LLVM 21.0.0git
ScalarEvolution.h
Go to the documentation of this file.
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10// categorize scalar expressions in loops. It specializes in recognizing
11// general induction variables, representing them with the abstract and opaque
12// SCEV class. Given this analysis, trip counts of loops and other important
13// properties can be obtained.
14//
15// This analysis is primarily useful for induction variable substitution and
16// strength reduction.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/SetVector.h"
34#include "llvm/IR/PassManager.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/IR/ValueMap.h"
37#include "llvm/Pass.h"
38#include <cassert>
39#include <cstdint>
40#include <memory>
41#include <optional>
42#include <utility>
43
44namespace llvm {
45
46class OverflowingBinaryOperator;
47class AssumptionCache;
48class BasicBlock;
49class Constant;
50class ConstantInt;
51class DataLayout;
52class DominatorTree;
53class GEPOperator;
54class LLVMContext;
55class Loop;
56class LoopInfo;
57class raw_ostream;
58class ScalarEvolution;
59class SCEVAddRecExpr;
60class SCEVUnknown;
61class StructType;
62class TargetLibraryInfo;
63class Type;
64enum SCEVTypes : unsigned short;
65
66extern bool VerifySCEV;
67
68/// This class represents an analyzed expression in the program. These are
69/// opaque objects that the client is not allowed to do much with directly.
70///
71class SCEV : public FoldingSetNode {
72 friend struct FoldingSetTrait<SCEV>;
73
74 /// A reference to an Interned FoldingSetNodeID for this node. The
75 /// ScalarEvolution's BumpPtrAllocator holds the data.
77
78 // The SCEV baseclass this node corresponds to
79 const SCEVTypes SCEVType;
80
81protected:
82 // Estimated complexity of this node's expression tree size.
83 const unsigned short ExpressionSize;
84
85 /// This field is initialized to zero and may be used in subclasses to store
86 /// miscellaneous information.
87 unsigned short SubclassData = 0;
88
89public:
90 /// NoWrapFlags are bitfield indices into SubclassData.
91 ///
92 /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
93 /// no-signed-wrap <NSW> properties, which are derived from the IR
94 /// operator. NSW is a misnomer that we use to mean no signed overflow or
95 /// underflow.
96 ///
97 /// AddRec expressions may have a no-self-wraparound <NW> property if, in
98 /// the integer domain, abs(step) * max-iteration(loop) <=
99 /// unsigned-max(bitwidth). This means that the recurrence will never reach
100 /// its start value if the step is non-zero. Computing the same value on
101 /// each iteration is not considered wrapping, and recurrences with step = 0
102 /// are trivially <NW>. <NW> is independent of the sign of step and the
103 /// value the add recurrence starts with.
104 ///
105 /// Note that NUW and NSW are also valid properties of a recurrence, and
106 /// either implies NW. For convenience, NW will be set for a recurrence
107 /// whenever either NUW or NSW are set.
108 ///
109 /// We require that the flag on a SCEV apply to the entire scope in which
110 /// that SCEV is defined. A SCEV's scope is set of locations dominated by
111 /// a defining location, which is in turn described by the following rules:
112 /// * A SCEVUnknown is at the point of definition of the Value.
113 /// * A SCEVConstant is defined at all points.
114 /// * A SCEVAddRec is defined starting with the header of the associated
115 /// loop.
116 /// * All other SCEVs are defined at the earlest point all operands are
117 /// defined.
118 ///
119 /// The above rules describe a maximally hoisted form (without regards to
120 /// potential control dependence). A SCEV is defined anywhere a
121 /// corresponding instruction could be defined in said maximally hoisted
122 /// form. Note that SCEVUDivExpr (currently the only expression type which
123 /// can trap) can be defined per these rules in regions where it would trap
124 /// at runtime. A SCEV being defined does not require the existence of any
125 /// instruction within the defined scope.
127 FlagAnyWrap = 0, // No guarantee.
128 FlagNW = (1 << 0), // No self-wrap.
129 FlagNUW = (1 << 1), // No unsigned wrap.
130 FlagNSW = (1 << 2), // No signed wrap.
131 NoWrapMask = (1 << 3) - 1
132 };
133
134 explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
135 unsigned short ExpressionSize)
136 : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
137 SCEV(const SCEV &) = delete;
138 SCEV &operator=(const SCEV &) = delete;
139
140 SCEVTypes getSCEVType() const { return SCEVType; }
141
142 /// Return the LLVM type of this SCEV expression.
143 Type *getType() const;
144
145 /// Return operands of this SCEV expression.
147
148 /// Return true if the expression is a constant zero.
149 bool isZero() const;
150
151 /// Return true if the expression is a constant one.
152 bool isOne() const;
153
154 /// Return true if the expression is a constant all-ones value.
155 bool isAllOnesValue() const;
156
157 /// Return true if the specified scev is negated, but not a constant.
158 bool isNonConstantNegative() const;
159
160 // Returns estimated size of the mathematical expression represented by this
161 // SCEV. The rules of its calculation are following:
162 // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
163 // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
164 // (1 + Size(Op1) + ... + Size(OpN)).
165 // This value gives us an estimation of time we need to traverse through this
166 // SCEV and all its operands recursively. We may use it to avoid performing
167 // heavy transformations on SCEVs of excessive size for sake of saving the
168 // compilation time.
169 unsigned short getExpressionSize() const {
170 return ExpressionSize;
171 }
172
173 /// Print out the internal representation of this scalar to the specified
174 /// stream. This should really only be used for debugging purposes.
175 void print(raw_ostream &OS) const;
176
177 /// This method is used for debugging.
178 void dump() const;
179};
180
181// Specialize FoldingSetTrait for SCEV to avoid needing to compute
182// temporary FoldingSetNodeID values.
183template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
184 static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
185
186 static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
187 FoldingSetNodeID &TempID) {
188 return ID == X.FastID;
189 }
190
191 static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
192 return X.FastID.ComputeHash();
193 }
194};
195
197 S.print(OS);
198 return OS;
199}
200
201/// An object of this class is returned by queries that could not be answered.
202/// For example, if you ask for the number of iterations of a linked-list
203/// traversal loop, you will get one of these. None of the standard SCEV
204/// operations are valid on this class, it is just a marker.
205struct SCEVCouldNotCompute : public SCEV {
207
208 /// Methods for support type inquiry through isa, cast, and dyn_cast:
209 static bool classof(const SCEV *S);
210};
211
212/// This class represents an assumption made using SCEV expressions which can
213/// be checked at run-time.
215 friend struct FoldingSetTrait<SCEVPredicate>;
216
217 /// A reference to an Interned FoldingSetNodeID for this node. The
218 /// ScalarEvolution's BumpPtrAllocator holds the data.
219 FoldingSetNodeIDRef FastID;
220
221public:
223
224protected:
226 ~SCEVPredicate() = default;
227 SCEVPredicate(const SCEVPredicate &) = default;
229
230public:
232
233 SCEVPredicateKind getKind() const { return Kind; }
234
235 /// Returns the estimated complexity of this predicate. This is roughly
236 /// measured in the number of run-time checks required.
237 virtual unsigned getComplexity() const { return 1; }
238
239 /// Returns true if the predicate is always true. This means that no
240 /// assumptions were made and nothing needs to be checked at run-time.
241 virtual bool isAlwaysTrue() const = 0;
242
243 /// Returns true if this predicate implies \p N.
244 virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const = 0;
245
246 /// Prints a textual representation of this predicate with an indentation of
247 /// \p Depth.
248 virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
249};
250
252 P.print(OS);
253 return OS;
254}
255
256// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
257// temporary FoldingSetNodeID values.
258template <>
260 static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
261 ID = X.FastID;
262 }
263
264 static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
265 unsigned IDHash, FoldingSetNodeID &TempID) {
266 return ID == X.FastID;
267 }
268
269 static unsigned ComputeHash(const SCEVPredicate &X,
270 FoldingSetNodeID &TempID) {
271 return X.FastID.ComputeHash();
272 }
273};
274
275/// This class represents an assumption that the expression LHS Pred RHS
276/// evaluates to true, and this can be checked at run-time.
278 /// We assume that LHS Pred RHS is true.
279 const ICmpInst::Predicate Pred;
280 const SCEV *LHS;
281 const SCEV *RHS;
282
283public:
285 const ICmpInst::Predicate Pred,
286 const SCEV *LHS, const SCEV *RHS);
287
288 /// Implementation of the SCEVPredicate interface
289 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
290 void print(raw_ostream &OS, unsigned Depth = 0) const override;
291 bool isAlwaysTrue() const override;
292
293 ICmpInst::Predicate getPredicate() const { return Pred; }
294
295 /// Returns the left hand side of the predicate.
296 const SCEV *getLHS() const { return LHS; }
297
298 /// Returns the right hand side of the predicate.
299 const SCEV *getRHS() const { return RHS; }
300
301 /// Methods for support type inquiry through isa, cast, and dyn_cast:
302 static bool classof(const SCEVPredicate *P) {
303 return P->getKind() == P_Compare;
304 }
305};
306
307/// This class represents an assumption made on an AddRec expression. Given an
308/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
309/// flags (defined below) in the first X iterations of the loop, where X is a
310/// SCEV expression returned by getPredicatedBackedgeTakenCount).
311///
312/// Note that this does not imply that X is equal to the backedge taken
313/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
314/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
315/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
316/// have more than X iterations.
317class SCEVWrapPredicate final : public SCEVPredicate {
318public:
319 /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
320 /// for FlagNUSW. The increment is considered to be signed, and a + b
321 /// (where b is the increment) is considered to wrap if:
322 /// zext(a + b) != zext(a) + sext(b)
323 ///
324 /// If Signed is a function that takes an n-bit tuple and maps to the
325 /// integer domain as the tuples value interpreted as twos complement,
326 /// and Unsigned a function that takes an n-bit tuple and maps to the
327 /// integer domain as the base two value of input tuple, then a + b
328 /// has IncrementNUSW iff:
329 ///
330 /// 0 <= Unsigned(a) + Signed(b) < 2^n
331 ///
332 /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
333 ///
334 /// Note that the IncrementNUSW flag is not commutative: if base + inc
335 /// has IncrementNUSW, then inc + base doesn't neccessarily have this
336 /// property. The reason for this is that this is used for sign/zero
337 /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
338 /// assumed. A {base,+,inc} expression is already non-commutative with
339 /// regards to base and inc, since it is interpreted as:
340 /// (((base + inc) + inc) + inc) ...
342 IncrementAnyWrap = 0, // No guarantee.
343 IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
344 IncrementNSSW = (1 << 1), // No signed with signed increment wrap
345 // (equivalent with SCEV::NSW)
346 IncrementNoWrapMask = (1 << 2) - 1
347 };
348
349 /// Convenient IncrementWrapFlags manipulation methods.
350 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
353 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
354 assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
355 "Invalid flags value!");
356 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
357 }
358
359 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
361 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
362 assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
363
364 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
365 }
366
367 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
370 assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
371 assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
372 "Invalid flags value!");
373
374 return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
375 }
376
377 /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
378 /// SCEVAddRecExpr.
