LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.setAllConflict();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_COMPRESS: {
3484 SDValue Vec = Op.getOperand(0);
3485 SDValue PassThru = Op.getOperand(2);
3486 Known = computeKnownBits(PassThru, DemandedElts, Depth + 1);
3487 // If we don't know any bits, early out.
3488 if (Known.isUnknown())
3489 break;
3490 Known2 = computeKnownBits(Vec, Depth + 1);
3491 Known = Known.intersectWith(Known2);
3492 break;
3493 }
3494 case ISD::VECTOR_SHUFFLE: {
3495 assert(!Op.getValueType().isScalableVector());
3496 // Collect the known bits that are shared by every vector element referenced
3497 // by the shuffle.
3498 APInt DemandedLHS, DemandedRHS;
3500 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3501 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3502 DemandedLHS, DemandedRHS))
3503 break;
3504
3505 // Known bits are the values that are shared by every demanded element.
3506 Known.setAllConflict();
3507 if (!!DemandedLHS) {
3508 SDValue LHS = Op.getOperand(0);
3509 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3510 Known = Known.intersectWith(Known2);
3511 }
3512 // If we don't know any bits, early out.
3513 if (Known.isUnknown())
3514 break;
3515 if (!!DemandedRHS) {
3516 SDValue RHS = Op.getOperand(1);
3517 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3518 Known = Known.intersectWith(Known2);
3519 }
3520 break;
3521 }
3522 case ISD::VSCALE: {
3524 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3525 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3526 break;
3527 }
3528 case ISD::CONCAT_VECTORS: {
3529 if (Op.getValueType().isScalableVector())
3530 break;
3531 // Split DemandedElts and test each of the demanded subvectors.
3532 Known.setAllConflict();
3533 EVT SubVectorVT = Op.getOperand(0).getValueType();
3534 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3535 unsigned NumSubVectors = Op.getNumOperands();
3536 for (unsigned i = 0; i != NumSubVectors; ++i) {
3537 APInt DemandedSub =
3538 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3540 SDValue Sub = Op.getOperand(i);
3541 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3542 Known = Known.intersectWith(Known2);
3543 }
3544 // If we don't know any bits, early out.
3545 if (Known.isUnknown())
3546 break;
3547 }
3548 break;
3549 }
3550 case ISD::INSERT_SUBVECTOR: {
3551 if (Op.getValueType().isScalableVector())
3552 break;
3553 // Demand any elements from the subvector and the remainder from the src its
3554 // inserted into.
3555 SDValue Src = Op.getOperand(0);
3556 SDValue Sub = Op.getOperand(1);
3557 uint64_t Idx = Op.getConstantOperandVal(2);
3558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3562
3563 Known.setAllConflict();
3564 if (!!DemandedSubElts) {
3565 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3566 if (Known.isUnknown())
3567 break; // early-out.
3568 }
3569 if (!!DemandedSrcElts) {
3570 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3571 Known = Known.intersectWith(Known2);
3572 }
3573 break;
3574 }
3576 // Offset the demanded elts by the subvector index.
3577 SDValue Src = Op.getOperand(0);
3578 // Bail until we can represent demanded elements for scalable vectors.
3579 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3580 break;
3581 uint64_t Idx = Op.getConstantOperandVal(1);
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3584 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3585 break;
3586 }
3587 case ISD::SCALAR_TO_VECTOR: {
3588 if (Op.getValueType().isScalableVector())
3589 break;
3590 // We know about scalar_to_vector as much as we know about it source,
3591 // which becomes the first element of otherwise unknown vector.
3592 if (DemandedElts != 1)
3593 break;
3594
3595 SDValue N0 = Op.getOperand(0);
3596 Known = computeKnownBits(N0, Depth + 1);
3597 if (N0.getValueSizeInBits() != BitWidth)
3598 Known = Known.trunc(BitWidth);
3599
3600 break;
3601 }
3602 case ISD::BITCAST: {
3603 if (Op.getValueType().isScalableVector())
3604 break;
3605
3606 SDValue N0 = Op.getOperand(0);
3607 EVT SubVT = N0.getValueType();
3608 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3609
3610 // Ignore bitcasts from unsupported types.
3611 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3612 break;
3613
3614 // Fast handling of 'identity' bitcasts.
3615 if (BitWidth == SubBitWidth) {
3616 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3617 break;
3618 }
3619
3620 bool IsLE = getDataLayout().isLittleEndian();
3621
3622 // Bitcast 'small element' vector to 'large element' scalar/vector.
3623 if ((BitWidth % SubBitWidth) == 0) {
3624 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3625
3626 // Collect known bits for the (larger) output by collecting the known
3627 // bits from each set of sub elements and shift these into place.
3628 // We need to separately call computeKnownBits for each set of
3629 // sub elements as the knownbits for each is likely to be different.
3630 unsigned SubScale = BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.setBit(i * SubScale);
3635
3636 for (unsigned i = 0; i != SubScale; ++i) {
3637 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3638 Depth + 1);
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.insertBits(Known2, SubBitWidth * Shifts);
3641 }
3642 }
3643
3644 // Bitcast 'large element' scalar/vector to 'small element' vector.
3645 if ((SubBitWidth % BitWidth) == 0) {
3646 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3647
3648 // Collect known bits for the (smaller) output by collecting the known
3649 // bits from the overlapping larger input elements and extracting the
3650 // sub sections we actually care about.
3651 unsigned SubScale = SubBitWidth / BitWidth;
3652 APInt SubDemandedElts =
3653 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3654 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3655
3656 Known.setAllConflict();
3657 for (unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3660 unsigned Offset = (Shifts % SubScale) * BitWidth;
3661 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3662 // If we don't know any bits, early out.
3663 if (Known.isUnknown())
3664 break;
3665 }
3666 }
3667 break;
3668 }
3669 case ISD::AND:
3670 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672
3673 Known &= Known2;
3674 break;
3675 case ISD::OR:
3676 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3677 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678
3679 Known |= Known2;
3680 break;
3681 case ISD::XOR:
3682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684
3685 Known ^= Known2;
3686 break;
3687 case ISD::MUL: {
3688 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3689 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3690 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3691 // TODO: SelfMultiply can be poison, but not undef.
3692 if (SelfMultiply)
3693 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3694 Op.getOperand(0), DemandedElts, false, Depth + 1);
3695 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3696
3697 // If the multiplication is known not to overflow, the product of a number
3698 // with itself is non-negative. Only do this if we didn't already computed
3699 // the opposite value for the sign bit.
3700 if (Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) == Op.getOperand(1) &&
3702 !Known.isNegative())
3703 Known.makeNonNegative();
3704 break;
3705 }
3706 case ISD::MULHU: {
3707 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3708 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709 Known = KnownBits::mulhu(Known, Known2);
3710 break;
3711 }
3712 case ISD::MULHS: {
3713 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3714 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3715 Known = KnownBits::mulhs(Known, Known2);
3716 break;
3717 }
3718 case ISD::ABDU: {
3719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3721 Known = KnownBits::abdu(Known, Known2);
3722 break;
3723 }
3724 case ISD::ABDS: {
3725 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3726 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3727 Known = KnownBits::abds(Known, Known2);
3728 unsigned SignBits1 =
3729 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 if (SignBits1 == 1)
3731 break;
3732 unsigned SignBits0 =
3733 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3735 break;
3736 }
3737 case ISD::UMUL_LOHI: {
3738 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3739 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3741 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3742 if (Op.getResNo() == 0)
3743 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3744 else
3745 Known = KnownBits::mulhu(Known, Known2);
3746 break;
3747 }
3748 case ISD::SMUL_LOHI: {
3749 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3750 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3753 if (Op.getResNo() == 0)
3754 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3755 else
3756 Known = KnownBits::mulhs(Known, Known2);
3757 break;
3758 }
3759 case ISD::AVGFLOORU: {
3760 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3762 Known = KnownBits::avgFloorU(Known, Known2);
3763 break;
3764 }
3765 case ISD::AVGCEILU: {
3766 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3768 Known = KnownBits::avgCeilU(Known, Known2);
3769 break;
3770 }
3771 case ISD::AVGFLOORS: {
3772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3773 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774 Known = KnownBits::avgFloorS(Known, Known2);
3775 break;
3776 }
3777 case ISD::AVGCEILS: {
3778 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known = KnownBits::avgCeilS(Known, Known2);
3781 break;
3782 }
3783 case ISD::SELECT:
3784 case ISD::VSELECT:
3785 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SELECT_CC:
3795 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3796 // If we don't know any bits, early out.
3797 if (Known.isUnknown())
3798 break;
3799 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3800
3801 // Only known if known in both the LHS and RHS.
3802 Known = Known.intersectWith(Known2);
3803 break;
3804 case ISD::SMULO:
3805 case ISD::UMULO:
3806 if (Op.getResNo() != 1)
3807 break;
3808 // The boolean result conforms to getBooleanContents.
3809 // If we know the result of a setcc has the top bits zero, use this info.
3810 // We know that we have an integer-based boolean since these operations
3811 // are only available for integer.
3812 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3814 BitWidth > 1)
3815 Known.Zero.setBitsFrom(1);
3816 break;
3817 case ISD::SETCC:
3818 case ISD::SETCCCARRY:
3819 case ISD::STRICT_FSETCC:
3820 case ISD::STRICT_FSETCCS: {
3821 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3822 // If we know the result of a setcc has the top bits zero, use this info.
3823 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3825 BitWidth > 1)
3826 Known.Zero.setBitsFrom(1);
3827 break;
3828 }
3829 case ISD::SHL: {
3830 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832
3833 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW = Op->getFlags().hasNoSignedWrap();
3835
3836 bool ShAmtNonZero = Known2.isNonZero();
3837
3838 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3839
3840 // Minimum shift low bits are known zero.
3841 if (std::optional<unsigned> ShMinAmt =
3842 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3843 Known.Zero.setLowBits(*ShMinAmt);
3844 break;
3845 }
3846 case ISD::SRL:
3847 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3848 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3849 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3850 Op->getFlags().hasExact());
3851
3852 // Minimum shift high bits are known zero.
3853 if (std::optional<unsigned> ShMinAmt =
3854 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3855 Known.Zero.setHighBits(*ShMinAmt);
3856 break;
3857 case ISD::SRA:
3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3861 Op->getFlags().hasExact());
3862 break;
3863 case ISD::ROTL:
3864 case ISD::ROTR:
3865 if (ConstantSDNode *C =
3866 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3867 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3868
3869 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870
3871 // Canonicalize to ROTR.
3872 if (Opcode == ISD::ROTL && Amt != 0)
3873 Amt = BitWidth - Amt;
3874
3875 Known.Zero = Known.Zero.rotr(Amt);
3876 Known.One = Known.One.rotr(Amt);
3877 }
3878 break;
3879 case ISD::FSHL:
3880 case ISD::FSHR:
3881 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3882 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3883
3884 // For fshl, 0-shift returns the 1st arg.
3885 // For fshr, 0-shift returns the 2nd arg.
3886 if (Amt == 0) {
3887 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3888 DemandedElts, Depth + 1);
3889 break;
3890 }
3891
3892 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3893 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3896 if (Opcode == ISD::FSHL) {
3897 Known <<= Amt;
3898 Known2 >>= BitWidth - Amt;
3899 } else {
3900 Known <<= BitWidth - Amt;
3901 Known2 >>= Amt;
3902 }
3903 Known = Known.unionWith(Known2);
3904 }
3905 break;
3906 case ISD::SHL_PARTS:
3907 case ISD::SRA_PARTS:
3908 case ISD::SRL_PARTS: {
3909 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3910
3911 // Collect lo/hi source values and concatenate.
3912 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3916 Known = Known2.concat(Known);
3917
3918 // Collect shift amount.
3919 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3920
3921 if (Opcode == ISD::SHL_PARTS)
3922 Known = KnownBits::shl(Known, Known2);
3923 else if (Opcode == ISD::SRA_PARTS)
3924 Known = KnownBits::ashr(Known, Known2);
3925 else // if (Opcode == ISD::SRL_PARTS)
3926 Known = KnownBits::lshr(Known, Known2);
3927
3928 // TODO: Minimum shift low/high bits are known zero.
3929
3930 if (Op.getResNo() == 0)
3931 Known = Known.extractBits(LoBits, 0);
3932 else
3933 Known = Known.extractBits(HiBits, LoBits);
3934 break;
3935 }
3937 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3939 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3940 break;
3941 }
3942 case ISD::CTTZ:
3943 case ISD::CTTZ_ZERO_UNDEF: {
3944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3945 // If we have a known 1, its position is our upper bound.
3946 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3947 unsigned LowBits = llvm::bit_width(PossibleTZ);
3948 Known.Zero.setBitsFrom(LowBits);
3949 break;
3950 }
3951 case ISD::CTLZ:
3952 case ISD::CTLZ_ZERO_UNDEF: {
3953 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3954 // If we have a known 1, its position is our upper bound.
3955 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3956 unsigned LowBits = llvm::bit_width(PossibleLZ);
3957 Known.Zero.setBitsFrom(LowBits);
3958 break;
3959 }
3960 case ISD::CTPOP: {
3961 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962 // If we know some of the bits are zero, they can't be one.
3963 unsigned PossibleOnes = Known2.countMaxPopulation();
3964 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3965 break;
3966 }
3967 case ISD::PARITY: {
3968 // Parity returns 0 everywhere but the LSB.
3969 Known.Zero.setBitsFrom(1);
3970 break;
3971 }
3972 case ISD::MGATHER:
3973 case ISD::MLOAD: {
3974 ISD::LoadExtType ETy =
3975 (Opcode == ISD::MGATHER)
3976 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3977 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3978 if (ETy == ISD::ZEXTLOAD) {
3979 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3980 KnownBits Known0(MemVT.getScalarSizeInBits());
3981 return Known0.zext(BitWidth);
3982 }
3983 break;
3984 }
3985 case ISD::LOAD: {
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3988 if (ISD::isNON_EXTLoad(LD) && Cst) {
3989 // Determine any common known bits from the loaded constant pool value.
3990 Type *CstTy = Cst->getType();
3991 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3992 !Op.getValueType().isScalableVector()) {
3993 // If its a vector splat, then we can (quickly) reuse the scalar path.
3994 // NOTE: We assume all elements match and none are UNDEF.
3995 if (CstTy->isVectorTy()) {
3996 if (const Constant *Splat = Cst->getSplatValue()) {
3997 Cst = Splat;
3998 CstTy = Cst->getType();
3999 }
4000 }
4001 // TODO - do we need to handle different bitwidths?
4002 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4003 // Iterate across all vector elements finding common known bits.
4004 Known.setAllConflict();
4005 for (unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4007 continue;
4008 if (Constant *Elt = Cst->getAggregateElement(i)) {
4009 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4010 const APInt &Value = CInt->getValue();
4011 Known.One &= Value;
4012 Known.Zero &= ~Value;
4013 continue;
4014 }
4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4017 Known.One &= Value;
4018 Known.Zero &= ~Value;
4019 continue;
4020 }
4021 }
4022 Known.One.clearAllBits();
4023 Known.Zero.clearAllBits();
4024 break;
4025 }
4026 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4027 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4028 Known = KnownBits::makeConstant(CInt->getValue());
4029 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4030 Known =
4031 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4032 }
4033 }
4034 }
4035 } else if (Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (const MDNode *MD = LD->getRanges())
4039 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4040
4041 // Extend the Known bits from memory to the size of the scalar result.
4042 if (ISD::isZEXTLoad(Op.getNode()))
4043 Known = KnownScalarMemory.zext(BitWidth);
4044 else if (ISD::isSEXTLoad(Op.getNode()))
4045 Known = KnownScalarMemory.sext(BitWidth);
4046 else if (ISD::isEXTLoad(Op.getNode()))
4047 Known = KnownScalarMemory.anyext(BitWidth);
4048 else
4049 Known = KnownScalarMemory;
4050 assert(Known.getBitWidth() == BitWidth);
4051 return Known;
4052 }
4053 break;
4054 }
4056 if (Op.getValueType().isScalableVector())
4057 break;
4058 EVT InVT = Op.getOperand(0).getValueType();
4059 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4060 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4061 Known = Known.zext(BitWidth);
4062 break;
4063 }
4064 case ISD::ZERO_EXTEND: {
4065 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066 Known = Known.zext(BitWidth);
4067 break;
4068 }
4070 if (Op.getValueType().isScalableVector())
4071 break;
4072 EVT InVT = Op.getOperand(0).getValueType();
4073 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4074 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4075 // If the sign bit is known to be zero or one, then sext will extend
4076 // it to the top bits, else it will just zext.
4077 Known = Known.sext(BitWidth);
4078 break;
4079 }
4080 case ISD::SIGN_EXTEND: {
4081 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4082 // If the sign bit is known to be zero or one, then sext will extend
4083 // it to the top bits, else it will just zext.
4084 Known = Known.sext(BitWidth);
4085 break;
4086 }
4088 if (Op.getValueType().isScalableVector())
4089 break;
4090 EVT InVT = Op.getOperand(0).getValueType();
4091 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4092 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4093 Known = Known.anyext(BitWidth);
4094 break;
4095 }
4096 case ISD::ANY_EXTEND: {
4097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4098 Known = Known.anyext(BitWidth);
4099 break;
4100 }
4101 case ISD::TRUNCATE: {
4102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4103 Known = Known.trunc(BitWidth);
4104 break;
4105 }
4106 case ISD::AssertZext: {
4107 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 Known.Zero |= (~InMask);
4111 Known.One &= (~Known.Zero);
4112 break;
4113 }
4114 case ISD::AssertAlign: {
4115 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4116 assert(LogOfAlign != 0);
4117
4118 // TODO: Should use maximum with source
4119 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4120 // well as clearing one bits.
4121 Known.Zero.setLowBits(LogOfAlign);
4122 Known.One.clearLowBits(LogOfAlign);
4123 break;
4124 }
4125 case ISD::FGETSIGN:
4126 // All bits are zero except the low bit.
4127 Known.Zero.setBitsFrom(1);
4128 break;
4129 case ISD::ADD:
4130 case ISD::SUB: {
4131 SDNodeFlags Flags = Op.getNode()->getFlags();
4132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4135 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4137 break;
4138 }
4139 case ISD::USUBO:
4140 case ISD::SSUBO:
4141 case ISD::USUBO_CARRY:
4142 case ISD::SSUBO_CARRY:
4143 if (Op.getResNo() == 1) {
4144 // If we know the result of a setcc has the top bits zero, use this info.
4145 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4147 BitWidth > 1)
4148 Known.Zero.setBitsFrom(1);
4149 break;
4150 }
4151 [[fallthrough]];
4152 case ISD::SUBC: {
4153 assert(Op.getResNo() == 0 &&
4154 "We only compute knownbits for the difference here.");
4155
4156 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4157 KnownBits Borrow(1);
4158 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4159 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4160 // Borrow has bit width 1
4161 Borrow = Borrow.trunc(1);
4162 } else {
4163 Borrow.setAllZero();
4164 }
4165
4166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4168 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4169 break;
4170 }
4171 case ISD::UADDO:
4172 case ISD::SADDO:
4173 case ISD::UADDO_CARRY:
4174 case ISD::SADDO_CARRY:
4175 if (Op.getResNo() == 1) {
4176 // If we know the result of a setcc has the top bits zero, use this info.
4177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4179 BitWidth > 1)
4180 Known.Zero.setBitsFrom(1);
4181 break;
4182 }
4183 [[fallthrough]];
4184 case ISD::ADDC:
4185 case ISD::ADDE: {
4186 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4187
4188 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4189 KnownBits Carry(1);
4190 if (Opcode == ISD::ADDE)
4191 // Can't track carry from glue, set carry to unknown.
4192 Carry.resetAll();
4193 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4194 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4195 // Carry has bit width 1
4196 Carry = Carry.trunc(1);
4197 } else {
4198 Carry.setAllZero();
4199 }
4200
4201 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4203 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4204 break;
4205 }
4206 case ISD::UDIV: {
4207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4209 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4210 break;
4211 }
4212 case ISD::SDIV: {
4213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4215 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4216 break;
4217 }
4218 case ISD::SREM: {
4219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4221 Known = KnownBits::srem(Known, Known2);
4222 break;
4223 }
4224 case ISD::UREM: {
4225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4227 Known = KnownBits::urem(Known, Known2);
4228 break;
4229 }
4230 case ISD::EXTRACT_ELEMENT: {
4231 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4232 const unsigned Index = Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth = Op.getValueSizeInBits();
4234
4235 // Remove low part of known bits mask
4236 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4237 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4238
4239 // Remove high part of known bit mask
4240 Known = Known.trunc(EltBitWidth);
4241 break;
4242 }
4244 SDValue InVec = Op.getOperand(0);
4245 SDValue EltNo = Op.getOperand(1);
4246 EVT VecVT = InVec.getValueType();
4247 // computeKnownBits not yet implemented for scalable vectors.
4248 if (VecVT.isScalableVector())
4249 break;
4250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4251 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4252
4253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4254 // anything about the extended bits.
4255 if (BitWidth > EltBitWidth)
4256 Known = Known.trunc(EltBitWidth);
4257
4258 // If we know the element index, just demand that vector element, else for
4259 // an unknown element index, ignore DemandedElts and demand them all.
4260 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 DemandedSrcElts =
4264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4265
4266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4267 if (BitWidth > EltBitWidth)
4268 Known = Known.anyext(BitWidth);
4269 break;
4270 }
4272 if (Op.getValueType().isScalableVector())
4273 break;
4274
4275 // If we know the element index, split the demand between the
4276 // source vector and the inserted element, otherwise assume we need
4277 // the original demanded vector elements and the value.
4278 SDValue InVec = Op.getOperand(0);
4279 SDValue InVal = Op.getOperand(1);
4280 SDValue EltNo = Op.getOperand(2);
4281 bool DemandedVal = true;
4282 APInt DemandedVecElts = DemandedElts;
4283 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4287 DemandedVecElts.clearBit(EltIdx);
4288 }
4289 Known.setAllConflict();
4290 if (DemandedVal) {
4291 Known2 = computeKnownBits(InVal, Depth + 1);
4292 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4293 }
4294 if (!!DemandedVecElts) {
4295 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4296 Known = Known.intersectWith(Known2);
4297 }
4298 break;
4299 }
4300 case ISD::BITREVERSE: {
4301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4302 Known = Known2.reverseBits();
4303 break;
4304 }
4305 case ISD::BSWAP: {
4306 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4307 Known = Known2.byteSwap();
4308 break;
4309 }
4310 case ISD::ABS: {
4311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4312 Known = Known2.abs();
4313 Known.Zero.setHighBits(
4314 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4315 break;
4316 }
4317 case ISD::USUBSAT: {
4318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4320 Known = KnownBits::usub_sat(Known, Known2);
4321 break;
4322 }
4323 case ISD::UMIN: {
4324 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4325 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4326 Known = KnownBits::umin(Known, Known2);
4327 break;
4328 }
4329 case ISD::UMAX: {
4330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4332 Known = KnownBits::umax(Known, Known2);
4333 break;
4334 }
4335 case ISD::SMIN:
4336 case ISD::SMAX: {
4337 // If we have a clamp pattern, we know that the number of sign bits will be
4338 // the minimum of the clamp min/max range.
4339 bool IsMax = (Opcode == ISD::SMAX);
4340 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4341 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4342 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4343 CstHigh =
4344 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4345 if (CstLow && CstHigh) {
4346 if (!IsMax)
4347 std::swap(CstLow, CstHigh);
4348
4349 const APInt &ValueLow = CstLow->getAPIntValue();
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.sle(ValueHigh)) {
4352 unsigned LowSignBits = ValueLow.getNumSignBits();
4353 unsigned HighSignBits = ValueHigh.getNumSignBits();
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4356 Known.One.setHighBits(MinSignBits);
4357 break;
4358 }
4359 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4360 Known.Zero.setHighBits(MinSignBits);
4361 break;
4362 }
4363 }
4364 }
4365
4366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4368 if (IsMax)
4369 Known = KnownBits::smax(Known, Known2);
4370 else
4371 Known = KnownBits::smin(Known, Known2);
4372
4373 // For SMAX, if CstLow is non-negative we know the result will be
4374 // non-negative and thus all sign bits are 0.
4375 // TODO: There's an equivalent of this for smin with negative constant for
4376 // known ones.
4377 if (IsMax && CstLow) {
4378 const APInt &ValueLow = CstLow->getAPIntValue();
4379 if (ValueLow.isNonNegative()) {
4380 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4381 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4382 }
4383 }
4384
4385 break;
4386 }
4387 case ISD::UINT_TO_FP: {
4388 Known.makeNonNegative();
4389 break;
4390 }
4391 case ISD::SINT_TO_FP: {
4392 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4393 if (Known2.isNonNegative())
4394 Known.makeNonNegative();
4395 else if (Known2.isNegative())
4396 Known.makeNegative();
4397 break;
4398 }
4399 case ISD::FP_TO_UINT_SAT: {
4400 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4401 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4403 break;
4404 }
4405 case ISD::ATOMIC_LOAD: {
4406 // If we are looking at the loaded value.
4407 if (Op.getResNo() == 0) {
4408 auto *AT = cast<AtomicSDNode>(Op);
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (const MDNode *MD = AT->getRanges())
4412 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4413
4414 switch (AT->getExtensionType()) {
4415 case ISD::ZEXTLOAD:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SEXTLOAD:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 case ISD::EXTLOAD:
4422 switch (TLI->getExtendForAtomicOps()) {
4423 case ISD::ZERO_EXTEND:
4424 Known = KnownScalarMemory.zext(BitWidth);
4425 break;
4426 case ISD::SIGN_EXTEND:
4427 Known = KnownScalarMemory.sext(BitWidth);
4428 break;
4429 default:
4430 Known = KnownScalarMemory.anyext(BitWidth);
4431 break;
4432 }
4433 break;
4434 case ISD::NON_EXTLOAD:
4435 Known = KnownScalarMemory;
4436 break;
4437 }
4438 assert(Known.getBitWidth() == BitWidth);
4439 }
4440 break;
4441 }
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (Op.getResNo() == 1) {
4444 // The boolean result conforms to getBooleanContents.
4445 // If we know the result of a setcc has the top bits zero, use this info.
4446 // We know that we have an integer-based boolean since these operations
4447 // are only available for integer.
4448 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4450 BitWidth > 1)
4451 Known.Zero.setBitsFrom(1);
4452 break;
4453 }
4454 [[fallthrough]];
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4468 // If we are looking at the loaded value.
4469 if (Op.getResNo() == 0) {
4470 auto *AT = cast<AtomicSDNode>(Op);
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4472
4473 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4474 Known.Zero.setBitsFrom(MemBits);
4475 }
4476 break;
4477 }
4478 case ISD::FrameIndex:
4480 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4481 Known, getMachineFunction());
4482 break;
4483
4484 default:
4485 if (Opcode < ISD::BUILTIN_OP_END)
4486 break;
4487 [[fallthrough]];
4491 // TODO: Probably okay to remove after audit; here to reduce change size
4492 // in initial enablement patch for scalable vectors
4493 if (Op.getValueType().isScalableVector())
4494 break;
4495
4496 // Allow the target to implement this method for its nodes.
4497 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4498 break;
4499 }
4500
4501 return Known;
4502}
4503
4504/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4517
4520 // X + 0 never overflow
4521 if (isNullConstant(N1))
4522 return OFK_Never;
4523
4524 // If both operands each have at least two sign bits, the addition
4525 // cannot overflow.
4526 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4527 return OFK_Never;
4528
4529 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4530 return OFK_Sometime;
4531}
4532
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4538
4539 // mulhi + 1 never overflow
4540 KnownBits N1Known = computeKnownBits(N1);
4541 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4542 N1Known.getMaxValue().ult(2))
4543 return OFK_Never;
4544
4545 KnownBits N0Known = computeKnownBits(N0);
4546 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4547 N0Known.getMaxValue().ult(2))
4548 return OFK_Never;
4549
4550 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4551 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4552 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4553 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4554}
4555
4558 // X - 0 never overflow
4559 if (isNullConstant(N1))
4560 return OFK_Never;
4561
4562 // If both operands each have at least two sign bits, the subtraction
4563 // cannot overflow.
4564 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4565 return OFK_Never;
4566
4567 KnownBits N0Known = computeKnownBits(N0);
4568 KnownBits N1Known = computeKnownBits(N1);
4569 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4570 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4571 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4572}
4573
4576 // X - 0 never overflow
4577 if (isNullConstant(N1))
4578 return OFK_Never;
4579
4580 KnownBits N0Known = computeKnownBits(N0);
4581 KnownBits N1Known = computeKnownBits(N1);
4582 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4583 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4584 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4585}
4586
4589 // X * 0 and X * 1 never overflow.
4590 if (isNullConstant(N1) || isOneConstant(N1))
4591 return OFK_Never;
4592
4593 KnownBits N0Known = computeKnownBits(N0);
4594 KnownBits N1Known = computeKnownBits(N1);
4595 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4596 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4597 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4598}
4599
4602 // X * 0 and X * 1 never overflow.
4603 if (isNullConstant(N1) || isOneConstant(N1))
4604 return OFK_Never;
4605
4606 // Get the size of the result.
4607 unsigned BitWidth = N0.getScalarValueSizeInBits();
4608
4609 // Sum of the sign bits.
4610 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4611
4612 // If we have enough sign bits, then there's no overflow.
4613 if (SignBits > BitWidth + 1)
4614 return OFK_Never;
4615
4616 if (SignBits == BitWidth + 1) {
4617 // The overflow occurs when the true multiplication of the
4618 // the operands is the minimum negative number.
4619 KnownBits N0Known = computeKnownBits(N0);
4620 KnownBits N1Known = computeKnownBits(N1);
4621 // If one of the operands is non-negative, then there's no
4622 // overflow.
4623 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4624 return OFK_Never;
4625 }
4626
4627 return OFK_Sometime;
4628}
4629
4631 if (Depth >= MaxRecursionDepth)
4632 return false; // Limit search depth.
4633
4634 EVT OpVT = Val.getValueType();
4635 unsigned BitWidth = OpVT.getScalarSizeInBits();
4636
4637 // Is the constant a known power of 2?
4639 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4640 }))
4641 return true;
4642
4643 // A left-shift of a constant one will have exactly one bit set because
4644 // shifting the bit off the end is undefined.
4645 if (Val.getOpcode() == ISD::SHL) {
4646 auto *C = isConstOrConstSplat(Val.getOperand(0));
4647 if (C && C->getAPIntValue() == 1)
4648 return true;
4649 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4650 isKnownNeverZero(Val, Depth);
4651 }
4652
4653 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4654 // one bit set.
4655 if (Val.getOpcode() == ISD::SRL) {
4656 auto *C = isConstOrConstSplat(Val.getOperand(0));
4657 if (C && C->getAPIntValue().isSignMask())
4658 return true;
4659 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4660 isKnownNeverZero(Val, Depth);
4661 }
4662
4663 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4665
4666 // Are all operands of a build vector constant powers of two?
4667 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4671 return false;
4672 }))
4673 return true;
4674
4675 // Is the operand of a splat vector a constant power of two?
4676 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4679 return true;
4680
4681 // vscale(power-of-two) is a power-of-two for some targets
4682 if (Val.getOpcode() == ISD::VSCALE &&
4683 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4685 return true;
4686
4687 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4688 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4689 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4691
4692 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4693 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4695
4696 // Looking for `x & -x` pattern:
4697 // If x == 0:
4698 // x & -x -> 0
4699 // If x != 0:
4700 // x & -x -> non-zero pow2
4701 // so if we find the pattern return whether we know `x` is non-zero.
4702 SDValue X;
4703 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4704 return isKnownNeverZero(X, Depth);
4705
4706 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4707 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4708
4709 // More could be done here, though the above checks are enough
4710 // to handle some common cases.
4711 return false;
4712}
4713
4715 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717
4718 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4719 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4720
4721 return false;
4722}
4723
4725 EVT VT = Op.getValueType();
4726
4727 // Since the number of lanes in a scalable vector is unknown at compile time,
4728 // we track one bit which is implicitly broadcast to all lanes. This means
4729 // that all lanes in a scalable vector are considered demanded.
4730 APInt DemandedElts = VT.isFixedLengthVector()
4732 : APInt(1, 1);
4733 return ComputeNumSignBits(Op, DemandedElts, Depth);
4734}
4735
4736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4737 unsigned Depth) const {
4738 EVT VT = Op.getValueType();
4739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4740 unsigned VTBits = VT.getScalarSizeInBits();
4741 unsigned NumElts = DemandedElts.getBitWidth();
4742 unsigned Tmp, Tmp2;
4743 unsigned FirstAnswer = 1;
4744
4745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4746 const APInt &Val = C->getAPIntValue();
4747 return Val.getNumSignBits();
4748 }
4749
4750 if (Depth >= MaxRecursionDepth)
4751 return 1; // Limit search depth.
4752
4753 if (!DemandedElts)
4754 return 1; // No demanded elts, better to assume we don't know anything.
4755
4756 unsigned Opcode = Op.getOpcode();
4757 switch (Opcode) {
4758 default: break;
4759 case ISD::AssertSext:
4760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4761 return VTBits-Tmp+1;
4762 case ISD::AssertZext:
4763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4764 return VTBits-Tmp;
4765 case ISD::MERGE_VALUES:
4766 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4767 Depth + 1);
4768 case ISD::SPLAT_VECTOR: {
4769 // Check if the sign bits of source go down as far as the truncated value.
4770 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4771 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4772 if (NumSrcSignBits > (NumSrcBits - VTBits))
4773 return NumSrcSignBits - (NumSrcBits - VTBits);
4774 break;
4775 }
4776 case ISD::BUILD_VECTOR:
4777 assert(!VT.isScalableVector());
4778 Tmp = VTBits;
4779 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4780 if (!DemandedElts[i])
4781 continue;
4782
4783 SDValue SrcOp = Op.getOperand(i);
4784 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4785 // for constant nodes to ensure we only look at the sign bits.
4787 APInt T = C->getAPIntValue().trunc(VTBits);
4788 Tmp2 = T.getNumSignBits();
4789 } else {
4790 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4791
4792 if (SrcOp.getValueSizeInBits() != VTBits) {
4793 assert(SrcOp.getValueSizeInBits() > VTBits &&
4794 "Expected BUILD_VECTOR implicit truncation");
4795 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4796 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4797 }
4798 }
4799 Tmp = std::min(Tmp, Tmp2);
4800 }
4801 return Tmp;
4802
4803 case ISD::VECTOR_COMPRESS: {
4804 SDValue Vec = Op.getOperand(0);
4805 SDValue PassThru = Op.getOperand(2);
4806 Tmp = ComputeNumSignBits(PassThru, DemandedElts, Depth + 1);
4807 if (Tmp == 1)
4808 return 1;
4809 Tmp2 = ComputeNumSignBits(Vec, Depth + 1);
4810 Tmp = std::min(Tmp, Tmp2);
4811 return Tmp;
4812 }
4813
4814 case ISD::VECTOR_SHUFFLE: {
4815 // Collect the minimum number of sign bits that are shared by every vector
4816 // element referenced by the shuffle.
4817 APInt DemandedLHS, DemandedRHS;
4819 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4820 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4821 DemandedLHS, DemandedRHS))
4822 return 1;
4823
4824 Tmp = std::numeric_limits<unsigned>::max();
4825 if (!!DemandedLHS)
4826 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4827 if (!!DemandedRHS) {
4828 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4829 Tmp = std::min(Tmp, Tmp2);
4830 }
4831 // If we don't know anything, early out and try computeKnownBits fall-back.
4832 if (Tmp == 1)
4833 break;
4834 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4835 return Tmp;
4836 }
4837
4838 case ISD::BITCAST: {
4839 if (VT.isScalableVector())
4840 break;
4841 SDValue N0 = Op.getOperand(0);
4842 EVT SrcVT = N0.getValueType();
4843 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4844
4845 // Ignore bitcasts from unsupported types..
4846 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4847 break;
4848
4849 // Fast handling of 'identity' bitcasts.
4850 if (VTBits == SrcBits)
4851 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4852
4853 bool IsLE = getDataLayout().isLittleEndian();
4854
4855 // Bitcast 'large element' scalar/vector to 'small element' vector.
4856 if ((SrcBits % VTBits) == 0) {
4857 assert(VT.isVector() && "Expected bitcast to vector");
4858
4859 unsigned Scale = SrcBits / VTBits;
4860 APInt SrcDemandedElts =
4861 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4862
4863 // Fast case - sign splat can be simply split across the small elements.
4864 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4865 if (Tmp == SrcBits)
4866 return VTBits;
4867
4868 // Slow case - determine how far the sign extends into each sub-element.
4869 Tmp2 = VTBits;
4870 for (unsigned i = 0; i != NumElts; ++i)
4871 if (DemandedElts[i]) {
4872 unsigned SubOffset = i % Scale;
4873 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4874 SubOffset = SubOffset * VTBits;
4875 if (Tmp <= SubOffset)
4876 return 1;
4877 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4878 }
4879 return Tmp2;
4880 }
4881 break;
4882 }
4883
4885 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4886 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4887 return VTBits - Tmp + 1;
4888 case ISD::SIGN_EXTEND:
4889 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4890 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4892 // Max of the input and what this extends.
4893 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4894 Tmp = VTBits-Tmp+1;
4895 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4896 return std::max(Tmp, Tmp2);
4898 if (VT.isScalableVector())
4899 break;
4900 SDValue Src = Op.getOperand(0);
4901 EVT SrcVT = Src.getValueType();
4902 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4903 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4904 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4905 }
4906 case ISD::SRA:
4907 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4908 // SRA X, C -> adds C sign bits.
4909 if (std::optional<unsigned> ShAmt =
4910 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4911 Tmp = std::min(Tmp + *ShAmt, VTBits);
4912 return Tmp;
4913 case ISD::SHL:
4914 if (std::optional<ConstantRange> ShAmtRange =
4915 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4916 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4917 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4918 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4919 // shifted out, then we can compute the number of sign bits for the
4920 // operand being extended. A future improvement could be to pass along the
4921 // "shifted left by" information in the recursive calls to
4922 // ComputeKnownSignBits. Allowing us to handle this more generically.
4923 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4924 SDValue Ext = Op.getOperand(0);
4925 EVT ExtVT = Ext.getValueType();
4926 SDValue Extendee = Ext.getOperand(0);
4927 EVT ExtendeeVT = Extendee.getValueType();
4928 unsigned SizeDifference =
4929 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4930 if (SizeDifference <= MinShAmt) {
4931 Tmp = SizeDifference +
4932 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4933 if (MaxShAmt < Tmp)
4934 return Tmp - MaxShAmt;
4935 }
4936 }
4937 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4938 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4939 if (MaxShAmt < Tmp)
4940 return Tmp - MaxShAmt;
4941 }
4942 break;
4943 case ISD::AND:
4944 case ISD::OR:
4945 case ISD::XOR: // NOT is handled here.
4946 // Logical binary ops preserve the number of sign bits at the worst.
4947 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4948 if (Tmp != 1) {
4949 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4950 FirstAnswer = std::min(Tmp, Tmp2);
4951 // We computed what we know about the sign bits as our first
4952 // answer. Now proceed to the generic code that uses
4953 // computeKnownBits, and pick whichever answer is better.
