LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.Zero.setAllBits(); Known.One.setAllBits();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_SHUFFLE: {
3484 assert(!Op.getValueType().isScalableVector());
3485 // Collect the known bits that are shared by every vector element referenced
3486 // by the shuffle.
3487 APInt DemandedLHS, DemandedRHS;
3489 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3490 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3491 DemandedLHS, DemandedRHS))
3492 break;
3493
3494 // Known bits are the values that are shared by every demanded element.
3495 Known.Zero.setAllBits(); Known.One.setAllBits();
3496 if (!!DemandedLHS) {
3497 SDValue LHS = Op.getOperand(0);
3498 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3499 Known = Known.intersectWith(Known2);
3500 }
3501 // If we don't know any bits, early out.
3502 if (Known.isUnknown())
3503 break;
3504 if (!!DemandedRHS) {
3505 SDValue RHS = Op.getOperand(1);
3506 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3507 Known = Known.intersectWith(Known2);
3508 }
3509 break;
3510 }
3511 case ISD::VSCALE: {
3513 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3514 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3515 break;
3516 }
3517 case ISD::CONCAT_VECTORS: {
3518 if (Op.getValueType().isScalableVector())
3519 break;
3520 // Split DemandedElts and test each of the demanded subvectors.
3521 Known.Zero.setAllBits(); Known.One.setAllBits();
3522 EVT SubVectorVT = Op.getOperand(0).getValueType();
3523 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3524 unsigned NumSubVectors = Op.getNumOperands();
3525 for (unsigned i = 0; i != NumSubVectors; ++i) {
3526 APInt DemandedSub =
3527 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3528 if (!!DemandedSub) {
3529 SDValue Sub = Op.getOperand(i);
3530 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3531 Known = Known.intersectWith(Known2);
3532 }
3533 // If we don't know any bits, early out.
3534 if (Known.isUnknown())
3535 break;
3536 }
3537 break;
3538 }
3539 case ISD::INSERT_SUBVECTOR: {
3540 if (Op.getValueType().isScalableVector())
3541 break;
3542 // Demand any elements from the subvector and the remainder from the src its
3543 // inserted into.
3544 SDValue Src = Op.getOperand(0);
3545 SDValue Sub = Op.getOperand(1);
3546 uint64_t Idx = Op.getConstantOperandVal(2);
3547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3549 APInt DemandedSrcElts = DemandedElts;
3550 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3551
3552 Known.One.setAllBits();
3553 Known.Zero.setAllBits();
3554 if (!!DemandedSubElts) {
3555 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3556 if (Known.isUnknown())
3557 break; // early-out.
3558 }
3559 if (!!DemandedSrcElts) {
3560 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3561 Known = Known.intersectWith(Known2);
3562 }
3563 break;
3564 }
3566 // Offset the demanded elts by the subvector index.
3567 SDValue Src = Op.getOperand(0);
3568 // Bail until we can represent demanded elements for scalable vectors.
3569 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3570 break;
3571 uint64_t Idx = Op.getConstantOperandVal(1);
3572 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3573 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3574 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3575 break;
3576 }
3577 case ISD::SCALAR_TO_VECTOR: {
3578 if (Op.getValueType().isScalableVector())
3579 break;
3580 // We know about scalar_to_vector as much as we know about it source,
3581 // which becomes the first element of otherwise unknown vector.
3582 if (DemandedElts != 1)
3583 break;
3584
3585 SDValue N0 = Op.getOperand(0);
3586 Known = computeKnownBits(N0, Depth + 1);
3587 if (N0.getValueSizeInBits() != BitWidth)
3588 Known = Known.trunc(BitWidth);
3589
3590 break;
3591 }
3592 case ISD::BITCAST: {
3593 if (Op.getValueType().isScalableVector())
3594 break;
3595
3596 SDValue N0 = Op.getOperand(0);
3597 EVT SubVT = N0.getValueType();
3598 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3599
3600 // Ignore bitcasts from unsupported types.
3601 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3602 break;
3603
3604 // Fast handling of 'identity' bitcasts.
3605 if (BitWidth == SubBitWidth) {
3606 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3607 break;
3608 }
3609
3610 bool IsLE = getDataLayout().isLittleEndian();
3611
3612 // Bitcast 'small element' vector to 'large element' scalar/vector.
3613 if ((BitWidth % SubBitWidth) == 0) {
3614 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3615
3616 // Collect known bits for the (larger) output by collecting the known
3617 // bits from each set of sub elements and shift these into place.
3618 // We need to separately call computeKnownBits for each set of
3619 // sub elements as the knownbits for each is likely to be different.
3620 unsigned SubScale = BitWidth / SubBitWidth;
3621 APInt SubDemandedElts(NumElts * SubScale, 0);
3622 for (unsigned i = 0; i != NumElts; ++i)
3623 if (DemandedElts[i])
3624 SubDemandedElts.setBit(i * SubScale);
3625
3626 for (unsigned i = 0; i != SubScale; ++i) {
3627 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3628 Depth + 1);
3629 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3630 Known.insertBits(Known2, SubBitWidth * Shifts);
3631 }
3632 }
3633
3634 // Bitcast 'large element' scalar/vector to 'small element' vector.
3635 if ((SubBitWidth % BitWidth) == 0) {
3636 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3637
3638 // Collect known bits for the (smaller) output by collecting the known
3639 // bits from the overlapping larger input elements and extracting the
3640 // sub sections we actually care about.
3641 unsigned SubScale = SubBitWidth / BitWidth;
3642 APInt SubDemandedElts =
3643 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3644 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3645
3646 Known.Zero.setAllBits(); Known.One.setAllBits();
3647 for (unsigned i = 0; i != NumElts; ++i)
3648 if (DemandedElts[i]) {
3649 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3650 unsigned Offset = (Shifts % SubScale) * BitWidth;
3651 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3652 // If we don't know any bits, early out.
3653 if (Known.isUnknown())
3654 break;
3655 }
3656 }
3657 break;
3658 }
3659 case ISD::AND:
3660 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662
3663 Known &= Known2;
3664 break;
3665 case ISD::OR:
3666 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3667 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3668
3669 Known |= Known2;
3670 break;
3671 case ISD::XOR:
3672 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3673 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3674
3675 Known ^= Known2;
3676 break;
3677 case ISD::MUL: {
3678 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3679 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3680 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3681 // TODO: SelfMultiply can be poison, but not undef.
3682 if (SelfMultiply)
3683 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3684 Op.getOperand(0), DemandedElts, false, Depth + 1);
3685 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3686
3687 // If the multiplication is known not to overflow, the product of a number
3688 // with itself is non-negative. Only do this if we didn't already computed
3689 // the opposite value for the sign bit.
3690 if (Op->getFlags().hasNoSignedWrap() &&
3691 Op.getOperand(0) == Op.getOperand(1) &&
3692 !Known.isNegative())
3693 Known.makeNonNegative();
3694 break;
3695 }
3696 case ISD::MULHU: {
3697 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3698 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3699 Known = KnownBits::mulhu(Known, Known2);
3700 break;
3701 }
3702 case ISD::MULHS: {
3703 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3704 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3705 Known = KnownBits::mulhs(Known, Known2);
3706 break;
3707 }
3708 case ISD::ABDU: {
3709 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3710 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711 Known = KnownBits::abdu(Known, Known2);
3712 break;
3713 }
3714 case ISD::ABDS: {
3715 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3716 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3717 Known = KnownBits::abds(Known, Known2);
3718 unsigned SignBits1 =
3719 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 if (SignBits1 == 1)
3721 break;
3722 unsigned SignBits0 =
3723 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3724 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3725 break;
3726 }
3727 case ISD::UMUL_LOHI: {
3728 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3729 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3731 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3732 if (Op.getResNo() == 0)
3733 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3734 else
3735 Known = KnownBits::mulhu(Known, Known2);
3736 break;
3737 }
3738 case ISD::SMUL_LOHI: {
3739 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3740 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3741 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3742 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3743 if (Op.getResNo() == 0)
3744 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3745 else
3746 Known = KnownBits::mulhs(Known, Known2);
3747 break;
3748 }
3749 case ISD::AVGFLOORU: {
3750 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3752 Known = KnownBits::avgFloorU(Known, Known2);
3753 break;
3754 }
3755 case ISD::AVGCEILU: {
3756 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3757 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3758 Known = KnownBits::avgCeilU(Known, Known2);
3759 break;
3760 }
3761 case ISD::AVGFLOORS: {
3762 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3763 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3764 Known = KnownBits::avgFloorS(Known, Known2);
3765 break;
3766 }
3767 case ISD::AVGCEILS: {
3768 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3769 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3770 Known = KnownBits::avgCeilS(Known, Known2);
3771 break;
3772 }
3773 case ISD::SELECT:
3774 case ISD::VSELECT:
3775 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3776 // If we don't know any bits, early out.
3777 if (Known.isUnknown())
3778 break;
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3780
3781 // Only known if known in both the LHS and RHS.
3782 Known = Known.intersectWith(Known2);
3783 break;
3784 case ISD::SELECT_CC:
3785 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SMULO:
3795 case ISD::UMULO:
3796 if (Op.getResNo() != 1)
3797 break;
3798 // The boolean result conforms to getBooleanContents.
3799 // If we know the result of a setcc has the top bits zero, use this info.
3800 // We know that we have an integer-based boolean since these operations
3801 // are only available for integer.
3802 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3804 BitWidth > 1)
3805 Known.Zero.setBitsFrom(1);
3806 break;
3807 case ISD::SETCC:
3808 case ISD::SETCCCARRY:
3809 case ISD::STRICT_FSETCC:
3810 case ISD::STRICT_FSETCCS: {
3811 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3812 // If we know the result of a setcc has the top bits zero, use this info.
3813 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3815 BitWidth > 1)
3816 Known.Zero.setBitsFrom(1);
3817 break;
3818 }
3819 case ISD::SHL: {
3820 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3822
3823 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3824 bool NSW = Op->getFlags().hasNoSignedWrap();
3825
3826 bool ShAmtNonZero = Known2.isNonZero();
3827
3828 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3829
3830 // Minimum shift low bits are known zero.
3831 if (std::optional<unsigned> ShMinAmt =
3832 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3833 Known.Zero.setLowBits(*ShMinAmt);
3834 break;
3835 }
3836 case ISD::SRL:
3837 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3838 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3839 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3840 Op->getFlags().hasExact());
3841
3842 // Minimum shift high bits are known zero.
3843 if (std::optional<unsigned> ShMinAmt =
3844 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3845 Known.Zero.setHighBits(*ShMinAmt);
3846 break;
3847 case ISD::SRA:
3848 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3849 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3851 Op->getFlags().hasExact());
3852 break;
3853 case ISD::ROTL:
3854 case ISD::ROTR:
3855 if (ConstantSDNode *C =
3856 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3857 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3858
3859 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3860
3861 // Canonicalize to ROTR.
3862 if (Opcode == ISD::ROTL && Amt != 0)
3863 Amt = BitWidth - Amt;
3864
3865 Known.Zero = Known.Zero.rotr(Amt);
3866 Known.One = Known.One.rotr(Amt);
3867 }
3868 break;
3869 case ISD::FSHL:
3870 case ISD::FSHR:
3871 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3872 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3873
3874 // For fshl, 0-shift returns the 1st arg.
3875 // For fshr, 0-shift returns the 2nd arg.
3876 if (Amt == 0) {
3877 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3878 DemandedElts, Depth + 1);
3879 break;
3880 }
3881
3882 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3883 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3884 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3885 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3886 if (Opcode == ISD::FSHL) {
3887 Known <<= Amt;
3888 Known2 >>= BitWidth - Amt;
3889 } else {
3890 Known <<= BitWidth - Amt;
3891 Known2 >>= Amt;
3892 }
3893 Known = Known.unionWith(Known2);
3894 }
3895 break;
3896 case ISD::SHL_PARTS:
3897 case ISD::SRA_PARTS:
3898 case ISD::SRL_PARTS: {
3899 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3900
3901 // Collect lo/hi source values and concatenate.
3902 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3903 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3904 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3905 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3906 Known = Known2.concat(Known);
3907
3908 // Collect shift amount.
3909 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3910
3911 if (Opcode == ISD::SHL_PARTS)
3912 Known = KnownBits::shl(Known, Known2);
3913 else if (Opcode == ISD::SRA_PARTS)
3914 Known = KnownBits::ashr(Known, Known2);
3915 else // if (Opcode == ISD::SRL_PARTS)
3916 Known = KnownBits::lshr(Known, Known2);
3917
3918 // TODO: Minimum shift low/high bits are known zero.
3919
3920 if (Op.getResNo() == 0)
3921 Known = Known.extractBits(LoBits, 0);
3922 else
3923 Known = Known.extractBits(HiBits, LoBits);
3924 break;
3925 }
3927 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3928 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3929 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3930 break;
3931 }
3932 case ISD::CTTZ:
3933 case ISD::CTTZ_ZERO_UNDEF: {
3934 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3935 // If we have a known 1, its position is our upper bound.
3936 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3937 unsigned LowBits = llvm::bit_width(PossibleTZ);
3938 Known.Zero.setBitsFrom(LowBits);
3939 break;
3940 }
3941 case ISD::CTLZ:
3942 case ISD::CTLZ_ZERO_UNDEF: {
3943 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3944 // If we have a known 1, its position is our upper bound.
3945 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3946 unsigned LowBits = llvm::bit_width(PossibleLZ);
3947 Known.Zero.setBitsFrom(LowBits);
3948 break;
3949 }
3950 case ISD::CTPOP: {
3951 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952 // If we know some of the bits are zero, they can't be one.
3953 unsigned PossibleOnes = Known2.countMaxPopulation();
3954 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3955 break;
3956 }
3957 case ISD::PARITY: {
3958 // Parity returns 0 everywhere but the LSB.
3959 Known.Zero.setBitsFrom(1);
3960 break;
3961 }
3962 case ISD::MGATHER:
3963 case ISD::MLOAD: {
3964 ISD::LoadExtType ETy =
3965 (Opcode == ISD::MGATHER)
3966 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3967 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3968 if (ETy == ISD::ZEXTLOAD) {
3969 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3970 KnownBits Known0(MemVT.getScalarSizeInBits());
3971 return Known0.zext(BitWidth);
3972 }
3973 break;
3974 }
3975 case ISD::LOAD: {
3977 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3978 if (ISD::isNON_EXTLoad(LD) && Cst) {
3979 // Determine any common known bits from the loaded constant pool value.
3980 Type *CstTy = Cst->getType();
3981 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3982 !Op.getValueType().isScalableVector()) {
3983 // If its a vector splat, then we can (quickly) reuse the scalar path.
3984 // NOTE: We assume all elements match and none are UNDEF.
3985 if (CstTy->isVectorTy()) {
3986 if (const Constant *Splat = Cst->getSplatValue()) {
3987 Cst = Splat;
3988 CstTy = Cst->getType();
3989 }
3990 }
3991 // TODO - do we need to handle different bitwidths?
3992 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3993 // Iterate across all vector elements finding common known bits.
3994 Known.One.setAllBits();
3995 Known.Zero.setAllBits();
3996 for (unsigned i = 0; i != NumElts; ++i) {
3997 if (!DemandedElts[i])
3998 continue;
3999 if (Constant *Elt = Cst->getAggregateElement(i)) {
4000 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4001 const APInt &Value = CInt->getValue();
4002 Known.One &= Value;
4003 Known.Zero &= ~Value;
4004 continue;
4005 }
4006 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4007 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4008 Known.One &= Value;
4009 Known.Zero &= ~Value;
4010 continue;
4011 }
4012 }
4013 Known.One.clearAllBits();
4014 Known.Zero.clearAllBits();
4015 break;
4016 }
4017 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4018 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4019 Known = KnownBits::makeConstant(CInt->getValue());
4020 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4021 Known =
4022 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4023 }
4024 }
4025 }
4026 } else if (Op.getResNo() == 0) {
4027 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4028 KnownBits KnownScalarMemory(ScalarMemorySize);
4029 if (const MDNode *MD = LD->getRanges())
4030 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4031
4032 // Extend the Known bits from memory to the size of the scalar result.
4033 if (ISD::isZEXTLoad(Op.getNode()))
4034 Known = KnownScalarMemory.zext(BitWidth);
4035 else if (ISD::isSEXTLoad(Op.getNode()))
4036 Known = KnownScalarMemory.sext(BitWidth);
4037 else if (ISD::isEXTLoad(Op.getNode()))
4038 Known = KnownScalarMemory.anyext(BitWidth);
4039 else
4040 Known = KnownScalarMemory;
4041 assert(Known.getBitWidth() == BitWidth);
4042 return Known;
4043 }
4044 break;
4045 }
4047 if (Op.getValueType().isScalableVector())
4048 break;
4049 EVT InVT = Op.getOperand(0).getValueType();
4050 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4051 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4052 Known = Known.zext(BitWidth);
4053 break;
4054 }
4055 case ISD::ZERO_EXTEND: {
4056 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4057 Known = Known.zext(BitWidth);
4058 break;
4059 }
4061 if (Op.getValueType().isScalableVector())
4062 break;
4063 EVT InVT = Op.getOperand(0).getValueType();
4064 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4065 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4066 // If the sign bit is known to be zero or one, then sext will extend
4067 // it to the top bits, else it will just zext.
4068 Known = Known.sext(BitWidth);
4069 break;
4070 }
4071 case ISD::SIGN_EXTEND: {
4072 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4073 // If the sign bit is known to be zero or one, then sext will extend
4074 // it to the top bits, else it will just zext.
4075 Known = Known.sext(BitWidth);
4076 break;
4077 }
4079 if (Op.getValueType().isScalableVector())
4080 break;
4081 EVT InVT = Op.getOperand(0).getValueType();
4082 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4083 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4084 Known = Known.anyext(BitWidth);
4085 break;
4086 }
4087 case ISD::ANY_EXTEND: {
4088 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4089 Known = Known.anyext(BitWidth);
4090 break;
4091 }
4092 case ISD::TRUNCATE: {
4093 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4094 Known = Known.trunc(BitWidth);
4095 break;
4096 }
4097 case ISD::AssertZext: {
4098 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4100 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4101 Known.Zero |= (~InMask);
4102 Known.One &= (~Known.Zero);
4103 break;
4104 }
4105 case ISD::AssertAlign: {
4106 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4107 assert(LogOfAlign != 0);
4108
4109 // TODO: Should use maximum with source
4110 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4111 // well as clearing one bits.
4112 Known.Zero.setLowBits(LogOfAlign);
4113 Known.One.clearLowBits(LogOfAlign);
4114 break;
4115 }
4116 case ISD::FGETSIGN:
4117 // All bits are zero except the low bit.
4118 Known.Zero.setBitsFrom(1);
4119 break;
4120 case ISD::ADD:
4121 case ISD::SUB: {
4122 SDNodeFlags Flags = Op.getNode()->getFlags();
4123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4124 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4126 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4127 Flags.hasNoUnsignedWrap(), Known, Known2);
4128 break;
4129 }
4130 case ISD::USUBO:
4131 case ISD::SSUBO:
4132 case ISD::USUBO_CARRY:
4133 case ISD::SSUBO_CARRY:
4134 if (Op.getResNo() == 1) {
4135 // If we know the result of a setcc has the top bits zero, use this info.
4136 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4138 BitWidth > 1)
4139 Known.Zero.setBitsFrom(1);
4140 break;
4141 }
4142 [[fallthrough]];
4143 case ISD::SUBC: {
4144 assert(Op.getResNo() == 0 &&
4145 "We only compute knownbits for the difference here.");
4146
4147 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4148 KnownBits Borrow(1);
4149 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4150 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4151 // Borrow has bit width 1
4152 Borrow = Borrow.trunc(1);
4153 } else {
4154 Borrow.setAllZero();
4155 }
4156
4157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4158 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4159 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4160 break;
4161 }
4162 case ISD::UADDO:
4163 case ISD::SADDO:
4164 case ISD::UADDO_CARRY:
4165 case ISD::SADDO_CARRY:
4166 if (Op.getResNo() == 1) {
4167 // If we know the result of a setcc has the top bits zero, use this info.
4168 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4170 BitWidth > 1)
4171 Known.Zero.setBitsFrom(1);
4172 break;
4173 }
4174 [[fallthrough]];
4175 case ISD::ADDC:
4176 case ISD::ADDE: {
4177 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4178
4179 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4180 KnownBits Carry(1);
4181 if (Opcode == ISD::ADDE)
4182 // Can't track carry from glue, set carry to unknown.
4183 Carry.resetAll();
4184 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4185 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4186 // Carry has bit width 1
4187 Carry = Carry.trunc(1);
4188 } else {
4189 Carry.setAllZero();
4190 }
4191
4192 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4193 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4194 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4195 break;
4196 }
4197 case ISD::UDIV: {
4198 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4199 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4200 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4201 break;
4202 }
4203 case ISD::SDIV: {
4204 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4205 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4206 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4207 break;
4208 }
4209 case ISD::SREM: {
4210 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4211 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4212 Known = KnownBits::srem(Known, Known2);
4213 break;
4214 }
4215 case ISD::UREM: {
4216 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4217 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4218 Known = KnownBits::urem(Known, Known2);
4219 break;
4220 }
4221 case ISD::EXTRACT_ELEMENT: {
4222 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4223 const unsigned Index = Op.getConstantOperandVal(1);
4224 const unsigned EltBitWidth = Op.getValueSizeInBits();
4225
4226 // Remove low part of known bits mask
4227 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4228 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4229
4230 // Remove high part of known bit mask
4231 Known = Known.trunc(EltBitWidth);
4232 break;
4233 }
4235 SDValue InVec = Op.getOperand(0);
4236 SDValue EltNo = Op.getOperand(1);
4237 EVT VecVT = InVec.getValueType();
4238 // computeKnownBits not yet implemented for scalable vectors.
4239 if (VecVT.isScalableVector())
4240 break;
4241 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4242 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4243
4244 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4245 // anything about the extended bits.
4246 if (BitWidth > EltBitWidth)
4247 Known = Known.trunc(EltBitWidth);
4248
4249 // If we know the element index, just demand that vector element, else for
4250 // an unknown element index, ignore DemandedElts and demand them all.
4251 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4252 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4253 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4254 DemandedSrcElts =
4255 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4256
4257 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4258 if (BitWidth > EltBitWidth)
4259 Known = Known.anyext(BitWidth);
4260 break;
4261 }
4263 if (Op.getValueType().isScalableVector())
4264 break;
4265
4266 // If we know the element index, split the demand between the
4267 // source vector and the inserted element, otherwise assume we need
4268 // the original demanded vector elements and the value.
4269 SDValue InVec = Op.getOperand(0);
4270 SDValue InVal = Op.getOperand(1);
4271 SDValue EltNo = Op.getOperand(2);
4272 bool DemandedVal = true;
4273 APInt DemandedVecElts = DemandedElts;
4274 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4275 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4276 unsigned EltIdx = CEltNo->getZExtValue();
4277 DemandedVal = !!DemandedElts[EltIdx];
4278 DemandedVecElts.clearBit(EltIdx);
4279 }
4280 Known.One.setAllBits();
4281 Known.Zero.setAllBits();
4282 if (DemandedVal) {
4283 Known2 = computeKnownBits(InVal, Depth + 1);
4284 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4285 }
4286 if (!!DemandedVecElts) {
4287 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4288 Known = Known.intersectWith(Known2);
4289 }
4290 break;
4291 }
4292 case ISD::BITREVERSE: {
4293 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4294 Known = Known2.reverseBits();
4295 break;
4296 }
4297 case ISD::BSWAP: {
4298 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4299 Known = Known2.byteSwap();
4300 break;
4301 }
4302 case ISD::ABS: {
4303 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4304 Known = Known2.abs();
4305 Known.Zero.setHighBits(
4306 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4307 break;
4308 }
4309 case ISD::USUBSAT: {
4310 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4311 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4312 Known = KnownBits::usub_sat(Known, Known2);
4313 break;
4314 }
4315 case ISD::UMIN: {
4316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4318 Known = KnownBits::umin(Known, Known2);
4319 break;
4320 }
4321 case ISD::UMAX: {
4322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4324 Known = KnownBits::umax(Known, Known2);
4325 break;
4326 }
4327 case ISD::SMIN:
4328 case ISD::SMAX: {
4329 // If we have a clamp pattern, we know that the number of sign bits will be
4330 // the minimum of the clamp min/max range.
4331 bool IsMax = (Opcode == ISD::SMAX);
4332 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4333 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4334 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4335 CstHigh =
4336 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4337 if (CstLow && CstHigh) {
4338 if (!IsMax)
4339 std::swap(CstLow, CstHigh);
4340
4341 const APInt &ValueLow = CstLow->getAPIntValue();
4342 const APInt &ValueHigh = CstHigh->getAPIntValue();
4343 if (ValueLow.sle(ValueHigh)) {
4344 unsigned LowSignBits = ValueLow.getNumSignBits();
4345 unsigned HighSignBits = ValueHigh.getNumSignBits();
4346 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4347 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4348 Known.One.setHighBits(MinSignBits);
4349 break;
4350 }
4351 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4352 Known.Zero.setHighBits(MinSignBits);
4353 break;
4354 }
4355 }
4356 }
4357
4358 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4359 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4360 if (IsMax)
4361 Known = KnownBits::smax(Known, Known2);
4362 else
4363 Known = KnownBits::smin(Known, Known2);
4364
4365 // For SMAX, if CstLow is non-negative we know the result will be
4366 // non-negative and thus all sign bits are 0.
4367 // TODO: There's an equivalent of this for smin with negative constant for
4368 // known ones.
4369 if (IsMax && CstLow) {
4370 const APInt &ValueLow = CstLow->getAPIntValue();
4371 if (ValueLow.isNonNegative()) {
4372 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4373 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4374 }
4375 }
4376
4377 break;
4378 }
4379 case ISD::UINT_TO_FP: {
4380 Known.makeNonNegative();
4381 break;
4382 }
4383 case ISD::SINT_TO_FP: {
4384 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4385 if (Known2.isNonNegative())
4386 Known.makeNonNegative();
4387 else if (Known2.isNegative())
4388 Known.makeNegative();
4389 break;
4390 }
4391 case ISD::FP_TO_UINT_SAT: {
4392 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4393 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4395 break;
4396 }
4397 case ISD::ATOMIC_LOAD: {
4398 // If we are looking at the loaded value.
4399 if (Op.getResNo() == 0) {
4400 auto *AT = cast<AtomicSDNode>(Op);
4401 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4402 KnownBits KnownScalarMemory(ScalarMemorySize);
4403 if (const MDNode *MD = AT->getRanges())
4404 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4405
4406 switch (AT->getExtensionType()) {
4407 case ISD::ZEXTLOAD:
4408 Known = KnownScalarMemory.zext(BitWidth);
4409 break;
4410 case ISD::SEXTLOAD:
4411 Known = KnownScalarMemory.sext(BitWidth);
4412 break;
4413 case ISD::EXTLOAD:
4414 switch (TLI->getExtendForAtomicOps()) {
4415 case ISD::ZERO_EXTEND:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SIGN_EXTEND:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 default:
4422 Known = KnownScalarMemory.anyext(BitWidth);
4423 break;
4424 }
4425 break;
4426 case ISD::NON_EXTLOAD:
4427 Known = KnownScalarMemory;
4428 break;
4429 }
4430 assert(Known.getBitWidth() == BitWidth);
4431 }
4432 break;
4433 }
4434 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4435 if (Op.getResNo() == 1) {
4436 // The boolean result conforms to getBooleanContents.
4437 // If we know the result of a setcc has the top bits zero, use this info.
4438 // We know that we have an integer-based boolean since these operations
4439 // are only available for integer.
4440 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4442 BitWidth > 1)
4443 Known.Zero.setBitsFrom(1);
4444 break;
4445 }
4446 [[fallthrough]];
4447 case ISD::ATOMIC_CMP_SWAP:
4448 case ISD::ATOMIC_SWAP:
4449 case ISD::ATOMIC_LOAD_ADD:
4450 case ISD::ATOMIC_LOAD_SUB:
4451 case ISD::ATOMIC_LOAD_AND:
4452 case ISD::ATOMIC_LOAD_CLR:
4453 case ISD::ATOMIC_LOAD_OR:
4454 case ISD::ATOMIC_LOAD_XOR:
4455 case ISD::ATOMIC_LOAD_NAND:
4456 case ISD::ATOMIC_LOAD_MIN:
4457 case ISD::ATOMIC_LOAD_MAX:
4458 case ISD::ATOMIC_LOAD_UMIN:
4459 case ISD::ATOMIC_LOAD_UMAX: {
4460 // If we are looking at the loaded value.
4461 if (Op.getResNo() == 0) {
4462 auto *AT = cast<AtomicSDNode>(Op);
4463 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4464
4465 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4466 Known.Zero.setBitsFrom(MemBits);
4467 }
4468 break;
4469 }
4470 case ISD::FrameIndex:
4472 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4473 Known, getMachineFunction());
4474 break;
4475
4476 default:
4477 if (Opcode < ISD::BUILTIN_OP_END)
4478 break;
4479 [[fallthrough]];
4483 // TODO: Probably okay to remove after audit; here to reduce change size
4484 // in initial enablement patch for scalable vectors
4485 if (Op.getValueType().isScalableVector())
4486 break;
4487
4488 // Allow the target to implement this method for its nodes.
4489 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4490 break;
4491 }
4492
4493 return Known;
4494}
4495
4496/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4509
4512 // X + 0 never overflow
4513 if (isNullConstant(N1))
4514 return OFK_Never;
4515
4516 // If both operands each have at least two sign bits, the addition
4517 // cannot overflow.
4518 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4519 return OFK_Never;
4520
4521 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4522 return OFK_Sometime;
4523}
4524
4527 // X + 0 never overflow
4528 if (isNullConstant(N1))
4529 return OFK_Never;
4530
4531 // mulhi + 1 never overflow
4532 KnownBits N1Known = computeKnownBits(N1);
4533 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4534 N1Known.getMaxValue().ult(2))
4535 return OFK_Never;
4536
4537 KnownBits N0Known = computeKnownBits(N0);
4538 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4539 N0Known.getMaxValue().ult(2))
4540 return OFK_Never;
4541
4542 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4543 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4544 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4545 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4546}
4547
4550 // X - 0 never overflow
4551 if (isNullConstant(N1))
4552 return OFK_Never;
4553
4554 // If both operands each have at least two sign bits, the subtraction
4555 // cannot overflow.
4556 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4557 return OFK_Never;
4558
4559 KnownBits N0Known = computeKnownBits(N0);
4560 KnownBits N1Known = computeKnownBits(N1);
4561 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4562 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4563 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4564}
4565
4568 // X - 0 never overflow
4569 if (isNullConstant(N1))
4570 return OFK_Never;
4571
4572 KnownBits N0Known = computeKnownBits(N0);
4573 KnownBits N1Known = computeKnownBits(N1);
4574 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4575 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4576 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4577}
4578
4581 // X * 0 and X * 1 never overflow.
4582 if (isNullConstant(N1) || isOneConstant(N1))
4583 return OFK_Never;
4584
4585 KnownBits N0Known = computeKnownBits(N0);
4586 KnownBits N1Known = computeKnownBits(N1);
4587 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4588 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4589 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4590}
4591
4594 // X * 0 and X * 1 never overflow.
4595 if (isNullConstant(N1) || isOneConstant(N1))
4596 return OFK_Never;
4597
4598 // Get the size of the result.
4599 unsigned BitWidth = N0.getScalarValueSizeInBits();
4600
4601 // Sum of the sign bits.
4602 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4603
4604 // If we have enough sign bits, then there's no overflow.
4605 if (SignBits > BitWidth + 1)
4606 return OFK_Never;
4607
4608 if (SignBits == BitWidth + 1) {
4609 // The overflow occurs when the true multiplication of the
4610 // the operands is the minimum negative number.
4611 KnownBits N0Known = computeKnownBits(N0);
4612 KnownBits N1Known = computeKnownBits(N1);
4613 // If one of the operands is non-negative, then there's no
4614 // overflow.
4615 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4616 return OFK_Never;
4617 }
4618
4619 return OFK_Sometime;
4620}
4621
4623 if (Depth >= MaxRecursionDepth)
4624 return false; // Limit search depth.
4625
4626 EVT OpVT = Val.getValueType();
4627 unsigned BitWidth = OpVT.getScalarSizeInBits();
4628
4629 // Is the constant a known power of 2?
4631 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4632 }))
4633 return true;
4634
4635 // A left-shift of a constant one will have exactly one bit set because
4636 // shifting the bit off the end is undefined.
4637 if (Val.getOpcode() == ISD::SHL) {
4638 auto *C = isConstOrConstSplat(Val.getOperand(0));
4639 if (C && C->getAPIntValue() == 1)
4640 return true;
4641 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4642 isKnownNeverZero(Val, Depth);
4643 }
4644
4645 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4646 // one bit set.
4647 if (Val.getOpcode() == ISD::SRL) {
4648 auto *C = isConstOrConstSplat(Val.getOperand(0));
4649 if (C && C->getAPIntValue().isSignMask())
4650 return true;
4651 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4652 isKnownNeverZero(Val, Depth);
4653 }
4654
4655 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4656 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4657
4658 // Are all operands of a build vector constant powers of two?
4659 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4660 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4661 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4662 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4663 return false;
4664 }))
4665 return true;
4666
4667 // Is the operand of a splat vector a constant power of two?
4668 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4670 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4671 return true;
4672
4673 // vscale(power-of-two) is a power-of-two for some targets
4674 if (Val.getOpcode() == ISD::VSCALE &&
4675 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4677 return true;
4678
4679 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4680 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4681 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4683
4684 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4685 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4687
4688 // Looking for `x & -x` pattern:
4689 // If x == 0:
4690 // x & -x -> 0
4691 // If x != 0:
4692 // x & -x -> non-zero pow2
4693 // so if we find the pattern return whether we know `x` is non-zero.
4694 SDValue X;
4695 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4696 return isKnownNeverZero(X, Depth);
4697
4698 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4699 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4700
4701 // More could be done here, though the above checks are enough
4702 // to handle some common cases.
4703 return false;
4704}
4705
4707 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4708 return C1->getValueAPF().getExactLog2Abs() >= 0;
4709
4710 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4711 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4712
4713 return false;
4714}
4715
4717 EVT VT = Op.getValueType();
4718
4719 // Since the number of lanes in a scalable vector is unknown at compile time,
4720 // we track one bit which is implicitly broadcast to all lanes. This means
4721 // that all lanes in a scalable vector are considered demanded.
4722 APInt DemandedElts = VT.isFixedLengthVector()
4724 : APInt(1, 1);
4725 return ComputeNumSignBits(Op, DemandedElts, Depth);
4726}
4727
4728unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4729 unsigned Depth) const {
4730 EVT VT = Op.getValueType();
4731 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4732 unsigned VTBits = VT.getScalarSizeInBits();
4733 unsigned NumElts = DemandedElts.getBitWidth();
4734 unsigned Tmp, Tmp2;
4735 unsigned FirstAnswer = 1;
4736
4737 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4738 const APInt &Val = C->getAPIntValue();
4739 return Val.getNumSignBits();
4740 }
4741
4742 if (Depth >= MaxRecursionDepth)
4743 return 1; // Limit search depth.
4744
4745 if (!DemandedElts)
4746 return 1; // No demanded elts, better to assume we don't know anything.
4747
4748 unsigned Opcode = Op.getOpcode();
4749 switch (Opcode) {
4750 default: break;
4751 case ISD::AssertSext:
4752 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4753 return VTBits-Tmp+1;
4754 case ISD::AssertZext:
4755 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4756 return VTBits-Tmp;
4757 case ISD::MERGE_VALUES:
4758 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4759 Depth + 1);
4760 case ISD::SPLAT_VECTOR: {
4761 // Check if the sign bits of source go down as far as the truncated value.
4762 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4763 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4764 if (NumSrcSignBits > (NumSrcBits - VTBits))
4765 return NumSrcSignBits - (NumSrcBits - VTBits);
4766 break;
4767 }
4768 case ISD::BUILD_VECTOR:
4769 assert(!VT.isScalableVector());
4770 Tmp = VTBits;
4771 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4772 if (!DemandedElts[i])
4773 continue;
4774
4775 SDValue SrcOp = Op.getOperand(i);
4776 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4777 // for constant nodes to ensure we only look at the sign bits.
4779 APInt T = C->getAPIntValue().trunc(VTBits);
4780 Tmp2 = T.getNumSignBits();
4781 } else {
4782 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4783
4784 if (SrcOp.getValueSizeInBits() != VTBits) {
4785 assert(SrcOp.getValueSizeInBits() > VTBits &&
4786 "Expected BUILD_VECTOR implicit truncation");
4787 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4788 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4789 }
4790 }
4791 Tmp = std::min(Tmp, Tmp2);
4792 }
4793 return Tmp;
4794
4795 case ISD::VECTOR_SHUFFLE: {
4796 // Collect the minimum number of sign bits that are shared by every vector
4797 // element referenced by the shuffle.
4798 APInt DemandedLHS, DemandedRHS;
4800 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4801 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4802 DemandedLHS, DemandedRHS))
4803 return 1;
4804
4805 Tmp = std::numeric_limits<unsigned>::max();
4806 if (!!DemandedLHS)
4807 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4808 if (!!DemandedRHS) {
4809 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4810 Tmp = std::min(Tmp, Tmp2);
4811 }
4812 // If we don't know anything, early out and try computeKnownBits fall-back.
4813 if (Tmp == 1)
4814 break;
4815 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4816 return Tmp;
4817 }
4818
4819 case ISD::BITCAST: {
4820 if (VT.isScalableVector())
4821 break;
4822 SDValue N0 = Op.getOperand(0);
4823 EVT SrcVT = N0.getValueType();
4824 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4825
4826 // Ignore bitcasts from unsupported types..
4827 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4828 break;
4829
4830 // Fast handling of 'identity' bitcasts.
4831 if (VTBits == SrcBits)
4832 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4833
4834 bool IsLE = getDataLayout().isLittleEndian();
4835
4836 // Bitcast 'large element' scalar/vector to 'small element' vector.
4837 if ((SrcBits % VTBits) == 0) {
4838 assert(VT.isVector() && "Expected bitcast to vector");
4839
4840 unsigned Scale = SrcBits / VTBits;
4841 APInt SrcDemandedElts =
4842 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4843
4844 // Fast case - sign splat can be simply split across the small elements.
4845 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4846 if (Tmp == SrcBits)
4847 return VTBits;
4848
4849 // Slow case - determine how far the sign extends into each sub-element.
4850 Tmp2 = VTBits;
4851 for (unsigned i = 0; i != NumElts; ++i)
4852 if (DemandedElts[i]) {
4853 unsigned SubOffset = i % Scale;
4854 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4855 SubOffset = SubOffset * VTBits;
4856 if (Tmp <= SubOffset)
4857 return 1;
4858 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4859 }
4860 return Tmp2;
4861 }
4862 break;
4863 }
4864
4866 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4867 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4868 return VTBits - Tmp + 1;
4869 case ISD::SIGN_EXTEND:
4870 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4871 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4873 // Max of the input and what this extends.