379 [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
381
382private:
383 const SCEVAddRecExpr *AR;
384 IncrementWrapFlags Flags;
385
386public:
388 const SCEVAddRecExpr *AR,
389 IncrementWrapFlags Flags);
390
391 /// Returns the set assumed no overflow flags.
392 IncrementWrapFlags getFlags() const { return Flags; }
393
394 /// Implementation of the SCEVPredicate interface
395 const SCEVAddRecExpr *getExpr() const;
396 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
397 void print(raw_ostream &OS, unsigned Depth = 0) const override;
398 bool isAlwaysTrue() const override;
399
400 /// Methods for support type inquiry through isa, cast, and dyn_cast:
401 static bool classof(const SCEVPredicate *P) {
402 return P->getKind() == P_Wrap;
403 }
404};
405
406/// This class represents a composition of other SCEV predicates, and is the
407/// class that most clients will interact with. This is equivalent to a
408/// logical "AND" of all the predicates in the union.
409///
410/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
411/// ScalarEvolution::Preds folding set. This is why the \c add function is sound.
412class SCEVUnionPredicate final : public SCEVPredicate {
413private:
414 using PredicateMap =
416
417 /// Vector with references to all predicates in this union.
419
420 /// Adds a predicate to this union.
421 void add(const SCEVPredicate *N, ScalarEvolution &SE);
422
423public:
425 ScalarEvolution &SE);
426
428
429 /// Implementation of the SCEVPredicate interface
430 bool isAlwaysTrue() const override;
431 bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
432 void print(raw_ostream &OS, unsigned Depth) const override;
433
434 /// We estimate the complexity of a union predicate as the size number of
435 /// predicates in the union.
436 unsigned getComplexity() const override { return Preds.size(); }
437
438 /// Methods for support type inquiry through isa, cast, and dyn_cast:
439 static bool classof(const SCEVPredicate *P) {
440 return P->getKind() == P_Union;
441 }
442};
443
444/// The main scalar evolution driver. Because client code (intentionally)
445/// can't do much with the SCEV objects directly, they must ask this class
446/// for services.
449
450public:
451 /// An enum describing the relationship between a SCEV and a loop.
453 LoopVariant, ///< The SCEV is loop-variant (unknown).
454 LoopInvariant, ///< The SCEV is loop-invariant.
455 LoopComputable ///< The SCEV varies predictably with the loop.
456 };
457
458 /// An enum describing the relationship between a SCEV and a basic block.
460 DoesNotDominateBlock, ///< The SCEV does not dominate the block.
461 DominatesBlock, ///< The SCEV dominates the block.
462 ProperlyDominatesBlock ///< The SCEV properly dominates the block.
463 };
464
465 /// Convenient NoWrapFlags manipulation that hides enum casts and is
466 /// visible in the ScalarEvolution name space.
468 int Mask) {
469 return (SCEV::NoWrapFlags)(Flags & Mask);
470 }
471 [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
472 SCEV::NoWrapFlags OnFlags) {
473 return (SCEV::NoWrapFlags)(Flags | OnFlags);
474 }
475 [[nodiscard]] static SCEV::NoWrapFlags
477 return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
478 }
479 [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
480 SCEV::NoWrapFlags TestFlags) {
481 return TestFlags == maskFlags(Flags, TestFlags);
482 };
483
485 DominatorTree &DT, LoopInfo &LI);
488
489 LLVMContext &getContext() const { return F.getContext(); }
490
491 /// Test if values of the given type are analyzable within the SCEV
492 /// framework. This primarily includes integer types, and it can optionally
493 /// include pointer types if the ScalarEvolution class has access to
494 /// target-specific information.
495 bool isSCEVable(Type *Ty) const;
496
497 /// Return the size in bits of the specified type, for which isSCEVable must
498 /// return true.
500
501 /// Return a type with the same bitwidth as the given type and which
502 /// represents how SCEV will treat the given type, for which isSCEVable must
503 /// return true. For pointer types, this is the pointer-sized integer type.
504 Type *getEffectiveSCEVType(Type *Ty) const;
505
506 // Returns a wider type among {Ty1, Ty2}.
507 Type *getWiderType(Type *Ty1, Type *Ty2) const;
508
509 /// Return true if there exists a point in the program at which both
510 /// A and B could be operands to the same instruction.
511 /// SCEV expressions are generally assumed to correspond to instructions
512 /// which could exists in IR. In general, this requires that there exists
513 /// a use point in the program where all operands dominate the use.
514 ///
515 /// Example:
516 /// loop {
517 /// if
518 /// loop { v1 = load @global1; }
519 /// else
520 /// loop { v2 = load @global2; }
521 /// }
522 /// No SCEV with operand V1, and v2 can exist in this program.
523 bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
524
525 /// Return true if the SCEV is a scAddRecExpr or it contains
526 /// scAddRecExpr. The result will be cached in HasRecMap.
527 bool containsAddRecurrence(const SCEV *S);
528
529 /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
530 /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
531 /// no-overflow fact should be true in the context of this instruction.
533 const SCEV *LHS, const SCEV *RHS,
534 const Instruction *CtxI = nullptr);
535
536 /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
537 /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
538 /// Does not mutate the original instruction. Returns std::nullopt if it could
539 /// not deduce more precise flags than the instruction already has, otherwise
540 /// returns proven flags.
541 std::optional<SCEV::NoWrapFlags>
543
544 /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
546
547 /// Return true if the SCEV expression contains an undef value.
548 bool containsUndefs(const SCEV *S) const;
549
550 /// Return true if the SCEV expression contains a Value that has been
551 /// optimised out and is now a nullptr.
552 bool containsErasedValue(const SCEV *S) const;
553
554 /// Return a SCEV expression for the full generality of the specified
555 /// expression.
556 const SCEV *getSCEV(Value *V);
557
558 /// Return an existing SCEV for V if there is one, otherwise return nullptr.
559 const SCEV *getExistingSCEV(Value *V);
560
561 const SCEV *getConstant(ConstantInt *V);
562 const SCEV *getConstant(const APInt &Val);
563 const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
564 const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
565 const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
566 const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
567 const SCEV *getVScale(Type *Ty);
568 const SCEV *getElementCount(Type *Ty, ElementCount EC);
569 const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
570 const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
571 unsigned Depth = 0);
572 const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
573 const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
574 unsigned Depth = 0);
575 const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
576 const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
579 unsigned Depth = 0);
580 const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
582 unsigned Depth = 0) {
584 return getAddExpr(Ops, Flags, Depth);
585 }
586 const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
588 unsigned Depth = 0) {
589 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
590 return getAddExpr(Ops, Flags, Depth);
591 }
594 unsigned Depth = 0);
595 const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
597 unsigned Depth = 0) {
599 return getMulExpr(Ops, Flags, Depth);
600 }
601 const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
603 unsigned Depth = 0) {
604 SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
605 return getMulExpr(Ops, Flags, Depth);
606 }
607 const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
608 const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
609 const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
610 const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
611 SCEV::NoWrapFlags Flags);
613 const Loop *L, SCEV::NoWrapFlags Flags);
615 const Loop *L, SCEV::NoWrapFlags Flags) {
616 SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
617 return getAddRecExpr(NewOp, L, Flags);
618 }
619
620 /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
621 /// Predicates. If successful return these <AddRecExpr, Predicates>;
622 /// The function is intended to be called from PSCEV (the caller will decide
623 /// whether to actually add the predicates and carry out the rewrites).
624 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
625 createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
626
627 /// Returns an expression for a GEP
628 ///
629 /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
630 /// instead we use IndexExprs.
631 /// \p IndexExprs The expressions for the indices.
633 const SmallVectorImpl<const SCEV *> &IndexExprs);
634 const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
635 const SCEV *getMinMaxExpr(SCEVTypes Kind,
639 const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
641 const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
643 const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
645 const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
646 bool Sequential = false);
648 bool Sequential = false);
649 const SCEV *getUnknown(Value *V);
650 const SCEV *getCouldNotCompute();
651
652 /// Return a SCEV for the constant 0 of a specific type.
653 const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
654
655 /// Return a SCEV for the constant 1 of a specific type.
656 const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
657
658 /// Return a SCEV for the constant \p Power of two.
659 const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
660 assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
662 }
663
664 /// Return a SCEV for the constant -1 of a specific type.
665 const SCEV *getMinusOne(Type *Ty) {
666 return getConstant(Ty, -1, /*isSigned=*/true);
667 }
668
669 /// Return an expression for a TypeSize.
670 const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
671
672 /// Return an expression for the alloc size of AllocTy that is type IntTy
673 const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
674
675 /// Return an expression for the store size of StoreTy that is type IntTy
676 const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
677
678 /// Return an expression for offsetof on the given field with type IntTy
679 const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
680
681 /// Return the SCEV object corresponding to -V.
682 const SCEV *getNegativeSCEV(const SCEV *V,
684
685 /// Return the SCEV object corresponding to ~V.
686 const SCEV *getNotSCEV(const SCEV *V);
687
688 /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
689 ///
690 /// If the LHS and RHS are pointers which don't share a common base
691 /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
692 /// To compute the difference between two unrelated pointers, you can
693 /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
694 /// types that support it.
695 const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
697 unsigned Depth = 0);
698
699 /// Compute ceil(N / D). N and D are treated as unsigned values.
700 ///
701 /// Since SCEV doesn't have native ceiling division, this generates a
702 /// SCEV expression of the following form:
703 ///
704 /// umin(N, 1) + floor((N - umin(N, 1)) / D)
705 ///
706 /// A denominator of zero or poison is handled the same way as getUDivExpr().
707 const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
708
709 /// Return a SCEV corresponding to a conversion of the input value to the
710 /// specified type. If the type must be extended, it is zero extended.
711 const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
712 unsigned Depth = 0);
713
714 /// Return a SCEV corresponding to a conversion of the input value to the
715 /// specified type. If the type must be extended, it is sign extended.
716 const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
717 unsigned Depth = 0);
718
719 /// Return a SCEV corresponding to a conversion of the input value to the
720 /// specified type. If the type must be extended, it is zero extended. The
721 /// conversion must not be narrowing.
722 const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
723
724 /// Return a SCEV corresponding to a conversion of the input value to the
725 /// specified type. If the type must be extended, it is sign extended. The
726 /// conversion must not be narrowing.
727 const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
728
729 /// Return a SCEV corresponding to a conversion of the input value to the
730 /// specified type. If the type must be extended, it is extended with
731 /// unspecified bits. The conversion must not be narrowing.
732 const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
733
734 /// Return a SCEV corresponding to a conversion of the input value to the
735 /// specified type. The conversion must not be widening.
736 const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
737
738 /// Promote the operands to the wider of the types using zero-extension, and
739 /// then perform a umax operation with them.
740 const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
741
742 /// Promote the operands to the wider of the types using zero-extension, and
743 /// then perform a umin operation with them.