4954 }
4955 break;
4956
4957 case ISD::SELECT:
4958 case ISD::VSELECT:
4959 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4960 if (Tmp == 1) return 1; // Early out.
4961 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4962 return std::min(Tmp, Tmp2);
4963 case ISD::SELECT_CC:
4964 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4965 if (Tmp == 1) return 1; // Early out.
4966 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4967 return std::min(Tmp, Tmp2);
4968
4969 case ISD::SMIN:
4970 case ISD::SMAX: {
4971 // If we have a clamp pattern, we know that the number of sign bits will be
4972 // the minimum of the clamp min/max range.
4973 bool IsMax = (Opcode == ISD::SMAX);
4974 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4975 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4976 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4977 CstHigh =
4978 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4979 if (CstLow && CstHigh) {
4980 if (!IsMax)
4981 std::swap(CstLow, CstHigh);
4982 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4983 Tmp = CstLow->getAPIntValue().getNumSignBits();
4984 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4985 return std::min(Tmp, Tmp2);
4986 }
4987 }
4988
4989 // Fallback - just get the minimum number of sign bits of the operands.
4990 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4991 if (Tmp == 1)
4992 return 1; // Early out.
4993 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4994 return std::min(Tmp, Tmp2);
4995 }
4996 case ISD::UMIN:
4997 case ISD::UMAX:
4998 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4999 if (Tmp == 1)
5000 return 1; // Early out.
5001 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5002 return std::min(Tmp, Tmp2);
5003 case ISD::SSUBO_CARRY:
5004 case ISD::USUBO_CARRY:
5005 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5006 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5007 return VTBits;
5008 [[fallthrough]];
5009 case ISD::SADDO:
5010 case ISD::UADDO:
5011 case ISD::SADDO_CARRY:
5012 case ISD::UADDO_CARRY:
5013 case ISD::SSUBO:
5014 case ISD::USUBO:
5015 case ISD::SMULO:
5016 case ISD::UMULO:
5017 if (Op.getResNo() != 1)
5018 break;
5019 // The boolean result conforms to getBooleanContents. Fall through.
5020 // If setcc returns 0/-1, all bits are sign bits.
5021 // We know that we have an integer-based boolean since these operations
5022 // are only available for integer.
5023 if (TLI->getBooleanContents(VT.isVector(), false) ==
5025 return VTBits;
5026 break;
5027 case ISD::SETCC:
5028 case ISD::SETCCCARRY:
5029 case ISD::STRICT_FSETCC:
5030 case ISD::STRICT_FSETCCS: {
5031 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5032 // If setcc returns 0/-1, all bits are sign bits.
5033 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5035 return VTBits;
5036 break;
5037 }
5038 case ISD::ROTL:
5039 case ISD::ROTR:
5040 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5041
5042 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5043 if (Tmp == VTBits)
5044 return VTBits;
5045
5046 if (ConstantSDNode *C =
5047 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5048 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5049
5050 // Handle rotate right by N like a rotate left by 32-N.
5051 if (Opcode == ISD::ROTR)
5052 RotAmt = (VTBits - RotAmt) % VTBits;
5053
5054 // If we aren't rotating out all of the known-in sign bits, return the
5055 // number that are left. This handles rotl(sext(x), 1) for example.
5056 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5057 }
5058 break;
5059 case ISD::ADD:
5060 case ISD::ADDC:
5061 // Add can have at most one carry bit. Thus we know that the output
5062 // is, at worst, one more bit than the inputs.
5063 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5064 if (Tmp == 1) return 1; // Early out.
5065
5066 // Special case decrementing a value (ADD X, -1):
5067 if (ConstantSDNode *CRHS =
5068 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5069 if (CRHS->isAllOnes()) {
5070 KnownBits Known =
5071 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5072
5073 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5074 // sign bits set.
5075 if ((Known.Zero | 1).isAllOnes())
5076 return VTBits;
5077
5078 // If we are subtracting one from a positive number, there is no carry
5079 // out of the result.
5080 if (Known.isNonNegative())
5081 return Tmp;
5082 }
5083
5084 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5085 if (Tmp2 == 1) return 1; // Early out.
5086 return std::min(Tmp, Tmp2) - 1;
5087 case ISD::SUB:
5088 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5089 if (Tmp2 == 1) return 1; // Early out.
5090
5091 // Handle NEG.
5092 if (ConstantSDNode *CLHS =
5093 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5094 if (CLHS->isZero()) {
5095 KnownBits Known =
5096 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5097 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5098 // sign bits set.
5099 if ((Known.Zero | 1).isAllOnes())
5100 return VTBits;
5101
5102 // If the input is known to be positive (the sign bit is known clear),
5103 // the output of the NEG has the same number of sign bits as the input.
5104 if (Known.isNonNegative())
5105 return Tmp2;
5106
5107 // Otherwise, we treat this like a SUB.
5108 }
5109
5110 // Sub can have at most one carry bit. Thus we know that the output
5111 // is, at worst, one more bit than the inputs.
5112 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5113 if (Tmp == 1) return 1; // Early out.
5114 return std::min(Tmp, Tmp2) - 1;
5115 case ISD::MUL: {
5116 // The output of the Mul can be at most twice the valid bits in the inputs.
5117 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5118 if (SignBitsOp0 == 1)
5119 break;
5120 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5121 if (SignBitsOp1 == 1)
5122 break;
5123 unsigned OutValidBits =
5124 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5125 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5126 }
5127 case ISD::AVGCEILS:
5128 case ISD::AVGFLOORS:
5129 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5130 if (Tmp == 1)
5131 return 1; // Early out.
5132 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5133 return std::min(Tmp, Tmp2);
5134 case ISD::SREM:
5135 // The sign bit is the LHS's sign bit, except when the result of the
5136 // remainder is zero. The magnitude of the result should be less than or
5137 // equal to the magnitude of the LHS. Therefore, the result should have
5138 // at least as many sign bits as the left hand side.
5139 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5140 case ISD::TRUNCATE: {
5141 // Check if the sign bits of source go down as far as the truncated value.
5142 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5143 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5144 if (NumSrcSignBits > (NumSrcBits - VTBits))
5145 return NumSrcSignBits - (NumSrcBits - VTBits);
5146 break;
5147 }
5148 case ISD::EXTRACT_ELEMENT: {
5149 if (VT.isScalableVector())
5150 break;
5151 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5152 const int BitWidth = Op.getValueSizeInBits();
5153 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5154
5155 // Get reverse index (starting from 1), Op1 value indexes elements from
5156 // little end. Sign starts at big end.
5157 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5158
5159 // If the sign portion ends in our element the subtraction gives correct
5160 // result. Otherwise it gives either negative or > bitwidth result
5161 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5162 }
5164 if (VT.isScalableVector())
5165 break;
5166 // If we know the element index, split the demand between the
5167 // source vector and the inserted element, otherwise assume we need
5168 // the original demanded vector elements and the value.
5169 SDValue InVec = Op.getOperand(0);
5170 SDValue InVal = Op.getOperand(1);
5171 SDValue EltNo = Op.getOperand(2);
5172 bool DemandedVal = true;
5173 APInt DemandedVecElts = DemandedElts;
5174 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5175 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5176 unsigned EltIdx = CEltNo->getZExtValue();
5177 DemandedVal = !!DemandedElts[EltIdx];
5178 DemandedVecElts.clearBit(EltIdx);
5179 }
5180 Tmp = std::numeric_limits<unsigned>::max();
5181 if (DemandedVal) {
5182 // TODO - handle implicit truncation of inserted elements.
5183 if (InVal.getScalarValueSizeInBits() != VTBits)
5184 break;
5185 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5186 Tmp = std::min(Tmp, Tmp2);
5187 }
5188 if (!!DemandedVecElts) {
5189 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5190 Tmp = std::min(Tmp, Tmp2);
5191 }
5192 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5193 return Tmp;
5194 }
5196 assert(!VT.isScalableVector());
5197 SDValue InVec = Op.getOperand(0);
5198 SDValue EltNo = Op.getOperand(1);
5199 EVT VecVT = InVec.getValueType();
5200 // ComputeNumSignBits not yet implemented for scalable vectors.
5201 if (VecVT.isScalableVector())
5202 break;
5203 const unsigned BitWidth = Op.getValueSizeInBits();
5204 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5205 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5206
5207 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5208 // anything about sign bits. But if the sizes match we can derive knowledge
5209 // about sign bits from the vector operand.
5210 if (BitWidth != EltBitWidth)
5211 break;
5212
5213 // If we know the element index, just demand that vector element, else for
5214 // an unknown element index, ignore DemandedElts and demand them all.
5215 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5216 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5217 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5218 DemandedSrcElts =
5219 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5220
5221 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5222 }
5224 // Offset the demanded elts by the subvector index.
5225 SDValue Src = Op.getOperand(0);
5226 // Bail until we can represent demanded elements for scalable vectors.
5227 if (Src.getValueType().isScalableVector())
5228 break;
5229 uint64_t Idx = Op.getConstantOperandVal(1);
5230 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5231 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5232 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5233 }
5234 case ISD::CONCAT_VECTORS: {
5235 if (VT.isScalableVector())
5236 break;
5237 // Determine the minimum number of sign bits across all demanded
5238 // elts of the input vectors. Early out if the result is already 1.
5239 Tmp = std::numeric_limits<unsigned>::max();
5240 EVT SubVectorVT = Op.getOperand(0).getValueType();
5241 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5242 unsigned NumSubVectors = Op.getNumOperands();
5243 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5244 APInt DemandedSub =
5245 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5246 if (!DemandedSub)
5247 continue;
5248 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5249 Tmp = std::min(Tmp, Tmp2);
5250 }
5251 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5252 return Tmp;
5253 }
5254 case ISD::INSERT_SUBVECTOR: {
5255 if (VT.isScalableVector())
5256 break;
5257 // Demand any elements from the subvector and the remainder from the src its
5258 // inserted into.
5259 SDValue Src = Op.getOperand(0);
5260 SDValue Sub = Op.getOperand(1);
5261 uint64_t Idx = Op.getConstantOperandVal(2);
5262 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5263 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5264 APInt DemandedSrcElts = DemandedElts;
5265 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5266
5267 Tmp = std::numeric_limits<unsigned>::max();
5268 if (!!DemandedSubElts) {
5269 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5270 if (Tmp == 1)
5271 return 1; // early-out
5272 }
5273 if (!!DemandedSrcElts) {
5274 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5275 Tmp = std::min(Tmp, Tmp2);
5276 }
5277 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5278 return Tmp;
5279 }
5280 case ISD::LOAD: {
5282 if (const MDNode *Ranges = LD->getRanges()) {
5283 if (DemandedElts != 1)
5284 break;
5285
5287 if (VTBits > CR.getBitWidth()) {
5288 switch (LD->getExtensionType()) {
5289 case ISD::SEXTLOAD:
5290 CR = CR.signExtend(VTBits);
5291 break;
5292 case ISD::ZEXTLOAD:
5293 CR = CR.zeroExtend(VTBits);
5294 break;
5295 default:
5296 break;
5297 }
5298 }
5299
5300 if (VTBits != CR.getBitWidth())
5301 break;
5302 return std::min(CR.getSignedMin().getNumSignBits(),
5304 }
5305
5306 break;
5307 }
5308 case ISD::ATOMIC_CMP_SWAP:
5309 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5310 case ISD::ATOMIC_SWAP:
5311 case ISD::ATOMIC_LOAD_ADD:
5312 case ISD::ATOMIC_LOAD_SUB:
5313 case ISD::ATOMIC_LOAD_AND:
5314 case ISD::ATOMIC_LOAD_CLR:
5315 case ISD::ATOMIC_LOAD_OR:
5316 case ISD::ATOMIC_LOAD_XOR:
5317 case ISD::ATOMIC_LOAD_NAND:
5318 case ISD::ATOMIC_LOAD_MIN:
5319 case ISD::ATOMIC_LOAD_MAX:
5320 case ISD::ATOMIC_LOAD_UMIN:
5321 case ISD::ATOMIC_LOAD_UMAX:
5322 case ISD::ATOMIC_LOAD: {
5323 auto *AT = cast<AtomicSDNode>(Op);
5324 // If we are looking at the loaded value.
5325 if (Op.getResNo() == 0) {
5326 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5327 if (Tmp == VTBits)
5328 return 1; // early-out
5329
5330 // For atomic_load, prefer to use the extension type.
5331 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5332 switch (AT->getExtensionType()) {
5333 default:
5334 break;
5335 case ISD::SEXTLOAD:
5336 return VTBits - Tmp + 1;
5337 case ISD::ZEXTLOAD:
5338 return VTBits - Tmp;
5339 }
5340 }
5341
5342 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5343 return VTBits - Tmp + 1;
5344 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5345 return VTBits - Tmp;
5346 }
5347 break;
5348 }
5349 }
5350
5351 // If we are looking at the loaded value of the SDNode.
5352 if (Op.getResNo() == 0) {
5353 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5354 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5355 unsigned ExtType = LD->getExtensionType();
5356 switch (ExtType) {
5357 default: break;
5358 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5359 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5360 return VTBits - Tmp + 1;
5361 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5362 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5363 return VTBits - Tmp;
5364 case ISD::NON_EXTLOAD:
5365 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5366 // We only need to handle vectors - computeKnownBits should handle
5367 // scalar cases.
5368 Type *CstTy = Cst->getType();
5369 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5370 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5371 VTBits == CstTy->getScalarSizeInBits()) {
5372 Tmp = VTBits;
5373 for (unsigned i = 0; i != NumElts; ++i) {
5374 if (!DemandedElts[i])
5375 continue;
5376 if (Constant *Elt = Cst->getAggregateElement(i)) {
5377 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5378 const APInt &Value = CInt->getValue();
5379 Tmp = std::min(Tmp, Value.getNumSignBits());
5380 continue;
5381 }
5382 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5383 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5384 Tmp = std::min(Tmp, Value.getNumSignBits());
5385 continue;
5386 }
5387 }
5388 // Unknown type. Conservatively assume no bits match sign bit.
5389 return 1;
5390 }
5391 return Tmp;
5392 }
5393 }
5394 break;
5395 }
5396 }
5397 }
5398
5399 // Allow the target to implement this method for its nodes.
5400 if (Opcode >= ISD::BUILTIN_OP_END ||
5401 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5402 Opcode == ISD::INTRINSIC_W_CHAIN ||
5403 Opcode == ISD::INTRINSIC_VOID) {
5404 // TODO: This can probably be removed once target code is audited. This
5405 // is here purely to reduce patch size and review complexity.
5406 if (!VT.isScalableVector()) {
5407 unsigned NumBits =
5408 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5409 if (NumBits > 1)
5410 FirstAnswer = std::max(FirstAnswer, NumBits);
5411 }
5412 }
5413
5414 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5415 // use this information.
5416 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5417 return std::max(FirstAnswer, Known.countMinSignBits());
5418}
5419
5421 unsigned Depth) const {
5422 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5423 return Op.getScalarValueSizeInBits() - SignBits + 1;
5424}
5425
5427 const APInt &DemandedElts,
5428 unsigned Depth) const {
5429 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5430 return Op.getScalarValueSizeInBits() - SignBits + 1;
5431}
5432
5434 unsigned Depth) const {
5435 // Early out for FREEZE.
5436 if (Op.getOpcode() == ISD::FREEZE)
5437 return true;
5438
5439 EVT VT = Op.getValueType();
5440 APInt DemandedElts = VT.isFixedLengthVector()
5442 : APInt(1, 1);
5443 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5444}
5445
5447 const APInt &DemandedElts,
5448 bool PoisonOnly,
5449 unsigned Depth) const {
5450 unsigned Opcode = Op.getOpcode();
5451
5452 // Early out for FREEZE.
5453 if (Opcode == ISD::FREEZE)
5454 return true;
5455
5456 if (Depth >= MaxRecursionDepth)
5457 return false; // Limit search depth.
5458
5459 if (isIntOrFPConstant(Op))
5460 return true;
5461
5462 switch (Opcode) {
5463 case ISD::CONDCODE:
5464 case ISD::VALUETYPE:
5465 case ISD::FrameIndex:
5467 case ISD::CopyFromReg:
5468 return true;
5469
5470 case ISD::POISON:
5471 return false;
5472
5473 case ISD::UNDEF:
5474 return PoisonOnly;
5475
5476 case ISD::BUILD_VECTOR:
5477 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5478 // this shouldn't affect the result.
5479 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5480 if (!DemandedElts[i])
5481 continue;
5483 Depth + 1))
5484 return false;
5485 }
5486 return true;
5487
5489 SDValue Src = Op.getOperand(0);
5490 if (Src.getValueType().isScalableVector())
5491 break;
5492 uint64_t Idx = Op.getConstantOperandVal(1);
5493 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5494 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5495 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5496 Depth + 1);
5497 }
5498
5499 case ISD::INSERT_SUBVECTOR: {
5500 if (Op.getValueType().isScalableVector())
5501 break;
5502 SDValue Src = Op.getOperand(0);
5503 SDValue Sub = Op.getOperand(1);
5504 uint64_t Idx = Op.getConstantOperandVal(2);
5505 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5506 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5507 APInt DemandedSrcElts = DemandedElts;
5508 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5509
5510 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5511 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5512 return false;
5513 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5514 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5515 return false;
5516 return true;
5517 }
5518
5520 SDValue Src = Op.getOperand(0);
5521 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5522 EVT SrcVT = Src.getValueType();
5523 if (SrcVT.isFixedLengthVector() && IndexC &&
5524 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5525 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5526 IndexC->getZExtValue());
5527 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5528 Depth + 1);
5529 }
5530 break;
5531 }
5532
5534 SDValue InVec = Op.getOperand(0);
5535 SDValue InVal = Op.getOperand(1);
5536 SDValue EltNo = Op.getOperand(2);
5537 EVT VT = InVec.getValueType();
5538 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5539 if (IndexC && VT.isFixedLengthVector() &&
5540 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5541 if (DemandedElts[IndexC->getZExtValue()] &&
5543 return false;
5544 APInt InVecDemandedElts = DemandedElts;
5545 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5546 if (!!InVecDemandedElts &&
5548 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5549 InVecDemandedElts, PoisonOnly, Depth + 1))
5550 return false;
5551 return true;
5552 }
5553 break;
5554 }
5555
5557 // Check upper (known undef) elements.
5558 if (DemandedElts.ugt(1) && !PoisonOnly)
5559 return false;
5560 // Check element zero.
5561 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5562 Op.getOperand(0), PoisonOnly, Depth + 1))
5563 return false;
5564 return true;
5565
5566 case ISD::SPLAT_VECTOR:
5567 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5568 Depth + 1);
5569
5570 case ISD::VECTOR_SHUFFLE: {
5571 APInt DemandedLHS, DemandedRHS;
5572 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5573 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5574 DemandedElts, DemandedLHS, DemandedRHS,
5575 /*AllowUndefElts=*/false))
5576 return false;
5577 if (!DemandedLHS.isZero() &&
5578 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5579 PoisonOnly, Depth + 1))
5580 return false;
5581 if (!DemandedRHS.isZero() &&
5582 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5583 PoisonOnly, Depth + 1))
5584 return false;
5585 return true;
5586 }
5587
5588 case ISD::SHL:
5589 case ISD::SRL:
5590 case ISD::SRA:
5591 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5592 // enough to check operand 0 if Op can't create undef/poison.
5593 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5594 /*ConsiderFlags*/ true, Depth) &&
5595 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5596 PoisonOnly, Depth + 1);
5597
5598 case ISD::BSWAP:
5599 case ISD::CTPOP:
5600 case ISD::BITREVERSE:
5601 case ISD::AND:
5602 case ISD::OR:
5603 case ISD::XOR:
5604 case ISD::ADD:
5605 case ISD::SUB:
5606 case ISD::MUL:
5607 case ISD::SADDSAT:
5608 case ISD::UADDSAT:
5609 case ISD::SSUBSAT:
5610 case ISD::USUBSAT:
5611 case ISD::SSHLSAT:
5612 case ISD::USHLSAT:
5613 case ISD::SMIN:
5614 case ISD::SMAX:
5615 case ISD::UMIN:
5616 case ISD::UMAX:
5617 case ISD::ZERO_EXTEND:
5618 case ISD::SIGN_EXTEND:
5619 case ISD::ANY_EXTEND:
5620 case ISD::TRUNCATE:
5621 case ISD::VSELECT: {
5622 // If Op can't create undef/poison and none of its operands are undef/poison
5623 // then Op is never undef/poison. A difference from the more common check
5624 // below, outside the switch, is that we handle elementwise operations for
5625 // which the DemandedElts mask is valid for all operands here.
5626 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5627 /*ConsiderFlags*/ true, Depth) &&
5628 all_of(Op->ops(), [&](SDValue V) {
5629 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5630 PoisonOnly, Depth + 1);
5631 });
5632 }
5633
5634 // TODO: Search for noundef attributes from library functions.
5635
5636 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5637
5638 default:
5639 // Allow the target to implement this method for its nodes.
5640 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5641 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5642 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5643 Op, DemandedElts, *this, PoisonOnly, Depth);
5644 break;
5645 }
5646
5647 // If Op can't create undef/poison and none of its operands are undef/poison
5648 // then Op is never undef/poison.
5649 // NOTE: TargetNodes can handle this in themselves in
5650 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5651 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5652 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5653 Depth) &&
5654 all_of(Op->ops(), [&](SDValue V) {
5655 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5656 });
5657}
5658
5660 bool ConsiderFlags,
5661 unsigned Depth) const {
5662 EVT VT = Op.getValueType();
5663 APInt DemandedElts = VT.isFixedLengthVector()
5665 : APInt(1, 1);
5666 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5667 Depth);
5668}
5669
5671 bool PoisonOnly, bool ConsiderFlags,
5672 unsigned Depth) const {
5673 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5674 return true;
5675
5676 unsigned Opcode = Op.getOpcode();
5677 switch (Opcode) {
5678 case ISD::AssertSext:
5679 case ISD::AssertZext:
5680 case ISD::AssertAlign:
5682 // Assertion nodes can create poison if the assertion fails.
5683 return true;
5684
5685 case ISD::FREEZE:
5689 case ISD::SADDSAT:
5690 case ISD::UADDSAT:
5691 case ISD::SSUBSAT:
5692 case ISD::USUBSAT:
5693 case ISD::MULHU:
5694 case ISD::MULHS:
5695 case ISD::AVGFLOORS:
5696 case ISD::AVGFLOORU:
5697 case ISD::AVGCEILS:
5698 case ISD::AVGCEILU:
5699 case ISD::ABDU:
5700 case ISD::ABDS:
5701 case ISD::SMIN:
5702 case ISD::SMAX:
5703 case ISD::SCMP:
5704 case ISD::UMIN:
5705 case ISD::UMAX:
5706 case ISD::UCMP:
5707 case ISD::AND:
5708 case ISD::XOR:
5709 case ISD::ROTL:
5710 case ISD::ROTR:
5711 case ISD::FSHL:
5712 case ISD::FSHR:
5713 case ISD::BSWAP:
5714 case ISD::CTTZ:
5715 case ISD::CTLZ:
5716 case ISD::CTPOP:
5717 case ISD::BITREVERSE:
5718 case ISD::PARITY:
5719 case ISD::SIGN_EXTEND:
5720 case ISD::TRUNCATE:
5724 case ISD::BITCAST:
5725 case ISD::BUILD_VECTOR:
5726 case ISD::BUILD_PAIR:
5727 case ISD::SPLAT_VECTOR:
5728 case ISD::FABS:
5729 return false;
5730
5731 case ISD::ABS:
5732 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5733 // Different to Intrinsic::abs.
5734 return false;
5735
5736 case ISD::ADDC:
5737 case ISD::SUBC:
5738 case ISD::ADDE:
5739 case ISD::SUBE:
5740 case ISD::SADDO:
5741 case ISD::SSUBO:
5742 case ISD::SMULO:
5743 case ISD::SADDO_CARRY:
5744 case ISD::SSUBO_CARRY:
5745 case ISD::UADDO:
5746 case ISD::USUBO:
5747 case ISD::UMULO:
5748 case ISD::UADDO_CARRY:
5749 case ISD::USUBO_CARRY:
5750 // No poison on result or overflow flags.
5751 return false;
5752
5753 case ISD::SELECT_CC:
5754 case ISD::SETCC: {
5755 // Integer setcc cannot create undef or poison.
5756 if (Op.getOperand(0).getValueType().isInteger())
5757 return false;
5758
5759 // FP compares are more complicated. They can create poison for nan/infinity
5760 // based on options and flags. The options and flags also cause special
5761 // nonan condition codes to be used. Those condition codes may be preserved
5762 // even if the nonan flag is dropped somewhere.
5763 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5764 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5765 if (((unsigned)CCCode & 0x10U))
5766 return true;
5767
5769 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5770 }
5771
5772 case ISD::OR:
5773 case ISD::ZERO_EXTEND:
5774 case ISD::SELECT:
5775 case ISD::VSELECT:
5776 case ISD::ADD:
5777 case ISD::SUB:
5778 case ISD::MUL:
5779 case ISD::FNEG:
5780 case ISD::FADD:
5781 case ISD::FSUB:
5782 case ISD::FMUL:
5783 case ISD::FDIV:
5784 case ISD::FREM:
5785 case ISD::FCOPYSIGN:
5786 case ISD::FMA:
5787 case ISD::FMAD:
5788 case ISD::FP_EXTEND:
5791 // No poison except from flags (which is handled above)
5792 return false;
5793
5794 case ISD::SHL:
5795 case ISD::SRL:
5796 case ISD::SRA:
5797 // If the max shift amount isn't in range, then the shift can
5798 // create poison.
5799 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5800
5803 // If the amount is zero then the result will be poison.
5804 // TODO: Add isKnownNeverZero DemandedElts handling.
5805 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5806
5808 // Check if we demand any upper (undef) elements.
5809 return !PoisonOnly && DemandedElts.ugt(1);
5810
5813 // Ensure that the element index is in bounds.
5814 EVT VecVT = Op.getOperand(0).getValueType();
5815 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5816 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5817 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5818 }
5819
5820 case ISD::VECTOR_SHUFFLE: {
5821 // Check for any demanded shuffle element that is undef.
5822 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5823 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5824 if (Elt < 0 && DemandedElts[Idx])
5825 return true;
5826 return false;
5827 }
5828
5829 default:
5830 // Allow the target to implement this method for its nodes.
5831 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5832 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5833 return TLI->canCreateUndefOrPoisonForTargetNode(
5834 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5835 break;
5836 }
5837
5838 // Be conservative and return true.
5839 return true;
5840}
5841
5842bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5843 unsigned Opcode = Op.getOpcode();
5844 if (Opcode == ISD::OR)
5845 return Op->getFlags().hasDisjoint() ||
5846 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5847 if (Opcode == ISD::XOR)
5848 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5849 return false;
5850}
5851
5853 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5854 (Op.isAnyAdd() || isADDLike(Op));
5855}
5856
5858 unsigned Depth) const {
5859 EVT VT = Op.getValueType();
5860
5861 // Since the number of lanes in a scalable vector is unknown at compile time,
5862 // we track one bit which is implicitly broadcast to all lanes. This means
5863 // that all lanes in a scalable vector are considered demanded.
5864 APInt DemandedElts = VT.isFixedLengthVector()
5866 : APInt(1, 1);
5867
5868 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5869}
5870
5872 bool SNaN, unsigned Depth) const {
5873 assert(!DemandedElts.isZero() && "No demanded elements");
5874
5875 // If we're told that NaNs won't happen, assume they won't.
5876 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5877 return true;
5878
5879 if (Depth >= MaxRecursionDepth)
5880 return false; // Limit search depth.
5881
5882 // If the value is a constant, we can obviously see if it is a NaN or not.
5884 return !C->getValueAPF().isNaN() ||
5885 (SNaN && !C->getValueAPF().isSignaling());
5886 }
5887
5888 unsigned Opcode = Op.getOpcode();
5889 switch (Opcode) {
5890 case ISD::FADD:
5891 case ISD::FSUB:
5892 case ISD::FMUL:
5893 case ISD::FDIV:
5894 case ISD::FREM:
5895 case ISD::FSIN:
5896 case ISD::FCOS:
5897 case ISD::FTAN:
5898 case ISD::FASIN:
5899 case ISD::FACOS:
5900 case ISD::FATAN:
5901 case ISD::FATAN2:
5902 case ISD::FSINH:
5903 case ISD::FCOSH:
5904 case ISD::FTANH:
5905 case ISD::FMA:
5906 case ISD::FMAD: {
5907 if (SNaN)
5908 return true;
5909 // TODO: Need isKnownNeverInfinity
5910 return false;
5911 }
5912 case ISD::FCANONICALIZE:
5913 case ISD::FEXP:
5914 case ISD::FEXP2:
5915 case ISD::FEXP10:
5916 case ISD::FTRUNC:
5917 case ISD::FFLOOR:
5918 case ISD::FCEIL:
5919 case ISD::FROUND:
5920 case ISD::FROUNDEVEN:
5921 case ISD::LROUND:
5922 case ISD::LLROUND:
5923 case ISD::FRINT:
5924 case ISD::LRINT:
5925 case ISD::LLRINT:
5926 case ISD::FNEARBYINT:
5927 case ISD::FLDEXP: {
5928 if (SNaN)
5929 return true;
5930 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5931 }
5932 case ISD::FABS:
5933 case ISD::FNEG:
5934 case ISD::FCOPYSIGN: {
5935 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5936 }
5937 case ISD::SELECT:
5938 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5939 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5940 case ISD::FP_EXTEND:
5941 case ISD::FP_ROUND: {
5942 if (SNaN)
5943 return true;
5944 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5945 }
5946 case ISD::SINT_TO_FP:
5947 case ISD::UINT_TO_FP:
5948 return true;
5949 case ISD::FSQRT: // Need is known positive
5950 case ISD::FLOG:
5951 case ISD::FLOG2:
5952 case ISD::FLOG10:
5953 case ISD::FPOWI:
5954 case ISD::FPOW: {
5955 if (SNaN)
5956 return true;
5957 // TODO: Refine on operand
5958 return false;
5959 }
5960 case ISD::FMINNUM:
5961 case ISD::FMAXNUM:
5962 case ISD::FMINIMUMNUM:
5963 case ISD::FMAXIMUMNUM: {
5964 // Only one needs to be known not-nan, since it will be returned if the
5965 // other ends up being one.
5966 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5967 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5968 }
5969 case ISD::FMINNUM_IEEE:
5970 case ISD::FMAXNUM_IEEE: {
5971 if (SNaN)
5972 return true;
5973 // This can return a NaN if either operand is an sNaN, or if both operands
5974 // are NaN.
5975 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5976 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5977 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5978 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5979 }
5980 case ISD::FMINIMUM:
5981 case ISD::FMAXIMUM: {
5982 // TODO: Does this quiet or return the origina NaN as-is?
5983 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5984 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5985 }
5987 SDValue Src = Op.getOperand(0);
5988 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5989 EVT SrcVT = Src.getValueType();
5990 if (SrcVT.isFixedLengthVector() && Idx &&
5991 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5992 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5993 Idx->getZExtValue());
5994 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5995 }
5996 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5997 }
5999 SDValue Src = Op.getOperand(0);
6000 if (Src.getValueType().isFixedLengthVector()) {
6001 unsigned Idx = Op.getConstantOperandVal(1);
6002 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6003 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
6004 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6005 }
6006 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6007 }
6008 case ISD::INSERT_SUBVECTOR: {
6009 SDValue BaseVector = Op.getOperand(0);
6010 SDValue SubVector = Op.getOperand(1);
6011 EVT BaseVectorVT = BaseVector.getValueType();
6012 if (BaseVectorVT.isFixedLengthVector()) {
6013 unsigned Idx = Op.getConstantOperandVal(2);
6014 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
6015 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
6016
6017 // Clear/Extract the bits at the position where the subvector will be
6018 // inserted.
6019 APInt DemandedMask =
6020 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6021 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6022 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6023
6024 bool NeverNaN = true;
6025 if (!DemandedSrcElts.isZero())
6026 NeverNaN &=
6027 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6028 if (NeverNaN && !DemandedSubElts.isZero())
6029 NeverNaN &=
6030 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6031 return NeverNaN;
6032 }
6033 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6034 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6035 }
6036 case ISD::BUILD_VECTOR: {
6037 unsigned NumElts = Op.getNumOperands();
6038 for (unsigned I = 0; I != NumElts; ++I)
6039 if (DemandedElts[I] &&
6040 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6041 return false;
6042 return true;
6043 }
6044 case ISD::AssertNoFPClass: {
6045 FPClassTest NoFPClass =
6046 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6047 if ((NoFPClass & fcNan) == fcNan)
6048 return true;
6049 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6050 return true;
6051 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6052 }
6053 default:
6054 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6055 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6056 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6057 Depth);
6058 }
6059
6060 return false;
6061 }
6062}
6063
6065 assert(Op.getValueType().isFloatingPoint() &&
6066 "Floating point type expected");
6067
6068 // If the value is a constant, we can obviously see if it is a zero or not.
6070 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6071}
6072
6074 if (Depth >= MaxRecursionDepth)
6075 return false; // Limit search depth.
6076
6077 assert(!Op.getValueType().isFloatingPoint() &&
6078 "Floating point types unsupported - use isKnownNeverZeroFloat");
6079
6080 // If the value is a constant, we can obviously see if it is a zero or not.
6082 [](ConstantSDNode *C) { return !C->isZero(); }))
6083 return true;
6084
6085 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6086 // some degree.
6087 switch (Op.getOpcode()) {
6088 default:
6089 break;
6090
6091 case ISD::OR:
6092 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6093 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6094
6095 case ISD::VSELECT:
6096 case ISD::SELECT:
6097 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6098 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6099
6100 case ISD::SHL: {
6101 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6102 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6103 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6104 // 1 << X is never zero.
6105 if (ValKnown.One[0])
6106 return true;
6107 // If max shift cnt of known ones is non-zero, result is non-zero.
6108 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6109 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6110 !ValKnown.One.shl(MaxCnt).isZero())
6111 return true;
6112 break;
6113 }
6114 case ISD::UADDSAT:
6115 case ISD::UMAX:
6116 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6117 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6118
6119 // For smin/smax: If either operand is known negative/positive
6120 // respectively we don't need the other to be known at all.
6121 case ISD::SMAX: {
6122 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6123 if (Op1.isStrictlyPositive())
6124 return true;
6125
6126 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6127 if (Op0.isStrictlyPositive())
6128 return true;
6129
6130 if (Op1.isNonZero() && Op0.isNonZero())
6131 return true;
6132
6133 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6134 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6135 }
6136 case ISD::SMIN: {
6137 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6138 if (Op1.isNegative())
6139 return true;
6140
6141 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6142 if (Op0.isNegative())
6143 return true;
6144
6145 if (Op1.isNonZero() && Op0.isNonZero())
6146 return true;
6147
6148 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6149 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6150 }
6151 case ISD::UMIN:
6152 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6153 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6154
6155 case ISD::ROTL:
6156 case ISD::ROTR:
6157 case ISD::BITREVERSE:
6158 case ISD::BSWAP:
6159 case ISD::CTPOP:
6160 case ISD::ABS:
6161 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6162
6163 case ISD::SRA:
6164 case ISD::SRL: {
6165 if (Op->getFlags().hasExact())
6166 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6167 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6168 if (ValKnown.isNegative())
6169 return true;
6170 // If max shift cnt of known ones is non-zero, result is non-zero.
6171 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6172 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6173 !ValKnown.One.lshr(MaxCnt).isZero())
6174 return true;
6175 break;
6176 }
6177 case ISD::UDIV:
6178 case ISD::SDIV:
6179 // div exact can only produce a zero if the dividend is zero.
6180 // TODO: For udiv this is also true if Op1 u<= Op0
6181 if (Op->getFlags().hasExact())
6182 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6183 break;
6184
6185 case ISD::ADD:
6186 if (Op->getFlags().hasNoUnsignedWrap())
6187 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6188 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6189 return true;
6190 // TODO: There are a lot more cases we can prove for add.
6191 break;
6192
6193 case ISD::SUB: {
6194 if (isNullConstant(Op.getOperand(0)))
6195 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6196
6197 std::optional<bool> ne =
6198 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6199 computeKnownBits(Op.getOperand(1), Depth + 1));
6200 return ne && *ne;
6201 }
6202
6203 case ISD::MUL:
6204 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6205 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6206 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6207 return true;
6208 break;
6209
6210 case ISD::ZERO_EXTEND:
6211 case ISD::SIGN_EXTEND:
6212 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6213 case ISD::VSCALE: {
6215 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6216 ConstantRange CR =
6217 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6218 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6219 return true;
6220 break;
6221 }
6222 }
6223
6225}
6226
6228 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6229 return !C1->isNegative();
6230
6231 return Op.getOpcode() == ISD::FABS;
6232}
6233
6235 // Check the obvious case.
6236 if (A == B) return true;
6237
6238 // For negative and positive zero.
6241 if (CA->isZero() && CB->isZero()) return true;
6242
6243 // Otherwise they may not be equal.
6244 return false;
6245}
6246
6247// Only bits set in Mask must be negated, other bits may be arbitrary.
6249 if (isBitwiseNot(V, AllowUndefs))
6250 return V.getOperand(0);
6251
6252 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6253 // bits in the non-extended part.
6254 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6255 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6256 return SDValue();
6257 SDValue ExtArg = V.getOperand(0);
6258 if (ExtArg.getScalarValueSizeInBits() >=
6259 MaskC->getAPIntValue().getActiveBits() &&
6260 isBitwiseNot(ExtArg, AllowUndefs) &&
6261 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6262 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6263 return ExtArg.getOperand(0).getOperand(0);
6264 return SDValue();
6265}
6266
6268 // Match masked merge pattern (X & ~M) op (Y & M)
6269 // Including degenerate case (X & ~M) op M
6270 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6271 SDValue Other) {
6272 if (SDValue NotOperand =
6273 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6274 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6275 NotOperand->getOpcode() == ISD::TRUNCATE)
6276 NotOperand = NotOperand->getOperand(0);
6277
6278 if (Other == NotOperand)
6279 return true;
6280 if (Other->getOpcode() == ISD::AND)
6281 return NotOperand == Other->getOperand(0) ||
6282 NotOperand == Other->getOperand(1);
6283 }
6284 return false;
6285 };
6286
6287 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6288 A = A->getOperand(0);
6289
6290 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6291 B = B->getOperand(0);
6292
6293 if (A->getOpcode() == ISD::AND)
6294 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6295 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6296 return false;
6297}
6298
6299// FIXME: unify with llvm::haveNoCommonBitsSet.
6301 assert(A.getValueType() == B.getValueType() &&
6302 "Values must have the same type");
6305 return true;
6308}
6309
6310static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6311 SelectionDAG &DAG) {
6312 if (cast<ConstantSDNode>(Step)->isZero())
6313 return DAG.getConstant(0, DL, VT);
6314
6315 return SDValue();
6316}
6317
6320 SelectionDAG &DAG) {
6321 int NumOps = Ops.size();
6322 assert(NumOps != 0 && "Can't build an empty vector!");
6323 assert(!VT.isScalableVector() &&
6324 "BUILD_VECTOR cannot be used with scalable types");
6325 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6326 "Incorrect element count in BUILD_VECTOR!");
6327
6328 // BUILD_VECTOR of UNDEFs is UNDEF.
