwise primary bits
3786 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3787 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
3788 SelectOp))
3789 return false;
3790
3791 // 5. Add 32 when high bits are used, otherwise 0 for low bits
3792 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3793 if (!selectOpWithSrcs(ValReg, ResType, I,
3794 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
3795 return false;
3796
3797 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
3798}
3799
3800bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
3801 const SPIRVType *ResType,
3802 MachineInstr &I,
3803 bool IsSigned) const {
3804 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
3805 Register OpReg = I.getOperand(2).getReg();
3806 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3807 // zero or sign extend
3808 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3809 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
3810
3811 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3812 case 16:
3813 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3814 case 32:
3815 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3816 case 64:
3817 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3818 /*SwapPrimarySide=*/false);
3819 default:
3821 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
3822 }
3823}
3824
3825bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
3826 const SPIRVType *ResType,
3827 MachineInstr &I) const {
3828 // FindILsb intrinsic only supports 32 bit integers
3829 Register OpReg = I.getOperand(2).getReg();
3830 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3831 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
3832 // to an unsigned i32. As this leaves all the least significant bits unchanged
3833 // so the first set bit from the LSB side doesn't change.
3834 unsigned ExtendOpcode = SPIRV::OpUConvert;
3835 unsigned BitSetOpcode = GL::FindILsb;
3836
3837 switch (GR.getScalarOrVectorBitWidth(OpType)) {
3838 case 16:
3839 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
3840 case 32:
3841 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
3842 case 64:
3843 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
3844 /*SwapPrimarySide=*/true);
3845 default:
3846 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
3847 }
3848}
3849
3850bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
3851 const SPIRVType *ResType,
3852 MachineInstr &I) const {
3853 // there was an allocation size parameter to the allocation instruction
3854 // that is not 1
3855 MachineBasicBlock &BB = *I.getParent();
3856 bool Res = BuildMI(BB, I, I.getDebugLoc(),
3857 TII.get(SPIRV::OpVariableLengthArrayINTEL))
3858 .addDef(ResVReg)
3859 .addUse(GR.getSPIRVTypeID(ResType))
3860 .addUse(I.getOperand(2).getReg())
3861 .constrainAllUses(TII, TRI, RBI);
3862 if (!STI.isShader()) {
3863 unsigned Alignment = I.getOperand(3).getImm();
3864 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
3865 }
3866 return Res;
3867}
3868
3869bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
3870 const SPIRVType *ResType,
3871 MachineInstr &I) const {
3872 // Change order of instructions if needed: all OpVariable instructions in a
3873 // function must be the first instructions in the first block
3874 auto It = getOpVariableMBBIt(I);
3875 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
3876 TII.get(SPIRV::OpVariable))
3877 .addDef(ResVReg)
3878 .addUse(GR.getSPIRVTypeID(ResType))
3879 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
3880 .constrainAllUses(TII, TRI, RBI);
3881 if (!STI.isShader()) {
3882 unsigned Alignment = I.getOperand(2).getImm();
3883 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
3884 {Alignment});
3885 }
3886 return Res;
3887}
3888
3889bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
3890 // InstructionSelector walks backwards through the instructions. We can use
3891 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
3892 // first, so can generate an OpBranchConditional here. If there is no
3893 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
3894 const MachineInstr *PrevI = I.getPrevNode();
3895 MachineBasicBlock &MBB = *I.getParent();
3896 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
3897 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
3898 .addUse(PrevI->getOperand(0).getReg())
3899 .addMBB(PrevI->getOperand(1).getMBB())
3900 .addMBB(I.getOperand(0).getMBB())
3901 .constrainAllUses(TII, TRI, RBI);
3902 }
3903 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
3904 .addMBB(I.getOperand(0).getMBB())
3905 .constrainAllUses(TII, TRI, RBI);
3906}
3907
3908bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
3909 // InstructionSelector walks backwards through the instructions. For an
3910 // explicit conditional branch with no fallthrough, we use both a G_BR and a
3911 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
3912 // generate the OpBranchConditional in selectBranch above.