744 const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
745 bool Sequential = false);
746
747 /// Promote the operands to the wider of the types using zero-extension, and
748 /// then perform a umin operation with them. N-ary function.
750 bool Sequential = false);
751
752 /// Transitively follow the chain of pointer-type operands until reaching a
753 /// SCEV that does not have a single pointer operand. This returns a
754 /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
755 /// cases do exist.
756 const SCEV *getPointerBase(const SCEV *V);
757
758 /// Compute an expression equivalent to S - getPointerBase(S).
759 const SCEV *removePointerBase(const SCEV *S);
760
761 /// Return a SCEV expression for the specified value at the specified scope
762 /// in the program. The L value specifies a loop nest to evaluate the
763 /// expression at, where null is the top-level or a specified loop is
764 /// immediately inside of the loop.
765 ///
766 /// This method can be used to compute the exit value for a variable defined
767 /// in a loop by querying what the value will hold in the parent loop.
768 ///
769 /// In the case that a relevant loop exit value cannot be computed, the
770 /// original value V is returned.
771 const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
772
773 /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
774 const SCEV *getSCEVAtScope(Value *V, const Loop *L);
775
776 /// Test whether entry to the loop is protected by a conditional between LHS
777 /// and RHS. This is used to help avoid max expressions in loop trip
778 /// counts, and to eliminate casts.
779 bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred,
780 const SCEV *LHS, const SCEV *RHS);
781
782 /// Test whether entry to the basic block is protected by a conditional
783 /// between LHS and RHS.
785 const SCEV *LHS, const SCEV *RHS);
786
787 /// Test whether the backedge of the loop is protected by a conditional
788 /// between LHS and RHS. This is used to eliminate casts.
790 const SCEV *LHS, const SCEV *RHS);
791
792 /// A version of getTripCountFromExitCount below which always picks an
793 /// evaluation type which can not result in overflow.
794 const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
795
796 /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
797 /// count". A "trip count" is the number of times the header of the loop
798 /// will execute if an exit is taken after the specified number of backedges
799 /// have been taken. (e.g. TripCount = ExitCount + 1). Note that the
800 /// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide
801 /// enough to hold the result without overflow, result unsigned wraps with
802 /// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8)
803 const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, Type *EvalTy,
804 const Loop *L);
805
806 /// Returns the exact trip count of the loop if we can compute it, and
807 /// the result is a small constant. '0' is used to represent an unknown
808 /// or non-constant trip count. Note that a trip count is simply one more
809 /// than the backedge taken count for the loop.
810 unsigned getSmallConstantTripCount(const Loop *L);
811
812 /// Return the exact trip count for this loop if we exit through ExitingBlock.
813 /// '0' is used to represent an unknown or non-constant trip count. Note
814 /// that a trip count is simply one more than the backedge taken count for
815 /// the same exit.
816 /// This "trip count" assumes that control exits via ExitingBlock. More
817 /// precisely, it is the number of times that control will reach ExitingBlock
818 /// before taking the branch. For loops with multiple exits, it may not be
819 /// the number times that the loop header executes if the loop exits
820 /// prematurely via another branch.
821 unsigned getSmallConstantTripCount(const Loop *L,
822 const BasicBlock *ExitingBlock);
823
824 /// Returns the upper bound of the loop trip count as a normal unsigned
825 /// value.
826 /// Returns 0 if the trip count is unknown, not constant or requires
827 /// SCEV predicates and \p Predicates is nullptr.
829 const Loop *L,
830 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
831
832 /// Returns the largest constant divisor of the trip count as a normal
833 /// unsigned value, if possible. This means that the actual trip count is
834 /// always a multiple of the returned value. Returns 1 if the trip count is
835 /// unknown or not guaranteed to be the multiple of a constant., Will also
836 /// return 1 if the trip count is very large (>= 2^32).
837 /// Note that the argument is an exit count for loop L, NOT a trip count.
838 unsigned getSmallConstantTripMultiple(const Loop *L,
839 const SCEV *ExitCount);
840
841 /// Returns the largest constant divisor of the trip count of the
842 /// loop. Will return 1 if no trip count could be computed, or if a
843 /// divisor could not be found.
844 unsigned getSmallConstantTripMultiple(const Loop *L);
845
846 /// Returns the largest constant divisor of the trip count of this loop as a
847 /// normal unsigned value, if possible. This means that the actual trip
848 /// count is always a multiple of the returned value (don't forget the trip
849 /// count could very well be zero as well!). As explained in the comments
850 /// for getSmallConstantTripCount, this assumes that control exits the loop
851 /// via ExitingBlock.
852 unsigned getSmallConstantTripMultiple(const Loop *L,
853 const BasicBlock *ExitingBlock);
854
855 /// The terms "backedge taken count" and "exit count" are used
856 /// interchangeably to refer to the number of times the backedge of a loop
857 /// has executed before the loop is exited.
859 /// An expression exactly describing the number of times the backedge has
860 /// executed when a loop is exited.
862 /// A constant which provides an upper bound on the exact trip count.
864 /// An expression which provides an upper bound on the exact trip count.
866 };
867
868 /// Return the number of times the backedge executes before the given exit
869 /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
870 /// For a single exit loop, this value is equivelent to the result of
871 /// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit)
872 /// before the backedge is executed (ExitCount + 1) times. Note that there
873 /// is no guarantee about *which* exit is taken on the exiting iteration.
874 const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
875 ExitCountKind Kind = Exact);
876
877 /// Same as above except this uses the predicated backedge taken info and
878 /// may require predicates.
879 const SCEV *
880 getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock,
882 ExitCountKind Kind = Exact);
883
884 /// If the specified loop has a predictable backedge-taken count, return it,
885 /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
886 /// the number of times the loop header will be branched to from within the
887 /// loop, assuming there are no abnormal exists like exception throws. This is
888 /// one less than the trip count of the loop, since it doesn't count the first
889 /// iteration, when the header is branched to from outside the loop.
890 ///
891 /// Note that it is not valid to call this method on a loop without a
892 /// loop-invariant backedge-taken count (see
893 /// hasLoopInvariantBackedgeTakenCount).
894 const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
895
896 /// Similar to getBackedgeTakenCount, except it will add a set of
897 /// SCEV predicates to Predicates that are required to be true in order for
898 /// the answer to be correct. Predicates can be checked with run-time
899 /// checks and can be used to perform loop versioning.
901 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
902
903 /// When successful, this returns a SCEVConstant that is greater than or equal
904 /// to (i.e. a "conservative over-approximation") of the value returend by
905 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
906 /// SCEVCouldNotCompute object.
909 }
910
911 /// Similar to getConstantMaxBackedgeTakenCount, except it will add a set of
912 /// SCEV predicates to Predicates that are required to be true in order for
913 /// the answer to be correct. Predicates can be checked with run-time
914 /// checks and can be used to perform loop versioning.
916 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
917
918 /// When successful, this returns a SCEV that is greater than or equal
919 /// to (i.e. a "conservative over-approximation") of the value returend by
920 /// getBackedgeTakenCount. If such a value cannot be computed, it returns the
921 /// SCEVCouldNotCompute object.
924 }
925
926 /// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of
927 /// SCEV predicates to Predicates that are required to be true in order for
928 /// the answer to be correct. Predicates can be checked with run-time
929 /// checks and can be used to perform loop versioning.
931 const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
932
933 /// Return true if the backedge taken count is either the value returned by
934 /// getConstantMaxBackedgeTakenCount or zero.
935 bool isBackedgeTakenCountMaxOrZero(const Loop *L);
936
937 /// Return true if the specified loop has an analyzable loop-invariant
938 /// backedge-taken count.
940
941 // This method should be called by the client when it made any change that
942 // would invalidate SCEV's answers, and the client wants to remove all loop
943 // information held internally by ScalarEvolution. This is intended to be used
944 // when the alternative to forget a loop is too expensive (i.e. large loop
945 // bodies).
946 void forgetAllLoops();
947
948 /// This method should be called by the client when it has changed a loop in
949 /// a way that may effect ScalarEvolution's ability to compute a trip count,
950 /// or if the loop is deleted. This call is potentially expensive for large
951 /// loop bodies.
952 void forgetLoop(const Loop *L);
953
954 // This method invokes forgetLoop for the outermost loop of the given loop
955 // \p L, making ScalarEvolution forget about all this subtree. This needs to
956 // be done whenever we make a transform that may affect the parameters of the
957 // outer loop, such as exit counts for branches.
958 void forgetTopmostLoop(const Loop *L);
959
960 /// This method should be called by the client when it has changed a value
961 /// in a way that may effect its value, or which may disconnect it from a
962 /// def-use chain linking it to a loop.
963 void forgetValue(Value *V);
964
965 /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
966 /// such that it may no longer be trivial.
968
969 /// Called when the client has changed the disposition of values in
970 /// this loop.
971 ///
972 /// We don't have a way to invalidate per-loop dispositions. Clear and
973 /// recompute is simpler.
975
976 /// Called when the client has changed the disposition of values in
977 /// a loop or block.
978 ///
979 /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
980 /// and recompute is simpler.
981 void forgetBlockAndLoopDispositions(Value *V = nullptr);
982
983 /// Determine the minimum number of zero bits that S is guaranteed to end in
984 /// (at every loop iteration). It is, at the same time, the minimum number
985 /// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
986 /// If S is guaranteed to be 0, it returns the bitwidth of S.
988
989 /// Returns the max constant multiple of S.
991
992 // Returns the max constant multiple of S. If S is exactly 0, return 1.
994
995 /// Determine the unsigned range for a particular SCEV.
996 /// NOTE: This returns a copy of the reference returned by getRangeRef.
998 return getRangeRef(S, HINT_RANGE_UNSIGNED);
999 }
1000
1001 /// Determine the min of the unsigned range for a particular SCEV.
1003 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
1004 }
1005
1006 /// Determine the max of the unsigned range for a particular SCEV.
1008 return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
1009 }
1010
1011 /// Determine the signed range for a particular SCEV.
1012 /// NOTE: This returns a copy of the reference returned by getRangeRef.
1014 return getRangeRef(S, HINT_RANGE_SIGNED);
1015 }
1016
1017 /// Determine the min of the signed range for a particular SCEV.
1019 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1020 }
1021
1022 /// Determine the max of the signed range for a particular SCEV.
1024 return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1025 }
1026
1027 /// Test if the given expression is known to be negative.
1028 bool isKnownNegative(const SCEV *S);
1029
1030 /// Test if the given expression is known to be positive.
1031 bool isKnownPositive(const SCEV *S);
1032
1033 /// Test if the given expression is known to be non-negative.
1034 bool isKnownNonNegative(const SCEV *S);
1035
1036 /// Test if the given expression is known to be non-positive.
1037 bool isKnownNonPositive(const SCEV *S);
1038
1039 /// Test if the given expression is known to be non-zero.
1040 bool isKnownNonZero(const SCEV *S);
1041
1042 /// Test if the given expression is known to be a power of 2. OrNegative
1043 /// allows matching negative power of 2s, and OrZero allows matching 0.