6329 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6330 return DAG.getUNDEF(VT);
6331
6332 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6333 SDValue IdentitySrc;
6334 bool IsIdentity = true;
6335 for (int i = 0; i != NumOps; ++i) {
6337 Ops[i].getOperand(0).getValueType() != VT ||
6338 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6339 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6340 Ops[i].getConstantOperandAPInt(1) != i) {
6341 IsIdentity = false;
6342 break;
6343 }
6344 IdentitySrc = Ops[i].getOperand(0);
6345 }
6346 if (IsIdentity)
6347 return IdentitySrc;
6348
6349 return SDValue();
6350}
6351
6352/// Try to simplify vector concatenation to an input value, undef, or build
6353/// vector.
6356 SelectionDAG &DAG) {
6357 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6359 [Ops](SDValue Op) {
6360 return Ops[0].getValueType() == Op.getValueType();
6361 }) &&
6362 "Concatenation of vectors with inconsistent value types!");
6363 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6364 VT.getVectorElementCount() &&
6365 "Incorrect element count in vector concatenation!");
6366
6367 if (Ops.size() == 1)
6368 return Ops[0];
6369
6370 // Concat of UNDEFs is UNDEF.
6371 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6372 return DAG.getUNDEF(VT);
6373
6374 // Scan the operands and look for extract operations from a single source
6375 // that correspond to insertion at the same location via this concatenation:
6376 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6377 SDValue IdentitySrc;
6378 bool IsIdentity = true;
6379 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6380 SDValue Op = Ops[i];
6381 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6382 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6383 Op.getOperand(0).getValueType() != VT ||
6384 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6385 Op.getConstantOperandVal(1) != IdentityIndex) {
6386 IsIdentity = false;
6387 break;
6388 }
6389 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6390 "Unexpected identity source vector for concat of extracts");
6391 IdentitySrc = Op.getOperand(0);
6392 }
6393 if (IsIdentity) {
6394 assert(IdentitySrc && "Failed to set source vector of extracts");
6395 return IdentitySrc;
6396 }
6397
6398 // The code below this point is only designed to work for fixed width
6399 // vectors, so we bail out for now.
6400 if (VT.isScalableVector())
6401 return SDValue();
6402
6403 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6404 // simplified to one big BUILD_VECTOR.
6405 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6406 EVT SVT = VT.getScalarType();
6408 for (SDValue Op : Ops) {
6409 EVT OpVT = Op.getValueType();
6410 if (Op.isUndef())
6411 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6412 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6413 Elts.append(Op->op_begin(), Op->op_end());
6414 else
6415 return SDValue();
6416 }
6417
6418 // BUILD_VECTOR requires all inputs to be of the same type, find the
6419 // maximum type and extend them all.
6420 for (SDValue Op : Elts)
6421 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6422
6423 if (SVT.bitsGT(VT.getScalarType())) {
6424 for (SDValue &Op : Elts) {
6425 if (Op.isUndef())
6426 Op = DAG.getUNDEF(SVT);
6427 else
6428 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6429 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6430 : DAG.getSExtOrTrunc(Op, DL, SVT);
6431 }
6432 }
6433
6434 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6435 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6436 return V;
6437}
6438
6439/// Gets or creates the specified node.
6440SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6441 SDVTList VTs = getVTList(VT);
6443 AddNodeIDNode(ID, Opcode, VTs, {});
6444 void *IP = nullptr;
6445 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6446 return SDValue(E, 0);
6447
6448 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6449 CSEMap.InsertNode(N, IP);
6450
6451 InsertNode(N);
6452 SDValue V = SDValue(N, 0);
6453 NewSDValueDbgMsg(V, "Creating new node: ", this);
6454 return V;
6455}
6456
6457SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6458 SDValue N1) {
6459 SDNodeFlags Flags;
6460 if (Inserter)
6461 Flags = Inserter->getFlags();
6462 return getNode(Opcode, DL, VT, N1, Flags);
6463}
6464
6465SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6466 SDValue N1, const SDNodeFlags Flags) {
6467 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6468
6469 // Constant fold unary operations with a vector integer or float operand.
6470 switch (Opcode) {
6471 default:
6472 // FIXME: Entirely reasonable to perform folding of other unary
6473 // operations here as the need arises.
6474 break;
6475 case ISD::FNEG:
6476 case ISD::FABS:
6477 case ISD::FCEIL:
6478 case ISD::FTRUNC:
6479 case ISD::FFLOOR:
6480 case ISD::FP_EXTEND:
6481 case ISD::FP_TO_SINT:
6482 case ISD::FP_TO_UINT:
6483 case ISD::FP_TO_FP16:
6484 case ISD::FP_TO_BF16:
6485 case ISD::TRUNCATE:
6486 case ISD::ANY_EXTEND:
6487 case ISD::ZERO_EXTEND:
6488 case ISD::SIGN_EXTEND:
6489 case ISD::UINT_TO_FP:
6490 case ISD::SINT_TO_FP:
6491 case ISD::FP16_TO_FP:
6492 case ISD::BF16_TO_FP:
6493 case ISD::BITCAST:
6494 case ISD::ABS:
6495 case ISD::BITREVERSE:
6496 case ISD::BSWAP:
6497 case ISD::CTLZ:
6499 case ISD::CTTZ:
6501 case ISD::CTPOP:
6502 case ISD::STEP_VECTOR: {
6503 SDValue Ops = {N1};
6504 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6505 return Fold;
6506 }
6507 }
6508
6509 unsigned OpOpcode = N1.getNode()->getOpcode();
6510 switch (Opcode) {
6511 case ISD::STEP_VECTOR:
6512 assert(VT.isScalableVector() &&
6513 "STEP_VECTOR can only be used with scalable types");
6514 assert(OpOpcode == ISD::TargetConstant &&
6515 VT.getVectorElementType() == N1.getValueType() &&
6516 "Unexpected step operand");
6517 break;
6518 case ISD::FREEZE:
6519 assert(VT == N1.getValueType() && "Unexpected VT!");
6520 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6521 return N1;
6522 break;
6523 case ISD::TokenFactor:
6524 case ISD::MERGE_VALUES:
6526 return N1; // Factor, merge or concat of one node? No need.
6527 case ISD::BUILD_VECTOR: {
6528 // Attempt to simplify BUILD_VECTOR.
6529 SDValue Ops[] = {N1};
6530 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6531 return V;
6532 break;
6533 }
6534 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6535 case ISD::FP_EXTEND:
6537 "Invalid FP cast!");
6538 if (N1.getValueType() == VT) return N1; // noop conversion.
6539 assert((!VT.isVector() || VT.getVectorElementCount() ==
6541 "Vector element count mismatch!");
6542 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6543 if (N1.isUndef())
6544 return getUNDEF(VT);
6545 break;
6546 case ISD::FP_TO_SINT:
6547 case ISD::FP_TO_UINT:
6548 if (N1.isUndef())
6549 return getUNDEF(VT);
6550 break;
6551 case ISD::SINT_TO_FP:
6552 case ISD::UINT_TO_FP:
6553 // [us]itofp(undef) = 0, because the result value is bounded.
6554 if (N1.isUndef())
6555 return getConstantFP(0.0, DL, VT);
6556 break;
6557 case ISD::SIGN_EXTEND:
6558 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6559 "Invalid SIGN_EXTEND!");
6560 assert(VT.isVector() == N1.getValueType().isVector() &&
6561 "SIGN_EXTEND result type type should be vector iff the operand "
6562 "type is vector!");
6563 if (N1.getValueType() == VT) return N1; // noop extension
6564 assert((!VT.isVector() || VT.getVectorElementCount() ==
6566 "Vector element count mismatch!");
6567 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6568 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6569 SDNodeFlags Flags;
6570 if (OpOpcode == ISD::ZERO_EXTEND)
6571 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6572 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6573 transferDbgValues(N1, NewVal);
6574 return NewVal;
6575 }
6576
6577 if (OpOpcode == ISD::POISON)
6578 return getPOISON(VT);
6579
6580 if (N1.isUndef())
6581 // sext(undef) = 0, because the top bits will all be the same.
6582 return getConstant(0, DL, VT);
6583
6584 // Skip unnecessary sext_inreg pattern:
6585 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6586 if (OpOpcode == ISD::TRUNCATE) {
6587 SDValue OpOp = N1.getOperand(0);
6588 if (OpOp.getValueType() == VT) {
6589 unsigned NumSignExtBits =
6591 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6592 transferDbgValues(N1, OpOp);
6593 return OpOp;
6594 }
6595 }
6596 }
6597 break;
6598 case ISD::ZERO_EXTEND:
6599 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6600 "Invalid ZERO_EXTEND!");
6601 assert(VT.isVector() == N1.getValueType().isVector() &&
6602 "ZERO_EXTEND result type type should be vector iff the operand "
6603 "type is vector!");
6604 if (N1.getValueType() == VT) return N1; // noop extension
6605 assert((!VT.isVector() || VT.getVectorElementCount() ==
6607 "Vector element count mismatch!");
6608 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6609 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6610 SDNodeFlags Flags;
6611 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6612 SDValue NewVal =
6613 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6614 transferDbgValues(N1, NewVal);
6615 return NewVal;
6616 }
6617
6618 if (OpOpcode == ISD::POISON)
6619 return getPOISON(VT);
6620
6621 if (N1.isUndef())
6622 // zext(undef) = 0, because the top bits will be zero.
6623 return getConstant(0, DL, VT);
6624
6625 // Skip unnecessary zext_inreg pattern:
6626 // (zext (trunc x)) -> x iff the upper bits are known zero.
6627 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6628 // use to recognise zext_inreg patterns.
6629 if (OpOpcode == ISD::TRUNCATE) {
6630 SDValue OpOp = N1.getOperand(0);
6631 if (OpOp.getValueType() == VT) {
6632 if (OpOp.getOpcode() != ISD::AND) {
6635 if (MaskedValueIsZero(OpOp, HiBits)) {
6636 transferDbgValues(N1, OpOp);
6637 return OpOp;
6638 }
6639 }
6640 }
6641 }
6642 break;
6643 case ISD::ANY_EXTEND:
6644 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6645 "Invalid ANY_EXTEND!");
6646 assert(VT.isVector() == N1.getValueType().isVector() &&
6647 "ANY_EXTEND result type type should be vector iff the operand "
6648 "type is vector!");
6649 if (N1.getValueType() == VT) return N1; // noop extension
6650 assert((!VT.isVector() || VT.getVectorElementCount() ==
6652 "Vector element count mismatch!");
6653 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6654
6655 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6656 OpOpcode == ISD::ANY_EXTEND) {
6657 SDNodeFlags Flags;
6658 if (OpOpcode == ISD::ZERO_EXTEND)
6659 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6660 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6661 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6662 }
6663 if (N1.isUndef())
6664 return getUNDEF(VT);
6665
6666 // (ext (trunc x)) -> x
6667 if (OpOpcode == ISD::TRUNCATE) {
6668 SDValue OpOp = N1.getOperand(0);
6669 if (OpOp.getValueType() == VT) {
6670 transferDbgValues(N1, OpOp);
6671 return OpOp;
6672 }
6673 }
6674 break;
6675 case ISD::TRUNCATE:
6676 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6677 "Invalid TRUNCATE!");
6678 assert(VT.isVector() == N1.getValueType().isVector() &&
6679 "TRUNCATE result type type should be vector iff the operand "
6680 "type is vector!");
6681 if (N1.getValueType() == VT) return N1; // noop truncate
6682 assert((!VT.isVector() || VT.getVectorElementCount() ==
6684 "Vector element count mismatch!");
6685 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6686 if (OpOpcode == ISD::TRUNCATE)
6687 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6688 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6689 OpOpcode == ISD::ANY_EXTEND) {
6690 // If the source is smaller than the dest, we still need an extend.
6692 VT.getScalarType())) {
6693 SDNodeFlags Flags;
6694 if (OpOpcode == ISD::ZERO_EXTEND)
6695 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6696 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6697 }
6698 if (N1.getOperand(0).getValueType().bitsGT(VT))
6699 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6700 return N1.getOperand(0);
6701 }
6702 if (N1.isUndef())
6703 return getUNDEF(VT);
6704 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6705 return getVScale(DL, VT,
6707 break;
6711 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6712 assert(N1.getValueType().bitsLE(VT) &&
6713 "The input must be the same size or smaller than the result.");
6716 "The destination vector type must have fewer lanes than the input.");
6717 break;
6718 case ISD::ABS:
6719 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6720 if (N1.isUndef())
6721 return getConstant(0, DL, VT);
6722 break;
6723 case ISD::BSWAP:
6724 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6725 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6726 "BSWAP types must be a multiple of 16 bits!");
6727 if (N1.isUndef())
6728 return getUNDEF(VT);
6729 // bswap(bswap(X)) -> X.
6730 if (OpOpcode == ISD::BSWAP)
6731 return N1.getOperand(0);
6732 break;
6733 case ISD::BITREVERSE:
6734 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6735 if (N1.isUndef())
6736 return getUNDEF(VT);
6737 break;
6738 case ISD::BITCAST:
6740 "Cannot BITCAST between types of different sizes!");
6741 if (VT == N1.getValueType()) return N1; // noop conversion.
6742 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6743 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6744 if (N1.isUndef())
6745 return getUNDEF(VT);
6746 break;
6748 assert(VT.isVector() && !N1.getValueType().isVector() &&
6749 (VT.getVectorElementType() == N1.getValueType() ||
6751 N1.getValueType().isInteger() &&
6753 "Illegal SCALAR_TO_VECTOR node!");
6754 if (N1.isUndef())
6755 return getUNDEF(VT);
6756 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6757 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6759 N1.getConstantOperandVal(1) == 0 &&
6760 N1.getOperand(0).getValueType() == VT)
6761 return N1.getOperand(0);
6762 break;
6763 case ISD::FNEG:
6764 // Negation of an unknown bag of bits is still completely undefined.
6765 if (N1.isUndef())
6766 return getUNDEF(VT);
6767
6768 if (OpOpcode == ISD::FNEG) // --X -> X
6769 return N1.getOperand(0);
6770 break;
6771 case ISD::FABS:
6772 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6773 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6774 break;
6775 case ISD::VSCALE:
6776 assert(VT == N1.getValueType() && "Unexpected VT!");
6777 break;
6778 case ISD::CTPOP:
6779 if (N1.getValueType().getScalarType() == MVT::i1)
6780 return N1;
6781 break;
6782 case ISD::CTLZ:
6783 case ISD::CTTZ:
6784 if (N1.getValueType().getScalarType() == MVT::i1)
6785 return getNOT(DL, N1, N1.getValueType());
6786 break;
6787 case ISD::VECREDUCE_ADD:
6788 if (N1.getValueType().getScalarType() == MVT::i1)
6789 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6790 break;
6791 case ISD::VECREDUCE_SMIN:
6792 case ISD::VECREDUCE_UMAX:
6793 if (N1.getValueType().getScalarType() == MVT::i1)
6794 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6795 break;
6796 case ISD::VECREDUCE_SMAX:
6797 case ISD::VECREDUCE_UMIN:
6798 if (N1.getValueType().getScalarType() == MVT::i1)
6799 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6800 break;
6801 case ISD::SPLAT_VECTOR:
6802 assert(VT.isVector() && "Wrong return type!");
6803 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6804 // that for now.
6806 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6808 N1.getValueType().isInteger() &&
6810 "Wrong operand type!");
6811 break;
6812 }
6813
6814 SDNode *N;
6815 SDVTList VTs = getVTList(VT);
6816 SDValue Ops[] = {N1};
6817 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6819 AddNodeIDNode(ID, Opcode, VTs, Ops);
6820 void *IP = nullptr;
6821 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6822 E->intersectFlagsWith(Flags);
6823 return SDValue(E, 0);
6824 }
6825
6826 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6827 N->setFlags(Flags);
6828 createOperands(N, Ops);
6829 CSEMap.InsertNode(N, IP);
6830 } else {
6831 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6832 createOperands(N, Ops);
6833 }
6834
6835 InsertNode(N);
6836 SDValue V = SDValue(N, 0);
6837 NewSDValueDbgMsg(V, "Creating new node: ", this);
6838 return V;
6839}
6840
6841static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6842 const APInt &C2) {
6843 switch (Opcode) {
6844 case ISD::ADD: return C1 + C2;
6845 case ISD::SUB: return C1 - C2;
6846 case ISD::MUL: return C1 * C2;
6847 case ISD::AND: return C1 & C2;
6848 case ISD::OR: return C1 | C2;
6849 case ISD::XOR: return C1 ^ C2;
6850 case ISD::SHL: return C1 << C2;
6851 case ISD::SRL: return C1.lshr(C2);
6852 case ISD::SRA: return C1.ashr(C2);
6853 case ISD::ROTL: return C1.rotl(C2);
6854 case ISD::ROTR: return C1.rotr(C2);
6855 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6856 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6857 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6858 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6859 case ISD::SADDSAT: return C1.sadd_sat(C2);
6860 case ISD::UADDSAT: return C1.uadd_sat(C2);
6861 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6862 case ISD::USUBSAT: return C1.usub_sat(C2);
6863 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6864 case ISD::USHLSAT: return C1.ushl_sat(C2);
6865 case ISD::UDIV:
6866 if (!C2.getBoolValue())
6867 break;
6868 return C1.udiv(C2);
6869 case ISD::UREM:
6870 if (!C2.getBoolValue())
6871 break;
6872 return C1.urem(C2);
6873 case ISD::SDIV:
6874 if (!C2.getBoolValue())
6875 break;
6876 return C1.sdiv(C2);
6877 case ISD::SREM:
6878 if (!C2.getBoolValue())
6879 break;
6880 return C1.srem(C2);
6881 case ISD::AVGFLOORS:
6882 return APIntOps::avgFloorS(C1, C2);
6883 case ISD::AVGFLOORU:
6884 return APIntOps::avgFloorU(C1, C2);
6885 case ISD::AVGCEILS:
6886 return APIntOps::avgCeilS(C1, C2);
6887 case ISD::AVGCEILU:
6888 return APIntOps::avgCeilU(C1, C2);
6889 case ISD::ABDS:
6890 return APIntOps::abds(C1, C2);
6891 case ISD::ABDU:
6892 return APIntOps::abdu(C1, C2);
6893 case ISD::MULHS:
6894 return APIntOps::mulhs(C1, C2);
6895 case ISD::MULHU:
6896 return APIntOps::mulhu(C1, C2);
6897 }
6898 return std::nullopt;
6899}
6900// Handle constant folding with UNDEF.
6901// TODO: Handle more cases.
6902static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6903 bool IsUndef1, const APInt &C2,
6904 bool IsUndef2) {
6905 if (!(IsUndef1 || IsUndef2))
6906 return FoldValue(Opcode, C1, C2);
6907
6908 // Fold and(x, undef) -> 0
6909 // Fold mul(x, undef) -> 0
6910 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6911 return APInt::getZero(C1.getBitWidth());
6912
6913 return std::nullopt;
6914}
6915
6917 const GlobalAddressSDNode *GA,
6918 const SDNode *N2) {
6919 if (GA->getOpcode() != ISD::GlobalAddress)
6920 return SDValue();
6921 if (!TLI->isOffsetFoldingLegal(GA))
6922 return SDValue();
6923 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6924 if (!C2)
6925 return SDValue();
6926 int64_t Offset = C2->getSExtValue();
6927 switch (Opcode) {
6928 case ISD::ADD:
6929 case ISD::PTRADD:
6930 break;
6931 case ISD::SUB: Offset = -uint64_t(Offset); break;
6932 default: return SDValue();
6933 }
6934 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6935 GA->getOffset() + uint64_t(Offset));
6936}
6937
6939 switch (Opcode) {
6940 case ISD::SDIV:
6941 case ISD::UDIV:
6942 case ISD::SREM:
6943 case ISD::UREM: {
6944 // If a divisor is zero/undef or any element of a divisor vector is
6945 // zero/undef, the whole op is undef.
6946 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6947 SDValue Divisor = Ops[1];
6948 if (Divisor.isUndef() || isNullConstant(Divisor))
6949 return true;
6950
6951 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6952 llvm::any_of(Divisor->op_values(),
6953 [](SDValue V) { return V.isUndef() ||
6954 isNullConstant(V); });
6955 // TODO: Handle signed overflow.
6956 }
6957 // TODO: Handle oversized shifts.
6958 default:
6959 return false;
6960 }
6961}
6962
6965 SDNodeFlags Flags) {
6966 // If the opcode is a target-specific ISD node, there's nothing we can
6967 // do here and the operand rules may not line up with the below, so
6968 // bail early.
6969 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6970 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6971 // foldCONCAT_VECTORS in getNode before this is called.
6972 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6973 return SDValue();
6974
6975 unsigned NumOps = Ops.size();
6976 if (NumOps == 0)
6977 return SDValue();
6978
6979 if (isUndef(Opcode, Ops))
6980 return getUNDEF(VT);
6981
6982 // Handle unary special cases.
6983 if (NumOps == 1) {
6984 SDValue N1 = Ops[0];
6985
6986 // Constant fold unary operations with an integer constant operand. Even
6987 // opaque constant will be folded, because the folding of unary operations
6988 // doesn't create new constants with different values. Nevertheless, the
6989 // opaque flag is preserved during folding to prevent future folding with
6990 // other constants.
6991 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6992 const APInt &Val = C->getAPIntValue();
6993 switch (Opcode) {
6994 case ISD::SIGN_EXTEND:
6995 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6996 C->isTargetOpcode(), C->isOpaque());
6997 case ISD::TRUNCATE:
6998 if (C->isOpaque())
6999 break;
7000 [[fallthrough]];
7001 case ISD::ZERO_EXTEND:
7002 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7003 C->isTargetOpcode(), C->isOpaque());
7004 case ISD::ANY_EXTEND:
7005 // Some targets like RISCV prefer to sign extend some types.
7006 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
7007 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7008 C->isTargetOpcode(), C->isOpaque());
7009 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7010 C->isTargetOpcode(), C->isOpaque());
7011 case ISD::ABS:
7012 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
7013 C->isOpaque());
7014 case ISD::BITREVERSE:
7015 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
7016 C->isOpaque());
7017 case ISD::BSWAP:
7018 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7019 C->isOpaque());
7020 case ISD::CTPOP:
7021 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7022 C->isOpaque());
7023 case ISD::CTLZ:
7025 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7026 C->isOpaque());
7027 case ISD::CTTZ:
7029 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7030 C->isOpaque());
7031 case ISD::UINT_TO_FP:
7032 case ISD::SINT_TO_FP: {
7034 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7036 return getConstantFP(FPV, DL, VT);
7037 }
7038 case ISD::FP16_TO_FP:
7039 case ISD::BF16_TO_FP: {
7040 bool Ignored;
7041 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7042 : APFloat::BFloat(),
7043 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7044
7045 // This can return overflow, underflow, or inexact; we don't care.
7046 // FIXME need to be more flexible about rounding mode.
7048 &Ignored);
7049 return getConstantFP(FPV, DL, VT);
7050 }
7051 case ISD::STEP_VECTOR:
7052 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7053 return V;
7054 break;
7055 case ISD::BITCAST:
7056 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7057 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7058 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7059 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7060 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7061 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7062 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7063 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7064 break;
7065 }
7066 }
7067
7068 // Constant fold unary operations with a floating point constant operand.
7069 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7070 APFloat V = C->getValueAPF(); // make copy
7071 switch (Opcode) {
7072 case ISD::FNEG:
7073 V.changeSign();
7074 return getConstantFP(V, DL, VT);
7075 case ISD::FABS:
7076 V.clearSign();
7077 return getConstantFP(V, DL, VT);
7078 case ISD::FCEIL: {
7079 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7081 return getConstantFP(V, DL, VT);
7082 return SDValue();
7083 }
7084 case ISD::FTRUNC: {
7085 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7087 return getConstantFP(V, DL, VT);
7088 return SDValue();
7089 }
7090 case ISD::FFLOOR: {
7091 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7093 return getConstantFP(V, DL, VT);
7094 return SDValue();
7095 }
7096 case ISD::FP_EXTEND: {
7097 bool ignored;
7098 // This can return overflow, underflow, or inexact; we don't care.
7099 // FIXME need to be more flexible about rounding mode.
7100 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7101 &ignored);
7102 return getConstantFP(V, DL, VT);
7103 }
7104 case ISD::FP_TO_SINT:
7105 case ISD::FP_TO_UINT: {
7106 bool ignored;
7107 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7108 // FIXME need to be more flexible about rounding mode.
7110 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7111 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7112 break;
7113 return getConstant(IntVal, DL, VT);
7114 }
7115 case ISD::FP_TO_FP16:
7116 case ISD::FP_TO_BF16: {
7117 bool Ignored;
7118 // This can return overflow, underflow, or inexact; we don't care.
7119 // FIXME need to be more flexible about rounding mode.
7120 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7121 : APFloat::BFloat(),
7123 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7124 }
7125 case ISD::BITCAST:
7126 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7127 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7128 VT);
7129 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7130 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7131 VT);
7132 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7133 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7134 VT);
7135 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7136 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7137 break;
7138 }
7139 }
7140
7141 // Early-out if we failed to constant fold a bitcast.
7142 if (Opcode == ISD::BITCAST)
7143 return SDValue();
7144 }
7145
7146 // Handle binops special cases.
7147 if (NumOps == 2) {
7148 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7149 return CFP;
7150
7151 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7152 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7153 if (C1->isOpaque() || C2->isOpaque())
7154 return SDValue();
7155
7156 std::optional<APInt> FoldAttempt =
7157 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7158 if (!FoldAttempt)
7159 return SDValue();
7160
7161 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7162 assert((!Folded || !VT.isVector()) &&
7163 "Can't fold vectors ops with scalar operands");
7164 return Folded;
7165 }
7166 }
7167
7168 // fold (add Sym, c) -> Sym+c
7170 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7171 if (TLI->isCommutativeBinOp(Opcode))
7173 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7174
7175 // fold (sext_in_reg c1) -> c2
7176 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7177 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7178
7179 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7180 unsigned FromBits = EVT.getScalarSizeInBits();
7181 Val <<= Val.getBitWidth() - FromBits;
7182 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7183 return getConstant(Val, DL, ConstantVT);
7184 };
7185
7186 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7187 const APInt &Val = C1->getAPIntValue();
7188 return SignExtendInReg(Val, VT);
7189 }
7190
7192 SmallVector<SDValue, 8> ScalarOps;
7193 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7194 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7195 SDValue Op = Ops[0].getOperand(I);
7196 if (Op.isUndef()) {
7197 ScalarOps.push_back(getUNDEF(OpVT));
7198 continue;
7199 }
7200 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7201 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7202 }
7203 return getBuildVector(VT, DL, ScalarOps);
7204 }
7205
7206 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7207 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7208 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7209 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7210 Ops[0].getOperand(0).getValueType()));
7211 }
7212 }
7213
7214 // Handle fshl/fshr special cases.
7215 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7216 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7217 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7218 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7219
7220 if (C1 && C2 && C3) {
7221 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7222 return SDValue();
7223 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7224 &V3 = C3->getAPIntValue();
7225
7226 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7227 : APIntOps::fshr(V1, V2, V3);
7228 return getConstant(FoldedVal, DL, VT);
7229 }
7230 }
7231
7232 // Handle fma/fmad special cases.
7233 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7234 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7235 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7236 Ops[2].getValueType() == VT && "FMA types must match!");
7240 if (C1 && C2 && C3) {
7241 APFloat V1 = C1->getValueAPF();
7242 const APFloat &V2 = C2->getValueAPF();
7243 const APFloat &V3 = C3->getValueAPF();
7244 if (Opcode == ISD::FMAD) {
7247 } else
7249 return getConstantFP(V1, DL, VT);
7250 }
7251 }
7252
7253 // This is for vector folding only from here on.
7254 if (!VT.isVector())
7255 return SDValue();
7256
7257 ElementCount NumElts = VT.getVectorElementCount();
7258
7259 // See if we can fold through any bitcasted integer ops.
7260 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7261 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7262 (Ops[0].getOpcode() == ISD::BITCAST ||
7263 Ops[1].getOpcode() == ISD::BITCAST)) {
7266 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7267 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7268 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7269 N2.getValueType().isInteger()) {
7270 bool IsLE = getDataLayout().isLittleEndian();
7271 unsigned EltBits = VT.getScalarSizeInBits();
7272 SmallVector<APInt> RawBits1, RawBits2;
7273 BitVector UndefElts1, UndefElts2;
7274 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7275 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7276 SmallVector<APInt> RawBits;
7277 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7278 std::optional<APInt> Fold = FoldValueWithUndef(
7279 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7280 if (!Fold)
7281 break;
7282 RawBits.push_back(*Fold);
7283 }
7284 if (RawBits.size() == NumElts.getFixedValue()) {
7285 // We have constant folded, but we might need to cast this again back
7286 // to the original (possibly legalized) type.
7287 EVT BVVT, BVEltVT;
7288 if (N1.getValueType() == VT) {
7289 BVVT = N1.getValueType();
7290 BVEltVT = BV1->getOperand(0).getValueType();
7291 } else {
7292 BVVT = N2.getValueType();
7293 BVEltVT = BV2->getOperand(0).getValueType();
7294 }
7295 unsigned BVEltBits = BVEltVT.getSizeInBits();
7296 SmallVector<APInt> DstBits;
7297 BitVector DstUndefs;
7299 DstBits, RawBits, DstUndefs,
7300 BitVector(RawBits.size(), false));
7301 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7302 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7303 if (DstUndefs[I])
7304 continue;
7305 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7306 }
7307 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7308 }
7309 }
7310 }
7311 }
7312
7313 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7314 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7315 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7316 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7317 APInt RHSVal;
7318 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7319 APInt NewStep = Opcode == ISD::MUL
7320 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7321 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7322 return getStepVector(DL, VT, NewStep);
7323 }
7324 }
7325
7326 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7327 return !Op.getValueType().isVector() ||
7328 Op.getValueType().getVectorElementCount() == NumElts;
7329 };
7330
7331 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7332 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7333 Op.getOpcode() == ISD::BUILD_VECTOR ||
7334 Op.getOpcode() == ISD::SPLAT_VECTOR;
7335 };
7336
7337 // All operands must be vector types with the same number of elements as
7338 // the result type and must be either UNDEF or a build/splat vector
7339 // or UNDEF scalars.
7340 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7341 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7342 return SDValue();
7343
7344 // If we are comparing vectors, then the result needs to be a i1 boolean that
7345 // is then extended back to the legal result type depending on how booleans
7346 // are represented.
7347 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7348 ISD::NodeType ExtendCode =
7349 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7350 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7352
7353 // Find legal integer scalar type for constant promotion and
7354 // ensure that its scalar size is at least as large as source.
7355 EVT LegalSVT = VT.getScalarType();
7356 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7357 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7358 if (LegalSVT.bitsLT(VT.getScalarType()))
7359 return SDValue();
7360 }
7361
7362 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7363 // only have one operand to check. For fixed-length vector types we may have
7364 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7365 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7366
7367 // Constant fold each scalar lane separately.
7368 SmallVector<SDValue, 4> ScalarResults;
7369 for (unsigned I = 0; I != NumVectorElts; I++) {
7370 SmallVector<SDValue, 4> ScalarOps;
7371 for (SDValue Op : Ops) {
7372 EVT InSVT = Op.getValueType().getScalarType();
7373 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7374 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7375 if (Op.isUndef())
7376 ScalarOps.push_back(getUNDEF(InSVT));
7377 else
7378 ScalarOps.push_back(Op);
7379 continue;
7380 }
7381
7382 SDValue ScalarOp =
7383 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7384 EVT ScalarVT = ScalarOp.getValueType();
7385
7386 // Build vector (integer) scalar operands may need implicit
7387 // truncation - do this before constant folding.
7388 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7389 // Don't create illegally-typed nodes unless they're constants or undef
7390 // - if we fail to constant fold we can't guarantee the (dead) nodes
7391 // we're creating will be cleaned up before being visited for
7392 // legalization.
7393 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7394 !isa<ConstantSDNode>(ScalarOp) &&
7395 TLI->getTypeAction(*getContext(), InSVT) !=
7397 return SDValue();
7398 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7399 }
7400
7401 ScalarOps.push_back(ScalarOp);
7402 }
7403
7404 // Constant fold the scalar operands.
7405 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7406
7407 // Scalar folding only succeeded if the result is a constant or UNDEF.
7408 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7409 ScalarResult.getOpcode() != ISD::ConstantFP)
7410 return SDValue();
7411
7412 // Legalize the (integer) scalar constant if necessary. We only do
7413 // this once we know the folding succeeded, since otherwise we would
7414 // get a node with illegal type which has a user.
7415 if (LegalSVT != SVT)
7416 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7417
7418 ScalarResults.push_back(ScalarResult);
7419 }
7420
7421 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7422 : getBuildVector(VT, DL, ScalarResults);
7423 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7424 return V;
7425}
7426
7429 // TODO: Add support for unary/ternary fp opcodes.
7430 if (Ops.size() != 2)
7431 return SDValue();
7432
7433 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7434 // should. That will require dealing with a potentially non-default
7435 // rounding mode, checking the "opStatus" return value from the APFloat
7436 // math calculations, and possibly other variations.
7437 SDValue N1 = Ops[0];
7438 SDValue N2 = Ops[1];
7439 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7440 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7441 if (N1CFP && N2CFP) {
7442 APFloat C1 = N1CFP->getValueAPF(); // make copy
7443 const APFloat &C2 = N2CFP->getValueAPF();
7444 switch (Opcode) {
7445 case ISD::FADD:
7447 return getConstantFP(C1, DL, VT);
7448 case ISD::FSUB:
7450 return getConstantFP(C1, DL, VT);
7451 case ISD::FMUL:
7453 return getConstantFP(C1, DL, VT);
7454 case ISD::FDIV:
7456 return getConstantFP(C1, DL, VT);
7457 case ISD::FREM:
7458 C1.mod(C2);
7459 return getConstantFP(C1, DL, VT);
7460 case ISD::FCOPYSIGN:
7461 C1.copySign(C2);
7462 return getConstantFP(C1, DL, VT);
7463 case ISD::FMINNUM:
7464 return getConstantFP(minnum(C1, C2), DL, VT);
7465 case ISD::FMAXNUM:
7466 return getConstantFP(maxnum(C1, C2), DL, VT);
7467 case ISD::FMINIMUM:
7468 return getConstantFP(minimum(C1, C2), DL, VT);
7469 case ISD::FMAXIMUM:
7470 return getConstantFP(maximum(C1, C2), DL, VT);
7471 case ISD::FMINIMUMNUM:
7472 return getConstantFP(minimumnum(C1, C2), DL, VT);
7473 case ISD::FMAXIMUMNUM:
7474 return getConstantFP(maximumnum(C1, C2), DL, VT);
7475 default: break;
7476 }
7477 }
7478 if (N1CFP && Opcode == ISD::FP_ROUND) {
7479 APFloat C1 = N1CFP->getValueAPF(); // make copy
7480 bool Unused;
7481 // This can return overflow, underflow, or inexact; we don't care.
7482 // FIXME need to be more flexible about rounding mode.
7484 &Unused);
7485 return getConstantFP(C1, DL, VT);
7486 }
7487
7488 switch (Opcode) {
7489 case ISD::FSUB:
7490 // -0.0 - undef --> undef (consistent with "fneg undef")
7491 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7492 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7493 return getUNDEF(VT);
7494 [[fallthrough]];
7495
7496 case ISD::FADD:
7497 case ISD::FMUL:
7498 case ISD::FDIV:
7499 case ISD::FREM:
7500 // If both operands are undef, the result is undef. If 1 operand is undef,
7501 // the result is NaN. This should match the behavior of the IR optimizer.
7502 if (N1.isUndef() && N2.isUndef())
7503 return getUNDEF(VT);
7504 if (N1.isUndef() || N2.isUndef())
7506 }
7507 return SDValue();
7508}
7509
7511 const SDLoc &DL, EVT DstEltVT) {
7512 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7513
7514 // If this is already the right type, we're done.
7515 if (SrcEltVT == DstEltVT)
7516 return SDValue(BV, 0);
7517
7518 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7519 unsigned DstBitSize = DstEltVT.getSizeInBits();
7520
7521 // If this is a conversion of N elements of one type to N elements of another
7522 // type, convert each element. This handles FP<->INT cases.
7523 if (SrcBitSize == DstBitSize) {
7525 for (SDValue Op : BV->op_values()) {
7526 // If the vector element type is not legal, the BUILD_VECTOR operands
7527 // are promoted and implicitly truncated. Make that explicit here.
7528 if (Op.getValueType() != SrcEltVT)
7529 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7530 Ops.push_back(getBitcast(DstEltVT, Op));
7531 }
7532 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7534 return getBuildVector(VT, DL, Ops);
7535 }
7536
7537 // Otherwise, we're growing or shrinking the elements. To avoid having to
7538 // handle annoying details of growing/shrinking FP values, we convert them to
7539 // int first.
7540 if (SrcEltVT.isFloatingPoint()) {
7541 // Convert the input float vector to a int vector where the elements are the
7542 // same sizes.
7543 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7544 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7546 DstEltVT);
7547 return SDValue();
7548 }
7549
7550 // Now we know the input is an integer vector. If the output is a FP type,
7551 // convert to integer first, then to FP of the right size.
7552 if (DstEltVT.isFloatingPoint()) {
7553 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7554 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7556 DstEltVT);
7557 return SDValue();
7558 }
7559
7560 // Okay, we know the src/dst types are both integers of differing types.
7561 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7562
7563 // Extract the constant raw bit data.
7564 BitVector UndefElements;
7565 SmallVector<APInt> RawBits;
7566 bool IsLE = getDataLayout().isLittleEndian();
7567 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7568 return SDValue();
7569
7571 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7572 if (UndefElements[I])
7573 Ops.push_back(getUNDEF(DstEltVT));
7574 else
7575 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7576 }
7577
7578 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7579 return getBuildVector(VT, DL, Ops);
7580}
7581
7583 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7584
7585 // There's no need to assert on a byte-aligned pointer. All pointers are at
7586 // least byte aligned.