3913 //
3914 // If an OpBranchConditional has been generated, we simply return, as the work
3915 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
3916 // implicit fallthrough to the next basic block, so we need to create an
3917 // OpBranchConditional with an explicit "false" argument pointing to the next
3918 // basic block that LLVM would fall through to.
3919 const MachineInstr *NextI = I.getNextNode();
3920 // Check if this has already been successfully selected.
3921 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
3922 return true;
3923 // Must be relying on implicit block fallthrough, so generate an
3924 // OpBranchConditional with the "next" basic block as the "false" target.
3925 MachineBasicBlock &MBB = *I.getParent();
3926 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
3927 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
3928 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
3929 .addUse(I.getOperand(0).getReg())
3930 .addMBB(I.getOperand(1).getMBB())
3931 .addMBB(NextMBB)
3932 .constrainAllUses(TII, TRI, RBI);
3933}
3934
3935bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
3936 const SPIRVType *ResType,
3937 MachineInstr &I) const {
3938 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
3939 .addDef(ResVReg)
3940 .addUse(GR.getSPIRVTypeID(ResType));
3941 const unsigned NumOps = I.getNumOperands();
3942 for (unsigned i = 1; i < NumOps; i += 2) {
3943 MIB.addUse(I.getOperand(i + 0).getReg());
3944 MIB.addMBB(I.getOperand(i + 1).getMBB());
3945 }
3946 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
3947 MIB->setDesc(TII.get(TargetOpcode::PHI));
3948 MIB->removeOperand(1);
3949 return Res;
3950}
3951
3952bool SPIRVInstructionSelector::selectGlobalValue(
3953 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
3954 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
3955 MachineIRBuilder MIRBuilder(I);
3956 const GlobalValue *GV = I.getOperand(1).getGlobal();
3958
3959 std::string GlobalIdent;
3960 if (!GV->hasName()) {
3961 unsigned &ID = UnnamedGlobalIDs[GV];
3962 if (ID == 0)
3963 ID = UnnamedGlobalIDs.size();
3964 GlobalIdent = "__unnamed_" + Twine(ID).str();
3965 } else {
3966 GlobalIdent = GV->getName();
3967 }
3968
3969 // Behaviour of functions as operands depends on availability of the
3970 // corresponding extension (SPV_INTEL_function_pointers):
3971 // - If there is an extension to operate with functions as operands:
3972 // We create a proper constant operand and evaluate a correct type for a
3973 // function pointer.
3974 // - Without the required extension:
3975 // We have functions as operands in tests with blocks of instruction e.g. in
3976 // transcoding/global_block.ll. These operands are not used and should be
3977 // substituted by zero constants. Their type is expected to be always
3978 // OpTypePointer Function %uchar.
3979 if (isa<Function>(GV)) {
3980 const Constant *ConstVal = GV;
3981 MachineBasicBlock &BB = *I.getParent();
3982 Register NewReg = GR.find(ConstVal, GR.CurMF);
3983 if (!NewReg.isValid()) {
3984 Register NewReg = ResVReg;
3985 const Function *GVFun =
3986 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
3987 ? dyn_cast<Function>(GV)
3988 : nullptr;
3990 GVType, I,
3991 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
3993 if (GVFun) {
3994 // References to a function via function pointers generate virtual
3995 // registers without a definition. We will resolve it later, during
3996 // module analysis stage.