1044 bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero = false,
1045 bool OrNegative = false);
1046
1047 /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1048 /// \p S by substitution of all AddRec sub-expression related to loop \p L
1049 /// with initial value of that SCEV. The second is obtained from \p S by
1050 /// substitution of all AddRec sub-expressions related to loop \p L with post
1051 /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1052 /// sub-expressions (not related to \p L) remain the same.
1053 /// If the \p S contains non-invariant unknown SCEV the function returns
1054 /// CouldNotCompute SCEV in both values of std::pair.
1055 /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1056 /// the function returns pair:
1057 /// first = {0, +, 1}<L2>
1058 /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1059 /// We can see that for the first AddRec sub-expression it was replaced with
1060 /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1061 /// increment value) for the second one. In both cases AddRec expression
1062 /// related to L2 remains the same.
1063 std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1064 const SCEV *S);
1065
1066 /// We'd like to check the predicate on every iteration of the most dominated
1067 /// loop between loops used in LHS and RHS.
1068 /// To do this we use the following list of steps:
1069 /// 1. Collect set S all loops on which either LHS or RHS depend.
1070 /// 2. If S is non-empty
1071 /// a. Let PD be the element of S which is dominated by all other elements.
1072 /// b. Let E(LHS) be value of LHS on entry of PD.
1073 /// To get E(LHS), we should just take LHS and replace all AddRecs that are
1074 /// attached to PD on with their entry values.
1075 /// Define E(RHS) in the same way.
1076 /// c. Let B(LHS) be value of L on backedge of PD.
1077 /// To get B(LHS), we should just take LHS and replace all AddRecs that are
1078 /// attached to PD on with their backedge values.
1079 /// Define B(RHS) in the same way.
1080 /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1081 /// so we can assert on that.
1082 /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1083 /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1084 bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS);
1085
1086 /// Test if the given expression is known to satisfy the condition described
1087 /// by Pred, LHS, and RHS.
1088 bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS);
1089
1090 /// Check whether the condition described by Pred, LHS, and RHS is true or
1091 /// false. If we know it, return the evaluation of this condition. If neither
1092 /// is proved, return std::nullopt.
1093 std::optional<bool> evaluatePredicate(CmpPredicate Pred, const SCEV *LHS,
1094 const SCEV *RHS);
1095
1096 /// Test if the given expression is known to satisfy the condition described
1097 /// by Pred, LHS, and RHS in the given Context.
1098 bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
1099 const Instruction *CtxI);
1100
1101 /// Check whether the condition described by Pred, LHS, and RHS is true or
1102 /// false in the given \p Context. If we know it, return the evaluation of
1103 /// this condition. If neither is proved, return std::nullopt.
1104 std::optional<bool> evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS,
1105 const SCEV *RHS,
1106 const Instruction *CtxI);
1107
1108 /// Test if the condition described by Pred, LHS, RHS is known to be true on
1109 /// every iteration of the loop of the recurrency LHS.
1111 const SCEV *RHS);
1112
1113 /// Information about the number of loop iterations for which a loop exit's
1114 /// branch condition evaluates to the not-taken path. This is a temporary
1115 /// pair of exact and max expressions that are eventually summarized in
1116 /// ExitNotTakenInfo and BackedgeTakenInfo.
1117 struct ExitLimit {
1118 const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1119 const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1120 // times
1122
1123 // Not taken either exactly ConstantMaxNotTaken or zero times
1124 bool MaxOrZero = false;
1125
1126 /// A vector of predicate guards for this ExitLimit. The result is only
1127 /// valid if all of the predicates in \c Predicates evaluate to 'true' at
1128 /// run-time.
1130
1131 /// Construct either an exact exit limit from a constant, or an unknown
1132 /// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed
1133 /// as arguments and asserts enforce that internally.
1134 /*implicit*/ ExitLimit(const SCEV *E);
1135
1136 ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1137 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1139
1140 ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1141 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1143
1144 /// Test whether this ExitLimit contains any computed information, or
1145 /// whether it's all SCEVCouldNotCompute values.
1146 bool hasAnyInfo() const {
1147 return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1148 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1149 }
1150
1151 /// Test whether this ExitLimit contains all information.
1152 bool hasFullInfo() const {
1153 return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1154 }
1155 };
1156
1157 /// Compute the number of times the backedge of the specified loop will
1158 /// execute if its exit condition were a conditional branch of ExitCond.
1159 ///
1160 /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1161 /// branch. In this case, we can assume that the loop exits only if the
1162 /// condition is true and can infer that failing to meet the condition prior
1163 /// to integer wraparound results in undefined behavior.
1164 ///
1165 /// If \p AllowPredicates is set, this call will try to use a minimal set of
1166 /// SCEV predicates in order to return an exact answer.
1167 ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1168 bool ExitIfTrue, bool ControlsOnlyExit,
1169 bool AllowPredicates = false);
1170
1171 /// A predicate is said to be monotonically increasing if may go from being
1172 /// false to being true as the loop iterates, but never the other way
1173 /// around. A predicate is said to be monotonically decreasing if may go
1174 /// from being true to being false as the loop iterates, but never the other
1175 /// way around.
1180
1181 /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1182 /// monotonically increasing or decreasing, returns
1183 /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1184 /// respectively. If we could not prove either of these facts, returns
1185 /// std::nullopt.
1186 std::optional<MonotonicPredicateType>
1188 ICmpInst::Predicate Pred);
1189
1192 const SCEV *LHS;
1193 const SCEV *RHS;
1194
1196 : Pred(Pred), LHS(LHS), RHS(RHS) {}
1197 };
1198 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1199 /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1200 /// invariants, available at L's entry. Otherwise, return std::nullopt.
1201 std::optional<LoopInvariantPredicate>
1203 const Loop *L, const Instruction *CtxI = nullptr);
1204
1205 /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1206 /// respect to L at given Context during at least first MaxIter iterations,
1207 /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1208 /// available at L's entry. Otherwise, return std::nullopt. The predicate
1209 /// should be the loop's exit condition.
1210 std::optional<LoopInvariantPredicate>
1212 const SCEV *LHS,
1213 const SCEV *RHS, const Loop *L,
1214 const Instruction *CtxI,
1215 const SCEV *MaxIter);
1216
1217 std::optional<LoopInvariantPredicate>
1219 CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1220 const Instruction *CtxI, const SCEV *MaxIter);
1221
1222 /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1223 /// iff any changes were made. If the operands are provably equal or
1224 /// unequal, LHS and RHS are set to the same value and Pred is set to either
1225 /// ICMP_EQ or ICMP_NE.
1226 bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS,
1227 const SCEV *&RHS, unsigned Depth = 0);
1228
1229 /// Return the "disposition" of the given SCEV with respect to the given
1230 /// loop.
1231 LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1232
1233 /// Return true if the value of the given SCEV is unchanging in the
1234 /// specified loop.
1235 bool isLoopInvariant(const SCEV *S, const Loop *L);
1236
1237 /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1238 /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1239 /// the header of loop L.
1240 bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1241
1242 /// Return true if the given SCEV changes value in a known way in the
1243 /// specified loop. This property being true implies that the value is
1244 /// variant in the loop AND that we can emit an expression to compute the
1245 /// value of the expression at any particular loop iteration.
1246 bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1247
1248 /// Return the "disposition" of the given SCEV with respect to the given
1249 /// block.
1251
1252 /// Return true if elements that makes up the given SCEV dominate the
1253 /// specified basic block.
1254 bool dominates(const SCEV *S, const BasicBlock *BB);
1255
1256 /// Return true if elements that makes up the given SCEV properly dominate
1257 /// the specified basic block.
1258 bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1259
1260 /// Test whether the given SCEV has Op as a direct or indirect operand.
1261 bool hasOperand(const SCEV *S, const SCEV *Op) const;
1262
1263 /// Return the size of an element read or written by Inst.
1264 const SCEV *getElementSize(Instruction *Inst);
1265
1266 void print(raw_ostream &OS) const;
1267 void verify() const;
1268 bool invalidate(Function &F, const PreservedAnalyses &PA,
1270
1271 /// Return the DataLayout associated with the module this SCEV instance is
1272 /// operating on.
1273 const DataLayout &getDataLayout() const { return DL; }
1274
1275 const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1277 const SCEV *LHS, const SCEV *RHS);
1278
1279 const SCEVPredicate *
1282
1283 /// Re-writes the SCEV according to the Predicates in \p A.
1284 const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1285 const SCEVPredicate &A);
1286 /// Tries to convert the \p S expression to an AddRec expression,
1287 /// adding additional predicates to \p Preds as required.
1289 const SCEV *S, const Loop *L,
1291
1292 /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1293 /// constant, and std::nullopt if it isn't.
1294 ///
1295 /// This is intended to be a cheaper version of getMinusSCEV. We can be
1296 /// frugal here since we just bail out of actually constructing and
1297 /// canonicalizing an expression in the cases where the result isn't going
1298 /// to be a constant.
1299 std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1300 const SCEV *RHS);
1301
1302 /// Update no-wrap flags of an AddRec. This may drop the cached info about
1303 /// this AddRec (such as range info) in case if new flags may potentially
1304 /// sharpen it.
1305 void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1306
1309 bool PreserveNUW = false;
1310 bool PreserveNSW = false;
1311 ScalarEvolution &SE;
1312
1313 LoopGuards(ScalarEvolution &SE) : SE(SE) {}
1314
1315 /// Recursively collect loop guards in \p Guards, starting from
1316 /// block \p Block with predecessor \p Pred. The intended starting point
1317 /// is to collect from a loop header and its predecessor.
1318 static void
1319 collectFromBlock(ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
1320 const BasicBlock *Block, const BasicBlock *Pred,
1322 unsigned Depth = 0);
1323
1324 /// Collect loop guards in \p Guards, starting from PHINode \p
1325 /// Phi, by calling \p collectFromBlock on the incoming blocks of
1326 /// \Phi and trying to merge the found constraints into a single
1327 /// combined one for \p Phi.
1328 static void collectFromPHI(
1330 const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks,
1332 unsigned Depth);
1333
1334 public:
1335 /// Collect rewrite map for loop guards for loop \p L, together with flags
1336 /// indicating if NUW and NSW can be preserved during rewriting.
1337 static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
1338
1339 /// Try to apply the collected loop guards to \p Expr.
1340 const SCEV *rewrite(const SCEV *Expr) const;
1341 };
1342
1343 /// Try to apply information from loop guards for \p L to \p Expr.
1344 const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1345 const SCEV *applyLoopGuards(const SCEV *Expr, const LoopGuards &Guards);
1346
1347 /// Return true if the loop has no abnormal exits. That is, if the loop
1348 /// is not infinite, it must exit through an explicit edge in the CFG.
1349 /// (As opposed to either a) throwing out of the function or b) entering a
1350 /// well defined infinite loop in some callee.)