7587 if (A == Align(1))
7588 return Val;
7589
7590 SDVTList VTs = getVTList(Val.getValueType());
7592 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7593 ID.AddInteger(A.value());
7594
7595 void *IP = nullptr;
7596 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7597 return SDValue(E, 0);
7598
7599 auto *N =
7600 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7601 createOperands(N, {Val});
7602
7603 CSEMap.InsertNode(N, IP);
7604 InsertNode(N);
7605
7606 SDValue V(N, 0);
7607 NewSDValueDbgMsg(V, "Creating new node: ", this);
7608 return V;
7609}
7610
7611SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7612 SDValue N1, SDValue N2) {
7613 SDNodeFlags Flags;
7614 if (Inserter)
7615 Flags = Inserter->getFlags();
7616 return getNode(Opcode, DL, VT, N1, N2, Flags);
7617}
7618
7620 SDValue &N2) const {
7621 if (!TLI->isCommutativeBinOp(Opcode))
7622 return;
7623
7624 // Canonicalize:
7625 // binop(const, nonconst) -> binop(nonconst, const)
7628 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7629 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7630 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7631 std::swap(N1, N2);
7632
7633 // Canonicalize:
7634 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7635 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7637 std::swap(N1, N2);
7638}
7639
7640SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7641 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7643 N2.getOpcode() != ISD::DELETED_NODE &&
7644 "Operand is DELETED_NODE!");
7645
7646 canonicalizeCommutativeBinop(Opcode, N1, N2);
7647
7648 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7649 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7650
7651 // Don't allow undefs in vector splats - we might be returning N2 when folding
7652 // to zero etc.
7653 ConstantSDNode *N2CV =
7654 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7655
7656 switch (Opcode) {
7657 default: break;
7658 case ISD::TokenFactor:
7659 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7660 N2.getValueType() == MVT::Other && "Invalid token factor!");
7661 // Fold trivial token factors.
7662 if (N1.getOpcode() == ISD::EntryToken) return N2;
7663 if (N2.getOpcode() == ISD::EntryToken) return N1;
7664 if (N1 == N2) return N1;
7665 break;
7666 case ISD::BUILD_VECTOR: {
7667 // Attempt to simplify BUILD_VECTOR.
7668 SDValue Ops[] = {N1, N2};
7669 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7670 return V;
7671 break;
7672 }
7673 case ISD::CONCAT_VECTORS: {
7674 SDValue Ops[] = {N1, N2};
7675 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7676 return V;
7677 break;
7678 }
7679 case ISD::AND:
7680 assert(VT.isInteger() && "This operator does not apply to FP types!");
7681 assert(N1.getValueType() == N2.getValueType() &&
7682 N1.getValueType() == VT && "Binary operator types must match!");
7683 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7684 // worth handling here.
7685 if (N2CV && N2CV->isZero())
7686 return N2;
7687 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7688 return N1;
7689 break;
7690 case ISD::OR:
7691 case ISD::XOR:
7692 case ISD::ADD:
7693 case ISD::PTRADD:
7694 case ISD::SUB:
7695 assert(VT.isInteger() && "This operator does not apply to FP types!");
7696 assert(N1.getValueType() == N2.getValueType() &&
7697 N1.getValueType() == VT && "Binary operator types must match!");
7698 // The equal operand types requirement is unnecessarily strong for PTRADD.
7699 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7700 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7701 // logic everywhere where PTRADDs may be folded or combined to properly
7702 // support them. If/when we introduce pointer types to the SDAG, we will
7703 // need to relax this constraint.
7704
7705 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7706 // it's worth handling here.
7707 if (N2CV && N2CV->isZero())
7708 return N1;
7709 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7710 VT.getScalarType() == MVT::i1)
7711 return getNode(ISD::XOR, DL, VT, N1, N2);
7712 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7713 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7714 N2.getOpcode() == ISD::VSCALE) {
7715 const APInt &C1 = N1->getConstantOperandAPInt(0);
7716 const APInt &C2 = N2->getConstantOperandAPInt(0);
7717 return getVScale(DL, VT, C1 + C2);
7718 }
7719 break;
7720 case ISD::MUL:
7721 assert(VT.isInteger() && "This operator does not apply to FP types!");
7722 assert(N1.getValueType() == N2.getValueType() &&
7723 N1.getValueType() == VT && "Binary operator types must match!");
7724 if (VT.getScalarType() == MVT::i1)
7725 return getNode(ISD::AND, DL, VT, N1, N2);
7726 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7727 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7728 const APInt &N2CImm = N2C->getAPIntValue();
7729 return getVScale(DL, VT, MulImm * N2CImm);
7730 }
7731 break;
7732 case ISD::UDIV:
7733 case ISD::UREM:
7734 case ISD::MULHU:
7735 case ISD::MULHS:
7736 case ISD::SDIV:
7737 case ISD::SREM:
7738 case ISD::SADDSAT:
7739 case ISD::SSUBSAT:
7740 case ISD::UADDSAT:
7741 case ISD::USUBSAT:
7742 assert(VT.isInteger() && "This operator does not apply to FP types!");
7743 assert(N1.getValueType() == N2.getValueType() &&
7744 N1.getValueType() == VT && "Binary operator types must match!");
7745 if (VT.getScalarType() == MVT::i1) {
7746 // fold (add_sat x, y) -> (or x, y) for bool types.
7747 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7748 return getNode(ISD::OR, DL, VT, N1, N2);
7749 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7750 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7751 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7752 }
7753 break;
7754 case ISD::SCMP:
7755 case ISD::UCMP:
7756 assert(N1.getValueType() == N2.getValueType() &&
7757 "Types of operands of UCMP/SCMP must match");
7758 assert(N1.getValueType().isVector() == VT.isVector() &&
7759 "Operands and return type of must both be scalars or vectors");
7760 if (VT.isVector())
7763 "Result and operands must have the same number of elements");
7764 break;
7765 case ISD::AVGFLOORS:
7766 case ISD::AVGFLOORU:
7767 case ISD::AVGCEILS:
7768 case ISD::AVGCEILU:
7769 assert(VT.isInteger() && "This operator does not apply to FP types!");
7770 assert(N1.getValueType() == N2.getValueType() &&
7771 N1.getValueType() == VT && "Binary operator types must match!");
7772 break;
7773 case ISD::ABDS:
7774 case ISD::ABDU:
7775 assert(VT.isInteger() && "This operator does not apply to FP types!");
7776 assert(N1.getValueType() == N2.getValueType() &&
7777 N1.getValueType() == VT && "Binary operator types must match!");
7778 if (VT.getScalarType() == MVT::i1)
7779 return getNode(ISD::XOR, DL, VT, N1, N2);
7780 break;
7781 case ISD::SMIN:
7782 case ISD::UMAX:
7783 assert(VT.isInteger() && "This operator does not apply to FP types!");
7784 assert(N1.getValueType() == N2.getValueType() &&
7785 N1.getValueType() == VT && "Binary operator types must match!");
7786 if (VT.getScalarType() == MVT::i1)
7787 return getNode(ISD::OR, DL, VT, N1, N2);
7788 break;
7789 case ISD::SMAX:
7790 case ISD::UMIN:
7791 assert(VT.isInteger() && "This operator does not apply to FP types!");
7792 assert(N1.getValueType() == N2.getValueType() &&
7793 N1.getValueType() == VT && "Binary operator types must match!");
7794 if (VT.getScalarType() == MVT::i1)
7795 return getNode(ISD::AND, DL, VT, N1, N2);
7796 break;
7797 case ISD::FADD:
7798 case ISD::FSUB:
7799 case ISD::FMUL:
7800 case ISD::FDIV:
7801 case ISD::FREM:
7802 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7803 assert(N1.getValueType() == N2.getValueType() &&
7804 N1.getValueType() == VT && "Binary operator types must match!");
7805 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7806 return V;
7807 break;
7808 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7809 assert(N1.getValueType() == VT &&
7812 "Invalid FCOPYSIGN!");
7813 break;
7814 case ISD::SHL:
7815 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7816 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7817 const APInt &ShiftImm = N2C->getAPIntValue();
7818 return getVScale(DL, VT, MulImm << ShiftImm);
7819 }
7820 [[fallthrough]];
7821 case ISD::SRA:
7822 case ISD::SRL:
7823 if (SDValue V = simplifyShift(N1, N2))
7824 return V;
7825 [[fallthrough]];
7826 case ISD::ROTL:
7827 case ISD::ROTR:
7828 assert(VT == N1.getValueType() &&
7829 "Shift operators return type must be the same as their first arg");
7830 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7831 "Shifts only work on integers");
7832 assert((!VT.isVector() || VT == N2.getValueType()) &&
7833 "Vector shift amounts must be in the same as their first arg");
7834 // Verify that the shift amount VT is big enough to hold valid shift
7835 // amounts. This catches things like trying to shift an i1024 value by an
7836 // i8, which is easy to fall into in generic code that uses
7837 // TLI.getShiftAmount().
7840 "Invalid use of small shift amount with oversized value!");
7841
7842 // Always fold shifts of i1 values so the code generator doesn't need to
7843 // handle them. Since we know the size of the shift has to be less than the
7844 // size of the value, the shift/rotate count is guaranteed to be zero.
7845 if (VT == MVT::i1)
7846 return N1;
7847 if (N2CV && N2CV->isZero())
7848 return N1;
7849 break;
7850 case ISD::FP_ROUND:
7852 VT.bitsLE(N1.getValueType()) && N2C &&
7853 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7854 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7855 if (N1.getValueType() == VT) return N1; // noop conversion.
7856 break;
7857 case ISD::AssertNoFPClass: {
7859 "AssertNoFPClass is used for a non-floating type");
7860 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7861 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7862 assert(llvm::to_underlying(NoFPClass) <=
7864 "FPClassTest value too large");
7865 (void)NoFPClass;
7866 break;
7867 }
7868 case ISD::AssertSext:
7869 case ISD::AssertZext: {
7870 EVT EVT = cast<VTSDNode>(N2)->getVT();
7871 assert(VT == N1.getValueType() && "Not an inreg extend!");
7872 assert(VT.isInteger() && EVT.isInteger() &&
7873 "Cannot *_EXTEND_INREG FP types");
7874 assert(!EVT.isVector() &&
7875 "AssertSExt/AssertZExt type should be the vector element type "
7876 "rather than the vector type!");
7877 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7878 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7879 break;
7880 }
7882 EVT EVT = cast<VTSDNode>(N2)->getVT();
7883 assert(VT == N1.getValueType() && "Not an inreg extend!");
7884 assert(VT.isInteger() && EVT.isInteger() &&
7885 "Cannot *_EXTEND_INREG FP types");
7886 assert(EVT.isVector() == VT.isVector() &&
7887 "SIGN_EXTEND_INREG type should be vector iff the operand "
7888 "type is vector!");
7889 assert((!EVT.isVector() ||
7891 "Vector element counts must match in SIGN_EXTEND_INREG");
7892 assert(EVT.bitsLE(VT) && "Not extending!");
7893 if (EVT == VT) return N1; // Not actually extending
7894 break;
7895 }
7897 case ISD::FP_TO_UINT_SAT: {
7898 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7899 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7900 assert(N1.getValueType().isVector() == VT.isVector() &&
7901 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7902 "vector!");
7903 assert((!VT.isVector() || VT.getVectorElementCount() ==
7905 "Vector element counts must match in FP_TO_*INT_SAT");
7906 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7907 "Type to saturate to must be a scalar.");
7908 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7909 "Not extending!");
7910 break;
7911 }
7914 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7915 element type of the vector.");
7916
7917 // Extract from an undefined value or using an undefined index is undefined.
7918 if (N1.isUndef() || N2.isUndef())
7919 return getUNDEF(VT);
7920
7921 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7922 // vectors. For scalable vectors we will provide appropriate support for
7923 // dealing with arbitrary indices.
7924 if (N2C && N1.getValueType().isFixedLengthVector() &&
7925 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7926 return getUNDEF(VT);
7927
7928 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7929 // expanding copies of large vectors from registers. This only works for
7930 // fixed length vectors, since we need to know the exact number of
7931 // elements.
7932 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7934 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7935 return getExtractVectorElt(DL, VT,
7936 N1.getOperand(N2C->getZExtValue() / Factor),
7937 N2C->getZExtValue() % Factor);
7938 }
7939
7940 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7941 // lowering is expanding large vector constants.
7942 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7943 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7946 "BUILD_VECTOR used for scalable vectors");
7947 unsigned Index =
7948 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7949 SDValue Elt = N1.getOperand(Index);
7950
7951 if (VT != Elt.getValueType())
7952 // If the vector element type is not legal, the BUILD_VECTOR operands
7953 // are promoted and implicitly truncated, and the result implicitly
7954 // extended. Make that explicit here.
7955 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7956
7957 return Elt;
7958 }
7959
7960 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7961 // operations are lowered to scalars.
7962 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7963 // If the indices are the same, return the inserted element else
7964 // if the indices are known different, extract the element from
7965 // the original vector.
7966 SDValue N1Op2 = N1.getOperand(2);
7968
7969 if (N1Op2C && N2C) {
7970 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7971 if (VT == N1.getOperand(1).getValueType())
7972 return N1.getOperand(1);
7973 if (VT.isFloatingPoint()) {
7975 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7976 }
7977 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7978 }
7979 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7980 }
7981 }
7982
7983 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7984 // when vector types are scalarized and v1iX is legal.
7985 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7986 // Here we are completely ignoring the extract element index (N2),
7987 // which is fine for fixed width vectors, since any index other than 0
7988 // is undefined anyway. However, this cannot be ignored for scalable
7989 // vectors - in theory we could support this, but we don't want to do this
7990 // without a profitability check.
7991 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7993 N1.getValueType().getVectorNumElements() == 1) {
7994 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7995 N1.getOperand(1));
7996 }
7997 break;
7999 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
8000 assert(!N1.getValueType().isVector() && !VT.isVector() &&
8001 (N1.getValueType().isInteger() == VT.isInteger()) &&
8002 N1.getValueType() != VT &&
8003 "Wrong types for EXTRACT_ELEMENT!");
8004
8005 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
8006 // 64-bit integers into 32-bit parts. Instead of building the extract of
8007 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
8008 if (N1.getOpcode() == ISD::BUILD_PAIR)
8009 return N1.getOperand(N2C->getZExtValue());
8010
8011 // EXTRACT_ELEMENT of a constant int is also very common.
8012 if (N1C) {
8013 unsigned ElementSize = VT.getSizeInBits();
8014 unsigned Shift = ElementSize * N2C->getZExtValue();
8015 const APInt &Val = N1C->getAPIntValue();
8016 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
8017 }
8018 break;
8020 EVT N1VT = N1.getValueType();
8021 assert(VT.isVector() && N1VT.isVector() &&
8022 "Extract subvector VTs must be vectors!");
8024 "Extract subvector VTs must have the same element type!");
8025 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8026 "Cannot extract a scalable vector from a fixed length vector!");
8027 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8029 "Extract subvector must be from larger vector to smaller vector!");
8030 assert(N2C && "Extract subvector index must be a constant");
8031 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8032 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8033 N1VT.getVectorMinNumElements()) &&
8034 "Extract subvector overflow!");
8035 assert(N2C->getAPIntValue().getBitWidth() ==
8036 TLI->getVectorIdxWidth(getDataLayout()) &&
8037 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8038 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8039 "Extract index is not a multiple of the output vector length");
8040
8041 // Trivial extraction.
8042 if (VT == N1VT)
8043 return N1;
8044
8045 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8046 if (N1.isUndef())
8047 return getUNDEF(VT);
8048
8049 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8050 // the concat have the same type as the extract.
8051 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8052 VT == N1.getOperand(0).getValueType()) {
8053 unsigned Factor = VT.getVectorMinNumElements();
8054 return N1.getOperand(N2C->getZExtValue() / Factor);
8055 }
8056
8057 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8058 // during shuffle legalization.
8059 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8060 VT == N1.getOperand(1).getValueType())
8061 return N1.getOperand(1);
8062 break;
8063 }
8064 }
8065
8066 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8067 switch (Opcode) {
8068 case ISD::XOR:
8069 case ISD::ADD:
8070 case ISD::PTRADD:
8071 case ISD::SUB:
8073 case ISD::UDIV:
8074 case ISD::SDIV:
8075 case ISD::UREM:
8076 case ISD::SREM:
8077 case ISD::MUL:
8078 case ISD::AND:
8079 case ISD::SSUBSAT:
8080 case ISD::USUBSAT:
8081 case ISD::UMIN:
8082 case ISD::OR:
8083 case ISD::SADDSAT:
8084 case ISD::UADDSAT:
8085 case ISD::UMAX:
8086 case ISD::SMAX:
8087 case ISD::SMIN:
8088 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8089 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8090 }
8091 }
8092
8093 // Canonicalize an UNDEF to the RHS, even over a constant.
8094 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8095 if (TLI->isCommutativeBinOp(Opcode)) {
8096 std::swap(N1, N2);
8097 } else {
8098 switch (Opcode) {
8099 case ISD::PTRADD:
8100 case ISD::SUB:
8101 // fold op(undef, non_undef_arg2) -> undef.
8102 return N1;
8104 case ISD::UDIV:
8105 case ISD::SDIV:
8106 case ISD::UREM:
8107 case ISD::SREM:
8108 case ISD::SSUBSAT:
8109 case ISD::USUBSAT:
8110 // fold op(undef, non_undef_arg2) -> 0.
8111 return getConstant(0, DL, VT);
8112 }
8113 }
8114 }
8115
8116 // Fold a bunch of operators when the RHS is undef.
8117 if (N2.getOpcode() == ISD::UNDEF) {
8118 switch (Opcode) {
8119 case ISD::XOR:
8120 if (N1.getOpcode() == ISD::UNDEF)
8121 // Handle undef ^ undef -> 0 special case. This is a common
8122 // idiom (misuse).
8123 return getConstant(0, DL, VT);
8124 [[fallthrough]];
8125 case ISD::ADD:
8126 case ISD::PTRADD:
8127 case ISD::SUB:
8128 // fold op(arg1, undef) -> undef.
8129 return N2;
8130 case ISD::UDIV:
8131 case ISD::SDIV:
8132 case ISD::UREM:
8133 case ISD::SREM:
8134 // fold op(arg1, undef) -> poison.
8135 return getPOISON(VT);
8136 case ISD::MUL:
8137 case ISD::AND:
8138 case ISD::SSUBSAT:
8139 case ISD::USUBSAT:
8140 case ISD::UMIN:
8141 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8142 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8143 case ISD::OR:
8144 case ISD::SADDSAT:
8145 case ISD::UADDSAT:
8146 case ISD::UMAX:
8147 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8148 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8149 case ISD::SMAX:
8150 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8151 return N1.getOpcode() == ISD::UNDEF
8152 ? N2
8153 : getConstant(
8155 VT);
8156 case ISD::SMIN:
8157 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8158 return N1.getOpcode() == ISD::UNDEF
8159 ? N2
8160 : getConstant(
8162 VT);
8163 }
8164 }
8165
8166 // Perform trivial constant folding.
8167 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8168 return SV;
8169
8170 // Memoize this node if possible.
8171 SDNode *N;
8172 SDVTList VTs = getVTList(VT);
8173 SDValue Ops[] = {N1, N2};
8174 if (VT != MVT::Glue) {
8176 AddNodeIDNode(ID, Opcode, VTs, Ops);
8177 void *IP = nullptr;
8178 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8179 E->intersectFlagsWith(Flags);
8180 return SDValue(E, 0);
8181 }
8182
8183 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8184 N->setFlags(Flags);
8185 createOperands(N, Ops);
8186 CSEMap.InsertNode(N, IP);
8187 } else {
8188 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8189 createOperands(N, Ops);
8190 }
8191
8192 InsertNode(N);
8193 SDValue V = SDValue(N, 0);
8194 NewSDValueDbgMsg(V, "Creating new node: ", this);
8195 return V;
8196}
8197
8198SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8199 SDValue N1, SDValue N2, SDValue N3) {
8200 SDNodeFlags Flags;
8201 if (Inserter)
8202 Flags = Inserter->getFlags();
8203 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8204}
8205
8206SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8207 SDValue N1, SDValue N2, SDValue N3,
8208 const SDNodeFlags Flags) {
8210 N2.getOpcode() != ISD::DELETED_NODE &&
8211 N3.getOpcode() != ISD::DELETED_NODE &&
8212 "Operand is DELETED_NODE!");
8213 // Perform various simplifications.
8214 switch (Opcode) {
8215 case ISD::BUILD_VECTOR: {
8216 // Attempt to simplify BUILD_VECTOR.
8217 SDValue Ops[] = {N1, N2, N3};
8218 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8219 return V;
8220 break;
8221 }
8222 case ISD::CONCAT_VECTORS: {
8223 SDValue Ops[] = {N1, N2, N3};
8224 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8225 return V;
8226 break;
8227 }
8228 case ISD::SETCC: {
8229 assert(VT.isInteger() && "SETCC result type must be an integer!");
8230 assert(N1.getValueType() == N2.getValueType() &&
8231 "SETCC operands must have the same type!");
8232 assert(VT.isVector() == N1.getValueType().isVector() &&
8233 "SETCC type should be vector iff the operand type is vector!");
8234 assert((!VT.isVector() || VT.getVectorElementCount() ==
8236 "SETCC vector element counts must match!");
8237 // Use FoldSetCC to simplify SETCC's.
8238 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8239 return V;
8240 break;
8241 }
8242 case ISD::SELECT:
8243 case ISD::VSELECT:
8244 if (SDValue V = simplifySelect(N1, N2, N3))
8245 return V;
8246 break;
8248 llvm_unreachable("should use getVectorShuffle constructor!");
8249 case ISD::VECTOR_SPLICE: {
8250 if (cast<ConstantSDNode>(N3)->isZero())
8251 return N1;
8252 break;
8253 }
8255 assert(VT.isVector() && VT == N1.getValueType() &&
8256 "INSERT_VECTOR_ELT vector type mismatch");
8258 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8259 assert((!VT.isFloatingPoint() ||
8260 VT.getVectorElementType() == N2.getValueType()) &&
8261 "INSERT_VECTOR_ELT fp scalar type mismatch");
8262 assert((!VT.isInteger() ||
8264 "INSERT_VECTOR_ELT int scalar size mismatch");
8265
8266 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8267 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8268 // for scalable vectors where we will generate appropriate code to
8269 // deal with out-of-bounds cases correctly.
8270 if (N3C && VT.isFixedLengthVector() &&
8271 N3C->getZExtValue() >= VT.getVectorNumElements())
8272 return getUNDEF(VT);
8273
8274 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8275 if (N3.isUndef())
8276 return getUNDEF(VT);
8277
8278 // If inserting poison, just use the input vector.
8279 if (N2.getOpcode() == ISD::POISON)
8280 return N1;
8281
8282 // Inserting undef into undef/poison is still undef.
8283 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8284 return getUNDEF(VT);
8285
8286 // If the inserted element is an UNDEF, just use the input vector.
8287 // But not if skipping the insert could make the result more poisonous.
8288 if (N2.isUndef()) {
8289 if (N3C && VT.isFixedLengthVector()) {
8290 APInt EltMask =
8291 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8292 if (isGuaranteedNotToBePoison(N1, EltMask))
8293 return N1;
8294 } else if (isGuaranteedNotToBePoison(N1))
8295 return N1;
8296 }
8297 break;
8298 }
8299 case ISD::INSERT_SUBVECTOR: {
8300 // If inserting poison, just use the input vector,
8301 if (N2.getOpcode() == ISD::POISON)
8302 return N1;
8303
8304 // Inserting undef into undef/poison is still undef.
8305 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8306 return getUNDEF(VT);
8307
8308 EVT N2VT = N2.getValueType();
8309 assert(VT == N1.getValueType() &&
8310 "Dest and insert subvector source types must match!");
8311 assert(VT.isVector() && N2VT.isVector() &&
8312 "Insert subvector VTs must be vectors!");
8314 "Insert subvector VTs must have the same element type!");
8315 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8316 "Cannot insert a scalable vector into a fixed length vector!");
8317 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8319 "Insert subvector must be from smaller vector to larger vector!");
8321 "Insert subvector index must be constant");
8322 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8323 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8325 "Insert subvector overflow!");
8327 TLI->getVectorIdxWidth(getDataLayout()) &&
8328 "Constant index for INSERT_SUBVECTOR has an invalid size");
8329
8330 // Trivial insertion.
8331 if (VT == N2VT)
8332 return N2;
8333
8334 // If this is an insert of an extracted vector into an undef/poison vector,
8335 // we can just use the input to the extract. But not if skipping the
8336 // extract+insert could make the result more poisonous.
8337 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8338 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8339 if (N1.getOpcode() == ISD::POISON)
8340 return N2.getOperand(0);
8341 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8342 unsigned LoBit = N3->getAsZExtVal();
8343 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8344 APInt EltMask =
8345 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8346 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8347 return N2.getOperand(0);
8348 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8349 return N2.getOperand(0);
8350 }
8351
8352 // If the inserted subvector is UNDEF, just use the input vector.
8353 // But not if skipping the insert could make the result more poisonous.
8354 if (N2.isUndef()) {
8355 if (VT.isFixedLengthVector()) {
8356 unsigned LoBit = N3->getAsZExtVal();
8357 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8358 APInt EltMask =
8359 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8360 if (isGuaranteedNotToBePoison(N1, EltMask))
8361 return N1;
8362 } else if (isGuaranteedNotToBePoison(N1))
8363 return N1;
8364 }
8365 break;
8366 }
8367 case ISD::BITCAST:
8368 // Fold bit_convert nodes from a type to themselves.
8369 if (N1.getValueType() == VT)
8370 return N1;
8371 break;
8372 case ISD::VP_TRUNCATE:
8373 case ISD::VP_SIGN_EXTEND:
8374 case ISD::VP_ZERO_EXTEND:
8375 // Don't create noop casts.
8376 if (N1.getValueType() == VT)
8377 return N1;
8378 break;
8379 case ISD::VECTOR_COMPRESS: {
8380 [[maybe_unused]] EVT VecVT = N1.getValueType();
8381 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8382 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8383 assert(VT == VecVT && "Vector and result type don't match.");
8384 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8385 "All inputs must be vectors.");
8386 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8388 "Vector and mask must have same number of elements.");
8389
8390 if (N1.isUndef() || N2.isUndef())
8391 return N3;
8392
8393 break;
8394 }
8395 case ISD::PARTIAL_REDUCE_UMLA:
8396 case ISD::PARTIAL_REDUCE_SMLA:
8397 case ISD::PARTIAL_REDUCE_SUMLA: {
8398 [[maybe_unused]] EVT AccVT = N1.getValueType();
8399 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8400 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8401 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8402 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8403 "node to have the same type!");
8404 assert(VT.isVector() && VT == AccVT &&
8405 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8406 "the same type as its result!");
8408 AccVT.getVectorElementCount()) &&
8409 "Expected the element count of the second and third operands of the "
8410 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8411 "element count of the first operand and the result!");
8413 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8414 "node to have an element type which is the same as or smaller than "
8415 "the element type of the first operand and result!");
8416 break;
8417 }
8418 }
8419
8420 // Perform trivial constant folding for arithmetic operators.
8421 switch (Opcode) {
8422 case ISD::FMA:
8423 case ISD::FMAD:
8424 case ISD::SETCC:
8425 case ISD::FSHL:
8426 case ISD::FSHR:
8427 if (SDValue SV =
8428 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8429 return SV;
8430 break;
8431 }
8432
8433 // Memoize node if it doesn't produce a glue result.
8434 SDNode *N;
8435 SDVTList VTs = getVTList(VT);
8436 SDValue Ops[] = {N1, N2, N3};
8437 if (VT != MVT::Glue) {
8439 AddNodeIDNode(ID, Opcode, VTs, Ops);
8440 void *IP = nullptr;
8441 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8442 E->intersectFlagsWith(Flags);
8443 return SDValue(E, 0);
8444 }
8445
8446 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8447 N->setFlags(Flags);
8448 createOperands(N, Ops);
8449 CSEMap.InsertNode(N, IP);
8450 } else {
8451 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8452 createOperands(N, Ops);
8453 }
8454
8455 InsertNode(N);
8456 SDValue V = SDValue(N, 0);
8457 NewSDValueDbgMsg(V, "Creating new node: ", this);
8458 return V;
8459}
8460
8461SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8462 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8463 const SDNodeFlags Flags) {
8464 SDValue Ops[] = { N1, N2, N3, N4 };
8465 return getNode(Opcode, DL, VT, Ops, Flags);
8466}
8467
8468SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8469 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8470 SDNodeFlags Flags;
8471 if (Inserter)
8472 Flags = Inserter->getFlags();
8473 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8474}
8475
8476SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8477 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8478 SDValue N5, const SDNodeFlags Flags) {
8479 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8480 return getNode(Opcode, DL, VT, Ops, Flags);
8481}
8482
8483SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8484 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8485 SDValue N5) {
8486 SDNodeFlags Flags;
8487 if (Inserter)
8488 Flags = Inserter->getFlags();
8489 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8490}
8491
8492/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8493/// the incoming stack arguments to be loaded from the stack.
8495 SmallVector<SDValue, 8> ArgChains;
8496
8497 // Include the original chain at the beginning of the list. When this is
8498 // used by target LowerCall hooks, this helps legalize find the
8499 // CALLSEQ_BEGIN node.
8500 ArgChains.push_back(Chain);
8501
8502 // Add a chain value for each stack argument.
8503 for (SDNode *U : getEntryNode().getNode()->users())
8504 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8505 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8506 if (FI->getIndex() < 0)
8507 ArgChains.push_back(SDValue(L, 1));
8508
8509 // Build a tokenfactor for all the chains.
8510 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8511}
8512
8513/// getMemsetValue - Vectorized representation of the memset value
8514/// operand.
8516 const SDLoc &dl) {
8517 assert(!Value.isUndef());
8518
8519 unsigned NumBits = VT.getScalarSizeInBits();
8521 assert(C->getAPIntValue().getBitWidth() == 8);
8522 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8523 if (VT.isInteger()) {
8524 bool IsOpaque = VT.getSizeInBits() > 64 ||
8525 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8526 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8527 }
8528 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8529 }
8530
8531 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8532 EVT IntVT = VT.getScalarType();
8533 if (!IntVT.isInteger())
8534 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8535
8536 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8537 if (NumBits > 8) {
8538 // Use a multiplication with 0x010101... to extend the input to the
8539 // required length.
8540 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8541 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8542 DAG.getConstant(Magic, dl, IntVT));
8543 }
8544
8545 if (VT != Value.getValueType() && !VT.isInteger())
8546 Value = DAG.getBitcast(VT.getScalarType(), Value);
8547 if (VT != Value.getValueType())
8548 Value = DAG.getSplatBuildVector(VT, dl, Value);
8549
8550 return Value;
8551}
8552
8553/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8554/// used when a memcpy is turned into a memset when the source is a constant
8555/// string ptr.
8557 const TargetLowering &TLI,
8558 const ConstantDataArraySlice &Slice) {
8559 // Handle vector with all elements zero.
8560 if (Slice.Array == nullptr) {
8561 if (VT.isInteger())
8562 return DAG.getConstant(0, dl, VT);
8563 return DAG.getNode(ISD::BITCAST, dl, VT,
8564 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8565 }
8566
8567 assert(!VT.isVector() && "Can't handle vector type here!");
8568 unsigned NumVTBits = VT.getSizeInBits();
8569 unsigned NumVTBytes = NumVTBits / 8;
8570 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8571
8572 APInt Val(NumVTBits, 0);
8573 if (DAG.getDataLayout().isLittleEndian()) {
8574 for (unsigned i = 0; i != NumBytes; ++i)
8575 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8576 } else {
8577 for (unsigned i = 0; i != NumBytes; ++i)
8578 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8579 }
8580
8581 // If the "cost" of materializing the integer immediate is less than the cost
8582 // of a load, then it is cost effective to turn the load into the immediate.
8583 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8584 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8585 return DAG.getConstant(Val, dl, VT);
8586 return SDValue();
8587}
8588
8590 const SDLoc &DL,
8591 const SDNodeFlags Flags) {
8592 EVT VT = Base.getValueType();
8593 SDValue Index;
8594
8595 if (Offset.isScalable())
8596 Index = getVScale(DL, Base.getValueType(),
8597 APInt(Base.getValueSizeInBits().getFixedValue(),
8598 Offset.getKnownMinValue()));
8599 else
8600 Index = getConstant(Offset.getFixedValue(), DL, VT);
8601
8602 return getMemBasePlusOffset(Base, Index, DL, Flags);
8603}
8604
8606 const SDLoc &DL,
8607 const SDNodeFlags Flags) {
8608 assert(Offset.getValueType().isInteger());
8609 EVT BasePtrVT = Ptr.getValueType();
8610 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8611 BasePtrVT))
8612 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8613 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8614}
8615
8616/// Returns true if memcpy source is constant data.
8618 uint64_t SrcDelta = 0;
8619 GlobalAddressSDNode *G = nullptr;
8620 if (Src.getOpcode() == ISD::GlobalAddress)
8622 else if (Src->isAnyAdd() &&
8623 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8624 Src.getOperand(1).getOpcode() == ISD::Constant) {
8625 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8626 SrcDelta = Src.getConstantOperandVal(1);
8627 }
8628 if (!G)
8629 return false;
8630
8631 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8632 SrcDelta + G->getOffset());
8633}
8634
8636 SelectionDAG &DAG) {
8637 // On Darwin, -Os means optimize for size without hurting performance, so
8638 // only really optimize for size when -Oz (MinSize) is used.
8640 return MF.getFunction().hasMinSize();
8641 return DAG.shouldOptForSize();
8642}
8643
8645 SmallVector<SDValue, 32> &OutChains, unsigned From,
8646 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8647 SmallVector<SDValue, 16> &OutStoreChains) {
8648 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8649 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8650 SmallVector<SDValue, 16> GluedLoadChains;
8651 for (unsigned i = From; i < To; ++i) {
8652 OutChains.push_back(OutLoadChains[i]);
8653 GluedLoadChains.push_back(OutLoadChains[i]);
8654 }
8655
8656 // Chain for all loads.
8657 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8658 GluedLoadChains);
8659
8660 for (unsigned i = From; i < To; ++i) {
8661 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8662 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8663 ST->getBasePtr(), ST->getMemoryVT(),
8664 ST->getMemOperand());
8665 OutChains.push_back(NewStore);
8666 }
8667}
8668
8670 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8671 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8672 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8673 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8674 // Turn a memcpy of undef to nop.
8675 // FIXME: We need to honor volatile even is Src is undef.
8676 if (Src.isUndef())
8677 return Chain;
8678
8679 // Expand memcpy to a series of load and store ops if the size operand falls
8680 // below a certain threshold.
8681 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8682 // rather than maybe a humongous number of loads and stores.
8683 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8684 const DataLayout &DL = DAG.getDataLayout();
8685 LLVMContext &C = *DAG.getContext();
8686 std::vector<EVT> MemOps;
8687 bool DstAlignCanChange = false;
8689 MachineFrameInfo &MFI = MF.getFrameInfo();
8690 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8692 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8693 DstAlignCanChange = true;
8694 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8695 if (!SrcAlign || Alignment > *SrcAlign)
8696 SrcAlign = Alignment;
8697 assert(SrcAlign && "SrcAlign must be set");
8699 // If marked as volatile, perform a copy even when marked as constant.
8700 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8701 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8702 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8703 const MemOp Op = isZeroConstant
8704 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8705 /*IsZeroMemset*/ true, isVol)
8706 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8707 *SrcAlign, isVol, CopyFromConstant);
8708 if (!TLI.findOptimalMemOpLowering(
8709 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8710 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8711 return SDValue();
8712
8713 if (DstAlignCanChange) {
8714 Type *Ty = MemOps[0].getTypeForEVT(C);
8715 Align NewAlign = DL.getABITypeAlign(Ty);
8716
8717 // Don't promote to an alignment that would require dynamic stack
8718 // realignment which may conflict with optimizations such as tail call
8719 // optimization.
8721 if (!TRI->hasStackRealignment(MF))
8722 if (MaybeAlign StackAlign = DL.getStackAlignment())
8723 NewAlign = std::min(NewAlign, *StackAlign);
8724
8725 if (NewAlign > Alignment) {
8726 // Give the stack frame object a larger alignment if needed.
8727 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8728 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8729 Alignment = NewAlign;
8730 }
8731 }
8732
8733 // Prepare AAInfo for loads/stores after lowering this memcpy.
8734 AAMDNodes NewAAInfo = AAInfo;
8735 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8736
8737 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8738 bool isConstant =
8739 BatchAA && SrcVal &&
8740 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8741
8742 MachineMemOperand::Flags MMOFlags =
8744 SmallVector<SDValue, 16> OutLoadChains;
8745 SmallVector<SDValue, 16> OutStoreChains;
8746 SmallVector<SDValue, 32> OutChains;
8747 unsigned NumMemOps = MemOps.size();
8748 uint64_t SrcOff = 0, DstOff = 0;
8749 for (unsigned i = 0; i != NumMemOps; ++i) {
8750 EVT VT = MemOps[i];
8751 unsigned VTSize = VT.getSizeInBits() / 8;
8752 SDValue Value, Store;
8753
8754 if (VTSize > Size) {
8755 // Issuing an unaligned load / store pair that overlaps with the previous
8756 // pair. Adjust the offset accordingly.
8757 assert(i == NumMemOps-1 && i != 0);
8758 SrcOff -= VTSize - Size;
8759 DstOff -= VTSize - Size;
8760 }
8761
8762 if (CopyFromConstant &&
8763 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8764 // It's unlikely a store of a vector immediate can be done in a single
8765 // instruction. It would require a load from a constantpool first.
8766 // We only handle zero vectors here.
8767 // FIXME: Handle other cases where store of vector immediate is done in
8768 // a single instruction.
8769 ConstantDataArraySlice SubSlice;
8770 if (SrcOff < Slice.Length) {
8771 SubSlice = Slice;
8772 SubSlice.move(SrcOff);
8773 } else {
8774 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8775 SubSlice.Array = nullptr;
8776 SubSlice.Offset = 0;
8777 SubSlice.Length = VTSize;
8778 }
8779 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8780 if (Value.getNode()) {
8781 Store = DAG.getStore(
8782 Chain, dl, Value,
8783 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8784 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8785 OutChains.push_back(Store);
8786 }
8787 }
8788
8789 if (!Store.getNode()) {
8790 // The type might not be legal for the target. This should only happen
8791 // if the type is smaller than a legal type, as on PPC, so the right
8792 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8793 // to Load/Store if NVT==VT.
8794 // FIXME does the case above also need this?
8795 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8796 assert(NVT.bitsGE(VT));
8797
8798 bool isDereferenceable =
8799 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8800 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8801 if (isDereferenceable)
8803 if (isConstant)
8804 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8805
8806 Value = DAG.getExtLoad(
8807 ISD::EXTLOAD, dl, NVT, Chain,
8808 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8809 SrcPtrInfo.getWithOffset(SrcOff), VT,
8810 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8811 OutLoadChains.push_back(Value.getValue(1));
8812
8813 Store = DAG.getTruncStore(
8814 Chain, dl, Value,
8815 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8816 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8817 OutStoreChains.push_back(Store);
8818 }
8819 SrcOff += VTSize;
8820 DstOff += VTSize;
8821 Size -= VTSize;
8822 }
8823
8824 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8826 unsigned NumLdStInMemcpy = OutStoreChains.size();
8827
8828 if (NumLdStInMemcpy) {
8829 // It may be that memcpy might be converted to memset if it's memcpy
8830 // of constants. In such a case, we won't have loads and stores, but
8831 // just stores. In the absence of loads, there is nothing to gang up.
8832 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8833 // If target does not care, just leave as it.
8834 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8835 OutChains.push_back(OutLoadChains[i]);
8836 OutChains.push_back(OutStoreChains[i]);
8837 }
8838 } else {
8839 // Ld/St less than/equal limit set by target.
