65 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
71 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
72 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
73 Attribute::DereferenceableOrNull, Attribute::NoAlias,
74 Attribute::NonNull, Attribute::NoUndef,
75 Attribute::Range, Attribute::NoFPClass})
76 CallerAttrs.removeAttribute(Attr);
78 if (CallerAttrs.hasAttributes())
82 if (CallerAttrs.contains(Attribute::ZExt) ||
83 CallerAttrs.contains(Attribute::SExt))
94 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
111 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
121 IsSExt =
Call->paramHasAttr(ArgIdx, Attribute::SExt);
122 IsZExt =
Call->paramHasAttr(ArgIdx, Attribute::ZExt);
123 IsNoExt =
Call->paramHasAttr(ArgIdx, Attribute::NoExt);
124 IsInReg =
Call->paramHasAttr(ArgIdx, Attribute::InReg);
125 IsSRet =
Call->paramHasAttr(ArgIdx, Attribute::StructRet);
126 IsNest =
Call->paramHasAttr(ArgIdx, Attribute::Nest);
127 IsByVal =
Call->paramHasAttr(ArgIdx, Attribute::ByVal);
137 "multiple ABI attributes?");
153std::pair<SDValue, SDValue>
163 Args.reserve(
Ops.size());
166 for (
unsigned i = 0; i <
Ops.size(); ++i) {
168 Type *Ty = i < OpsTypeOverrides.
size() && OpsTypeOverrides[i]
169 ? OpsTypeOverrides[i]
178 Entry.IsZExt = !Entry.IsSExt;
182 Entry.IsSExt = Entry.IsZExt =
false;
184 Args.push_back(Entry);
188 if (LC == RTLIB::UNKNOWN_LIBCALL || !LibcallName)
195 Type *OrigRetTy = RetTy;
198 bool zeroExtend = !signExtend;
203 signExtend = zeroExtend =
false;
219 LLVMContext &Context, std::vector<EVT> &MemOps,
unsigned Limit,
220 const MemOp &
Op,
unsigned DstAS,
unsigned SrcAS,
221 const AttributeList &FuncAttributes)
const {
222 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
223 Op.getSrcAlign() <
Op.getDstAlign())
228 if (VT == MVT::Other) {
232 VT = MVT::LAST_INTEGER_VALUETYPE;
233 if (
Op.isFixedDstAlign())
240 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
251 unsigned NumMemOps = 0;
255 while (VTSize >
Size) {
266 else if (NewVT == MVT::i64 &&
278 if (NewVT == MVT::i8)
287 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
289 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
299 if (++NumMemOps > Limit)
302 MemOps.push_back(VT);
327 bool IsSignaling)
const {
332 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
333 &&
"Unsupported setcc type!");
336 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
337 bool ShouldInvertCC =
false;
341 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
342 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
343 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
347 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
348 (VT == MVT::f64) ? RTLIB::UNE_F64 :
349 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
353 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
354 (VT == MVT::f64) ? RTLIB::OGE_F64 :
355 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
359 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
360 (VT == MVT::f64) ? RTLIB::OLT_F64 :
361 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
371 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
372 (VT == MVT::f64) ? RTLIB::OGT_F64 :
373 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
376 ShouldInvertCC =
true;
379 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
380 (VT == MVT::f64) ? RTLIB::UO_F64 :
381 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
385 ShouldInvertCC =
true;
388 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
389 (VT == MVT::f64) ? RTLIB::UO_F64 :
390 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
391 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
392 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
393 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
397 ShouldInvertCC =
true;
400 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
401 (VT == MVT::f64) ? RTLIB::OGE_F64 :
402 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
405 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
406 (VT == MVT::f64) ? RTLIB::OGT_F64 :
407 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
410 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
411 (VT == MVT::f64) ? RTLIB::OLE_F64 :
412 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
415 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
416 (VT == MVT::f64) ? RTLIB::OLT_F64 :
417 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
435 if (LC1Impl == RTLIB::Unsupported) {
437 "no libcall available to soften floating-point compare");
441 if (ShouldInvertCC) {
443 CCCode = getSetCCInverse(CCCode, RetVT);
446 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
451 if (LC2Impl == RTLIB::Unsupported) {
453 "no libcall available to soften floating-point compare");
457 "unordered call should be simple boolean");
467 auto Call2 =
makeLibCall(DAG, LC2, RetVT,
Ops, CallOptions, dl, Chain);
470 CCCode = getSetCCInverse(CCCode, RetVT);
471 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
514 return DAG.
getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
524 if (!TM.shouldAssumeDSOLocal(GV))
544 const APInt &DemandedElts,
547 unsigned Opcode =
Op.getOpcode();
566 if (!Op1C || Op1C->isOpaque())
570 const APInt &
C = Op1C->getAPIntValue();
575 EVT VT =
Op.getValueType();
592 EVT VT =
Op.getValueType();
607 "ShrinkDemandedOp only supports binary operators!");
608 assert(
Op.getNode()->getNumValues() == 1 &&
609 "ShrinkDemandedOp only supports nodes with one result!");
611 EVT VT =
Op.getValueType();
620 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
621 "ShrinkDemandedOp only supports operands that have the same size!");
625 if (!
Op.getNode()->hasOneUse())
642 Op.getOpcode(), dl, SmallVT,
645 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
669 const APInt &DemandedElts,
689 bool AssumeSingleUse)
const {
690 EVT VT =
Op.getValueType();
706 EVT VT =
Op.getValueType();
724 switch (
Op.getOpcode()) {
730 EVT SrcVT = Src.getValueType();
731 EVT DstVT =
Op.getValueType();
737 if (NumSrcEltBits == NumDstEltBits)
742 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
743 unsigned Scale = NumDstEltBits / NumSrcEltBits;
747 for (
unsigned i = 0; i != Scale; ++i) {
748 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
749 unsigned BitOffset = EltOffset * NumSrcEltBits;
752 DemandedSrcBits |=
Sub;
753 for (
unsigned j = 0; j != NumElts; ++j)
755 DemandedSrcElts.
setBit((j * Scale) + i);
760 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
765 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
766 unsigned Scale = NumSrcEltBits / NumDstEltBits;
770 for (
unsigned i = 0; i != NumElts; ++i)
771 if (DemandedElts[i]) {
772 unsigned Offset = (i % Scale) * NumDstEltBits;
774 DemandedSrcElts.
setBit(i / Scale);
778 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
792 return Op.getOperand(0);
794 return Op.getOperand(1);
805 return Op.getOperand(0);
807 return Op.getOperand(1);
817 return Op.getOperand(0);
819 return Op.getOperand(1);
825 return Op.getOperand(0);
829 return Op.getOperand(1);
835 if (std::optional<unsigned> MaxSA =
838 unsigned ShAmt = *MaxSA;
839 unsigned NumSignBits =
842 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
850 if (std::optional<unsigned> MaxSA =
853 unsigned ShAmt = *MaxSA;
857 unsigned NumSignBits =
896 if (NumSignBits >= (
BitWidth - ExBits + 1))
909 EVT SrcVT = Src.getValueType();
910 EVT DstVT =
Op.getValueType();
911 if (IsLE && DemandedElts == 1 &&
927 !DemandedElts[CIdx->getZExtValue()])
938 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
941 if (DemandedSubElts == 0)
951 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
952 for (
unsigned i = 0; i != NumElts; ++i) {
953 int M = ShuffleMask[i];
954 if (M < 0 || !DemandedElts[i])
957 IdentityLHS &= (M == (int)i);
958 IdentityRHS &= ((M - NumElts) == i);
964 return Op.getOperand(0);
966 return Op.getOperand(1);
986 unsigned Depth)
const {
987 EVT VT =
Op.getValueType();
1000 unsigned Depth)
const {
1014 "SRL or SRA node is required here!");
1017 if (!N1C || !N1C->
isOne())
1064 unsigned ShiftOpc =
Op.getOpcode();
1065 bool IsSigned =
false;
1069 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1074 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1080 if (NumZero >= 2 && NumSigned < NumZero) {
1085 if (NumSigned >= 1) {
1093 if (NumZero >= 1 && NumSigned < NumZero) {
1113 EVT VT =
Op.getValueType();
1127 Add.getOperand(1)) &&
1158 unsigned Depth,
bool AssumeSingleUse)
const {
1161 "Mask size mismatches value type size!");
1166 EVT VT =
Op.getValueType();
1168 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1170 "Unexpected vector size");
1173 APInt DemandedElts = OriginalDemandedElts;
1198 bool HasMultiUse =
false;
1199 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1208 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1217 switch (
Op.getOpcode()) {
1221 if (!DemandedElts[0])
1226 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1233 if (DemandedElts == 1)
1262 EVT MemVT = LD->getMemoryVT();
1279 APInt DemandedVecElts(DemandedElts);
1281 unsigned Idx = CIdx->getZExtValue();
1285 if (!DemandedElts[Idx])
1302 if (!!DemandedVecElts)
1315 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
1317 APInt DemandedSrcElts = DemandedElts;
1318 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
1330 if (!!DemandedSubElts)