1352 return getLoopProperties(L).HasNoAbnormalExits;
1353 }
1354
1355 /// Return true if this loop is finite by assumption. That is,
1356 /// to be infinite, it must also be undefined.
1357 bool loopIsFiniteByAssumption(const Loop *L);
1358
1359 /// Return the set of Values that, if poison, will definitively result in S
1360 /// being poison as well. The returned set may be incomplete, i.e. there can
1361 /// be additional Values that also result in S being poison.
1363 const SCEV *S);
1364
1365 /// Check whether it is poison-safe to represent the expression S using the
1366 /// instruction I. If such a replacement is performed, the poison flags of
1367 /// instructions in DropPoisonGeneratingInsts must be dropped.
1369 const SCEV *S, Instruction *I,
1370 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1371
1372 class FoldID {
1373 const SCEV *Op = nullptr;
1374 const Type *Ty = nullptr;
1375 unsigned short C;
1376
1377 public:
1378 FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1379 assert(Op);
1380 assert(Ty);
1381 }
1382
1383 FoldID(unsigned short C) : C(C) {}
1384
1385 unsigned computeHash() const {
1387 C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1388 reinterpret_cast<uintptr_t>(Ty)));
1389 }
1390
1391 bool operator==(const FoldID &RHS) const {
1392 return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1393 }
1394 };
1395
1396private:
1397 /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1398 /// Value is deleted.
1399 class SCEVCallbackVH final : public CallbackVH {
1400 ScalarEvolution *SE;
1401
1402 void deleted() override;
1403 void allUsesReplacedWith(Value *New) override;
1404
1405 public:
1406 SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1407 };
1408
1409 friend class SCEVCallbackVH;
1410 friend class SCEVExpander;
1411 friend class SCEVUnknown;
1412
1413 /// The function we are analyzing.
1414 Function &F;
1415
1416 /// Data layout of the module.
1417 const DataLayout &DL;
1418
1419 /// Does the module have any calls to the llvm.experimental.guard intrinsic
1420 /// at all? If this is false, we avoid doing work that will only help if
1421 /// thare are guards present in the IR.
1422 bool HasGuards;
1423
1424 /// The target library information for the target we are targeting.
1425 TargetLibraryInfo &TLI;
1426
1427 /// The tracker for \@llvm.assume intrinsics in this function.
1428 AssumptionCache &AC;
1429
1430 /// The dominator tree.
1431 DominatorTree &DT;
1432
1433 /// The loop information for the function we are currently analyzing.
1434 LoopInfo &LI;
1435
1436 /// This SCEV is used to represent unknown trip counts and things.
1437 std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1438
1439 /// The type for HasRecMap.
1441
1442 /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1443 HasRecMapType HasRecMap;
1444
1445 /// The type for ExprValueMap.
1448
1449 /// ExprValueMap -- This map records the original values from which
1450 /// the SCEV expr is generated from.
1451 ExprValueMapType ExprValueMap;
1452
1453 /// The type for ValueExprMap.
1454 using ValueExprMapType =
1456
1457 /// This is a cache of the values we have analyzed so far.
1458 ValueExprMapType ValueExprMap;
1459
1460 /// This is a cache for expressions that got folded to a different existing
1461 /// SCEV.
1464
1465 /// Mark predicate values currently being processed by isImpliedCond.
1466 SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1467
1468 /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1469 SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1470
1471 /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1472 SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1473
1474 // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1475 SmallPtrSet<const PHINode *, 6> PendingMerges;
1476
1477 /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1478 /// conditions dominating the backedge of a loop.
1479 bool WalkingBEDominatingConds = false;
1480
1481 /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1482 /// predicate by splitting it into a set of independent predicates.
1483 bool ProvingSplitPredicate = false;
1484
1485 /// Memoized values for the getConstantMultiple
1486 DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1487
1488 /// Return the Value set from which the SCEV expr is generated.
1489 ArrayRef<Value *> getSCEVValues(const SCEV *S);
1490
1491 /// Private helper method for the getConstantMultiple method.
1492 APInt getConstantMultipleImpl(const SCEV *S);
1493
1494 /// Information about the number of times a particular loop exit may be
1495 /// reached before exiting the loop.
1496 struct ExitNotTakenInfo {
1497 PoisoningVH<BasicBlock> ExitingBlock;
1498 const SCEV *ExactNotTaken;
1499 const SCEV *ConstantMaxNotTaken;
1500 const SCEV *SymbolicMaxNotTaken;
1502
1503 explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1504 const SCEV *ExactNotTaken,
1505 const SCEV *ConstantMaxNotTaken,
1506 const SCEV *SymbolicMaxNotTaken,
1508 : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1509 ConstantMaxNotTaken(ConstantMaxNotTaken),
1510 SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1511
1512 bool hasAlwaysTruePredicate() const {
1513 return Predicates.empty();
1514 }
1515 };
1516
1517 /// Information about the backedge-taken count of a loop. This currently
1518 /// includes an exact count and a maximum count.
1519 ///
1520 class BackedgeTakenInfo {
1521 friend class ScalarEvolution;
1522
1523 /// A list of computable exits and their not-taken counts. Loops almost
1524 /// never have more than one computable exit.
1525 SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1526
1527 /// Expression indicating the least constant maximum backedge-taken count of
1528 /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1529 /// only valid if the predicates associated with all loop exits are true.
1530 const SCEV *ConstantMax = nullptr;
1531
1532 /// Indicating if \c ExitNotTaken has an element for every exiting block in
1533 /// the loop.
1534 bool IsComplete = false;
1535
1536 /// Expression indicating the least maximum backedge-taken count of the loop
1537 /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1538 const SCEV *SymbolicMax = nullptr;
1539
1540 /// True iff the backedge is taken either exactly Max or zero times.
1541 bool MaxOrZero = false;
1542
1543 bool isComplete() const { return IsComplete; }
1544 const SCEV *getConstantMax() const { return ConstantMax; }
1545
1546 const ExitNotTakenInfo *getExitNotTaken(
1547 const BasicBlock *ExitingBlock,
1548 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1549
1550 public:
1551 BackedgeTakenInfo() = default;
1552 BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1553 BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1554
1555 using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1556
1557 /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1558 BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1559 const SCEV *ConstantMax, bool MaxOrZero);
1560
1561 /// Test whether this BackedgeTakenInfo contains any computed information,
1562 /// or whether it's all SCEVCouldNotCompute values.
1563 bool hasAnyInfo() const {
1564 return !ExitNotTaken.empty() ||
1565 !isa<SCEVCouldNotCompute>(getConstantMax());
1566 }
1567
1568 /// Test whether this BackedgeTakenInfo contains complete information.
1569 bool hasFullInfo() const { return isComplete(); }
1570
1571 /// Return an expression indicating the exact *backedge-taken*
1572 /// count of the loop if it is known or SCEVCouldNotCompute
1573 /// otherwise. If execution makes it to the backedge on every
1574 /// iteration (i.e. there are no abnormal exists like exception
1575 /// throws and thread exits) then this is the number of times the
1576 /// loop header will execute minus one.
1577 ///
1578 /// If the SCEV predicate associated with the answer can be different
1579 /// from AlwaysTrue, we must add a (non null) Predicates argument.
1580 /// The SCEV predicate associated with the answer will be added to
1581 /// Predicates. A run-time check needs to be emitted for the SCEV
1582 /// predicate in order for the answer to be valid.
1583 ///
1584 /// Note that we should always know if we need to pass a predicate
1585 /// argument or not from the way the ExitCounts vector was computed.
1586 /// If we allowed SCEV predicates to be generated when populating this
1587 /// vector, this information can contain them and therefore a
1588 /// SCEVPredicate argument should be added to getExact.
1589 const SCEV *getExact(
1590 const Loop *L, ScalarEvolution *SE,
1591 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1592
1593 /// Return the number of times this loop exit may fall through to the back
1594 /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1595 /// this block before this number of iterations, but may exit via another
1596 /// block. If \p Predicates is null the function returns CouldNotCompute if
1597 /// predicates are required, otherwise it fills in the required predicates.
1598 const SCEV *getExact(
1599 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1600 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1601 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1602 return ENT->ExactNotTaken;
1603 else
1604 return SE->getCouldNotCompute();
1605 }
1606
1607 /// Get the constant max backedge taken count for the loop.
1608 const SCEV *getConstantMax(
1609 ScalarEvolution *SE,
1610 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
1611
1612 /// Get the constant max backedge taken count for the particular loop exit.
1613 const SCEV *getConstantMax(
1614 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1615 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1616 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1617 return ENT->ConstantMaxNotTaken;
1618 else
1619 return SE->getCouldNotCompute();
1620 }
1621
1622 /// Get the symbolic max backedge taken count for the loop.
1623 const SCEV *getSymbolicMax(
1624 const Loop *L, ScalarEvolution *SE,
1625 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
1626
1627 /// Get the symbolic max backedge taken count for the particular loop exit.
1628 const SCEV *getSymbolicMax(
1629 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1630 SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
1631 if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1632 return ENT->SymbolicMaxNotTaken;
1633 else
1634 return SE->getCouldNotCompute();
1635 }
1636
1637 /// Return true if the number of times this backedge is taken is either the
1638 /// value returned by getConstantMax or zero.
1639 bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1640 };
1641
1642 /// Cache the backedge-taken count of the loops for this function as they
1643 /// are computed.
1644 DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1645
1646 /// Cache the predicated backedge-taken count of the loops for this
1647 /// function as they are computed.
1648 DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1649
1650 /// Loops whose backedge taken counts directly use this non-constant SCEV.
1651 DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1652 BECountUsers;
1653
1654 /// This map contains entries for all of the PHI instructions that we
1655 /// attempt to compute constant evolutions for. This allows us to avoid
1656 /// potentially expensive recomputation of these properties. An instruction
1657 /// maps to null if we are unable to compute its exit value.
1658 DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1659
1660 /// This map contains entries for all the expressions that we attempt to
1661 /// compute getSCEVAtScope information for, which can be expensive in
1662 /// extreme cases.
1663 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1664 ValuesAtScopes;
1665
1666 /// Reverse map for invalidation purposes: Stores of which SCEV and which
1667 /// loop this is the value-at-scope of.
1668 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1669 ValuesAtScopesUsers;
1670
1671 /// Memoized computeLoopDisposition results.
1672 DenseMap<const SCEV *,
1673 SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1674 LoopDispositions;
1675
1676 struct LoopProperties {
1677 /// Set to true if the loop contains no instruction that can abnormally exit
1678 /// the loop (i.e. via throwing an exception, by terminating the thread
1679 /// cleanly or by infinite looping in a called function). Strictly
1680 /// speaking, the last one is not leaving the loop, but is identical to
1681 /// leaving the loop for reasoning about undefined behavior.
1682 bool HasNoAbnormalExits;
1683
1684 /// Set to true if the loop contains no instruction that can have side
1685 /// effects (i.e. via throwing an exception, volatile or atomic access).
1686 bool HasNoSideEffects;
1687 };
1688
1689 /// Cache for \c getLoopProperties.