4874 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4875 Tmp = VTBits-Tmp+1;
4876 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4877 return std::max(Tmp, Tmp2);
4879 if (VT.isScalableVector())
4880 break;
4881 SDValue Src = Op.getOperand(0);
4882 EVT SrcVT = Src.getValueType();
4883 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4884 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4885 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4886 }
4887 case ISD::SRA:
4888 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4889 // SRA X, C -> adds C sign bits.
4890 if (std::optional<unsigned> ShAmt =
4891 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4892 Tmp = std::min(Tmp + *ShAmt, VTBits);
4893 return Tmp;
4894 case ISD::SHL:
4895 if (std::optional<ConstantRange> ShAmtRange =
4896 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4897 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4898 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4899 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4900 // shifted out, then we can compute the number of sign bits for the
4901 // operand being extended. A future improvement could be to pass along the
4902 // "shifted left by" information in the recursive calls to
4903 // ComputeKnownSignBits. Allowing us to handle this more generically.
4904 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4905 SDValue Ext = Op.getOperand(0);
4906 EVT ExtVT = Ext.getValueType();
4907 SDValue Extendee = Ext.getOperand(0);
4908 EVT ExtendeeVT = Extendee.getValueType();
4909 unsigned SizeDifference =
4910 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4911 if (SizeDifference <= MinShAmt) {
4912 Tmp = SizeDifference +
4913 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4914 if (MaxShAmt < Tmp)
4915 return Tmp - MaxShAmt;
4916 }
4917 }
4918 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4919 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4920 if (MaxShAmt < Tmp)
4921 return Tmp - MaxShAmt;
4922 }
4923 break;
4924 case ISD::AND:
4925 case ISD::OR:
4926 case ISD::XOR: // NOT is handled here.
4927 // Logical binary ops preserve the number of sign bits at the worst.
4928 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4929 if (Tmp != 1) {
4930 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4931 FirstAnswer = std::min(Tmp, Tmp2);
4932 // We computed what we know about the sign bits as our first
4933 // answer. Now proceed to the generic code that uses
4934 // computeKnownBits, and pick whichever answer is better.
4935 }
4936 break;
4937
4938 case ISD::SELECT:
4939 case ISD::VSELECT:
4940 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4941 if (Tmp == 1) return 1; // Early out.
4942 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4943 return std::min(Tmp, Tmp2);
4944 case ISD::SELECT_CC:
4945 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4946 if (Tmp == 1) return 1; // Early out.
4947 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4948 return std::min(Tmp, Tmp2);
4949
4950 case ISD::SMIN:
4951 case ISD::SMAX: {
4952 // If we have a clamp pattern, we know that the number of sign bits will be
4953 // the minimum of the clamp min/max range.
4954 bool IsMax = (Opcode == ISD::SMAX);
4955 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4956 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4957 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4958 CstHigh =
4959 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4960 if (CstLow && CstHigh) {
4961 if (!IsMax)
4962 std::swap(CstLow, CstHigh);
4963 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4964 Tmp = CstLow->getAPIntValue().getNumSignBits();
4965 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4966 return std::min(Tmp, Tmp2);
4967 }
4968 }
4969
4970 // Fallback - just get the minimum number of sign bits of the operands.
4971 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4972 if (Tmp == 1)
4973 return 1; // Early out.
4974 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4975 return std::min(Tmp, Tmp2);
4976 }
4977 case ISD::UMIN:
4978 case ISD::UMAX:
4979 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4980 if (Tmp == 1)
4981 return 1; // Early out.
4982 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4983 return std::min(Tmp, Tmp2);
4984 case ISD::SSUBO_CARRY:
4985 case ISD::USUBO_CARRY:
4986 // sub_carry(x,x,c) -> 0/-1 (sext carry)
4987 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
4988 return VTBits;
4989 [[fallthrough]];
4990 case ISD::SADDO:
4991 case ISD::UADDO:
4992 case ISD::SADDO_CARRY:
4993 case ISD::UADDO_CARRY:
4994 case ISD::SSUBO:
4995 case ISD::USUBO:
4996 case ISD::SMULO:
4997 case ISD::UMULO:
4998 if (Op.getResNo() != 1)
4999 break;
5000 // The boolean result conforms to getBooleanContents. Fall through.
5001 // If setcc returns 0/-1, all bits are sign bits.
5002 // We know that we have an integer-based boolean since these operations
5003 // are only available for integer.
5004 if (TLI->getBooleanContents(VT.isVector(), false) ==
5006 return VTBits;
5007 break;
5008 case ISD::SETCC:
5009 case ISD::SETCCCARRY:
5010 case ISD::STRICT_FSETCC:
5011 case ISD::STRICT_FSETCCS: {
5012 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5013 // If setcc returns 0/-1, all bits are sign bits.
5014 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5016 return VTBits;
5017 break;
5018 }
5019 case ISD::ROTL:
5020 case ISD::ROTR:
5021 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5022
5023 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5024 if (Tmp == VTBits)
5025 return VTBits;
5026
5027 if (ConstantSDNode *C =
5028 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5029 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5030
5031 // Handle rotate right by N like a rotate left by 32-N.
5032 if (Opcode == ISD::ROTR)
5033 RotAmt = (VTBits - RotAmt) % VTBits;
5034
5035 // If we aren't rotating out all of the known-in sign bits, return the
5036 // number that are left. This handles rotl(sext(x), 1) for example.
5037 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5038 }
5039 break;
5040 case ISD::ADD:
5041 case ISD::ADDC:
5042 // Add can have at most one carry bit. Thus we know that the output
5043 // is, at worst, one more bit than the inputs.
5044 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5045 if (Tmp == 1) return 1; // Early out.
5046
5047 // Special case decrementing a value (ADD X, -1):
5048 if (ConstantSDNode *CRHS =
5049 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5050 if (CRHS->isAllOnes()) {
5051 KnownBits Known =
5052 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5053
5054 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5055 // sign bits set.
5056 if ((Known.Zero | 1).isAllOnes())
5057 return VTBits;
5058
5059 // If we are subtracting one from a positive number, there is no carry
5060 // out of the result.
5061 if (Known.isNonNegative())
5062 return Tmp;
5063 }
5064
5065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5066 if (Tmp2 == 1) return 1; // Early out.
5067 return std::min(Tmp, Tmp2) - 1;
5068 case ISD::SUB:
5069 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5070 if (Tmp2 == 1) return 1; // Early out.
5071
5072 // Handle NEG.
5073 if (ConstantSDNode *CLHS =
5074 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5075 if (CLHS->isZero()) {
5076 KnownBits Known =
5077 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If the input is known to be positive (the sign bit is known clear),
5084 // the output of the NEG has the same number of sign bits as the input.
5085 if (Known.isNonNegative())
5086 return Tmp2;
5087
5088 // Otherwise, we treat this like a SUB.
5089 }
5090
5091 // Sub can have at most one carry bit. Thus we know that the output
5092 // is, at worst, one more bit than the inputs.
5093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5094 if (Tmp == 1) return 1; // Early out.
5095 return std::min(Tmp, Tmp2) - 1;
5096 case ISD::MUL: {
5097 // The output of the Mul can be at most twice the valid bits in the inputs.
5098 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5099 if (SignBitsOp0 == 1)
5100 break;
5101 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5102 if (SignBitsOp1 == 1)
5103 break;
5104 unsigned OutValidBits =
5105 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5106 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5107 }
5108 case ISD::AVGCEILS:
5109 case ISD::AVGFLOORS:
5110 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5111 if (Tmp == 1)
5112 return 1; // Early out.
5113 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5114 return std::min(Tmp, Tmp2);
5115 case ISD::SREM:
5116 // The sign bit is the LHS's sign bit, except when the result of the
5117 // remainder is zero. The magnitude of the result should be less than or
5118 // equal to the magnitude of the LHS. Therefore, the result should have
5119 // at least as many sign bits as the left hand side.
5120 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5121 case ISD::TRUNCATE: {
5122 // Check if the sign bits of source go down as far as the truncated value.
5123 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5124 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5125 if (NumSrcSignBits > (NumSrcBits - VTBits))
5126 return NumSrcSignBits - (NumSrcBits - VTBits);
5127 break;
5128 }
5129 case ISD::EXTRACT_ELEMENT: {
5130 if (VT.isScalableVector())
5131 break;
5132 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5133 const int BitWidth = Op.getValueSizeInBits();
5134 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5135
5136 // Get reverse index (starting from 1), Op1 value indexes elements from
5137 // little end. Sign starts at big end.
5138 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5139
5140 // If the sign portion ends in our element the subtraction gives correct
5141 // result. Otherwise it gives either negative or > bitwidth result
5142 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5143 }
5145 if (VT.isScalableVector())
5146 break;
5147 // If we know the element index, split the demand between the
5148 // source vector and the inserted element, otherwise assume we need
5149 // the original demanded vector elements and the value.
5150 SDValue InVec = Op.getOperand(0);
5151 SDValue InVal = Op.getOperand(1);
5152 SDValue EltNo = Op.getOperand(2);
5153 bool DemandedVal = true;
5154 APInt DemandedVecElts = DemandedElts;
5155 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5156 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5157 unsigned EltIdx = CEltNo->getZExtValue();
5158 DemandedVal = !!DemandedElts[EltIdx];
5159 DemandedVecElts.clearBit(EltIdx);
5160 }
5161 Tmp = std::numeric_limits<unsigned>::max();
5162 if (DemandedVal) {
5163 // TODO - handle implicit truncation of inserted elements.
5164 if (InVal.getScalarValueSizeInBits() != VTBits)
5165 break;
5166 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5167 Tmp = std::min(Tmp, Tmp2);
5168 }
5169 if (!!DemandedVecElts) {
5170 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5171 Tmp = std::min(Tmp, Tmp2);
5172 }
5173 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5174 return Tmp;
5175 }
5177 assert(!VT.isScalableVector());
5178 SDValue InVec = Op.getOperand(0);
5179 SDValue EltNo = Op.getOperand(1);
5180 EVT VecVT = InVec.getValueType();
5181 // ComputeNumSignBits not yet implemented for scalable vectors.
5182 if (VecVT.isScalableVector())
5183 break;
5184 const unsigned BitWidth = Op.getValueSizeInBits();
5185 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5186 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5187
5188 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5189 // anything about sign bits. But if the sizes match we can derive knowledge
5190 // about sign bits from the vector operand.
5191 if (BitWidth != EltBitWidth)
5192 break;
5193
5194 // If we know the element index, just demand that vector element, else for
5195 // an unknown element index, ignore DemandedElts and demand them all.
5196 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5197 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5198 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5199 DemandedSrcElts =
5200 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5201
5202 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5203 }
5205 // Offset the demanded elts by the subvector index.
5206 SDValue Src = Op.getOperand(0);
5207 // Bail until we can represent demanded elements for scalable vectors.
5208 if (Src.getValueType().isScalableVector())
5209 break;
5210 uint64_t Idx = Op.getConstantOperandVal(1);
5211 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5212 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5213 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5214 }
5215 case ISD::CONCAT_VECTORS: {
5216 if (VT.isScalableVector())
5217 break;
5218 // Determine the minimum number of sign bits across all demanded
5219 // elts of the input vectors. Early out if the result is already 1.
5220 Tmp = std::numeric_limits<unsigned>::max();
5221 EVT SubVectorVT = Op.getOperand(0).getValueType();
5222 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5223 unsigned NumSubVectors = Op.getNumOperands();
5224 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5225 APInt DemandedSub =
5226 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5227 if (!DemandedSub)
5228 continue;
5229 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5230 Tmp = std::min(Tmp, Tmp2);
5231 }
5232 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5233 return Tmp;
5234 }
5235 case ISD::INSERT_SUBVECTOR: {
5236 if (VT.isScalableVector())
5237 break;
5238 // Demand any elements from the subvector and the remainder from the src its
5239 // inserted into.
5240 SDValue Src = Op.getOperand(0);
5241 SDValue Sub = Op.getOperand(1);
5242 uint64_t Idx = Op.getConstantOperandVal(2);
5243 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5244 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5245 APInt DemandedSrcElts = DemandedElts;
5246 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5247
5248 Tmp = std::numeric_limits<unsigned>::max();
5249 if (!!DemandedSubElts) {
5250 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5251 if (Tmp == 1)
5252 return 1; // early-out
5253 }
5254 if (!!DemandedSrcElts) {
5255 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5256 Tmp = std::min(Tmp, Tmp2);
5257 }
5258 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5259 return Tmp;
5260 }
5261 case ISD::LOAD: {
5263 if (const MDNode *Ranges = LD->getRanges()) {
5264 if (DemandedElts != 1)
5265 break;
5266
5268 if (VTBits > CR.getBitWidth()) {
5269 switch (LD->getExtensionType()) {
5270 case ISD::SEXTLOAD:
5271 CR = CR.signExtend(VTBits);
5272 break;
5273 case ISD::ZEXTLOAD:
5274 CR = CR.zeroExtend(VTBits);
5275 break;
5276 default:
5277 break;
5278 }
5279 }
5280
5281 if (VTBits != CR.getBitWidth())
5282 break;
5283 return std::min(CR.getSignedMin().getNumSignBits(),
5285 }
5286
5287 break;
5288 }
5289 case ISD::ATOMIC_CMP_SWAP:
5290 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5291 case ISD::ATOMIC_SWAP:
5292 case ISD::ATOMIC_LOAD_ADD:
5293 case ISD::ATOMIC_LOAD_SUB:
5294 case ISD::ATOMIC_LOAD_AND:
5295 case ISD::ATOMIC_LOAD_CLR:
5296 case ISD::ATOMIC_LOAD_OR:
5297 case ISD::ATOMIC_LOAD_XOR:
5298 case ISD::ATOMIC_LOAD_NAND:
5299 case ISD::ATOMIC_LOAD_MIN:
5300 case ISD::ATOMIC_LOAD_MAX:
5301 case ISD::ATOMIC_LOAD_UMIN:
5302 case ISD::ATOMIC_LOAD_UMAX:
5303 case ISD::ATOMIC_LOAD: {
5304 auto *AT = cast<AtomicSDNode>(Op);
5305 // If we are looking at the loaded value.
5306 if (Op.getResNo() == 0) {
5307 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5308 if (Tmp == VTBits)
5309 return 1; // early-out
5310
5311 // For atomic_load, prefer to use the extension type.
5312 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5313 switch (AT->getExtensionType()) {
5314 default:
5315 break;
5316 case ISD::SEXTLOAD:
5317 return VTBits - Tmp + 1;
5318 case ISD::ZEXTLOAD:
5319 return VTBits - Tmp;
5320 }
5321 }
5322
5323 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5324 return VTBits - Tmp + 1;
5325 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5326 return VTBits - Tmp;
5327 }
5328 break;
5329 }
5330 }
5331
5332 // If we are looking at the loaded value of the SDNode.
5333 if (Op.getResNo() == 0) {
5334 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5335 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5336 unsigned ExtType = LD->getExtensionType();
5337 switch (ExtType) {
5338 default: break;
5339 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5340 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5343 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5344 return VTBits - Tmp;
5345 case ISD::NON_EXTLOAD:
5346 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5347 // We only need to handle vectors - computeKnownBits should handle
5348 // scalar cases.
5349 Type *CstTy = Cst->getType();
5350 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5351 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5352 VTBits == CstTy->getScalarSizeInBits()) {
5353 Tmp = VTBits;
5354 for (unsigned i = 0; i != NumElts; ++i) {
5355 if (!DemandedElts[i])
5356 continue;
5357 if (Constant *Elt = Cst->getAggregateElement(i)) {
5358 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5359 const APInt &Value = CInt->getValue();
5360 Tmp = std::min(Tmp, Value.getNumSignBits());
5361 continue;
5362 }
5363 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5364 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5365 Tmp = std::min(Tmp, Value.getNumSignBits());
5366 continue;
5367 }
5368 }
5369 // Unknown type. Conservatively assume no bits match sign bit.
5370 return 1;
5371 }
5372 return Tmp;
5373 }
5374 }
5375 break;
5376 }
5377 }
5378 }
5379
5380 // Allow the target to implement this method for its nodes.
5381 if (Opcode >= ISD::BUILTIN_OP_END ||
5382 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5383 Opcode == ISD::INTRINSIC_W_CHAIN ||
5384 Opcode == ISD::INTRINSIC_VOID) {
5385 // TODO: This can probably be removed once target code is audited. This
5386 // is here purely to reduce patch size and review complexity.
5387 if (!VT.isScalableVector()) {
5388 unsigned NumBits =
5389 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5390 if (NumBits > 1)
5391 FirstAnswer = std::max(FirstAnswer, NumBits);
5392 }
5393 }
5394
5395 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5396 // use this information.
5397 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5398 return std::max(FirstAnswer, Known.countMinSignBits());
5399}
5400
5402 unsigned Depth) const {
5403 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5404 return Op.getScalarValueSizeInBits() - SignBits + 1;
5405}
5406
5408 const APInt &DemandedElts,
5409 unsigned Depth) const {
5410 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5411 return Op.getScalarValueSizeInBits() - SignBits + 1;
5412}
5413
5415 unsigned Depth) const {
5416 // Early out for FREEZE.
5417 if (Op.getOpcode() == ISD::FREEZE)
5418 return true;
5419
5420 EVT VT = Op.getValueType();
5421 APInt DemandedElts = VT.isFixedLengthVector()
5423 : APInt(1, 1);
5424 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5425}
5426
5428 const APInt &DemandedElts,
5429 bool PoisonOnly,
5430 unsigned Depth) const {
5431 unsigned Opcode = Op.getOpcode();
5432
5433 // Early out for FREEZE.
5434 if (Opcode == ISD::FREEZE)
5435 return true;
5436
5437 if (Depth >= MaxRecursionDepth)
5438 return false; // Limit search depth.
5439
5440 if (isIntOrFPConstant(Op))
5441 return true;
5442
5443 switch (Opcode) {
5444 case ISD::CONDCODE:
5445 case ISD::VALUETYPE:
5446 case ISD::FrameIndex:
5448 case ISD::CopyFromReg:
5449 return true;
5450
5451 case ISD::POISON:
5452 return false;
5453
5454 case ISD::UNDEF:
5455 return PoisonOnly;
5456
5457 case ISD::BUILD_VECTOR:
5458 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5459 // this shouldn't affect the result.
5460 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5461 if (!DemandedElts[i])
5462 continue;
5464 Depth + 1))
5465 return false;
5466 }
5467 return true;
5468
5470 SDValue Src = Op.getOperand(0);
5471 if (Src.getValueType().isScalableVector())
5472 break;
5473 uint64_t Idx = Op.getConstantOperandVal(1);
5474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5475 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5476 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5477 Depth + 1);
5478 }
5479
5480 case ISD::INSERT_SUBVECTOR: {
5481 if (Op.getValueType().isScalableVector())
5482 break;
5483 SDValue Src = Op.getOperand(0);
5484 SDValue Sub = Op.getOperand(1);
5485 uint64_t Idx = Op.getConstantOperandVal(2);
5486 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5487 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5488 APInt DemandedSrcElts = DemandedElts;
5489 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5490
5491 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5492 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5493 return false;
5494 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5495 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5496 return false;
5497 return true;
5498 }
5499
5501 SDValue Src = Op.getOperand(0);
5502 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5503 EVT SrcVT = Src.getValueType();
5504 if (SrcVT.isFixedLengthVector() && IndexC &&
5505 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5506 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5507 IndexC->getZExtValue());
5508 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5509 Depth + 1);
5510 }
5511 break;
5512 }
5513
5515 SDValue InVec = Op.getOperand(0);
5516 SDValue InVal = Op.getOperand(1);
5517 SDValue EltNo = Op.getOperand(2);
5518 EVT VT = InVec.getValueType();
5519 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5520 if (IndexC && VT.isFixedLengthVector() &&
5521 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5522 if (DemandedElts[IndexC->getZExtValue()] &&
5524 return false;
5525 APInt InVecDemandedElts = DemandedElts;
5526 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5527 if (!!InVecDemandedElts &&
5528 !isGuaranteedNotToBeUndefOrPoison(InVec, InVecDemandedElts,
5529 PoisonOnly, Depth + 1))
5530 return false;
5531 return true;
5532 }
5533 break;
5534 }
5535
5537 // Check upper (known undef) elements.
5538 if (DemandedElts.ugt(1) && !PoisonOnly)
5539 return false;
5540 // Check element zero.
5541 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5542 Op.getOperand(0), PoisonOnly, Depth + 1))
5543 return false;
5544 return true;
5545
5546 case ISD::SPLAT_VECTOR:
5547 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5548 Depth + 1);
5549
5550 case ISD::VECTOR_SHUFFLE: {
5551 APInt DemandedLHS, DemandedRHS;
5552 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5553 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5554 DemandedElts, DemandedLHS, DemandedRHS,
5555 /*AllowUndefElts=*/false))
5556 return false;
5557 if (!DemandedLHS.isZero() &&
5558 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5559 PoisonOnly, Depth + 1))
5560 return false;
5561 if (!DemandedRHS.isZero() &&
5562 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5563 PoisonOnly, Depth + 1))
5564 return false;
5565 return true;
5566 }
5567
5568 case ISD::SHL:
5569 case ISD::SRL:
5570 case ISD::SRA:
5571 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5572 // enough to check operand 0 if Op can't create undef/poison.
5573 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5574 /*ConsiderFlags*/ true, Depth) &&
5575 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5576 PoisonOnly, Depth + 1);
5577
5578 case ISD::BSWAP:
5579 case ISD::CTPOP:
5580 case ISD::BITREVERSE:
5581 case ISD::AND:
5582 case ISD::OR:
5583 case ISD::XOR:
5584 case ISD::ADD:
5585 case ISD::SUB:
5586 case ISD::MUL:
5587 case ISD::SADDSAT:
5588 case ISD::UADDSAT:
5589 case ISD::SSUBSAT:
5590 case ISD::USUBSAT:
5591 case ISD::SSHLSAT:
5592 case ISD::USHLSAT:
5593 case ISD::SMIN:
5594 case ISD::SMAX:
5595 case ISD::UMIN:
5596 case ISD::UMAX:
5597 case ISD::ZERO_EXTEND:
5598 case ISD::SIGN_EXTEND:
5599 case ISD::ANY_EXTEND:
5600 case ISD::TRUNCATE:
5601 case ISD::VSELECT: {
5602 // If Op can't create undef/poison and none of its operands are undef/poison
5603 // then Op is never undef/poison. A difference from the more common check
5604 // below, outside the switch, is that we handle elementwise operations for
5605 // which the DemandedElts mask is valid for all operands here.
5606 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5607 /*ConsiderFlags*/ true, Depth) &&
5608 all_of(Op->ops(), [&](SDValue V) {
5609 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5610 PoisonOnly, Depth + 1);
5611 });
5612 }
5613
5614 // TODO: Search for noundef attributes from library functions.
5615
5616 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5617
5618 default:
5619 // Allow the target to implement this method for its nodes.
5620 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5621 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5622 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5623 Op, DemandedElts, *this, PoisonOnly, Depth);
5624 break;
5625 }
5626
5627 // If Op can't create undef/poison and none of its operands are undef/poison
5628 // then Op is never undef/poison.
5629 // NOTE: TargetNodes can handle this in themselves in
5630 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5631 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5632 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5633 Depth) &&
5634 all_of(Op->ops(), [&](SDValue V) {
5635 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5636 });
5637}
5638
5640 bool ConsiderFlags,
5641 unsigned Depth) const {
5642 EVT VT = Op.getValueType();
5643 APInt DemandedElts = VT.isFixedLengthVector()
5645 : APInt(1, 1);
5646 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5647 Depth);
5648}
5649
5651 bool PoisonOnly, bool ConsiderFlags,
5652 unsigned Depth) const {
5653 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5654 return true;
5655
5656 unsigned Opcode = Op.getOpcode();
5657 switch (Opcode) {
5658 case ISD::AssertSext:
5659 case ISD::AssertZext:
5660 case ISD::AssertAlign:
5662 // Assertion nodes can create poison if the assertion fails.
5663 return true;
5664
5665 case ISD::FREEZE:
5669 case ISD::SADDSAT:
5670 case ISD::UADDSAT:
5671 case ISD::SSUBSAT:
5672 case ISD::USUBSAT:
5673 case ISD::MULHU:
5674 case ISD::MULHS:
5675 case ISD::AVGFLOORS:
5676 case ISD::AVGFLOORU:
5677 case ISD::AVGCEILS:
5678 case ISD::AVGCEILU:
5679 case ISD::ABDU:
5680 case ISD::ABDS:
5681 case ISD::SMIN:
5682 case ISD::SMAX:
5683 case ISD::SCMP:
5684 case ISD::UMIN:
5685 case ISD::UMAX:
5686 case ISD::UCMP:
5687 case ISD::AND:
5688 case ISD::XOR:
5689 case ISD::ROTL:
5690 case ISD::ROTR:
5691 case ISD::FSHL:
5692 case ISD::FSHR:
5693 case ISD::BSWAP:
5694 case ISD::CTTZ:
5695 case ISD::CTLZ:
5696 case ISD::CTPOP:
5697 case ISD::BITREVERSE:
5698 case ISD::PARITY:
5699 case ISD::SIGN_EXTEND:
5700 case ISD::TRUNCATE:
5704 case ISD::BITCAST:
5705 case ISD::BUILD_VECTOR:
5706 case ISD::BUILD_PAIR:
5707 case ISD::SPLAT_VECTOR:
5708 case ISD::FABS:
5709 return false;
5710
5711 case ISD::ABS:
5712 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5713 // Different to Intrinsic::abs.
5714 return false;
5715
5716 case ISD::ADDC:
5717 case ISD::SUBC:
5718 case ISD::ADDE:
5719 case ISD::SUBE:
5720 case ISD::SADDO:
5721 case ISD::SSUBO:
5722 case ISD::SMULO:
5723 case ISD::SADDO_CARRY:
5724 case ISD::SSUBO_CARRY:
5725 case ISD::UADDO:
5726 case ISD::USUBO:
5727 case ISD::UMULO:
5728 case ISD::UADDO_CARRY:
5729 case ISD::USUBO_CARRY:
5730 // No poison on result or overflow flags.
5731 return false;
5732
5733 case ISD::SELECT_CC:
5734 case ISD::SETCC: {
5735 // Integer setcc cannot create undef or poison.
5736 if (Op.getOperand(0).getValueType().isInteger())
5737 return false;
5738
5739 // FP compares are more complicated. They can create poison for nan/infinity
5740 // based on options and flags. The options and flags also cause special
5741 // nonan condition codes to be used. Those condition codes may be preserved
5742 // even if the nonan flag is dropped somewhere.
5743 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5744 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5745 if (((unsigned)CCCode & 0x10U))
5746 return true;
5747
5749 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5750 }
5751
5752 case ISD::OR:
5753 case ISD::ZERO_EXTEND:
5754 case ISD::SELECT:
5755 case ISD::VSELECT:
5756 case ISD::ADD:
5757 case ISD::SUB:
5758 case ISD::MUL:
5759 case ISD::FNEG:
5760 case ISD::FADD:
5761 case ISD::FSUB:
5762 case ISD::FMUL:
5763 case ISD::FDIV:
5764 case ISD::FREM:
5765 case ISD::FCOPYSIGN:
5766 case ISD::FMA:
5767 case ISD::FMAD:
5768 case ISD::FP_EXTEND:
5771 // No poison except from flags (which is handled above)
5772 return false;
5773
5774 case ISD::SHL:
5775 case ISD::SRL:
5776 case ISD::SRA:
5777 // If the max shift amount isn't in range, then the shift can
5778 // create poison.
5779 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5780
5783 // If the amount is zero then the result will be poison.
5784 // TODO: Add isKnownNeverZero DemandedElts handling.
5785 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5786
5788 // Check if we demand any upper (undef) elements.
5789 return !PoisonOnly && DemandedElts.ugt(1);
5790
5793 // Ensure that the element index is in bounds.
5794 EVT VecVT = Op.getOperand(0).getValueType();
5795 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5796 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5797 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5798 }
5799
5800 case ISD::VECTOR_SHUFFLE: {
5801 // Check for any demanded shuffle element that is undef.
5802 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5803 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5804 if (Elt < 0 && DemandedElts[Idx])
5805 return true;
5806 return false;
5807 }
5808
5809 default:
5810 // Allow the target to implement this method for its nodes.
5811 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5812 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5813 return TLI->canCreateUndefOrPoisonForTargetNode(
5814 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5815 break;
5816 }
5817
5818 // Be conservative and return true.
5819 return true;
5820}
5821
5822bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5823 unsigned Opcode = Op.getOpcode();
5824 if (Opcode == ISD::OR)
5825 return Op->getFlags().hasDisjoint() ||
5826 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5827 if (Opcode == ISD::XOR)
5828 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5829 return false;
5830}
5831
5833 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5834 (Op.isAnyAdd() || isADDLike(Op));
5835}
5836
5838 unsigned Depth) const {
5839 EVT VT = Op.getValueType();
5840
5841 // Since the number of lanes in a scalable vector is unknown at compile time,
5842 // we track one bit which is implicitly broadcast to all lanes. This means
5843 // that all lanes in a scalable vector are considered demanded.
5844 APInt DemandedElts = VT.isFixedLengthVector()
5846 : APInt(1, 1);
5847
5848 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5849}
5850
5852 bool SNaN, unsigned Depth) const {
5853 assert(!DemandedElts.isZero() && "No demanded elements");
5854
5855 // If we're told that NaNs won't happen, assume they won't.
5856 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5857 return true;
5858
5859 if (Depth >= MaxRecursionDepth)
5860 return false; // Limit search depth.
5861
5862 // If the value is a constant, we can obviously see if it is a NaN or not.
5864 return !C->getValueAPF().isNaN() ||
5865 (SNaN && !C->getValueAPF().isSignaling());
5866 }
5867
5868 unsigned Opcode = Op.getOpcode();
5869 switch (Opcode) {
5870 case ISD::FADD:
5871 case ISD::FSUB:
5872 case ISD::FMUL:
5873 case ISD::FDIV:
5874 case ISD::FREM:
5875 case ISD::FSIN:
5876 case ISD::FCOS:
5877 case ISD::FTAN:
5878 case ISD::FASIN:
5879 case ISD::FACOS:
5880 case ISD::FATAN:
5881 case ISD::FATAN2:
5882 case ISD::FSINH:
5883 case ISD::FCOSH:
5884 case ISD::FTANH:
5885 case ISD::FMA:
5886 case ISD::FMAD: {
5887 if (SNaN)
5888 return true;
5889 // TODO: Need isKnownNeverInfinity
5890 return false;
5891 }
5892 case ISD::FCANONICALIZE:
5893 case ISD::FEXP:
5894 case ISD::FEXP2:
5895 case ISD::FEXP10:
5896 case ISD::FTRUNC:
5897 case ISD::FFLOOR:
5898 case ISD::FCEIL:
5899 case ISD::FROUND:
5900 case ISD::FROUNDEVEN:
5901 case ISD::LROUND:
5902 case ISD::LLROUND:
5903 case ISD::FRINT:
5904 case ISD::LRINT:
5905 case ISD::LLRINT:
5906 case ISD::FNEARBYINT:
5907 case ISD::FLDEXP: {
5908 if (SNaN)
5909 return true;
5910 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5911 }
5912 case ISD::FABS:
5913 case ISD::FNEG:
5914 case ISD::FCOPYSIGN: {
5915 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5916 }
5917 case ISD::SELECT:
5918 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5919 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5920 case ISD::FP_EXTEND:
5921 case ISD::FP_ROUND: {
5922 if (SNaN)
5923 return true;
5924 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5925 }
5926 case ISD::SINT_TO_FP:
5927 case ISD::UINT_TO_FP:
5928 return true;
5929 case ISD::FSQRT: // Need is known positive
5930 case ISD::FLOG:
5931 case ISD::FLOG2:
5932 case ISD::FLOG10:
5933 case ISD::FPOWI:
5934 case ISD::FPOW: {
5935 if (SNaN)
5936 return true;
5937 // TODO: Refine on operand
5938 return false;
5939 }
5940 case ISD::FMINNUM:
5941 case ISD::FMAXNUM:
5942 case ISD::FMINIMUMNUM:
5943 case ISD::FMAXIMUMNUM: {
5944 // Only one needs to be known not-nan, since it will be returned if the
5945 // other ends up being one.
5946 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5947 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5948 }
5949 case ISD::FMINNUM_IEEE:
5950 case ISD::FMAXNUM_IEEE: {
5951 if (SNaN)
5952 return true;
5953 // This can return a NaN if either operand is an sNaN, or if both operands
5954 // are NaN.
5955 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5956 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5957 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5958 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5959 }
5960 case ISD::FMINIMUM:
5961 case ISD::FMAXIMUM: {
5962 // TODO: Does this quiet or return the origina NaN as-is?
5963 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5964 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5965 }
5967 SDValue Src = Op.getOperand(0);
5968 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5969 EVT SrcVT = Src.getValueType();
5970 if (SrcVT.isFixedLengthVector() && Idx &&
5971 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5972 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5973 Idx->getZExtValue());
5974 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5975 }
5976 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5977 }
5979 SDValue Src = Op.getOperand(0);
5980 if (Src.getValueType().isFixedLengthVector()) {
5981 unsigned Idx = Op.getConstantOperandVal(1);
5982 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5983 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5984 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5985 }
5986 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5987 }
5988 case ISD::INSERT_SUBVECTOR: {
5989 SDValue BaseVector = Op.getOperand(0);
5990 SDValue SubVector = Op.getOperand(1);
5991 EVT BaseVectorVT = BaseVector.getValueType();
5992 if (BaseVectorVT.isFixedLengthVector()) {
5993 unsigned Idx = Op.getConstantOperandVal(2);
5994 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
5995 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
5996
5997 // Clear/Extract the bits at the position where the subvector will be
5998 // inserted.
5999 APInt DemandedMask =
6000 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6001 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6002 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6003
6004 bool NeverNaN = true;
6005 if (!DemandedSrcElts.isZero())
6006 NeverNaN &=
6007 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6008 if (NeverNaN && !DemandedSubElts.isZero())
6009 NeverNaN &=
6010 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6011 return NeverNaN;
6012 }
6013 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6014 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6015 }
6016 case ISD::BUILD_VECTOR: {
6017 unsigned NumElts = Op.getNumOperands();
6018 for (unsigned I = 0; I != NumElts; ++I)
6019 if (DemandedElts[I] &&
6020 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6021 return false;
6022 return true;
6023 }
6024 case ISD::AssertNoFPClass: {
6025 FPClassTest NoFPClass =
6026 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6027 if ((NoFPClass & fcNan) == fcNan)
6028 return true;
6029 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6030 return true;
6031 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6032 }
6033 default:
6034 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6035 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6036 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6037 Depth);
6038 }
6039
6040 return false;
6041 }
6042}
6043
6045 assert(Op.getValueType().isFloatingPoint() &&
6046 "Floating point type expected");
6047
6048 // If the value is a constant, we can obviously see if it is a zero or not.
6050 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6051}
6052
6054 if (Depth >= MaxRecursionDepth)
6055 return false; // Limit search depth.
6056
6057 assert(!Op.getValueType().isFloatingPoint() &&
6058 "Floating point types unsupported - use isKnownNeverZeroFloat");
6059
6060 // If the value is a constant, we can obviously see if it is a zero or not.
6062 [](ConstantSDNode *C) { return !C->isZero(); }))
6063 return true;
6064
6065 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6066 // some degree.
6067 switch (Op.getOpcode()) {
6068 default:
6069 break;
6070
6071 case ISD::OR:
6072 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6073 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6074
6075 case ISD::VSELECT:
6076 case ISD::SELECT:
6077 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6078 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6079
6080 case ISD::SHL: {
6081 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6082 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6083 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6084 // 1 << X is never zero.
6085 if (ValKnown.One[0])
6086 return true;
6087 // If max shift cnt of known ones is non-zero, result is non-zero.
6088 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6089 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6090 !ValKnown.One.shl(MaxCnt).isZero())
6091 return true;
6092 break;
6093 }
6094 case ISD::UADDSAT:
6095 case ISD::UMAX:
6096 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6097 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6098
6099 // For smin/smax: If either operand is known negative/positive
6100 // respectively we don't need the other to be known at all.
6101 case ISD::SMAX: {
6102 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6103 if (Op1.isStrictlyPositive())
6104 return true;
6105
6106 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6107 if (Op0.isStrictlyPositive())
6108 return true;
6109
6110 if (Op1.isNonZero() && Op0.isNonZero())
6111 return true;
6112
6113 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6114 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6115 }
6116 case ISD::SMIN: {
6117 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6118 if (Op1.isNegative())
6119 return true;
6120
6121 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6122 if (Op0.isNegative())
6123 return true;
6124
6125 if (Op1.isNonZero() && Op0.isNonZero())
6126 return true;
6127
6128 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6129 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6130 }
6131 case ISD::UMIN:
6132 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6133 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6134
6135 case ISD::ROTL:
6136 case ISD::ROTR:
6137 case ISD::BITREVERSE:
6138 case ISD::BSWAP:
6139 case ISD::CTPOP:
6140 case ISD::ABS:
6141 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6142
6143 case ISD::SRA:
6144 case ISD::SRL: {
6145 if (Op->getFlags().hasExact())
6146 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6147 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6148 if (ValKnown.isNegative())
6149 return true;
6150 // If max shift cnt of known ones is non-zero, result is non-zero.
6151 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6152 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6153 !ValKnown.One.lshr(MaxCnt).isZero())
6154 return true;
6155 break;
6156 }
6157 case ISD::UDIV:
6158 case ISD::SDIV:
6159 // div exact can only produce a zero if the dividend is zero.
6160 // TODO: For udiv this is also true if Op1 u<= Op0
6161 if (Op->getFlags().hasExact())
6162 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6163 break;
6164
6165 case ISD::ADD:
6166 if (Op->getFlags().hasNoUnsignedWrap())
6167 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6168 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6169 return true;
6170 // TODO: There are a lot more cases we can prove for add.
6171 break;
6172
6173 case ISD::SUB: {
6174 if (isNullConstant(Op.getOperand(0)))
6175 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6176
6177 std::optional<bool> ne =
6178 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6179 computeKnownBits(Op.getOperand(1), Depth + 1));
6180 return ne && *ne;
6181 }
6182
6183 case ISD::MUL:
6184 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6185 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6186 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6187 return true;
6188 break;
6189
6190 case ISD::ZERO_EXTEND:
6191 case ISD::SIGN_EXTEND:
6192 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6193 case ISD::VSCALE: {
6195 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6196 ConstantRange CR =
6197 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6198 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6199 return true;
6200 break;
6201 }
6202 }
6203
6205}
6206
6208 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6209 return !C1->isNegative();
6210
6211 return Op.getOpcode() == ISD::FABS;
6212}
6213
6215 // Check the obvious case.
6216 if (A == B) return true;
6217
6218 // For negative and positive zero.
6221 if (CA->isZero() && CB->isZero()) return true;
6222
6223 // Otherwise they may not be equal.
6224 return false;
6225}
6226
6227// Only bits set in Mask must be negated, other bits may be arbitrary.