3997 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
3998 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
3999 Register FuncVReg =
4000 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4001 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4002 MachineInstrBuilder MIB1 =
4003 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4004 .addDef(FuncVReg)
4005 .addUse(ResTypeReg);
4006 MachineInstrBuilder MIB2 =
4007 BuildMI(BB, I, I.getDebugLoc(),
4008 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4009 .addDef(NewReg)
4010 .addUse(ResTypeReg)
4011 .addUse(FuncVReg);
4012 GR.add(ConstVal, MIB2);
4013 // mapping the function pointer to the used Function
4014 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4015 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4016 MIB2.constrainAllUses(TII, TRI, RBI);
4017 }
4018 MachineInstrBuilder MIB3 =
4019 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4020 .addDef(NewReg)
4021 .addUse(GR.getSPIRVTypeID(ResType));
4022 GR.add(ConstVal, MIB3);
4023 return MIB3.constrainAllUses(TII, TRI, RBI);
4024 }
4025 assert(NewReg != ResVReg);
4026 return BuildCOPY(ResVReg, NewReg, I);
4027 }
4029 assert(GlobalVar->getName() != "llvm.global.annotations");
4030
4031 // Skip empty declaration for GVs with initializers till we get the decl with
4032 // passed initializer.
4033 if (hasInitializer(GlobalVar) && !Init)
4034 return true;
4035
4036 bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage() &&
4037 !GV->hasHiddenVisibility();
4038 SPIRV::LinkageType::LinkageType LnkType =
4040 ? SPIRV::LinkageType::Import
4041 : (GV->hasLinkOnceODRLinkage() &&
4042 STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
4043 ? SPIRV::LinkageType::LinkOnceODR
4044 : SPIRV::LinkageType::Export);
4045
4046 const unsigned AddrSpace = GV->getAddressSpace();
4047 SPIRV::StorageClass::StorageClass StorageClass =
4048 addressSpaceToStorageClass(AddrSpace, STI);
4049 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4051 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4052 GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true);
4053 return Reg.isValid();
4054}
4055
4056bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4057 const SPIRVType *ResType,
4058 MachineInstr &I) const {
4059 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4060 return selectExtInst(ResVReg, ResType, I, CL::log10);
4061 }
4062
4063 // There is no log10 instruction in the GLSL Extended Instruction set, so it
4064 // is implemented as:
4065 // log10(x) = log2(x) * (1 / log2(10))
4066 // = log2(x) * 0.30103
4067
4068 MachineIRBuilder MIRBuilder(I);
4069 MachineBasicBlock &BB = *I.getParent();
4070
4071 // Build log2(x).
4072 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4073 bool Result =
4074 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4075 .addDef(VarReg)
4076 .addUse(GR.getSPIRVTypeID(ResType))
4077 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4078 .addImm(GL::Log2)
4079 .add(I.getOperand(1))
4080 .constrainAllUses(TII, TRI, RBI);
4081
4082 // Build 0.30103.
4083 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
4084 ResType->getOpcode() == SPIRV::OpTypeFloat);
4085 // TODO: Add matrix implementation once supported by the HLSL frontend.
4086 const SPIRVType *SpirvScalarType =
4087 ResType->getOpcode() == SPIRV::OpTypeVector
4088 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
4089 : ResType;
4090 Register ScaleReg =
4091 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
4092
4093 // Multiply log2(x) by 0.30103 to get log10(x) result.
4094 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
4095 ? SPIRV::OpVectorTimesScalar
4096 : SPIRV::OpFMulS;
4097 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
4098 .addDef(ResVReg)
4099 .addUse(GR.getSPIRVTypeID(ResType))
4100 .addUse(VarReg)
4101 .addUse(ScaleReg)
4102 .constrainAllUses(TII, TRI, RBI);
4103}
4104
4105bool SPIRVInstructionSelector::selectModf(Register ResVReg,
4106 const SPIRVType *ResType,
4107 MachineInstr &I) const {
4108 // llvm.modf has a single arg --the number to be decomposed-- and returns a
4109 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
4110 // number to be decomposed and a pointer--, returns the fractional part and
4111 // the integral part is stored in the pointer argument. Therefore, we can't
4112 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
4113 // scaffolding to make it work. The idea is to create an alloca instruction
4114 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
4115 // from this ptr to place it in the struct. llvm.modf returns the fractional
4116 // part as the first element of the result, and the integral part as the
4117 // second element of the result.