1690 DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1691
1692 /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1693 LoopProperties getLoopProperties(const Loop *L);
1694
1695 bool loopHasNoSideEffects(const Loop *L) {
1696 return getLoopProperties(L).HasNoSideEffects;
1697 }
1698
1699 /// Compute a LoopDisposition value.
1700 LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1701
1702 /// Memoized computeBlockDisposition results.
1703 DenseMap<
1704 const SCEV *,
1705 SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1706 BlockDispositions;
1707
1708 /// Compute a BlockDisposition value.
1709 BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1710
1711 /// Stores all SCEV that use a given SCEV as its direct operand.
1712 DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1713
1714 /// Memoized results from getRange
1715 DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1716
1717 /// Memoized results from getRange
1718 DenseMap<const SCEV *, ConstantRange> SignedRanges;
1719
1720 /// Used to parameterize getRange
1721 enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1722
1723 /// Set the memoized range for the given SCEV.
1724 const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1725 ConstantRange CR) {
1726 DenseMap<const SCEV *, ConstantRange> &Cache =
1727 Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1728
1729 auto Pair = Cache.insert_or_assign(S, std::move(CR));
1730 return Pair.first->second;
1731 }
1732
1733 /// Determine the range for a particular SCEV.
1734 /// NOTE: This returns a reference to an entry in a cache. It must be
1735 /// copied if its needed for longer.
1736 const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1737 unsigned Depth = 0);
1738
1739 /// Determine the range for a particular SCEV, but evaluates ranges for
1740 /// operands iteratively first.
1741 const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1742
1743 /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1744 /// Helper for \c getRange.
1745 ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1746 const APInt &MaxBECount);
1747
1748 /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1749 /// Start,+,\p Step}<nw>.
1750 ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1751 const SCEV *MaxBECount,
1752 unsigned BitWidth,
1753 RangeSignHint SignHint);
1754
1755 /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1756 /// Step} by "factoring out" a ternary expression from the add recurrence.
1757 /// Helper called by \c getRange.
1758 ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1759 const APInt &MaxBECount);
1760
1761 /// If the unknown expression U corresponds to a simple recurrence, return
1762 /// a constant range which represents the entire recurrence. Note that
1763 /// *add* recurrences with loop invariant steps aren't represented by
1764 /// SCEVUnknowns and thus don't use this mechanism.
1765 ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1766
1767 /// We know that there is no SCEV for the specified value. Analyze the
1768 /// expression recursively.
1769 const SCEV *createSCEV(Value *V);
1770
1771 /// We know that there is no SCEV for the specified value. Create a new SCEV
1772 /// for \p V iteratively.
1773 const SCEV *createSCEVIter(Value *V);
1774 /// Collect operands of \p V for which SCEV expressions should be constructed
1775 /// first. Returns a SCEV directly if it can be constructed trivially for \p
1776 /// V.
1777 const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1778
1779 /// Returns SCEV for the first operand of a phi if all phi operands have
1780 /// identical opcodes and operands.
1781 const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
1782
1783 /// Provide the special handling we need to analyze PHI SCEVs.
1784 const SCEV *createNodeForPHI(PHINode *PN);
1785
1786 /// Helper function called from createNodeForPHI.
1787 const SCEV *createAddRecFromPHI(PHINode *PN);
1788
1789 /// A helper function for createAddRecFromPHI to handle simple cases.
1790 const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1791 Value *StartValueV);
1792
1793 /// Helper function called from createNodeForPHI.
1794 const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1795
1796 /// Provide special handling for a select-like instruction (currently this
1797 /// is either a select instruction or a phi node). \p Ty is the type of the
1798 /// instruction being processed, that is assumed equivalent to
1799 /// "Cond ? TrueVal : FalseVal".
1800 std::optional<const SCEV *>
1801 createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1802 Value *TrueVal, Value *FalseVal);
1803
1804 /// See if we can model this select-like instruction via umin_seq expression.
1805 const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1806 Value *TrueVal,
1807 Value *FalseVal);
1808
1809 /// Given a value \p V, which is a select-like instruction (currently this is
1810 /// either a select instruction or a phi node), which is assumed equivalent to
1811 /// Cond ? TrueVal : FalseVal
1812 /// see if we can model it as a SCEV expression.
1813 const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1814 Value *FalseVal);
1815
1816 /// Provide the special handling we need to analyze GEP SCEVs.
1817 const SCEV *createNodeForGEP(GEPOperator *GEP);
1818
1819 /// Implementation code for getSCEVAtScope; called at most once for each
1820 /// SCEV+Loop pair.
1821 const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1822
1823 /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1824 /// values if the loop hasn't been analyzed yet. The returned result is
1825 /// guaranteed not to be predicated.
1826 BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1827
1828 /// Similar to getBackedgeTakenInfo, but will add predicates as required
1829 /// with the purpose of returning complete information.
1830 BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1831
1832 /// Compute the number of times the specified loop will iterate.
1833 /// If AllowPredicates is set, we will create new SCEV predicates as
1834 /// necessary in order to return an exact answer.
1835 BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1836 bool AllowPredicates = false);
1837
1838 /// Compute the number of times the backedge of the specified loop will
1839 /// execute if it exits via the specified block. If AllowPredicates is set,
1840 /// this call will try to use a minimal set of SCEV predicates in order to
1841 /// return an exact answer.
1842 ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1843 bool IsOnlyExit, bool AllowPredicates = false);
1844
1845 // Helper functions for computeExitLimitFromCond to avoid exponential time
1846 // complexity.
1847
1848 class ExitLimitCache {
1849 // It may look like we need key on the whole (L, ExitIfTrue,
1850 // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1851 // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1852 // vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember
1853 // the initial values of the other values to assert our assumption.
1854 SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1855
1856 const Loop *L;
1857 bool ExitIfTrue;
1858 bool AllowPredicates;
1859
1860 public:
1861 ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1862 : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1863
1864 std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1865 bool ExitIfTrue, bool ControlsOnlyExit,
1866 bool AllowPredicates);
1867
1868 void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1869 bool ControlsOnlyExit, bool AllowPredicates,
1870 const ExitLimit &EL);
1871 };
1872
1873 using ExitLimitCacheTy = ExitLimitCache;
1874
1875 ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1876 const Loop *L, Value *ExitCond,
1877 bool ExitIfTrue,
1878 bool ControlsOnlyExit,
1879 bool AllowPredicates);
1880 ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1881 Value *ExitCond, bool ExitIfTrue,
1882 bool ControlsOnlyExit,
1883 bool AllowPredicates);
1884 std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1885 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1886 bool ControlsOnlyExit, bool AllowPredicates);
1887
1888 /// Compute the number of times the backedge of the specified loop will
1889 /// execute if its exit condition were a conditional branch of the ICmpInst
1890 /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1891 /// to use a minimal set of SCEV predicates in order to return an exact
1892 /// answer.
1893 ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1894 bool ExitIfTrue,
1895 bool IsSubExpr,
1896 bool AllowPredicates = false);
1897
1898 /// Variant of previous which takes the components representing an ICmp
1899 /// as opposed to the ICmpInst itself. Note that the prior version can
1900 /// return more precise results in some cases and is preferred when caller
1901 /// has a materialized ICmp.
1902 ExitLimit computeExitLimitFromICmp(const Loop *L, CmpPredicate Pred,
1903 const SCEV *LHS, const SCEV *RHS,
1904 bool IsSubExpr,
1905 bool AllowPredicates = false);
1906
1907 /// Compute the number of times the backedge of the specified loop will
1908 /// execute if its exit condition were a switch with a single exiting case
1909 /// to ExitingBB.
1910 ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1911 SwitchInst *Switch,
1912 BasicBlock *ExitingBB,
1913 bool IsSubExpr);
1914
1915 /// Compute the exit limit of a loop that is controlled by a
1916 /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
1917 /// count in these cases (since SCEV has no way of expressing them), but we
1918 /// can still sometimes compute an upper bound.
1919 ///
1920 /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1921 /// RHS`.
1922 ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1923 ICmpInst::Predicate Pred);
1924
1925 /// If the loop is known to execute a constant number of times (the
1926 /// condition evolves only from constants), try to evaluate a few iterations
1927 /// of the loop until we get the exit condition gets a value of ExitWhen
1928 /// (true or false). If we cannot evaluate the exit count of the loop,
1929 /// return CouldNotCompute.
1930 const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1931 bool ExitWhen);
1932
1933 /// Return the number of times an exit condition comparing the specified
1934 /// value to zero will execute. If not computable, return CouldNotCompute.
1935 /// If AllowPredicates is set, this call will try to use a minimal set of
1936 /// SCEV predicates in order to return an exact answer.
1937 ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1938 bool AllowPredicates = false);
1939
1940 /// Return the number of times an exit condition checking the specified
1941 /// value for nonzero will execute. If not computable, return
1942 /// CouldNotCompute.
1943 ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1944
1945 /// Return the number of times an exit condition containing the specified
1946 /// less-than comparison will execute. If not computable, return
1947 /// CouldNotCompute.
1948 ///
1949 /// \p isSigned specifies whether the less-than is signed.
1950 ///
1951 /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
1952 /// the branch (loops exits only if condition is true). In this case, we can
1953 /// use NoWrapFlags to skip overflow checks.
1954 ///
1955 /// If \p AllowPredicates is set, this call will try to use a minimal set of
1956 /// SCEV predicates in order to return an exact answer.
1957 ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1958 bool isSigned, bool ControlsOnlyExit,
1959 bool AllowPredicates = false);
1960
1961 ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1962 bool isSigned, bool IsSubExpr,
1963 bool AllowPredicates = false);
1964
1965 /// Return a predecessor of BB (which may not be an immediate predecessor)
1966 /// which has exactly one successor from which BB is reachable, or null if
1967 /// no such block is found.
1968 std::pair<const BasicBlock *, const BasicBlock *>
1969 getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1970
1971 /// Test whether the condition described by Pred, LHS, and RHS is true
1972 /// whenever the given FoundCondValue value evaluates to true in given
1973 /// Context. If Context is nullptr, then the found predicate is true
1974 /// everywhere. LHS and FoundLHS may have different type width.
1975 bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
1976 const Value *FoundCondValue, bool Inverse,
1977 const Instruction *Context = nullptr);
1978
1979 /// Test whether the condition described by Pred, LHS, and RHS is true
1980 /// whenever the given FoundCondValue value evaluates to true in given
1981 /// Context. If Context is nullptr, then the found predicate is true
1982 /// everywhere. LHS and FoundLHS must have same type width.
1983 bool isImpliedCondBalancedTypes(CmpPredicate Pred, const SCEV *LHS,
1984 const SCEV *RHS, CmpPredicate FoundPred,
1985 const SCEV *FoundLHS, const SCEV *FoundRHS,
1986 const Instruction *CtxI);
1987
1988 /// Test whether the condition described by Pred, LHS, and RHS is true
1989 /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1990 /// true in given Context. If Context is nullptr, then the found predicate is
1991 /// true everywhere.