8840 if (NumLdStInMemcpy <= GluedLdStLimit) {
8841 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8842 NumLdStInMemcpy, OutLoadChains,
8843 OutStoreChains);
8844 } else {
8845 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8846 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8847 unsigned GlueIter = 0;
8848
8849 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8850 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8851 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8852
8853 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8854 OutLoadChains, OutStoreChains);
8855 GlueIter += GluedLdStLimit;
8856 }
8857
8858 // Residual ld/st.
8859 if (RemainingLdStInMemcpy) {
8860 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8861 RemainingLdStInMemcpy, OutLoadChains,
8862 OutStoreChains);
8863 }
8864 }
8865 }
8866 }
8867 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8868}
8869
8871 SDValue Chain, SDValue Dst, SDValue Src,
8872 uint64_t Size, Align Alignment,
8873 bool isVol, bool AlwaysInline,
8874 MachinePointerInfo DstPtrInfo,
8875 MachinePointerInfo SrcPtrInfo,
8876 const AAMDNodes &AAInfo) {
8877 // Turn a memmove of undef to nop.
8878 // FIXME: We need to honor volatile even is Src is undef.
8879 if (Src.isUndef())
8880 return Chain;
8881
8882 // Expand memmove to a series of load and store ops if the size operand falls
8883 // below a certain threshold.
8884 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8885 const DataLayout &DL = DAG.getDataLayout();
8886 LLVMContext &C = *DAG.getContext();
8887 std::vector<EVT> MemOps;
8888 bool DstAlignCanChange = false;
8890 MachineFrameInfo &MFI = MF.getFrameInfo();
8891 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8893 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8894 DstAlignCanChange = true;
8895 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8896 if (!SrcAlign || Alignment > *SrcAlign)
8897 SrcAlign = Alignment;
8898 assert(SrcAlign && "SrcAlign must be set");
8899 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8900 if (!TLI.findOptimalMemOpLowering(
8901 C, MemOps, Limit,
8902 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8903 /*IsVolatile*/ true),
8904 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8905 MF.getFunction().getAttributes()))
8906 return SDValue();
8907
8908 if (DstAlignCanChange) {
8909 Type *Ty = MemOps[0].getTypeForEVT(C);
8910 Align NewAlign = DL.getABITypeAlign(Ty);
8911
8912 // Don't promote to an alignment that would require dynamic stack
8913 // realignment which may conflict with optimizations such as tail call
8914 // optimization.
8916 if (!TRI->hasStackRealignment(MF))
8917 if (MaybeAlign StackAlign = DL.getStackAlignment())
8918 NewAlign = std::min(NewAlign, *StackAlign);
8919
8920 if (NewAlign > Alignment) {
8921 // Give the stack frame object a larger alignment if needed.
8922 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8923 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8924 Alignment = NewAlign;
8925 }
8926 }
8927
8928 // Prepare AAInfo for loads/stores after lowering this memmove.
8929 AAMDNodes NewAAInfo = AAInfo;
8930 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8931
8932 MachineMemOperand::Flags MMOFlags =
8934 uint64_t SrcOff = 0, DstOff = 0;
8935 SmallVector<SDValue, 8> LoadValues;
8936 SmallVector<SDValue, 8> LoadChains;
8937 SmallVector<SDValue, 8> OutChains;
8938 unsigned NumMemOps = MemOps.size();
8939 for (unsigned i = 0; i < NumMemOps; i++) {
8940 EVT VT = MemOps[i];
8941 unsigned VTSize = VT.getSizeInBits() / 8;
8942 SDValue Value;
8943
8944 bool isDereferenceable =
8945 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8946 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8947 if (isDereferenceable)
8949
8950 Value = DAG.getLoad(
8951 VT, dl, Chain,
8952 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8953 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8954 LoadValues.push_back(Value);
8955 LoadChains.push_back(Value.getValue(1));
8956 SrcOff += VTSize;
8957 }
8958 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8959 OutChains.clear();
8960 for (unsigned i = 0; i < NumMemOps; i++) {
8961 EVT VT = MemOps[i];
8962 unsigned VTSize = VT.getSizeInBits() / 8;
8963 SDValue Store;
8964
8965 Store = DAG.getStore(
8966 Chain, dl, LoadValues[i],
8967 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8968 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8969 OutChains.push_back(Store);
8970 DstOff += VTSize;
8971 }
8972
8973 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8974}
8975
8976/// Lower the call to 'memset' intrinsic function into a series of store
8977/// operations.
8978///
8979/// \param DAG Selection DAG where lowered code is placed.
8980/// \param dl Link to corresponding IR location.
8981/// \param Chain Control flow dependency.
8982/// \param Dst Pointer to destination memory location.
8983/// \param Src Value of byte to write into the memory.
8984/// \param Size Number of bytes to write.
8985/// \param Alignment Alignment of the destination in bytes.
8986/// \param isVol True if destination is volatile.
8987/// \param AlwaysInline Makes sure no function call is generated.
8988/// \param DstPtrInfo IR information on the memory pointer.
8989/// \returns New head in the control flow, if lowering was successful, empty
8990/// SDValue otherwise.
8991///
8992/// The function tries to replace 'llvm.memset' intrinsic with several store
8993/// operations and value calculation code. This is usually profitable for small
8994/// memory size or when the semantic requires inlining.
8996 SDValue Chain, SDValue Dst, SDValue Src,
8997 uint64_t Size, Align Alignment, bool isVol,
8998 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8999 const AAMDNodes &AAInfo) {
9000 // Turn a memset of undef to nop.
9001 // FIXME: We need to honor volatile even is Src is undef.
9002 if (Src.isUndef())
9003 return Chain;
9004
9005 // Expand memset to a series of load/store ops if the size operand
9006 // falls below a certain threshold.
9007 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9008 std::vector<EVT> MemOps;
9009 bool DstAlignCanChange = false;
9010 LLVMContext &C = *DAG.getContext();
9012 MachineFrameInfo &MFI = MF.getFrameInfo();
9013 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
9015 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
9016 DstAlignCanChange = true;
9017 bool IsZeroVal = isNullConstant(Src);
9018 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9019
9020 if (!TLI.findOptimalMemOpLowering(
9021 C, MemOps, Limit,
9022 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9023 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9024 return SDValue();
9025
9026 if (DstAlignCanChange) {
9027 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9028 const DataLayout &DL = DAG.getDataLayout();
9029 Align NewAlign = DL.getABITypeAlign(Ty);
9030
9031 // Don't promote to an alignment that would require dynamic stack
9032 // realignment which may conflict with optimizations such as tail call
9033 // optimization.
9035 if (!TRI->hasStackRealignment(MF))
9036 if (MaybeAlign StackAlign = DL.getStackAlignment())
9037 NewAlign = std::min(NewAlign, *StackAlign);
9038
9039 if (NewAlign > Alignment) {
9040 // Give the stack frame object a larger alignment if needed.
9041 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9042 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9043 Alignment = NewAlign;
9044 }
9045 }
9046
9047 SmallVector<SDValue, 8> OutChains;
9048 uint64_t DstOff = 0;
9049 unsigned NumMemOps = MemOps.size();
9050
9051 // Find the largest store and generate the bit pattern for it.
9052 EVT LargestVT = MemOps[0];
9053 for (unsigned i = 1; i < NumMemOps; i++)
9054 if (MemOps[i].bitsGT(LargestVT))
9055 LargestVT = MemOps[i];
9056 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9057
9058 // Prepare AAInfo for loads/stores after lowering this memset.
9059 AAMDNodes NewAAInfo = AAInfo;
9060 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9061
9062 for (unsigned i = 0; i < NumMemOps; i++) {
9063 EVT VT = MemOps[i];
9064 unsigned VTSize = VT.getSizeInBits() / 8;
9065 if (VTSize > Size) {
9066 // Issuing an unaligned load / store pair that overlaps with the previous
9067 // pair. Adjust the offset accordingly.
9068 assert(i == NumMemOps-1 && i != 0);
9069 DstOff -= VTSize - Size;
9070 }
9071
9072 // If this store is smaller than the largest store see whether we can get
9073 // the smaller value for free with a truncate or extract vector element and
9074 // then store.
9075 SDValue Value = MemSetValue;
9076 if (VT.bitsLT(LargestVT)) {
9077 unsigned Index;
9078 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9079 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9080 if (!LargestVT.isVector() && !VT.isVector() &&
9081 TLI.isTruncateFree(LargestVT, VT))
9082 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9083 else if (LargestVT.isVector() && !VT.isVector() &&
9085 LargestVT.getTypeForEVT(*DAG.getContext()),
9086 VT.getSizeInBits(), Index) &&
9087 TLI.isTypeLegal(SVT) &&
9088 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9089 // Target which can combine store(extractelement VectorTy, Idx) can get
9090 // the smaller value for free.
9091 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9092 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9093 } else
9094 Value = getMemsetValue(Src, VT, DAG, dl);
9095 }
9096 assert(Value.getValueType() == VT && "Value with wrong type.");
9097 SDValue Store = DAG.getStore(
9098 Chain, dl, Value,
9099 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9100 DstPtrInfo.getWithOffset(DstOff), Alignment,
9102 NewAAInfo);
9103 OutChains.push_back(Store);
9104 DstOff += VT.getSizeInBits() / 8;
9105 Size -= VTSize;
9106 }
9107
9108 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9109}
9110
9112 unsigned AS) {
9113 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9114 // pointer operands can be losslessly bitcasted to pointers of address space 0
9115 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9116 report_fatal_error("cannot lower memory intrinsic in address space " +
9117 Twine(AS));
9118 }
9119}
9120
9122 const SelectionDAG *SelDAG,
9123 bool AllowReturnsFirstArg) {
9124 if (!CI || !CI->isTailCall())
9125 return false;
9126 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9127 // helper symbol we lower to.
9128 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9129 AllowReturnsFirstArg &&
9131}
9132
9133std::pair<SDValue, SDValue>
9135 SDValue Mem1, SDValue Size, const CallInst *CI) {
9136 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9137 if (!LibCallName)
9138 return {};
9139
9142 {Mem0, PT},
9143 {Mem1, PT},
9145
9147 bool IsTailCall =
9148 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9149
9150 CLI.setDebugLoc(dl)
9151 .setChain(Chain)
9152 .setLibCallee(
9153 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9155 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9156 std::move(Args))
9157 .setTailCall(IsTailCall);
9158
9159 return TLI->LowerCallTo(CLI);
9160}
9161
9162std::pair<SDValue, SDValue> SelectionDAG::getStrlen(SDValue Chain,
9163 const SDLoc &dl,
9164 SDValue Src,
9165 const CallInst *CI) {
9166 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9167 if (!LibCallName)
9168 return {};
9169
9170 // Emit a library call.
9173
9175 bool IsTailCall =
9176 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9177
9178 CLI.setDebugLoc(dl)
9179 .setChain(Chain)
9180 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::STRLEN), CI->getType(),
9182 LibCallName, TLI->getProgramPointerTy(getDataLayout())),
9183 std::move(Args))
9184 .setTailCall(IsTailCall);
9185
9186 return TLI->LowerCallTo(CLI);
9187}
9188
9190 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9191 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9192 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9193 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9194 BatchAAResults *BatchAA) {
9195 // Check to see if we should lower the memcpy to loads and stores first.
9196 // For cases within the target-specified limits, this is the best choice.
9198 if (ConstantSize) {
9199 // Memcpy with size zero? Just return the original chain.
9200 if (ConstantSize->isZero())
9201 return Chain;
9202
9204 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9205 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9206 if (Result.getNode())
9207 return Result;
9208 }
9209
9210 // Then check to see if we should lower the memcpy with target-specific
9211 // code. If the target chooses to do this, this is the next best.
9212 if (TSI) {
9213 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9214 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9215 DstPtrInfo, SrcPtrInfo);
9216 if (Result.getNode())
9217 return Result;
9218 }
9219
9220 // If we really need inline code and the target declined to provide it,
9221 // use a (potentially long) sequence of loads and stores.
9222 if (AlwaysInline) {
9223 assert(ConstantSize && "AlwaysInline requires a constant size!");
9225 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9226 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9227 }
9228
9231
9232 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9233 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9234 // respect volatile, so they may do things like read or write memory
9235 // beyond the given memory regions. But fixing this isn't easy, and most
9236 // people don't care.
9237
9238 // Emit a library call.
9241 Args.emplace_back(Dst, PtrTy);
9242 Args.emplace_back(Src, PtrTy);
9243 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9244 // FIXME: pass in SDLoc
9246 bool IsTailCall = false;
9247 const char *MemCpyName = TLI->getMemcpyName();
9248
9249 if (OverrideTailCall.has_value()) {
9250 IsTailCall = *OverrideTailCall;
9251 } else {
9252 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9253 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9254 }
9255
9256 CLI.setDebugLoc(dl)
9257 .setChain(Chain)
9258 .setLibCallee(
9259 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9260 Dst.getValueType().getTypeForEVT(*getContext()),
9261 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9262 std::move(Args))
9264 .setTailCall(IsTailCall);
9265
9266 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9267 return CallResult.second;
9268}
9269
9271 SDValue Dst, SDValue Src, SDValue Size,
9272 Type *SizeTy, unsigned ElemSz,
9273 bool isTailCall,
9274 MachinePointerInfo DstPtrInfo,
9275 MachinePointerInfo SrcPtrInfo) {
9276 // Emit a library call.
9279 Args.emplace_back(Dst, ArgTy);
9280 Args.emplace_back(Src, ArgTy);
9281 Args.emplace_back(Size, SizeTy);
9282
9283 RTLIB::Libcall LibraryCall =
9285 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9286 report_fatal_error("Unsupported element size");
9287
9289 CLI.setDebugLoc(dl)
9290 .setChain(Chain)
9291 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9293 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9294 TLI->getPointerTy(getDataLayout())),
9295 std::move(Args))
9297 .setTailCall(isTailCall);
9298
9299 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9300 return CallResult.second;
9301}
9302
9304 SDValue Src, SDValue Size, Align Alignment,
9305 bool isVol, const CallInst *CI,
9306 std::optional<bool> OverrideTailCall,
9307 MachinePointerInfo DstPtrInfo,
9308 MachinePointerInfo SrcPtrInfo,
9309 const AAMDNodes &AAInfo,
9310 BatchAAResults *BatchAA) {
9311 // Check to see if we should lower the memmove to loads and stores first.
9312 // For cases within the target-specified limits, this is the best choice.
9314 if (ConstantSize) {
9315 // Memmove with size zero? Just return the original chain.
9316 if (ConstantSize->isZero())
9317 return Chain;
9318
9320 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9321 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9322 if (Result.getNode())
9323 return Result;
9324 }
9325
9326 // Then check to see if we should lower the memmove with target-specific
9327 // code. If the target chooses to do this, this is the next best.
9328 if (TSI) {
9329 SDValue Result =
9330 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9331 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9332 if (Result.getNode())
9333 return Result;
9334 }
9335
9338
9339 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9340 // not be safe. See memcpy above for more details.
9341
9342 // Emit a library call.
9345 Args.emplace_back(Dst, PtrTy);
9346 Args.emplace_back(Src, PtrTy);
9347 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9348 // FIXME: pass in SDLoc
9350
9351 bool IsTailCall = false;
9352 if (OverrideTailCall.has_value()) {
9353 IsTailCall = *OverrideTailCall;
9354 } else {
9355 bool LowersToMemmove =
9356 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9357 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9358 }
9359
9360 CLI.setDebugLoc(dl)
9361 .setChain(Chain)
9362 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9363 Dst.getValueType().getTypeForEVT(*getContext()),
9364 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9365 TLI->getPointerTy(getDataLayout())),
9366 std::move(Args))
9368 .setTailCall(IsTailCall);
9369
9370 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9371 return CallResult.second;
9372}
9373
9375 SDValue Dst, SDValue Src, SDValue Size,
9376 Type *SizeTy, unsigned ElemSz,
9377 bool isTailCall,
9378 MachinePointerInfo DstPtrInfo,
9379 MachinePointerInfo SrcPtrInfo) {
9380 // Emit a library call.
9382 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9383 Args.emplace_back(Dst, IntPtrTy);
9384 Args.emplace_back(Src, IntPtrTy);
9385 Args.emplace_back(Size, SizeTy);
9386
9387 RTLIB::Libcall LibraryCall =
9389 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9390 report_fatal_error("Unsupported element size");
9391
9393 CLI.setDebugLoc(dl)
9394 .setChain(Chain)
9395 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9397 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9398 TLI->getPointerTy(getDataLayout())),
9399 std::move(Args))
9401 .setTailCall(isTailCall);
9402
9403 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9404 return CallResult.second;
9405}
9406
9408 SDValue Src, SDValue Size, Align Alignment,
9409 bool isVol, bool AlwaysInline,
9410 const CallInst *CI,
9411 MachinePointerInfo DstPtrInfo,
9412 const AAMDNodes &AAInfo) {
9413 // Check to see if we should lower the memset to stores first.
9414 // For cases within the target-specified limits, this is the best choice.
9416 if (ConstantSize) {
9417 // Memset with size zero? Just return the original chain.
9418 if (ConstantSize->isZero())
9419 return Chain;
9420
9421 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9422 ConstantSize->getZExtValue(), Alignment,
9423 isVol, false, DstPtrInfo, AAInfo);
9424
9425 if (Result.getNode())
9426 return Result;
9427 }
9428
9429 // Then check to see if we should lower the memset with target-specific
9430 // code. If the target chooses to do this, this is the next best.
9431 if (TSI) {
9432 SDValue Result = TSI->EmitTargetCodeForMemset(
9433 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9434 if (Result.getNode())
9435 return Result;
9436 }
9437
9438 // If we really need inline code and the target declined to provide it,
9439 // use a (potentially long) sequence of loads and stores.
9440 if (AlwaysInline) {
9441 assert(ConstantSize && "AlwaysInline requires a constant size!");
9442 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9443 ConstantSize->getZExtValue(), Alignment,
9444 isVol, true, DstPtrInfo, AAInfo);
9445 assert(Result &&
9446 "getMemsetStores must return a valid sequence when AlwaysInline");
9447 return Result;
9448 }
9449
9451
9452 // Emit a library call.
9453 auto &Ctx = *getContext();
9454 const auto& DL = getDataLayout();
9455
9457 // FIXME: pass in SDLoc
9458 CLI.setDebugLoc(dl).setChain(Chain);
9459
9460 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9461
9462 bool UseBZero = isNullConstant(Src) && BzeroName;
9463 // If zeroing out and bzero is present, use it.
9464 if (UseBZero) {
9466 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9467 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9468 CLI.setLibCallee(
9469 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9470 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9471 } else {
9473 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9474 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9475 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9476 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9477 Dst.getValueType().getTypeForEVT(Ctx),
9478 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9479 TLI->getPointerTy(DL)),
9480 std::move(Args));
9481 }
9482 bool LowersToMemset =
9483 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9484 // If we're going to use bzero, make sure not to tail call unless the
9485 // subsequent return doesn't need a value, as bzero doesn't return the first
9486 // arg unlike memset.
9487 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9488 bool IsTailCall =
9489 CI && CI->isTailCall() &&
9490 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9491 CLI.setDiscardResult().setTailCall(IsTailCall);
9492
9493 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9494 return CallResult.second;
9495}
9496
9499 Type *SizeTy, unsigned ElemSz,
9500 bool isTailCall,
9501 MachinePointerInfo DstPtrInfo) {
9502 // Emit a library call.
9504 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9505 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9506 Args.emplace_back(Size, SizeTy);
9507
9508 RTLIB::Libcall LibraryCall =
9510 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9511 report_fatal_error("Unsupported element size");
9512
9514 CLI.setDebugLoc(dl)
9515 .setChain(Chain)
9516 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9518 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9519 TLI->getPointerTy(getDataLayout())),
9520 std::move(Args))
9522 .setTailCall(isTailCall);
9523
9524 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9525 return CallResult.second;
9526}
9527
9528SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9530 MachineMemOperand *MMO,
9531 ISD::LoadExtType ExtType) {
9533 AddNodeIDNode(ID, Opcode, VTList, Ops);
9534 ID.AddInteger(MemVT.getRawBits());
9535 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9536 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9537 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9538 ID.AddInteger(MMO->getFlags());
9539 void* IP = nullptr;
9540 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9541 E->refineAlignment(MMO);
9542 E->refineRanges(MMO);
9543 return SDValue(E, 0);
9544 }
9545
9546 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9547 VTList, MemVT, MMO, ExtType);
9548 createOperands(N, Ops);
9549
9550 CSEMap.InsertNode(N, IP);
9551 InsertNode(N);
9552 SDValue V(N, 0);
9553 NewSDValueDbgMsg(V, "Creating new node: ", this);
9554 return V;
9555}
9556
9558 EVT MemVT, SDVTList VTs, SDValue Chain,
9559 SDValue Ptr, SDValue Cmp, SDValue Swp,
9560 MachineMemOperand *MMO) {
9561 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9562 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9563 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9564
9565 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9566 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9567}
9568
9569SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9570 SDValue Chain, SDValue Ptr, SDValue Val,
9571 MachineMemOperand *MMO) {
9572 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9573 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9574 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9575 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9576 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9577 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9578 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9579 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9580 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9581 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9582 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9583 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9584 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9585 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9586 Opcode == ISD::ATOMIC_STORE) &&
9587 "Invalid Atomic Op");
9588
9589 EVT VT = Val.getValueType();
9590
9591 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9592 getVTList(VT, MVT::Other);
9593 SDValue Ops[] = {Chain, Ptr, Val};
9594 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9595}
9596
9598 EVT MemVT, EVT VT, SDValue Chain,
9600 SDVTList VTs = getVTList(VT, MVT::Other);
9601 SDValue Ops[] = {Chain, Ptr};
9602 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9603}
9604
9605/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9607 if (Ops.size() == 1)
9608 return Ops[0];
9609
9611 VTs.reserve(Ops.size());
9612 for (const SDValue &Op : Ops)
9613 VTs.push_back(Op.getValueType());
9614 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9615}
9616
9618 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9619 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9621 const AAMDNodes &AAInfo) {
9622 if (Size.hasValue() && !Size.getValue())
9624
9626 MachineMemOperand *MMO =
9627 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9628
9629 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9630}
9631
9633 SDVTList VTList,
9634 ArrayRef<SDValue> Ops, EVT MemVT,
9635 MachineMemOperand *MMO) {
9636 assert(
9637 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9638 Opcode == ISD::PREFETCH ||
9639 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9640 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9641 "Opcode is not a memory-accessing opcode!");
9642
9643 // Memoize the node unless it returns a glue result.
9645 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9647 AddNodeIDNode(ID, Opcode, VTList, Ops);
9648 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9649 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9650 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9651 ID.AddInteger(MMO->getFlags());
9652 ID.AddInteger(MemVT.getRawBits());
9653 void *IP = nullptr;
9654 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9655 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9656 return SDValue(E, 0);
9657 }
9658
9659 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9660 VTList, MemVT, MMO);
9661 createOperands(N, Ops);
9662
9663 CSEMap.InsertNode(N, IP);
9664 } else {
9665 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9666 VTList, MemVT, MMO);
9667 createOperands(N, Ops);
9668 }
9669 InsertNode(N);
9670 SDValue V(N, 0);
9671 NewSDValueDbgMsg(V, "Creating new node: ", this);
9672 return V;
9673}
9674
9676 SDValue Chain, int FrameIndex) {
9677 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9678 const auto VTs = getVTList(MVT::Other);
9679 SDValue Ops[2] = {
9680 Chain,
9681 getFrameIndex(FrameIndex,
9682 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9683 true)};
9684
9686 AddNodeIDNode(ID, Opcode, VTs, Ops);
9687 ID.AddInteger(FrameIndex);
9688 void *IP = nullptr;
9689 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9690 return SDValue(E, 0);
9691
9692 LifetimeSDNode *N =
9693 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9694 createOperands(N, Ops);
9695 CSEMap.InsertNode(N, IP);
9696 InsertNode(N);
9697 SDValue V(N, 0);
9698 NewSDValueDbgMsg(V, "Creating new node: ", this);
9699 return V;
9700}
9701
9703 uint64_t Guid, uint64_t Index,
9704 uint32_t Attr) {
9705 const unsigned Opcode = ISD::PSEUDO_PROBE;
9706 const auto VTs = getVTList(MVT::Other);
9707 SDValue Ops[] = {Chain};
9709 AddNodeIDNode(ID, Opcode, VTs, Ops);
9710 ID.AddInteger(Guid);
9711 ID.AddInteger(Index);
9712 void *IP = nullptr;
9713 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9714 return SDValue(E, 0);
9715
9716 auto *N = newSDNode<PseudoProbeSDNode>(
9717 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9718 createOperands(N, Ops);
9719 CSEMap.InsertNode(N, IP);
9720 InsertNode(N);
9721 SDValue V(N, 0);
9722 NewSDValueDbgMsg(V, "Creating new node: ", this);
9723 return V;
9724}
9725
9726/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9727/// MachinePointerInfo record from it. This is particularly useful because the
9728/// code generator has many cases where it doesn't bother passing in a
9729/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9731 SelectionDAG &DAG, SDValue Ptr,
9732 int64_t Offset = 0) {
9733 // If this is FI+Offset, we can model it.
9736 FI->getIndex(), Offset);
9737
9738 // If this is (FI+Offset1)+Offset2, we can model it.
9739 if (Ptr.getOpcode() != ISD::ADD ||
9740 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9741 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9742 return Info;
9743
9744 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9746 DAG.getMachineFunction(), FI,
9747 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9748}
9749
9750/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9751/// MachinePointerInfo record from it. This is particularly useful because the
9752/// code generator has many cases where it doesn't bother passing in a
9753/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9755 SelectionDAG &DAG, SDValue Ptr,
9756 SDValue OffsetOp) {
9757 // If the 'Offset' value isn't a constant, we can't handle this.
9759 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9760 if (OffsetOp.isUndef())
9761 return InferPointerInfo(Info, DAG, Ptr);
9762 return Info;
9763}
9764
9766 EVT VT, const SDLoc &dl, SDValue Chain,
9768 MachinePointerInfo PtrInfo, EVT MemVT,
9769 Align Alignment,
9770 MachineMemOperand::Flags MMOFlags,
9771 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9772 assert(Chain.getValueType() == MVT::Other &&
9773 "Invalid chain type");
9774
9775 MMOFlags |= MachineMemOperand::MOLoad;
9776 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9777 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9778 // clients.
9779 if (PtrInfo.V.isNull())
9780 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9781
9782 TypeSize Size = MemVT.getStoreSize();
9784 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9785 Alignment, AAInfo, Ranges);
9786 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9787}
9788
9790 EVT VT, const SDLoc &dl, SDValue Chain,
9791 SDValue Ptr, SDValue Offset, EVT MemVT,
9792 MachineMemOperand *MMO) {
9793 if (VT == MemVT) {
9794 ExtType = ISD::NON_EXTLOAD;
9795 } else if (ExtType == ISD::NON_EXTLOAD) {
9796 assert(VT == MemVT && "Non-extending load from different memory type!");
9797 } else {
9798 // Extending load.
9799 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9800 "Should only be an extending load, not truncating!");
9801 assert(VT.isInteger() == MemVT.isInteger() &&
9802 "Cannot convert from FP to Int or Int -> FP!");
9803 assert(VT.isVector() == MemVT.isVector() &&
9804 "Cannot use an ext load to convert to or from a vector!");
9805 assert((!VT.isVector() ||
9807 "Cannot use an ext load to change the number of vector elements!");
9808 }
9809
9810 assert((!MMO->getRanges() ||
9812 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9813 MemVT.isInteger())) &&
9814 "Range metadata and load type must match!");
9815
9816 bool Indexed = AM != ISD::UNINDEXED;
9817 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9818
9819 SDVTList VTs = Indexed ?
9820 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9821 SDValue Ops[] = { Chain, Ptr, Offset };
9823 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9824 ID.AddInteger(MemVT.getRawBits());
9825 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9826 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9827 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9828 ID.AddInteger(MMO->getFlags());
9829 void *IP = nullptr;
9830 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9831 E->refineAlignment(MMO);
9832 E->refineRanges(MMO);
9833 return SDValue(E, 0);
9834 }
9835 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9836 ExtType, MemVT, MMO);
9837 createOperands(N, Ops);
9838
9839 CSEMap.InsertNode(N, IP);
9840 InsertNode(N);
9841 SDValue V(N, 0);
9842 NewSDValueDbgMsg(V, "Creating new node: ", this);
9843 return V;
9844}
9845
9848 MaybeAlign Alignment,
9849 MachineMemOperand::Flags MMOFlags,
9850 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9851 SDValue Undef = getUNDEF(Ptr.getValueType());
9852 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9853 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9854}
9855
9858 SDValue Undef = getUNDEF(Ptr.getValueType());
9859 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9860 VT, MMO);
9861}
9862
9864 EVT VT, SDValue Chain, SDValue Ptr,
9865 MachinePointerInfo PtrInfo, EVT MemVT,
9866 MaybeAlign Alignment,
9867 MachineMemOperand::Flags MMOFlags,
9868 const AAMDNodes &AAInfo) {
9869 SDValue Undef = getUNDEF(Ptr.getValueType());
9870 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9871 MemVT, Alignment, MMOFlags, AAInfo);
9872}
9873
9875 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9876 MachineMemOperand *MMO) {
9877 SDValue Undef = getUNDEF(Ptr.getValueType());
9878 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9879 MemVT, MMO);
9880}
9881
9885 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9886 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9887 // Don't propagate the invariant or dereferenceable flags.
9888 auto MMOFlags =
9889 LD->getMemOperand()->getFlags() &
9891 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9892 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9893 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9894}
9895
9898 Align Alignment,
9899 MachineMemOperand::Flags MMOFlags,
9900 const AAMDNodes &AAInfo) {
9901 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9902
9903 MMOFlags |= MachineMemOperand::MOStore;
9904 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9905
9906 if (PtrInfo.V.isNull())
9907 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9908
9911 MachineMemOperand *MMO =
9912 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9913 return getStore(Chain, dl, Val, Ptr, MMO);
9914}
9915
9918 SDValue Undef = getUNDEF(Ptr.getValueType());
9919 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9921}
9922
9926 bool IsTruncating) {
9927 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9928 EVT VT = Val.getValueType();
9929 if (VT == SVT) {
9930 IsTruncating = false;
9931 } else if (!IsTruncating) {
9932 assert(VT == SVT && "No-truncating store from different memory type!");
9933 } else {
9935 "Should only be a truncating store, not extending!");
9936 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9937 assert(VT.isVector() == SVT.isVector() &&
9938 "Cannot use trunc store to convert to or from a vector!");
9939 assert((!VT.isVector() ||
9941 "Cannot use trunc store to change the number of vector elements!");
9942 }
9943
9944 bool Indexed = AM != ISD::UNINDEXED;
9945 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9946 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9947 : getVTList(MVT::Other);
9948 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9950 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9951 ID.AddInteger(SVT.getRawBits());
9952 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9953 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9954 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9955 ID.AddInteger(MMO->getFlags());
9956 void *IP = nullptr;
9957 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9958 cast<StoreSDNode>(E)->refineAlignment(MMO);
9959 return SDValue(E, 0);
9960 }
9961 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9962 IsTruncating, SVT, MMO);
9963 createOperands(N, Ops);
9964
9965 CSEMap.InsertNode(N, IP);
9966 InsertNode(N);
9967 SDValue V(N, 0);
9968 NewSDValueDbgMsg(V, "Creating new node: ", this);
9969 return V;
9970}
9971
9974 EVT SVT, Align Alignment,
9975 MachineMemOperand::Flags MMOFlags,
9976 const AAMDNodes &AAInfo) {
9977 assert(Chain.getValueType() == MVT::Other &&
9978 "Invalid chain type");
9979
9980 MMOFlags |= MachineMemOperand::MOStore;
9981 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9982
9983 if (PtrInfo.V.isNull())
9984 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9985
9987 MachineMemOperand *MMO = MF.getMachineMemOperand(
9988 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9989 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9990}
9991
9993 SDValue Ptr, EVT SVT,
9994 MachineMemOperand *MMO) {
9995 SDValue Undef = getUNDEF(Ptr.getValueType());
9996 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
9997}
9998
10002 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
10003 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
10004 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10005 ST->getMemoryVT(), ST->getMemOperand(), AM,
10006 ST->isTruncatingStore());
10007}
10008
10010 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
10011 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
10012 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
10013 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
10014 const MDNode *Ranges, bool IsExpanding) {
10015 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10016
10017 MMOFlags |= MachineMemOperand::MOLoad;
10018 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
10019 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
10020 // clients.
10021 if (PtrInfo.V.isNull())
10022 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
10023
10024 TypeSize Size = MemVT.getStoreSize();
10026 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
10027 Alignment, AAInfo, Ranges);
10028 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
10029 MMO, IsExpanding);
10030}
10031
10033 ISD::LoadExtType ExtType, EVT VT,
10034 const SDLoc &dl, SDValue Chain, SDValue Ptr,
10035 SDValue Offset, SDValue Mask, SDValue EVL,
10036 EVT MemVT, MachineMemOperand *MMO,
10037 bool IsExpanding) {
10038 bool Indexed = AM != ISD::UNINDEXED;
10039 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10040
10041 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10042 : getVTList(VT, MVT::Other);
10043 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
10045 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10046 ID.AddInteger(MemVT.getRawBits());
10047 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10048 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10049 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10050 ID.AddInteger(MMO->getFlags());
10051 void *IP = nullptr;
10052 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10053 E->refineAlignment(MMO);
10054 E->refineRanges(MMO);
10055 return SDValue(E, 0);
10056 }
10057 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10058 ExtType, IsExpanding, MemVT, MMO);
10059 createOperands(N, Ops);
10060
10061 CSEMap.InsertNode(N, IP);
10062 InsertNode(N);
10063 SDValue V(N, 0);
10064 NewSDValueDbgMsg(V, "Creating new node: ", this);
10065 return V;
10066}
10067
10069 SDValue Ptr, SDValue Mask, SDValue EVL,
10070 MachinePointerInfo PtrInfo,
10071 MaybeAlign Alignment,
10072 MachineMemOperand::Flags MMOFlags,
10073 const AAMDNodes &AAInfo, const MDNode *Ranges,
10074 bool IsExpanding) {
10075 SDValue Undef = getUNDEF(Ptr.getValueType());
10076 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10077 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10078 IsExpanding);
10079}
10080
10082 SDValue Ptr, SDValue Mask, SDValue EVL,
10083 MachineMemOperand *MMO, bool IsExpanding) {
10084 SDValue Undef = getUNDEF(Ptr.getValueType());
10085 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10086 Mask, EVL, VT, MMO, IsExpanding);
10087}
10088
10090 EVT VT, SDValue Chain, SDValue Ptr,
10091 SDValue Mask, SDValue EVL,
10092 MachinePointerInfo PtrInfo, EVT MemVT,
10093 MaybeAlign Alignment,
10094 MachineMemOperand::Flags MMOFlags,
10095 const AAMDNodes &AAInfo, bool IsExpanding) {
10096 SDValue Undef = getUNDEF(Ptr.getValueType());
10097 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10098 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10099 IsExpanding);
10100}
10101
10103 EVT VT, SDValue Chain, SDValue Ptr,
10104 SDValue Mask, SDValue EVL, EVT MemVT,
10105 MachineMemOperand *MMO, bool IsExpanding) {
10106 SDValue Undef = getUNDEF(Ptr.getValueType());
10107 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10108 EVL, MemVT, MMO, IsExpanding);
10109}
10110
10114 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10115 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10116 // Don't propagate the invariant or dereferenceable flags.