6229 if (isBitwiseNot(V, AllowUndefs))
6230 return V.getOperand(0);
6231
6232 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6233 // bits in the non-extended part.
6234 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6235 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6236 return SDValue();
6237 SDValue ExtArg = V.getOperand(0);
6238 if (ExtArg.getScalarValueSizeInBits() >=
6239 MaskC->getAPIntValue().getActiveBits() &&
6240 isBitwiseNot(ExtArg, AllowUndefs) &&
6241 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6242 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6243 return ExtArg.getOperand(0).getOperand(0);
6244 return SDValue();
6245}
6246
6248 // Match masked merge pattern (X & ~M) op (Y & M)
6249 // Including degenerate case (X & ~M) op M
6250 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6251 SDValue Other) {
6252 if (SDValue NotOperand =
6253 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6254 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6255 NotOperand->getOpcode() == ISD::TRUNCATE)
6256 NotOperand = NotOperand->getOperand(0);
6257
6258 if (Other == NotOperand)
6259 return true;
6260 if (Other->getOpcode() == ISD::AND)
6261 return NotOperand == Other->getOperand(0) ||
6262 NotOperand == Other->getOperand(1);
6263 }
6264 return false;
6265 };
6266
6267 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6268 A = A->getOperand(0);
6269
6270 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6271 B = B->getOperand(0);
6272
6273 if (A->getOpcode() == ISD::AND)
6274 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6275 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6276 return false;
6277}
6278
6279// FIXME: unify with llvm::haveNoCommonBitsSet.
6281 assert(A.getValueType() == B.getValueType() &&
6282 "Values must have the same type");
6285 return true;
6288}
6289
6290static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6291 SelectionDAG &DAG) {
6292 if (cast<ConstantSDNode>(Step)->isZero())
6293 return DAG.getConstant(0, DL, VT);
6294
6295 return SDValue();
6296}
6297
6300 SelectionDAG &DAG) {
6301 int NumOps = Ops.size();
6302 assert(NumOps != 0 && "Can't build an empty vector!");
6303 assert(!VT.isScalableVector() &&
6304 "BUILD_VECTOR cannot be used with scalable types");
6305 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6306 "Incorrect element count in BUILD_VECTOR!");
6307
6308 // BUILD_VECTOR of UNDEFs is UNDEF.
6309 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6310 return DAG.getUNDEF(VT);
6311
6312 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6313 SDValue IdentitySrc;
6314 bool IsIdentity = true;
6315 for (int i = 0; i != NumOps; ++i) {
6317 Ops[i].getOperand(0).getValueType() != VT ||
6318 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6319 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6320 Ops[i].getConstantOperandAPInt(1) != i) {
6321 IsIdentity = false;
6322 break;
6323 }
6324 IdentitySrc = Ops[i].getOperand(0);
6325 }
6326 if (IsIdentity)
6327 return IdentitySrc;
6328
6329 return SDValue();
6330}
6331
6332/// Try to simplify vector concatenation to an input value, undef, or build
6333/// vector.
6336 SelectionDAG &DAG) {
6337 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6339 [Ops](SDValue Op) {
6340 return Ops[0].getValueType() == Op.getValueType();
6341 }) &&
6342 "Concatenation of vectors with inconsistent value types!");
6343 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6344 VT.getVectorElementCount() &&
6345 "Incorrect element count in vector concatenation!");
6346
6347 if (Ops.size() == 1)
6348 return Ops[0];
6349
6350 // Concat of UNDEFs is UNDEF.
6351 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6352 return DAG.getUNDEF(VT);
6353
6354 // Scan the operands and look for extract operations from a single source
6355 // that correspond to insertion at the same location via this concatenation:
6356 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6357 SDValue IdentitySrc;
6358 bool IsIdentity = true;
6359 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6360 SDValue Op = Ops[i];
6361 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6362 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6363 Op.getOperand(0).getValueType() != VT ||
6364 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6365 Op.getConstantOperandVal(1) != IdentityIndex) {
6366 IsIdentity = false;
6367 break;
6368 }
6369 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6370 "Unexpected identity source vector for concat of extracts");
6371 IdentitySrc = Op.getOperand(0);
6372 }
6373 if (IsIdentity) {
6374 assert(IdentitySrc && "Failed to set source vector of extracts");
6375 return IdentitySrc;
6376 }
6377
6378 // The code below this point is only designed to work for fixed width
6379 // vectors, so we bail out for now.
6380 if (VT.isScalableVector())
6381 return SDValue();
6382
6383 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6384 // simplified to one big BUILD_VECTOR.
6385 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6386 EVT SVT = VT.getScalarType();
6388 for (SDValue Op : Ops) {
6389 EVT OpVT = Op.getValueType();
6390 if (Op.isUndef())
6391 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6392 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6393 Elts.append(Op->op_begin(), Op->op_end());
6394 else
6395 return SDValue();
6396 }
6397
6398 // BUILD_VECTOR requires all inputs to be of the same type, find the
6399 // maximum type and extend them all.
6400 for (SDValue Op : Elts)
6401 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6402
6403 if (SVT.bitsGT(VT.getScalarType())) {
6404 for (SDValue &Op : Elts) {
6405 if (Op.isUndef())
6406 Op = DAG.getUNDEF(SVT);
6407 else
6408 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6409 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6410 : DAG.getSExtOrTrunc(Op, DL, SVT);
6411 }
6412 }
6413
6414 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6415 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6416 return V;
6417}
6418
6419/// Gets or creates the specified node.
6420SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6421 SDVTList VTs = getVTList(VT);
6423 AddNodeIDNode(ID, Opcode, VTs, {});
6424 void *IP = nullptr;
6425 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6426 return SDValue(E, 0);
6427
6428 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6429 CSEMap.InsertNode(N, IP);
6430
6431 InsertNode(N);
6432 SDValue V = SDValue(N, 0);
6433 NewSDValueDbgMsg(V, "Creating new node: ", this);
6434 return V;
6435}
6436
6437SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6438 SDValue N1) {
6439 SDNodeFlags Flags;
6440 if (Inserter)
6441 Flags = Inserter->getFlags();
6442 return getNode(Opcode, DL, VT, N1, Flags);
6443}
6444
6445SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6446 SDValue N1, const SDNodeFlags Flags) {
6447 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6448
6449 // Constant fold unary operations with a vector integer or float operand.
6450 switch (Opcode) {
6451 default:
6452 // FIXME: Entirely reasonable to perform folding of other unary
6453 // operations here as the need arises.
6454 break;
6455 case ISD::FNEG:
6456 case ISD::FABS:
6457 case ISD::FCEIL:
6458 case ISD::FTRUNC:
6459 case ISD::FFLOOR:
6460 case ISD::FP_EXTEND:
6461 case ISD::FP_TO_SINT:
6462 case ISD::FP_TO_UINT:
6463 case ISD::FP_TO_FP16:
6464 case ISD::FP_TO_BF16:
6465 case ISD::TRUNCATE:
6466 case ISD::ANY_EXTEND:
6467 case ISD::ZERO_EXTEND:
6468 case ISD::SIGN_EXTEND:
6469 case ISD::UINT_TO_FP:
6470 case ISD::SINT_TO_FP:
6471 case ISD::FP16_TO_FP:
6472 case ISD::BF16_TO_FP:
6473 case ISD::BITCAST:
6474 case ISD::ABS:
6475 case ISD::BITREVERSE:
6476 case ISD::BSWAP:
6477 case ISD::CTLZ:
6479 case ISD::CTTZ:
6481 case ISD::CTPOP:
6482 case ISD::STEP_VECTOR: {
6483 SDValue Ops = {N1};
6484 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6485 return Fold;
6486 }
6487 }
6488
6489 unsigned OpOpcode = N1.getNode()->getOpcode();
6490 switch (Opcode) {
6491 case ISD::STEP_VECTOR:
6492 assert(VT.isScalableVector() &&
6493 "STEP_VECTOR can only be used with scalable types");
6494 assert(OpOpcode == ISD::TargetConstant &&
6495 VT.getVectorElementType() == N1.getValueType() &&
6496 "Unexpected step operand");
6497 break;
6498 case ISD::FREEZE:
6499 assert(VT == N1.getValueType() && "Unexpected VT!");
6500 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6501 return N1;
6502 break;
6503 case ISD::TokenFactor:
6504 case ISD::MERGE_VALUES:
6506 return N1; // Factor, merge or concat of one node? No need.
6507 case ISD::BUILD_VECTOR: {
6508 // Attempt to simplify BUILD_VECTOR.
6509 SDValue Ops[] = {N1};
6510 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6511 return V;
6512 break;
6513 }
6514 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6515 case ISD::FP_EXTEND:
6517 "Invalid FP cast!");
6518 if (N1.getValueType() == VT) return N1; // noop conversion.
6519 assert((!VT.isVector() || VT.getVectorElementCount() ==
6521 "Vector element count mismatch!");
6522 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6523 if (N1.isUndef())
6524 return getUNDEF(VT);
6525 break;
6526 case ISD::FP_TO_SINT:
6527 case ISD::FP_TO_UINT:
6528 if (N1.isUndef())
6529 return getUNDEF(VT);
6530 break;
6531 case ISD::SINT_TO_FP:
6532 case ISD::UINT_TO_FP:
6533 // [us]itofp(undef) = 0, because the result value is bounded.
6534 if (N1.isUndef())
6535 return getConstantFP(0.0, DL, VT);
6536 break;
6537 case ISD::SIGN_EXTEND:
6538 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6539 "Invalid SIGN_EXTEND!");
6540 assert(VT.isVector() == N1.getValueType().isVector() &&
6541 "SIGN_EXTEND result type type should be vector iff the operand "
6542 "type is vector!");
6543 if (N1.getValueType() == VT) return N1; // noop extension
6544 assert((!VT.isVector() || VT.getVectorElementCount() ==
6546 "Vector element count mismatch!");
6547 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6548 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6549 SDNodeFlags Flags;
6550 if (OpOpcode == ISD::ZERO_EXTEND)
6551 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6552 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6553 transferDbgValues(N1, NewVal);
6554 return NewVal;
6555 }
6556
6557 if (OpOpcode == ISD::POISON)
6558 return getPOISON(VT);
6559
6560 if (N1.isUndef())
6561 // sext(undef) = 0, because the top bits will all be the same.
6562 return getConstant(0, DL, VT);
6563
6564 // Skip unnecessary sext_inreg pattern:
6565 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6566 if (OpOpcode == ISD::TRUNCATE) {
6567 SDValue OpOp = N1.getOperand(0);
6568 if (OpOp.getValueType() == VT) {
6569 unsigned NumSignExtBits =
6571 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6572 transferDbgValues(N1, OpOp);
6573 return OpOp;
6574 }
6575 }
6576 }
6577 break;
6578 case ISD::ZERO_EXTEND:
6579 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6580 "Invalid ZERO_EXTEND!");
6581 assert(VT.isVector() == N1.getValueType().isVector() &&
6582 "ZERO_EXTEND result type type should be vector iff the operand "
6583 "type is vector!");
6584 if (N1.getValueType() == VT) return N1; // noop extension
6585 assert((!VT.isVector() || VT.getVectorElementCount() ==
6587 "Vector element count mismatch!");
6588 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6589 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6590 SDNodeFlags Flags;
6591 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6592 SDValue NewVal =
6593 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6594 transferDbgValues(N1, NewVal);
6595 return NewVal;
6596 }
6597
6598 if (OpOpcode == ISD::POISON)
6599 return getPOISON(VT);
6600
6601 if (N1.isUndef())
6602 // zext(undef) = 0, because the top bits will be zero.
6603 return getConstant(0, DL, VT);
6604
6605 // Skip unnecessary zext_inreg pattern:
6606 // (zext (trunc x)) -> x iff the upper bits are known zero.
6607 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6608 // use to recognise zext_inreg patterns.
6609 if (OpOpcode == ISD::TRUNCATE) {
6610 SDValue OpOp = N1.getOperand(0);
6611 if (OpOp.getValueType() == VT) {
6612 if (OpOp.getOpcode() != ISD::AND) {
6615 if (MaskedValueIsZero(OpOp, HiBits)) {
6616 transferDbgValues(N1, OpOp);
6617 return OpOp;
6618 }
6619 }
6620 }
6621 }
6622 break;
6623 case ISD::ANY_EXTEND:
6624 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6625 "Invalid ANY_EXTEND!");
6626 assert(VT.isVector() == N1.getValueType().isVector() &&
6627 "ANY_EXTEND result type type should be vector iff the operand "
6628 "type is vector!");
6629 if (N1.getValueType() == VT) return N1; // noop extension
6630 assert((!VT.isVector() || VT.getVectorElementCount() ==
6632 "Vector element count mismatch!");
6633 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6634
6635 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6636 OpOpcode == ISD::ANY_EXTEND) {
6637 SDNodeFlags Flags;
6638 if (OpOpcode == ISD::ZERO_EXTEND)
6639 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6640 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6641 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6642 }
6643 if (N1.isUndef())
6644 return getUNDEF(VT);
6645
6646 // (ext (trunc x)) -> x
6647 if (OpOpcode == ISD::TRUNCATE) {
6648 SDValue OpOp = N1.getOperand(0);
6649 if (OpOp.getValueType() == VT) {
6650 transferDbgValues(N1, OpOp);
6651 return OpOp;
6652 }
6653 }
6654 break;
6655 case ISD::TRUNCATE:
6656 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6657 "Invalid TRUNCATE!");
6658 assert(VT.isVector() == N1.getValueType().isVector() &&
6659 "TRUNCATE result type type should be vector iff the operand "
6660 "type is vector!");
6661 if (N1.getValueType() == VT) return N1; // noop truncate
6662 assert((!VT.isVector() || VT.getVectorElementCount() ==
6664 "Vector element count mismatch!");
6665 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6666 if (OpOpcode == ISD::TRUNCATE)
6667 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6668 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6669 OpOpcode == ISD::ANY_EXTEND) {
6670 // If the source is smaller than the dest, we still need an extend.
6672 VT.getScalarType())) {
6673 SDNodeFlags Flags;
6674 if (OpOpcode == ISD::ZERO_EXTEND)
6675 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6676 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6677 }
6678 if (N1.getOperand(0).getValueType().bitsGT(VT))
6679 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6680 return N1.getOperand(0);
6681 }
6682 if (N1.isUndef())
6683 return getUNDEF(VT);
6684 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6685 return getVScale(DL, VT,
6687 break;
6691 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6692 assert(N1.getValueType().bitsLE(VT) &&
6693 "The input must be the same size or smaller than the result.");
6696 "The destination vector type must have fewer lanes than the input.");
6697 break;
6698 case ISD::ABS:
6699 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6700 if (N1.isUndef())
6701 return getConstant(0, DL, VT);
6702 break;
6703 case ISD::BSWAP:
6704 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6705 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6706 "BSWAP types must be a multiple of 16 bits!");
6707 if (N1.isUndef())
6708 return getUNDEF(VT);
6709 // bswap(bswap(X)) -> X.
6710 if (OpOpcode == ISD::BSWAP)
6711 return N1.getOperand(0);
6712 break;
6713 case ISD::BITREVERSE:
6714 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6715 if (N1.isUndef())
6716 return getUNDEF(VT);
6717 break;
6718 case ISD::BITCAST:
6720 "Cannot BITCAST between types of different sizes!");
6721 if (VT == N1.getValueType()) return N1; // noop conversion.
6722 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6723 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6724 if (N1.isUndef())
6725 return getUNDEF(VT);
6726 break;
6728 assert(VT.isVector() && !N1.getValueType().isVector() &&
6729 (VT.getVectorElementType() == N1.getValueType() ||
6731 N1.getValueType().isInteger() &&
6733 "Illegal SCALAR_TO_VECTOR node!");
6734 if (N1.isUndef())
6735 return getUNDEF(VT);
6736 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6737 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6739 N1.getConstantOperandVal(1) == 0 &&
6740 N1.getOperand(0).getValueType() == VT)
6741 return N1.getOperand(0);
6742 break;
6743 case ISD::FNEG:
6744 // Negation of an unknown bag of bits is still completely undefined.
6745 if (N1.isUndef())
6746 return getUNDEF(VT);
6747
6748 if (OpOpcode == ISD::FNEG) // --X -> X
6749 return N1.getOperand(0);
6750 break;
6751 case ISD::FABS:
6752 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6753 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6754 break;
6755 case ISD::VSCALE:
6756 assert(VT == N1.getValueType() && "Unexpected VT!");
6757 break;
6758 case ISD::CTPOP:
6759 if (N1.getValueType().getScalarType() == MVT::i1)
6760 return N1;
6761 break;
6762 case ISD::CTLZ:
6763 case ISD::CTTZ:
6764 if (N1.getValueType().getScalarType() == MVT::i1)
6765 return getNOT(DL, N1, N1.getValueType());
6766 break;
6767 case ISD::VECREDUCE_ADD:
6768 if (N1.getValueType().getScalarType() == MVT::i1)
6769 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6770 break;
6771 case ISD::VECREDUCE_SMIN:
6772 case ISD::VECREDUCE_UMAX:
6773 if (N1.getValueType().getScalarType() == MVT::i1)
6774 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6775 break;
6776 case ISD::VECREDUCE_SMAX:
6777 case ISD::VECREDUCE_UMIN:
6778 if (N1.getValueType().getScalarType() == MVT::i1)
6779 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6780 break;
6781 case ISD::SPLAT_VECTOR:
6782 assert(VT.isVector() && "Wrong return type!");
6783 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6784 // that for now.
6786 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6788 N1.getValueType().isInteger() &&
6790 "Wrong operand type!");
6791 break;
6792 }
6793
6794 SDNode *N;
6795 SDVTList VTs = getVTList(VT);
6796 SDValue Ops[] = {N1};
6797 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6799 AddNodeIDNode(ID, Opcode, VTs, Ops);
6800 void *IP = nullptr;
6801 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6802 E->intersectFlagsWith(Flags);
6803 return SDValue(E, 0);
6804 }
6805
6806 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6807 N->setFlags(Flags);
6808 createOperands(N, Ops);
6809 CSEMap.InsertNode(N, IP);
6810 } else {
6811 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6812 createOperands(N, Ops);
6813 }
6814
6815 InsertNode(N);
6816 SDValue V = SDValue(N, 0);
6817 NewSDValueDbgMsg(V, "Creating new node: ", this);
6818 return V;
6819}
6820
6821static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6822 const APInt &C2) {
6823 switch (Opcode) {
6824 case ISD::ADD: return C1 + C2;
6825 case ISD::SUB: return C1 - C2;
6826 case ISD::MUL: return C1 * C2;
6827 case ISD::AND: return C1 & C2;
6828 case ISD::OR: return C1 | C2;
6829 case ISD::XOR: return C1 ^ C2;
6830 case ISD::SHL: return C1 << C2;
6831 case ISD::SRL: return C1.lshr(C2);
6832 case ISD::SRA: return C1.ashr(C2);
6833 case ISD::ROTL: return C1.rotl(C2);
6834 case ISD::ROTR: return C1.rotr(C2);
6835 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6836 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6837 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6838 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6839 case ISD::SADDSAT: return C1.sadd_sat(C2);
6840 case ISD::UADDSAT: return C1.uadd_sat(C2);
6841 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6842 case ISD::USUBSAT: return C1.usub_sat(C2);
6843 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6844 case ISD::USHLSAT: return C1.ushl_sat(C2);
6845 case ISD::UDIV:
6846 if (!C2.getBoolValue())
6847 break;
6848 return C1.udiv(C2);
6849 case ISD::UREM:
6850 if (!C2.getBoolValue())
6851 break;
6852 return C1.urem(C2);
6853 case ISD::SDIV:
6854 if (!C2.getBoolValue())
6855 break;
6856 return C1.sdiv(C2);
6857 case ISD::SREM:
6858 if (!C2.getBoolValue())
6859 break;
6860 return C1.srem(C2);
6861 case ISD::AVGFLOORS:
6862 return APIntOps::avgFloorS(C1, C2);
6863 case ISD::AVGFLOORU:
6864 return APIntOps::avgFloorU(C1, C2);
6865 case ISD::AVGCEILS:
6866 return APIntOps::avgCeilS(C1, C2);
6867 case ISD::AVGCEILU:
6868 return APIntOps::avgCeilU(C1, C2);
6869 case ISD::ABDS:
6870 return APIntOps::abds(C1, C2);
6871 case ISD::ABDU:
6872 return APIntOps::abdu(C1, C2);
6873 case ISD::MULHS:
6874 return APIntOps::mulhs(C1, C2);
6875 case ISD::MULHU:
6876 return APIntOps::mulhu(C1, C2);
6877 }
6878 return std::nullopt;
6879}
6880// Handle constant folding with UNDEF.
6881// TODO: Handle more cases.
6882static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6883 bool IsUndef1, const APInt &C2,
6884 bool IsUndef2) {
6885 if (!(IsUndef1 || IsUndef2))
6886 return FoldValue(Opcode, C1, C2);
6887
6888 // Fold and(x, undef) -> 0
6889 // Fold mul(x, undef) -> 0
6890 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6891 return APInt::getZero(C1.getBitWidth());
6892
6893 return std::nullopt;
6894}
6895
6897 const GlobalAddressSDNode *GA,
6898 const SDNode *N2) {
6899 if (GA->getOpcode() != ISD::GlobalAddress)
6900 return SDValue();
6901 if (!TLI->isOffsetFoldingLegal(GA))
6902 return SDValue();
6903 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6904 if (!C2)
6905 return SDValue();
6906 int64_t Offset = C2->getSExtValue();
6907 switch (Opcode) {
6908 case ISD::ADD:
6909 case ISD::PTRADD:
6910 break;
6911 case ISD::SUB: Offset = -uint64_t(Offset); break;
6912 default: return SDValue();
6913 }
6914 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6915 GA->getOffset() + uint64_t(Offset));
6916}
6917
6919 switch (Opcode) {
6920 case ISD::SDIV:
6921 case ISD::UDIV:
6922 case ISD::SREM:
6923 case ISD::UREM: {
6924 // If a divisor is zero/undef or any element of a divisor vector is
6925 // zero/undef, the whole op is undef.
6926 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6927 SDValue Divisor = Ops[1];
6928 if (Divisor.isUndef() || isNullConstant(Divisor))
6929 return true;
6930
6931 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6932 llvm::any_of(Divisor->op_values(),
6933 [](SDValue V) { return V.isUndef() ||
6934 isNullConstant(V); });
6935 // TODO: Handle signed overflow.
6936 }
6937 // TODO: Handle oversized shifts.
6938 default:
6939 return false;
6940 }
6941}
6942
6945 SDNodeFlags Flags) {
6946 // If the opcode is a target-specific ISD node, there's nothing we can
6947 // do here and the operand rules may not line up with the below, so
6948 // bail early.
6949 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6950 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6951 // foldCONCAT_VECTORS in getNode before this is called.
6952 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6953 return SDValue();
6954
6955 unsigned NumOps = Ops.size();
6956 if (NumOps == 0)
6957 return SDValue();
6958
6959 if (isUndef(Opcode, Ops))
6960 return getUNDEF(VT);
6961
6962 // Handle unary special cases.
6963 if (NumOps == 1) {
6964 SDValue N1 = Ops[0];
6965
6966 // Constant fold unary operations with an integer constant operand. Even
6967 // opaque constant will be folded, because the folding of unary operations
6968 // doesn't create new constants with different values. Nevertheless, the
6969 // opaque flag is preserved during folding to prevent future folding with
6970 // other constants.
6971 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6972 const APInt &Val = C->getAPIntValue();
6973 switch (Opcode) {
6974 case ISD::SIGN_EXTEND:
6975 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6976 C->isTargetOpcode(), C->isOpaque());
6977 case ISD::TRUNCATE:
6978 if (C->isOpaque())
6979 break;
6980 [[fallthrough]];
6981 case ISD::ZERO_EXTEND:
6982 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6983 C->isTargetOpcode(), C->isOpaque());
6984 case ISD::ANY_EXTEND:
6985 // Some targets like RISCV prefer to sign extend some types.
6986 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6987 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6988 C->isTargetOpcode(), C->isOpaque());
6989 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6990 C->isTargetOpcode(), C->isOpaque());
6991 case ISD::ABS:
6992 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6993 C->isOpaque());
6994 case ISD::BITREVERSE:
6995 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6996 C->isOpaque());
6997 case ISD::BSWAP:
6998 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
6999 C->isOpaque());
7000 case ISD::CTPOP:
7001 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7002 C->isOpaque());
7003 case ISD::CTLZ:
7005 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7006 C->isOpaque());
7007 case ISD::CTTZ:
7009 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7010 C->isOpaque());
7011 case ISD::UINT_TO_FP:
7012 case ISD::SINT_TO_FP: {
7014 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7016 return getConstantFP(FPV, DL, VT);
7017 }
7018 case ISD::FP16_TO_FP:
7019 case ISD::BF16_TO_FP: {
7020 bool Ignored;
7021 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7022 : APFloat::BFloat(),
7023 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7024
7025 // This can return overflow, underflow, or inexact; we don't care.
7026 // FIXME need to be more flexible about rounding mode.
7028 &Ignored);
7029 return getConstantFP(FPV, DL, VT);
7030 }
7031 case ISD::STEP_VECTOR:
7032 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7033 return V;
7034 break;
7035 case ISD::BITCAST:
7036 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7037 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7038 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7039 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7040 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7041 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7042 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7043 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7044 break;
7045 }
7046 }
7047
7048 // Constant fold unary operations with a floating point constant operand.
7049 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7050 APFloat V = C->getValueAPF(); // make copy
7051 switch (Opcode) {
7052 case ISD::FNEG:
7053 V.changeSign();
7054 return getConstantFP(V, DL, VT);
7055 case ISD::FABS:
7056 V.clearSign();
7057 return getConstantFP(V, DL, VT);
7058 case ISD::FCEIL: {
7059 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7061 return getConstantFP(V, DL, VT);
7062 return SDValue();
7063 }
7064 case ISD::FTRUNC: {
7065 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7067 return getConstantFP(V, DL, VT);
7068 return SDValue();
7069 }
7070 case ISD::FFLOOR: {
7071 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7073 return getConstantFP(V, DL, VT);
7074 return SDValue();
7075 }
7076 case ISD::FP_EXTEND: {
7077 bool ignored;
7078 // This can return overflow, underflow, or inexact; we don't care.
7079 // FIXME need to be more flexible about rounding mode.
7080 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7081 &ignored);
7082 return getConstantFP(V, DL, VT);
7083 }
7084 case ISD::FP_TO_SINT:
7085 case ISD::FP_TO_UINT: {
7086 bool ignored;
7087 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7088 // FIXME need to be more flexible about rounding mode.
7090 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7091 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7092 break;
7093 return getConstant(IntVal, DL, VT);
7094 }
7095 case ISD::FP_TO_FP16:
7096 case ISD::FP_TO_BF16: {
7097 bool Ignored;
7098 // This can return overflow, underflow, or inexact; we don't care.
7099 // FIXME need to be more flexible about rounding mode.
7100 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7101 : APFloat::BFloat(),
7103 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7104 }
7105 case ISD::BITCAST:
7106 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7107 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7108 VT);
7109 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7110 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7111 VT);
7112 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7113 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7114 VT);
7115 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7116 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7117 break;
7118 }
7119 }
7120
7121 // Early-out if we failed to constant fold a bitcast.
7122 if (Opcode == ISD::BITCAST)
7123 return SDValue();
7124 }
7125
7126 // Handle binops special cases.
7127 if (NumOps == 2) {
7128 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7129 return CFP;
7130
7131 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7132 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7133 if (C1->isOpaque() || C2->isOpaque())
7134 return SDValue();
7135
7136 std::optional<APInt> FoldAttempt =
7137 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7138 if (!FoldAttempt)
7139 return SDValue();
7140
7141 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7142 assert((!Folded || !VT.isVector()) &&
7143 "Can't fold vectors ops with scalar operands");
7144 return Folded;
7145 }
7146 }
7147
7148 // fold (add Sym, c) -> Sym+c
7150 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7151 if (TLI->isCommutativeBinOp(Opcode))
7153 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7154
7155 // fold (sext_in_reg c1) -> c2
7156 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7157 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7158
7159 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7160 unsigned FromBits = EVT.getScalarSizeInBits();
7161 Val <<= Val.getBitWidth() - FromBits;
7162 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7163 return getConstant(Val, DL, ConstantVT);
7164 };
7165
7166 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7167 const APInt &Val = C1->getAPIntValue();
7168 return SignExtendInReg(Val, VT);
7169 }
7170
7172 SmallVector<SDValue, 8> ScalarOps;
7173 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7174 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7175 SDValue Op = Ops[0].getOperand(I);
7176 if (Op.isUndef()) {
7177 ScalarOps.push_back(getUNDEF(OpVT));
7178 continue;
7179 }
7180 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7181 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7182 }
7183 return getBuildVector(VT, DL, ScalarOps);
7184 }
7185
7186 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7187 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7188 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7189 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7190 Ops[0].getOperand(0).getValueType()));
7191 }
7192 }
7193
7194 // Handle fshl/fshr special cases.
7195 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7196 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7197 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7198 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7199
7200 if (C1 && C2 && C3) {
7201 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7202 return SDValue();
7203 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7204 &V3 = C3->getAPIntValue();
7205
7206 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7207 : APIntOps::fshr(V1, V2, V3);
7208 return getConstant(FoldedVal, DL, VT);
7209 }
7210 }
7211
7212 // Handle fma/fmad special cases.
7213 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7214 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7215 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7216 Ops[2].getValueType() == VT && "FMA types must match!");
7220 if (C1 && C2 && C3) {
7221 APFloat V1 = C1->getValueAPF();
7222 const APFloat &V2 = C2->getValueAPF();
7223 const APFloat &V3 = C3->getValueAPF();
7224 if (Opcode == ISD::FMAD) {
7227 } else
7229 return getConstantFP(V1, DL, VT);
7230 }
7231 }
7232
7233 // This is for vector folding only from here on.
7234 if (!VT.isVector())
7235 return SDValue();
7236
7237 ElementCount NumElts = VT.getVectorElementCount();
7238
7239 // See if we can fold through any bitcasted integer ops.
7240 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7241 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7242 (Ops[0].getOpcode() == ISD::BITCAST ||
7243 Ops[1].getOpcode() == ISD::BITCAST)) {
7246 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7247 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7248 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7249 N2.getValueType().isInteger()) {
7250 bool IsLE = getDataLayout().isLittleEndian();
7251 unsigned EltBits = VT.getScalarSizeInBits();
7252 SmallVector<APInt> RawBits1, RawBits2;
7253 BitVector UndefElts1, UndefElts2;
7254 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7255 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7256 SmallVector<APInt> RawBits;
7257 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7258 std::optional<APInt> Fold = FoldValueWithUndef(
7259 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7260 if (!Fold)
7261 break;
7262 RawBits.push_back(*Fold);
7263 }
7264 if (RawBits.size() == NumElts.getFixedValue()) {
7265 // We have constant folded, but we might need to cast this again back
7266 // to the original (possibly legalized) type.
7267 EVT BVVT, BVEltVT;
7268 if (N1.getValueType() == VT) {
7269 BVVT = N1.getValueType();
7270 BVEltVT = BV1->getOperand(0).getValueType();
7271 } else {
7272 BVVT = N2.getValueType();
7273 BVEltVT = BV2->getOperand(0).getValueType();
7274 }
7275 unsigned BVEltBits = BVEltVT.getSizeInBits();
7276 SmallVector<APInt> DstBits;
7277 BitVector DstUndefs;
7279 DstBits, RawBits, DstUndefs,
7280 BitVector(RawBits.size(), false));
7281 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7282 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7283 if (DstUndefs[I])
7284 continue;
7285 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7286 }
7287 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7288 }
7289 }
7290 }
7291 }
7292
7293 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7294 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7295 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7296 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7297 APInt RHSVal;
7298 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7299 APInt NewStep = Opcode == ISD::MUL
7300 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7301 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7302 return getStepVector(DL, VT, NewStep);
7303 }
7304 }
7305
7306 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7307 return !Op.getValueType().isVector() ||
7308 Op.getValueType().getVectorElementCount() == NumElts;
7309 };
7310
7311 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7312 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7313 Op.getOpcode() == ISD::BUILD_VECTOR ||
7314 Op.getOpcode() == ISD::SPLAT_VECTOR;
7315 };
7316
7317 // All operands must be vector types with the same number of elements as
7318 // the result type and must be either UNDEF or a build/splat vector
7319 // or UNDEF scalars.
7320 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7321 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7322 return SDValue();
7323
7324 // If we are comparing vectors, then the result needs to be a i1 boolean that
7325 // is then extended back to the legal result type depending on how booleans
7326 // are represented.
7327 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7328 ISD::NodeType ExtendCode =
7329 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7330 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7332
7333 // Find legal integer scalar type for constant promotion and
7334 // ensure that its scalar size is at least as large as source.
7335 EVT LegalSVT = VT.getScalarType();
7336 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7337 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7338 if (LegalSVT.bitsLT(VT.getScalarType()))
7339 return SDValue();
7340 }
7341
7342 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7343 // only have one operand to check. For fixed-length vector types we may have
7344 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7345 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7346
7347 // Constant fold each scalar lane separately.
7348 SmallVector<SDValue, 4> ScalarResults;
7349 for (unsigned I = 0; I != NumVectorElts; I++) {
7350 SmallVector<SDValue, 4> ScalarOps;
7351 for (SDValue Op : Ops) {
7352 EVT InSVT = Op.getValueType().getScalarType();
7353 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7354 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7355 if (Op.isUndef())
7356 ScalarOps.push_back(getUNDEF(InSVT));
7357 else
7358 ScalarOps.push_back(Op);
7359 continue;
7360 }
7361
7362 SDValue ScalarOp =
7363 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7364 EVT ScalarVT = ScalarOp.getValueType();
7365
7366 // Build vector (integer) scalar operands may need implicit
7367 // truncation - do this before constant folding.
7368 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7369 // Don't create illegally-typed nodes unless they're constants or undef
7370 // - if we fail to constant fold we can't guarantee the (dead) nodes
7371 // we're creating will be cleaned up before being visited for
7372 // legalization.
7373 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7374 !isa<ConstantSDNode>(ScalarOp) &&
7375 TLI->getTypeAction(*getContext(), InSVT) !=
7377 return SDValue();
7378 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7379 }
7380
7381 ScalarOps.push_back(ScalarOp);
7382 }
7383
7384 // Constant fold the scalar operands.
7385 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7386
7387 // Scalar folding only succeeded if the result is a constant or UNDEF.
7388 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7389 ScalarResult.getOpcode() != ISD::ConstantFP)
7390 return SDValue();
7391
7392 // Legalize the (integer) scalar constant if necessary. We only do
7393 // this once we know the folding succeeded, since otherwise we would
7394 // get a node with illegal type which has a user.
7395 if (LegalSVT != SVT)
7396 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7397
7398 ScalarResults.push_back(ScalarResult);
7399 }
7400
7401 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7402 : getBuildVector(VT, DL, ScalarResults);
7403 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7404 return V;
7405}
7406
7409 // TODO: Add support for unary/ternary fp opcodes.
7410 if (Ops.size() != 2)
7411 return SDValue();
7412
7413 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7414 // should. That will require dealing with a potentially non-default
7415 // rounding mode, checking the "opStatus" return value from the APFloat
7416 // math calculations, and possibly other variations.
7417 SDValue N1 = Ops[0];
7418 SDValue N2 = Ops[1];
7419 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7420 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7421 if (N1CFP && N2CFP) {
7422 APFloat C1 = N1CFP->getValueAPF(); // make copy
7423 const APFloat &C2 = N2CFP->getValueAPF();
7424 switch (Opcode) {
7425 case ISD::FADD:
7427 return getConstantFP(C1, DL, VT);
7428 case ISD::FSUB:
7430 return getConstantFP(C1, DL, VT);
7431 case ISD::FMUL:
7433 return getConstantFP(C1, DL, VT);
7434 case ISD::FDIV:
7436 return getConstantFP(C1, DL, VT);
7437 case ISD::FREM:
7438 C1.mod(C2);
7439 return getConstantFP(C1, DL, VT);
7440 case ISD::FCOPYSIGN:
7441 C1.copySign(C2);
7442 return getConstantFP(C1, DL, VT);
7443 case ISD::FMINNUM:
7444 return getConstantFP(minnum(C1, C2), DL, VT);
7445 case ISD::FMAXNUM:
7446 return getConstantFP(maxnum(C1, C2), DL, VT);
7447 case ISD::FMINIMUM:
7448 return getConstantFP(minimum(C1, C2), DL, VT);
7449 case ISD::FMAXIMUM:
7450 return getConstantFP(maximum(C1, C2), DL, VT);
7451 case ISD::FMINIMUMNUM:
7452 return getConstantFP(minimumnum(C1, C2), DL, VT);
7453 case ISD::FMAXIMUMNUM:
7454 return getConstantFP(maximumnum(C1, C2), DL, VT);
7455 default: break;
7456 }
7457 }
7458 if (N1CFP && Opcode == ISD::FP_ROUND) {
7459 APFloat C1 = N1CFP->getValueAPF(); // make copy
7460 bool Unused;
7461 // This can return overflow, underflow, or inexact; we don't care.
7462 // FIXME need to be more flexible about rounding mode.
7464 &Unused);
7465 return getConstantFP(C1, DL, VT);
7466 }
7467
7468 switch (Opcode) {
7469 case ISD::FSUB:
7470 // -0.0 - undef --> undef (consistent with "fneg undef")
7471 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7472 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7473 return getUNDEF(VT);
7474 [[fallthrough]];
7475
7476 case ISD::FADD:
7477 case ISD::FMUL:
7478 case ISD::FDIV:
7479 case ISD::FREM:
7480 // If both operands are undef, the result is undef. If 1 operand is undef,
7481 // the result is NaN. This should match the behavior of the IR optimizer.
7482 if (N1.isUndef() && N2.isUndef())
7483 return getUNDEF(VT);
7484 if (N1.isUndef() || N2.isUndef())
7486 }
7487 return SDValue();
7488}
7489
7491 const SDLoc &DL, EVT DstEltVT) {
7492 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7493
7494 // If this is already the right type, we're done.
7495 if (SrcEltVT == DstEltVT)
7496 return SDValue(BV, 0);
7497
7498 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7499 unsigned DstBitSize = DstEltVT.getSizeInBits();
7500
7501 // If this is a conversion of N elements of one type to N elements of another
7502 // type, convert each element. This handles FP<->INT cases.
7503 if (SrcBitSize == DstBitSize) {
7505 for (SDValue Op : BV->op_values()) {
7506 // If the vector element type is not legal, the BUILD_VECTOR operands
7507 // are promoted and implicitly truncated. Make that explicit here.
7508 if (Op.getValueType() != SrcEltVT)
7509 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7510 Ops.push_back(getBitcast(DstEltVT, Op));
7511 }
7512 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7514 return getBuildVector(VT, DL, Ops);
7515 }
7516
7517 // Otherwise, we're growing or shrinking the elements. To avoid having to
7518 // handle annoying details of growing/shrinking FP values, we convert them to
7519 // int first.
7520 if (SrcEltVT.isFloatingPoint()) {
7521 // Convert the input float vector to a int vector where the elements are the
7522 // same sizes.