1992 bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
1993 CmpPredicate FoundPred, const SCEV *FoundLHS,
1994 const SCEV *FoundRHS,
1995 const Instruction *Context = nullptr);
1996
1997 /// Test whether the condition described by Pred, LHS, and RHS is true
1998 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1999 /// true in given Context. If Context is nullptr, then the found predicate is
2000 /// true everywhere.
2001 bool isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS,
2002 const SCEV *RHS, const SCEV *FoundLHS,
2003 const SCEV *FoundRHS,
2004 const Instruction *Context = nullptr);
2005
2006 /// Test whether the condition described by Pred, LHS, and RHS is true
2007 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2008 /// true. Here LHS is an operation that includes FoundLHS as one of its
2009 /// arguments.
2010 bool isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS,
2011 const SCEV *RHS, const SCEV *FoundLHS,
2012 const SCEV *FoundRHS, unsigned Depth = 0);
2013
2014 /// Test whether the condition described by Pred, LHS, and RHS is true.
2015 /// Use only simple non-recursive types of checks, such as range analysis etc.
2016 bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred, const SCEV *LHS,
2017 const SCEV *RHS);
2018
2019 /// Test whether the condition described by Pred, LHS, and RHS is true
2020 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2021 /// true.
2022 bool isImpliedCondOperandsHelper(CmpPredicate Pred, const SCEV *LHS,
2023 const SCEV *RHS, const SCEV *FoundLHS,
2024 const SCEV *FoundRHS);
2025
2026 /// Test whether the condition described by Pred, LHS, and RHS is true
2027 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2028 /// true. Utility function used by isImpliedCondOperands. Tries to get
2029 /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
2030 bool isImpliedCondOperandsViaRanges(CmpPredicate Pred, const SCEV *LHS,
2031 const SCEV *RHS, CmpPredicate FoundPred,
2032 const SCEV *FoundLHS,
2033 const SCEV *FoundRHS);
2034
2035 /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
2036 /// by a call to @llvm.experimental.guard in \p BB.
2037 bool isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred,
2038 const SCEV *LHS, const SCEV *RHS);
2039
2040 /// Test whether the condition described by Pred, LHS, and RHS is true
2041 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2042 /// true.
2043 ///
2044 /// This routine tries to rule out certain kinds of integer overflow, and
2045 /// then tries to reason about arithmetic properties of the predicates.
2046 bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2047 const SCEV *RHS, const SCEV *FoundLHS,
2048 const SCEV *FoundRHS);
2049
2050 /// Test whether the condition described by Pred, LHS, and RHS is true
2051 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2052 /// true.
2053 ///
2054 /// This routine tries to weaken the known condition basing on fact that
2055 /// FoundLHS is an AddRec.
2056 bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred, const SCEV *LHS,
2057 const SCEV *RHS,
2058 const SCEV *FoundLHS,
2059 const SCEV *FoundRHS,
2060 const Instruction *CtxI);
2061
2062 /// Test whether the condition described by Pred, LHS, and RHS is true
2063 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2064 /// true.
2065 ///
2066 /// This routine tries to figure out predicate for Phis which are SCEVUnknown
2067 /// if it is true for every possible incoming value from their respective
2068 /// basic blocks.
2069 bool isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
2070 const SCEV *FoundLHS, const SCEV *FoundRHS,
2071 unsigned Depth);
2072
2073 /// Test whether the condition described by Pred, LHS, and RHS is true
2074 /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2075 /// true.
2076 ///
2077 /// This routine tries to reason about shifts.
2078 bool isImpliedCondOperandsViaShift(CmpPredicate Pred, const SCEV *LHS,
2079 const SCEV *RHS, const SCEV *FoundLHS,
2080 const SCEV *FoundRHS);
2081
2082 /// If we know that the specified Phi is in the header of its containing
2083 /// loop, we know the loop executes a constant number of times, and the PHI
2084 /// node is just a recurrence involving constants, fold it.
2085 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2086 const Loop *L);
2087
2088 /// Test if the given expression is known to satisfy the condition described
2089 /// by Pred and the known constant ranges of LHS and RHS.
2090 bool isKnownPredicateViaConstantRanges(CmpPredicate Pred, const SCEV *LHS,
2091 const SCEV *RHS);
2092
2093 /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2094 /// integer overflow.
2095 ///
2096 /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2097 /// positive.
2098 bool isKnownPredicateViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
2099 const SCEV *RHS);
2100
2101 /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2102 /// prove them individually.
2103 bool isKnownPredicateViaSplitting(CmpPredicate Pred, const SCEV *LHS,
2104 const SCEV *RHS);
2105
2106 /// Try to match the Expr as "(L + R)<Flags>".
2107 bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2108 SCEV::NoWrapFlags &Flags);
2109
2110 /// Forget predicated/non-predicated backedge taken counts for the given loop.
2111 void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2112
2113 /// Drop memoized information for all \p SCEVs.
2114 void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2115
2116 /// Helper for forgetMemoizedResults.
2117 void forgetMemoizedResultsImpl(const SCEV *S);
2118
2119 /// Iterate over instructions in \p Worklist and their users. Erase entries
2120 /// from ValueExprMap and collect SCEV expressions in \p ToForget
2121 void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2122 SmallPtrSetImpl<Instruction *> &Visited,
2123 SmallVectorImpl<const SCEV *> &ToForget);
2124
2125 /// Erase Value from ValueExprMap and ExprValueMap.
2126 void eraseValueFromMap(Value *V);
2127
2128 /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2129 void insertValueToMap(Value *V, const SCEV *S);
2130
2131 /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2132 /// pointer.
2133 bool checkValidity(const SCEV *S) const;
2134
2135 /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2136 /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
2137 /// equivalent to proving no signed (resp. unsigned) wrap in
2138 /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2139 /// (resp. `SCEVZeroExtendExpr`).
2140 template <typename ExtendOpTy>
2141 bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2142 const Loop *L);
2143
2144 /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2145 SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2146
2147 /// Try to prove NSW on \p AR by proving facts about conditions known on
2148 /// entry and backedge.
2149 SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2150
2151 /// Try to prove NUW on \p AR by proving facts about conditions known on
2152 /// entry and backedge.
2153 SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2154
2155 std::optional<MonotonicPredicateType>
2156 getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2157 ICmpInst::Predicate Pred);
2158
2159 /// Return SCEV no-wrap flags that can be proven based on reasoning about
2160 /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2161 /// would trigger undefined behavior on overflow.
2162 SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2163
2164 /// Return a scope which provides an upper bound on the defining scope of
2165 /// 'S'. Specifically, return the first instruction in said bounding scope.
2166 /// Return nullptr if the scope is trivial (function entry).
2167 /// (See scope definition rules associated with flag discussion above)
2168 const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2169
2170 /// Return a scope which provides an upper bound on the defining scope for
2171 /// a SCEV with the operands in Ops. The outparam Precise is set if the
2172 /// bound found is a precise bound (i.e. must be the defining scope.)
2173 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2174 bool &Precise);
2175
2176 /// Wrapper around the above for cases which don't care if the bound
2177 /// is precise.
2178 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2179
2180 /// Given two instructions in the same function, return true if we can
2181 /// prove B must execute given A executes.
2182 bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2183 const Instruction *B);
2184
2185 /// Returns true if \p Op is guaranteed not to cause immediate UB.
2186 bool isGuaranteedNotToCauseUB(const SCEV *Op);
2187
2188 /// Returns true if \p Op is guaranteed to not be poison.
2189 static bool isGuaranteedNotToBePoison(const SCEV *Op);
2190
2191 /// Return true if the SCEV corresponding to \p I is never poison. Proving
2192 /// this is more complex than proving that just \p I is never poison, since
2193 /// SCEV commons expressions across control flow, and you can have cases
2194 /// like:
2195 ///
2196 /// idx0 = a + b;
2197 /// ptr[idx0] = 100;
2198 /// if (<condition>) {
2199 /// idx1 = a +nsw b;
2200 /// ptr[idx1] = 200;
2201 /// }
2202 ///
2203 /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2204 /// hence not sign-overflow) only if "<condition>" is true. Since both
2205 /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2206 /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2207 bool isSCEVExprNeverPoison(const Instruction *I);
2208
2209 /// This is like \c isSCEVExprNeverPoison but it specifically works for
2210 /// instructions that will get mapped to SCEV add recurrences. Return true
2211 /// if \p I will never generate poison under the assumption that \p I is an
2212 /// add recurrence on the loop \p L.
2213 bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2214
2215 /// Similar to createAddRecFromPHI, but with the additional flexibility of
2216 /// suggesting runtime overflow checks in case casts are encountered.
2217 /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2218 /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2219 /// into an AddRec, assuming some predicates; The function then returns the
2220 /// AddRec and the predicates as a pair, and caches this pair in
2221 /// PredicatedSCEVRewrites.
2222 /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2223 /// itself (with no predicates) is recorded, and a nullptr with an empty
2224 /// predicates vector is returned as a pair.
2225 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2226 createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2227
2228 /// Compute the maximum backedge count based on the range of values
2229 /// permitted by Start, End, and Stride. This is for loops of the form
2230 /// {Start, +, Stride} LT End.
2231 ///
2232 /// Preconditions:
2233 /// * the induction variable is known to be positive.
2234 /// * the induction variable is assumed not to overflow (i.e. either it
2235 /// actually doesn't, or we'd have to immediately execute UB)
2236 /// We *don't* assert these preconditions so please be careful.
2237 const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2238 const SCEV *End, unsigned BitWidth,
2239 bool IsSigned);
2240
2241 /// Verify if an linear IV with positive stride can overflow when in a
2242 /// less-than comparison, knowing the invariant term of the comparison,
2243 /// the stride.
2244 bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2245
2246 /// Verify if an linear IV with negative stride can overflow when in a
2247 /// greater-than comparison, knowing the invariant term of the comparison,
2248 /// the stride.
2249 bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2250
2251 /// Get add expr already created or create a new one.
2252 const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2253 SCEV::NoWrapFlags Flags);
2254
2255 /// Get mul expr already created or create a new one.
2256 const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2257 SCEV::NoWrapFlags Flags);
2258
2259 // Get addrec expr already created or create a new one.
2260 const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2261 const Loop *L, SCEV::NoWrapFlags Flags);
2262
2263 /// Return x if \p Val is f(x) where f is a 1-1 function.
2264 const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2265
2266 /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2267 /// A loop is considered "used" by an expression if it contains
2268 /// an add rec on said loop.
2269 void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2270
2271 /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2272 /// Assign A and B to LHS and RHS, respectively.
2273 bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2274
2275 /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2276 /// `UniqueSCEVs`. Return if found, else nullptr.
2277 SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2278
2279 /// Get reachable blocks in this function, making limited use of SCEV
2280 /// reasoning about conditions.
2281 void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2282 Function &F);
2283
2284 /// Return the given SCEV expression with a new set of operands.
2285 /// This preserves the origial nowrap flags.