1332 if (!!DemandedSrcElts)
1342 if (NewSub || NewSrc) {
1343 NewSub = NewSub ? NewSub :
Sub;
1344 NewSrc = NewSrc ? NewSrc : Src;
1357 if (Src.getValueType().isScalableVector())
1360 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1361 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
1384 EVT SubVT =
Op.getOperand(0).getValueType();
1385 unsigned NumSubVecs =
Op.getNumOperands();
1387 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1388 APInt DemandedSubElts =
1389 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1391 Known2, TLO,
Depth + 1))
1394 if (!!DemandedSubElts)
1404 APInt DemandedLHS, DemandedRHS;
1409 if (!!DemandedLHS || !!DemandedRHS) {
1415 if (!!DemandedLHS) {
1421 if (!!DemandedRHS) {
1433 if (DemandedOp0 || DemandedOp1) {
1434 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1435 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1470 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1482 unsigned NumSubElts =
1503 Known2, TLO,
Depth + 1))
1529 if (DemandedOp0 || DemandedOp1) {
1530 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1531 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1550 Known2, TLO,
Depth + 1)) {
1574 if (DemandedOp0 || DemandedOp1) {
1575 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1576 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1587 for (
int I = 0;
I != 2; ++
I) {
1590 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1591 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1593 for (
int J = 0; J != 2; ++J) {
1646 if (
C->getAPIntValue() == Known2.
One) {
1655 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1667 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1668 uint64_t ShiftAmt = ShiftC->getZExtValue();
1671 : Ones.
lshr(ShiftAmt);
1688 if (!
C || !
C->isAllOnes())
1698 if (DemandedOp0 || DemandedOp1) {
1699 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1700 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1711 Known, TLO,
Depth + 1))
1714 Known2, TLO,
Depth + 1))
1726 Known, TLO,
Depth + 1))
1729 Known2, TLO,
Depth + 1))
1737 Known, TLO,
Depth + 1))
1740 Known2, TLO,
Depth + 1))
1783 if (std::optional<unsigned> KnownSA =
1785 unsigned ShAmt = *KnownSA;
1795 if (std::optional<unsigned> InnerSA =
1797 unsigned C1 = *InnerSA;
1799 int Diff = ShAmt - C1;
1818 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1836 InnerOp, DemandedElts,
Depth + 2)) {
1837 unsigned InnerShAmt = *SA2;
1838 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1840 (InnerBits - InnerShAmt + ShAmt) &&
1868 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1879 Op.getNode()->hasOneUse()) {
1890 assert(DemandedSize <= SmallVTBits &&
1891 "Narrowed below demanded bits?");
1921 Flags.setNoUnsignedWrap(IsNUW);
1926 NewShiftAmt, Flags);
1952 if (std::optional<unsigned> MaxSA =
1954 unsigned ShAmt = *MaxSA;
1955 unsigned NumSignBits =
1958 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1968 if (std::optional<unsigned> KnownSA =
1970 unsigned ShAmt = *KnownSA;
1980 if (std::optional<unsigned> InnerSA =
1982 unsigned C1 = *InnerSA;
1984 int Diff = ShAmt - C1;
2000 if (std::optional<unsigned> InnerSA =
2002 unsigned C1 = *InnerSA;
2004 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
2016 if (
Op->getFlags().hasExact())
2051 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2065 if (std::optional<unsigned> MaxSA =
2067 unsigned ShAmt = *MaxSA;
2071 unsigned NumSignBits =
2080 DemandedElts,
Depth + 1))
2104 if (std::optional<unsigned> KnownSA =
2106 unsigned ShAmt = *KnownSA;
2113 if (std::optional<unsigned> InnerSA =
2115 unsigned LowBits =
BitWidth - ShAmt;
2121 if (*InnerSA == ShAmt) {
2131 unsigned NumSignBits =
2133 if (NumSignBits > ShAmt)
2143 if (
Op->getFlags().hasExact())
2180 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2190 DemandedElts,
Depth + 1))
2203 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2209 Known, TLO,
Depth + 1))
2225 Known2 <<= (IsFSHL ? Amt : (
BitWidth - Amt));
2226 Known >>= (IsFSHL ? (
BitWidth - Amt) : Amt);
2233 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2235 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2236 if (DemandedOp0 || DemandedOp1) {
2237 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2238 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2250 Known2, TLO,
Depth + 1))