4118
4119 // At this point, the return type is not a struct anymore, but rather two
4120 // independent elements of SPIRVResType. We can get each independent element
4121 // from I.getDefs() or I.getOperands().
4122 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4123 MachineIRBuilder MIRBuilder(I);
4124 // Get pointer type for alloca variable.
4125 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4126 ResType, MIRBuilder, SPIRV::StorageClass::Function);
4127 // Create new register for the pointer type of alloca variable.
4128 Register PtrTyReg =
4129 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4130 MIRBuilder.getMRI()->setType(
4131 PtrTyReg,
4132 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
4133 GR.getPointerSize()));
4134 // Assign SPIR-V type of the pointer type of the alloca variable to the
4135 // new register.
4136 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
4137 MachineBasicBlock &EntryBB = I.getMF()->front();
4140 auto AllocaMIB =
4141 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
4142 .addDef(PtrTyReg)
4143 .addUse(GR.getSPIRVTypeID(PtrType))
4144 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
4145 Register Variable = AllocaMIB->getOperand(0).getReg();
4146 // Modf must have 4 operands, the first two are the 2 parts of the result,
4147 // the third is the operand, and the last one is the floating point value.
4148 assert(I.getNumOperands() == 4 &&
4149 "Expected 4 operands for modf instruction");
4150 MachineBasicBlock &BB = *I.getParent();
4151 // Create the OpenCLLIB::modf instruction.
4152 auto MIB =
4153 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4154 .addDef(ResVReg)
4155 .addUse(GR.getSPIRVTypeID(ResType))
4156 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
4157 .addImm(CL::modf)
4158 .setMIFlags(I.getFlags())
4159 .add(I.getOperand(3)) // Floating point value.
4160 .addUse(Variable); // Pointer to integral part.
4161 // Assign the integral part stored in the ptr to the second element of the
4162 // result.
4163 Register IntegralPartReg = I.getOperand(1).getReg();
4164 if (IntegralPartReg.isValid()) {
4165 // Load the value from the pointer to integral part.
4166 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4167 .addDef(IntegralPartReg)
4168 .addUse(GR.getSPIRVTypeID(ResType))
4169 .addUse(Variable);
4170 return LoadMIB.constrainAllUses(TII, TRI, RBI);
4171 }
4172
4173 return MIB.constrainAllUses(TII, TRI, RBI);
4174 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
4175 assert(false && "GLSL::Modf is deprecated.");
4176 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
4177 return false;
4178 }
4179 return false;
4180}
4181
4182// Generate the instructions to load 3-element vector builtin input
4183// IDs/Indices.
4184// Like: GlobalInvocationId, LocalInvocationId, etc....
4185
4186bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
4187 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4188 const SPIRVType *ResType, MachineInstr &I) const {
4189 MachineIRBuilder MIRBuilder(I);
4190 const SPIRVType *Vec3Ty =
4191 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
4192 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4193 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
4194
4195 // Create new register for the input ID builtin variable.
4196 Register NewRegister =
4197 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4198 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
4199 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4200
4201 // Build global variable with the necessary decorations for the input ID
4202 // builtin variable.
4204 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4205 SPIRV::StorageClass::Input, nullptr, true, false,
4206 SPIRV::LinkageType::Import, MIRBuilder, false);
4207
4208 // Create new register for loading value.
4209 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4210 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
4211 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
4212 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
4213
4214 // Load v3uint value from the global variable.
4215 bool Result =
4216 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4217 .addDef(LoadedRegister)
4218 .addUse(GR.getSPIRVTypeID(Vec3Ty))
4219 .addUse(Variable);
4220
4221 // Get the input ID index. Expecting operand is a constant immediate value,
4222 // wrapped in a type assignment.
4223 assert(I.getOperand(2).isReg());
4224 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
4225
4226 // Extract the input ID from the loaded vector value.