2286 const SCEV *getWithOperands(const SCEV *S,
2287 SmallVectorImpl<const SCEV *> &NewOps);
2288
2289 FoldingSet<SCEV> UniqueSCEVs;
2290 FoldingSet<SCEVPredicate> UniquePreds;
2291 BumpPtrAllocator SCEVAllocator;
2292
2293 /// This maps loops to a list of addrecs that directly use said loop.
2294 DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2295
2296 /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2297 /// they can be rewritten into under certain predicates.
2298 DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2299 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2300 PredicatedSCEVRewrites;
2301
2302 /// Set of AddRecs for which proving NUW via an induction has already been
2303 /// tried.
2304 SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2305
2306 /// Set of AddRecs for which proving NSW via an induction has already been
2307 /// tried.
2308 SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2309
2310 /// The head of a linked list of all SCEVUnknown values that have been
2311 /// allocated. This is used by releaseMemory to locate them all and call
2312 /// their destructors.
2313 SCEVUnknown *FirstUnknown = nullptr;
2314};
2315
2316/// Analysis pass that exposes the \c ScalarEvolution for a function.
2318 : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2320
2321 static AnalysisKey Key;
2322
2323public:
2325
2327};
2328
2329/// Verifier pass for the \c ScalarEvolutionAnalysis results.
2331 : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2332public:
2334 static bool isRequired() { return true; }
2335};
2336
2337/// Printer pass for the \c ScalarEvolutionAnalysis results.
2339 : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2340 raw_ostream &OS;
2341
2342public:
2344
2346
2347 static bool isRequired() { return true; }
2348};
2349
2351 std::unique_ptr<ScalarEvolution> SE;
2352
2353public:
2354 static char ID;
2355
2357
2358 ScalarEvolution &getSE() { return *SE; }
2359 const ScalarEvolution &getSE() const { return *SE; }
2360
2361 bool runOnFunction(Function &F) override;
2362 void releaseMemory() override;
2363 void getAnalysisUsage(AnalysisUsage &AU) const override;
2364 void print(raw_ostream &OS, const Module * = nullptr) const override;
2365 void verifyAnalysis() const override;
2366};
2367
2368/// An interface layer with SCEV used to manage how we see SCEV expressions
2369/// for values in the context of existing predicates. We can add new
2370/// predicates, but we cannot remove them.
2371///
2372/// This layer has multiple purposes:
2373/// - provides a simple interface for SCEV versioning.
2374/// - guarantees that the order of transformations applied on a SCEV
2375/// expression for a single Value is consistent across two different
2376/// getSCEV calls. This means that, for example, once we've obtained
2377/// an AddRec expression for a certain value through expression
2378/// rewriting, we will continue to get an AddRec expression for that
2379/// Value.
2380/// - lowers the number of expression rewrites.
2382public:
2384
2385 const SCEVPredicate &getPredicate() const;
2386
2387 /// Returns the SCEV expression of V, in the context of the current SCEV
2388 /// predicate. The order of transformations applied on the expression of V
2389 /// returned by ScalarEvolution is guaranteed to be preserved, even when
2390 /// adding new predicates.
2391 const SCEV *getSCEV(Value *V);
2392
2393 /// Get the (predicated) backedge count for the analyzed loop.
2394 const SCEV *getBackedgeTakenCount();
2395
2396 /// Get the (predicated) symbolic max backedge count for the analyzed loop.
2398
2399 /// Returns the upper bound of the loop trip count as a normal unsigned
2400 /// value, or 0 if the trip count is unknown.
2402
2403 /// Adds a new predicate.
2404 void addPredicate(const SCEVPredicate &Pred);
2405
2406 /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2407 /// predicates. If we can't transform the expression into an AddRecExpr we
2408 /// return nullptr and not add additional SCEV predicates to the current
2409 /// context.
2410 const SCEVAddRecExpr *getAsAddRec(Value *V);
2411
2412 /// Proves that V doesn't overflow by adding SCEV predicate.
2414
2415 /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2416 /// predicate.
2418
2419 /// Returns the ScalarEvolution analysis used.
2420 ScalarEvolution *getSE() const { return &SE; }
2421
2422 /// We need to explicitly define the copy constructor because of FlagsMap.
2424
2425 /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2426 /// The printed text is indented by \p Depth.
2427 void print(raw_ostream &OS, unsigned Depth) const;
2428
2429 /// Check if \p AR1 and \p AR2 are equal, while taking into account
2430 /// Equal predicates in Preds.
2432 const SCEVAddRecExpr *AR2) const;
2433
2434private:
2435 /// Increments the version number of the predicate. This needs to be called
2436 /// every time the SCEV predicate changes.
2437 void updateGeneration();
2438
2439 /// Holds a SCEV and the version number of the SCEV predicate used to
2440 /// perform the rewrite of the expression.
2441 using RewriteEntry = std::pair<unsigned, const SCEV *>;
2442
2443 /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2444 /// number. If this number doesn't match the current Generation, we will
2445 /// need to do a rewrite. To preserve the transformation order of previous
2446 /// rewrites, we will rewrite the previous result instead of the original
2447 /// SCEV.
2449
2450 /// Records what NoWrap flags we've added to a Value *.
2452
2453 /// The ScalarEvolution analysis.
2454 ScalarEvolution &SE;
2455
2456 /// The analyzed Loop.
2457 const Loop &L;
2458
2459 /// The SCEVPredicate that forms our context. We will rewrite all
2460 /// expressions assuming that this predicate true.
2461 std::unique_ptr<SCEVUnionPredicate> Preds;
2462
2463 /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2464 /// expression we mark it with the version of the predicate. We use this to
2465 /// figure out if the predicate has changed from the last rewrite of the
2466 /// SCEV. If so, we need to perform a new rewrite.
2467 unsigned Generation = 0;
2468
2469 /// The backedge taken count.
2470 const SCEV *BackedgeCount = nullptr;
2471
2472 /// The symbolic backedge taken count.
2473 const SCEV *SymbolicMaxBackedgeCount = nullptr;
2474
2475 /// The constant max trip count for the loop.
2476 std::optional<unsigned> SmallConstantMaxTripCount;
2477};
2478
2479template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2482 return ID;
2483 }
2486 return ID;
2487 }
2488
2489 static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2490 return Val.computeHash();
2491 }
2492
2495 return LHS == RHS;
2496 }
2497};
2498
2499} // end namespace llvm
2500
2501#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
RelocType Type
Definition: COFFYAML.cpp:410
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
Hexagon Common GEP
This header defines various interfaces for pass management in LLVM.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
#define P(N)
This file defines the PointerIntPair class.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:239
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:292
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
Value handle with callbacks on RAUW and destruction.
Definition: ValueHandle.h:383
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This class represents a range of values.
Definition: ConstantRange.h:47
APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Node - This class is used to maintain the singly linked bucket list in a folding set.
Definition: FoldingSet.h:138
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
Definition: FoldingSet.h:290
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:327
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:77
Value handle that poisons itself if the Value is deleted.
Definition: ValueHandle.h:449
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
This node represents a polynomial recurrence on the trip count of the specified loop.
This class represents an assumption that the expression LHS Pred RHS evaluates to true,...
const SCEV * getRHS() const
Returns the right hand side of the predicate.
ICmpInst::Predicate getPredicate() const
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEV * getLHS() const
Returns the left hand side of the predicate.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Implementation of the SCEVPredicate interface.
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicateKind getKind() const
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
SCEVPredicate & operator=(const SCEVPredicate &)=default
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
~SCEVPredicate()=default
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
SCEVPredicateKind Kind
This class represents a composition of other SCEV predicates, and is the class that most clients will...
void print(raw_ostream &OS, unsigned Depth) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
unsigned getComplexity() const override
We estimate the complexity of a union predicate as the size number of predicates in the union.
bool isAlwaysTrue() const override
Implementation of the SCEVPredicate interface.
ArrayRef< const SCEVPredicate * > getPredicates() const
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEVAddRecExpr * getExpr() const
Implementation of the SCEVPredicate interface.
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
static SCEVWrapPredicate::IncrementWrapFlags getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE)
Returns the set of SCEVWrapPredicate no wrap flags implied by a SCEVAddRecExpr.
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask)
This class represents an analyzed expression in the program.
ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
SCEV & operator=(const SCEV &)=delete
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
SCEV(const SCEV &)=delete
void dump() const
This method is used for debugging.
bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
const unsigned short ExpressionSize
void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
Printer pass for the ScalarEvolutionAnalysis results.
ScalarEvolutionPrinterPass(raw_ostream &OS)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Verifier pass for the ScalarEvolutionAnalysis results.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
void print(raw_ostream &OS, const Module *=nullptr) const override
print - Print out the internal state of the pass.
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
void verifyAnalysis() const override
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
const ScalarEvolution & getSE() const
bool operator==(const FoldID &RHS) const
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty)
static LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
const SCEV * getGEPExpr(GEPOperator *GEP, const SmallVectorImpl< const SCEV * > &IndexExprs)
Returns an expression for a GEP.
std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
Type * getWiderType(Type *Ty1, Type *Ty2) const
const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
APInt getConstantMultiple(const SCEV *S)
Returns the max constant multiple of S.
bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
const SCEV * getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?...
ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getAddRecExpr(const SmallVectorImpl< const SCEV * > &Operands, const Loop *L, SCEV::NoWrapFlags Flags)
const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
uint32_t getMinTrailingZeros(const SCEV *S)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
void print(raw_ostream &OS) const
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
void forgetTopmostLoop(const Loop *L)
friend class ScalarEvolutionsTest
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
MonotonicPredicateType
A predicate is said to be monotonically increasing if may go from being false to being true as the lo...
std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
const SCEV * getCouldNotCompute()
bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
const SCEV * getVScale(Type *Ty)
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
const SCEV * getPowerOfTwo(Type *Ty, unsigned Power)
Return a SCEV for the constant Power of two.
const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
const SCEV * getUnknown(Value *V)
std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getElementCount(Type *Ty, ElementCount EC)
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVMContext & getContext() const
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Class to represent struct types.
Definition: DerivedTypes.h:218
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
See the file comment.
Definition: ValueMap.h:84
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ BasicBlock
Various leaf nodes.
Definition: ISDOpcodes.h:71
unsigned combineHashValue(unsigned a, unsigned b)
Simplistic combination of 32-bit hash values into 32-bit hash values.
Definition: DenseMapInfo.h:39
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1759
bool VerifySCEV
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:382
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
#define N
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition: PassManager.h:92
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition: FoldingSet.h:233
static unsigned getHashValue(const ScalarEvolution::FoldID &Val)
static ScalarEvolution::FoldID getTombstoneKey()
static ScalarEvolution::FoldID getEmptyKey()
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID)
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID)
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID)
static void Profile(const SCEV &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition: FoldingSet.h:263
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:69
An object of this class is returned by queries that could not be answered.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
bool hasAnyInfo() const
Test whether this ExitLimit contains any computed information, or whether it's all SCEVCouldNotComput...
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
bool hasFullInfo() const
Test whether this ExitLimit contains all information.
LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)