2266 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2282 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2287 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2306 unsigned Opc =
Op.getOpcode();
2313 unsigned NumSignBits =
2317 if (NumSignBits >= NumDemandedUpperBits)
2383 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2415 unsigned MinSignedBits =
2417 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2420 if (!AlreadySignExtended) {
2438 InputDemandedBits.
setBit(ExVTBits - 1);
2448 if (Known.
Zero[ExVTBits - 1])
2452 if (Known.
One[ExVTBits - 1]) {
2462 EVT HalfVT =
Op.getOperand(0).getValueType();
2476 Known = KnownHi.
concat(KnownLo);
2485 EVT SrcVT = Src.getValueType();
2494 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2505 APInt InDemandedElts = DemandedElts.
zext(InElts);
2516 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2526 EVT SrcVT = Src.getValueType();
2531 APInt InDemandedElts = DemandedElts.
zext(InElts);
2536 InDemandedBits.
setBit(InBits - 1);
2542 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2579 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2589 EVT SrcVT = Src.getValueType();
2596 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2601 APInt InDemandedElts = DemandedElts.
zext(InElts);
2610 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2619 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2632 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2637 switch (Src.getOpcode()) {
2648 if (Src.getNode()->hasOneUse()) {
2660 std::optional<unsigned> ShAmtC =
2662 if (!ShAmtC || *ShAmtC >=
BitWidth)
2664 unsigned ShVal = *ShAmtC;
2694 Known.
Zero |= ~InMask;
2695 Known.
One &= (~Known.Zero);
2701 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2702 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2711 if (CIdx->getAPIntValue().ult(NumSrcElts))
2718 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2727 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2729 TLO.
DAG.
getNode(
Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2739 case ISD::BITCAST: {
2743 EVT SrcVT = Src.getValueType();
2753 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2754 SrcVT != MVT::f128) {
2756 EVT Ty = OpVTLegal ? VT : MVT::i32;
2760 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2761 if (!OpVTLegal && OpVTSizeInBits > 32)
2763 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2773 unsigned Scale =
BitWidth / NumSrcEltBits;
2777 for (
unsigned i = 0; i != Scale; ++i) {
2778 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2779 unsigned BitOffset = EltOffset * NumSrcEltBits;
2781 if (!
Sub.isZero()) {
2782 DemandedSrcBits |=
Sub;
2783 for (
unsigned j = 0; j != NumElts; ++j)
2784 if (DemandedElts[j])
2785 DemandedSrcElts.
setBit((j * Scale) + i);
2789 APInt KnownSrcUndef, KnownSrcZero;
2791 KnownSrcZero, TLO,
Depth + 1))
2796 KnownSrcBits, TLO,
Depth + 1))
2798 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2800 unsigned Scale = NumSrcEltBits /
BitWidth;
2804 for (
unsigned i = 0; i != NumElts; ++i)
2805 if (DemandedElts[i]) {
2808 DemandedSrcElts.
setBit(i / Scale);
2812 APInt KnownSrcUndef, KnownSrcZero;
2814 KnownSrcZero, TLO,
Depth + 1))
2820 KnownSrcBits, TLO,
Depth + 1))
2826 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2848 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2867 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2872 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2881 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2898 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2900 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2901 if (DemandedOp0 || DemandedOp1) {
2902 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2903 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2917 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2918 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2930 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2957 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2960 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2961 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2965 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2966 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2974 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
2975 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2996 Known.