7523 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7524 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7526 DstEltVT);
7527 return SDValue();
7528 }
7529
7530 // Now we know the input is an integer vector. If the output is a FP type,
7531 // convert to integer first, then to FP of the right size.
7532 if (DstEltVT.isFloatingPoint()) {
7533 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7534 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7536 DstEltVT);
7537 return SDValue();
7538 }
7539
7540 // Okay, we know the src/dst types are both integers of differing types.
7541 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7542
7543 // Extract the constant raw bit data.
7544 BitVector UndefElements;
7545 SmallVector<APInt> RawBits;
7546 bool IsLE = getDataLayout().isLittleEndian();
7547 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7548 return SDValue();
7549
7551 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7552 if (UndefElements[I])
7553 Ops.push_back(getUNDEF(DstEltVT));
7554 else
7555 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7556 }
7557
7558 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7559 return getBuildVector(VT, DL, Ops);
7560}
7561
7563 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7564
7565 // There's no need to assert on a byte-aligned pointer. All pointers are at
7566 // least byte aligned.
7567 if (A == Align(1))
7568 return Val;
7569
7570 SDVTList VTs = getVTList(Val.getValueType());
7572 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7573 ID.AddInteger(A.value());
7574
7575 void *IP = nullptr;
7576 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7577 return SDValue(E, 0);
7578
7579 auto *N =
7580 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7581 createOperands(N, {Val});
7582
7583 CSEMap.InsertNode(N, IP);
7584 InsertNode(N);
7585
7586 SDValue V(N, 0);
7587 NewSDValueDbgMsg(V, "Creating new node: ", this);
7588 return V;
7589}
7590
7591SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7592 SDValue N1, SDValue N2) {
7593 SDNodeFlags Flags;
7594 if (Inserter)
7595 Flags = Inserter->getFlags();
7596 return getNode(Opcode, DL, VT, N1, N2, Flags);
7597}
7598
7600 SDValue &N2) const {
7601 if (!TLI->isCommutativeBinOp(Opcode))
7602 return;
7603
7604 // Canonicalize:
7605 // binop(const, nonconst) -> binop(nonconst, const)
7608 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7609 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7610 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7611 std::swap(N1, N2);
7612
7613 // Canonicalize:
7614 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7615 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7617 std::swap(N1, N2);
7618}
7619
7620SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7621 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7623 N2.getOpcode() != ISD::DELETED_NODE &&
7624 "Operand is DELETED_NODE!");
7625
7626 canonicalizeCommutativeBinop(Opcode, N1, N2);
7627
7628 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7629 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7630
7631 // Don't allow undefs in vector splats - we might be returning N2 when folding
7632 // to zero etc.
7633 ConstantSDNode *N2CV =
7634 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7635
7636 switch (Opcode) {
7637 default: break;
7638 case ISD::TokenFactor:
7639 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7640 N2.getValueType() == MVT::Other && "Invalid token factor!");
7641 // Fold trivial token factors.
7642 if (N1.getOpcode() == ISD::EntryToken) return N2;
7643 if (N2.getOpcode() == ISD::EntryToken) return N1;
7644 if (N1 == N2) return N1;
7645 break;
7646 case ISD::BUILD_VECTOR: {
7647 // Attempt to simplify BUILD_VECTOR.
7648 SDValue Ops[] = {N1, N2};
7649 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7650 return V;
7651 break;
7652 }
7653 case ISD::CONCAT_VECTORS: {
7654 SDValue Ops[] = {N1, N2};
7655 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7656 return V;
7657 break;
7658 }
7659 case ISD::AND:
7660 assert(VT.isInteger() && "This operator does not apply to FP types!");
7661 assert(N1.getValueType() == N2.getValueType() &&
7662 N1.getValueType() == VT && "Binary operator types must match!");
7663 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7664 // worth handling here.
7665 if (N2CV && N2CV->isZero())
7666 return N2;
7667 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7668 return N1;
7669 break;
7670 case ISD::OR:
7671 case ISD::XOR:
7672 case ISD::ADD:
7673 case ISD::PTRADD:
7674 case ISD::SUB:
7675 assert(VT.isInteger() && "This operator does not apply to FP types!");
7676 assert(N1.getValueType() == N2.getValueType() &&
7677 N1.getValueType() == VT && "Binary operator types must match!");
7678 // The equal operand types requirement is unnecessarily strong for PTRADD.
7679 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7680 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7681 // logic everywhere where PTRADDs may be folded or combined to properly
7682 // support them. If/when we introduce pointer types to the SDAG, we will
7683 // need to relax this constraint.
7684
7685 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7686 // it's worth handling here.
7687 if (N2CV && N2CV->isZero())
7688 return N1;
7689 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7690 VT.getScalarType() == MVT::i1)
7691 return getNode(ISD::XOR, DL, VT, N1, N2);
7692 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7693 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7694 N2.getOpcode() == ISD::VSCALE) {
7695 const APInt &C1 = N1->getConstantOperandAPInt(0);
7696 const APInt &C2 = N2->getConstantOperandAPInt(0);
7697 return getVScale(DL, VT, C1 + C2);
7698 }
7699 break;
7700 case ISD::MUL:
7701 assert(VT.isInteger() && "This operator does not apply to FP types!");
7702 assert(N1.getValueType() == N2.getValueType() &&
7703 N1.getValueType() == VT && "Binary operator types must match!");
7704 if (VT.getScalarType() == MVT::i1)
7705 return getNode(ISD::AND, DL, VT, N1, N2);
7706 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7707 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7708 const APInt &N2CImm = N2C->getAPIntValue();
7709 return getVScale(DL, VT, MulImm * N2CImm);
7710 }
7711 break;
7712 case ISD::UDIV:
7713 case ISD::UREM:
7714 case ISD::MULHU:
7715 case ISD::MULHS:
7716 case ISD::SDIV:
7717 case ISD::SREM:
7718 case ISD::SADDSAT:
7719 case ISD::SSUBSAT:
7720 case ISD::UADDSAT:
7721 case ISD::USUBSAT:
7722 assert(VT.isInteger() && "This operator does not apply to FP types!");
7723 assert(N1.getValueType() == N2.getValueType() &&
7724 N1.getValueType() == VT && "Binary operator types must match!");
7725 if (VT.getScalarType() == MVT::i1) {
7726 // fold (add_sat x, y) -> (or x, y) for bool types.
7727 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7728 return getNode(ISD::OR, DL, VT, N1, N2);
7729 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7730 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7731 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7732 }
7733 break;
7734 case ISD::SCMP:
7735 case ISD::UCMP:
7736 assert(N1.getValueType() == N2.getValueType() &&
7737 "Types of operands of UCMP/SCMP must match");
7738 assert(N1.getValueType().isVector() == VT.isVector() &&
7739 "Operands and return type of must both be scalars or vectors");
7740 if (VT.isVector())
7743 "Result and operands must have the same number of elements");
7744 break;
7745 case ISD::AVGFLOORS:
7746 case ISD::AVGFLOORU:
7747 case ISD::AVGCEILS:
7748 case ISD::AVGCEILU:
7749 assert(VT.isInteger() && "This operator does not apply to FP types!");
7750 assert(N1.getValueType() == N2.getValueType() &&
7751 N1.getValueType() == VT && "Binary operator types must match!");
7752 break;
7753 case ISD::ABDS:
7754 case ISD::ABDU:
7755 assert(VT.isInteger() && "This operator does not apply to FP types!");
7756 assert(N1.getValueType() == N2.getValueType() &&
7757 N1.getValueType() == VT && "Binary operator types must match!");
7758 if (VT.getScalarType() == MVT::i1)
7759 return getNode(ISD::XOR, DL, VT, N1, N2);
7760 break;
7761 case ISD::SMIN:
7762 case ISD::UMAX:
7763 assert(VT.isInteger() && "This operator does not apply to FP types!");
7764 assert(N1.getValueType() == N2.getValueType() &&
7765 N1.getValueType() == VT && "Binary operator types must match!");
7766 if (VT.getScalarType() == MVT::i1)
7767 return getNode(ISD::OR, DL, VT, N1, N2);
7768 break;
7769 case ISD::SMAX:
7770 case ISD::UMIN:
7771 assert(VT.isInteger() && "This operator does not apply to FP types!");
7772 assert(N1.getValueType() == N2.getValueType() &&
7773 N1.getValueType() == VT && "Binary operator types must match!");
7774 if (VT.getScalarType() == MVT::i1)
7775 return getNode(ISD::AND, DL, VT, N1, N2);
7776 break;
7777 case ISD::FADD:
7778 case ISD::FSUB:
7779 case ISD::FMUL:
7780 case ISD::FDIV:
7781 case ISD::FREM:
7782 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7783 assert(N1.getValueType() == N2.getValueType() &&
7784 N1.getValueType() == VT && "Binary operator types must match!");
7785 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7786 return V;
7787 break;
7788 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7789 assert(N1.getValueType() == VT &&
7792 "Invalid FCOPYSIGN!");
7793 break;
7794 case ISD::SHL:
7795 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7796 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7797 const APInt &ShiftImm = N2C->getAPIntValue();
7798 return getVScale(DL, VT, MulImm << ShiftImm);
7799 }
7800 [[fallthrough]];
7801 case ISD::SRA:
7802 case ISD::SRL:
7803 if (SDValue V = simplifyShift(N1, N2))
7804 return V;
7805 [[fallthrough]];
7806 case ISD::ROTL:
7807 case ISD::ROTR:
7808 assert(VT == N1.getValueType() &&
7809 "Shift operators return type must be the same as their first arg");
7810 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7811 "Shifts only work on integers");
7812 assert((!VT.isVector() || VT == N2.getValueType()) &&
7813 "Vector shift amounts must be in the same as their first arg");
7814 // Verify that the shift amount VT is big enough to hold valid shift
7815 // amounts. This catches things like trying to shift an i1024 value by an
7816 // i8, which is easy to fall into in generic code that uses
7817 // TLI.getShiftAmount().
7820 "Invalid use of small shift amount with oversized value!");
7821
7822 // Always fold shifts of i1 values so the code generator doesn't need to
7823 // handle them. Since we know the size of the shift has to be less than the
7824 // size of the value, the shift/rotate count is guaranteed to be zero.
7825 if (VT == MVT::i1)
7826 return N1;
7827 if (N2CV && N2CV->isZero())
7828 return N1;
7829 break;
7830 case ISD::FP_ROUND:
7832 VT.bitsLE(N1.getValueType()) && N2C &&
7833 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7834 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7835 if (N1.getValueType() == VT) return N1; // noop conversion.
7836 break;
7837 case ISD::AssertNoFPClass: {
7839 "AssertNoFPClass is used for a non-floating type");
7840 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7841 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7842 assert(llvm::to_underlying(NoFPClass) <=
7844 "FPClassTest value too large");
7845 (void)NoFPClass;
7846 break;
7847 }
7848 case ISD::AssertSext:
7849 case ISD::AssertZext: {
7850 EVT EVT = cast<VTSDNode>(N2)->getVT();
7851 assert(VT == N1.getValueType() && "Not an inreg extend!");
7852 assert(VT.isInteger() && EVT.isInteger() &&
7853 "Cannot *_EXTEND_INREG FP types");
7854 assert(!EVT.isVector() &&
7855 "AssertSExt/AssertZExt type should be the vector element type "
7856 "rather than the vector type!");
7857 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7858 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7859 break;
7860 }
7862 EVT EVT = cast<VTSDNode>(N2)->getVT();
7863 assert(VT == N1.getValueType() && "Not an inreg extend!");
7864 assert(VT.isInteger() && EVT.isInteger() &&
7865 "Cannot *_EXTEND_INREG FP types");
7866 assert(EVT.isVector() == VT.isVector() &&
7867 "SIGN_EXTEND_INREG type should be vector iff the operand "
7868 "type is vector!");
7869 assert((!EVT.isVector() ||
7871 "Vector element counts must match in SIGN_EXTEND_INREG");
7872 assert(EVT.bitsLE(VT) && "Not extending!");
7873 if (EVT == VT) return N1; // Not actually extending
7874 break;
7875 }
7877 case ISD::FP_TO_UINT_SAT: {
7878 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7879 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7880 assert(N1.getValueType().isVector() == VT.isVector() &&
7881 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7882 "vector!");
7883 assert((!VT.isVector() || VT.getVectorElementCount() ==
7885 "Vector element counts must match in FP_TO_*INT_SAT");
7886 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7887 "Type to saturate to must be a scalar.");
7888 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7889 "Not extending!");
7890 break;
7891 }
7894 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7895 element type of the vector.");
7896
7897 // Extract from an undefined value or using an undefined index is undefined.
7898 if (N1.isUndef() || N2.isUndef())
7899 return getUNDEF(VT);
7900
7901 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7902 // vectors. For scalable vectors we will provide appropriate support for
7903 // dealing with arbitrary indices.
7904 if (N2C && N1.getValueType().isFixedLengthVector() &&
7905 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7906 return getUNDEF(VT);
7907
7908 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7909 // expanding copies of large vectors from registers. This only works for
7910 // fixed length vectors, since we need to know the exact number of
7911 // elements.
7912 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7914 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7915 return getExtractVectorElt(DL, VT,
7916 N1.getOperand(N2C->getZExtValue() / Factor),
7917 N2C->getZExtValue() % Factor);
7918 }
7919
7920 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7921 // lowering is expanding large vector constants.
7922 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7923 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7926 "BUILD_VECTOR used for scalable vectors");
7927 unsigned Index =
7928 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7929 SDValue Elt = N1.getOperand(Index);
7930
7931 if (VT != Elt.getValueType())
7932 // If the vector element type is not legal, the BUILD_VECTOR operands
7933 // are promoted and implicitly truncated, and the result implicitly
7934 // extended. Make that explicit here.
7935 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7936
7937 return Elt;
7938 }
7939
7940 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7941 // operations are lowered to scalars.
7942 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7943 // If the indices are the same, return the inserted element else
7944 // if the indices are known different, extract the element from
7945 // the original vector.
7946 SDValue N1Op2 = N1.getOperand(2);
7948
7949 if (N1Op2C && N2C) {
7950 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7951 if (VT == N1.getOperand(1).getValueType())
7952 return N1.getOperand(1);
7953 if (VT.isFloatingPoint()) {
7955 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7956 }
7957 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7958 }
7959 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7960 }
7961 }
7962
7963 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7964 // when vector types are scalarized and v1iX is legal.
7965 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7966 // Here we are completely ignoring the extract element index (N2),
7967 // which is fine for fixed width vectors, since any index other than 0
7968 // is undefined anyway. However, this cannot be ignored for scalable
7969 // vectors - in theory we could support this, but we don't want to do this
7970 // without a profitability check.
7971 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7973 N1.getValueType().getVectorNumElements() == 1) {
7974 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7975 N1.getOperand(1));
7976 }
7977 break;
7979 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
7980 assert(!N1.getValueType().isVector() && !VT.isVector() &&
7981 (N1.getValueType().isInteger() == VT.isInteger()) &&
7982 N1.getValueType() != VT &&
7983 "Wrong types for EXTRACT_ELEMENT!");
7984
7985 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
7986 // 64-bit integers into 32-bit parts. Instead of building the extract of
7987 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
7988 if (N1.getOpcode() == ISD::BUILD_PAIR)
7989 return N1.getOperand(N2C->getZExtValue());
7990
7991 // EXTRACT_ELEMENT of a constant int is also very common.
7992 if (N1C) {
7993 unsigned ElementSize = VT.getSizeInBits();
7994 unsigned Shift = ElementSize * N2C->getZExtValue();
7995 const APInt &Val = N1C->getAPIntValue();
7996 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
7997 }
7998 break;
8000 EVT N1VT = N1.getValueType();
8001 assert(VT.isVector() && N1VT.isVector() &&
8002 "Extract subvector VTs must be vectors!");
8004 "Extract subvector VTs must have the same element type!");
8005 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8006 "Cannot extract a scalable vector from a fixed length vector!");
8007 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8009 "Extract subvector must be from larger vector to smaller vector!");
8010 assert(N2C && "Extract subvector index must be a constant");
8011 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8012 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8013 N1VT.getVectorMinNumElements()) &&
8014 "Extract subvector overflow!");
8015 assert(N2C->getAPIntValue().getBitWidth() ==
8016 TLI->getVectorIdxWidth(getDataLayout()) &&
8017 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8018 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8019 "Extract index is not a multiple of the output vector length");
8020
8021 // Trivial extraction.
8022 if (VT == N1VT)
8023 return N1;
8024
8025 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8026 if (N1.isUndef())
8027 return getUNDEF(VT);
8028
8029 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8030 // the concat have the same type as the extract.
8031 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8032 VT == N1.getOperand(0).getValueType()) {
8033 unsigned Factor = VT.getVectorMinNumElements();
8034 return N1.getOperand(N2C->getZExtValue() / Factor);
8035 }
8036
8037 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8038 // during shuffle legalization.
8039 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8040 VT == N1.getOperand(1).getValueType())
8041 return N1.getOperand(1);
8042 break;
8043 }
8044 }
8045
8046 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8047 switch (Opcode) {
8048 case ISD::XOR:
8049 case ISD::ADD:
8050 case ISD::PTRADD:
8051 case ISD::SUB:
8053 case ISD::UDIV:
8054 case ISD::SDIV:
8055 case ISD::UREM:
8056 case ISD::SREM:
8057 case ISD::MUL:
8058 case ISD::AND:
8059 case ISD::SSUBSAT:
8060 case ISD::USUBSAT:
8061 case ISD::UMIN:
8062 case ISD::OR:
8063 case ISD::SADDSAT:
8064 case ISD::UADDSAT:
8065 case ISD::UMAX:
8066 case ISD::SMAX:
8067 case ISD::SMIN:
8068 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8069 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8070 }
8071 }
8072
8073 // Canonicalize an UNDEF to the RHS, even over a constant.
8074 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8075 if (TLI->isCommutativeBinOp(Opcode)) {
8076 std::swap(N1, N2);
8077 } else {
8078 switch (Opcode) {
8079 case ISD::PTRADD:
8080 case ISD::SUB:
8081 // fold op(undef, non_undef_arg2) -> undef.
8082 return N1;
8084 case ISD::UDIV:
8085 case ISD::SDIV:
8086 case ISD::UREM:
8087 case ISD::SREM:
8088 case ISD::SSUBSAT:
8089 case ISD::USUBSAT:
8090 // fold op(undef, non_undef_arg2) -> 0.
8091 return getConstant(0, DL, VT);
8092 }
8093 }
8094 }
8095
8096 // Fold a bunch of operators when the RHS is undef.
8097 if (N2.getOpcode() == ISD::UNDEF) {
8098 switch (Opcode) {
8099 case ISD::XOR:
8100 if (N1.getOpcode() == ISD::UNDEF)
8101 // Handle undef ^ undef -> 0 special case. This is a common
8102 // idiom (misuse).
8103 return getConstant(0, DL, VT);
8104 [[fallthrough]];
8105 case ISD::ADD:
8106 case ISD::PTRADD:
8107 case ISD::SUB:
8108 // fold op(arg1, undef) -> undef.
8109 return N2;
8110 case ISD::UDIV:
8111 case ISD::SDIV:
8112 case ISD::UREM:
8113 case ISD::SREM:
8114 // fold op(arg1, undef) -> poison.
8115 return getPOISON(VT);
8116 case ISD::MUL:
8117 case ISD::AND:
8118 case ISD::SSUBSAT:
8119 case ISD::USUBSAT:
8120 case ISD::UMIN:
8121 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8122 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8123 case ISD::OR:
8124 case ISD::SADDSAT:
8125 case ISD::UADDSAT:
8126 case ISD::UMAX:
8127 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8128 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8129 case ISD::SMAX:
8130 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8131 return N1.getOpcode() == ISD::UNDEF
8132 ? N2
8133 : getConstant(
8135 VT);
8136 case ISD::SMIN:
8137 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8138 return N1.getOpcode() == ISD::UNDEF
8139 ? N2
8140 : getConstant(
8142 VT);
8143 }
8144 }
8145
8146 // Perform trivial constant folding.
8147 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8148 return SV;
8149
8150 // Memoize this node if possible.
8151 SDNode *N;
8152 SDVTList VTs = getVTList(VT);
8153 SDValue Ops[] = {N1, N2};
8154 if (VT != MVT::Glue) {
8156 AddNodeIDNode(ID, Opcode, VTs, Ops);
8157 void *IP = nullptr;
8158 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8159 E->intersectFlagsWith(Flags);
8160 return SDValue(E, 0);
8161 }
8162
8163 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8164 N->setFlags(Flags);
8165 createOperands(N, Ops);
8166 CSEMap.InsertNode(N, IP);
8167 } else {
8168 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8169 createOperands(N, Ops);
8170 }
8171
8172 InsertNode(N);
8173 SDValue V = SDValue(N, 0);
8174 NewSDValueDbgMsg(V, "Creating new node: ", this);
8175 return V;
8176}
8177
8178SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8179 SDValue N1, SDValue N2, SDValue N3) {
8180 SDNodeFlags Flags;
8181 if (Inserter)
8182 Flags = Inserter->getFlags();
8183 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8184}
8185
8186SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8187 SDValue N1, SDValue N2, SDValue N3,
8188 const SDNodeFlags Flags) {
8190 N2.getOpcode() != ISD::DELETED_NODE &&
8191 N3.getOpcode() != ISD::DELETED_NODE &&
8192 "Operand is DELETED_NODE!");
8193 // Perform various simplifications.
8194 switch (Opcode) {
8195 case ISD::BUILD_VECTOR: {
8196 // Attempt to simplify BUILD_VECTOR.
8197 SDValue Ops[] = {N1, N2, N3};
8198 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8199 return V;
8200 break;
8201 }
8202 case ISD::CONCAT_VECTORS: {
8203 SDValue Ops[] = {N1, N2, N3};
8204 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8205 return V;
8206 break;
8207 }
8208 case ISD::SETCC: {
8209 assert(VT.isInteger() && "SETCC result type must be an integer!");
8210 assert(N1.getValueType() == N2.getValueType() &&
8211 "SETCC operands must have the same type!");
8212 assert(VT.isVector() == N1.getValueType().isVector() &&
8213 "SETCC type should be vector iff the operand type is vector!");
8214 assert((!VT.isVector() || VT.getVectorElementCount() ==
8216 "SETCC vector element counts must match!");
8217 // Use FoldSetCC to simplify SETCC's.
8218 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8219 return V;
8220 break;
8221 }
8222 case ISD::SELECT:
8223 case ISD::VSELECT:
8224 if (SDValue V = simplifySelect(N1, N2, N3))
8225 return V;
8226 break;
8228 llvm_unreachable("should use getVectorShuffle constructor!");
8229 case ISD::VECTOR_SPLICE: {
8230 if (cast<ConstantSDNode>(N3)->isZero())
8231 return N1;
8232 break;
8233 }
8235 assert(VT.isVector() && VT == N1.getValueType() &&
8236 "INSERT_VECTOR_ELT vector type mismatch");
8238 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8239 assert((!VT.isFloatingPoint() ||
8240 VT.getVectorElementType() == N2.getValueType()) &&
8241 "INSERT_VECTOR_ELT fp scalar type mismatch");
8242 assert((!VT.isInteger() ||
8244 "INSERT_VECTOR_ELT int scalar size mismatch");
8245
8246 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8247 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8248 // for scalable vectors where we will generate appropriate code to
8249 // deal with out-of-bounds cases correctly.
8250 if (N3C && N1.getValueType().isFixedLengthVector() &&
8251 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
8252 return getUNDEF(VT);
8253
8254 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8255 if (N3.isUndef())
8256 return getUNDEF(VT);
8257
8258 // If the inserted element is an UNDEF, just use the input vector.
8259 if (N2.isUndef())
8260 return N1;
8261
8262 break;
8263 }
8264 case ISD::INSERT_SUBVECTOR: {
8265 // Inserting undef into undef is still undef.
8266 if (N1.isUndef() && N2.isUndef())
8267 return getUNDEF(VT);
8268
8269 EVT N2VT = N2.getValueType();
8270 assert(VT == N1.getValueType() &&
8271 "Dest and insert subvector source types must match!");
8272 assert(VT.isVector() && N2VT.isVector() &&
8273 "Insert subvector VTs must be vectors!");
8275 "Insert subvector VTs must have the same element type!");
8276 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8277 "Cannot insert a scalable vector into a fixed length vector!");
8278 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8280 "Insert subvector must be from smaller vector to larger vector!");
8282 "Insert subvector index must be constant");
8283 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8284 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8286 "Insert subvector overflow!");
8288 TLI->getVectorIdxWidth(getDataLayout()) &&
8289 "Constant index for INSERT_SUBVECTOR has an invalid size");
8290
8291 // Trivial insertion.
8292 if (VT == N2VT)
8293 return N2;
8294
8295 // If this is an insert of an extracted vector into an undef vector, we
8296 // can just use the input to the extract.
8297 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8298 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
8299 return N2.getOperand(0);
8300 break;
8301 }
8302 case ISD::BITCAST:
8303 // Fold bit_convert nodes from a type to themselves.
8304 if (N1.getValueType() == VT)
8305 return N1;
8306 break;
8307 case ISD::VP_TRUNCATE:
8308 case ISD::VP_SIGN_EXTEND:
8309 case ISD::VP_ZERO_EXTEND:
8310 // Don't create noop casts.
8311 if (N1.getValueType() == VT)
8312 return N1;
8313 break;
8314 case ISD::VECTOR_COMPRESS: {
8315 [[maybe_unused]] EVT VecVT = N1.getValueType();
8316 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8317 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8318 assert(VT == VecVT && "Vector and result type don't match.");
8319 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8320 "All inputs must be vectors.");
8321 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8323 "Vector and mask must have same number of elements.");
8324
8325 if (N1.isUndef() || N2.isUndef())
8326 return N3;
8327
8328 break;
8329 }
8330 case ISD::PARTIAL_REDUCE_UMLA:
8331 case ISD::PARTIAL_REDUCE_SMLA:
8332 case ISD::PARTIAL_REDUCE_SUMLA: {
8333 [[maybe_unused]] EVT AccVT = N1.getValueType();
8334 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8335 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8336 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8337 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8338 "node to have the same type!");
8339 assert(VT.isVector() && VT == AccVT &&
8340 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8341 "the same type as its result!");
8343 AccVT.getVectorElementCount()) &&
8344 "Expected the element count of the second and third operands of the "
8345 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8346 "element count of the first operand and the result!");
8348 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8349 "node to have an element type which is the same as or smaller than "
8350 "the element type of the first operand and result!");
8351 break;
8352 }
8353 }
8354
8355 // Perform trivial constant folding for arithmetic operators.
8356 switch (Opcode) {
8357 case ISD::FMA:
8358 case ISD::FMAD:
8359 case ISD::SETCC:
8360 case ISD::FSHL:
8361 case ISD::FSHR:
8362 if (SDValue SV =
8363 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8364 return SV;
8365 break;
8366 }
8367
8368 // Memoize node if it doesn't produce a glue result.
8369 SDNode *N;
8370 SDVTList VTs = getVTList(VT);
8371 SDValue Ops[] = {N1, N2, N3};
8372 if (VT != MVT::Glue) {
8374 AddNodeIDNode(ID, Opcode, VTs, Ops);
8375 void *IP = nullptr;
8376 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8377 E->intersectFlagsWith(Flags);
8378 return SDValue(E, 0);
8379 }
8380
8381 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8382 N->setFlags(Flags);
8383 createOperands(N, Ops);
8384 CSEMap.InsertNode(N, IP);
8385 } else {
8386 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8387 createOperands(N, Ops);
8388 }
8389
8390 InsertNode(N);
8391 SDValue V = SDValue(N, 0);
8392 NewSDValueDbgMsg(V, "Creating new node: ", this);
8393 return V;
8394}
8395
8396SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8397 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8398 const SDNodeFlags Flags) {
8399 SDValue Ops[] = { N1, N2, N3, N4 };
8400 return getNode(Opcode, DL, VT, Ops, Flags);
8401}
8402
8403SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8404 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8405 SDNodeFlags Flags;
8406 if (Inserter)
8407 Flags = Inserter->getFlags();
8408 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8409}
8410
8411SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8412 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8413 SDValue N5, const SDNodeFlags Flags) {
8414 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8415 return getNode(Opcode, DL, VT, Ops, Flags);
8416}
8417
8418SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8419 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8420 SDValue N5) {
8421 SDNodeFlags Flags;
8422 if (Inserter)
8423 Flags = Inserter->getFlags();
8424 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8425}
8426
8427/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8428/// the incoming stack arguments to be loaded from the stack.
8430 SmallVector<SDValue, 8> ArgChains;
8431
8432 // Include the original chain at the beginning of the list. When this is
8433 // used by target LowerCall hooks, this helps legalize find the
8434 // CALLSEQ_BEGIN node.
8435 ArgChains.push_back(Chain);
8436
8437 // Add a chain value for each stack argument.
8438 for (SDNode *U : getEntryNode().getNode()->users())
8439 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8440 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8441 if (FI->getIndex() < 0)
8442 ArgChains.push_back(SDValue(L, 1));
8443
8444 // Build a tokenfactor for all the chains.
8445 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8446}
8447
8448/// getMemsetValue - Vectorized representation of the memset value
8449/// operand.
8451 const SDLoc &dl) {
8452 assert(!Value.isUndef());
8453
8454 unsigned NumBits = VT.getScalarSizeInBits();
8456 assert(C->getAPIntValue().getBitWidth() == 8);
8457 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8458 if (VT.isInteger()) {
8459 bool IsOpaque = VT.getSizeInBits() > 64 ||
8460 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8461 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8462 }
8463 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8464 }
8465
8466 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8467 EVT IntVT = VT.getScalarType();
8468 if (!IntVT.isInteger())
8469 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8470
8471 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8472 if (NumBits > 8) {
8473 // Use a multiplication with 0x010101... to extend the input to the
8474 // required length.
8475 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8476 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8477 DAG.getConstant(Magic, dl, IntVT));
8478 }
8479
8480 if (VT != Value.getValueType() && !VT.isInteger())
8481 Value = DAG.getBitcast(VT.getScalarType(), Value);
8482 if (VT != Value.getValueType())
8483 Value = DAG.getSplatBuildVector(VT, dl, Value);
8484
8485 return Value;
8486}
8487
8488/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8489/// used when a memcpy is turned into a memset when the source is a constant
8490/// string ptr.
8492 const TargetLowering &TLI,
8493 const ConstantDataArraySlice &Slice) {
8494 // Handle vector with all elements zero.
8495 if (Slice.Array == nullptr) {
8496 if (VT.isInteger())
8497 return DAG.getConstant(0, dl, VT);
8498 return DAG.getNode(ISD::BITCAST, dl, VT,
8499 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8500 }
8501
8502 assert(!VT.isVector() && "Can't handle vector type here!");
8503 unsigned NumVTBits = VT.getSizeInBits();
8504 unsigned NumVTBytes = NumVTBits / 8;
8505 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8506
8507 APInt Val(NumVTBits, 0);
8508 if (DAG.getDataLayout().isLittleEndian()) {
8509 for (unsigned i = 0; i != NumBytes; ++i)
8510 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8511 } else {
8512 for (unsigned i = 0; i != NumBytes; ++i)
8513 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8514 }
8515
8516 // If the "cost" of materializing the integer immediate is less than the cost
8517 // of a load, then it is cost effective to turn the load into the immediate.
8518 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8519 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8520 return DAG.getConstant(Val, dl, VT);
8521 return SDValue();
8522}
8523
8525 const SDLoc &DL,
8526 const SDNodeFlags Flags) {
8527 EVT VT = Base.getValueType();
8528 SDValue Index;
8529
8530 if (Offset.isScalable())
8531 Index = getVScale(DL, Base.getValueType(),
8532 APInt(Base.getValueSizeInBits().getFixedValue(),
8533 Offset.getKnownMinValue()));
8534 else
8535 Index = getConstant(Offset.getFixedValue(), DL, VT);
8536
8537 return getMemBasePlusOffset(Base, Index, DL, Flags);
8538}
8539
8541 const SDLoc &DL,
8542 const SDNodeFlags Flags) {
8543 assert(Offset.getValueType().isInteger());
8544 EVT BasePtrVT = Ptr.getValueType();
8545 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8546 BasePtrVT))
8547 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8548 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8549}
8550
8551/// Returns true if memcpy source is constant data.
8553 uint64_t SrcDelta = 0;
8554 GlobalAddressSDNode *G = nullptr;
8555 if (Src.getOpcode() == ISD::GlobalAddress)
8557 else if (Src.getOpcode() == ISD::ADD &&
8558 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8559 Src.getOperand(1).getOpcode() == ISD::Constant) {
8560 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8561 SrcDelta = Src.getConstantOperandVal(1);
8562 }
8563 if (!G)
8564 return false;
8565
8566 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8567 SrcDelta + G->getOffset());
8568}
8569
8571 SelectionDAG &DAG) {
8572 // On Darwin, -Os means optimize for size without hurting performance, so
8573 // only really optimize for size when -Oz (MinSize) is used.
8575 return MF.getFunction().hasMinSize();
8576 return DAG.shouldOptForSize();
8577}
8578
8580 SmallVector<SDValue, 32> &OutChains, unsigned From,
8581 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8582 SmallVector<SDValue, 16> &OutStoreChains) {
8583 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8584 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8585 SmallVector<SDValue, 16> GluedLoadChains;
8586 for (unsigned i = From; i < To; ++i) {
8587 OutChains.push_back(OutLoadChains[i]);
8588 GluedLoadChains.push_back(OutLoadChains[i]);
8589 }
8590
8591 // Chain for all loads.
8592 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8593 GluedLoadChains);
8594
8595 for (unsigned i = From; i < To; ++i) {
8596 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8597 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8598 ST->getBasePtr(), ST->getMemoryVT(),
8599 ST->getMemOperand());
8600 OutChains.push_back(NewStore);
8601 }
8602}
8603
8605 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8606 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8607 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8608 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8609 // Turn a memcpy of undef to nop.
8610 // FIXME: We need to honor volatile even is Src is undef.
8611 if (Src.isUndef())
8612 return Chain;
8613
8614 // Expand memcpy to a series of load and store ops if the size operand falls
8615 // below a certain threshold.
8616 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8617 // rather than maybe a humongous number of loads and stores.
8618 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8619 const DataLayout &DL = DAG.getDataLayout();
8620 LLVMContext &C = *DAG.getContext();
8621 std::vector<EVT> MemOps;
8622 bool DstAlignCanChange = false;
8624 MachineFrameInfo &MFI = MF.getFrameInfo();
8625 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8627 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8628 DstAlignCanChange = true;
8629 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8630 if (!SrcAlign || Alignment > *SrcAlign)
8631 SrcAlign = Alignment;
8632 assert(SrcAlign && "SrcAlign must be set");
8634 // If marked as volatile, perform a copy even when marked as constant.
8635 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8636 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8637 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8638 const MemOp Op = isZeroConstant
8639 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8640 /*IsZeroMemset*/ true, isVol)
8641 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8642 *SrcAlign, isVol, CopyFromConstant);
8643 if (!TLI.findOptimalMemOpLowering(
8644 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8645 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8646 return SDValue();
8647
8648 if (DstAlignCanChange) {
8649 Type *Ty = MemOps[0].getTypeForEVT(C);
8650 Align NewAlign = DL.getABITypeAlign(Ty);
8651
8652 // Don't promote to an alignment that would require dynamic stack
8653 // realignment which may conflict with optimizations such as tail call
8654 // optimization.
8656 if (!TRI->hasStackRealignment(MF))
8657 if (MaybeAlign StackAlign = DL.getStackAlignment())
8658 NewAlign = std::min(NewAlign, *StackAlign);
8659
8660 if (NewAlign > Alignment) {
8661 // Give the stack frame object a larger alignment if needed.
8662 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8663 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8664 Alignment = NewAlign;
8665 }
8666 }
8667
8668 // Prepare AAInfo for loads/stores after lowering this memcpy.
8669 AAMDNodes NewAAInfo = AAInfo;
8670 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8671
8672 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8673 bool isConstant =
8674 BatchAA && SrcVal &&
8675 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8676
8677 MachineMemOperand::Flags MMOFlags =
8679 SmallVector<SDValue, 16> OutLoadChains;
8680 SmallVector<SDValue, 16> OutStoreChains;
8681 SmallVector<SDValue, 32> OutChains;
8682 unsigned NumMemOps = MemOps.size();
8683 uint64_t SrcOff = 0, DstOff = 0;
8684 for (unsigned i = 0; i != NumMemOps; ++i) {
8685 EVT VT = MemOps[i];
8686 unsigned VTSize = VT.getSizeInBits() / 8;
8687 SDValue Value, Store;
8688
8689 if (VTSize > Size) {
8690 // Issuing an unaligned load / store pair that overlaps with the previous
8691 // pair. Adjust the offset accordingly.
8692 assert(i == NumMemOps-1 && i != 0);
8693 SrcOff -= VTSize - Size;
8694 DstOff -= VTSize - Size;
8695 }
8696
8697 if (CopyFromConstant &&
8698 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8699 // It's unlikely a store of a vector immediate can be done in a single
8700 // instruction. It would require a load from a constantpool first.
8701 // We only handle zero vectors here.
8702 // FIXME: Handle other cases where store of vector immediate is done in
8703 // a single instruction.
8704 ConstantDataArraySlice SubSlice;
8705 if (SrcOff < Slice.Length) {
8706 SubSlice = Slice;
8707 SubSlice.move(SrcOff);
8708 } else {
8709 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8710 SubSlice.Array = nullptr;
8711 SubSlice.Offset = 0;
8712 SubSlice.Length = VTSize;
8713 }
8714 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8715 if (Value.getNode()) {
8716 Store = DAG.getStore(
8717 Chain, dl, Value,
8718 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8719 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8720 OutChains.push_back(Store);
8721 }
8722 }
8723
8724 if (!Store.getNode()) {
8725 // The type might not be legal for the target. This should only happen
8726 // if the type is smaller than a legal type, as on PPC, so the right
8727 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8728 // to Load/Store if NVT==VT.
8729 // FIXME does the case above also need this?
8730 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8731 assert(NVT.bitsGE(VT));
8732
8733 bool isDereferenceable =
8734 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8735 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8736 if (isDereferenceable)
8738 if (isConstant)
8739 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8740
8741 Value = DAG.getExtLoad(
8742 ISD::EXTLOAD, dl, NVT, Chain,
8743 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8744 SrcPtrInfo.getWithOffset(SrcOff), VT,
8745 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8746 OutLoadChains.push_back(Value.getValue(1));
8747
8748 Store = DAG.getTruncStore(
8749 Chain, dl, Value,
8750 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8751 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8752 OutStoreChains.push_back(Store);
8753 }
8754 SrcOff += VTSize;
8755 DstOff += VTSize;
8756 Size -= VTSize;
8757 }
8758
8759 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8761 unsigned NumLdStInMemcpy = OutStoreChains.size();
8762
8763 if (NumLdStInMemcpy) {
8764 // It may be that memcpy might be converted to memset if it's memcpy
8765 // of constants. In such a case, we won't have loads and stores, but
8766 // just stores. In the absence of loads, there is nothing to gang up.