4227 MachineBasicBlock &BB = *I.getParent();
4228 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
4229 .addDef(ResVReg)
4230 .addUse(GR.getSPIRVTypeID(ResType))
4231 .addUse(LoadedRegister)
4232 .addImm(ThreadId);
4233 return Result && MIB.constrainAllUses(TII, TRI, RBI);
4234}
4235
4236// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
4237// Like LocalInvocationIndex
4238bool SPIRVInstructionSelector::loadBuiltinInputID(
4239 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4240 const SPIRVType *ResType, MachineInstr &I) const {
4241 MachineIRBuilder MIRBuilder(I);
4242 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4243 ResType, MIRBuilder, SPIRV::StorageClass::Input);
4244
4245 // Create new register for the input ID builtin variable.
4246 Register NewRegister =
4247 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
4248 MIRBuilder.getMRI()->setType(
4249 NewRegister,
4250 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
4251 GR.getPointerSize()));
4252 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4253
4254 // Build global variable with the necessary decorations for the input ID
4255 // builtin variable.
4257 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4258 SPIRV::StorageClass::Input, nullptr, true, false,
4259 SPIRV::LinkageType::Import, MIRBuilder, false);
4260
4261 // Load uint value from the global variable.
4262 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4263 .addDef(ResVReg)
4264 .addUse(GR.getSPIRVTypeID(ResType))
4265 .addUse(Variable);
4266
4267 return MIB.constrainAllUses(TII, TRI, RBI);
4268}
4269
4270SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
4271 MachineInstr &I) const {
4272 MachineIRBuilder MIRBuilder(I);
4273 if (Type->getOpcode() != SPIRV::OpTypeVector)
4274 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
4275
4276 uint64_t VectorSize = Type->getOperand(2).getImm();
4277 if (VectorSize == 4)
4278 return Type;
4279
4280 Register ScalarTypeReg = Type->getOperand(1).getReg();
4281 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
4282 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
4283}
4284
4285bool SPIRVInstructionSelector::loadHandleBeforePosition(
4286 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
4287 MachineInstr &Pos) const {
4288
4289 assert(HandleDef.getIntrinsicID() ==
4290 Intrinsic::spv_resource_handlefrombinding);
4291 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
4292 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
4293 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
4294 Register IndexReg = HandleDef.getOperand(5).getReg();
4295 // FIXME: The IsNonUniform flag needs to be set based on resource analysis.
4296 // https://github.com/llvm/llvm-project/issues/155701
4297 bool IsNonUniform = false;
4298 std::string Name =
4299 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
4300
4301 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
4302 MachineIRBuilder MIRBuilder(HandleDef);
4303 SPIRVType *VarType = ResType;
4304 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
4305
4306 if (IsStructuredBuffer) {
4307 VarType = GR.getPointeeType(ResType);
4308 SC = GR.getPointerStorageClass(ResType);
4309 }
4310
4311 Register VarReg =
4312 buildPointerToResource(VarType, SC, Set, Binding, ArraySize, IndexReg,
4313 IsNonUniform, Name, MIRBuilder);
4314
4315 if (IsNonUniform)
4316 buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT,
4317 {});
4318
4319 // The handle for the buffer is the pointer to the resource. For an image, the
4320 // handle is the image object. So images get an extra load.
4321 uint32_t LoadOpcode =
4322 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
4323 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
4324 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
4325 TII.get(LoadOpcode))
4326 .addDef(HandleReg)
4327 .addUse(GR.getSPIRVTypeID(ResType))
4328 .addUse(VarReg)
4329 .constrainAllUses(TII, TRI, RBI);
4330}
4331
4332namespace llvm {
4333InstructionSelector *
4335 const SPIRVSubtarget &Subtarget,
4336 const RegisterBankInfo &RBI) {
4337 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
4338}
4339} // namespace llvm
unsigned const MachineRegisterInfo * MRI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:124
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
bool hasInternalLinkage() const
bool hasLinkOnceODRLinkage() const
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:154
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:414
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:232
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:355
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1725
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:191
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:385
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:176
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:273
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264