Zero |= SignMask;
2997 Known.
One &= ~SignMask;
3014 Known, TLO,
Depth + 1) ||
3028 Known.
Zero &= ~SignMask0;
3029 Known.
One &= ~SignMask0;
3044 Known.
Zero ^= SignMask;
3045 Known.
One ^= SignMask;
3056 if (
Op.getValueType().isScalableVector())
3075 auto *C = dyn_cast<ConstantSDNode>(V);
3076 return C && C->isOpaque();
3097 const APInt &DemandedElts,
3103 APInt KnownUndef, KnownZero;
3117 const APInt &UndefOp0,
3118 const APInt &UndefOp1) {
3121 "Vector binop only");
3126 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3128 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3129 const APInt &UndefVals) {
3130 if (UndefVals[Index])
3146 for (
unsigned i = 0; i != NumElts; ++i) {
3165 bool AssumeSingleUse)
const {
3166 EVT VT =
Op.getValueType();
3167 unsigned Opcode =
Op.getOpcode();
3168 APInt DemandedElts = OriginalDemandedElts;
3182 "Mask size mismatches value type element count!");
3191 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3195 if (DemandedElts == 0) {
3210 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3215 if (NewOp0 || NewOp1) {
3218 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3226 if (!DemandedElts[0]) {
3233 case ISD::BITCAST: {
3235 EVT SrcVT = Src.getValueType();
3242 for (
unsigned I = 0;
I != NumElts; ++
I) {
3243 if (DemandedElts[
I]) {
3244 unsigned Offset =
I * EltSize;
3257 if (NumSrcElts == NumElts)
3259 KnownZero, TLO,
Depth + 1);
3261 APInt SrcDemandedElts, SrcZero, SrcUndef;
3265 if ((NumElts % NumSrcElts) == 0) {
3266 unsigned Scale = NumElts / NumSrcElts;
3278 for (
unsigned i = 0; i != NumElts; ++i)
3279 if (DemandedElts[i]) {
3280 unsigned Ofs = (i % Scale) * EltSizeInBits;
3281 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3293 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3297 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3298 unsigned Elt = Scale * SrcElt + SubElt;
3299 if (DemandedElts[Elt])
3307 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3308 if (SrcDemandedElts[i]) {
3310 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3312 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3320 if ((NumSrcElts % NumElts) == 0) {
3321 unsigned Scale = NumSrcElts / NumElts;
3329 for (
unsigned i = 0; i != NumElts; ++i) {
3330 if (DemandedElts[i]) {
3360 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3362 bool Updated =
false;
3363 for (
unsigned i = 0; i != NumElts; ++i) {
3374 for (
unsigned i = 0; i != NumElts; ++i) {
3376 if (
SrcOp.isUndef()) {
3378 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3386 EVT SubVT =
Op.getOperand(0).getValueType();
3387 unsigned NumSubVecs =
Op.getNumOperands();
3389 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3392 APInt SubUndef, SubZero;
3396 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3397 KnownZero.