8767 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8768 // If target does not care, just leave as it.
8769 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8770 OutChains.push_back(OutLoadChains[i]);
8771 OutChains.push_back(OutStoreChains[i]);
8772 }
8773 } else {
8774 // Ld/St less than/equal limit set by target.
8775 if (NumLdStInMemcpy <= GluedLdStLimit) {
8776 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8777 NumLdStInMemcpy, OutLoadChains,
8778 OutStoreChains);
8779 } else {
8780 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8781 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8782 unsigned GlueIter = 0;
8783
8784 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8785 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8786 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8787
8788 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8789 OutLoadChains, OutStoreChains);
8790 GlueIter += GluedLdStLimit;
8791 }
8792
8793 // Residual ld/st.
8794 if (RemainingLdStInMemcpy) {
8795 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8796 RemainingLdStInMemcpy, OutLoadChains,
8797 OutStoreChains);
8798 }
8799 }
8800 }
8801 }
8802 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8803}
8804
8806 SDValue Chain, SDValue Dst, SDValue Src,
8807 uint64_t Size, Align Alignment,
8808 bool isVol, bool AlwaysInline,
8809 MachinePointerInfo DstPtrInfo,
8810 MachinePointerInfo SrcPtrInfo,
8811 const AAMDNodes &AAInfo) {
8812 // Turn a memmove of undef to nop.
8813 // FIXME: We need to honor volatile even is Src is undef.
8814 if (Src.isUndef())
8815 return Chain;
8816
8817 // Expand memmove to a series of load and store ops if the size operand falls
8818 // below a certain threshold.
8819 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8820 const DataLayout &DL = DAG.getDataLayout();
8821 LLVMContext &C = *DAG.getContext();
8822 std::vector<EVT> MemOps;
8823 bool DstAlignCanChange = false;
8825 MachineFrameInfo &MFI = MF.getFrameInfo();
8826 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8828 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8829 DstAlignCanChange = true;
8830 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8831 if (!SrcAlign || Alignment > *SrcAlign)
8832 SrcAlign = Alignment;
8833 assert(SrcAlign && "SrcAlign must be set");
8834 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8835 if (!TLI.findOptimalMemOpLowering(
8836 C, MemOps, Limit,
8837 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8838 /*IsVolatile*/ true),
8839 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8840 MF.getFunction().getAttributes()))
8841 return SDValue();
8842
8843 if (DstAlignCanChange) {
8844 Type *Ty = MemOps[0].getTypeForEVT(C);
8845 Align NewAlign = DL.getABITypeAlign(Ty);
8846
8847 // Don't promote to an alignment that would require dynamic stack
8848 // realignment which may conflict with optimizations such as tail call
8849 // optimization.
8851 if (!TRI->hasStackRealignment(MF))
8852 if (MaybeAlign StackAlign = DL.getStackAlignment())
8853 NewAlign = std::min(NewAlign, *StackAlign);
8854
8855 if (NewAlign > Alignment) {
8856 // Give the stack frame object a larger alignment if needed.
8857 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8858 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8859 Alignment = NewAlign;
8860 }
8861 }
8862
8863 // Prepare AAInfo for loads/stores after lowering this memmove.
8864 AAMDNodes NewAAInfo = AAInfo;
8865 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8866
8867 MachineMemOperand::Flags MMOFlags =
8869 uint64_t SrcOff = 0, DstOff = 0;
8870 SmallVector<SDValue, 8> LoadValues;
8871 SmallVector<SDValue, 8> LoadChains;
8872 SmallVector<SDValue, 8> OutChains;
8873 unsigned NumMemOps = MemOps.size();
8874 for (unsigned i = 0; i < NumMemOps; i++) {
8875 EVT VT = MemOps[i];
8876 unsigned VTSize = VT.getSizeInBits() / 8;
8877 SDValue Value;
8878
8879 bool isDereferenceable =
8880 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8881 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8882 if (isDereferenceable)
8884
8885 Value = DAG.getLoad(
8886 VT, dl, Chain,
8887 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8888 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8889 LoadValues.push_back(Value);
8890 LoadChains.push_back(Value.getValue(1));
8891 SrcOff += VTSize;
8892 }
8893 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8894 OutChains.clear();
8895 for (unsigned i = 0; i < NumMemOps; i++) {
8896 EVT VT = MemOps[i];
8897 unsigned VTSize = VT.getSizeInBits() / 8;
8898 SDValue Store;
8899
8900 Store = DAG.getStore(
8901 Chain, dl, LoadValues[i],
8902 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8903 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8904 OutChains.push_back(Store);
8905 DstOff += VTSize;
8906 }
8907
8908 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8909}
8910
8911/// Lower the call to 'memset' intrinsic function into a series of store
8912/// operations.
8913///
8914/// \param DAG Selection DAG where lowered code is placed.
8915/// \param dl Link to corresponding IR location.
8916/// \param Chain Control flow dependency.
8917/// \param Dst Pointer to destination memory location.
8918/// \param Src Value of byte to write into the memory.
8919/// \param Size Number of bytes to write.
8920/// \param Alignment Alignment of the destination in bytes.
8921/// \param isVol True if destination is volatile.
8922/// \param AlwaysInline Makes sure no function call is generated.
8923/// \param DstPtrInfo IR information on the memory pointer.
8924/// \returns New head in the control flow, if lowering was successful, empty
8925/// SDValue otherwise.
8926///
8927/// The function tries to replace 'llvm.memset' intrinsic with several store
8928/// operations and value calculation code. This is usually profitable for small
8929/// memory size or when the semantic requires inlining.
8931 SDValue Chain, SDValue Dst, SDValue Src,
8932 uint64_t Size, Align Alignment, bool isVol,
8933 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8934 const AAMDNodes &AAInfo) {
8935 // Turn a memset of undef to nop.
8936 // FIXME: We need to honor volatile even is Src is undef.
8937 if (Src.isUndef())
8938 return Chain;
8939
8940 // Expand memset to a series of load/store ops if the size operand
8941 // falls below a certain threshold.
8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8943 std::vector<EVT> MemOps;
8944 bool DstAlignCanChange = false;
8945 LLVMContext &C = *DAG.getContext();
8947 MachineFrameInfo &MFI = MF.getFrameInfo();
8948 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8950 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8951 DstAlignCanChange = true;
8952 bool IsZeroVal = isNullConstant(Src);
8953 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
8954
8955 if (!TLI.findOptimalMemOpLowering(
8956 C, MemOps, Limit,
8957 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
8958 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
8959 return SDValue();
8960
8961 if (DstAlignCanChange) {
8962 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
8963 const DataLayout &DL = DAG.getDataLayout();
8964 Align NewAlign = DL.getABITypeAlign(Ty);
8965
8966 // Don't promote to an alignment that would require dynamic stack
8967 // realignment which may conflict with optimizations such as tail call
8968 // optimization.
8970 if (!TRI->hasStackRealignment(MF))
8971 if (MaybeAlign StackAlign = DL.getStackAlignment())
8972 NewAlign = std::min(NewAlign, *StackAlign);
8973
8974 if (NewAlign > Alignment) {
8975 // Give the stack frame object a larger alignment if needed.
8976 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8977 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8978 Alignment = NewAlign;
8979 }
8980 }
8981
8982 SmallVector<SDValue, 8> OutChains;
8983 uint64_t DstOff = 0;
8984 unsigned NumMemOps = MemOps.size();
8985
8986 // Find the largest store and generate the bit pattern for it.
8987 EVT LargestVT = MemOps[0];
8988 for (unsigned i = 1; i < NumMemOps; i++)
8989 if (MemOps[i].bitsGT(LargestVT))
8990 LargestVT = MemOps[i];
8991 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
8992
8993 // Prepare AAInfo for loads/stores after lowering this memset.
8994 AAMDNodes NewAAInfo = AAInfo;
8995 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8996
8997 for (unsigned i = 0; i < NumMemOps; i++) {
8998 EVT VT = MemOps[i];
8999 unsigned VTSize = VT.getSizeInBits() / 8;
9000 if (VTSize > Size) {
9001 // Issuing an unaligned load / store pair that overlaps with the previous
9002 // pair. Adjust the offset accordingly.
9003 assert(i == NumMemOps-1 && i != 0);
9004 DstOff -= VTSize - Size;
9005 }
9006
9007 // If this store is smaller than the largest store see whether we can get
9008 // the smaller value for free with a truncate or extract vector element and
9009 // then store.
9010 SDValue Value = MemSetValue;
9011 if (VT.bitsLT(LargestVT)) {
9012 unsigned Index;
9013 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9014 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9015 if (!LargestVT.isVector() && !VT.isVector() &&
9016 TLI.isTruncateFree(LargestVT, VT))
9017 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9018 else if (LargestVT.isVector() && !VT.isVector() &&
9020 LargestVT.getTypeForEVT(*DAG.getContext()),
9021 VT.getSizeInBits(), Index) &&
9022 TLI.isTypeLegal(SVT) &&
9023 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9024 // Target which can combine store(extractelement VectorTy, Idx) can get
9025 // the smaller value for free.
9026 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9027 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9028 } else
9029 Value = getMemsetValue(Src, VT, DAG, dl);
9030 }
9031 assert(Value.getValueType() == VT && "Value with wrong type.");
9032 SDValue Store = DAG.getStore(
9033 Chain, dl, Value,
9034 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9035 DstPtrInfo.getWithOffset(DstOff), Alignment,
9037 NewAAInfo);
9038 OutChains.push_back(Store);
9039 DstOff += VT.getSizeInBits() / 8;
9040 Size -= VTSize;
9041 }
9042
9043 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9044}
9045
9047 unsigned AS) {
9048 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9049 // pointer operands can be losslessly bitcasted to pointers of address space 0
9050 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9051 report_fatal_error("cannot lower memory intrinsic in address space " +
9052 Twine(AS));
9053 }
9054}
9055
9056std::pair<SDValue, SDValue>
9058 SDValue Mem1, SDValue Size, const CallInst *CI) {
9059 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9060 if (!LibCallName)
9061 return {};
9062
9065 {Mem0, PT},
9066 {Mem1, PT},
9068
9070 bool IsTailCall = false;
9071 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
9072 IsTailCall = CI && CI->isTailCall() &&
9073 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg);
9074
9075 CLI.setDebugLoc(dl)
9076 .setChain(Chain)
9077 .setLibCallee(
9078 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9080 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9081 std::move(Args))
9082 .setTailCall(IsTailCall);
9083
9084 return TLI->LowerCallTo(CLI);
9085}
9086
9088 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9089 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9090 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9091 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9092 BatchAAResults *BatchAA) {
9093 // Check to see if we should lower the memcpy to loads and stores first.
9094 // For cases within the target-specified limits, this is the best choice.
9096 if (ConstantSize) {
9097 // Memcpy with size zero? Just return the original chain.
9098 if (ConstantSize->isZero())
9099 return Chain;
9100
9102 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9103 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9104 if (Result.getNode())
9105 return Result;
9106 }
9107
9108 // Then check to see if we should lower the memcpy with target-specific
9109 // code. If the target chooses to do this, this is the next best.
9110 if (TSI) {
9111 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9112 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9113 DstPtrInfo, SrcPtrInfo);
9114 if (Result.getNode())
9115 return Result;
9116 }
9117
9118 // If we really need inline code and the target declined to provide it,
9119 // use a (potentially long) sequence of loads and stores.
9120 if (AlwaysInline) {
9121 assert(ConstantSize && "AlwaysInline requires a constant size!");
9123 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9124 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9125 }
9126
9129
9130 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9131 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9132 // respect volatile, so they may do things like read or write memory
9133 // beyond the given memory regions. But fixing this isn't easy, and most
9134 // people don't care.
9135
9136 // Emit a library call.
9139 Args.emplace_back(Dst, PtrTy);
9140 Args.emplace_back(Src, PtrTy);
9141 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9142 // FIXME: pass in SDLoc
9144 bool IsTailCall = false;
9145 const char *MemCpyName = TLI->getMemcpyName();
9146
9147 if (OverrideTailCall.has_value()) {
9148 IsTailCall = *OverrideTailCall;
9149 } else {
9150 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9151 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
9152 IsTailCall = CI && CI->isTailCall() &&
9154 ReturnsFirstArg && LowersToMemcpy);
9155 }
9156
9157 CLI.setDebugLoc(dl)
9158 .setChain(Chain)
9159 .setLibCallee(
9160 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9161 Dst.getValueType().getTypeForEVT(*getContext()),
9162 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9163 std::move(Args))
9165 .setTailCall(IsTailCall);
9166
9167 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9168 return CallResult.second;
9169}
9170
9172 SDValue Dst, SDValue Src, SDValue Size,
9173 Type *SizeTy, unsigned ElemSz,
9174 bool isTailCall,
9175 MachinePointerInfo DstPtrInfo,
9176 MachinePointerInfo SrcPtrInfo) {
9177 // Emit a library call.
9180 Args.emplace_back(Dst, ArgTy);
9181 Args.emplace_back(Src, ArgTy);
9182 Args.emplace_back(Size, SizeTy);
9183
9184 RTLIB::Libcall LibraryCall =
9186 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9187 report_fatal_error("Unsupported element size");
9188
9190 CLI.setDebugLoc(dl)
9191 .setChain(Chain)
9192 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9194 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9195 TLI->getPointerTy(getDataLayout())),
9196 std::move(Args))
9198 .setTailCall(isTailCall);
9199
9200 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9201 return CallResult.second;
9202}
9203
9205 SDValue Src, SDValue Size, Align Alignment,
9206 bool isVol, const CallInst *CI,
9207 std::optional<bool> OverrideTailCall,
9208 MachinePointerInfo DstPtrInfo,
9209 MachinePointerInfo SrcPtrInfo,
9210 const AAMDNodes &AAInfo,
9211 BatchAAResults *BatchAA) {
9212 // Check to see if we should lower the memmove to loads and stores first.
9213 // For cases within the target-specified limits, this is the best choice.
9215 if (ConstantSize) {
9216 // Memmove with size zero? Just return the original chain.
9217 if (ConstantSize->isZero())
9218 return Chain;
9219
9221 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9222 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9223 if (Result.getNode())
9224 return Result;
9225 }
9226
9227 // Then check to see if we should lower the memmove with target-specific
9228 // code. If the target chooses to do this, this is the next best.
9229 if (TSI) {
9230 SDValue Result =
9231 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9232 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9233 if (Result.getNode())
9234 return Result;
9235 }
9236
9239
9240 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9241 // not be safe. See memcpy above for more details.
9242
9243 // Emit a library call.
9246 Args.emplace_back(Dst, PtrTy);
9247 Args.emplace_back(Src, PtrTy);
9248 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9249 // FIXME: pass in SDLoc
9251
9252 bool IsTailCall = false;
9253 if (OverrideTailCall.has_value()) {
9254 IsTailCall = *OverrideTailCall;
9255 } else {
9256 bool LowersToMemmove =
9257 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9258 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
9259 IsTailCall = CI && CI->isTailCall() &&
9261 ReturnsFirstArg && LowersToMemmove);
9262 }
9263
9264 CLI.setDebugLoc(dl)
9265 .setChain(Chain)
9266 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9267 Dst.getValueType().getTypeForEVT(*getContext()),
9268 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9269 TLI->getPointerTy(getDataLayout())),
9270 std::move(Args))
9272 .setTailCall(IsTailCall);
9273
9274 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9275 return CallResult.second;
9276}
9277
9279 SDValue Dst, SDValue Src, SDValue Size,
9280 Type *SizeTy, unsigned ElemSz,
9281 bool isTailCall,
9282 MachinePointerInfo DstPtrInfo,
9283 MachinePointerInfo SrcPtrInfo) {
9284 // Emit a library call.
9286 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9287 Args.emplace_back(Dst, IntPtrTy);
9288 Args.emplace_back(Src, IntPtrTy);
9289 Args.emplace_back(Size, SizeTy);
9290
9291 RTLIB::Libcall LibraryCall =
9293 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9294 report_fatal_error("Unsupported element size");
9295
9297 CLI.setDebugLoc(dl)
9298 .setChain(Chain)
9299 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9301 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9302 TLI->getPointerTy(getDataLayout())),
9303 std::move(Args))
9305 .setTailCall(isTailCall);
9306
9307 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9308 return CallResult.second;
9309}
9310
9312 SDValue Src, SDValue Size, Align Alignment,
9313 bool isVol, bool AlwaysInline,
9314 const CallInst *CI,
9315 MachinePointerInfo DstPtrInfo,
9316 const AAMDNodes &AAInfo) {
9317 // Check to see if we should lower the memset to stores first.
9318 // For cases within the target-specified limits, this is the best choice.
9320 if (ConstantSize) {
9321 // Memset with size zero? Just return the original chain.
9322 if (ConstantSize->isZero())
9323 return Chain;
9324
9325 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9326 ConstantSize->getZExtValue(), Alignment,
9327 isVol, false, DstPtrInfo, AAInfo);
9328
9329 if (Result.getNode())
9330 return Result;
9331 }
9332
9333 // Then check to see if we should lower the memset with target-specific
9334 // code. If the target chooses to do this, this is the next best.
9335 if (TSI) {
9336 SDValue Result = TSI->EmitTargetCodeForMemset(
9337 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9338 if (Result.getNode())
9339 return Result;
9340 }
9341
9342 // If we really need inline code and the target declined to provide it,
9343 // use a (potentially long) sequence of loads and stores.
9344 if (AlwaysInline) {
9345 assert(ConstantSize && "AlwaysInline requires a constant size!");
9346 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9347 ConstantSize->getZExtValue(), Alignment,
9348 isVol, true, DstPtrInfo, AAInfo);
9349 assert(Result &&
9350 "getMemsetStores must return a valid sequence when AlwaysInline");
9351 return Result;
9352 }
9353
9355
9356 // Emit a library call.
9357 auto &Ctx = *getContext();
9358 const auto& DL = getDataLayout();
9359
9361 // FIXME: pass in SDLoc
9362 CLI.setDebugLoc(dl).setChain(Chain);
9363
9364 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9365
9366 bool UseBZero = isNullConstant(Src) && BzeroName;
9367 // If zeroing out and bzero is present, use it.
9368 if (UseBZero) {
9370 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9371 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9372 CLI.setLibCallee(
9373 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9374 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9375 } else {
9377 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9378 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9379 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9380 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9381 Dst.getValueType().getTypeForEVT(Ctx),
9382 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9383 TLI->getPointerTy(DL)),
9384 std::move(Args));
9385 }
9386 bool LowersToMemset =
9387 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9388 // If we're going to use bzero, make sure not to tail call unless the
9389 // subsequent return doesn't need a value, as bzero doesn't return the first
9390 // arg unlike memset.
9391 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9392 bool IsTailCall =
9393 CI && CI->isTailCall() &&
9394 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9395 CLI.setDiscardResult().setTailCall(IsTailCall);
9396
9397 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9398 return CallResult.second;
9399}
9400
9403 Type *SizeTy, unsigned ElemSz,
9404 bool isTailCall,
9405 MachinePointerInfo DstPtrInfo) {
9406 // Emit a library call.
9408 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9409 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9410 Args.emplace_back(Size, SizeTy);
9411
9412 RTLIB::Libcall LibraryCall =
9414 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9415 report_fatal_error("Unsupported element size");
9416
9418 CLI.setDebugLoc(dl)
9419 .setChain(Chain)
9420 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9422 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9423 TLI->getPointerTy(getDataLayout())),
9424 std::move(Args))
9426 .setTailCall(isTailCall);
9427
9428 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9429 return CallResult.second;
9430}
9431
9432SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9434 MachineMemOperand *MMO,
9435 ISD::LoadExtType ExtType) {
9437 AddNodeIDNode(ID, Opcode, VTList, Ops);
9438 ID.AddInteger(MemVT.getRawBits());
9439 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9440 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9441 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9442 ID.AddInteger(MMO->getFlags());
9443 void* IP = nullptr;
9444 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9445 E->refineAlignment(MMO);
9446 E->refineRanges(MMO);
9447 return SDValue(E, 0);
9448 }
9449
9450 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9451 VTList, MemVT, MMO, ExtType);
9452 createOperands(N, Ops);
9453
9454 CSEMap.InsertNode(N, IP);
9455 InsertNode(N);
9456 SDValue V(N, 0);
9457 NewSDValueDbgMsg(V, "Creating new node: ", this);
9458 return V;
9459}
9460
9462 EVT MemVT, SDVTList VTs, SDValue Chain,
9463 SDValue Ptr, SDValue Cmp, SDValue Swp,
9464 MachineMemOperand *MMO) {
9465 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9466 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9467 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9468
9469 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9470 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9471}
9472
9473SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9474 SDValue Chain, SDValue Ptr, SDValue Val,
9475 MachineMemOperand *MMO) {
9476 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9477 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9478 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9479 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9480 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9481 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9482 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9483 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9484 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9485 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9486 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9487 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9488 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9489 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9490 Opcode == ISD::ATOMIC_STORE) &&
9491 "Invalid Atomic Op");
9492
9493 EVT VT = Val.getValueType();
9494
9495 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9496 getVTList(VT, MVT::Other);
9497 SDValue Ops[] = {Chain, Ptr, Val};
9498 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9499}
9500
9502 EVT MemVT, EVT VT, SDValue Chain,
9504 SDVTList VTs = getVTList(VT, MVT::Other);
9505 SDValue Ops[] = {Chain, Ptr};
9506 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9507}
9508
9509/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9511 if (Ops.size() == 1)
9512 return Ops[0];
9513
9515 VTs.reserve(Ops.size());
9516 for (const SDValue &Op : Ops)
9517 VTs.push_back(Op.getValueType());
9518 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9519}
9520
9522 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9523 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9525 const AAMDNodes &AAInfo) {
9526 if (Size.hasValue() && !Size.getValue())
9528
9530 MachineMemOperand *MMO =
9531 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9532
9533 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9534}
9535
9537 SDVTList VTList,
9538 ArrayRef<SDValue> Ops, EVT MemVT,
9539 MachineMemOperand *MMO) {
9540 assert(
9541 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9542 Opcode == ISD::PREFETCH ||
9543 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9544 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9545 "Opcode is not a memory-accessing opcode!");
9546
9547 // Memoize the node unless it returns a glue result.
9549 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9551 AddNodeIDNode(ID, Opcode, VTList, Ops);
9552 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9553 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9554 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9555 ID.AddInteger(MMO->getFlags());
9556 ID.AddInteger(MemVT.getRawBits());
9557 void *IP = nullptr;
9558 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9559 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9560 return SDValue(E, 0);
9561 }
9562
9563 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9564 VTList, MemVT, MMO);
9565 createOperands(N, Ops);
9566
9567 CSEMap.InsertNode(N, IP);
9568 } else {
9569 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9570 VTList, MemVT, MMO);
9571 createOperands(N, Ops);
9572 }
9573 InsertNode(N);
9574 SDValue V(N, 0);
9575 NewSDValueDbgMsg(V, "Creating new node: ", this);
9576 return V;
9577}
9578
9580 SDValue Chain, int FrameIndex) {
9581 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9582 const auto VTs = getVTList(MVT::Other);
9583 SDValue Ops[2] = {
9584 Chain,
9585 getFrameIndex(FrameIndex,
9586 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9587 true)};
9588
9590 AddNodeIDNode(ID, Opcode, VTs, Ops);
9591 ID.AddInteger(FrameIndex);
9592 void *IP = nullptr;
9593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9594 return SDValue(E, 0);
9595
9596 LifetimeSDNode *N =
9597 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9598 createOperands(N, Ops);
9599 CSEMap.InsertNode(N, IP);
9600 InsertNode(N);
9601 SDValue V(N, 0);
9602 NewSDValueDbgMsg(V, "Creating new node: ", this);
9603 return V;
9604}
9605
9607 uint64_t Guid, uint64_t Index,
9608 uint32_t Attr) {
9609 const unsigned Opcode = ISD::PSEUDO_PROBE;
9610 const auto VTs = getVTList(MVT::Other);
9611 SDValue Ops[] = {Chain};
9613 AddNodeIDNode(ID, Opcode, VTs, Ops);
9614 ID.AddInteger(Guid);
9615 ID.AddInteger(Index);
9616 void *IP = nullptr;
9617 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9618 return SDValue(E, 0);
9619
9620 auto *N = newSDNode<PseudoProbeSDNode>(
9621 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9622 createOperands(N, Ops);
9623 CSEMap.InsertNode(N, IP);
9624 InsertNode(N);
9625 SDValue V(N, 0);
9626 NewSDValueDbgMsg(V, "Creating new node: ", this);
9627 return V;
9628}
9629
9630/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9631/// MachinePointerInfo record from it. This is particularly useful because the
9632/// code generator has many cases where it doesn't bother passing in a
9633/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9635 SelectionDAG &DAG, SDValue Ptr,
9636 int64_t Offset = 0) {
9637 // If this is FI+Offset, we can model it.
9640 FI->getIndex(), Offset);
9641
9642 // If this is (FI+Offset1)+Offset2, we can model it.
9643 if (Ptr.getOpcode() != ISD::ADD ||
9644 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9645 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9646 return Info;
9647
9648 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9650 DAG.getMachineFunction(), FI,
9651 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9652}
9653
9654/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9655/// MachinePointerInfo record from it. This is particularly useful because the
9656/// code generator has many cases where it doesn't bother passing in a
9657/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9659 SelectionDAG &DAG, SDValue Ptr,
9660 SDValue OffsetOp) {
9661 // If the 'Offset' value isn't a constant, we can't handle this.
9663 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9664 if (OffsetOp.isUndef())
9665 return InferPointerInfo(Info, DAG, Ptr);
9666 return Info;
9667}
9668
9670 EVT VT, const SDLoc &dl, SDValue Chain,
9672 MachinePointerInfo PtrInfo, EVT MemVT,
9673 Align Alignment,
9674 MachineMemOperand::Flags MMOFlags,
9675 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9676 assert(Chain.getValueType() == MVT::Other &&
9677 "Invalid chain type");
9678
9679 MMOFlags |= MachineMemOperand::MOLoad;
9680 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9681 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9682 // clients.
9683 if (PtrInfo.V.isNull())
9684 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9685
9686 TypeSize Size = MemVT.getStoreSize();
9688 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9689 Alignment, AAInfo, Ranges);
9690 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9691}
9692
9694 EVT VT, const SDLoc &dl, SDValue Chain,
9695 SDValue Ptr, SDValue Offset, EVT MemVT,
9696 MachineMemOperand *MMO) {
9697 if (VT == MemVT) {
9698 ExtType = ISD::NON_EXTLOAD;
9699 } else if (ExtType == ISD::NON_EXTLOAD) {
9700 assert(VT == MemVT && "Non-extending load from different memory type!");
9701 } else {
9702 // Extending load.
9703 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9704 "Should only be an extending load, not truncating!");
9705 assert(VT.isInteger() == MemVT.isInteger() &&
9706 "Cannot convert from FP to Int or Int -> FP!");
9707 assert(VT.isVector() == MemVT.isVector() &&
9708 "Cannot use an ext load to convert to or from a vector!");
9709 assert((!VT.isVector() ||
9711 "Cannot use an ext load to change the number of vector elements!");
9712 }
9713
9714 assert((!MMO->getRanges() ||
9716 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9717 MemVT.isInteger())) &&
9718 "Range metadata and load type must match!");
9719
9720 bool Indexed = AM != ISD::UNINDEXED;
9721 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9722
9723 SDVTList VTs = Indexed ?
9724 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9725 SDValue Ops[] = { Chain, Ptr, Offset };
9727 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9728 ID.AddInteger(MemVT.getRawBits());
9729 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9730 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9731 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9732 ID.AddInteger(MMO->getFlags());
9733 void *IP = nullptr;
9734 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9735 E->refineAlignment(MMO);
9736 E->refineRanges(MMO);
9737 return SDValue(E, 0);
9738 }
9739 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9740 ExtType, MemVT, MMO);
9741 createOperands(N, Ops);
9742
9743 CSEMap.InsertNode(N, IP);
9744 InsertNode(N);
9745 SDValue V(N, 0);
9746 NewSDValueDbgMsg(V, "Creating new node: ", this);
9747 return V;
9748}
9749
9752 MaybeAlign Alignment,
9753 MachineMemOperand::Flags MMOFlags,
9754 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9755 SDValue Undef = getUNDEF(Ptr.getValueType());
9756 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9757 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9758}
9759
9762 SDValue Undef = getUNDEF(Ptr.getValueType());
9763 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9764 VT, MMO);
9765}
9766
9768 EVT VT, SDValue Chain, SDValue Ptr,
9769 MachinePointerInfo PtrInfo, EVT MemVT,
9770 MaybeAlign Alignment,
9771 MachineMemOperand::Flags MMOFlags,
9772 const AAMDNodes &AAInfo) {
9773 SDValue Undef = getUNDEF(Ptr.getValueType());
9774 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9775 MemVT, Alignment, MMOFlags, AAInfo);
9776}
9777
9779 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9780 MachineMemOperand *MMO) {
9781 SDValue Undef = getUNDEF(Ptr.getValueType());
9782 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9783 MemVT, MMO);
9784}
9785
9789 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9790 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9791 // Don't propagate the invariant or dereferenceable flags.
9792 auto MMOFlags =
9793 LD->getMemOperand()->getFlags() &
9795 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9796 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9797 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9798}
9799
9802 Align Alignment,
9803 MachineMemOperand::Flags MMOFlags,
9804 const AAMDNodes &AAInfo) {
9805 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9806
9807 MMOFlags |= MachineMemOperand::MOStore;
9808 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9809
9810 if (PtrInfo.V.isNull())
9811 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9812
9815 MachineMemOperand *MMO =
9816 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9817 return getStore(Chain, dl, Val, Ptr, MMO);
9818}
9819
9822 SDValue Undef = getUNDEF(Ptr.getValueType());
9823 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9825}
9826
9830 bool IsTruncating) {
9831 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9832 EVT VT = Val.getValueType();
9833 if (VT == SVT) {
9834 IsTruncating = false;
9835 } else if (!IsTruncating) {
9836 assert(VT == SVT && "No-truncating store from different memory type!");
9837 } else {
9839 "Should only be a truncating store, not extending!");
9840 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9841 assert(VT.isVector() == SVT.isVector() &&
9842 "Cannot use trunc store to convert to or from a vector!");
9843 assert((!VT.isVector() ||
9845 "Cannot use trunc store to change the number of vector elements!");
9846 }
9847
9848 bool Indexed = AM != ISD::UNINDEXED;
9849 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9850 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9851 : getVTList(MVT::Other);
9852 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9854 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9855 ID.AddInteger(SVT.getRawBits());
9856 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9857 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9858 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9859 ID.AddInteger(MMO->getFlags());
9860 void *IP = nullptr;
9861 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9862 cast<StoreSDNode>(E)->refineAlignment(MMO);
9863 return SDValue(E, 0);
9864 }
9865 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9866 IsTruncating, SVT, MMO);
9867 createOperands(N, Ops);
9868
9869 CSEMap.InsertNode(N, IP);
9870 InsertNode(N);
9871 SDValue V(N, 0);
9872 NewSDValueDbgMsg(V, "Creating new node: ", this);
9873 return V;
9874}
9875
9878 EVT SVT, Align Alignment,
9879 MachineMemOperand::Flags MMOFlags,
9880 const AAMDNodes &AAInfo) {
9881 assert(Chain.getValueType() == MVT::Other &&
9882 "Invalid chain type");
9883
9884 MMOFlags |= MachineMemOperand::MOStore;
9885 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9886
9887 if (PtrInfo.V.isNull())
9888 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9889
9891 MachineMemOperand *MMO = MF.getMachineMemOperand(
9892 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9893 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9894}
9895
9897 SDValue Ptr, EVT SVT,
9898 MachineMemOperand *MMO) {
9899 SDValue Undef = getUNDEF(Ptr.getValueType());
9900 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
9901}
9902
9906 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
9907 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
9908 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9909 ST->getMemoryVT(), ST->getMemOperand(), AM,
9910 ST->isTruncatingStore());
9911}
9912
9914 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
9915 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
9916 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9917 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9918 const MDNode *Ranges, bool IsExpanding) {
9919 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9920
9921 MMOFlags |= MachineMemOperand::MOLoad;
9922 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9923 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9924 // clients.
9925 if (PtrInfo.V.isNull())
9926 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9927
9928 TypeSize Size = MemVT.getStoreSize();
9930 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9931 Alignment, AAInfo, Ranges);
9932 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
9933 MMO, IsExpanding);
9934}
9935
9937 ISD::LoadExtType ExtType, EVT VT,
9938 const SDLoc &dl, SDValue Chain, SDValue Ptr,
9939 SDValue Offset, SDValue Mask, SDValue EVL,
9940 EVT MemVT, MachineMemOperand *MMO,
9941 bool IsExpanding) {
9942 bool Indexed = AM != ISD::UNINDEXED;
9943 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9944
9945 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9946 : getVTList(VT, MVT::Other);
9947 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
9949 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
9950 ID.AddInteger(MemVT.getRawBits());
9951 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
9952 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9953 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9954 ID.AddInteger(MMO->getFlags());
9955 void *IP = nullptr;
9956 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9957 E->refineAlignment(MMO);
9958 E->refineRanges(MMO);
9959 return SDValue(E, 0);
9960 }
9961 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9962 ExtType, IsExpanding, MemVT, MMO);
9963 createOperands(N, Ops);
9964
9965 CSEMap.InsertNode(N, IP);
9966 InsertNode(N);
9967 SDValue V(N, 0);
9968 NewSDValueDbgMsg(V, "Creating new node: ", this);
9969 return V;
9970}
9971
9973 SDValue Ptr, SDValue Mask, SDValue EVL,
9974 MachinePointerInfo PtrInfo,
9975 MaybeAlign Alignment,
9976 MachineMemOperand::Flags MMOFlags,
9977 const AAMDNodes &AAInfo, const MDNode *Ranges,
9978 bool IsExpanding) {
9979 SDValue Undef = getUNDEF(Ptr.getValueType());
9980 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9981 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
9982 IsExpanding);
9983}
9984
9986 SDValue Ptr, SDValue Mask, SDValue EVL,
9987 MachineMemOperand *MMO, bool IsExpanding) {
9988 SDValue Undef = getUNDEF(Ptr.getValueType());
9989 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9990 Mask, EVL, VT, MMO, IsExpanding);
9991}
9992
9994 EVT VT, SDValue Chain, SDValue Ptr,
9995 SDValue Mask, SDValue EVL,
9996 MachinePointerInfo PtrInfo, EVT MemVT,
9997 MaybeAlign Alignment,
9998 MachineMemOperand::Flags MMOFlags,
9999 const AAMDNodes &AAInfo, bool IsExpanding) {
10000 SDValue Undef = getUNDEF(Ptr.getValueType());
10001 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10002 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10003 IsExpanding);
10004}
10005
10007 EVT VT, SDValue Chain, SDValue Ptr,
10008 SDValue Mask, SDValue EVL, EVT MemVT,
10009 MachineMemOperand *MMO, bool IsExpanding) {
10010 SDValue Undef = getUNDEF(Ptr.getValueType());
10011 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10012 EVL, MemVT, MMO, IsExpanding);
10013}
10014
10018 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10019 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10020 // Don't propagate the invariant or dereferenceable flags.