10117 auto MMOFlags =
10118 LD->getMemOperand()->getFlags() &
10120 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10121 LD->getChain(), Base, Offset, LD->getMask(),
10122 LD->getVectorLength(), LD->getPointerInfo(),
10123 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10124 nullptr, LD->isExpandingLoad());
10125}
10126
10129 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10130 ISD::MemIndexedMode AM, bool IsTruncating,
10131 bool IsCompressing) {
10132 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10133 bool Indexed = AM != ISD::UNINDEXED;
10134 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10135 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10136 : getVTList(MVT::Other);
10137 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10139 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10140 ID.AddInteger(MemVT.getRawBits());
10141 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10142 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10143 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10144 ID.AddInteger(MMO->getFlags());
10145 void *IP = nullptr;
10146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10147 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10148 return SDValue(E, 0);
10149 }
10150 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10151 IsTruncating, IsCompressing, MemVT, MMO);
10152 createOperands(N, Ops);
10153
10154 CSEMap.InsertNode(N, IP);
10155 InsertNode(N);
10156 SDValue V(N, 0);
10157 NewSDValueDbgMsg(V, "Creating new node: ", this);
10158 return V;
10159}
10160
10162 SDValue Val, SDValue Ptr, SDValue Mask,
10163 SDValue EVL, MachinePointerInfo PtrInfo,
10164 EVT SVT, Align Alignment,
10165 MachineMemOperand::Flags MMOFlags,
10166 const AAMDNodes &AAInfo,
10167 bool IsCompressing) {
10168 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10169
10170 MMOFlags |= MachineMemOperand::MOStore;
10171 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10172
10173 if (PtrInfo.V.isNull())
10174 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10175
10177 MachineMemOperand *MMO = MF.getMachineMemOperand(
10178 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10179 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10180 IsCompressing);
10181}
10182
10184 SDValue Val, SDValue Ptr, SDValue Mask,
10185 SDValue EVL, EVT SVT,
10186 MachineMemOperand *MMO,
10187 bool IsCompressing) {
10188 EVT VT = Val.getValueType();
10189
10190 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10191 if (VT == SVT)
10192 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10193 EVL, VT, MMO, ISD::UNINDEXED,
10194 /*IsTruncating*/ false, IsCompressing);
10195
10197 "Should only be a truncating store, not extending!");
10198 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10199 assert(VT.isVector() == SVT.isVector() &&
10200 "Cannot use trunc store to convert to or from a vector!");
10201 assert((!VT.isVector() ||
10203 "Cannot use trunc store to change the number of vector elements!");
10204
10205 SDVTList VTs = getVTList(MVT::Other);
10206 SDValue Undef = getUNDEF(Ptr.getValueType());
10207 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10209 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10210 ID.AddInteger(SVT.getRawBits());
10211 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10212 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10213 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10214 ID.AddInteger(MMO->getFlags());
10215 void *IP = nullptr;
10216 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10217 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10218 return SDValue(E, 0);
10219 }
10220 auto *N =
10221 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10222 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10223 createOperands(N, Ops);
10224
10225 CSEMap.InsertNode(N, IP);
10226 InsertNode(N);
10227 SDValue V(N, 0);
10228 NewSDValueDbgMsg(V, "Creating new node: ", this);
10229 return V;
10230}
10231
10235 auto *ST = cast<VPStoreSDNode>(OrigStore);
10236 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10237 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10238 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10239 Offset, ST->getMask(), ST->getVectorLength()};
10241 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10242 ID.AddInteger(ST->getMemoryVT().getRawBits());
10243 ID.AddInteger(ST->getRawSubclassData());
10244 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10245 ID.AddInteger(ST->getMemOperand()->getFlags());
10246 void *IP = nullptr;
10247 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10248 return SDValue(E, 0);
10249
10250 auto *N = newSDNode<VPStoreSDNode>(
10251 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10252 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10253 createOperands(N, Ops);
10254
10255 CSEMap.InsertNode(N, IP);
10256 InsertNode(N);
10257 SDValue V(N, 0);
10258 NewSDValueDbgMsg(V, "Creating new node: ", this);
10259 return V;
10260}
10261
10263 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10264 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10265 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10266 bool Indexed = AM != ISD::UNINDEXED;
10267 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10268
10269 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10270 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10271 : getVTList(VT, MVT::Other);
10273 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10274 ID.AddInteger(VT.getRawBits());
10275 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10276 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10277 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10278
10279 void *IP = nullptr;
10280 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10281 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10282 return SDValue(E, 0);
10283 }
10284
10285 auto *N =
10286 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10287 ExtType, IsExpanding, MemVT, MMO);
10288 createOperands(N, Ops);
10289 CSEMap.InsertNode(N, IP);
10290 InsertNode(N);
10291 SDValue V(N, 0);
10292 NewSDValueDbgMsg(V, "Creating new node: ", this);
10293 return V;
10294}
10295
10297 SDValue Ptr, SDValue Stride,
10298 SDValue Mask, SDValue EVL,
10299 MachineMemOperand *MMO,
10300 bool IsExpanding) {
10301 SDValue Undef = getUNDEF(Ptr.getValueType());
10303 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10304}
10305
10307 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10308 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10309 MachineMemOperand *MMO, bool IsExpanding) {
10310 SDValue Undef = getUNDEF(Ptr.getValueType());
10311 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10312 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10313}
10314
10316 SDValue Val, SDValue Ptr,
10317 SDValue Offset, SDValue Stride,
10318 SDValue Mask, SDValue EVL, EVT MemVT,
10319 MachineMemOperand *MMO,
10321 bool IsTruncating, bool IsCompressing) {
10322 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10323 bool Indexed = AM != ISD::UNINDEXED;
10324 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10325 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10326 : getVTList(MVT::Other);
10327 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10329 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10330 ID.AddInteger(MemVT.getRawBits());
10331 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10332 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10333 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10334 void *IP = nullptr;
10335 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10336 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10337 return SDValue(E, 0);
10338 }
10339 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10340 VTs, AM, IsTruncating,
10341 IsCompressing, MemVT, MMO);
10342 createOperands(N, Ops);
10343
10344 CSEMap.InsertNode(N, IP);
10345 InsertNode(N);
10346 SDValue V(N, 0);
10347 NewSDValueDbgMsg(V, "Creating new node: ", this);
10348 return V;
10349}
10350
10352 SDValue Val, SDValue Ptr,
10353 SDValue Stride, SDValue Mask,
10354 SDValue EVL, EVT SVT,
10355 MachineMemOperand *MMO,
10356 bool IsCompressing) {
10357 EVT VT = Val.getValueType();
10358
10359 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10360 if (VT == SVT)
10361 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10362 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10363 /*IsTruncating*/ false, IsCompressing);
10364
10366 "Should only be a truncating store, not extending!");
10367 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10368 assert(VT.isVector() == SVT.isVector() &&
10369 "Cannot use trunc store to convert to or from a vector!");
10370 assert((!VT.isVector() ||
10372 "Cannot use trunc store to change the number of vector elements!");
10373
10374 SDVTList VTs = getVTList(MVT::Other);
10375 SDValue Undef = getUNDEF(Ptr.getValueType());
10376 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10378 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10379 ID.AddInteger(SVT.getRawBits());
10380 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10381 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10382 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10383 void *IP = nullptr;
10384 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10385 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10386 return SDValue(E, 0);
10387 }
10388 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10389 VTs, ISD::UNINDEXED, true,
10390 IsCompressing, SVT, MMO);
10391 createOperands(N, Ops);
10392
10393 CSEMap.InsertNode(N, IP);
10394 InsertNode(N);
10395 SDValue V(N, 0);
10396 NewSDValueDbgMsg(V, "Creating new node: ", this);
10397 return V;
10398}
10399
10402 ISD::MemIndexType IndexType) {
10403 assert(Ops.size() == 6 && "Incompatible number of operands");
10404
10406 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10407 ID.AddInteger(VT.getRawBits());
10408 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10409 dl.getIROrder(), VTs, VT, MMO, IndexType));
10410 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10411 ID.AddInteger(MMO->getFlags());
10412 void *IP = nullptr;
10413 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10414 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10415 return SDValue(E, 0);
10416 }
10417
10418 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10419 VT, MMO, IndexType);
10420 createOperands(N, Ops);
10421
10422 assert(N->getMask().getValueType().getVectorElementCount() ==
10423 N->getValueType(0).getVectorElementCount() &&
10424 "Vector width mismatch between mask and data");
10425 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10426 N->getValueType(0).getVectorElementCount().isScalable() &&
10427 "Scalable flags of index and data do not match");
10429 N->getIndex().getValueType().getVectorElementCount(),
10430 N->getValueType(0).getVectorElementCount()) &&
10431 "Vector width mismatch between index and data");
10432 assert(isa<ConstantSDNode>(N->getScale()) &&
10433 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10434 "Scale should be a constant power of 2");
10435
10436 CSEMap.InsertNode(N, IP);
10437 InsertNode(N);
10438 SDValue V(N, 0);
10439 NewSDValueDbgMsg(V, "Creating new node: ", this);
10440 return V;
10441}
10442
10445 MachineMemOperand *MMO,
10446 ISD::MemIndexType IndexType) {
10447 assert(Ops.size() == 7 && "Incompatible number of operands");
10448
10450 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10451 ID.AddInteger(VT.getRawBits());
10452 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10453 dl.getIROrder(), VTs, VT, MMO, IndexType));
10454 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10455 ID.AddInteger(MMO->getFlags());
10456 void *IP = nullptr;
10457 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10458 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10459 return SDValue(E, 0);
10460 }
10461 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10462 VT, MMO, IndexType);
10463 createOperands(N, Ops);
10464
10465 assert(N->getMask().getValueType().getVectorElementCount() ==
10466 N->getValue().getValueType().getVectorElementCount() &&
10467 "Vector width mismatch between mask and data");
10468 assert(
10469 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10470 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10471 "Scalable flags of index and data do not match");
10473 N->getIndex().getValueType().getVectorElementCount(),
10474 N->getValue().getValueType().getVectorElementCount()) &&
10475 "Vector width mismatch between index and data");
10476 assert(isa<ConstantSDNode>(N->getScale()) &&
10477 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10478 "Scale should be a constant power of 2");
10479
10480 CSEMap.InsertNode(N, IP);
10481 InsertNode(N);
10482 SDValue V(N, 0);
10483 NewSDValueDbgMsg(V, "Creating new node: ", this);
10484 return V;
10485}
10486
10489 SDValue PassThru, EVT MemVT,
10490 MachineMemOperand *MMO,
10492 ISD::LoadExtType ExtTy, bool isExpanding) {
10493 bool Indexed = AM != ISD::UNINDEXED;
10494 assert((Indexed || Offset.isUndef()) &&
10495 "Unindexed masked load with an offset!");
10496 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10497 : getVTList(VT, MVT::Other);
10498 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10500 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10501 ID.AddInteger(MemVT.getRawBits());
10502 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10503 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10504 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10505 ID.AddInteger(MMO->getFlags());
10506 void *IP = nullptr;
10507 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10508 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10509 return SDValue(E, 0);
10510 }
10511 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10512 AM, ExtTy, isExpanding, MemVT, MMO);
10513 createOperands(N, Ops);
10514
10515 CSEMap.InsertNode(N, IP);
10516 InsertNode(N);
10517 SDValue V(N, 0);
10518 NewSDValueDbgMsg(V, "Creating new node: ", this);
10519 return V;
10520}
10521
10526 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10527 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10528 Offset, LD->getMask(), LD->getPassThru(),
10529 LD->getMemoryVT(), LD->getMemOperand(), AM,
10530 LD->getExtensionType(), LD->isExpandingLoad());
10531}
10532
10535 SDValue Mask, EVT MemVT,
10536 MachineMemOperand *MMO,
10537 ISD::MemIndexedMode AM, bool IsTruncating,
10538 bool IsCompressing) {
10539 assert(Chain.getValueType() == MVT::Other &&
10540 "Invalid chain type");
10541 bool Indexed = AM != ISD::UNINDEXED;
10542 assert((Indexed || Offset.isUndef()) &&
10543 "Unindexed masked store with an offset!");
10544 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10545 : getVTList(MVT::Other);
10546 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10548 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10549 ID.AddInteger(MemVT.getRawBits());
10550 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10551 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10552 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10553 ID.AddInteger(MMO->getFlags());
10554 void *IP = nullptr;
10555 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10556 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10557 return SDValue(E, 0);
10558 }
10559 auto *N =
10560 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10561 IsTruncating, IsCompressing, MemVT, MMO);
10562 createOperands(N, Ops);
10563
10564 CSEMap.InsertNode(N, IP);
10565 InsertNode(N);
10566 SDValue V(N, 0);
10567 NewSDValueDbgMsg(V, "Creating new node: ", this);
10568 return V;
10569}
10570
10575 assert(ST->getOffset().isUndef() &&
10576 "Masked store is already a indexed store!");
10577 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10578 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10579 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10580}
10581
10584 MachineMemOperand *MMO,
10585 ISD::MemIndexType IndexType,
10586 ISD::LoadExtType ExtTy) {
10587 assert(Ops.size() == 6 && "Incompatible number of operands");
10588
10590 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10591 ID.AddInteger(MemVT.getRawBits());
10592 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10593 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10594 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10595 ID.AddInteger(MMO->getFlags());
10596 void *IP = nullptr;
10597 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10598 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10599 return SDValue(E, 0);
10600 }
10601
10602 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10603 VTs, MemVT, MMO, IndexType, ExtTy);
10604 createOperands(N, Ops);
10605
10606 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10607 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10608 assert(N->getMask().getValueType().getVectorElementCount() ==
10609 N->getValueType(0).getVectorElementCount() &&
10610 "Vector width mismatch between mask and data");
10611 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10612 N->getValueType(0).getVectorElementCount().isScalable() &&
10613 "Scalable flags of index and data do not match");
10615 N->getIndex().getValueType().getVectorElementCount(),
10616 N->getValueType(0).getVectorElementCount()) &&
10617 "Vector width mismatch between index and data");
10618 assert(isa<ConstantSDNode>(N->getScale()) &&
10619 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10620 "Scale should be a constant power of 2");
10621
10622 CSEMap.InsertNode(N, IP);
10623 InsertNode(N);
10624 SDValue V(N, 0);
10625 NewSDValueDbgMsg(V, "Creating new node: ", this);
10626 return V;
10627}
10628
10631 MachineMemOperand *MMO,
10632 ISD::MemIndexType IndexType,
10633 bool IsTrunc) {
10634 assert(Ops.size() == 6 && "Incompatible number of operands");
10635
10637 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10638 ID.AddInteger(MemVT.getRawBits());
10639 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10640 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10641 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10642 ID.AddInteger(MMO->getFlags());
10643 void *IP = nullptr;
10644 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10645 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10646 return SDValue(E, 0);
10647 }
10648
10649 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10650 VTs, MemVT, MMO, IndexType, IsTrunc);
10651 createOperands(N, Ops);
10652
10653 assert(N->getMask().getValueType().getVectorElementCount() ==
10654 N->getValue().getValueType().getVectorElementCount() &&
10655 "Vector width mismatch between mask and data");
10656 assert(
10657 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10658 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10659 "Scalable flags of index and data do not match");
10661 N->getIndex().getValueType().getVectorElementCount(),
10662 N->getValue().getValueType().getVectorElementCount()) &&
10663 "Vector width mismatch between index and data");
10664 assert(isa<ConstantSDNode>(N->getScale()) &&
10665 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10666 "Scale should be a constant power of 2");
10667
10668 CSEMap.InsertNode(N, IP);
10669 InsertNode(N);
10670 SDValue V(N, 0);
10671 NewSDValueDbgMsg(V, "Creating new node: ", this);
10672 return V;
10673}
10674
10676 const SDLoc &dl, ArrayRef<SDValue> Ops,
10677 MachineMemOperand *MMO,
10678 ISD::MemIndexType IndexType) {
10679 assert(Ops.size() == 7 && "Incompatible number of operands");
10680
10682 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10683 ID.AddInteger(MemVT.getRawBits());
10684 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10685 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10686 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10687 ID.AddInteger(MMO->getFlags());
10688 void *IP = nullptr;
10689 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10690 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10691 return SDValue(E, 0);
10692 }
10693
10694 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10695 VTs, MemVT, MMO, IndexType);
10696 createOperands(N, Ops);
10697
10698 assert(N->getMask().getValueType().getVectorElementCount() ==
10699 N->getIndex().getValueType().getVectorElementCount() &&
10700 "Vector width mismatch between mask and data");
10701 assert(isa<ConstantSDNode>(N->getScale()) &&
10702 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10703 "Scale should be a constant power of 2");
10704 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10705
10706 CSEMap.InsertNode(N, IP);
10707 InsertNode(N);
10708 SDValue V(N, 0);
10709 NewSDValueDbgMsg(V, "Creating new node: ", this);
10710 return V;
10711}
10712
10714 SDValue Ptr, SDValue Mask, SDValue EVL,
10715 MachineMemOperand *MMO) {
10716 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10717 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10719 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10720 ID.AddInteger(VT.getRawBits());
10721 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10722 VTs, VT, MMO));
10723 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10724 ID.AddInteger(MMO->getFlags());
10725 void *IP = nullptr;
10726 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10727 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10728 return SDValue(E, 0);
10729 }
10730 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10731 VT, MMO);
10732 createOperands(N, Ops);
10733
10734 CSEMap.InsertNode(N, IP);
10735 InsertNode(N);
10736 SDValue V(N, 0);
10737 NewSDValueDbgMsg(V, "Creating new node: ", this);
10738 return V;
10739}
10740
10742 EVT MemVT, MachineMemOperand *MMO) {
10743 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10744 SDVTList VTs = getVTList(MVT::Other);
10745 SDValue Ops[] = {Chain, Ptr};
10747 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10748 ID.AddInteger(MemVT.getRawBits());
10749 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10750 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10751 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10752 ID.AddInteger(MMO->getFlags());
10753 void *IP = nullptr;
10754 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10755 return SDValue(E, 0);
10756
10757 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10758 dl.getDebugLoc(), VTs, MemVT, MMO);
10759 createOperands(N, Ops);
10760
10761 CSEMap.InsertNode(N, IP);
10762 InsertNode(N);
10763 SDValue V(N, 0);
10764 NewSDValueDbgMsg(V, "Creating new node: ", this);
10765 return V;
10766}
10767
10769 EVT MemVT, MachineMemOperand *MMO) {
10770 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10771 SDVTList VTs = getVTList(MVT::Other);
10772 SDValue Ops[] = {Chain, Ptr};
10774 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10775 ID.AddInteger(MemVT.getRawBits());
10776 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10777 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10778 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10779 ID.AddInteger(MMO->getFlags());
10780 void *IP = nullptr;
10781 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10782 return SDValue(E, 0);
10783
10784 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10785 dl.getDebugLoc(), VTs, MemVT, MMO);
10786 createOperands(N, Ops);
10787
10788 CSEMap.InsertNode(N, IP);
10789 InsertNode(N);
10790 SDValue V(N, 0);
10791 NewSDValueDbgMsg(V, "Creating new node: ", this);
10792 return V;
10793}
10794
10796 // select undef, T, F --> T (if T is a constant), otherwise F
10797 // select, ?, undef, F --> F
10798 // select, ?, T, undef --> T
10799 if (Cond.isUndef())
10800 return isConstantValueOfAnyType(T) ? T : F;
10801 if (T.isUndef())
10802 return F;
10803 if (F.isUndef())
10804 return T;
10805
10806 // select true, T, F --> T
10807 // select false, T, F --> F
10808 if (auto C = isBoolConstant(Cond))
10809 return *C ? T : F;
10810
10811 // select ?, T, T --> T
10812 if (T == F)
10813 return T;
10814
10815 return SDValue();
10816}
10817
10819 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10820 if (X.isUndef())
10821 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10822 // shift X, undef --> undef (because it may shift by the bitwidth)
10823 if (Y.isUndef())
10824 return getUNDEF(X.getValueType());
10825
10826 // shift 0, Y --> 0
10827 // shift X, 0 --> X
10829 return X;
10830
10831 // shift X, C >= bitwidth(X) --> undef
10832 // All vector elements must be too big (or undef) to avoid partial undefs.
10833 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10834 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10835 };
10836 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10837 return getUNDEF(X.getValueType());
10838
10839 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10840 if (X.getValueType().getScalarType() == MVT::i1)
10841 return X;
10842
10843 return SDValue();
10844}
10845
10847 SDNodeFlags Flags) {
10848 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10849 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10850 // operation is poison. That result can be relaxed to undef.
10851 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10852 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10853 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10854 (YC && YC->getValueAPF().isNaN());
10855 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10856 (YC && YC->getValueAPF().isInfinity());
10857
10858 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10859 return getUNDEF(X.getValueType());
10860
10861 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10862 return getUNDEF(X.getValueType());
10863
10864 if (!YC)
10865 return SDValue();
10866
10867 // X + -0.0 --> X
10868 if (Opcode == ISD::FADD)
10869 if (YC->getValueAPF().isNegZero())
10870 return X;
10871
10872 // X - +0.0 --> X
10873 if (Opcode == ISD::FSUB)
10874 if (YC->getValueAPF().isPosZero())
10875 return X;
10876
10877 // X * 1.0 --> X
10878 // X / 1.0 --> X
10879 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10880 if (YC->getValueAPF().isExactlyValue(1.0))
10881 return X;
10882
10883 // X * 0.0 --> 0.0
10884 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10885 if (YC->getValueAPF().isZero())
10886 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10887
10888 return SDValue();
10889}
10890
10892 SDValue Ptr, SDValue SV, unsigned Align) {
10893 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10894 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10895}
10896
10897SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10899 switch (Ops.size()) {
10900 case 0: return getNode(Opcode, DL, VT);
10901 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10902 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10903 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10904 default: break;
10905 }
10906
10907 // Copy from an SDUse array into an SDValue array for use with
10908 // the regular getNode logic.
10910 return getNode(Opcode, DL, VT, NewOps);
10911}
10912
10913SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10915 SDNodeFlags Flags;
10916 if (Inserter)
10917 Flags = Inserter->getFlags();
10918 return getNode(Opcode, DL, VT, Ops, Flags);
10919}
10920
10921SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10922 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10923 unsigned NumOps = Ops.size();
10924 switch (NumOps) {
10925 case 0: return getNode(Opcode, DL, VT);
10926 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10927 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10928 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10929 default: break;
10930 }
10931
10932#ifndef NDEBUG
10933 for (const auto &Op : Ops)
10934 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10935 "Operand is DELETED_NODE!");
10936#endif
10937
10938 switch (Opcode) {
10939 default: break;
10940 case ISD::BUILD_VECTOR:
10941 // Attempt to simplify BUILD_VECTOR.
10942 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10943 return V;
10944 break;
10946 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10947 return V;
10948 break;
10949 case ISD::SELECT_CC:
10950 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10951 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10952 "LHS and RHS of condition must have same type!");
10953 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10954 "True and False arms of SelectCC must have same type!");
10955 assert(Ops[2].getValueType() == VT &&
10956 "select_cc node must be of same type as true and false value!");
10957 assert((!Ops[0].getValueType().isVector() ||
10958 Ops[0].getValueType().getVectorElementCount() ==
10959 VT.getVectorElementCount()) &&
10960 "Expected select_cc with vector result to have the same sized "
10961 "comparison type!");
10962 break;
10963 case ISD::BR_CC:
10964 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10965 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10966 "LHS/RHS of comparison should match types!");
10967 break;
10968 case ISD::VP_ADD:
10969 case ISD::VP_SUB:
10970 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10971 if (VT.getScalarType() == MVT::i1)
10972 Opcode = ISD::VP_XOR;
10973 break;
10974 case ISD::VP_MUL:
10975 // If it is VP_MUL mask operation then turn it to VP_AND
10976 if (VT.getScalarType() == MVT::i1)
10977 Opcode = ISD::VP_AND;
10978 break;
10979 case ISD::VP_REDUCE_MUL:
10980 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10981 if (VT == MVT::i1)
10982 Opcode = ISD::VP_REDUCE_AND;
10983 break;
10984 case ISD::VP_REDUCE_ADD:
10985 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10986 if (VT == MVT::i1)
10987 Opcode = ISD::VP_REDUCE_XOR;
10988 break;
10989 case ISD::VP_REDUCE_SMAX:
10990 case ISD::VP_REDUCE_UMIN:
10991 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10992 // VP_REDUCE_AND.
10993 if (VT == MVT::i1)
10994 Opcode = ISD::VP_REDUCE_AND;
10995 break;
10996 case ISD::VP_REDUCE_SMIN:
10997 case ISD::VP_REDUCE_UMAX:
10998 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10999 // VP_REDUCE_OR.
11000 if (VT == MVT::i1)
11001 Opcode = ISD::VP_REDUCE_OR;
11002 break;
11003 }
11004
11005 // Memoize nodes.
11006 SDNode *N;
11007 SDVTList VTs = getVTList(VT);
11008
11009 if (VT != MVT::Glue) {
11011 AddNodeIDNode(ID, Opcode, VTs, Ops);
11012 void *IP = nullptr;
11013
11014 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11015 E->intersectFlagsWith(Flags);
11016 return SDValue(E, 0);
11017 }
11018
11019 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11020 createOperands(N, Ops);
11021
11022 CSEMap.InsertNode(N, IP);
11023 } else {
11024 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11025 createOperands(N, Ops);
11026 }
11027
11028 N->setFlags(Flags);
11029 InsertNode(N);
11030 SDValue V(N, 0);
11031 NewSDValueDbgMsg(V, "Creating new node: ", this);
11032 return V;
11033}
11034
11035SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11036 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
11037 SDNodeFlags Flags;
11038 if (Inserter)
11039 Flags = Inserter->getFlags();
11040 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11041}
11042
11043SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11045 const SDNodeFlags Flags) {
11046 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11047}
11048
11049SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11051 SDNodeFlags Flags;
11052 if (Inserter)
11053 Flags = Inserter->getFlags();
11054 return getNode(Opcode, DL, VTList, Ops, Flags);
11055}
11056
11057SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11058 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11059 if (VTList.NumVTs == 1)
11060 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11061
11062#ifndef NDEBUG
11063 for (const auto &Op : Ops)
11064 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11065 "Operand is DELETED_NODE!");
11066#endif
11067
11068 switch (Opcode) {
11069 case ISD::SADDO:
11070 case ISD::UADDO:
11071 case ISD::SSUBO:
11072 case ISD::USUBO: {
11073 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11074 "Invalid add/sub overflow op!");
11075 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11076 Ops[0].getValueType() == Ops[1].getValueType() &&
11077 Ops[0].getValueType() == VTList.VTs[0] &&
11078 "Binary operator types must match!");
11079 SDValue N1 = Ops[0], N2 = Ops[1];
11080 canonicalizeCommutativeBinop(Opcode, N1, N2);
11081
11082 // (X +- 0) -> X with zero-overflow.
11083 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11084 /*AllowTruncation*/ true);
11085 if (N2CV && N2CV->isZero()) {
11086 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11087 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11088 }
11089
11090 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11091 VTList.VTs[1].getScalarType() == MVT::i1) {
11092 SDValue F1 = getFreeze(N1);
11093 SDValue F2 = getFreeze(N2);
11094 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11095 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11096 return getNode(ISD::MERGE_VALUES, DL, VTList,
11097 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11098 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11099 Flags);
11100 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11101 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11102 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11103 return getNode(ISD::MERGE_VALUES, DL, VTList,
11104 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11105 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11106 Flags);
11107 }
11108 }
11109 break;
11110 }
11111 case ISD::SADDO_CARRY:
11112 case ISD::UADDO_CARRY:
11113 case ISD::SSUBO_CARRY:
11114 case ISD::USUBO_CARRY:
11115 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11116 "Invalid add/sub overflow op!");
11117 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11118 Ops[0].getValueType() == Ops[1].getValueType() &&
11119 Ops[0].getValueType() == VTList.VTs[0] &&
11120 Ops[2].getValueType() == VTList.VTs[1] &&
11121 "Binary operator types must match!");
11122 break;
11123 case ISD::SMUL_LOHI:
11124 case ISD::UMUL_LOHI: {
11125 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11126 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11127 VTList.VTs[0] == Ops[0].getValueType() &&
11128 VTList.VTs[0] == Ops[1].getValueType() &&
11129 "Binary operator types must match!");
11130 // Constant fold.
11133 if (LHS && RHS) {
11134 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11135 unsigned OutWidth = Width * 2;
11136 APInt Val = LHS->getAPIntValue();
11137 APInt Mul = RHS->getAPIntValue();
11138 if (Opcode == ISD::SMUL_LOHI) {
11139 Val = Val.sext(OutWidth);
11140 Mul = Mul.sext(OutWidth);
11141 } else {
11142 Val = Val.zext(OutWidth);
11143 Mul = Mul.zext(OutWidth);
11144 }
11145 Val *= Mul;
11146
11147 SDValue Hi =
11148 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11149 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11150 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11151 }
11152 break;
11153 }
11154 case ISD::FFREXP: {
11155 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11156 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11157 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11158
11160 int FrexpExp;
11161 APFloat FrexpMant =
11162 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11163 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11164 SDValue Result1 =
11165 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
11166 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11167 }
11168
11169 break;
11170 }
11172 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11173 "Invalid STRICT_FP_EXTEND!");
11174 assert(VTList.VTs[0].isFloatingPoint() &&
11175 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11176 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11177 "STRICT_FP_EXTEND result type should be vector iff the operand "
11178 "type is vector!");
11179 assert((!VTList.VTs[0].isVector() ||
11180 VTList.VTs[0].getVectorElementCount() ==
11181 Ops[1].getValueType().getVectorElementCount()) &&
11182 "Vector element count mismatch!");
11183 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11184 "Invalid fpext node, dst <= src!");
11185 break;
11187 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11188 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11189 "STRICT_FP_ROUND result type should be vector iff the operand "
11190 "type is vector!");
11191 assert((!VTList.VTs[0].isVector() ||
11192 VTList.VTs[0].getVectorElementCount() ==
11193 Ops[1].getValueType().getVectorElementCount()) &&
11194 "Vector element count mismatch!");
11195 assert(VTList.VTs[0].isFloatingPoint() &&
11196 Ops[1].getValueType().isFloatingPoint() &&
11197 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11198 Ops[2].getOpcode() == ISD::TargetConstant &&
11199 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11200 "Invalid STRICT_FP_ROUND!");
11201 break;
11202 }
11203
11204 // Memoize the node unless it returns a glue result.
11205 SDNode *N;
11206 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11208 AddNodeIDNode(ID, Opcode, VTList, Ops);
11209 void *IP = nullptr;
11210 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11211 E->intersectFlagsWith(Flags);
11212 return SDValue(E, 0);
11213 }
11214
11215 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11216 createOperands(N, Ops);
11217 CSEMap.InsertNode(N, IP);
11218 } else {
11219 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11220 createOperands(N, Ops);
11221 }
11222
11223 N->setFlags(Flags);
11224 InsertNode(N);
11225 SDValue V(N, 0);
11226 NewSDValueDbgMsg(V, "Creating new node: ", this);
11227 return V;
11228}
11229
11230SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11231 SDVTList VTList) {
11232 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11233}
11234
11235SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11236 SDValue N1) {
11237 SDValue Ops[] = { N1 };
11238 return getNode(Opcode, DL, VTList, Ops);
11239}
11240
11241SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11242 SDValue N1, SDValue N2) {
11243 SDValue Ops[] = { N1, N2 };
11244 return getNode(Opcode, DL, VTList, Ops);
11245}
11246
11247SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11248 SDValue N1, SDValue N2, SDValue N3) {
11249 SDValue Ops[] = { N1, N2, N3 };
11250 return getNode(Opcode, DL, VTList, Ops);
11251}
11252
11253SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11254 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11255 SDValue Ops[] = { N1, N2, N3, N4 };
11256 return getNode(Opcode, DL, VTList, Ops);
11257}
11258
11259SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11260 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11261 SDValue N5) {
11262 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11263 return getNode(Opcode, DL, VTList, Ops);
11264}
11265
11267 if (!VT.isExtended())
11268 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11269
11270 return makeVTList(&(*EVTs.insert(VT).first), 1);
11271}
11272
11275 ID.AddInteger(2U);
11276 ID.AddInteger(VT1.getRawBits());
11277 ID.AddInteger(VT2.getRawBits());
11278
11279 void *IP = nullptr;
11280 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11281 if (!Result) {
11282 EVT *Array = Allocator.Allocate<EVT>(2);
11283 Array[0] = VT1;
11284 Array[1] = VT2;
11285 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11286 VTListMap.InsertNode(Result, IP);
11287 }
11288 return Result->getSDVTList();
11289}
11290
11293 ID.AddInteger(3U);
11294 ID.AddInteger(VT1.getRawBits());
11295 ID.AddInteger(VT2.getRawBits());
11296 ID.AddInteger(VT3.getRawBits());
11297
11298 void *IP = nullptr;
11299 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11300 if (!Result) {
11301 EVT *Array = Allocator.Allocate<EVT>(3);
11302 Array[0] = VT1;
11303 Array[1] = VT2;
11304 Array[2] = VT3;
11305 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11306 VTListMap.InsertNode(Result, IP);
11307 }
11308 return Result->getSDVTList();
11309}
11310
11313 ID.AddInteger(4U);
11314 ID.AddInteger(VT1.getRawBits());
11315 ID.AddInteger(VT2.getRawBits());
11316 ID.AddInteger(VT3.getRawBits());
11317 ID.AddInteger(VT4.getRawBits());
11318
11319 void *IP = nullptr;
11320 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11321 if (!Result) {
11322 EVT *Array = Allocator.Allocate<EVT>(4);
11323 Array[0] = VT1;
11324 Array[1] = VT2;
11325 Array[2] = VT3;
11326 Array[3] = VT4;
11327 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11328 VTListMap.InsertNode(Result, IP);
11329 }
11330 return Result->getSDVTList();
11331}
11332
11334 unsigned NumVTs = VTs.size();
11336 ID.AddInteger(NumVTs);
11337 for (unsigned index = 0; index < NumVTs; index++) {
11338 ID.AddInteger(VTs[index].getRawBits());
11339 }
11340
11341 void *IP = nullptr;
11342 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11343 if (!Result) {
11344 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11345 llvm::copy(VTs, Array);
11346 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11347 VTListMap.InsertNode(Result, IP);
11348 }
11349 return Result->getSDVTList();
11350}
11351
11352
11353/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11354/// specified operands. If the resultant node already exists in the DAG,
11355/// this does not modify the specified node, instead it returns the node that
11356/// already exists. If the resultant node does not exist in the DAG, the
11357/// input node is returned. As a degenerate case, if you specify the same
11358/// input operands as the node already has, the input node is returned.
11360 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11361
11362 // Check to see if there is no change.
11363 if (Op == N->getOperand(0)) return N;
11364
11365 // See if the modified node already exists.
11366 void *InsertPos = nullptr;
11367 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11368 return Existing;
11369
11370 // Nope it doesn't. Remove the node from its current place in the maps.
11371 if (InsertPos)
11372 if (!RemoveNodeFromCSEMaps(N))
11373 InsertPos = nullptr;
11374
11375 // Now we update the operands.
11376 N->OperandList[0].set(Op);
11377
11379 // If this gets put into a CSE map, add it.
11380 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11381 return N;
11382}
11383
11385 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11386
11387 // Check to see if there is no change.
11388 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11389 return N; // No operands changed, just return the input node.
11390
11391 // See if the modified node already exists.
11392 void *InsertPos = nullptr;
11393 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11394 return Existing;
11395
11396 // Nope it doesn't. Remove the node from its current place in the maps.
11397 if (InsertPos)
11398 if (!RemoveNodeFromCSEMaps(N))
11399 InsertPos = nullptr;
11400
11401 // Now we update the operands.
11402 if (N->OperandList[0] != Op1)
11403 N->OperandList[0].set(Op1);
11404 if (N->OperandList[1] != Op2)
11405 N->OperandList[1].set(Op2);
11406
11408 // If this gets put into a CSE map, add it.
11409 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11410 return N;
11411}
11412
11415 SDValue Ops[] = { Op1, Op2, Op3 };
11416 return UpdateNodeOperands(N, Ops);
11417}
11418
11421 SDValue Op3, SDValue Op4) {
11422 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11423 return UpdateNodeOperands(N, Ops);
11424}
11425
11428 SDValue Op3, SDValue Op4, SDValue Op5) {
11429 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11430 return UpdateNodeOperands(N, Ops);
11431}
11432
11435 unsigned NumOps = Ops.size();
11436 assert(N->getNumOperands() == NumOps &&
11437 "Update with wrong number of operands");
11438
11439 // If no operands changed just return the input node.
11440 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11441 return N;
11442
11443 // See if the modified node already exists.
11444 void *InsertPos = nullptr;
11445 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11446 return Existing;
11447
11448 // Nope it doesn't. Remove the node from its current place in the maps.
11449 if (InsertPos)
11450 if (!RemoveNodeFromCSEMaps(N))
11451 InsertPos = nullptr;
11452
11453 // Now we update the operands.
11454 for (unsigned i = 0; i != NumOps; ++i)
11455 if (N->OperandList[i] != Ops[i])
11456 N->OperandList[i].set(Ops[i]);
11457
11459 // If this gets put into a CSE map, add it.
11460 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11461 return N;
11462}
11463
11464/// DropOperands - Release the operands and set this node to have
11465/// zero operands.
11467 // Unlike the code in MorphNodeTo that does this, we don't need to
11468 // watch for dead nodes here.
11469 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11470 SDUse &Use = *I++;
11471 Use.set(SDValue());
11472 }
11473}
11474
11476 ArrayRef<MachineMemOperand *> NewMemRefs) {
11477 if (NewMemRefs.empty()) {
11478 N->clearMemRefs();
11479 return;
11480 }
11481
11482 // Check if we can avoid allocating by storing a single reference directly.
11483 if (NewMemRefs.size() == 1) {
11484 N->MemRefs = NewMemRefs[0];
11485 N->NumMemRefs = 1;
11486 return;
11487 }
11488
11489 MachineMemOperand **MemRefsBuffer =
11490 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11491 llvm::copy(NewMemRefs, MemRefsBuffer);
11492 N->MemRefs = MemRefsBuffer;
11493 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11494}
11495
11496/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11497/// machine opcode.
11498///
11500 EVT VT) {
11501 SDVTList VTs = getVTList(VT);
11502 return SelectNodeTo(N, MachineOpc, VTs, {});
11503}
11504
11506 EVT VT, SDValue Op1) {
11507 SDVTList VTs = getVTList(VT);
11508 SDValue Ops[] = { Op1 };
11509 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11510}
11511
11513 EVT VT, SDValue Op1,
11514 SDValue Op2) {
11515 SDVTList VTs = getVTList(VT);
11516 SDValue Ops[] = { Op1, Op2 };
11517 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11518}
11519
11521 EVT VT, SDValue Op1,
11522 SDValue Op2, SDValue Op3) {
11523 SDVTList VTs = getVTList(VT);
11524 SDValue Ops[] = { Op1, Op2, Op3 };
11525 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11526}
11527
11530 SDVTList VTs = getVTList(VT);
11531 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11532}
11533
11535 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11536 SDVTList VTs = getVTList(VT1, VT2);
11537 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11538}
11539
11541 EVT VT1, EVT VT2) {
11542 SDVTList VTs = getVTList(VT1, VT2);
11543 return SelectNodeTo(N, MachineOpc, VTs, {});
11544}
11545
11547 EVT VT1, EVT VT2, EVT VT3,
11549 SDVTList VTs = getVTList(VT1, VT2, VT3);
11550 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11551}
11552
11554 EVT VT1, EVT VT2,
11555 SDValue Op1, SDValue Op2) {
11556 SDVTList VTs = getVTList(VT1, VT2);
11557 SDValue Ops[] = { Op1, Op2 };
11558 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11559}
11560
11563 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11564 // Reset the NodeID to -1.
11565 New->setNodeId(-1);
11566 if (New != N) {
11567 ReplaceAllUsesWith(N, New);
11569 }
11570 return New;
11571}
11572
11573/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11574/// the line number information on the merged node since it is not possible to
11575/// preserve the information that operation is associated with multiple lines.
11576/// This will make the debugger working better at -O0, were there is a higher
11577/// probability having other instructions associated with that line.
11578///
11579/// For IROrder, we keep the smaller of the two
11580SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11581 DebugLoc NLoc = N->getDebugLoc();
11582 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11583 N->setDebugLoc(DebugLoc());
11584 }
11585 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11586 N->setIROrder(Order);
11587 return N;
11588}
11589
11590/// MorphNodeTo - This *mutates* the specified node to have the specified
11591/// return type, opcode, and operands.
11592///
11593/// Note that MorphNodeTo returns the resultant node. If there is already a
11594/// node of the specified opcode and operands, it returns that node instead of
11595/// the current one. Note that the SDLoc need not be the same.
11596///
11597/// Using MorphNodeTo is faster than creating a new node and swapping it in
11598/// with ReplaceAllUsesWith both because it often avoids allocating a new
11599/// node, and because it doesn't require CSE recalculation for any of
11600/// the node's users.
11601///
11602/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11603/// As a consequence it isn't appropriate to use from within the DAG combiner or
11604/// the legalizer which maintain worklists that would need to be updated when
11605/// deleting things.
11608 // If an identical node already exists, use it.
11609 void *IP = nullptr;
11610 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11612 AddNodeIDNode(ID, Opc, VTs, Ops);
11613 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11614 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11615 }
11616
11617 if (!RemoveNodeFromCSEMaps(N))
11618 IP = nullptr;
11619
11620 // Start the morphing.
11621 N->NodeType = Opc;
11622 N->ValueList = VTs.VTs;
11623 N->NumValues = VTs.NumVTs;
11624
11625 // Clear the operands list, updating used nodes to remove this from their
11626 // use list. Keep track of any operands that become dead as a result.
11627 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11628 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11629 SDUse &Use = *I++;
11630 SDNode *Used = Use.getNode();
11631 Use.set(SDValue());
11632 if (Used->use_empty())
11633 DeadNodeSet.insert(Used);
11634 }
11635
11636 // For MachineNode, initialize the memory references information.
11638 MN->clearMemRefs();
11639
11640 // Swap for an appropriately sized array from the recycler.
11641 removeOperands(N);
11642 createOperands(N, Ops);
11643
11644 // Delete any nodes that are still dead after adding the uses for the
11645 // new operands.