insertBits(SubZero, i * NumSubElts);
3402 bool FoundNewSub =
false;
3404 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3408 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3409 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3410 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3426 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3428 APInt DemandedSrcElts = DemandedElts;
3429 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3431 APInt SubUndef, SubZero;
3437 if (!DemandedSrcElts && !Src.isUndef())
3451 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3454 if (NewSrc || NewSub) {
3455 NewSrc = NewSrc ? NewSrc : Src;
3456 NewSub = NewSub ? NewSub :
Sub;
3458 NewSub,
Op.getOperand(2));
3467 if (Src.getValueType().isScalableVector())
3470 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3471 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3473 APInt SrcUndef, SrcZero;
3483 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3499 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3500 unsigned Idx = CIdx->getZExtValue();
3501 if (!DemandedElts[Idx])
3504 APInt DemandedVecElts(DemandedElts);
3507 KnownZero, TLO,
Depth + 1))
3516 APInt VecUndef, VecZero;
3530 APInt UndefSel, ZeroSel;
3536 APInt DemandedLHS(DemandedElts);
3537 APInt DemandedRHS(DemandedElts);
3538 APInt UndefLHS, ZeroLHS;
3539 APInt UndefRHS, ZeroRHS;
3547 KnownUndef = UndefLHS & UndefRHS;
3548 KnownZero = ZeroLHS & ZeroRHS;
3552 APInt DemandedSel = DemandedElts & ~KnownZero;
3553 if (DemandedSel != DemandedElts)
3566 APInt DemandedLHS(NumElts, 0);
3567 APInt DemandedRHS(NumElts, 0);
3568 for (
unsigned i = 0; i != NumElts; ++i) {
3569 int M = ShuffleMask[i];
3570 if (M < 0 || !DemandedElts[i])
3572 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3573 if (M < (
int)NumElts)
3576 DemandedRHS.
setBit(M - NumElts);
3582 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3583 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3584 if (FoldLHS || FoldRHS) {
3585 LHS = FoldLHS ? TLO.
DAG.
getUNDEF(LHS.getValueType()) : LHS;
3586 RHS = FoldRHS ? TLO.
DAG.
getUNDEF(RHS.getValueType()) : RHS;
3593 APInt UndefLHS, ZeroLHS;
3594 APInt UndefRHS, ZeroRHS;
3603 bool Updated =
false;
3604 bool IdentityLHS =
true, IdentityRHS =
true;
3606 for (
unsigned i = 0; i != NumElts; ++i) {
3607 int &M = NewMask[i];
3610 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3611 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3615 IdentityLHS &= (M < 0) || (M == (
int)i);
3616 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3621 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3629 for (
unsigned i = 0; i != NumElts; ++i) {
3630 int M = ShuffleMask[i];
3633 }
else if (M < (
int)NumElts) {
3639 if (UndefRHS[M - NumElts])
3641 if (ZeroRHS[M - NumElts])
3650 APInt SrcUndef, SrcZero;
3652 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3653 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3661 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3662 DemandedSrcElts == 1) {
3675 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3676 Op->isOnlyUserOf(Src.getNode()) &&
3677 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3679 EVT SrcVT = Src.getValueType();
3686 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3700 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3701 APInt UndefLHS, ZeroLHS;
3723 APInt UndefRHS, ZeroRHS;
3727 APInt UndefLHS, ZeroLHS;
3732 KnownZero = ZeroLHS & ZeroRHS;
3738 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3750 APInt UndefRHS, ZeroRHS;
3754 APInt UndefLHS, ZeroLHS;
3759 KnownZero = ZeroLHS;
3760 KnownUndef = UndefLHS & UndefRHS;
3765 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3776 APInt SrcUndef, SrcZero;
3782 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3787 KnownUndef &= DemandedElts0;
3788 KnownZero &= DemandedElts0;
3793 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3800 KnownZero |= SrcZero;
3801 KnownUndef &= SrcUndef;
3802 KnownUndef &= ~KnownZero;
3806 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3814 KnownZero, TLO,
Depth + 1))
3819 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3834 KnownZero, TLO,
Depth + 1))
3841 KnownZero, TLO,
Depth))
3847 TLO,
Depth, AssumeSingleUse))
3853 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3867 const APInt &DemandedElts,
3869 unsigned Depth)
const {
3874 "Should use MaskedValueIsZero if you don't know whether Op"
3875 " is a target node!");
3882 unsigned Depth)
const {
3889 unsigned Depth)
const {
3901 unsigned Depth)
const {
3910 unsigned Depth)
const {
3915 "Should use ComputeNumSignBits if you don't know whether Op"
3916 " is a target node!");
3933 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3934 " is a target node!");
3945 "Should use SimplifyDemandedBits if you don't know whether Op"
3946 " is a target node!");
3959 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3960 " is a target node!");
3993 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3994 " is a target node!");
4001 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4013 "Should use canCreateUndefOrPoison if you don't know whether Op"
4014 " is a target node!");
4020 const APInt &DemandedElts,
4023 unsigned Depth)
const {
4028 "Should use isKnownNeverNaN if you don't know whether Op"
4029 " is a target node!");
4034 const APInt &DemandedElts,
4037 unsigned Depth)
const {
4042 "Should use isSplatValue if you don't know whether Op"
4043 " is a target node!");
4058 CVal = CN->getAPIntValue();
4059 EltWidth =
N.getValueType().getScalarSizeInBits();