10021 auto MMOFlags =
10022 LD->getMemOperand()->getFlags() &
10024 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10025 LD->getChain(), Base, Offset, LD->getMask(),
10026 LD->getVectorLength(), LD->getPointerInfo(),
10027 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10028 nullptr, LD->isExpandingLoad());
10029}
10030
10033 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10034 ISD::MemIndexedMode AM, bool IsTruncating,
10035 bool IsCompressing) {
10036 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10037 bool Indexed = AM != ISD::UNINDEXED;
10038 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10039 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10040 : getVTList(MVT::Other);
10041 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10043 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10044 ID.AddInteger(MemVT.getRawBits());
10045 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10046 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10047 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10048 ID.AddInteger(MMO->getFlags());
10049 void *IP = nullptr;
10050 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10051 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10052 return SDValue(E, 0);
10053 }
10054 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10055 IsTruncating, IsCompressing, MemVT, MMO);
10056 createOperands(N, Ops);
10057
10058 CSEMap.InsertNode(N, IP);
10059 InsertNode(N);
10060 SDValue V(N, 0);
10061 NewSDValueDbgMsg(V, "Creating new node: ", this);
10062 return V;
10063}
10064
10066 SDValue Val, SDValue Ptr, SDValue Mask,
10067 SDValue EVL, MachinePointerInfo PtrInfo,
10068 EVT SVT, Align Alignment,
10069 MachineMemOperand::Flags MMOFlags,
10070 const AAMDNodes &AAInfo,
10071 bool IsCompressing) {
10072 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10073
10074 MMOFlags |= MachineMemOperand::MOStore;
10075 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10076
10077 if (PtrInfo.V.isNull())
10078 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10079
10081 MachineMemOperand *MMO = MF.getMachineMemOperand(
10082 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10083 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10084 IsCompressing);
10085}
10086
10088 SDValue Val, SDValue Ptr, SDValue Mask,
10089 SDValue EVL, EVT SVT,
10090 MachineMemOperand *MMO,
10091 bool IsCompressing) {
10092 EVT VT = Val.getValueType();
10093
10094 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10095 if (VT == SVT)
10096 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10097 EVL, VT, MMO, ISD::UNINDEXED,
10098 /*IsTruncating*/ false, IsCompressing);
10099
10101 "Should only be a truncating store, not extending!");
10102 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10103 assert(VT.isVector() == SVT.isVector() &&
10104 "Cannot use trunc store to convert to or from a vector!");
10105 assert((!VT.isVector() ||
10107 "Cannot use trunc store to change the number of vector elements!");
10108
10109 SDVTList VTs = getVTList(MVT::Other);
10110 SDValue Undef = getUNDEF(Ptr.getValueType());
10111 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10113 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10114 ID.AddInteger(SVT.getRawBits());
10115 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10116 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10117 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10118 ID.AddInteger(MMO->getFlags());
10119 void *IP = nullptr;
10120 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10121 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10122 return SDValue(E, 0);
10123 }
10124 auto *N =
10125 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10126 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10127 createOperands(N, Ops);
10128
10129 CSEMap.InsertNode(N, IP);
10130 InsertNode(N);
10131 SDValue V(N, 0);
10132 NewSDValueDbgMsg(V, "Creating new node: ", this);
10133 return V;
10134}
10135
10139 auto *ST = cast<VPStoreSDNode>(OrigStore);
10140 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10141 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10142 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10143 Offset, ST->getMask(), ST->getVectorLength()};
10145 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10146 ID.AddInteger(ST->getMemoryVT().getRawBits());
10147 ID.AddInteger(ST->getRawSubclassData());
10148 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10149 ID.AddInteger(ST->getMemOperand()->getFlags());
10150 void *IP = nullptr;
10151 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10152 return SDValue(E, 0);
10153
10154 auto *N = newSDNode<VPStoreSDNode>(
10155 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10156 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10157 createOperands(N, Ops);
10158
10159 CSEMap.InsertNode(N, IP);
10160 InsertNode(N);
10161 SDValue V(N, 0);
10162 NewSDValueDbgMsg(V, "Creating new node: ", this);
10163 return V;
10164}
10165
10167 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10168 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10169 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10170 bool Indexed = AM != ISD::UNINDEXED;
10171 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10172
10173 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10174 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10175 : getVTList(VT, MVT::Other);
10177 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10178 ID.AddInteger(VT.getRawBits());
10179 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10180 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10181 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10182
10183 void *IP = nullptr;
10184 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10185 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10186 return SDValue(E, 0);
10187 }
10188
10189 auto *N =
10190 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10191 ExtType, IsExpanding, MemVT, MMO);
10192 createOperands(N, Ops);
10193 CSEMap.InsertNode(N, IP);
10194 InsertNode(N);
10195 SDValue V(N, 0);
10196 NewSDValueDbgMsg(V, "Creating new node: ", this);
10197 return V;
10198}
10199
10201 SDValue Ptr, SDValue Stride,
10202 SDValue Mask, SDValue EVL,
10203 MachineMemOperand *MMO,
10204 bool IsExpanding) {
10205 SDValue Undef = getUNDEF(Ptr.getValueType());
10207 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10208}
10209
10211 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10212 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10213 MachineMemOperand *MMO, bool IsExpanding) {
10214 SDValue Undef = getUNDEF(Ptr.getValueType());
10215 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10216 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10217}
10218
10220 SDValue Val, SDValue Ptr,
10221 SDValue Offset, SDValue Stride,
10222 SDValue Mask, SDValue EVL, EVT MemVT,
10223 MachineMemOperand *MMO,
10225 bool IsTruncating, bool IsCompressing) {
10226 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10227 bool Indexed = AM != ISD::UNINDEXED;
10228 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10229 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10230 : getVTList(MVT::Other);
10231 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10233 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10234 ID.AddInteger(MemVT.getRawBits());
10235 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10236 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10237 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10238 void *IP = nullptr;
10239 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10240 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10241 return SDValue(E, 0);
10242 }
10243 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10244 VTs, AM, IsTruncating,
10245 IsCompressing, MemVT, MMO);
10246 createOperands(N, Ops);
10247
10248 CSEMap.InsertNode(N, IP);
10249 InsertNode(N);
10250 SDValue V(N, 0);
10251 NewSDValueDbgMsg(V, "Creating new node: ", this);
10252 return V;
10253}
10254
10256 SDValue Val, SDValue Ptr,
10257 SDValue Stride, SDValue Mask,
10258 SDValue EVL, EVT SVT,
10259 MachineMemOperand *MMO,
10260 bool IsCompressing) {
10261 EVT VT = Val.getValueType();
10262
10263 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10264 if (VT == SVT)
10265 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10266 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10267 /*IsTruncating*/ false, IsCompressing);
10268
10270 "Should only be a truncating store, not extending!");
10271 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10272 assert(VT.isVector() == SVT.isVector() &&
10273 "Cannot use trunc store to convert to or from a vector!");
10274 assert((!VT.isVector() ||
10276 "Cannot use trunc store to change the number of vector elements!");
10277
10278 SDVTList VTs = getVTList(MVT::Other);
10279 SDValue Undef = getUNDEF(Ptr.getValueType());
10280 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10282 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10283 ID.AddInteger(SVT.getRawBits());
10284 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10285 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10286 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10287 void *IP = nullptr;
10288 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10289 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10290 return SDValue(E, 0);
10291 }
10292 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10293 VTs, ISD::UNINDEXED, true,
10294 IsCompressing, SVT, MMO);
10295 createOperands(N, Ops);
10296
10297 CSEMap.InsertNode(N, IP);
10298 InsertNode(N);
10299 SDValue V(N, 0);
10300 NewSDValueDbgMsg(V, "Creating new node: ", this);
10301 return V;
10302}
10303
10306 ISD::MemIndexType IndexType) {
10307 assert(Ops.size() == 6 && "Incompatible number of operands");
10308
10310 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10311 ID.AddInteger(VT.getRawBits());
10312 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10313 dl.getIROrder(), VTs, VT, MMO, IndexType));
10314 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10315 ID.AddInteger(MMO->getFlags());
10316 void *IP = nullptr;
10317 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10318 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10319 return SDValue(E, 0);
10320 }
10321
10322 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10323 VT, MMO, IndexType);
10324 createOperands(N, Ops);
10325
10326 assert(N->getMask().getValueType().getVectorElementCount() ==
10327 N->getValueType(0).getVectorElementCount() &&
10328 "Vector width mismatch between mask and data");
10329 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10330 N->getValueType(0).getVectorElementCount().isScalable() &&
10331 "Scalable flags of index and data do not match");
10333 N->getIndex().getValueType().getVectorElementCount(),
10334 N->getValueType(0).getVectorElementCount()) &&
10335 "Vector width mismatch between index and data");
10336 assert(isa<ConstantSDNode>(N->getScale()) &&
10337 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10338 "Scale should be a constant power of 2");
10339
10340 CSEMap.InsertNode(N, IP);
10341 InsertNode(N);
10342 SDValue V(N, 0);
10343 NewSDValueDbgMsg(V, "Creating new node: ", this);
10344 return V;
10345}
10346
10349 MachineMemOperand *MMO,
10350 ISD::MemIndexType IndexType) {
10351 assert(Ops.size() == 7 && "Incompatible number of operands");
10352
10354 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10355 ID.AddInteger(VT.getRawBits());
10356 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10357 dl.getIROrder(), VTs, VT, MMO, IndexType));
10358 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10359 ID.AddInteger(MMO->getFlags());
10360 void *IP = nullptr;
10361 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10362 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10363 return SDValue(E, 0);
10364 }
10365 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10366 VT, MMO, IndexType);
10367 createOperands(N, Ops);
10368
10369 assert(N->getMask().getValueType().getVectorElementCount() ==
10370 N->getValue().getValueType().getVectorElementCount() &&
10371 "Vector width mismatch between mask and data");
10372 assert(
10373 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10374 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10375 "Scalable flags of index and data do not match");
10377 N->getIndex().getValueType().getVectorElementCount(),
10378 N->getValue().getValueType().getVectorElementCount()) &&
10379 "Vector width mismatch between index and data");
10380 assert(isa<ConstantSDNode>(N->getScale()) &&
10381 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10382 "Scale should be a constant power of 2");
10383
10384 CSEMap.InsertNode(N, IP);
10385 InsertNode(N);
10386 SDValue V(N, 0);
10387 NewSDValueDbgMsg(V, "Creating new node: ", this);
10388 return V;
10389}
10390
10393 SDValue PassThru, EVT MemVT,
10394 MachineMemOperand *MMO,
10396 ISD::LoadExtType ExtTy, bool isExpanding) {
10397 bool Indexed = AM != ISD::UNINDEXED;
10398 assert((Indexed || Offset.isUndef()) &&
10399 "Unindexed masked load with an offset!");
10400 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10401 : getVTList(VT, MVT::Other);
10402 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10404 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10405 ID.AddInteger(MemVT.getRawBits());
10406 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10407 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10408 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10409 ID.AddInteger(MMO->getFlags());
10410 void *IP = nullptr;
10411 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10412 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10413 return SDValue(E, 0);
10414 }
10415 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10416 AM, ExtTy, isExpanding, MemVT, MMO);
10417 createOperands(N, Ops);
10418
10419 CSEMap.InsertNode(N, IP);
10420 InsertNode(N);
10421 SDValue V(N, 0);
10422 NewSDValueDbgMsg(V, "Creating new node: ", this);
10423 return V;
10424}
10425
10430 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10431 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10432 Offset, LD->getMask(), LD->getPassThru(),
10433 LD->getMemoryVT(), LD->getMemOperand(), AM,
10434 LD->getExtensionType(), LD->isExpandingLoad());
10435}
10436
10439 SDValue Mask, EVT MemVT,
10440 MachineMemOperand *MMO,
10441 ISD::MemIndexedMode AM, bool IsTruncating,
10442 bool IsCompressing) {
10443 assert(Chain.getValueType() == MVT::Other &&
10444 "Invalid chain type");
10445 bool Indexed = AM != ISD::UNINDEXED;
10446 assert((Indexed || Offset.isUndef()) &&
10447 "Unindexed masked store with an offset!");
10448 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10449 : getVTList(MVT::Other);
10450 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10452 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10453 ID.AddInteger(MemVT.getRawBits());
10454 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10455 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10456 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10457 ID.AddInteger(MMO->getFlags());
10458 void *IP = nullptr;
10459 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10460 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10461 return SDValue(E, 0);
10462 }
10463 auto *N =
10464 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10465 IsTruncating, IsCompressing, MemVT, MMO);
10466 createOperands(N, Ops);
10467
10468 CSEMap.InsertNode(N, IP);
10469 InsertNode(N);
10470 SDValue V(N, 0);
10471 NewSDValueDbgMsg(V, "Creating new node: ", this);
10472 return V;
10473}
10474
10479 assert(ST->getOffset().isUndef() &&
10480 "Masked store is already a indexed store!");
10481 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10482 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10483 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10484}
10485
10488 MachineMemOperand *MMO,
10489 ISD::MemIndexType IndexType,
10490 ISD::LoadExtType ExtTy) {
10491 assert(Ops.size() == 6 && "Incompatible number of operands");
10492
10494 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10495 ID.AddInteger(MemVT.getRawBits());
10496 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10497 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10498 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10499 ID.AddInteger(MMO->getFlags());
10500 void *IP = nullptr;
10501 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10502 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10503 return SDValue(E, 0);
10504 }
10505
10506 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10507 VTs, MemVT, MMO, IndexType, ExtTy);
10508 createOperands(N, Ops);
10509
10510 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10511 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10512 assert(N->getMask().getValueType().getVectorElementCount() ==
10513 N->getValueType(0).getVectorElementCount() &&
10514 "Vector width mismatch between mask and data");
10515 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10516 N->getValueType(0).getVectorElementCount().isScalable() &&
10517 "Scalable flags of index and data do not match");
10519 N->getIndex().getValueType().getVectorElementCount(),
10520 N->getValueType(0).getVectorElementCount()) &&
10521 "Vector width mismatch between index and data");
10522 assert(isa<ConstantSDNode>(N->getScale()) &&
10523 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10524 "Scale should be a constant power of 2");
10525
10526 CSEMap.InsertNode(N, IP);
10527 InsertNode(N);
10528 SDValue V(N, 0);
10529 NewSDValueDbgMsg(V, "Creating new node: ", this);
10530 return V;
10531}
10532
10535 MachineMemOperand *MMO,
10536 ISD::MemIndexType IndexType,
10537 bool IsTrunc) {
10538 assert(Ops.size() == 6 && "Incompatible number of operands");
10539
10541 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10542 ID.AddInteger(MemVT.getRawBits());
10543 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10544 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10545 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10546 ID.AddInteger(MMO->getFlags());
10547 void *IP = nullptr;
10548 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10549 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10550 return SDValue(E, 0);
10551 }
10552
10553 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10554 VTs, MemVT, MMO, IndexType, IsTrunc);
10555 createOperands(N, Ops);
10556
10557 assert(N->getMask().getValueType().getVectorElementCount() ==
10558 N->getValue().getValueType().getVectorElementCount() &&
10559 "Vector width mismatch between mask and data");
10560 assert(
10561 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10562 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10563 "Scalable flags of index and data do not match");
10565 N->getIndex().getValueType().getVectorElementCount(),
10566 N->getValue().getValueType().getVectorElementCount()) &&
10567 "Vector width mismatch between index and data");
10568 assert(isa<ConstantSDNode>(N->getScale()) &&
10569 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10570 "Scale should be a constant power of 2");
10571
10572 CSEMap.InsertNode(N, IP);
10573 InsertNode(N);
10574 SDValue V(N, 0);
10575 NewSDValueDbgMsg(V, "Creating new node: ", this);
10576 return V;
10577}
10578
10580 const SDLoc &dl, ArrayRef<SDValue> Ops,
10581 MachineMemOperand *MMO,
10582 ISD::MemIndexType IndexType) {
10583 assert(Ops.size() == 7 && "Incompatible number of operands");
10584
10586 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10587 ID.AddInteger(MemVT.getRawBits());
10588 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10589 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10591 ID.AddInteger(MMO->getFlags());
10592 void *IP = nullptr;
10593 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10594 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10595 return SDValue(E, 0);
10596 }
10597
10598 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10599 VTs, MemVT, MMO, IndexType);
10600 createOperands(N, Ops);
10601
10602 assert(N->getMask().getValueType().getVectorElementCount() ==
10603 N->getIndex().getValueType().getVectorElementCount() &&
10604 "Vector width mismatch between mask and data");
10605 assert(isa<ConstantSDNode>(N->getScale()) &&
10606 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10607 "Scale should be a constant power of 2");
10608 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10609
10610 CSEMap.InsertNode(N, IP);
10611 InsertNode(N);
10612 SDValue V(N, 0);
10613 NewSDValueDbgMsg(V, "Creating new node: ", this);
10614 return V;
10615}
10616
10618 SDValue Ptr, SDValue Mask, SDValue EVL,
10619 MachineMemOperand *MMO) {
10620 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10621 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10623 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10624 ID.AddInteger(VT.getRawBits());
10625 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10626 VTs, VT, MMO));
10627 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10628 ID.AddInteger(MMO->getFlags());
10629 void *IP = nullptr;
10630 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10631 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10632 return SDValue(E, 0);
10633 }
10634 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10635 VT, MMO);
10636 createOperands(N, Ops);
10637
10638 CSEMap.InsertNode(N, IP);
10639 InsertNode(N);
10640 SDValue V(N, 0);
10641 NewSDValueDbgMsg(V, "Creating new node: ", this);
10642 return V;
10643}
10644
10646 EVT MemVT, MachineMemOperand *MMO) {
10647 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10648 SDVTList VTs = getVTList(MVT::Other);
10649 SDValue Ops[] = {Chain, Ptr};
10651 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10652 ID.AddInteger(MemVT.getRawBits());
10653 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10654 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10655 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10656 ID.AddInteger(MMO->getFlags());
10657 void *IP = nullptr;
10658 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10659 return SDValue(E, 0);
10660
10661 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10662 dl.getDebugLoc(), VTs, MemVT, MMO);
10663 createOperands(N, Ops);
10664
10665 CSEMap.InsertNode(N, IP);
10666 InsertNode(N);
10667 SDValue V(N, 0);
10668 NewSDValueDbgMsg(V, "Creating new node: ", this);
10669 return V;
10670}
10671
10673 EVT MemVT, MachineMemOperand *MMO) {
10674 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10675 SDVTList VTs = getVTList(MVT::Other);
10676 SDValue Ops[] = {Chain, Ptr};
10678 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10679 ID.AddInteger(MemVT.getRawBits());
10680 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10681 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10682 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10683 ID.AddInteger(MMO->getFlags());
10684 void *IP = nullptr;
10685 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10686 return SDValue(E, 0);
10687
10688 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10689 dl.getDebugLoc(), VTs, MemVT, MMO);
10690 createOperands(N, Ops);
10691
10692 CSEMap.InsertNode(N, IP);
10693 InsertNode(N);
10694 SDValue V(N, 0);
10695 NewSDValueDbgMsg(V, "Creating new node: ", this);
10696 return V;
10697}
10698
10700 // select undef, T, F --> T (if T is a constant), otherwise F
10701 // select, ?, undef, F --> F
10702 // select, ?, T, undef --> T
10703 if (Cond.isUndef())
10704 return isConstantValueOfAnyType(T) ? T : F;
10705 if (T.isUndef())
10706 return F;
10707 if (F.isUndef())
10708 return T;
10709
10710 // select true, T, F --> T
10711 // select false, T, F --> F
10712 if (auto C = isBoolConstant(Cond))
10713 return *C ? T : F;
10714
10715 // select ?, T, T --> T
10716 if (T == F)
10717 return T;
10718
10719 return SDValue();
10720}
10721
10723 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10724 if (X.isUndef())
10725 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10726 // shift X, undef --> undef (because it may shift by the bitwidth)
10727 if (Y.isUndef())
10728 return getUNDEF(X.getValueType());
10729
10730 // shift 0, Y --> 0
10731 // shift X, 0 --> X
10733 return X;
10734
10735 // shift X, C >= bitwidth(X) --> undef
10736 // All vector elements must be too big (or undef) to avoid partial undefs.
10737 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10738 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10739 };
10740 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10741 return getUNDEF(X.getValueType());
10742
10743 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10744 if (X.getValueType().getScalarType() == MVT::i1)
10745 return X;
10746
10747 return SDValue();
10748}
10749
10751 SDNodeFlags Flags) {
10752 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10753 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10754 // operation is poison. That result can be relaxed to undef.
10755 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10756 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10757 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10758 (YC && YC->getValueAPF().isNaN());
10759 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10760 (YC && YC->getValueAPF().isInfinity());
10761
10762 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10763 return getUNDEF(X.getValueType());
10764
10765 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10766 return getUNDEF(X.getValueType());
10767
10768 if (!YC)
10769 return SDValue();
10770
10771 // X + -0.0 --> X
10772 if (Opcode == ISD::FADD)
10773 if (YC->getValueAPF().isNegZero())
10774 return X;
10775
10776 // X - +0.0 --> X
10777 if (Opcode == ISD::FSUB)
10778 if (YC->getValueAPF().isPosZero())
10779 return X;
10780
10781 // X * 1.0 --> X
10782 // X / 1.0 --> X
10783 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10784 if (YC->getValueAPF().isExactlyValue(1.0))
10785 return X;
10786
10787 // X * 0.0 --> 0.0
10788 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10789 if (YC->getValueAPF().isZero())
10790 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10791
10792 return SDValue();
10793}
10794
10796 SDValue Ptr, SDValue SV, unsigned Align) {
10797 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10798 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10799}
10800
10801SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10803 switch (Ops.size()) {
10804 case 0: return getNode(Opcode, DL, VT);
10805 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10806 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10807 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10808 default: break;
10809 }
10810
10811 // Copy from an SDUse array into an SDValue array for use with
10812 // the regular getNode logic.
10814 return getNode(Opcode, DL, VT, NewOps);
10815}
10816
10817SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10819 SDNodeFlags Flags;
10820 if (Inserter)
10821 Flags = Inserter->getFlags();
10822 return getNode(Opcode, DL, VT, Ops, Flags);
10823}
10824
10825SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10826 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10827 unsigned NumOps = Ops.size();
10828 switch (NumOps) {
10829 case 0: return getNode(Opcode, DL, VT);
10830 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10831 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10832 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10833 default: break;
10834 }
10835
10836#ifndef NDEBUG
10837 for (const auto &Op : Ops)
10838 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10839 "Operand is DELETED_NODE!");
10840#endif
10841
10842 switch (Opcode) {
10843 default: break;
10844 case ISD::BUILD_VECTOR:
10845 // Attempt to simplify BUILD_VECTOR.
10846 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10847 return V;
10848 break;
10850 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10851 return V;
10852 break;
10853 case ISD::SELECT_CC:
10854 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10855 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10856 "LHS and RHS of condition must have same type!");
10857 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10858 "True and False arms of SelectCC must have same type!");
10859 assert(Ops[2].getValueType() == VT &&
10860 "select_cc node must be of same type as true and false value!");
10861 assert((!Ops[0].getValueType().isVector() ||
10862 Ops[0].getValueType().getVectorElementCount() ==
10863 VT.getVectorElementCount()) &&
10864 "Expected select_cc with vector result to have the same sized "
10865 "comparison type!");
10866 break;
10867 case ISD::BR_CC:
10868 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10869 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10870 "LHS/RHS of comparison should match types!");
10871 break;
10872 case ISD::VP_ADD:
10873 case ISD::VP_SUB:
10874 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10875 if (VT.getScalarType() == MVT::i1)
10876 Opcode = ISD::VP_XOR;
10877 break;
10878 case ISD::VP_MUL:
10879 // If it is VP_MUL mask operation then turn it to VP_AND
10880 if (VT.getScalarType() == MVT::i1)
10881 Opcode = ISD::VP_AND;
10882 break;
10883 case ISD::VP_REDUCE_MUL:
10884 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10885 if (VT == MVT::i1)
10886 Opcode = ISD::VP_REDUCE_AND;
10887 break;
10888 case ISD::VP_REDUCE_ADD:
10889 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10890 if (VT == MVT::i1)
10891 Opcode = ISD::VP_REDUCE_XOR;
10892 break;
10893 case ISD::VP_REDUCE_SMAX:
10894 case ISD::VP_REDUCE_UMIN:
10895 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10896 // VP_REDUCE_AND.
10897 if (VT == MVT::i1)
10898 Opcode = ISD::VP_REDUCE_AND;
10899 break;
10900 case ISD::VP_REDUCE_SMIN:
10901 case ISD::VP_REDUCE_UMAX:
10902 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10903 // VP_REDUCE_OR.
10904 if (VT == MVT::i1)
10905 Opcode = ISD::VP_REDUCE_OR;
10906 break;
10907 }
10908
10909 // Memoize nodes.
10910 SDNode *N;
10911 SDVTList VTs = getVTList(VT);
10912
10913 if (VT != MVT::Glue) {
10915 AddNodeIDNode(ID, Opcode, VTs, Ops);
10916 void *IP = nullptr;
10917
10918 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10919 E->intersectFlagsWith(Flags);
10920 return SDValue(E, 0);
10921 }
10922
10923 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10924 createOperands(N, Ops);
10925
10926 CSEMap.InsertNode(N, IP);
10927 } else {
10928 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10929 createOperands(N, Ops);
10930 }
10931
10932 N->setFlags(Flags);
10933 InsertNode(N);
10934 SDValue V(N, 0);
10935 NewSDValueDbgMsg(V, "Creating new node: ", this);
10936 return V;
10937}
10938
10939SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10940 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
10941 SDNodeFlags Flags;
10942 if (Inserter)
10943 Flags = Inserter->getFlags();
10944 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
10945}
10946
10947SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10949 const SDNodeFlags Flags) {
10950 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
10951}
10952
10953SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10955 SDNodeFlags Flags;
10956 if (Inserter)
10957 Flags = Inserter->getFlags();
10958 return getNode(Opcode, DL, VTList, Ops, Flags);
10959}
10960
10961SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10962 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10963 if (VTList.NumVTs == 1)
10964 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
10965
10966#ifndef NDEBUG
10967 for (const auto &Op : Ops)
10968 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10969 "Operand is DELETED_NODE!");
10970#endif
10971
10972 switch (Opcode) {
10973 case ISD::SADDO:
10974 case ISD::UADDO:
10975 case ISD::SSUBO:
10976 case ISD::USUBO: {
10977 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10978 "Invalid add/sub overflow op!");
10979 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10980 Ops[0].getValueType() == Ops[1].getValueType() &&
10981 Ops[0].getValueType() == VTList.VTs[0] &&
10982 "Binary operator types must match!");
10983 SDValue N1 = Ops[0], N2 = Ops[1];
10984 canonicalizeCommutativeBinop(Opcode, N1, N2);
10985
10986 // (X +- 0) -> X with zero-overflow.
10987 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
10988 /*AllowTruncation*/ true);
10989 if (N2CV && N2CV->isZero()) {
10990 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
10991 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
10992 }
10993
10994 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
10995 VTList.VTs[1].getScalarType() == MVT::i1) {
10996 SDValue F1 = getFreeze(N1);
10997 SDValue F2 = getFreeze(N2);
10998 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
10999 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11000 return getNode(ISD::MERGE_VALUES, DL, VTList,
11001 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11002 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11003 Flags);
11004 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11005 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11006 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11007 return getNode(ISD::MERGE_VALUES, DL, VTList,
11008 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11009 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11010 Flags);
11011 }
11012 }
11013 break;
11014 }
11015 case ISD::SADDO_CARRY:
11016 case ISD::UADDO_CARRY:
11017 case ISD::SSUBO_CARRY:
11018 case ISD::USUBO_CARRY:
11019 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11020 "Invalid add/sub overflow op!");
11021 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11022 Ops[0].getValueType() == Ops[1].getValueType() &&
11023 Ops[0].getValueType() == VTList.VTs[0] &&
11024 Ops[2].getValueType() == VTList.VTs[1] &&
11025 "Binary operator types must match!");
11026 break;
11027 case ISD::SMUL_LOHI:
11028 case ISD::UMUL_LOHI: {
11029 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11030 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11031 VTList.VTs[0] == Ops[0].getValueType() &&
11032 VTList.VTs[0] == Ops[1].getValueType() &&
11033 "Binary operator types must match!");
11034 // Constant fold.
11037 if (LHS && RHS) {
11038 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11039 unsigned OutWidth = Width * 2;
11040 APInt Val = LHS->getAPIntValue();
11041 APInt Mul = RHS->getAPIntValue();
11042 if (Opcode == ISD::SMUL_LOHI) {
11043 Val = Val.sext(OutWidth);
11044 Mul = Mul.sext(OutWidth);
11045 } else {
11046 Val = Val.zext(OutWidth);
11047 Mul = Mul.zext(OutWidth);
11048 }
11049 Val *= Mul;
11050
11051 SDValue Hi =
11052 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11053 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11054 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11055 }
11056 break;
11057 }
11058 case ISD::FFREXP: {
11059 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11060 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11061 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11062
11064 int FrexpExp;
11065 APFloat FrexpMant =
11066 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11067 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11068 SDValue Result1 =
11069 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
11070 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11071 }
11072
11073 break;
11074 }
11076 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11077 "Invalid STRICT_FP_EXTEND!");
11078 assert(VTList.VTs[0].isFloatingPoint() &&
11079 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11080 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11081 "STRICT_FP_EXTEND result type should be vector iff the operand "
11082 "type is vector!");
11083 assert((!VTList.VTs[0].isVector() ||
11084 VTList.VTs[0].getVectorElementCount() ==
11085 Ops[1].getValueType().getVectorElementCount()) &&
11086 "Vector element count mismatch!");
11087 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11088 "Invalid fpext node, dst <= src!");
11089 break;
11091 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11092 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11093 "STRICT_FP_ROUND result type should be vector iff the operand "
11094 "type is vector!");
11095 assert((!VTList.VTs[0].isVector() ||
11096 VTList.VTs[0].getVectorElementCount() ==
11097 Ops[1].getValueType().getVectorElementCount()) &&
11098 "Vector element count mismatch!");
11099 assert(VTList.VTs[0].isFloatingPoint() &&
11100 Ops[1].getValueType().isFloatingPoint() &&
11101 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11102 Ops[2].getOpcode() == ISD::TargetConstant &&
11103 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11104 "Invalid STRICT_FP_ROUND!");
11105 break;
11106 }
11107
11108 // Memoize the node unless it returns a glue result.
11109 SDNode *N;
11110 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11112 AddNodeIDNode(ID, Opcode, VTList, Ops);
11113 void *IP = nullptr;
11114 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11115 E->intersectFlagsWith(Flags);
11116 return SDValue(E, 0);
11117 }
11118
11119 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11120 createOperands(N, Ops);
11121 CSEMap.InsertNode(N, IP);
11122 } else {
11123 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11124 createOperands(N, Ops);
11125 }
11126
11127 N->setFlags(Flags);
11128 InsertNode(N);
11129 SDValue V(N, 0);
11130 NewSDValueDbgMsg(V, "Creating new node: ", this);
11131 return V;
11132}
11133
11134SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11135 SDVTList VTList) {
11136 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11137}
11138
11139SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11140 SDValue N1) {
11141 SDValue Ops[] = { N1 };
11142 return getNode(Opcode, DL, VTList, Ops);
11143}
11144
11145SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11146 SDValue N1, SDValue N2) {
11147 SDValue Ops[] = { N1, N2 };
11148 return getNode(Opcode, DL, VTList, Ops);
11149}
11150
11151SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11152 SDValue N1, SDValue N2, SDValue N3) {
11153 SDValue Ops[] = { N1, N2, N3 };
11154 return getNode(Opcode, DL, VTList, Ops);
11155}
11156
11157SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11158 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11159 SDValue Ops[] = { N1, N2, N3, N4 };
11160 return getNode(Opcode, DL, VTList, Ops);
11161}
11162
11163SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11164 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11165 SDValue N5) {
11166 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11167 return getNode(Opcode, DL, VTList, Ops);
11168}
11169
11171 if (!VT.isExtended())
11172 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11173
11174 return makeVTList(&(*EVTs.insert(VT).first), 1);
11175}
11176
11179 ID.AddInteger(2U);
11180 ID.AddInteger(VT1.getRawBits());
11181 ID.AddInteger(VT2.getRawBits());
11182
11183 void *IP = nullptr;
11184 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11185 if (!Result) {
11186 EVT *Array = Allocator.Allocate<EVT>(2);
11187 Array[0] = VT1;
11188 Array[1] = VT2;
11189 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11190 VTListMap.InsertNode(Result, IP);
11191 }
11192 return Result->getSDVTList();
11193}
11194
11197 ID.AddInteger(3U);
11198 ID.AddInteger(VT1.getRawBits());
11199 ID.AddInteger(VT2.getRawBits());
11200 ID.AddInteger(VT3.getRawBits());
11201
11202 void *IP = nullptr;
11203 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11204 if (!Result) {
11205 EVT *Array = Allocator.Allocate<EVT>(3);
11206 Array[0] = VT1;
11207 Array[1] = VT2;
11208 Array[2] = VT3;
11209 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11210 VTListMap.InsertNode(Result, IP);
11211 }
11212 return Result->getSDVTList();
11213}
11214
11217 ID.AddInteger(4U);
11218 ID.AddInteger(VT1.getRawBits());
11219 ID.AddInteger(VT2.getRawBits());
11220 ID.AddInteger(VT3.getRawBits());
11221 ID.AddInteger(VT4.getRawBits());
11222
11223 void *IP = nullptr;
11224 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11225 if (!Result) {
11226 EVT *Array = Allocator.Allocate<EVT>(4);
11227 Array[0] = VT1;
11228 Array[1] = VT2;
11229 Array[2] = VT3;
11230 Array[3] = VT4;
11231 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11232 VTListMap.InsertNode(Result, IP);
11233 }
11234 return Result->getSDVTList();
11235}
11236
11238 unsigned NumVTs = VTs.size();
11240 ID.AddInteger(NumVTs);
11241 for (unsigned index = 0; index < NumVTs; index++) {
11242 ID.AddInteger(VTs[index].getRawBits());
11243 }
11244
11245 void *IP = nullptr;
11246 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11247 if (!Result) {
11248 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11249 llvm::copy(VTs, Array);
11250 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11251 VTListMap.InsertNode(Result, IP);
11252 }
11253 return Result->getSDVTList();
11254}
11255
11256
11257/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11258/// specified operands. If the resultant node already exists in the DAG,
11259/// this does not modify the specified node, instead it returns the node that
11260/// already exists. If the resultant node does not exist in the DAG, the
11261/// input node is returned. As a degenerate case, if you specify the same
11262/// input operands as the node already has, the input node is returned.
11264 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11265
11266 // Check to see if there is no change.
11267 if (Op == N->getOperand(0)) return N;
11268
11269 // See if the modified node already exists.
11270 void *InsertPos = nullptr;
11271 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11272 return Existing;
11273
11274 // Nope it doesn't. Remove the node from its current place in the maps.
11275 if (InsertPos)
11276 if (!RemoveNodeFromCSEMaps(N))
11277 InsertPos = nullptr;
11278
11279 // Now we update the operands.
11280 N->OperandList[0].set(Op);
11281
11283 // If this gets put into a CSE map, add it.
11284 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11285 return N;
11286}
11287
11289 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11290
11291 // Check to see if there is no change.
11292 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11293 return N; // No operands changed, just return the input node.
11294
11295 // See if the modified node already exists.
11296 void *InsertPos = nullptr;
11297 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11298 return Existing;
11299
11300 // Nope it doesn't. Remove the node from its current place in the maps.
11301 if (InsertPos)
11302 if (!RemoveNodeFromCSEMaps(N))
11303 InsertPos = nullptr;
11304
11305 // Now we update the operands.
11306 if (N->OperandList[0] != Op1)
11307 N->OperandList[0].set(Op1);
11308 if (N->OperandList[1] != Op2)
11309 N->OperandList[1].set(Op2);
11310
11312 // If this gets put into a CSE map, add it.
11313 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11314 return N;
11315}
11316
11319 SDValue Ops[] = { Op1, Op2, Op3 };
11320 return UpdateNodeOperands(N, Ops);
11321}
11322
11325 SDValue Op3, SDValue Op4) {
11326 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11327 return UpdateNodeOperands(N, Ops);
11328}
11329
11332 SDValue Op3, SDValue Op4, SDValue Op5) {
11333 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11334 return UpdateNodeOperands(N, Ops);
11335}
11336
11339 unsigned NumOps = Ops.size();
11340 assert(N->getNumOperands() == NumOps &&
11341 "Update with wrong number of operands");
11342
11343 // If no operands changed just return the input node.
11344 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11345 return N;
11346
11347 // See if the modified node already exists.
11348 void *InsertPos = nullptr;
11349 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11350 return Existing;
11351
11352 // Nope it doesn't. Remove the node from its current place in the maps.
11353 if (InsertPos)
11354 if (!RemoveNodeFromCSEMaps(N))
11355 InsertPos = nullptr;
11356
11357 // Now we update the operands.
11358 for (unsigned i = 0; i != NumOps; ++i)
11359 if (N->OperandList[i] != Ops[i])
11360 N->OperandList[i].set(Ops[i]);
11361
11363 // If this gets put into a CSE map, add it.
11364 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11365 return N;
11366}
11367
11368/// DropOperands - Release the operands and set this node to have
11369/// zero operands.
11371 // Unlike the code in MorphNodeTo that does this, we don't need to
11372 // watch for dead nodes here.
11373 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11374 SDUse &Use = *I++;
11375 Use.set(SDValue());
11376 }
11377}
11378
11380 ArrayRef<MachineMemOperand *> NewMemRefs) {
11381 if (NewMemRefs.empty()) {
11382 N->clearMemRefs();
11383 return;
11384 }
11385
11386 // Check if we can avoid allocating by storing a single reference directly.
11387 if (NewMemRefs.size() == 1) {
11388 N->MemRefs = NewMemRefs[0];
11389 N->NumMemRefs = 1;
11390 return;
11391 }
11392
11393 MachineMemOperand **MemRefsBuffer =
11394 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11395 llvm::copy(NewMemRefs, MemRefsBuffer);
11396 N->MemRefs = MemRefsBuffer;
11397 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11398}
11399
11400/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11401/// machine opcode.
11402///
11404 EVT VT) {
11405 SDVTList VTs = getVTList(VT);
11406 return SelectNodeTo(N, MachineOpc, VTs, {});
11407}
11408
11410 EVT VT, SDValue Op1) {
11411 SDVTList VTs = getVTList(VT);
11412 SDValue Ops[] = { Op1 };
11413 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11414}
11415
11417 EVT VT, SDValue Op1,
11418 SDValue Op2) {
11419 SDVTList VTs = getVTList(VT);
11420 SDValue Ops[] = { Op1, Op2 };
11421 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11422}
11423
11425 EVT VT, SDValue Op1,
11426 SDValue Op2, SDValue Op3) {
11427 SDVTList VTs = getVTList(VT);
11428 SDValue Ops[] = { Op1, Op2, Op3 };
11429 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11430}
11431
11434 SDVTList VTs = getVTList(VT);
11435 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11436}
11437
11439 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11440 SDVTList VTs = getVTList(VT1, VT2);
11441 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11442}
11443
11445 EVT VT1, EVT VT2) {
11446 SDVTList VTs = getVTList(VT1, VT2);
11447 return SelectNodeTo(N, MachineOpc, VTs, {});
11448}
11449
11451 EVT VT1, EVT VT2, EVT VT3,
11453 SDVTList VTs = getVTList(VT1, VT2, VT3);
11454 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11455}
11456
11458 EVT VT1, EVT VT2,
11459 SDValue Op1, SDValue Op2) {
11460 SDVTList VTs = getVTList(VT1, VT2);
11461 SDValue Ops[] = { Op1, Op2 };
11462 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11463}
11464
11467 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11468 // Reset the NodeID to -1.
11469 New->setNodeId(-1);
11470 if (New != N) {
11471 ReplaceAllUsesWith(N, New);
11473 }
11474 return New;
11475}
11476
11477/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11478/// the line number information on the merged node since it is not possible to
11479/// preserve the information that operation is associated with multiple lines.
11480/// This will make the debugger working better at -O0, were there is a higher
11481/// probability having other instructions associated with that line.
11482///
11483/// For IROrder, we keep the smaller of the two
11484SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11485 DebugLoc NLoc = N->getDebugLoc();
11486 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11487 N->setDebugLoc(DebugLoc());
11488 }
11489 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11490 N->setIROrder(Order);
11491 return N;
11492}
11493
11494/// MorphNodeTo - This *mutates* the specified node to have the specified
11495/// return type, opcode, and operands.
11496///
11497/// Note that MorphNodeTo returns the resultant node. If there is already a
11498/// node of the specified opcode and operands, it returns that node instead of
11499/// the current one. Note that the SDLoc need not be the same.
11500///
11501/// Using MorphNodeTo is faster than creating a new node and swapping it in
11502/// with ReplaceAllUsesWith both because it often avoids allocating a new
11503/// node, and because it doesn't require CSE recalculation for any of
11504/// the node's users.
11505///
11506/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11507/// As a consequence it isn't appropriate to use from within the DAG combiner or
11508/// the legalizer which maintain worklists that would need to be updated when
11509/// deleting things.
11512 // If an identical node already exists, use it.
11513 void *IP = nullptr;
11514 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11516 AddNodeIDNode(ID, Opc, VTs, Ops);
11517 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11518 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11519 }
11520
11521 if (!RemoveNodeFromCSEMaps(N))
11522 IP = nullptr;
11523
11524 // Start the morphing.
11525 N->NodeType = Opc;
11526 N->ValueList = VTs.VTs;
11527 N->NumValues = VTs.NumVTs;
11528
11529 // Clear the operands list, updating used nodes to remove this from their
11530 // use list. Keep track of any operands that become dead as a result.
11531 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11532 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11533 SDUse &Use = *I++;
11534 SDNode *Used = Use.getNode();
11535 Use.set(SDValue());
11536 if (Used->use_empty())
11537 DeadNodeSet.insert(Used);
11538 }
11539
11540 // For MachineNode, initialize the memory references information.
11542 MN->clearMemRefs();
11543
11544 // Swap for an appropriately sized array from the recycler.
11545 removeOperands(N);
11546 createOperands(N, Ops);
11547
11548 // Delete any nodes that are still dead after adding the uses for the
11549 // new operands.
11550 if (!DeadNodeSet.empty()) {
11551 SmallVector<SDNode *, 16> DeadNodes;
11552 for (SDNode *N : DeadNodeSet)
11553 if (N->use_empty())
11554 DeadNodes.push_back(N);
11555 RemoveDeadNodes(DeadNodes);
11556 }
11557
11558 if (IP)
11559 CSEMap.InsertNode(N, IP); // Memoize the new node.
11560 return N;
11561}
11562
11564 unsigned OrigOpc = Node->getOpcode();
11565 unsigned NewOpc;
11566 switch (OrigOpc) {
11567 default:
11568 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11569#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11570 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11571#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11572 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11573#include "llvm/IR/ConstrainedOps.def"
11574 }
11575
11576 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11577
11578 // We're taking this node out of the chain, so we need to re-link things.