11646 if (!DeadNodeSet.empty()) {
11647 SmallVector<SDNode *, 16> DeadNodes;
11648 for (SDNode *N : DeadNodeSet)
11649 if (N->use_empty())
11650 DeadNodes.push_back(N);
11651 RemoveDeadNodes(DeadNodes);
11652 }
11653
11654 if (IP)
11655 CSEMap.InsertNode(N, IP); // Memoize the new node.
11656 return N;
11657}
11658
11660 unsigned OrigOpc = Node->getOpcode();
11661 unsigned NewOpc;
11662 switch (OrigOpc) {
11663 default:
11664 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11665#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11666 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11667#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11668 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11669#include "llvm/IR/ConstrainedOps.def"
11670 }
11671
11672 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11673
11674 // We're taking this node out of the chain, so we need to re-link things.
11675 SDValue InputChain = Node->getOperand(0);
11676 SDValue OutputChain = SDValue(Node, 1);
11677 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11678
11680 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11681 Ops.push_back(Node->getOperand(i));
11682
11683 SDVTList VTs = getVTList(Node->getValueType(0));
11684 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11685
11686 // MorphNodeTo can operate in two ways: if an existing node with the
11687 // specified operands exists, it can just return it. Otherwise, it
11688 // updates the node in place to have the requested operands.
11689 if (Res == Node) {
11690 // If we updated the node in place, reset the node ID. To the isel,
11691 // this should be just like a newly allocated machine node.
11692 Res->setNodeId(-1);
11693 } else {
11696 }
11697
11698 return Res;
11699}
11700
11701/// getMachineNode - These are used for target selectors to create a new node
11702/// with specified return type(s), MachineInstr opcode, and operands.
11703///
11704/// Note that getMachineNode returns the resultant node. If there is already a
11705/// node of the specified opcode and operands, it returns that node instead of
11706/// the current one.
11708 EVT VT) {
11709 SDVTList VTs = getVTList(VT);
11710 return getMachineNode(Opcode, dl, VTs, {});
11711}
11712
11714 EVT VT, SDValue Op1) {
11715 SDVTList VTs = getVTList(VT);
11716 SDValue Ops[] = { Op1 };
11717 return getMachineNode(Opcode, dl, VTs, Ops);
11718}
11719
11721 EVT VT, SDValue Op1, SDValue Op2) {
11722 SDVTList VTs = getVTList(VT);
11723 SDValue Ops[] = { Op1, Op2 };
11724 return getMachineNode(Opcode, dl, VTs, Ops);
11725}
11726
11728 EVT VT, SDValue Op1, SDValue Op2,
11729 SDValue Op3) {
11730 SDVTList VTs = getVTList(VT);
11731 SDValue Ops[] = { Op1, Op2, Op3 };
11732 return getMachineNode(Opcode, dl, VTs, Ops);
11733}
11734
11737 SDVTList VTs = getVTList(VT);
11738 return getMachineNode(Opcode, dl, VTs, Ops);
11739}
11740
11742 EVT VT1, EVT VT2, SDValue Op1,
11743 SDValue Op2) {
11744 SDVTList VTs = getVTList(VT1, VT2);
11745 SDValue Ops[] = { Op1, Op2 };
11746 return getMachineNode(Opcode, dl, VTs, Ops);
11747}
11748
11750 EVT VT1, EVT VT2, SDValue Op1,
11751 SDValue Op2, SDValue Op3) {
11752 SDVTList VTs = getVTList(VT1, VT2);
11753 SDValue Ops[] = { Op1, Op2, Op3 };
11754 return getMachineNode(Opcode, dl, VTs, Ops);
11755}
11756
11758 EVT VT1, EVT VT2,
11760 SDVTList VTs = getVTList(VT1, VT2);
11761 return getMachineNode(Opcode, dl, VTs, Ops);
11762}
11763
11765 EVT VT1, EVT VT2, EVT VT3,
11766 SDValue Op1, SDValue Op2) {
11767 SDVTList VTs = getVTList(VT1, VT2, VT3);
11768 SDValue Ops[] = { Op1, Op2 };
11769 return getMachineNode(Opcode, dl, VTs, Ops);
11770}
11771
11773 EVT VT1, EVT VT2, EVT VT3,
11774 SDValue Op1, SDValue Op2,
11775 SDValue Op3) {
11776 SDVTList VTs = getVTList(VT1, VT2, VT3);
11777 SDValue Ops[] = { Op1, Op2, Op3 };
11778 return getMachineNode(Opcode, dl, VTs, Ops);
11779}
11780
11782 EVT VT1, EVT VT2, EVT VT3,
11784 SDVTList VTs = getVTList(VT1, VT2, VT3);
11785 return getMachineNode(Opcode, dl, VTs, Ops);
11786}
11787
11789 ArrayRef<EVT> ResultTys,
11791 SDVTList VTs = getVTList(ResultTys);
11792 return getMachineNode(Opcode, dl, VTs, Ops);
11793}
11794
11796 SDVTList VTs,
11798 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11800 void *IP = nullptr;
11801
11802 if (DoCSE) {
11804 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11805 IP = nullptr;
11806 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11807 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11808 }
11809 }
11810
11811 // Allocate a new MachineSDNode.
11812 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11813 createOperands(N, Ops);
11814
11815 if (DoCSE)
11816 CSEMap.InsertNode(N, IP);
11817
11818 InsertNode(N);
11819 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11820 return N;
11821}
11822
11823/// getTargetExtractSubreg - A convenience function for creating
11824/// TargetOpcode::EXTRACT_SUBREG nodes.
11826 SDValue Operand) {
11827 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11828 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11829 VT, Operand, SRIdxVal);
11830 return SDValue(Subreg, 0);
11831}
11832
11833/// getTargetInsertSubreg - A convenience function for creating
11834/// TargetOpcode::INSERT_SUBREG nodes.
11836 SDValue Operand, SDValue Subreg) {
11837 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11838 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11839 VT, Operand, Subreg, SRIdxVal);
11840 return SDValue(Result, 0);
11841}
11842
11843/// getNodeIfExists - Get the specified node if it's already available, or
11844/// else return NULL.
11847 SDNodeFlags Flags;
11848 if (Inserter)
11849 Flags = Inserter->getFlags();
11850 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11851}
11852
11855 const SDNodeFlags Flags) {
11856 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11858 AddNodeIDNode(ID, Opcode, VTList, Ops);
11859 void *IP = nullptr;
11860 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11861 E->intersectFlagsWith(Flags);
11862 return E;
11863 }
11864 }
11865 return nullptr;
11866}
11867
11868/// doesNodeExist - Check if a node exists without modifying its flags.
11869bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11871 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11873 AddNodeIDNode(ID, Opcode, VTList, Ops);
11874 void *IP = nullptr;
11875 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11876 return true;
11877 }
11878 return false;
11879}
11880
11881/// getDbgValue - Creates a SDDbgValue node.
11882///
11883/// SDNode
11885 SDNode *N, unsigned R, bool IsIndirect,
11886 const DebugLoc &DL, unsigned O) {
11887 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11888 "Expected inlined-at fields to agree");
11889 return new (DbgInfo->getAlloc())
11890 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11891 {}, IsIndirect, DL, O,
11892 /*IsVariadic=*/false);
11893}
11894
11895/// Constant
11897 DIExpression *Expr,
11898 const Value *C,
11899 const DebugLoc &DL, unsigned O) {
11900 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11901 "Expected inlined-at fields to agree");
11902 return new (DbgInfo->getAlloc())
11903 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11904 /*IsIndirect=*/false, DL, O,
11905 /*IsVariadic=*/false);
11906}
11907
11908/// FrameIndex
11910 DIExpression *Expr, unsigned FI,
11911 bool IsIndirect,
11912 const DebugLoc &DL,
11913 unsigned O) {
11914 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11915 "Expected inlined-at fields to agree");
11916 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11917}
11918
11919/// FrameIndex with dependencies
11921 DIExpression *Expr, unsigned FI,
11922 ArrayRef<SDNode *> Dependencies,
11923 bool IsIndirect,
11924 const DebugLoc &DL,
11925 unsigned O) {
11926 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11927 "Expected inlined-at fields to agree");
11928 return new (DbgInfo->getAlloc())
11929 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11930 Dependencies, IsIndirect, DL, O,
11931 /*IsVariadic=*/false);
11932}
11933
11934/// VReg
11936 Register VReg, bool IsIndirect,
11937 const DebugLoc &DL, unsigned O) {
11938 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11939 "Expected inlined-at fields to agree");
11940 return new (DbgInfo->getAlloc())
11941 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11942 {}, IsIndirect, DL, O,
11943 /*IsVariadic=*/false);
11944}
11945
11948 ArrayRef<SDNode *> Dependencies,
11949 bool IsIndirect, const DebugLoc &DL,
11950 unsigned O, bool IsVariadic) {
11951 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11952 "Expected inlined-at fields to agree");
11953 return new (DbgInfo->getAlloc())
11954 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11955 DL, O, IsVariadic);
11956}
11957
11959 unsigned OffsetInBits, unsigned SizeInBits,
11960 bool InvalidateDbg) {
11961 SDNode *FromNode = From.getNode();
11962 SDNode *ToNode = To.getNode();
11963 assert(FromNode && ToNode && "Can't modify dbg values");
11964
11965 // PR35338
11966 // TODO: assert(From != To && "Redundant dbg value transfer");
11967 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11968 if (From == To || FromNode == ToNode)
11969 return;
11970
11971 if (!FromNode->getHasDebugValue())
11972 return;
11973
11974 SDDbgOperand FromLocOp =
11975 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11977
11979 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11980 if (Dbg->isInvalidated())
11981 continue;
11982
11983 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11984
11985 // Create a new location ops vector that is equal to the old vector, but
11986 // with each instance of FromLocOp replaced with ToLocOp.
11987 bool Changed = false;
11988 auto NewLocOps = Dbg->copyLocationOps();
11989 std::replace_if(
11990 NewLocOps.begin(), NewLocOps.end(),
11991 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11992 bool Match = Op == FromLocOp;
11993 Changed |= Match;
11994 return Match;
11995 },
11996 ToLocOp);
11997 // Ignore this SDDbgValue if we didn't find a matching location.
11998 if (!Changed)
11999 continue;
12000
12001 DIVariable *Var = Dbg->getVariable();
12002 auto *Expr = Dbg->getExpression();
12003 // If a fragment is requested, update the expression.
12004 if (SizeInBits) {
12005 // When splitting a larger (e.g., sign-extended) value whose
12006 // lower bits are described with an SDDbgValue, do not attempt
12007 // to transfer the SDDbgValue to the upper bits.
12008 if (auto FI = Expr->getFragmentInfo())
12009 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12010 continue;
12011 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
12012 SizeInBits);
12013 if (!Fragment)
12014 continue;
12015 Expr = *Fragment;
12016 }
12017
12018 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12019 // Clone the SDDbgValue and move it to To.
12020 SDDbgValue *Clone = getDbgValueList(
12021 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12022 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
12023 Dbg->isVariadic());
12024 ClonedDVs.push_back(Clone);
12025
12026 if (InvalidateDbg) {
12027 // Invalidate value and indicate the SDDbgValue should not be emitted.
12028 Dbg->setIsInvalidated();
12029 Dbg->setIsEmitted();
12030 }
12031 }
12032
12033 for (SDDbgValue *Dbg : ClonedDVs) {
12034 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
12035 "Transferred DbgValues should depend on the new SDNode");
12036 AddDbgValue(Dbg, false);
12037 }
12038}
12039
12041 if (!N.getHasDebugValue())
12042 return;
12043
12044 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
12045 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12046 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12047 return SDDbgOperand::fromNode(Node, ResNo);
12048 };
12049
12051 for (auto *DV : GetDbgValues(&N)) {
12052 if (DV->isInvalidated())
12053 continue;
12054 switch (N.getOpcode()) {
12055 default:
12056 break;
12057 case ISD::ADD: {
12058 SDValue N0 = N.getOperand(0);
12059 SDValue N1 = N.getOperand(1);
12060 if (!isa<ConstantSDNode>(N0)) {
12061 bool RHSConstant = isa<ConstantSDNode>(N1);
12063 if (RHSConstant)
12064 Offset = N.getConstantOperandVal(1);
12065 // We are not allowed to turn indirect debug values variadic, so
12066 // don't salvage those.
12067 if (!RHSConstant && DV->isIndirect())
12068 continue;
12069
12070 // Rewrite an ADD constant node into a DIExpression. Since we are
12071 // performing arithmetic to compute the variable's *value* in the
12072 // DIExpression, we need to mark the expression with a
12073 // DW_OP_stack_value.
12074 auto *DIExpr = DV->getExpression();
12075 auto NewLocOps = DV->copyLocationOps();
12076 bool Changed = false;
12077 size_t OrigLocOpsSize = NewLocOps.size();
12078 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12079 // We're not given a ResNo to compare against because the whole
12080 // node is going away. We know that any ISD::ADD only has one
12081 // result, so we can assume any node match is using the result.
12082 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12083 NewLocOps[i].getSDNode() != &N)
12084 continue;
12085 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12086 if (RHSConstant) {
12089 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12090 } else {
12091 // Convert to a variadic expression (if not already).
12092 // convertToVariadicExpression() returns a const pointer, so we use
12093 // a temporary const variable here.
12094 const auto *TmpDIExpr =
12098 ExprOps.push_back(NewLocOps.size());
12099 ExprOps.push_back(dwarf::DW_OP_plus);
12100 SDDbgOperand RHS =
12102 NewLocOps.push_back(RHS);
12103 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12104 }
12105 Changed = true;
12106 }
12107 (void)Changed;
12108 assert(Changed && "Salvage target doesn't use N");
12109
12110 bool IsVariadic =
12111 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12112
12113 auto AdditionalDependencies = DV->getAdditionalDependencies();
12114 SDDbgValue *Clone = getDbgValueList(
12115 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12116 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12117 ClonedDVs.push_back(Clone);
12118 DV->setIsInvalidated();
12119 DV->setIsEmitted();
12120 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12121 N0.getNode()->dumprFull(this);
12122 dbgs() << " into " << *DIExpr << '\n');
12123 }
12124 break;
12125 }
12126 case ISD::TRUNCATE: {
12127 SDValue N0 = N.getOperand(0);
12128 TypeSize FromSize = N0.getValueSizeInBits();
12129 TypeSize ToSize = N.getValueSizeInBits(0);
12130
12131 DIExpression *DbgExpression = DV->getExpression();
12132 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12133 auto NewLocOps = DV->copyLocationOps();
12134 bool Changed = false;
12135 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12136 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12137 NewLocOps[i].getSDNode() != &N)
12138 continue;
12139
12140 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12141 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12142 Changed = true;
12143 }
12144 assert(Changed && "Salvage target doesn't use N");
12145 (void)Changed;
12146
12147 SDDbgValue *Clone =
12148 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12149 DV->getAdditionalDependencies(), DV->isIndirect(),
12150 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12151
12152 ClonedDVs.push_back(Clone);
12153 DV->setIsInvalidated();
12154 DV->setIsEmitted();
12155 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12156 dbgs() << " into " << *DbgExpression << '\n');
12157 break;
12158 }
12159 }
12160 }
12161
12162 for (SDDbgValue *Dbg : ClonedDVs) {
12163 assert((!Dbg->getSDNodes().empty() ||
12164 llvm::any_of(Dbg->getLocationOps(),
12165 [&](const SDDbgOperand &Op) {
12166 return Op.getKind() == SDDbgOperand::FRAMEIX;
12167 })) &&
12168 "Salvaged DbgValue should depend on a new SDNode");
12169 AddDbgValue(Dbg, false);
12170 }
12171}
12172
12173/// Creates a SDDbgLabel node.
12175 const DebugLoc &DL, unsigned O) {
12176 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12177 "Expected inlined-at fields to agree");
12178 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12179}
12180
12181namespace {
12182
12183/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12184/// pointed to by a use iterator is deleted, increment the use iterator
12185/// so that it doesn't dangle.
12186///
12187class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12190
12191 void NodeDeleted(SDNode *N, SDNode *E) override {
12192 // Increment the iterator as needed.
12193 while (UI != UE && N == UI->getUser())
12194 ++UI;
12195 }
12196
12197public:
12198 RAUWUpdateListener(SelectionDAG &d,
12201 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12202};
12203
12204} // end anonymous namespace
12205
12206/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12207/// This can cause recursive merging of nodes in the DAG.
12208///
12209/// This version assumes From has a single result value.
12210///
12212 SDNode *From = FromN.getNode();
12213 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12214 "Cannot replace with this method!");
12215 assert(From != To.getNode() && "Cannot replace uses of with self");
12216
12217 // Preserve Debug Values
12218 transferDbgValues(FromN, To);
12219 // Preserve extra info.
12220 copyExtraInfo(From, To.getNode());
12221
12222 // Iterate over all the existing uses of From. New uses will be added
12223 // to the beginning of the use list, which we avoid visiting.
12224 // This specifically avoids visiting uses of From that arise while the
12225 // replacement is happening, because any such uses would be the result
12226 // of CSE: If an existing node looks like From after one of its operands
12227 // is replaced by To, we don't want to replace of all its users with To
12228 // too. See PR3018 for more info.
12229 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12230 RAUWUpdateListener Listener(*this, UI, UE);
12231 while (UI != UE) {
12232 SDNode *User = UI->getUser();
12233
12234 // This node is about to morph, remove its old self from the CSE maps.
12235 RemoveNodeFromCSEMaps(User);
12236
12237 // A user can appear in a use list multiple times, and when this
12238 // happens the uses are usually next to each other in the list.
12239 // To help reduce the number of CSE recomputations, process all
12240 // the uses of this user that we can find this way.
12241 do {
12242 SDUse &Use = *UI;
12243 ++UI;
12244 Use.set(To);
12245 if (To->isDivergent() != From->isDivergent())
12247 } while (UI != UE && UI->getUser() == User);
12248 // Now that we have modified User, add it back to the CSE maps. If it
12249 // already exists there, recursively merge the results together.
12250 AddModifiedNodeToCSEMaps(User);
12251 }
12252
12253 // If we just RAUW'd the root, take note.
12254 if (FromN == getRoot())
12255 setRoot(To);
12256}
12257
12258/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12259/// This can cause recursive merging of nodes in the DAG.
12260///
12261/// This version assumes that for each value of From, there is a
12262/// corresponding value in To in the same position with the same type.
12263///
12265#ifndef NDEBUG
12266 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12267 assert((!From->hasAnyUseOfValue(i) ||
12268 From->getValueType(i) == To->getValueType(i)) &&
12269 "Cannot use this version of ReplaceAllUsesWith!");
12270#endif
12271
12272 // Handle the trivial case.
12273 if (From == To)
12274 return;
12275
12276 // Preserve Debug Info. Only do this if there's a use.
12277 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12278 if (From->hasAnyUseOfValue(i)) {
12279 assert((i < To->getNumValues()) && "Invalid To location");
12280 transferDbgValues(SDValue(From, i), SDValue(To, i));
12281 }
12282 // Preserve extra info.
12283 copyExtraInfo(From, To);
12284
12285 // Iterate over just the existing users of From. See the comments in
12286 // the ReplaceAllUsesWith above.
12287 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12288 RAUWUpdateListener Listener(*this, UI, UE);
12289 while (UI != UE) {
12290 SDNode *User = UI->getUser();
12291
12292 // This node is about to morph, remove its old self from the CSE maps.
12293 RemoveNodeFromCSEMaps(User);
12294
12295 // A user can appear in a use list multiple times, and when this
12296 // happens the uses are usually next to each other in the list.
12297 // To help reduce the number of CSE recomputations, process all
12298 // the uses of this user that we can find this way.
12299 do {
12300 SDUse &Use = *UI;
12301 ++UI;
12302 Use.setNode(To);
12303 if (To->isDivergent() != From->isDivergent())
12305 } while (UI != UE && UI->getUser() == User);
12306
12307 // Now that we have modified User, add it back to the CSE maps. If it
12308 // already exists there, recursively merge the results together.
12309 AddModifiedNodeToCSEMaps(User);
12310 }
12311
12312 // If we just RAUW'd the root, take note.
12313 if (From == getRoot().getNode())
12314 setRoot(SDValue(To, getRoot().getResNo()));
12315}
12316
12317/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12318/// This can cause recursive merging of nodes in the DAG.
12319///
12320/// This version can replace From with any result values. To must match the
12321/// number and types of values returned by From.
12323 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12324 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12325
12326 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12327 // Preserve Debug Info.
12328 transferDbgValues(SDValue(From, i), To[i]);
12329 // Preserve extra info.
12330 copyExtraInfo(From, To[i].getNode());
12331 }
12332
12333 // Iterate over just the existing users of From. See the comments in
12334 // the ReplaceAllUsesWith above.
12335 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12336 RAUWUpdateListener Listener(*this, UI, UE);
12337 while (UI != UE) {
12338 SDNode *User = UI->getUser();
12339
12340 // This node is about to morph, remove its old self from the CSE maps.
12341 RemoveNodeFromCSEMaps(User);
12342
12343 // A user can appear in a use list multiple times, and when this happens the
12344 // uses are usually next to each other in the list. To help reduce the
12345 // number of CSE and divergence recomputations, process all the uses of this
12346 // user that we can find this way.
12347 bool To_IsDivergent = false;
12348 do {
12349 SDUse &Use = *UI;
12350 const SDValue &ToOp = To[Use.getResNo()];
12351 ++UI;
12352 Use.set(ToOp);
12353 To_IsDivergent |= ToOp->isDivergent();
12354 } while (UI != UE && UI->getUser() == User);
12355
12356 if (To_IsDivergent != From->isDivergent())
12358
12359 // Now that we have modified User, add it back to the CSE maps. If it
12360 // already exists there, recursively merge the results together.
12361 AddModifiedNodeToCSEMaps(User);
12362 }
12363
12364 // If we just RAUW'd the root, take note.
12365 if (From == getRoot().getNode())
12366 setRoot(SDValue(To[getRoot().getResNo()]));
12367}
12368
12369/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12370/// uses of other values produced by From.getNode() alone. The Deleted
12371/// vector is handled the same way as for ReplaceAllUsesWith.
12373 // Handle the really simple, really trivial case efficiently.
12374 if (From == To) return;
12375
12376 // Handle the simple, trivial, case efficiently.
12377 if (From.getNode()->getNumValues() == 1) {
12378 ReplaceAllUsesWith(From, To);
12379 return;
12380 }
12381
12382 // Preserve Debug Info.
12383 transferDbgValues(From, To);
12384 copyExtraInfo(From.getNode(), To.getNode());
12385
12386 // Iterate over just the existing users of From. See the comments in
12387 // the ReplaceAllUsesWith above.
12388 SDNode::use_iterator UI = From.getNode()->use_begin(),
12389 UE = From.getNode()->use_end();
12390 RAUWUpdateListener Listener(*this, UI, UE);
12391 while (UI != UE) {
12392 SDNode *User = UI->getUser();
12393 bool UserRemovedFromCSEMaps = false;
12394
12395 // A user can appear in a use list multiple times, and when this
12396 // happens the uses are usually next to each other in the list.
12397 // To help reduce the number of CSE recomputations, process all
12398 // the uses of this user that we can find this way.
12399 do {
12400 SDUse &Use = *UI;
12401
12402 // Skip uses of different values from the same node.
12403 if (Use.getResNo() != From.getResNo()) {
12404 ++UI;
12405 continue;
12406 }
12407
12408 // If this node hasn't been modified yet, it's still in the CSE maps,
12409 // so remove its old self from the CSE maps.
12410 if (!UserRemovedFromCSEMaps) {
12411 RemoveNodeFromCSEMaps(User);
12412 UserRemovedFromCSEMaps = true;
12413 }
12414
12415 ++UI;
12416 Use.set(To);
12417 if (To->isDivergent() != From->isDivergent())
12419 } while (UI != UE && UI->getUser() == User);
12420 // We are iterating over all uses of the From node, so if a use
12421 // doesn't use the specific value, no changes are made.
12422 if (!UserRemovedFromCSEMaps)
12423 continue;
12424
12425 // Now that we have modified User, add it back to the CSE maps. If it
12426 // already exists there, recursively merge the results together.
12427 AddModifiedNodeToCSEMaps(User);
12428 }
12429
12430 // If we just RAUW'd the root, take note.
12431 if (From == getRoot())
12432 setRoot(To);
12433}
12434
12435namespace {
12436
12437/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12438/// to record information about a use.
12439struct UseMemo {
12440 SDNode *User;
12441 unsigned Index;
12442 SDUse *Use;
12443};
12444
12445/// operator< - Sort Memos by User.
12446bool operator<(const UseMemo &L, const UseMemo &R) {
12447 return (intptr_t)L.User < (intptr_t)R.User;
12448}
12449
12450/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12451/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12452/// the node already has been taken care of recursively.
12453class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12454 SmallVectorImpl<UseMemo> &Uses;
12455
12456 void NodeDeleted(SDNode *N, SDNode *E) override {
12457 for (UseMemo &Memo : Uses)
12458 if (Memo.User == N)
12459 Memo.User = nullptr;
12460 }
12461
12462public:
12463 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12464 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12465};
12466
12467} // end anonymous namespace
12468
12469/// Return true if a glue output should propagate divergence information.
12471 switch (Node->getOpcode()) {
12472 case ISD::CopyFromReg:
12473 case ISD::CopyToReg:
12474 return false;
12475 default:
12476 return true;
12477 }
12478
12479 llvm_unreachable("covered opcode switch");
12480}
12481
12483 if (TLI->isSDNodeAlwaysUniform(N)) {
12484 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12485 "Conflicting divergence information!");
12486 return false;
12487 }
12488 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12489 return true;
12490 for (const auto &Op : N->ops()) {
12491 EVT VT = Op.getValueType();
12492
12493 // Skip Chain. It does not carry divergence.
12494 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12495 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12496 return true;
12497 }
12498 return false;
12499}
12500
12502 SmallVector<SDNode *, 16> Worklist(1, N);
12503 do {
12504 N = Worklist.pop_back_val();
12505 bool IsDivergent = calculateDivergence(N);
12506 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12507 N->SDNodeBits.IsDivergent = IsDivergent;
12508 llvm::append_range(Worklist, N->users());
12509 }
12510 } while (!Worklist.empty());
12511}
12512
12513void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12515 Order.reserve(AllNodes.size());
12516 for (auto &N : allnodes()) {
12517 unsigned NOps = N.getNumOperands();
12518 Degree[&N] = NOps;
12519 if (0 == NOps)
12520 Order.push_back(&N);
12521 }
12522 for (size_t I = 0; I != Order.size(); ++I) {
12523 SDNode *N = Order[I];
12524 for (auto *U : N->users()) {
12525 unsigned &UnsortedOps = Degree[U];
12526 if (0 == --UnsortedOps)
12527 Order.push_back(U);
12528 }
12529 }
12530}
12531
12532#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12533void SelectionDAG::VerifyDAGDivergence() {
12534 std::vector<SDNode *> TopoOrder;
12535 CreateTopologicalOrder(TopoOrder);
12536 for (auto *N : TopoOrder) {
12537 assert(calculateDivergence(N) == N->isDivergent() &&
12538 "Divergence bit inconsistency detected");
12539 }
12540}
12541#endif
12542
12543/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12544/// uses of other values produced by From.getNode() alone. The same value
12545/// may appear in both the From and To list. The Deleted vector is
12546/// handled the same way as for ReplaceAllUsesWith.
12548 const SDValue *To,
12549 unsigned Num){
12550 // Handle the simple, trivial case efficiently.
12551 if (Num == 1)
12552 return ReplaceAllUsesOfValueWith(*From, *To);
12553
12554 transferDbgValues(*From, *To);
12555 copyExtraInfo(From->getNode(), To->getNode());
12556
12557 // Read up all the uses and make records of them. This helps
12558 // processing new uses that are introduced during the
12559 // replacement process.
12561 for (unsigned i = 0; i != Num; ++i) {
12562 unsigned FromResNo = From[i].getResNo();
12563 SDNode *FromNode = From[i].getNode();
12564 for (SDUse &Use : FromNode->uses()) {
12565 if (Use.getResNo() == FromResNo) {
12566 UseMemo Memo = {Use.getUser(), i, &Use};
12567 Uses.push_back(Memo);
12568 }
12569 }
12570 }
12571
12572 // Sort the uses, so that all the uses from a given User are together.
12574 RAUOVWUpdateListener Listener(*this, Uses);
12575
12576 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12577 UseIndex != UseIndexEnd; ) {
12578 // We know that this user uses some value of From. If it is the right
12579 // value, update it.
12580 SDNode *User = Uses[UseIndex].User;
12581 // If the node has been deleted by recursive CSE updates when updating
12582 // another node, then just skip this entry.
12583 if (User == nullptr) {
12584 ++UseIndex;
12585 continue;
12586 }
12587
12588 // This node is about to morph, remove its old self from the CSE maps.
12589 RemoveNodeFromCSEMaps(User);
12590
12591 // The Uses array is sorted, so all the uses for a given User
12592 // are next to each other in the list.
12593 // To help reduce the number of CSE recomputations, process all
12594 // the uses of this user that we can find this way.
12595 do {
12596 unsigned i = Uses[UseIndex].Index;
12597 SDUse &Use = *Uses[UseIndex].Use;
12598 ++UseIndex;
12599
12600 Use.set(To[i]);
12601 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12602
12603 // Now that we have modified User, add it back to the CSE maps. If it
12604 // already exists there, recursively merge the results together.
12605 AddModifiedNodeToCSEMaps(User);
12606 }
12607}
12608
12609/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12610/// based on their topological order. It returns the maximum id and a vector
12611/// of the SDNodes* in assigned order by reference.
12613 unsigned DAGSize = 0;
12614
12615 // SortedPos tracks the progress of the algorithm. Nodes before it are
12616 // sorted, nodes after it are unsorted. When the algorithm completes
12617 // it is at the end of the list.
12618 allnodes_iterator SortedPos = allnodes_begin();
12619
12620 // Visit all the nodes. Move nodes with no operands to the front of
12621 // the list immediately. Annotate nodes that do have operands with their
12622 // operand count. Before we do this, the Node Id fields of the nodes
12623 // may contain arbitrary values. After, the Node Id fields for nodes
12624 // before SortedPos will contain the topological sort index, and the
12625 // Node Id fields for nodes At SortedPos and after will contain the
12626 // count of outstanding operands.
12628 checkForCycles(&N, this);
12629 unsigned Degree = N.getNumOperands();
12630 if (Degree == 0) {
12631 // A node with no uses, add it to the result array immediately.
12632 N.setNodeId(DAGSize++);
12633 allnodes_iterator Q(&N);
12634 if (Q != SortedPos)
12635 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12636 assert(SortedPos != AllNodes.end() && "Overran node list");
12637 ++SortedPos;
12638 } else {
12639 // Temporarily use the Node Id as scratch space for the degree count.
12640 N.setNodeId(Degree);
12641 }
12642 }
12643
12644 // Visit all the nodes. As we iterate, move nodes into sorted order,
12645 // such that by the time the end is reached all nodes will be sorted.
12646 for (SDNode &Node : allnodes()) {
12647 SDNode *N = &Node;
12648 checkForCycles(N, this);
12649 // N is in sorted position, so all its uses have one less operand
12650 // that needs to be sorted.
12651 for (SDNode *P : N->users()) {
12652 unsigned Degree = P->getNodeId();
12653 assert(Degree != 0 && "Invalid node degree");
12654 --Degree;
12655 if (Degree == 0) {
12656 // All of P's operands are sorted, so P may sorted now.
12657 P->setNodeId(DAGSize++);
12658 if (P->getIterator() != SortedPos)
12659 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12660 assert(SortedPos != AllNodes.end() && "Overran node list");
12661 ++SortedPos;
12662 } else {
12663 // Update P's outstanding operand count.
12664 P->setNodeId(Degree);
12665 }
12666 }
12667 if (Node.getIterator() == SortedPos) {
12668#ifndef NDEBUG
12670 SDNode *S = &*++I;
12671 dbgs() << "Overran sorted position:\n";
12672 S->dumprFull(this); dbgs() << "\n";
12673 dbgs() << "Checking if this is due to cycles\n";
12674 checkForCycles(this, true);
12675#endif
12676 llvm_unreachable(nullptr);
12677 }
12678 }
12679
12680 assert(SortedPos == AllNodes.end() &&
12681 "Topological sort incomplete!");
12682 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12683 "First node in topological sort is not the entry token!");
12684 assert(AllNodes.front().getNodeId() == 0 &&
12685 "First node in topological sort has non-zero id!");
12686 assert(AllNodes.front().getNumOperands() == 0 &&
12687 "First node in topological sort has operands!");
12688 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12689 "Last node in topologic sort has unexpected id!");
12690 assert(AllNodes.back().use_empty() &&
12691 "Last node in topologic sort has users!");
12692 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12693 return DAGSize;
12694}
12695
12696/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12697/// value is produced by SD.
12698void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12699 for (SDNode *SD : DB->getSDNodes()) {
12700 if (!SD)
12701 continue;
12702 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12703 SD->setHasDebugValue(true);
12704 }
12705 DbgInfo->add(DB, isParameter);
12706}
12707
12708void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12709
12711 SDValue NewMemOpChain) {
12712 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12713 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12714 // The new memory operation must have the same position as the old load in
12715 // terms of memory dependency. Create a TokenFactor for the old load and new
12716 // memory operation and update uses of the old load's output chain to use that
12717 // TokenFactor.
12718 if (OldChain == NewMemOpChain || OldChain.use_empty())
12719 return NewMemOpChain;
12720
12721 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12722 OldChain, NewMemOpChain);
12723 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12724 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12725 return TokenFactor;
12726}
12727
12729 SDValue NewMemOp) {
12730 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12731 SDValue OldChain = SDValue(OldLoad, 1);
12732 SDValue NewMemOpChain = NewMemOp.getValue(1);
12733 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12734}
12735
12737 Function **OutFunction) {
12738 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12739
12740 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12741 auto *Module = MF->getFunction().getParent();
12742 auto *Function = Module->getFunction(Symbol);
12743
12744 if (OutFunction != nullptr)
12745 *OutFunction = Function;
12746
12747 if (Function != nullptr) {
12748 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12749 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12750 }
12751
12752 std::string ErrorStr;
12753 raw_string_ostream ErrorFormatter(ErrorStr);
12754 ErrorFormatter << "Undefined external symbol ";
12755 ErrorFormatter << '"' << Symbol << '"';
12756 report_fatal_error(Twine(ErrorStr));
12757}
12758
12759//===----------------------------------------------------------------------===//
12760// SDNode Class
12761//===----------------------------------------------------------------------===//
12762
12765 return Const != nullptr && Const->isZero();
12766}
12767
12769 return V.isUndef() || isNullConstant(V);
12770}
12771
12774 return Const != nullptr && Const->isZero() && !Const->isNegative();
12775}
12776
12779 return Const != nullptr && Const->isAllOnes();
12780}
12781
12784 return Const != nullptr && Const->isOne();
12785}
12786
12789 return Const != nullptr && Const->isMinSignedValue();
12790}
12791
12792bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12793 unsigned OperandNo) {
12794 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12795 // TODO: Target-specific opcodes could be added.
12796 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12797 /*AllowTruncation*/ true)) {
12798 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12799 switch (Opcode) {
12800 case ISD::ADD:
12801 case ISD::OR:
12802 case ISD::XOR:
12803 case ISD::UMAX:
12804 return Const.isZero();
12805 case ISD::MUL:
12806 return Const.isOne();
12807 case ISD::AND:
12808 case ISD::UMIN:
12809 return Const.isAllOnes();
12810 case ISD::SMAX:
12811 return Const.isMinSignedValue();
12812 case ISD::SMIN:
12813 return Const.isMaxSignedValue();
12814 case ISD::SUB:
12815 case ISD::SHL:
12816 case ISD::SRA:
12817 case ISD::SRL:
12818 return OperandNo == 1 && Const.isZero();
12819 case ISD::UDIV:
12820 case ISD::SDIV:
12821 return OperandNo == 1 && Const.isOne();
12822 }
12823 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12824 switch (Opcode) {
12825 case ISD::FADD:
12826 return ConstFP->isZero() &&
12827 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12828 case ISD::FSUB:
12829 return OperandNo == 1 && ConstFP->isZero() &&
12830 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12831 case ISD::FMUL:
12832 return ConstFP->isExactlyValue(1.0);
12833 case ISD::FDIV:
12834 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12835 case ISD::FMINNUM:
12836 case ISD::FMAXNUM: {
12837 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12838 EVT VT = V.getValueType();
12839 const fltSemantics &Semantics = VT.getFltSemantics();
12840 APFloat NeutralAF = !Flags.hasNoNaNs()
12841 ? APFloat::getQNaN(Semantics)
12842 : !Flags.hasNoInfs()
12843 ? APFloat::getInf(Semantics)
12844 : APFloat::getLargest(Semantics);
12845 if (Opcode == ISD::FMAXNUM)
12846 NeutralAF.changeSign();
12847
12848 return ConstFP->isExactlyValue(NeutralAF);
12849 }
12850 }
12851 }
12852 return false;
12853}
12854
12856 while (V.getOpcode() == ISD::BITCAST)
12857 V = V.getOperand(0);
12858 return V;
12859}
12860
12862 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12863 V = V.getOperand(0);
12864 return V;
12865}
12866
12868 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12869 V = V.getOperand(0);
12870 return V;
12871}
12872
12874 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12875 SDValue InVec = V.getOperand(0);
12876 SDValue EltNo = V.getOperand(2);
12877 EVT VT = InVec.getValueType();
12878 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12879 if (IndexC && VT.isFixedLengthVector() &&
12880 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12881 !DemandedElts[IndexC->getZExtValue()]) {
12882 V = InVec;
12883 continue;
12884 }
12885 break;
12886 }
12887 return V;
12888}
12889
12891 while (V.getOpcode() == ISD::TRUNCATE)
12892 V = V.getOperand(0);
12893 return V;
12894}
12895
12896bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12897 if (V.getOpcode() != ISD::XOR)
12898 return false;
12899 V = peekThroughBitcasts(V.getOperand(1));
12900 unsigned NumBits = V.getScalarValueSizeInBits();
12901 ConstantSDNode *C =
12902 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12903 return C && (C->getAPIntValue().countr_one() >= NumBits);
12904}
12905
12907 bool AllowTruncation) {
12908 EVT VT = N.getValueType();
12909 APInt DemandedElts = VT.isFixedLengthVector()
12911 : APInt(1, 1);
12912 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12913}
12914
12916 bool AllowUndefs,
12917 bool AllowTruncation) {
12919 return CN;
12920
12921 // SplatVectors can truncate their operands. Ignore that case here unless
12922 // AllowTruncation is set.
12923 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12924 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12925 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12926 EVT CVT = CN->getValueType(0);
12927 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12928 if (AllowTruncation || CVT == VecEltVT)
12929 return CN;
12930 }
12931 }
12932
12934 BitVector UndefElements;
12935 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12936
12937 // BuildVectors can truncate their operands. Ignore that case here unless
12938 // AllowTruncation is set.