11579 SDValue InputChain = Node->getOperand(0);
11580 SDValue OutputChain = SDValue(Node, 1);
11581 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11582
11584 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11585 Ops.push_back(Node->getOperand(i));
11586
11587 SDVTList VTs = getVTList(Node->getValueType(0));
11588 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11589
11590 // MorphNodeTo can operate in two ways: if an existing node with the
11591 // specified operands exists, it can just return it. Otherwise, it
11592 // updates the node in place to have the requested operands.
11593 if (Res == Node) {
11594 // If we updated the node in place, reset the node ID. To the isel,
11595 // this should be just like a newly allocated machine node.
11596 Res->setNodeId(-1);
11597 } else {
11600 }
11601
11602 return Res;
11603}
11604
11605/// getMachineNode - These are used for target selectors to create a new node
11606/// with specified return type(s), MachineInstr opcode, and operands.
11607///
11608/// Note that getMachineNode returns the resultant node. If there is already a
11609/// node of the specified opcode and operands, it returns that node instead of
11610/// the current one.
11612 EVT VT) {
11613 SDVTList VTs = getVTList(VT);
11614 return getMachineNode(Opcode, dl, VTs, {});
11615}
11616
11618 EVT VT, SDValue Op1) {
11619 SDVTList VTs = getVTList(VT);
11620 SDValue Ops[] = { Op1 };
11621 return getMachineNode(Opcode, dl, VTs, Ops);
11622}
11623
11625 EVT VT, SDValue Op1, SDValue Op2) {
11626 SDVTList VTs = getVTList(VT);
11627 SDValue Ops[] = { Op1, Op2 };
11628 return getMachineNode(Opcode, dl, VTs, Ops);
11629}
11630
11632 EVT VT, SDValue Op1, SDValue Op2,
11633 SDValue Op3) {
11634 SDVTList VTs = getVTList(VT);
11635 SDValue Ops[] = { Op1, Op2, Op3 };
11636 return getMachineNode(Opcode, dl, VTs, Ops);
11637}
11638
11641 SDVTList VTs = getVTList(VT);
11642 return getMachineNode(Opcode, dl, VTs, Ops);
11643}
11644
11646 EVT VT1, EVT VT2, SDValue Op1,
11647 SDValue Op2) {
11648 SDVTList VTs = getVTList(VT1, VT2);
11649 SDValue Ops[] = { Op1, Op2 };
11650 return getMachineNode(Opcode, dl, VTs, Ops);
11651}
11652
11654 EVT VT1, EVT VT2, SDValue Op1,
11655 SDValue Op2, SDValue Op3) {
11656 SDVTList VTs = getVTList(VT1, VT2);
11657 SDValue Ops[] = { Op1, Op2, Op3 };
11658 return getMachineNode(Opcode, dl, VTs, Ops);
11659}
11660
11662 EVT VT1, EVT VT2,
11664 SDVTList VTs = getVTList(VT1, VT2);
11665 return getMachineNode(Opcode, dl, VTs, Ops);
11666}
11667
11669 EVT VT1, EVT VT2, EVT VT3,
11670 SDValue Op1, SDValue Op2) {
11671 SDVTList VTs = getVTList(VT1, VT2, VT3);
11672 SDValue Ops[] = { Op1, Op2 };
11673 return getMachineNode(Opcode, dl, VTs, Ops);
11674}
11675
11677 EVT VT1, EVT VT2, EVT VT3,
11678 SDValue Op1, SDValue Op2,
11679 SDValue Op3) {
11680 SDVTList VTs = getVTList(VT1, VT2, VT3);
11681 SDValue Ops[] = { Op1, Op2, Op3 };
11682 return getMachineNode(Opcode, dl, VTs, Ops);
11683}
11684
11686 EVT VT1, EVT VT2, EVT VT3,
11688 SDVTList VTs = getVTList(VT1, VT2, VT3);
11689 return getMachineNode(Opcode, dl, VTs, Ops);
11690}
11691
11693 ArrayRef<EVT> ResultTys,
11695 SDVTList VTs = getVTList(ResultTys);
11696 return getMachineNode(Opcode, dl, VTs, Ops);
11697}
11698
11700 SDVTList VTs,
11702 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11704 void *IP = nullptr;
11705
11706 if (DoCSE) {
11708 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11709 IP = nullptr;
11710 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11711 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11712 }
11713 }
11714
11715 // Allocate a new MachineSDNode.
11716 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11717 createOperands(N, Ops);
11718
11719 if (DoCSE)
11720 CSEMap.InsertNode(N, IP);
11721
11722 InsertNode(N);
11723 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11724 return N;
11725}
11726
11727/// getTargetExtractSubreg - A convenience function for creating
11728/// TargetOpcode::EXTRACT_SUBREG nodes.
11730 SDValue Operand) {
11731 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11732 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11733 VT, Operand, SRIdxVal);
11734 return SDValue(Subreg, 0);
11735}
11736
11737/// getTargetInsertSubreg - A convenience function for creating
11738/// TargetOpcode::INSERT_SUBREG nodes.
11740 SDValue Operand, SDValue Subreg) {
11741 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11742 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11743 VT, Operand, Subreg, SRIdxVal);
11744 return SDValue(Result, 0);
11745}
11746
11747/// getNodeIfExists - Get the specified node if it's already available, or
11748/// else return NULL.
11751 SDNodeFlags Flags;
11752 if (Inserter)
11753 Flags = Inserter->getFlags();
11754 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11755}
11756
11759 const SDNodeFlags Flags) {
11760 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11762 AddNodeIDNode(ID, Opcode, VTList, Ops);
11763 void *IP = nullptr;
11764 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11765 E->intersectFlagsWith(Flags);
11766 return E;
11767 }
11768 }
11769 return nullptr;
11770}
11771
11772/// doesNodeExist - Check if a node exists without modifying its flags.
11773bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11775 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11777 AddNodeIDNode(ID, Opcode, VTList, Ops);
11778 void *IP = nullptr;
11779 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11780 return true;
11781 }
11782 return false;
11783}
11784
11785/// getDbgValue - Creates a SDDbgValue node.
11786///
11787/// SDNode
11789 SDNode *N, unsigned R, bool IsIndirect,
11790 const DebugLoc &DL, unsigned O) {
11791 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11792 "Expected inlined-at fields to agree");
11793 return new (DbgInfo->getAlloc())
11794 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11795 {}, IsIndirect, DL, O,
11796 /*IsVariadic=*/false);
11797}
11798
11799/// Constant
11801 DIExpression *Expr,
11802 const Value *C,
11803 const DebugLoc &DL, unsigned O) {
11804 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11805 "Expected inlined-at fields to agree");
11806 return new (DbgInfo->getAlloc())
11807 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11808 /*IsIndirect=*/false, DL, O,
11809 /*IsVariadic=*/false);
11810}
11811
11812/// FrameIndex
11814 DIExpression *Expr, unsigned FI,
11815 bool IsIndirect,
11816 const DebugLoc &DL,
11817 unsigned O) {
11818 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11819 "Expected inlined-at fields to agree");
11820 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11821}
11822
11823/// FrameIndex with dependencies
11825 DIExpression *Expr, unsigned FI,
11826 ArrayRef<SDNode *> Dependencies,
11827 bool IsIndirect,
11828 const DebugLoc &DL,
11829 unsigned O) {
11830 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11831 "Expected inlined-at fields to agree");
11832 return new (DbgInfo->getAlloc())
11833 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11834 Dependencies, IsIndirect, DL, O,
11835 /*IsVariadic=*/false);
11836}
11837
11838/// VReg
11840 Register VReg, bool IsIndirect,
11841 const DebugLoc &DL, unsigned O) {
11842 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11843 "Expected inlined-at fields to agree");
11844 return new (DbgInfo->getAlloc())
11845 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11846 {}, IsIndirect, DL, O,
11847 /*IsVariadic=*/false);
11848}
11849
11852 ArrayRef<SDNode *> Dependencies,
11853 bool IsIndirect, const DebugLoc &DL,
11854 unsigned O, bool IsVariadic) {
11855 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11856 "Expected inlined-at fields to agree");
11857 return new (DbgInfo->getAlloc())
11858 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11859 DL, O, IsVariadic);
11860}
11861
11863 unsigned OffsetInBits, unsigned SizeInBits,
11864 bool InvalidateDbg) {
11865 SDNode *FromNode = From.getNode();
11866 SDNode *ToNode = To.getNode();
11867 assert(FromNode && ToNode && "Can't modify dbg values");
11868
11869 // PR35338
11870 // TODO: assert(From != To && "Redundant dbg value transfer");
11871 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11872 if (From == To || FromNode == ToNode)
11873 return;
11874
11875 if (!FromNode->getHasDebugValue())
11876 return;
11877
11878 SDDbgOperand FromLocOp =
11879 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11881
11883 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11884 if (Dbg->isInvalidated())
11885 continue;
11886
11887 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11888
11889 // Create a new location ops vector that is equal to the old vector, but
11890 // with each instance of FromLocOp replaced with ToLocOp.
11891 bool Changed = false;
11892 auto NewLocOps = Dbg->copyLocationOps();
11893 std::replace_if(
11894 NewLocOps.begin(), NewLocOps.end(),
11895 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11896 bool Match = Op == FromLocOp;
11897 Changed |= Match;
11898 return Match;
11899 },
11900 ToLocOp);
11901 // Ignore this SDDbgValue if we didn't find a matching location.
11902 if (!Changed)
11903 continue;
11904
11905 DIVariable *Var = Dbg->getVariable();
11906 auto *Expr = Dbg->getExpression();
11907 // If a fragment is requested, update the expression.
11908 if (SizeInBits) {
11909 // When splitting a larger (e.g., sign-extended) value whose
11910 // lower bits are described with an SDDbgValue, do not attempt
11911 // to transfer the SDDbgValue to the upper bits.
11912 if (auto FI = Expr->getFragmentInfo())
11913 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11914 continue;
11915 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
11916 SizeInBits);
11917 if (!Fragment)
11918 continue;
11919 Expr = *Fragment;
11920 }
11921
11922 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11923 // Clone the SDDbgValue and move it to To.
11924 SDDbgValue *Clone = getDbgValueList(
11925 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11926 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
11927 Dbg->isVariadic());
11928 ClonedDVs.push_back(Clone);
11929
11930 if (InvalidateDbg) {
11931 // Invalidate value and indicate the SDDbgValue should not be emitted.
11932 Dbg->setIsInvalidated();
11933 Dbg->setIsEmitted();
11934 }
11935 }
11936
11937 for (SDDbgValue *Dbg : ClonedDVs) {
11938 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
11939 "Transferred DbgValues should depend on the new SDNode");
11940 AddDbgValue(Dbg, false);
11941 }
11942}
11943
11945 if (!N.getHasDebugValue())
11946 return;
11947
11948 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
11949 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
11950 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
11951 return SDDbgOperand::fromNode(Node, ResNo);
11952 };
11953
11955 for (auto *DV : GetDbgValues(&N)) {
11956 if (DV->isInvalidated())
11957 continue;
11958 switch (N.getOpcode()) {
11959 default:
11960 break;
11961 case ISD::ADD: {
11962 SDValue N0 = N.getOperand(0);
11963 SDValue N1 = N.getOperand(1);
11964 if (!isa<ConstantSDNode>(N0)) {
11965 bool RHSConstant = isa<ConstantSDNode>(N1);
11967 if (RHSConstant)
11968 Offset = N.getConstantOperandVal(1);
11969 // We are not allowed to turn indirect debug values variadic, so
11970 // don't salvage those.
11971 if (!RHSConstant && DV->isIndirect())
11972 continue;
11973
11974 // Rewrite an ADD constant node into a DIExpression. Since we are
11975 // performing arithmetic to compute the variable's *value* in the
11976 // DIExpression, we need to mark the expression with a
11977 // DW_OP_stack_value.
11978 auto *DIExpr = DV->getExpression();
11979 auto NewLocOps = DV->copyLocationOps();
11980 bool Changed = false;
11981 size_t OrigLocOpsSize = NewLocOps.size();
11982 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
11983 // We're not given a ResNo to compare against because the whole
11984 // node is going away. We know that any ISD::ADD only has one
11985 // result, so we can assume any node match is using the result.
11986 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11987 NewLocOps[i].getSDNode() != &N)
11988 continue;
11989 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
11990 if (RHSConstant) {
11993 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
11994 } else {
11995 // Convert to a variadic expression (if not already).
11996 // convertToVariadicExpression() returns a const pointer, so we use
11997 // a temporary const variable here.
11998 const auto *TmpDIExpr =
12002 ExprOps.push_back(NewLocOps.size());
12003 ExprOps.push_back(dwarf::DW_OP_plus);
12004 SDDbgOperand RHS =
12006 NewLocOps.push_back(RHS);
12007 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12008 }
12009 Changed = true;
12010 }
12011 (void)Changed;
12012 assert(Changed && "Salvage target doesn't use N");
12013
12014 bool IsVariadic =
12015 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12016
12017 auto AdditionalDependencies = DV->getAdditionalDependencies();
12018 SDDbgValue *Clone = getDbgValueList(
12019 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12020 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12021 ClonedDVs.push_back(Clone);
12022 DV->setIsInvalidated();
12023 DV->setIsEmitted();
12024 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12025 N0.getNode()->dumprFull(this);
12026 dbgs() << " into " << *DIExpr << '\n');
12027 }
12028 break;
12029 }
12030 case ISD::TRUNCATE: {
12031 SDValue N0 = N.getOperand(0);
12032 TypeSize FromSize = N0.getValueSizeInBits();
12033 TypeSize ToSize = N.getValueSizeInBits(0);
12034
12035 DIExpression *DbgExpression = DV->getExpression();
12036 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12037 auto NewLocOps = DV->copyLocationOps();
12038 bool Changed = false;
12039 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12040 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12041 NewLocOps[i].getSDNode() != &N)
12042 continue;
12043
12044 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12045 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12046 Changed = true;
12047 }
12048 assert(Changed && "Salvage target doesn't use N");
12049 (void)Changed;
12050
12051 SDDbgValue *Clone =
12052 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12053 DV->getAdditionalDependencies(), DV->isIndirect(),
12054 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12055
12056 ClonedDVs.push_back(Clone);
12057 DV->setIsInvalidated();
12058 DV->setIsEmitted();
12059 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12060 dbgs() << " into " << *DbgExpression << '\n');
12061 break;
12062 }
12063 }
12064 }
12065
12066 for (SDDbgValue *Dbg : ClonedDVs) {
12067 assert((!Dbg->getSDNodes().empty() ||
12068 llvm::any_of(Dbg->getLocationOps(),
12069 [&](const SDDbgOperand &Op) {
12070 return Op.getKind() == SDDbgOperand::FRAMEIX;
12071 })) &&
12072 "Salvaged DbgValue should depend on a new SDNode");
12073 AddDbgValue(Dbg, false);
12074 }
12075}
12076
12077/// Creates a SDDbgLabel node.
12079 const DebugLoc &DL, unsigned O) {
12080 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12081 "Expected inlined-at fields to agree");
12082 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12083}
12084
12085namespace {
12086
12087/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12088/// pointed to by a use iterator is deleted, increment the use iterator
12089/// so that it doesn't dangle.
12090///
12091class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12094
12095 void NodeDeleted(SDNode *N, SDNode *E) override {
12096 // Increment the iterator as needed.
12097 while (UI != UE && N == UI->getUser())
12098 ++UI;
12099 }
12100
12101public:
12102 RAUWUpdateListener(SelectionDAG &d,
12105 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12106};
12107
12108} // end anonymous namespace
12109
12110/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12111/// This can cause recursive merging of nodes in the DAG.
12112///
12113/// This version assumes From has a single result value.
12114///
12116 SDNode *From = FromN.getNode();
12117 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12118 "Cannot replace with this method!");
12119 assert(From != To.getNode() && "Cannot replace uses of with self");
12120
12121 // Preserve Debug Values
12122 transferDbgValues(FromN, To);
12123 // Preserve extra info.
12124 copyExtraInfo(From, To.getNode());
12125
12126 // Iterate over all the existing uses of From. New uses will be added
12127 // to the beginning of the use list, which we avoid visiting.
12128 // This specifically avoids visiting uses of From that arise while the
12129 // replacement is happening, because any such uses would be the result
12130 // of CSE: If an existing node looks like From after one of its operands
12131 // is replaced by To, we don't want to replace of all its users with To
12132 // too. See PR3018 for more info.
12133 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12134 RAUWUpdateListener Listener(*this, UI, UE);
12135 while (UI != UE) {
12136 SDNode *User = UI->getUser();
12137
12138 // This node is about to morph, remove its old self from the CSE maps.
12139 RemoveNodeFromCSEMaps(User);
12140
12141 // A user can appear in a use list multiple times, and when this
12142 // happens the uses are usually next to each other in the list.
12143 // To help reduce the number of CSE recomputations, process all
12144 // the uses of this user that we can find this way.
12145 do {
12146 SDUse &Use = *UI;
12147 ++UI;
12148 Use.set(To);
12149 if (To->isDivergent() != From->isDivergent())
12151 } while (UI != UE && UI->getUser() == User);
12152 // Now that we have modified User, add it back to the CSE maps. If it
12153 // already exists there, recursively merge the results together.
12154 AddModifiedNodeToCSEMaps(User);
12155 }
12156
12157 // If we just RAUW'd the root, take note.
12158 if (FromN == getRoot())
12159 setRoot(To);
12160}
12161
12162/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12163/// This can cause recursive merging of nodes in the DAG.
12164///
12165/// This version assumes that for each value of From, there is a
12166/// corresponding value in To in the same position with the same type.
12167///
12169#ifndef NDEBUG
12170 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12171 assert((!From->hasAnyUseOfValue(i) ||
12172 From->getValueType(i) == To->getValueType(i)) &&
12173 "Cannot use this version of ReplaceAllUsesWith!");
12174#endif
12175
12176 // Handle the trivial case.
12177 if (From == To)
12178 return;
12179
12180 // Preserve Debug Info. Only do this if there's a use.
12181 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12182 if (From->hasAnyUseOfValue(i)) {
12183 assert((i < To->getNumValues()) && "Invalid To location");
12184 transferDbgValues(SDValue(From, i), SDValue(To, i));
12185 }
12186 // Preserve extra info.
12187 copyExtraInfo(From, To);
12188
12189 // Iterate over just the existing users of From. See the comments in
12190 // the ReplaceAllUsesWith above.
12191 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12192 RAUWUpdateListener Listener(*this, UI, UE);
12193 while (UI != UE) {
12194 SDNode *User = UI->getUser();
12195
12196 // This node is about to morph, remove its old self from the CSE maps.
12197 RemoveNodeFromCSEMaps(User);
12198
12199 // A user can appear in a use list multiple times, and when this
12200 // happens the uses are usually next to each other in the list.
12201 // To help reduce the number of CSE recomputations, process all
12202 // the uses of this user that we can find this way.
12203 do {
12204 SDUse &Use = *UI;
12205 ++UI;
12206 Use.setNode(To);
12207 if (To->isDivergent() != From->isDivergent())
12209 } while (UI != UE && UI->getUser() == User);
12210
12211 // Now that we have modified User, add it back to the CSE maps. If it
12212 // already exists there, recursively merge the results together.
12213 AddModifiedNodeToCSEMaps(User);
12214 }
12215
12216 // If we just RAUW'd the root, take note.
12217 if (From == getRoot().getNode())
12218 setRoot(SDValue(To, getRoot().getResNo()));
12219}
12220
12221/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12222/// This can cause recursive merging of nodes in the DAG.
12223///
12224/// This version can replace From with any result values. To must match the
12225/// number and types of values returned by From.
12227 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12228 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12229
12230 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12231 // Preserve Debug Info.
12232 transferDbgValues(SDValue(From, i), To[i]);
12233 // Preserve extra info.
12234 copyExtraInfo(From, To[i].getNode());
12235 }
12236
12237 // Iterate over just the existing users of From. See the comments in
12238 // the ReplaceAllUsesWith above.
12239 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12240 RAUWUpdateListener Listener(*this, UI, UE);
12241 while (UI != UE) {
12242 SDNode *User = UI->getUser();
12243
12244 // This node is about to morph, remove its old self from the CSE maps.
12245 RemoveNodeFromCSEMaps(User);
12246
12247 // A user can appear in a use list multiple times, and when this happens the
12248 // uses are usually next to each other in the list. To help reduce the
12249 // number of CSE and divergence recomputations, process all the uses of this
12250 // user that we can find this way.
12251 bool To_IsDivergent = false;
12252 do {
12253 SDUse &Use = *UI;
12254 const SDValue &ToOp = To[Use.getResNo()];
12255 ++UI;
12256 Use.set(ToOp);
12257 To_IsDivergent |= ToOp->isDivergent();
12258 } while (UI != UE && UI->getUser() == User);
12259
12260 if (To_IsDivergent != From->isDivergent())
12262
12263 // Now that we have modified User, add it back to the CSE maps. If it
12264 // already exists there, recursively merge the results together.
12265 AddModifiedNodeToCSEMaps(User);
12266 }
12267
12268 // If we just RAUW'd the root, take note.
12269 if (From == getRoot().getNode())
12270 setRoot(SDValue(To[getRoot().getResNo()]));
12271}
12272
12273/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12274/// uses of other values produced by From.getNode() alone. The Deleted
12275/// vector is handled the same way as for ReplaceAllUsesWith.
12277 // Handle the really simple, really trivial case efficiently.
12278 if (From == To) return;
12279
12280 // Handle the simple, trivial, case efficiently.
12281 if (From.getNode()->getNumValues() == 1) {
12282 ReplaceAllUsesWith(From, To);
12283 return;
12284 }
12285
12286 // Preserve Debug Info.
12287 transferDbgValues(From, To);
12288 copyExtraInfo(From.getNode(), To.getNode());
12289
12290 // Iterate over just the existing users of From. See the comments in
12291 // the ReplaceAllUsesWith above.
12292 SDNode::use_iterator UI = From.getNode()->use_begin(),
12293 UE = From.getNode()->use_end();
12294 RAUWUpdateListener Listener(*this, UI, UE);
12295 while (UI != UE) {
12296 SDNode *User = UI->getUser();
12297 bool UserRemovedFromCSEMaps = false;
12298
12299 // A user can appear in a use list multiple times, and when this
12300 // happens the uses are usually next to each other in the list.
12301 // To help reduce the number of CSE recomputations, process all
12302 // the uses of this user that we can find this way.
12303 do {
12304 SDUse &Use = *UI;
12305
12306 // Skip uses of different values from the same node.
12307 if (Use.getResNo() != From.getResNo()) {
12308 ++UI;
12309 continue;
12310 }
12311
12312 // If this node hasn't been modified yet, it's still in the CSE maps,
12313 // so remove its old self from the CSE maps.
12314 if (!UserRemovedFromCSEMaps) {
12315 RemoveNodeFromCSEMaps(User);
12316 UserRemovedFromCSEMaps = true;
12317 }
12318
12319 ++UI;
12320 Use.set(To);
12321 if (To->isDivergent() != From->isDivergent())
12323 } while (UI != UE && UI->getUser() == User);
12324 // We are iterating over all uses of the From node, so if a use
12325 // doesn't use the specific value, no changes are made.
12326 if (!UserRemovedFromCSEMaps)
12327 continue;
12328
12329 // Now that we have modified User, add it back to the CSE maps. If it
12330 // already exists there, recursively merge the results together.
12331 AddModifiedNodeToCSEMaps(User);
12332 }
12333
12334 // If we just RAUW'd the root, take note.
12335 if (From == getRoot())
12336 setRoot(To);
12337}
12338
12339namespace {
12340
12341/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12342/// to record information about a use.
12343struct UseMemo {
12344 SDNode *User;
12345 unsigned Index;
12346 SDUse *Use;
12347};
12348
12349/// operator< - Sort Memos by User.
12350bool operator<(const UseMemo &L, const UseMemo &R) {
12351 return (intptr_t)L.User < (intptr_t)R.User;
12352}
12353
12354/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12355/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12356/// the node already has been taken care of recursively.
12357class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12358 SmallVectorImpl<UseMemo> &Uses;
12359
12360 void NodeDeleted(SDNode *N, SDNode *E) override {
12361 for (UseMemo &Memo : Uses)
12362 if (Memo.User == N)
12363 Memo.User = nullptr;
12364 }
12365
12366public:
12367 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12368 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12369};
12370
12371} // end anonymous namespace
12372
12373/// Return true if a glue output should propagate divergence information.
12375 switch (Node->getOpcode()) {
12376 case ISD::CopyFromReg:
12377 case ISD::CopyToReg:
12378 return false;
12379 default:
12380 return true;
12381 }
12382
12383 llvm_unreachable("covered opcode switch");
12384}
12385
12387 if (TLI->isSDNodeAlwaysUniform(N)) {
12388 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12389 "Conflicting divergence information!");
12390 return false;
12391 }
12392 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12393 return true;
12394 for (const auto &Op : N->ops()) {
12395 EVT VT = Op.getValueType();
12396
12397 // Skip Chain. It does not carry divergence.
12398 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12399 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12400 return true;
12401 }
12402 return false;
12403}
12404
12406 SmallVector<SDNode *, 16> Worklist(1, N);
12407 do {
12408 N = Worklist.pop_back_val();
12409 bool IsDivergent = calculateDivergence(N);
12410 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12411 N->SDNodeBits.IsDivergent = IsDivergent;
12412 llvm::append_range(Worklist, N->users());
12413 }
12414 } while (!Worklist.empty());
12415}
12416
12417void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12419 Order.reserve(AllNodes.size());
12420 for (auto &N : allnodes()) {
12421 unsigned NOps = N.getNumOperands();
12422 Degree[&N] = NOps;
12423 if (0 == NOps)
12424 Order.push_back(&N);
12425 }
12426 for (size_t I = 0; I != Order.size(); ++I) {
12427 SDNode *N = Order[I];
12428 for (auto *U : N->users()) {
12429 unsigned &UnsortedOps = Degree[U];
12430 if (0 == --UnsortedOps)
12431 Order.push_back(U);
12432 }
12433 }
12434}
12435
12436#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12437void SelectionDAG::VerifyDAGDivergence() {
12438 std::vector<SDNode *> TopoOrder;
12439 CreateTopologicalOrder(TopoOrder);
12440 for (auto *N : TopoOrder) {
12441 assert(calculateDivergence(N) == N->isDivergent() &&
12442 "Divergence bit inconsistency detected");
12443 }
12444}
12445#endif
12446
12447/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12448/// uses of other values produced by From.getNode() alone. The same value
12449/// may appear in both the From and To list. The Deleted vector is
12450/// handled the same way as for ReplaceAllUsesWith.
12452 const SDValue *To,
12453 unsigned Num){
12454 // Handle the simple, trivial case efficiently.
12455 if (Num == 1)
12456 return ReplaceAllUsesOfValueWith(*From, *To);
12457
12458 transferDbgValues(*From, *To);
12459 copyExtraInfo(From->getNode(), To->getNode());
12460
12461 // Read up all the uses and make records of them. This helps
12462 // processing new uses that are introduced during the
12463 // replacement process.
12465 for (unsigned i = 0; i != Num; ++i) {
12466 unsigned FromResNo = From[i].getResNo();
12467 SDNode *FromNode = From[i].getNode();
12468 for (SDUse &Use : FromNode->uses()) {
12469 if (Use.getResNo() == FromResNo) {
12470 UseMemo Memo = {Use.getUser(), i, &Use};
12471 Uses.push_back(Memo);
12472 }
12473 }
12474 }
12475
12476 // Sort the uses, so that all the uses from a given User are together.
12478 RAUOVWUpdateListener Listener(*this, Uses);
12479
12480 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12481 UseIndex != UseIndexEnd; ) {
12482 // We know that this user uses some value of From. If it is the right
12483 // value, update it.
12484 SDNode *User = Uses[UseIndex].User;
12485 // If the node has been deleted by recursive CSE updates when updating
12486 // another node, then just skip this entry.
12487 if (User == nullptr) {
12488 ++UseIndex;
12489 continue;
12490 }
12491
12492 // This node is about to morph, remove its old self from the CSE maps.
12493 RemoveNodeFromCSEMaps(User);
12494
12495 // The Uses array is sorted, so all the uses for a given User
12496 // are next to each other in the list.
12497 // To help reduce the number of CSE recomputations, process all
12498 // the uses of this user that we can find this way.
12499 do {
12500 unsigned i = Uses[UseIndex].Index;
12501 SDUse &Use = *Uses[UseIndex].Use;
12502 ++UseIndex;
12503
12504 Use.set(To[i]);
12505 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12506
12507 // Now that we have modified User, add it back to the CSE maps. If it
12508 // already exists there, recursively merge the results together.
12509 AddModifiedNodeToCSEMaps(User);
12510 }
12511}
12512
12513/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12514/// based on their topological order. It returns the maximum id and a vector
12515/// of the SDNodes* in assigned order by reference.
12517 unsigned DAGSize = 0;
12518
12519 // SortedPos tracks the progress of the algorithm. Nodes before it are
12520 // sorted, nodes after it are unsorted. When the algorithm completes
12521 // it is at the end of the list.
12522 allnodes_iterator SortedPos = allnodes_begin();
12523
12524 // Visit all the nodes. Move nodes with no operands to the front of
12525 // the list immediately. Annotate nodes that do have operands with their
12526 // operand count. Before we do this, the Node Id fields of the nodes
12527 // may contain arbitrary values. After, the Node Id fields for nodes
12528 // before SortedPos will contain the topological sort index, and the
12529 // Node Id fields for nodes At SortedPos and after will contain the
12530 // count of outstanding operands.
12532 checkForCycles(&N, this);
12533 unsigned Degree = N.getNumOperands();
12534 if (Degree == 0) {
12535 // A node with no uses, add it to the result array immediately.
12536 N.setNodeId(DAGSize++);
12537 allnodes_iterator Q(&N);
12538 if (Q != SortedPos)
12539 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12540 assert(SortedPos != AllNodes.end() && "Overran node list");
12541 ++SortedPos;
12542 } else {
12543 // Temporarily use the Node Id as scratch space for the degree count.
12544 N.setNodeId(Degree);
12545 }
12546 }
12547
12548 // Visit all the nodes. As we iterate, move nodes into sorted order,
12549 // such that by the time the end is reached all nodes will be sorted.
12550 for (SDNode &Node : allnodes()) {
12551 SDNode *N = &Node;
12552 checkForCycles(N, this);
12553 // N is in sorted position, so all its uses have one less operand
12554 // that needs to be sorted.
12555 for (SDNode *P : N->users()) {
12556 unsigned Degree = P->getNodeId();
12557 assert(Degree != 0 && "Invalid node degree");
12558 --Degree;
12559 if (Degree == 0) {
12560 // All of P's operands are sorted, so P may sorted now.
12561 P->setNodeId(DAGSize++);
12562 if (P->getIterator() != SortedPos)
12563 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12564 assert(SortedPos != AllNodes.end() && "Overran node list");
12565 ++SortedPos;
12566 } else {
12567 // Update P's outstanding operand count.
12568 P->setNodeId(Degree);
12569 }
12570 }
12571 if (Node.getIterator() == SortedPos) {
12572#ifndef NDEBUG
12574 SDNode *S = &*++I;
12575 dbgs() << "Overran sorted position:\n";
12576 S->dumprFull(this); dbgs() << "\n";
12577 dbgs() << "Checking if this is due to cycles\n";
12578 checkForCycles(this, true);
12579#endif
12580 llvm_unreachable(nullptr);
12581 }
12582 }
12583
12584 assert(SortedPos == AllNodes.end() &&
12585 "Topological sort incomplete!");
12586 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12587 "First node in topological sort is not the entry token!");
12588 assert(AllNodes.front().getNodeId() == 0 &&
12589 "First node in topological sort has non-zero id!");
12590 assert(AllNodes.front().getNumOperands() == 0 &&
12591 "First node in topological sort has operands!");
12592 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12593 "Last node in topologic sort has unexpected id!");
12594 assert(AllNodes.back().use_empty() &&
12595 "Last node in topologic sort has users!");
12596 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12597 return DAGSize;
12598}
12599
12600/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12601/// value is produced by SD.
12602void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12603 for (SDNode *SD : DB->getSDNodes()) {
12604 if (!SD)
12605 continue;
12606 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12607 SD->setHasDebugValue(true);
12608 }
12609 DbgInfo->add(DB, isParameter);
12610}
12611
12612void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12613
12615 SDValue NewMemOpChain) {
12616 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12617 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12618 // The new memory operation must have the same position as the old load in
12619 // terms of memory dependency. Create a TokenFactor for the old load and new
12620 // memory operation and update uses of the old load's output chain to use that
12621 // TokenFactor.
12622 if (OldChain == NewMemOpChain || OldChain.use_empty())
12623 return NewMemOpChain;
12624
12625 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12626 OldChain, NewMemOpChain);
12627 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12628 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12629 return TokenFactor;
12630}
12631
12633 SDValue NewMemOp) {
12634 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12635 SDValue OldChain = SDValue(OldLoad, 1);
12636 SDValue NewMemOpChain = NewMemOp.getValue(1);
12637 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12638}
12639
12641 Function **OutFunction) {
12642 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12643
12644 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12645 auto *Module = MF->getFunction().getParent();
12646 auto *Function = Module->getFunction(Symbol);
12647
12648 if (OutFunction != nullptr)
12649 *OutFunction = Function;
12650
12651 if (Function != nullptr) {
12652 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12653 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12654 }
12655
12656 std::string ErrorStr;
12657 raw_string_ostream ErrorFormatter(ErrorStr);
12658 ErrorFormatter << "Undefined external symbol ";
12659 ErrorFormatter << '"' << Symbol << '"';
12660 report_fatal_error(Twine(ErrorStr));
12661}
12662
12663//===----------------------------------------------------------------------===//
12664// SDNode Class
12665//===----------------------------------------------------------------------===//
12666
12669 return Const != nullptr && Const->isZero();
12670}
12671
12673 return V.isUndef() || isNullConstant(V);
12674}
12675
12678 return Const != nullptr && Const->isZero() && !Const->isNegative();
12679}
12680
12683 return Const != nullptr && Const->isAllOnes();
12684}
12685
12688 return Const != nullptr && Const->isOne();
12689}
12690
12693 return Const != nullptr && Const->isMinSignedValue();
12694}
12695
12696bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12697 unsigned OperandNo) {
12698 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12699 // TODO: Target-specific opcodes could be added.
12700 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12701 /*AllowTruncation*/ true)) {
12702 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12703 switch (Opcode) {
12704 case ISD::ADD:
12705 case ISD::OR:
12706 case ISD::XOR:
12707 case ISD::UMAX:
12708 return Const.isZero();
12709 case ISD::MUL:
12710 return Const.isOne();
12711 case ISD::AND:
12712 case ISD::UMIN:
12713 return Const.isAllOnes();
12714 case ISD::SMAX:
12715 return Const.isMinSignedValue();
12716 case ISD::SMIN:
12717 return Const.isMaxSignedValue();
12718 case ISD::SUB:
12719 case ISD::SHL:
12720 case ISD::SRA:
12721 case ISD::SRL:
12722 return OperandNo == 1 && Const.isZero();
12723 case ISD::UDIV:
12724 case ISD::SDIV:
12725 return OperandNo == 1 && Const.isOne();
12726 }
12727 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12728 switch (Opcode) {
12729 case ISD::FADD:
12730 return ConstFP->isZero() &&
12731 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12732 case ISD::FSUB:
12733 return OperandNo == 1 && ConstFP->isZero() &&
12734 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12735 case ISD::FMUL:
12736 return ConstFP->isExactlyValue(1.0);
12737 case ISD::FDIV:
12738 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12739 case ISD::FMINNUM:
12740 case ISD::FMAXNUM: {
12741 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12742 EVT VT = V.getValueType();
12743 const fltSemantics &Semantics = VT.getFltSemantics();
12744 APFloat NeutralAF = !Flags.hasNoNaNs()
12745 ? APFloat::getQNaN(Semantics)
12746 : !Flags.hasNoInfs()
12747 ? APFloat::getInf(Semantics)
12748 : APFloat::getLargest(Semantics);
12749 if (Opcode == ISD::FMAXNUM)
12750 NeutralAF.changeSign();
12751
12752 return ConstFP->isExactlyValue(NeutralAF);
12753 }
12754 }
12755 }
12756 return false;
12757}
12758
12760 while (V.getOpcode() == ISD::BITCAST)
12761 V = V.getOperand(0);
12762 return V;
12763}
12764
12766 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12767 V = V.getOperand(0);
12768 return V;
12769}
12770
12772 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12773 V = V.getOperand(0);
12774 return V;
12775}
12776
12778 while (V.getOpcode() == ISD::TRUNCATE)
12779 V = V.getOperand(0);
12780 return V;
12781}
12782
12783bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12784 if (V.getOpcode() != ISD::XOR)
12785 return false;
12786 V = peekThroughBitcasts(V.getOperand(1));
12787 unsigned NumBits = V.getScalarValueSizeInBits();
12788 ConstantSDNode *C =
12789 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12790 return C && (C->getAPIntValue().countr_one() >= NumBits);
12791}
12792
12794 bool AllowTruncation) {
12795 EVT VT = N.getValueType();
12796 APInt DemandedElts = VT.isFixedLengthVector()
12798 : APInt(1, 1);
12799 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12800}
12801
12803 bool AllowUndefs,
12804 bool AllowTruncation) {
12806 return CN;
12807
12808 // SplatVectors can truncate their operands. Ignore that case here unless
12809 // AllowTruncation is set.
12810 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12811 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12812 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12813 EVT CVT = CN->getValueType(0);
12814 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12815 if (AllowTruncation || CVT == VecEltVT)
12816 return CN;
12817 }
12818 }
12819
12821 BitVector UndefElements;
12822 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12823
12824 // BuildVectors can truncate their operands. Ignore that case here unless
12825 // AllowTruncation is set.
12826 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12827 if (CN && (UndefElements.none() || AllowUndefs)) {
12828 EVT CVT = CN->getValueType(0);
12829 EVT NSVT = N.getValueType().getScalarType();
12830 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12831 if (AllowTruncation || (CVT == NSVT))
12832 return CN;
12833 }
12834 }
12835
12836 return nullptr;
12837}
12838
12840 EVT VT = N.getValueType();
12841 APInt DemandedElts = VT.isFixedLengthVector()
12843 : APInt(1, 1);
12844 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12845}
12846
12848 const APInt &DemandedElts,
12849 bool AllowUndefs) {
12851 return CN;
12852
12854 BitVector UndefElements;
12855 ConstantFPSDNode *CN =
12856 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12857 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12858 if (CN && (UndefElements.none() || AllowUndefs))
12859 return CN;
12860 }
12861
12862 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12863 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12864 return CN;
12865
12866 return nullptr;
12867}
12868
12869bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12870 // TODO: may want to use peekThroughBitcast() here.
12871 ConstantSDNode *C =
12872 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12873 return C && C->isZero();
12874}
12875
12876bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12877 ConstantSDNode *C =
12878 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12879 return C && C->isOne();
12880}
12881
12882bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12884 unsigned BitWidth = N.getScalarValueSizeInBits();
12885 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12886 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
12887}
12888
12889bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
12890 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12891 return C && APInt::isSameValue(C->getAPIntValue(),
12892 APInt(C->getAPIntValue().getBitWidth(), 1));
12893}
12894
12895bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
12897 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
12898 return C && C->isZero();
12899}
12900
12904
12905MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
12906 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
12907 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
12908 MemSDNodeBits.IsVolatile = MMO->isVolatile();
12909 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
12910 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
12911 MemSDNodeBits.IsInvariant = MMO->isInvariant();
12912
12913 // We check here that the size of the memory operand fits within the size of
12914 // the MMO. This is because the MMO might indicate only a possible address
12915 // range instead of specifying the affected memory addresses precisely.
12916 assert(
12917 (!MMO->getType().isValid() ||
12918 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
12919 "Size mismatch!");
12920}
12921
12922/// Profile - Gather unique data for the node.
12923///
12925 AddNodeIDNode(ID, this);
12926}
12927
12928namespace {
12929
12930 struct EVTArray {
12931 std::vector<EVT> VTs;
12932
12933 EVTArray() {
12934 VTs.reserve(MVT::VALUETYPE_SIZE);
12935 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
12936 VTs.push_back(MVT((MVT::SimpleValueType)i));
12937 }
12938 };
12939
12940} // end anonymous namespace
12941
12942/// getValueTypeList - Return a pointer to the specified value type.
12943///
12944const EVT *SDNode::getValueTypeList(MVT VT) {
12945 static EVTArray SimpleVTArray;
12946
12947 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
12948 return &SimpleVTArray.VTs[VT.SimpleTy];
12949}
12950
12951/// hasAnyUseOfValue - Return true if there are any use of the indicated
12952/// value. This method ignores uses of other values defined by this operation.
12953bool SDNode::hasAnyUseOfValue(unsigned Value) const {
12954 assert(Value < getNumValues() && "Bad value!");
12955
12956 for (SDUse &U : uses())
12957 if (U.getResNo() == Value)
12958 return true;
12959
12960 return false;
12961}
12962
12963/// isOnlyUserOf - Return true if this node is the only use of N.
12964bool SDNode::isOnlyUserOf(const SDNode *N) const {
12965 bool Seen = false;
12966 for (const SDNode *User : N->users()) {
12967 if (User == this)
12968 Seen = true;
12969 else
12970 return false;
12971 }
12972
12973 return Seen;
12974}
12975
12976/// Return true if the only users of N are contained in Nodes.
12978 bool Seen = false;
12979 for (const SDNode *User : N->users()) {
12980 if (llvm::is_contained(Nodes, User))
12981 Seen = true;
12982 else
12983 return false;
12984 }
12985
12986 return Seen;
12987}
12988
12989/// Return true if the referenced return value is an operand of N.
12990bool SDValue::isOperandOf(const SDNode *N) const {
12991 return is_contained(N->op_values(), *this);
12992}
12993
12994bool SDNode::isOperandOf(const SDNode *N) const {
12995 return any_of(N->op_values(),
12996 [this](SDValue Op) { return this == Op.getNode(); });
12997}
12998
12999/// reachesChainWithoutSideEffects - Return true if this operand (which must
13000/// be a chain) reaches the specified operand without crossing any
13001/// side-effecting instructions on any chain path. In practice, this looks
13002/// through token factors and non-volatile loads. In order to remain efficient,
13003/// this only looks a couple of nodes in, it does not do an exhaustive search.
13004///
13005/// Note that we only need to examine chains when we're searching for
13006/// side-effects; SelectionDAG requires that all side-effects are represented
13007/// by chains, even if another operand would force a specific ordering. This
13008/// constraint is necessary to allow transformations like splitting loads.
13010 unsigned Depth) const {
13011 if (*this == Dest) return true;
13012
13013 // Don't search too deeply, we just want to be able to see through
13014 // TokenFactor's etc.
13015 if (Depth == 0) return false;
13016
13017 // If this is a token factor, all inputs to the TF happen in parallel.
13018 if (getOpcode() == ISD::TokenFactor) {
13019 // First, try a shallow search.
13020 if (is_contained((*this)->ops(), Dest)) {
13021 // We found the chain we want as an operand of this TokenFactor.
13022 // Essentially, we reach the chain without side-effects if we could
13023 // serialize the TokenFactor into a simple chain of operations with
13024 // Dest as the last operation. This is automatically true if the
13025 // chain has one use: there are no other ordering constraints.
13026 // If the chain has more than one use, we give up: some other
13027 // use of Dest might force a side-effect between Dest and the current
13028 // node.
13029 if (Dest.hasOneUse())
13030 return true;
13031 }
13032 // Next, try a deep search: check whether every operand of the TokenFactor
13033 // reaches Dest.
13034 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13035 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13036 });
13037 }
13038
13039 // Loads don't have side effects, look through them.
13040 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13041 if (Ld->isUnordered())
13042 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13043 }
13044 return false;
13045}
13046
13047bool SDNode::hasPredecessor(const SDNode *N) const {
13050 Worklist.push_back(this);
13051 return hasPredecessorHelper(N, Visited, Worklist);
13052}
13053
13055 this->Flags &= Flags;
13056}
13057
13058SDValue
13060 ArrayRef<ISD::NodeType> CandidateBinOps,
13061 bool AllowPartials) {
13062 // The pattern must end in an extract from index 0.
13063 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13064 !isNullConstant(Extract->getOperand(1)))
13065 return SDValue();
13066
13067 // Match against one of the candidate binary ops.
13068 SDValue Op = Extract->getOperand(0);
13069 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13070 return Op.getOpcode() == unsigned(BinOp);
13071 }))
13072 return SDValue();
13073
13074 // Floating-point reductions may require relaxed constraints on the final step
13075 // of the reduction because they may reorder intermediate operations.
13076 unsigned CandidateBinOp = Op.getOpcode();
13077 if (Op.getValueType().isFloatingPoint()) {
13078 SDNodeFlags Flags = Op->getFlags();
13079 switch (CandidateBinOp) {
13080 case ISD::FADD:
13081 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13082 return SDValue();
13083 break;
13084 default:
13085 llvm_unreachable("Unhandled FP opcode for binop reduction");
13086 }
13087 }
13088
13089 // Matching failed - attempt to see if we did enough stages that a partial
13090 // reduction from a subvector is possible.
13091 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13092 if (!AllowPartials || !Op)
13093 return SDValue();
13094 EVT OpVT = Op.getValueType();
13095 EVT OpSVT = OpVT.getScalarType();
13096 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13097 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13098 return SDValue();
13099 BinOp = (ISD::NodeType)CandidateBinOp;
13100 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13101 };
13102
13103 // At each stage, we're looking for something that looks like:
13104 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13105 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13106 // i32 undef, i32 undef, i32 undef, i32 undef>
13107 // %a = binop <8 x i32> %op, %s
13108 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13109 // we expect something like:
13110 // <4,5,6,7,u,u,u,u>
13111 // <2,3,u,u,u,u,u,u>
13112 // <1,u,u,u,u,u,u,u>
13113 // While a partial reduction match would be:
13114 // <2,3,u,u,u,u,u,u>
13115 // <1,u,u,u,u,u,u,u>
13116 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13117 SDValue PrevOp;
13118 for (unsigned i = 0; i < Stages; ++i) {
13119 unsigned MaskEnd = (1 << i);
13120
13121 if (Op.getOpcode() != CandidateBinOp)
13122 return PartialReduction(PrevOp, MaskEnd);
13123
13124 SDValue Op0 = Op.getOperand(0);
13125 SDValue Op1 = Op.getOperand(1);
13126
13128 if (Shuffle) {
13129 Op = Op1;
13130 } else {
13131 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13132 Op = Op0;
13133 }
13134
13135 // The first operand of the shuffle should be the same as the other operand
13136 // of the binop.
13137 if (!Shuffle || Shuffle->getOperand(0) != Op)
13138 return PartialReduction(PrevOp, MaskEnd);
13139
13140 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13141 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13142 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13143 return PartialReduction(PrevOp, MaskEnd);
13144
13145 PrevOp = Op;
13146 }
13147
13148 // Handle subvector reductions, which tend to appear after the shuffle
13149 // reduction stages.
13150 while (Op.getOpcode() == CandidateBinOp) {
13151 unsigned NumElts = Op.getValueType().getVectorNumElements();
13152 SDValue Op0 = Op.getOperand(0);
13153 SDValue Op1 = Op.getOperand(1);
13154 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13156 Op0.getOperand(0) != Op1.getOperand(0))
13157 break;
13158 SDValue Src = Op0.getOperand(0);
13159 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13160 if (NumSrcElts != (2 * NumElts))
13161 break;
13162 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13163 Op1.getConstantOperandAPInt(1) == NumElts) &&
13164 !(Op1.getConstantOperandAPInt(1) == 0 &&
13165 Op0.getConstantOperandAPInt(1) == NumElts))
13166 break;
13167 Op = Src;
13168 }
13169
13170 BinOp = (ISD::NodeType)CandidateBinOp;
13171 return Op;
13172}
13173
13175 EVT VT = N->getValueType(0);
13176 EVT EltVT = VT.getVectorElementType();
13177 unsigned NE = VT.getVectorNumElements();
13178
13179 SDLoc dl(N);
13180
13181 // If ResNE is 0, fully unroll the vector op.
13182 if (ResNE == 0)
13183 ResNE = NE;
13184 else if (NE > ResNE)
13185 NE = ResNE;
13186
13187 if (N->getNumValues() == 2) {
13188 SmallVector<SDValue, 8> Scalars0, Scalars1;
13189 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13190 EVT VT1 = N->getValueType(1);
13191 EVT EltVT1 = VT1.getVectorElementType();
13192
13193 unsigned i;
13194 for (i = 0; i != NE; ++i) {
13195 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13196 SDValue Operand = N->getOperand(j);
13197 EVT OperandVT = Operand.getValueType();
13198
13199 // A vector operand; extract a single element.
13200 EVT OperandEltVT = OperandVT.getVectorElementType();
13201 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13202 }
13203
13204 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13205 Scalars0.push_back(EltOp);
13206 Scalars1.push_back(EltOp.getValue(1));
13207 }
13208
13209 for (; i < ResNE; ++i) {
13210 Scalars0.push_back(getUNDEF(EltVT));
13211 Scalars1.push_back(getUNDEF(EltVT1));
13212 }
13213
13214 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13215 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13216 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13217 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13218 return getMergeValues({Vec0, Vec1}, dl);
13219 }
13220
13221 assert(N->getNumValues() == 1 &&
13222 "Can't unroll a vector with multiple results!");
13223
13225 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13226
13227 unsigned i;
13228 for (i= 0; i != NE; ++i) {
13229 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13230 SDValue Operand = N->getOperand(j);
13231 EVT OperandVT = Operand.getValueType();
13232 if (OperandVT.isVector()) {
13233 // A vector operand; extract a single element.
13234 EVT OperandEltVT = OperandVT.getVectorElementType();
13235 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13236 } else {
13237 // A scalar operand; just use it as is.
13238 Operands[j] = Operand;
13239 }
13240 }
13241
13242 switch (N->getOpcode()) {
13243 default: {
13244 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13245 N->getFlags()));
13246 break;
13247 }
13248 case ISD::VSELECT:
13249 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13250 break;
13251 case ISD::SHL:
13252 case ISD::SRA:
13253 case ISD::SRL:
13254 case ISD::ROTL:
13255 case ISD::ROTR:
13256 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13258 Operands[1])));
13259 break;
13261 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13262 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13263 Operands[0],
13264 getValueType(ExtVT)));
13265 break;
13266 }
13267 case ISD::ADDRSPACECAST: {
13268 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13269 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13270 ASC->getSrcAddressSpace(),
13271 ASC->getDestAddressSpace()));
13272 break;
13273 }
13274 }
13275 }
13276
13277 for (; i < ResNE; ++i)
13278 Scalars.push_back(getUNDEF(EltVT));
13279
13280 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13281 return getBuildVector(VecVT, dl, Scalars);
13282}
13283
13284std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13285 SDNode *N, unsigned ResNE) {
13286 unsigned Opcode = N->getOpcode();
13287 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13288 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13289 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13290 "Expected an overflow opcode");
13291
13292 EVT ResVT = N->getValueType(0);
13293 EVT OvVT = N->getValueType(1);
13294 EVT ResEltVT = ResVT.getVectorElementType();
13295 EVT OvEltVT = OvVT.getVectorElementType();
13296 SDLoc dl(N);
13297
13298 // If ResNE is 0, fully unroll the vector op.
13299 unsigned NE = ResVT.getVectorNumElements();
13300 if (ResNE == 0)
13301 ResNE = NE;
13302 else if (NE > ResNE)
13303 NE = ResNE;
13304
13305 SmallVector<SDValue, 8> LHSScalars;
13306 SmallVector<SDValue, 8> RHSScalars;
13307 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13308 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13309
13310 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13311 SDVTList VTs = getVTList(ResEltVT, SVT);
13312 SmallVector<SDValue, 8> ResScalars;
13313 SmallVector<SDValue, 8> OvScalars;
13314 for (unsigned i = 0; i < NE; ++i) {
13315 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13316 SDValue Ov =
13317 getSelect(dl, OvEltVT, Res.getValue(1),
13318 getBoolConstant(true, dl, OvEltVT, ResVT),
13319 getConstant(0, dl, OvEltVT));
13320
13321 ResScalars.push_back(Res);
13322 OvScalars.push_back(Ov);
13323 }
13324
13325 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13326 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13327
13328 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13329 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13330 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13331 getBuildVector(NewOvVT, dl, OvScalars));
13332}
13333
13336 unsigned Bytes,
13337 int Dist) const {
13338 if (LD->isVolatile() || Base->isVolatile())
13339 return false;
13340 // TODO: probably too restrictive for atomics, revisit
13341 if (!LD->isSimple())
13342 return false;
13343 if (LD->isIndexed() || Base->isIndexed())
13344 return false;
13345 if (LD->getChain() != Base->getChain())
13346 return false;
13347 EVT VT = LD->getMemoryVT();
13348 if (VT.getSizeInBits() / 8 != Bytes)
13349 return false;
13350
13351 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13352 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13353
13354 int64_t Offset = 0;
13355 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13356 return (Dist * (int64_t)Bytes == Offset);
13357 return false;
13358}
13359
13360/// InferPtrAlignment - Infer alignment of a load / store address. Return
13361/// std::nullopt if it cannot be inferred.
13363 // If this is a GlobalAddress + cst, return the alignment.
13364 const GlobalValue *GV = nullptr;
13365 int64_t GVOffset = 0;
13366 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13367 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13368 KnownBits Known(PtrWidth);
13370 unsigned AlignBits = Known.countMinTrailingZeros();
13371 if (AlignBits)
13372 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13373 }
13374
13375 // If this is a direct reference to a stack slot, use information about the
13376 // stack slot's alignment.
13377 int FrameIdx = INT_MIN;
13378 int64_t FrameOffset = 0;
13380 FrameIdx = FI->getIndex();
13381 } else if (isBaseWithConstantOffset(Ptr) &&
13382 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13383 // Handle FI+Cst
13384 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13385 FrameOffset = Ptr.getConstantOperandVal(1);
13386 }
13387
13388 if (FrameIdx != INT_MIN) {
13390 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13391 }
13392
13393 return std::nullopt;
13394}
13395
13396/// Split the scalar node with EXTRACT_ELEMENT using the provided
13397/// VTs and return the low/high part.
13398std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13399 const SDLoc &DL,
13400 const EVT &LoVT,
13401 const EVT &HiVT) {
13402 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13403 "Split node must be a scalar type");
13404 SDValue Lo =
13406 SDValue Hi =
13408 return std::make_pair(Lo, Hi);
13409}
13410
13411/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13412/// which is split (or expanded) into two not necessarily identical pieces.
13413std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13414 // Currently all types are split in half.
13415 EVT LoVT, HiVT;
13416 if (!VT.isVector())
13417 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13418 else
13419 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13420
13421 return std::make_pair(LoVT, HiVT);
13422}
13423
13424/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13425/// type, dependent on an enveloping VT that has been split into two identical
13426/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13427std::pair<EVT, EVT>
13429 bool *HiIsEmpty) const {
13430 EVT EltTp = VT.getVectorElementType();
13431 // Examples:
13432 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13433 // custom VL=9 with enveloping VL=8/8 yields 8/1
13434 // custom VL=10 with enveloping VL=8/8 yields 8/2
13435 // etc.
13436 ElementCount VTNumElts = VT.getVectorElementCount();
13437 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13438 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13439 "Mixing fixed width and scalable vectors when enveloping a type");
13440 EVT LoVT, HiVT;
13441 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13442 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13443 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13444 *HiIsEmpty = false;
13445 } else {
13446 // Flag that hi type has zero storage size, but return split envelop type
13447 // (this would be easier if vector types with zero elements were allowed).
13448 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13449 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13450 *HiIsEmpty = true;
13451 }
13452 return std::make_pair(LoVT, HiVT);
13453}
13454
13455/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13456/// low/high part.
13457std::pair<SDValue, SDValue>
13458SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13459 const EVT &HiVT) {
13460 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13461 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13462 "Splitting vector with an invalid mixture of fixed and scalable "
13463 "vector types");
13465 N.getValueType().getVectorMinNumElements() &&
13466 "More vector elements requested than available!");
13467 SDValue Lo, Hi;
13468 Lo = getExtractSubvector(DL, LoVT, N, 0);
13469 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13470 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13471 // IDX with the runtime scaling factor of the result vector type. For
13472 // fixed-width result vectors, that runtime scaling factor is 1.
13475 return std::make_pair(Lo, Hi);
13476}
13477
13478std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13479 const SDLoc &DL) {
13480 // Split the vector length parameter.
13481 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13482 EVT VT = N.getValueType();
13484 "Expecting the mask to be an evenly-sized vector");
13485 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13486 SDValue HalfNumElts =
13487 VecVT.isFixedLengthVector()
13488 ? getConstant(HalfMinNumElts, DL, VT)
13489 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13490 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13491 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13492 return std::make_pair(Lo, Hi);
13493}
13494
13495/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13497 EVT VT = N.getValueType();
13500 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13501}
13502
13505 unsigned Start, unsigned Count,
13506 EVT EltVT) {
13507 EVT VT = Op.getValueType();
13508 if (Count == 0)
13510 if (EltVT == EVT())
13511 EltVT = VT.getVectorElementType();
13512 SDLoc SL(Op);
13513 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13514 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13515 }
13516}
13517
13518// getAddressSpace - Return the address space this GlobalAddress belongs to.
13520 return getGlobal()->getType()->getAddressSpace();
13521}
13522
13525 return Val.MachineCPVal->getType();
13526 return Val.ConstVal->getType();
13527}
13528
13529bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13530 unsigned &SplatBitSize,
13531 bool &HasAnyUndefs,
13532 unsigned MinSplatBits,
13533 bool IsBigEndian) const {
13534 EVT VT = getValueType(0);
13535 assert(VT.isVector() && "Expected a vector type");
13536 unsigned VecWidth = VT.getSizeInBits();
13537 if (MinSplatBits > VecWidth)
13538 return false;
13539
13540 // FIXME: The widths are based on this node's type, but build vectors can
13541 // truncate their operands.
13542 SplatValue = APInt(VecWidth, 0);
13543 SplatUndef = APInt(VecWidth, 0);
13544
13545 // Get the bits. Bits with undefined values (when the corresponding element
13546 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13547 // in SplatValue. If any of the values are not constant, give up and return
13548 // false.
13549 unsigned int NumOps = getNumOperands();
13550 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13551 unsigned EltWidth = VT.getScalarSizeInBits();
13552
13553 for (unsigned j = 0; j < NumOps; ++j) {
13554 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13555 SDValue OpVal = getOperand(i);
13556 unsigned BitPos = j * EltWidth;
13557
13558 if (OpVal.isUndef())
13559 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13560 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13561 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13562 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13563 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13564 else
13565 return false;
13566 }
13567
13568 // The build_vector is all constants or undefs. Find the smallest element
13569 // size that splats the vector.
13570 HasAnyUndefs = (SplatUndef != 0);
13571
13572 // FIXME: This does not work for vectors with elements less than 8 bits.
13573 while (VecWidth > 8) {
13574 // If we can't split in half, stop here.
13575 if (VecWidth & 1)
13576 break;
13577
13578 unsigned HalfSize = VecWidth / 2;
13579 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13580 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13581 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13582 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13583
13584 // If the two halves do not match (ignoring undef bits), stop here.
13585 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13586 MinSplatBits > HalfSize)
13587 break;
13588
13589 SplatValue = HighValue | LowValue;
13590 SplatUndef = HighUndef & LowUndef;
13591
13592 VecWidth = HalfSize;
13593 }
13594
13595 // FIXME: The loop above only tries to split in halves. But if the input
13596 // vector for example is <3 x i16> it wouldn't be able to detect a
13597 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13598 // optimizations. I guess that back in the days when this helper was created
13599 // vectors normally was power-of-2 sized.
13600
13601 SplatBitSize = VecWidth;
13602 return true;
13603}
13604
13606 BitVector *UndefElements) const {
13607 unsigned NumOps = getNumOperands();
13608 if (UndefElements) {
13609 UndefElements->clear();
13610 UndefElements->resize(NumOps);
13611 }
13612 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13613 if (!DemandedElts)
13614 return SDValue();
13615 SDValue Splatted;
13616 for (unsigned i = 0; i != NumOps; ++i) {
13617 if (!DemandedElts[i])
13618 continue;
13619 SDValue Op = getOperand(i);
13620 if (Op.isUndef()) {
13621 if (UndefElements)
13622 (*UndefElements)[i] = true;
13623 } else if (!Splatted) {
13624 Splatted = Op;
13625 } else if (Splatted != Op) {
13626 return SDValue();
13627 }
13628 }
13629
13630 if (!Splatted) {
13631 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13632 assert(getOperand(FirstDemandedIdx).isUndef() &&
13633 "Can only have a splat without a constant for all undefs.");
13634 return getOperand(FirstDemandedIdx);
13635 }
13636
13637 return Splatted;
13638}
13639
13641 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13642 return getSplatValue(DemandedElts, UndefElements);
13643}
13644
13646 SmallVectorImpl<SDValue> &Sequence,
13647 BitVector *UndefElements) const {
13648 unsigned NumOps = getNumOperands();
13649 Sequence.clear();
13650 if (UndefElements) {
13651 UndefElements->clear();
13652 UndefElements->resize(NumOps);
13653 }
13654 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13655 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13656 return false;
13657
13658 // Set the undefs even if we don't find a sequence (like getSplatValue).
13659 if (UndefElements)
13660 for (unsigned I = 0; I != NumOps; ++I)
13661 if (DemandedElts[I] && getOperand(I).isUndef())
13662 (*UndefElements)[I] = true;
13663
13664 // Iteratively widen the sequence length looking for repetitions.
13665 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13666 Sequence.append(SeqLen, SDValue());
13667 for (unsigned I = 0; I != NumOps; ++I) {
13668 if (!DemandedElts[I])
13669 continue;
13670 SDValue &SeqOp = Sequence[I % SeqLen];
13672 if (Op.isUndef()) {
13673 if (!SeqOp)
13674 SeqOp = Op;
13675 continue;
13676 }
13677 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13678 Sequence.clear();
13679 break;
13680 }
13681 SeqOp = Op;
13682 }
13683 if (!Sequence.empty())
13684 return true;
13685 }
13686
13687 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13688 return false;
13689}
13690
13692 BitVector *UndefElements) const {
13693 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13694 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13695}
13696
13699 BitVector *UndefElements) const {
13701 getSplatValue(DemandedElts, UndefElements));
13702}
13703
13706 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13707}
13708
13711 BitVector *UndefElements) const {
13713 getSplatValue(DemandedElts, UndefElements));
13714}
13715
13720
13721int32_t
13723 uint32_t BitWidth) const {
13724 if (ConstantFPSDNode *CN =
13726 bool IsExact;
13727 APSInt IntVal(BitWidth);
13728 const APFloat &APF = CN->getValueAPF();
13729 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13730 APFloat::opOK ||
13731 !IsExact)
13732 return -1;
13733
13734 return IntVal.exactLogBase2();
13735 }
13736 return -1;
13737}
13738
13740 bool IsLittleEndian, unsigned DstEltSizeInBits,
13741 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13742 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13743 if (!isConstant())
13744 return false;
13745
13746 unsigned NumSrcOps = getNumOperands();
13747 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13748 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13749 "Invalid bitcast scale");
13750
13751 // Extract raw src bits.
13752 SmallVector<APInt> SrcBitElements(NumSrcOps,
13753 APInt::getZero(SrcEltSizeInBits));
13754 BitVector SrcUndeElements(NumSrcOps, false);
13755
13756 for (unsigned I = 0; I != NumSrcOps; ++I) {
13758 if (Op.isUndef()) {
13759 SrcUndeElements.set(I);
13760 continue;
13761 }
13762 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13763 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13764 assert((CInt || CFP) && "Unknown constant");
13765 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13766 : CFP->getValueAPF().bitcastToAPInt();
13767 }
13768
13769 // Recast to dst width.
13770 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13771 SrcBitElements, UndefElements, SrcUndeElements);
13772 return true;
13773}
13774
13775void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13776 unsigned DstEltSizeInBits,
13777 SmallVectorImpl<APInt> &DstBitElements,
13778 ArrayRef<APInt> SrcBitElements,
13779 BitVector &DstUndefElements,
13780 const BitVector &SrcUndefElements) {
13781 unsigned NumSrcOps = SrcBitElements.size();
13782 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13783 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13784 "Invalid bitcast scale");
13785 assert(NumSrcOps == SrcUndefElements.size() &&
13786 "Vector size mismatch");
13787
13788 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13789 DstUndefElements.clear();
13790 DstUndefElements.resize(NumDstOps, false);
13791 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13792
13793 // Concatenate src elements constant bits together into dst element.
13794 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13795 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13796 for (unsigned I = 0; I != NumDstOps; ++I) {
13797 DstUndefElements.set(I);
13798 APInt &DstBits = DstBitElements[I];
13799 for (unsigned J = 0; J != Scale; ++J) {
13800 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13801 if (SrcUndefElements[Idx])
13802 continue;
13803 DstUndefElements.reset(I);
13804 const APInt &SrcBits = SrcBitElements[Idx];
13805 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13806 "Illegal constant bitwidths");
13807 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13808 }
13809 }
13810 return;
13811 }
13812
13813 // Split src element constant bits into dst elements.
13814 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13815 for (unsigned I = 0; I != NumSrcOps; ++I) {
13816 if (SrcUndefElements[I]) {
13817 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13818 continue;
13819 }
13820 const APInt &SrcBits = SrcBitElements[I];
13821 for (unsigned J = 0; J != Scale; ++J) {
13822 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13823 APInt &DstBits = DstBitElements[Idx];
13824 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13825 }
13826 }
13827}
13828
13830 for (const SDValue &Op : op_values()) {
13831 unsigned Opc = Op.getOpcode();
13832 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13833 return false;
13834 }
13835 return true;
13836}
13837
13838std::optional<std::pair<APInt, APInt>>
13840 unsigned NumOps = getNumOperands();
13841 if (NumOps < 2)
13842 return std::nullopt;
13843
13846 return std::nullopt;
13847
13848 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13849 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13850 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13851
13852 if (Stride.isZero())
13853 return std::nullopt;
13854
13855 for (unsigned i = 2; i < NumOps; ++i) {
13857 return std::nullopt;
13858
13859 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13860 if (Val != (Start + (Stride * i)))
13861 return std::nullopt;
13862 }
13863
13864 return std::make_pair(Start, Stride);
13865}
13866
13868 // Find the first non-undef value in the shuffle mask.
13869 unsigned i, e;
13870 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13871 /* search */;
13872
13873 // If all elements are undefined, this shuffle can be considered a splat
13874 // (although it should eventually get simplified away completely).
13875 if (i == e)
13876 return true;
13877
13878 // Make sure all remaining elements are either undef or the same as the first
13879 // non-undef value.
13880 for (int Idx = Mask[i]; i != e; ++i)
13881 if (Mask[i] >= 0 && Mask[i] != Idx)
13882 return false;
13883 return true;
13884}
13885
13886// Returns true if it is a constant integer BuildVector or constant integer,
13887// possibly hidden by a bitcast.
13889 SDValue N, bool AllowOpaques) const {
13891
13892 if (auto *C = dyn_cast<ConstantSDNode>(N))
13893 return AllowOpaques || !C->isOpaque();
13894
13896 return true;
13897
13898 // Treat a GlobalAddress supporting constant offset folding as a
13899 // constant integer.
13900 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
13901 if (GA->getOpcode() == ISD::GlobalAddress &&
13902 TLI->isOffsetFoldingLegal(GA))
13903 return true;
13904
13905 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13906 isa<ConstantSDNode>(N.getOperand(0)))
13907 return true;
13908 return false;
13909}
13910
13911// Returns true if it is a constant float BuildVector or constant float.
13914 return true;
13915
13917 return true;
13918
13919 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13920 isa<ConstantFPSDNode>(N.getOperand(0)))
13921 return true;
13922
13923 return false;
13924}
13925
13926std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
13927 ConstantSDNode *Const =
13928 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
13929 if (!Const)
13930 return std::nullopt;
13931
13932 EVT VT = N->getValueType(0);
13933 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
13934 switch (TLI->getBooleanContents(N.getValueType())) {
13936 if (CVal.isOne())
13937 return true;
13938 if (CVal.isZero())
13939 return false;
13940 return std::nullopt;
13942 if (CVal.isAllOnes())
13943 return true;
13944 if (CVal.isZero())
13945 return false;
13946 return std::nullopt;
13948 return CVal[0];
13949 }
13950 llvm_unreachable("Unknown BooleanContent enum");
13951}
13952
13953void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
13954 assert(!Node->OperandList && "Node already has operands");
13956 "too many operands to fit into SDNode");
13957 SDUse *Ops = OperandRecycler.allocate(
13958 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
13959
13960 bool IsDivergent = false;
13961 for (unsigned I = 0; I != Vals.size(); ++I) {
13962 Ops[I].setUser(Node);
13963 Ops[I].setInitial(Vals[I]);
13964 EVT VT = Ops[I].getValueType();
13965
13966 // Skip Chain. It does not carry divergence.
13967 if (VT != MVT::Other &&
13968 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
13969 Ops[I].getNode()->isDivergent()) {
13970 IsDivergent = true;
13971 }
13972 }
13973 Node->NumOperands = Vals.size();
13974 Node->OperandList = Ops;
13975 if (!TLI->isSDNodeAlwaysUniform(Node)) {
13976 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
13977 Node->SDNodeBits.IsDivergent = IsDivergent;
13978 }
13979 checkForCycles(Node);
13980}
13981
13984 size_t Limit = SDNode::getMaxNumOperands();
13985 while (Vals.size() > Limit) {
13986 unsigned SliceIdx = Vals.size() - Limit;
13987 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
13988 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
13989 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
13990 Vals.emplace_back(NewTF);
13991 }
13992 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
13993}
13994
13996 EVT VT, SDNodeFlags Flags) {
13997 switch (Opcode) {
13998 default:
13999 return SDValue();
14000 case ISD::ADD:
14001 case ISD::OR:
14002 case ISD::XOR:
14003 case ISD::UMAX:
14004 return getConstant(0, DL, VT);
14005 case ISD::MUL:
14006 return getConstant(1, DL, VT);
14007 case ISD::AND:
14008 case ISD::UMIN:
14009 return getAllOnesConstant(DL, VT);
14010 case ISD::SMAX:
14012 case ISD::SMIN:
14014 case ISD::FADD:
14015 // If flags allow, prefer positive zero since it's generally cheaper
14016 // to materialize on most targets.
14017 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14018 case ISD::FMUL:
14019 return getConstantFP(1.0, DL, VT);
14020 case ISD::FMINNUM:
14021 case ISD::FMAXNUM: {
14022 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14023 const fltSemantics &Semantics = VT.getFltSemantics();
14024 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14025 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14026 APFloat::getLargest(Semantics);
14027 if (Opcode == ISD::FMAXNUM)
14028 NeutralAF.changeSign();
14029
14030 return getConstantFP(NeutralAF, DL, VT);
14031 }
14032 case ISD::FMINIMUM:
14033 case ISD::FMAXIMUM: {
14034 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14035 const fltSemantics &Semantics = VT.getFltSemantics();
14036 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14037 : APFloat::getLargest(Semantics);
14038 if (Opcode == ISD::FMAXIMUM)
14039 NeutralAF.changeSign();
14040
14041 return getConstantFP(NeutralAF, DL, VT);
14042 }
14043
14044 }
14045}
14046
14047/// Helper used to make a call to a library function that has one argument of
14048/// pointer type.
14049///
14050/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14051/// used to get or set floating-point state. They have one argument of pointer
14052/// type, which points to the memory region containing bits of the
14053/// floating-point state. The value returned by such function is ignored in the
14054/// created call.
14055///
14056/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14057/// \param Ptr Pointer used to save/load state.
14058/// \param InChain Ingoing token chain.
14059/// \returns Outgoing chain token.
14061 SDValue InChain,
14062 const SDLoc &DLoc) {
14063 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14065 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14066 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14067 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14068 TLI->getPointerTy(getDataLayout()));
14070 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14071 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14072 std::move(Args));
14073 return TLI->LowerCallTo(CLI).second;
14074}
14075
14077 assert(From && To && "Invalid SDNode; empty source SDValue?");
14078 auto I = SDEI.find(From);
14079 if (I == SDEI.end())
14080 return;
14081
14082 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14083 // the iterator, hence the need to make a copy to prevent a use-after-free.
14084 NodeExtraInfo NEI = I->second;
14085 if (LLVM_LIKELY(!NEI.PCSections)) {
14086 // No deep copy required for the types of extra info set.
14087 //
14088 // FIXME: Investigate if other types of extra info also need deep copy. This
14089 // depends on the types of nodes they can be attached to: if some extra info
14090 // is only ever attached to nodes where a replacement To node is always the
14091 // node where later use and propagation of the extra info has the intended
14092 // semantics, no deep copy is required.
14093 SDEI[To] = std::move(NEI);
14094 return;
14095 }
14096
14097 const SDNode *EntrySDN = getEntryNode().getNode();
14098
14099 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14100 // through the replacement of From with To. Otherwise, replacements of a node
14101 // (From) with more complex nodes (To and its operands) may result in lost
14102 // extra info where the root node (To) is insignificant in further propagating
14103 // and using extra info when further lowering to MIR.
14104 //
14105 // In the first step pre-populate the visited set with the nodes reachable
14106 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14107 // DAG that is not new and should be left untouched.
14108 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14109 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14110 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14111 if (MaxDepth == 0) {
14112 // Remember this node in case we need to increase MaxDepth and continue
14113 // populating FromReach from this node.
14114 Leafs.emplace_back(N);
14115 return;
14116 }
14117 if (!FromReach.insert(N).second)
14118 return;
14119 for (const SDValue &Op : N->op_values())
14120 Self(Self, Op.getNode(), MaxDepth - 1);
14121 };
14122
14123 // Copy extra info to To and all its transitive operands (that are new).
14125 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14126 if (FromReach.contains(N))
14127 return true;
14128 if (!Visited.insert(N).second)
14129 return true;
14130 if (EntrySDN == N)
14131 return false;
14132 for (const SDValue &Op : N->op_values()) {
14133 if (N == To && Op.getNode() == EntrySDN) {
14134 // Special case: New node's operand is the entry node; just need to
14135 // copy extra info to new node.
14136 break;
14137 }
14138 if (!Self(Self, Op.getNode()))
14139 return false;
14140 }
14141 // Copy only if entry node was not reached.
14142 SDEI[N] = NEI;
14143 return true;
14144 };
14145
14146 // We first try with a lower MaxDepth, assuming that the path to common
14147 // operands between From and To is relatively short. This significantly
14148 // improves performance in the common case. The initial MaxDepth is big
14149 // enough to avoid retry in the common case; the last MaxDepth is large
14150 // enough to avoid having to use the fallback below (and protects from
14151 // potential stack exhaustion from recursion).
14152 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14153 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14154 // StartFrom is the previous (or initial) set of leafs reachable at the
14155 // previous maximum depth.
14157 std::swap(StartFrom, Leafs);
14158 for (const SDNode *N : StartFrom)
14159 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14160 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14161 return;
14162 // This should happen very rarely (reached the entry node).
14163 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14164 assert(!Leafs.empty());
14165 }
14166
14167 // This should not happen - but if it did, that means the subgraph reachable
14168 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14169 // could not visit all reachable common operands. Consequently, we were able
14170 // to reach the entry node.
14171 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14172 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14173 // Best-effort fallback if assertions disabled.
14174 SDEI[To] = std::move(NEI);
14175}
14176
14177#ifndef NDEBUG
14178static void checkForCyclesHelper(const SDNode *N,
14181 const llvm::SelectionDAG *DAG) {
14182 // If this node has already been checked, don't check it again.
14183 if (Checked.count(N))
14184 return;
14185
14186 // If a node has already been visited on this depth-first walk, reject it as
14187 // a cycle.
14188 if (!Visited.insert(N).second) {
14189 errs() << "Detected cycle in SelectionDAG\n";
14190 dbgs() << "Offending node:\n";
14191 N->dumprFull(DAG); dbgs() << "\n";
14192 abort();
14193 }
14194
14195 for (const SDValue &Op : N->op_values())
14196 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14197
14198 Checked.insert(N);
14199 Visited.erase(N);
14200}
14201#endif
14202
14204 const llvm::SelectionDAG *DAG,
14205 bool force) {
14206#ifndef NDEBUG
14207 bool check = force;
14208#ifdef EXPENSIVE_CHECKS
14209 check = true;
14210#endif // EXPENSIVE_CHECKS
14211 if (check) {
14212 assert(N && "Checking nonexistent SDNode");
14215 checkForCyclesHelper(N, visited, checked, DAG);
14216 }
14217#endif // !NDEBUG
14218}
14219
14220void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14221 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14222}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:546
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:119
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
void setAllBits()
Set every bit to 1.
Definition APInt.h:1319
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:335
BitVector & set()
Definition BitVector.h:351
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:188
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:159
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:261
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:148
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetOptions Options
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:611
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:148
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:349
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1747
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1727
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1605
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2474
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:260
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:270
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2138
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:646
auto cast_or_null(const Y &Val)
Definition Casting.h:720
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1587
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1734
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:336
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1652
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1741
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1837
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1899
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:577
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:378
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:760
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:780
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:777
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:390
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:507
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:279
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:295
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:345
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:368
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:354
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:380
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:311
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:318
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:287
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:251
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:323
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:331
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:303
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:448
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:294
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:248
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:101
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:117
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:235
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:267
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:112
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:154
KnownBits byteSwap() const
Definition KnownBits.h:507
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:282
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:511
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:226
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:165
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:314
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:104
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:218
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:304
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:173
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:189
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:138
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:107
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:319
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:98
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:273
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:212
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:160
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)