12939 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12940 if (CN && (UndefElements.none() || AllowUndefs)) {
12941 EVT CVT = CN->getValueType(0);
12942 EVT NSVT = N.getValueType().getScalarType();
12943 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12944 if (AllowTruncation || (CVT == NSVT))
12945 return CN;
12946 }
12947 }
12948
12949 return nullptr;
12950}
12951
12953 EVT VT = N.getValueType();
12954 APInt DemandedElts = VT.isFixedLengthVector()
12956 : APInt(1, 1);
12957 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12958}
12959
12961 const APInt &DemandedElts,
12962 bool AllowUndefs) {
12964 return CN;
12965
12967 BitVector UndefElements;
12968 ConstantFPSDNode *CN =
12969 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12970 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12971 if (CN && (UndefElements.none() || AllowUndefs))
12972 return CN;
12973 }
12974
12975 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12976 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12977 return CN;
12978
12979 return nullptr;
12980}
12981
12982bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12983 // TODO: may want to use peekThroughBitcast() here.
12984 ConstantSDNode *C =
12985 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12986 return C && C->isZero();
12987}
12988
12989bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12990 ConstantSDNode *C =
12991 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12992 return C && C->isOne();
12993}
12994
12995bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12997 unsigned BitWidth = N.getScalarValueSizeInBits();
12998 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12999 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
13000}
13001
13002bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
13003 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13004 return C && APInt::isSameValue(C->getAPIntValue(),
13005 APInt(C->getAPIntValue().getBitWidth(), 1));
13006}
13007
13008bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
13010 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
13011 return C && C->isZero();
13012}
13013
13017
13018MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
13019 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
13020 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
13021 MemSDNodeBits.IsVolatile = MMO->isVolatile();
13022 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
13023 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
13024 MemSDNodeBits.IsInvariant = MMO->isInvariant();
13025
13026 // We check here that the size of the memory operand fits within the size of
13027 // the MMO. This is because the MMO might indicate only a possible address
13028 // range instead of specifying the affected memory addresses precisely.
13029 assert(
13030 (!MMO->getType().isValid() ||
13031 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
13032 "Size mismatch!");
13033}
13034
13035/// Profile - Gather unique data for the node.
13036///
13038 AddNodeIDNode(ID, this);
13039}
13040
13041namespace {
13042
13043 struct EVTArray {
13044 std::vector<EVT> VTs;
13045
13046 EVTArray() {
13047 VTs.reserve(MVT::VALUETYPE_SIZE);
13048 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13049 VTs.push_back(MVT((MVT::SimpleValueType)i));
13050 }
13051 };
13052
13053} // end anonymous namespace
13054
13055/// getValueTypeList - Return a pointer to the specified value type.
13056///
13057const EVT *SDNode::getValueTypeList(MVT VT) {
13058 static EVTArray SimpleVTArray;
13059
13060 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13061 return &SimpleVTArray.VTs[VT.SimpleTy];
13062}
13063
13064/// hasAnyUseOfValue - Return true if there are any use of the indicated
13065/// value. This method ignores uses of other values defined by this operation.
13066bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13067 assert(Value < getNumValues() && "Bad value!");
13068
13069 for (SDUse &U : uses())
13070 if (U.getResNo() == Value)
13071 return true;
13072
13073 return false;
13074}
13075
13076/// isOnlyUserOf - Return true if this node is the only use of N.
13077bool SDNode::isOnlyUserOf(const SDNode *N) const {
13078 bool Seen = false;
13079 for (const SDNode *User : N->users()) {
13080 if (User == this)
13081 Seen = true;
13082 else
13083 return false;
13084 }
13085
13086 return Seen;
13087}
13088
13089/// Return true if the only users of N are contained in Nodes.
13091 bool Seen = false;
13092 for (const SDNode *User : N->users()) {
13093 if (llvm::is_contained(Nodes, User))
13094 Seen = true;
13095 else
13096 return false;
13097 }
13098
13099 return Seen;
13100}
13101
13102/// Return true if the referenced return value is an operand of N.
13103bool SDValue::isOperandOf(const SDNode *N) const {
13104 return is_contained(N->op_values(), *this);
13105}
13106
13107bool SDNode::isOperandOf(const SDNode *N) const {
13108 return any_of(N->op_values(),
13109 [this](SDValue Op) { return this == Op.getNode(); });
13110}
13111
13112/// reachesChainWithoutSideEffects - Return true if this operand (which must
13113/// be a chain) reaches the specified operand without crossing any
13114/// side-effecting instructions on any chain path. In practice, this looks
13115/// through token factors and non-volatile loads. In order to remain efficient,
13116/// this only looks a couple of nodes in, it does not do an exhaustive search.
13117///
13118/// Note that we only need to examine chains when we're searching for
13119/// side-effects; SelectionDAG requires that all side-effects are represented
13120/// by chains, even if another operand would force a specific ordering. This
13121/// constraint is necessary to allow transformations like splitting loads.
13123 unsigned Depth) const {
13124 if (*this == Dest) return true;
13125
13126 // Don't search too deeply, we just want to be able to see through
13127 // TokenFactor's etc.
13128 if (Depth == 0) return false;
13129
13130 // If this is a token factor, all inputs to the TF happen in parallel.
13131 if (getOpcode() == ISD::TokenFactor) {
13132 // First, try a shallow search.
13133 if (is_contained((*this)->ops(), Dest)) {
13134 // We found the chain we want as an operand of this TokenFactor.
13135 // Essentially, we reach the chain without side-effects if we could
13136 // serialize the TokenFactor into a simple chain of operations with
13137 // Dest as the last operation. This is automatically true if the
13138 // chain has one use: there are no other ordering constraints.
13139 // If the chain has more than one use, we give up: some other
13140 // use of Dest might force a side-effect between Dest and the current
13141 // node.
13142 if (Dest.hasOneUse())
13143 return true;
13144 }
13145 // Next, try a deep search: check whether every operand of the TokenFactor
13146 // reaches Dest.
13147 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13148 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13149 });
13150 }
13151
13152 // Loads don't have side effects, look through them.
13153 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13154 if (Ld->isUnordered())
13155 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13156 }
13157 return false;
13158}
13159
13160bool SDNode::hasPredecessor(const SDNode *N) const {
13163 Worklist.push_back(this);
13164 return hasPredecessorHelper(N, Visited, Worklist);
13165}
13166
13168 this->Flags &= Flags;
13169}
13170
13171SDValue
13173 ArrayRef<ISD::NodeType> CandidateBinOps,
13174 bool AllowPartials) {
13175 // The pattern must end in an extract from index 0.
13176 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13177 !isNullConstant(Extract->getOperand(1)))
13178 return SDValue();
13179
13180 // Match against one of the candidate binary ops.
13181 SDValue Op = Extract->getOperand(0);
13182 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13183 return Op.getOpcode() == unsigned(BinOp);
13184 }))
13185 return SDValue();
13186
13187 // Floating-point reductions may require relaxed constraints on the final step
13188 // of the reduction because they may reorder intermediate operations.
13189 unsigned CandidateBinOp = Op.getOpcode();
13190 if (Op.getValueType().isFloatingPoint()) {
13191 SDNodeFlags Flags = Op->getFlags();
13192 switch (CandidateBinOp) {
13193 case ISD::FADD:
13194 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13195 return SDValue();
13196 break;
13197 default:
13198 llvm_unreachable("Unhandled FP opcode for binop reduction");
13199 }
13200 }
13201
13202 // Matching failed - attempt to see if we did enough stages that a partial
13203 // reduction from a subvector is possible.
13204 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13205 if (!AllowPartials || !Op)
13206 return SDValue();
13207 EVT OpVT = Op.getValueType();
13208 EVT OpSVT = OpVT.getScalarType();
13209 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13210 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13211 return SDValue();
13212 BinOp = (ISD::NodeType)CandidateBinOp;
13213 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13214 };
13215
13216 // At each stage, we're looking for something that looks like:
13217 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13218 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13219 // i32 undef, i32 undef, i32 undef, i32 undef>
13220 // %a = binop <8 x i32> %op, %s
13221 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13222 // we expect something like:
13223 // <4,5,6,7,u,u,u,u>
13224 // <2,3,u,u,u,u,u,u>
13225 // <1,u,u,u,u,u,u,u>
13226 // While a partial reduction match would be:
13227 // <2,3,u,u,u,u,u,u>
13228 // <1,u,u,u,u,u,u,u>
13229 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13230 SDValue PrevOp;
13231 for (unsigned i = 0; i < Stages; ++i) {
13232 unsigned MaskEnd = (1 << i);
13233
13234 if (Op.getOpcode() != CandidateBinOp)
13235 return PartialReduction(PrevOp, MaskEnd);
13236
13237 SDValue Op0 = Op.getOperand(0);
13238 SDValue Op1 = Op.getOperand(1);
13239
13241 if (Shuffle) {
13242 Op = Op1;
13243 } else {
13244 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13245 Op = Op0;
13246 }
13247
13248 // The first operand of the shuffle should be the same as the other operand
13249 // of the binop.
13250 if (!Shuffle || Shuffle->getOperand(0) != Op)
13251 return PartialReduction(PrevOp, MaskEnd);
13252
13253 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13254 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13255 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13256 return PartialReduction(PrevOp, MaskEnd);
13257
13258 PrevOp = Op;
13259 }
13260
13261 // Handle subvector reductions, which tend to appear after the shuffle
13262 // reduction stages.
13263 while (Op.getOpcode() == CandidateBinOp) {
13264 unsigned NumElts = Op.getValueType().getVectorNumElements();
13265 SDValue Op0 = Op.getOperand(0);
13266 SDValue Op1 = Op.getOperand(1);
13267 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13269 Op0.getOperand(0) != Op1.getOperand(0))
13270 break;
13271 SDValue Src = Op0.getOperand(0);
13272 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13273 if (NumSrcElts != (2 * NumElts))
13274 break;
13275 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13276 Op1.getConstantOperandAPInt(1) == NumElts) &&
13277 !(Op1.getConstantOperandAPInt(1) == 0 &&
13278 Op0.getConstantOperandAPInt(1) == NumElts))
13279 break;
13280 Op = Src;
13281 }
13282
13283 BinOp = (ISD::NodeType)CandidateBinOp;
13284 return Op;
13285}
13286
13288 EVT VT = N->getValueType(0);
13289 EVT EltVT = VT.getVectorElementType();
13290 unsigned NE = VT.getVectorNumElements();
13291
13292 SDLoc dl(N);
13293
13294 // If ResNE is 0, fully unroll the vector op.
13295 if (ResNE == 0)
13296 ResNE = NE;
13297 else if (NE > ResNE)
13298 NE = ResNE;
13299
13300 if (N->getNumValues() == 2) {
13301 SmallVector<SDValue, 8> Scalars0, Scalars1;
13302 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13303 EVT VT1 = N->getValueType(1);
13304 EVT EltVT1 = VT1.getVectorElementType();
13305
13306 unsigned i;
13307 for (i = 0; i != NE; ++i) {
13308 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13309 SDValue Operand = N->getOperand(j);
13310 EVT OperandVT = Operand.getValueType();
13311
13312 // A vector operand; extract a single element.
13313 EVT OperandEltVT = OperandVT.getVectorElementType();
13314 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13315 }
13316
13317 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13318 Scalars0.push_back(EltOp);
13319 Scalars1.push_back(EltOp.getValue(1));
13320 }
13321
13322 for (; i < ResNE; ++i) {
13323 Scalars0.push_back(getUNDEF(EltVT));
13324 Scalars1.push_back(getUNDEF(EltVT1));
13325 }
13326
13327 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13328 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13329 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13330 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13331 return getMergeValues({Vec0, Vec1}, dl);
13332 }
13333
13334 assert(N->getNumValues() == 1 &&
13335 "Can't unroll a vector with multiple results!");
13336
13338 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13339
13340 unsigned i;
13341 for (i= 0; i != NE; ++i) {
13342 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13343 SDValue Operand = N->getOperand(j);
13344 EVT OperandVT = Operand.getValueType();
13345 if (OperandVT.isVector()) {
13346 // A vector operand; extract a single element.
13347 EVT OperandEltVT = OperandVT.getVectorElementType();
13348 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13349 } else {
13350 // A scalar operand; just use it as is.
13351 Operands[j] = Operand;
13352 }
13353 }
13354
13355 switch (N->getOpcode()) {
13356 default: {
13357 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13358 N->getFlags()));
13359 break;
13360 }
13361 case ISD::VSELECT:
13362 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13363 break;
13364 case ISD::SHL:
13365 case ISD::SRA:
13366 case ISD::SRL:
13367 case ISD::ROTL:
13368 case ISD::ROTR:
13369 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13371 Operands[1])));
13372 break;
13374 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13375 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13376 Operands[0],
13377 getValueType(ExtVT)));
13378 break;
13379 }
13380 case ISD::ADDRSPACECAST: {
13381 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13382 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13383 ASC->getSrcAddressSpace(),
13384 ASC->getDestAddressSpace()));
13385 break;
13386 }
13387 }
13388 }
13389
13390 for (; i < ResNE; ++i)
13391 Scalars.push_back(getUNDEF(EltVT));
13392
13393 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13394 return getBuildVector(VecVT, dl, Scalars);
13395}
13396
13397std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13398 SDNode *N, unsigned ResNE) {
13399 unsigned Opcode = N->getOpcode();
13400 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13401 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13402 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13403 "Expected an overflow opcode");
13404
13405 EVT ResVT = N->getValueType(0);
13406 EVT OvVT = N->getValueType(1);
13407 EVT ResEltVT = ResVT.getVectorElementType();
13408 EVT OvEltVT = OvVT.getVectorElementType();
13409 SDLoc dl(N);
13410
13411 // If ResNE is 0, fully unroll the vector op.
13412 unsigned NE = ResVT.getVectorNumElements();
13413 if (ResNE == 0)
13414 ResNE = NE;
13415 else if (NE > ResNE)
13416 NE = ResNE;
13417
13418 SmallVector<SDValue, 8> LHSScalars;
13419 SmallVector<SDValue, 8> RHSScalars;
13420 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13421 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13422
13423 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13424 SDVTList VTs = getVTList(ResEltVT, SVT);
13425 SmallVector<SDValue, 8> ResScalars;
13426 SmallVector<SDValue, 8> OvScalars;
13427 for (unsigned i = 0; i < NE; ++i) {
13428 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13429 SDValue Ov =
13430 getSelect(dl, OvEltVT, Res.getValue(1),
13431 getBoolConstant(true, dl, OvEltVT, ResVT),
13432 getConstant(0, dl, OvEltVT));
13433
13434 ResScalars.push_back(Res);
13435 OvScalars.push_back(Ov);
13436 }
13437
13438 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13439 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13440
13441 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13442 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13443 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13444 getBuildVector(NewOvVT, dl, OvScalars));
13445}
13446
13449 unsigned Bytes,
13450 int Dist) const {
13451 if (LD->isVolatile() || Base->isVolatile())
13452 return false;
13453 // TODO: probably too restrictive for atomics, revisit
13454 if (!LD->isSimple())
13455 return false;
13456 if (LD->isIndexed() || Base->isIndexed())
13457 return false;
13458 if (LD->getChain() != Base->getChain())
13459 return false;
13460 EVT VT = LD->getMemoryVT();
13461 if (VT.getSizeInBits() / 8 != Bytes)
13462 return false;
13463
13464 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13465 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13466
13467 int64_t Offset = 0;
13468 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13469 return (Dist * (int64_t)Bytes == Offset);
13470 return false;
13471}
13472
13473/// InferPtrAlignment - Infer alignment of a load / store address. Return
13474/// std::nullopt if it cannot be inferred.
13476 // If this is a GlobalAddress + cst, return the alignment.
13477 const GlobalValue *GV = nullptr;
13478 int64_t GVOffset = 0;
13479 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13480 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13481 KnownBits Known(PtrWidth);
13483 unsigned AlignBits = Known.countMinTrailingZeros();
13484 if (AlignBits)
13485 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13486 }
13487
13488 // If this is a direct reference to a stack slot, use information about the
13489 // stack slot's alignment.
13490 int FrameIdx = INT_MIN;
13491 int64_t FrameOffset = 0;
13493 FrameIdx = FI->getIndex();
13494 } else if (isBaseWithConstantOffset(Ptr) &&
13495 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13496 // Handle FI+Cst
13497 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13498 FrameOffset = Ptr.getConstantOperandVal(1);
13499 }
13500
13501 if (FrameIdx != INT_MIN) {
13503 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13504 }
13505
13506 return std::nullopt;
13507}
13508
13509/// Split the scalar node with EXTRACT_ELEMENT using the provided
13510/// VTs and return the low/high part.
13511std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13512 const SDLoc &DL,
13513 const EVT &LoVT,
13514 const EVT &HiVT) {
13515 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13516 "Split node must be a scalar type");
13517 SDValue Lo =
13519 SDValue Hi =
13521 return std::make_pair(Lo, Hi);
13522}
13523
13524/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13525/// which is split (or expanded) into two not necessarily identical pieces.
13526std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13527 // Currently all types are split in half.
13528 EVT LoVT, HiVT;
13529 if (!VT.isVector())
13530 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13531 else
13532 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13533
13534 return std::make_pair(LoVT, HiVT);
13535}
13536
13537/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13538/// type, dependent on an enveloping VT that has been split into two identical
13539/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13540std::pair<EVT, EVT>
13542 bool *HiIsEmpty) const {
13543 EVT EltTp = VT.getVectorElementType();
13544 // Examples:
13545 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13546 // custom VL=9 with enveloping VL=8/8 yields 8/1
13547 // custom VL=10 with enveloping VL=8/8 yields 8/2
13548 // etc.
13549 ElementCount VTNumElts = VT.getVectorElementCount();
13550 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13551 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13552 "Mixing fixed width and scalable vectors when enveloping a type");
13553 EVT LoVT, HiVT;
13554 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13555 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13556 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13557 *HiIsEmpty = false;
13558 } else {
13559 // Flag that hi type has zero storage size, but return split envelop type
13560 // (this would be easier if vector types with zero elements were allowed).
13561 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13562 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13563 *HiIsEmpty = true;
13564 }
13565 return std::make_pair(LoVT, HiVT);
13566}
13567
13568/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13569/// low/high part.
13570std::pair<SDValue, SDValue>
13571SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13572 const EVT &HiVT) {
13573 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13574 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13575 "Splitting vector with an invalid mixture of fixed and scalable "
13576 "vector types");
13578 N.getValueType().getVectorMinNumElements() &&
13579 "More vector elements requested than available!");
13580 SDValue Lo, Hi;
13581 Lo = getExtractSubvector(DL, LoVT, N, 0);
13582 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13583 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13584 // IDX with the runtime scaling factor of the result vector type. For
13585 // fixed-width result vectors, that runtime scaling factor is 1.
13588 return std::make_pair(Lo, Hi);
13589}
13590
13591std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13592 const SDLoc &DL) {
13593 // Split the vector length parameter.
13594 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13595 EVT VT = N.getValueType();
13597 "Expecting the mask to be an evenly-sized vector");
13598 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13599 SDValue HalfNumElts =
13600 VecVT.isFixedLengthVector()
13601 ? getConstant(HalfMinNumElts, DL, VT)
13602 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13603 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13604 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13605 return std::make_pair(Lo, Hi);
13606}
13607
13608/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13610 EVT VT = N.getValueType();
13613 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13614}
13615
13618 unsigned Start, unsigned Count,
13619 EVT EltVT) {
13620 EVT VT = Op.getValueType();
13621 if (Count == 0)
13623 if (EltVT == EVT())
13624 EltVT = VT.getVectorElementType();
13625 SDLoc SL(Op);
13626 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13627 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13628 }
13629}
13630
13631// getAddressSpace - Return the address space this GlobalAddress belongs to.
13633 return getGlobal()->getType()->getAddressSpace();
13634}
13635
13638 return Val.MachineCPVal->getType();
13639 return Val.ConstVal->getType();
13640}
13641
13642bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13643 unsigned &SplatBitSize,
13644 bool &HasAnyUndefs,
13645 unsigned MinSplatBits,
13646 bool IsBigEndian) const {
13647 EVT VT = getValueType(0);
13648 assert(VT.isVector() && "Expected a vector type");
13649 unsigned VecWidth = VT.getSizeInBits();
13650 if (MinSplatBits > VecWidth)
13651 return false;
13652
13653 // FIXME: The widths are based on this node's type, but build vectors can
13654 // truncate their operands.
13655 SplatValue = APInt(VecWidth, 0);
13656 SplatUndef = APInt(VecWidth, 0);
13657
13658 // Get the bits. Bits with undefined values (when the corresponding element
13659 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13660 // in SplatValue. If any of the values are not constant, give up and return
13661 // false.
13662 unsigned int NumOps = getNumOperands();
13663 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13664 unsigned EltWidth = VT.getScalarSizeInBits();
13665
13666 for (unsigned j = 0; j < NumOps; ++j) {
13667 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13668 SDValue OpVal = getOperand(i);
13669 unsigned BitPos = j * EltWidth;
13670
13671 if (OpVal.isUndef())
13672 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13673 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13674 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13675 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13676 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13677 else
13678 return false;
13679 }
13680
13681 // The build_vector is all constants or undefs. Find the smallest element
13682 // size that splats the vector.
13683 HasAnyUndefs = (SplatUndef != 0);
13684
13685 // FIXME: This does not work for vectors with elements less than 8 bits.
13686 while (VecWidth > 8) {
13687 // If we can't split in half, stop here.
13688 if (VecWidth & 1)
13689 break;
13690
13691 unsigned HalfSize = VecWidth / 2;
13692 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13693 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13694 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13695 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13696
13697 // If the two halves do not match (ignoring undef bits), stop here.
13698 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13699 MinSplatBits > HalfSize)
13700 break;
13701
13702 SplatValue = HighValue | LowValue;
13703 SplatUndef = HighUndef & LowUndef;
13704
13705 VecWidth = HalfSize;
13706 }
13707
13708 // FIXME: The loop above only tries to split in halves. But if the input
13709 // vector for example is <3 x i16> it wouldn't be able to detect a
13710 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13711 // optimizations. I guess that back in the days when this helper was created
13712 // vectors normally was power-of-2 sized.
13713
13714 SplatBitSize = VecWidth;
13715 return true;
13716}
13717
13719 BitVector *UndefElements) const {
13720 unsigned NumOps = getNumOperands();
13721 if (UndefElements) {
13722 UndefElements->clear();
13723 UndefElements->resize(NumOps);
13724 }
13725 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13726 if (!DemandedElts)
13727 return SDValue();
13728 SDValue Splatted;
13729 for (unsigned i = 0; i != NumOps; ++i) {
13730 if (!DemandedElts[i])
13731 continue;
13732 SDValue Op = getOperand(i);
13733 if (Op.isUndef()) {
13734 if (UndefElements)
13735 (*UndefElements)[i] = true;
13736 } else if (!Splatted) {
13737 Splatted = Op;
13738 } else if (Splatted != Op) {
13739 return SDValue();
13740 }
13741 }
13742
13743 if (!Splatted) {
13744 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13745 assert(getOperand(FirstDemandedIdx).isUndef() &&
13746 "Can only have a splat without a constant for all undefs.");
13747 return getOperand(FirstDemandedIdx);
13748 }
13749
13750 return Splatted;
13751}
13752
13754 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13755 return getSplatValue(DemandedElts, UndefElements);
13756}
13757
13759 SmallVectorImpl<SDValue> &Sequence,
13760 BitVector *UndefElements) const {
13761 unsigned NumOps = getNumOperands();
13762 Sequence.clear();
13763 if (UndefElements) {
13764 UndefElements->clear();
13765 UndefElements->resize(NumOps);
13766 }
13767 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13768 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13769 return false;
13770
13771 // Set the undefs even if we don't find a sequence (like getSplatValue).
13772 if (UndefElements)
13773 for (unsigned I = 0; I != NumOps; ++I)
13774 if (DemandedElts[I] && getOperand(I).isUndef())
13775 (*UndefElements)[I] = true;
13776
13777 // Iteratively widen the sequence length looking for repetitions.
13778 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13779 Sequence.append(SeqLen, SDValue());
13780 for (unsigned I = 0; I != NumOps; ++I) {
13781 if (!DemandedElts[I])
13782 continue;
13783 SDValue &SeqOp = Sequence[I % SeqLen];
13785 if (Op.isUndef()) {
13786 if (!SeqOp)
13787 SeqOp = Op;
13788 continue;
13789 }
13790 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13791 Sequence.clear();
13792 break;
13793 }
13794 SeqOp = Op;
13795 }
13796 if (!Sequence.empty())
13797 return true;
13798 }
13799
13800 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13801 return false;
13802}
13803
13805 BitVector *UndefElements) const {
13806 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13807 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13808}
13809
13812 BitVector *UndefElements) const {
13814 getSplatValue(DemandedElts, UndefElements));
13815}
13816
13819 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13820}
13821
13824 BitVector *UndefElements) const {
13826 getSplatValue(DemandedElts, UndefElements));
13827}
13828
13833
13834int32_t
13836 uint32_t BitWidth) const {
13837 if (ConstantFPSDNode *CN =
13839 bool IsExact;
13840 APSInt IntVal(BitWidth);
13841 const APFloat &APF = CN->getValueAPF();
13842 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13843 APFloat::opOK ||
13844 !IsExact)
13845 return -1;
13846
13847 return IntVal.exactLogBase2();
13848 }
13849 return -1;
13850}
13851
13853 bool IsLittleEndian, unsigned DstEltSizeInBits,
13854 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13855 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13856 if (!isConstant())
13857 return false;
13858
13859 unsigned NumSrcOps = getNumOperands();
13860 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13861 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13862 "Invalid bitcast scale");
13863
13864 // Extract raw src bits.
13865 SmallVector<APInt> SrcBitElements(NumSrcOps,
13866 APInt::getZero(SrcEltSizeInBits));
13867 BitVector SrcUndeElements(NumSrcOps, false);
13868
13869 for (unsigned I = 0; I != NumSrcOps; ++I) {
13871 if (Op.isUndef()) {
13872 SrcUndeElements.set(I);
13873 continue;
13874 }
13875 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13876 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13877 assert((CInt || CFP) && "Unknown constant");
13878 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13879 : CFP->getValueAPF().bitcastToAPInt();
13880 }
13881
13882 // Recast to dst width.
13883 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13884 SrcBitElements, UndefElements, SrcUndeElements);
13885 return true;
13886}
13887
13888void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13889 unsigned DstEltSizeInBits,
13890 SmallVectorImpl<APInt> &DstBitElements,
13891 ArrayRef<APInt> SrcBitElements,
13892 BitVector &DstUndefElements,
13893 const BitVector &SrcUndefElements) {
13894 unsigned NumSrcOps = SrcBitElements.size();
13895 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13896 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13897 "Invalid bitcast scale");
13898 assert(NumSrcOps == SrcUndefElements.size() &&
13899 "Vector size mismatch");
13900
13901 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13902 DstUndefElements.clear();
13903 DstUndefElements.resize(NumDstOps, false);
13904 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13905
13906 // Concatenate src elements constant bits together into dst element.
13907 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13908 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13909 for (unsigned I = 0; I != NumDstOps; ++I) {
13910 DstUndefElements.set(I);
13911 APInt &DstBits = DstBitElements[I];
13912 for (unsigned J = 0; J != Scale; ++J) {
13913 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13914 if (SrcUndefElements[Idx])
13915 continue;
13916 DstUndefElements.reset(I);
13917 const APInt &SrcBits = SrcBitElements[Idx];
13918 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13919 "Illegal constant bitwidths");
13920 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13921 }
13922 }
13923 return;
13924 }
13925
13926 // Split src element constant bits into dst elements.
13927 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13928 for (unsigned I = 0; I != NumSrcOps; ++I) {
13929 if (SrcUndefElements[I]) {
13930 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13931 continue;
13932 }
13933 const APInt &SrcBits = SrcBitElements[I];
13934 for (unsigned J = 0; J != Scale; ++J) {
13935 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13936 APInt &DstBits = DstBitElements[Idx];
13937 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13938 }
13939 }
13940}
13941
13943 for (const SDValue &Op : op_values()) {
13944 unsigned Opc = Op.getOpcode();
13945 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13946 return false;
13947 }
13948 return true;
13949}
13950
13951std::optional<std::pair<APInt, APInt>>
13953 unsigned NumOps = getNumOperands();
13954 if (NumOps < 2)
13955 return std::nullopt;
13956
13959 return std::nullopt;
13960
13961 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13962 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13963 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13964
13965 if (Stride.isZero())
13966 return std::nullopt;
13967
13968 for (unsigned i = 2; i < NumOps; ++i) {
13970 return std::nullopt;
13971
13972 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13973 if (Val != (Start + (Stride * i)))
13974 return std::nullopt;
13975 }
13976
13977 return std::make_pair(Start, Stride);
13978}
13979
13981 // Find the first non-undef value in the shuffle mask.
13982 unsigned i, e;
13983 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13984 /* search */;
13985
13986 // If all elements are undefined, this shuffle can be considered a splat
13987 // (although it should eventually get simplified away completely).
13988 if (i == e)
13989 return true;
13990
13991 // Make sure all remaining elements are either undef or the same as the first
13992 // non-undef value.
13993 for (int Idx = Mask[i]; i != e; ++i)
13994 if (Mask[i] >= 0 && Mask[i] != Idx)
13995 return false;
13996 return true;
13997}
13998
13999// Returns true if it is a constant integer BuildVector or constant integer,
14000// possibly hidden by a bitcast.
14002 SDValue N, bool AllowOpaques) const {
14004
14005 if (auto *C = dyn_cast<ConstantSDNode>(N))
14006 return AllowOpaques || !C->isOpaque();
14007
14009 return true;
14010
14011 // Treat a GlobalAddress supporting constant offset folding as a
14012 // constant integer.
14013 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
14014 if (GA->getOpcode() == ISD::GlobalAddress &&
14015 TLI->isOffsetFoldingLegal(GA))
14016 return true;
14017
14018 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14019 isa<ConstantSDNode>(N.getOperand(0)))
14020 return true;
14021 return false;
14022}
14023
14024// Returns true if it is a constant float BuildVector or constant float.
14027 return true;
14028
14030 return true;
14031
14032 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14033 isa<ConstantFPSDNode>(N.getOperand(0)))
14034 return true;
14035
14036 return false;
14037}
14038
14039std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
14040 ConstantSDNode *Const =
14041 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
14042 if (!Const)
14043 return std::nullopt;
14044
14045 EVT VT = N->getValueType(0);
14046 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14047 switch (TLI->getBooleanContents(N.getValueType())) {
14049 if (CVal.isOne())
14050 return true;
14051 if (CVal.isZero())
14052 return false;
14053 return std::nullopt;
14055 if (CVal.isAllOnes())
14056 return true;
14057 if (CVal.isZero())
14058 return false;
14059 return std::nullopt;
14061 return CVal[0];
14062 }
14063 llvm_unreachable("Unknown BooleanContent enum");
14064}
14065
14066void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14067 assert(!Node->OperandList && "Node already has operands");
14069 "too many operands to fit into SDNode");
14070 SDUse *Ops = OperandRecycler.allocate(
14071 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14072
14073 bool IsDivergent = false;
14074 for (unsigned I = 0; I != Vals.size(); ++I) {
14075 Ops[I].setUser(Node);
14076 Ops[I].setInitial(Vals[I]);
14077 EVT VT = Ops[I].getValueType();
14078
14079 // Skip Chain. It does not carry divergence.
14080 if (VT != MVT::Other &&
14081 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14082 Ops[I].getNode()->isDivergent()) {
14083 IsDivergent = true;
14084 }
14085 }
14086 Node->NumOperands = Vals.size();
14087 Node->OperandList = Ops;
14088 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14089 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14090 Node->SDNodeBits.IsDivergent = IsDivergent;
14091 }
14092 checkForCycles(Node);
14093}
14094
14097 size_t Limit = SDNode::getMaxNumOperands();
14098 while (Vals.size() > Limit) {
14099 unsigned SliceIdx = Vals.size() - Limit;
14100 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14101 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14102 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14103 Vals.emplace_back(NewTF);
14104 }
14105 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14106}
14107
14109 EVT VT, SDNodeFlags Flags) {
14110 switch (Opcode) {
14111 default:
14112 return SDValue();
14113 case ISD::ADD:
14114 case ISD::OR:
14115 case ISD::XOR:
14116 case ISD::UMAX:
14117 return getConstant(0, DL, VT);
14118 case ISD::MUL:
14119 return getConstant(1, DL, VT);
14120 case ISD::AND:
14121 case ISD::UMIN:
14122 return getAllOnesConstant(DL, VT);
14123 case ISD::SMAX:
14125 case ISD::SMIN:
14127 case ISD::FADD:
14128 // If flags allow, prefer positive zero since it's generally cheaper
14129 // to materialize on most targets.
14130 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14131 case ISD::FMUL:
14132 return getConstantFP(1.0, DL, VT);
14133 case ISD::FMINNUM:
14134 case ISD::FMAXNUM: {
14135 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14136 const fltSemantics &Semantics = VT.getFltSemantics();
14137 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14138 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14139 APFloat::getLargest(Semantics);
14140 if (Opcode == ISD::FMAXNUM)
14141 NeutralAF.changeSign();
14142
14143 return getConstantFP(NeutralAF, DL, VT);
14144 }
14145 case ISD::FMINIMUM:
14146 case ISD::FMAXIMUM: {
14147 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14148 const fltSemantics &Semantics = VT.getFltSemantics();
14149 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14150 : APFloat::getLargest(Semantics);
14151 if (Opcode == ISD::FMAXIMUM)
14152 NeutralAF.changeSign();
14153
14154 return getConstantFP(NeutralAF, DL, VT);
14155 }
14156
14157 }
14158}
14159
14160/// Helper used to make a call to a library function that has one argument of
14161/// pointer type.
14162///
14163/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14164/// used to get or set floating-point state. They have one argument of pointer
14165/// type, which points to the memory region containing bits of the
14166/// floating-point state. The value returned by such function is ignored in the
14167/// created call.
14168///
14169/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14170/// \param Ptr Pointer used to save/load state.
14171/// \param InChain Ingoing token chain.
14172/// \returns Outgoing chain token.
14174 SDValue InChain,
14175 const SDLoc &DLoc) {
14176 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14178 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14179 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14180 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14181 TLI->getPointerTy(getDataLayout()));
14183 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14184 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14185 std::move(Args));
14186 return TLI->LowerCallTo(CLI).second;
14187}
14188
14190 assert(From && To && "Invalid SDNode; empty source SDValue?");
14191 auto I = SDEI.find(From);
14192 if (I == SDEI.end())
14193 return;
14194
14195 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14196 // the iterator, hence the need to make a copy to prevent a use-after-free.
14197 NodeExtraInfo NEI = I->second;
14198 if (LLVM_LIKELY(!NEI.PCSections)) {
14199 // No deep copy required for the types of extra info set.
14200 //
14201 // FIXME: Investigate if other types of extra info also need deep copy. This
14202 // depends on the types of nodes they can be attached to: if some extra info
14203 // is only ever attached to nodes where a replacement To node is always the
14204 // node where later use and propagation of the extra info has the intended
14205 // semantics, no deep copy is required.
14206 SDEI[To] = std::move(NEI);
14207 return;
14208 }
14209
14210 const SDNode *EntrySDN = getEntryNode().getNode();
14211
14212 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14213 // through the replacement of From with To. Otherwise, replacements of a node
14214 // (From) with more complex nodes (To and its operands) may result in lost
14215 // extra info where the root node (To) is insignificant in further propagating
14216 // and using extra info when further lowering to MIR.
14217 //
14218 // In the first step pre-populate the visited set with the nodes reachable
14219 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14220 // DAG that is not new and should be left untouched.
14221 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14222 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14223 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14224 if (MaxDepth == 0) {
14225 // Remember this node in case we need to increase MaxDepth and continue
14226 // populating FromReach from this node.
14227 Leafs.emplace_back(N);
14228 return;
14229 }
14230 if (!FromReach.insert(N).second)
14231 return;
14232 for (const SDValue &Op : N->op_values())
14233 Self(Self, Op.getNode(), MaxDepth - 1);
14234 };
14235
14236 // Copy extra info to To and all its transitive operands (that are new).
14238 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14239 if (FromReach.contains(N))
14240 return true;
14241 if (!Visited.insert(N).second)
14242 return true;
14243 if (EntrySDN == N)
14244 return false;
14245 for (const SDValue &Op : N->op_values()) {
14246 if (N == To && Op.getNode() == EntrySDN) {
14247 // Special case: New node's operand is the entry node; just need to
14248 // copy extra info to new node.
14249 break;
14250 }
14251 if (!Self(Self, Op.getNode()))
14252 return false;
14253 }
14254 // Copy only if entry node was not reached.
14255 SDEI[N] = NEI;
14256 return true;
14257 };
14258
14259 // We first try with a lower MaxDepth, assuming that the path to common
14260 // operands between From and To is relatively short. This significantly
14261 // improves performance in the common case. The initial MaxDepth is big
14262 // enough to avoid retry in the common case; the last MaxDepth is large
14263 // enough to avoid having to use the fallback below (and protects from
14264 // potential stack exhaustion from recursion).
14265 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14266 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14267 // StartFrom is the previous (or initial) set of leafs reachable at the
14268 // previous maximum depth.
14270 std::swap(StartFrom, Leafs);
14271 for (const SDNode *N : StartFrom)
14272 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14273 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14274 return;
14275 // This should happen very rarely (reached the entry node).
14276 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14277 assert(!Leafs.empty());
14278 }
14279
14280 // This should not happen - but if it did, that means the subgraph reachable
14281 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14282 // could not visit all reachable common operands. Consequently, we were able
14283 // to reach the entry node.
14284 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14285 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14286 // Best-effort fallback if assertions disabled.
14287 SDEI[To] = std::move(NEI);
14288}
14289
14290#ifndef NDEBUG
14291static void checkForCyclesHelper(const SDNode *N,
14294 const llvm::SelectionDAG *DAG) {
14295 // If this node has already been checked, don't check it again.
14296 if (Checked.count(N))
14297 return;
14298
14299 // If a node has already been visited on this depth-first walk, reject it as
14300 // a cycle.
14301 if (!Visited.insert(N).second) {
14302 errs() << "Detected cycle in SelectionDAG\n";
14303 dbgs() << "Offending node:\n";
14304 N->dumprFull(DAG); dbgs() << "\n";
14305 abort();
14306 }
14307
14308 for (const SDValue &Op : N->op_values())
14309 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14310
14311 Checked.insert(N);
14312 Visited.erase(N);
14313}
14314#endif
14315
14317 const llvm::SelectionDAG *DAG,
14318 bool force) {
14319#ifndef NDEBUG
14320 bool check = force;
14321#ifdef EXPENSIVE_CHECKS
14322 check = true;
14323#endif // EXPENSIVE_CHECKS
14324 if (check) {
14325 assert(N && "Checking nonexistent SDNode");
14328 checkForCyclesHelper(N, visited, checked, DAG);
14329 }
14330#endif // !NDEBUG
14331}
14332
14333void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14334 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14335}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:335
BitVector & set()
Definition BitVector.h:351
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:188
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:159
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:269
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1441
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetOptions Options
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:611
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
auto cast_or_null(const Y &Val)
Definition Casting.h:720
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1815
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:760
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:780
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:777
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:114
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)