4066 CVal = CVal.
trunc(EltWidth);
4072 return CVal.
isOne();
4114 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4117 return N->isAllOnes() && SExt;
4126 DAGCombinerInfo &DCI)
const {
4155 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4158 AndC->getAPIntValue().getActiveBits());
4185 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4193 if (DCI.isBeforeLegalizeOps() ||
4222 DAGCombinerInfo &DCI)
const {
4226 SelectionDAG &DAG = DCI.DAG;
4263SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4265 const SDLoc &
DL)
const {
4276 ConstantSDNode *C01;
4305 auto checkConstants = [&
I1, &I01]() ->
bool {
4310 if (checkConstants()) {
4318 if (!checkConstants())
4324 const unsigned KeptBits =
I1.logBase2();
4325 const unsigned KeptBitsMinusOne = I01.
logBase2();
4328 if (KeptBits != (KeptBitsMinusOne + 1))
4333 SelectionDAG &DAG = DCI.DAG;
4342 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4346SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4348 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4350 "Should be a comparison with 0.");
4352 "Valid only for [in]equality comparisons.");
4354 unsigned NewShiftOpcode;
4357 SelectionDAG &DAG = DCI.DAG;
4360 auto Match = [&NewShiftOpcode, &
X, &
C, &
Y, &DAG,
this](
SDValue V) {
4364 unsigned OldShiftOpcode =
V.getOpcode();
4365 switch (OldShiftOpcode) {
4377 C =
V.getOperand(0);
4378 ConstantSDNode *CC =
4382 Y =
V.getOperand(1);
4384 ConstantSDNode *
XC =
4387 X, XC, CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4404 EVT VT =
X.getValueType();
4419 DAGCombinerInfo &DCI)
const {
4422 "Unexpected binop");
4428 SelectionDAG &DAG = DCI.DAG;
4450 if (!DCI.isCalledByLegalizer())
4451 DCI.AddToWorklist(YShl1.
getNode());
4466 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4469 EVT CTVT = CTPOP.getValueType();
4470 SDValue CTOp = CTPOP.getOperand(0);
4490 for (
unsigned i = 0; i <
Passes; i++) {
4539 auto getRotateSource = [](
SDValue X) {
4541 return X.getOperand(0);
4548 if (
SDValue R = getRotateSource(N0))
4581 if (!C1 || !C1->
isZero())
4606 if (
Or.getOperand(0) ==
Other) {
4607 X =
Or.getOperand(0);
4608 Y =
Or.getOperand(1);
4611 if (
Or.getOperand(1) ==
Other) {
4612 X =
Or.getOperand(1);
4613 Y =
Or.getOperand(0);
4623 if (matchOr(F0, F1)) {
4630 if (matchOr(F1, F0)) {
4646 const SDLoc &dl)
const {
4656 bool N0ConstOrSplat =
4658 bool N1ConstOrSplat =
4666 if (N0ConstOrSplat && !N1ConstOrSplat &&
4669 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4675 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4680 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4689 const APInt &C1 = N1C->getAPIntValue();
4705 !Attr.hasFnAttr(Attribute::MinSize)) {
4709 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4740 const APInt &C1 = N1C->getAPIntValue();
4756 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4757 MinBits =
C->getAPIntValue().countr_one();
4768 MinBits = LN0->getMemoryVT().getSizeInBits();
4772 MinBits = LN0->getMemoryVT().getSizeInBits();
4783 MinBits >= ReqdBits) {
4788 if (MinBits == 1 && C1 == 1)
4807 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4841 unsigned bestWidth = 0, bestOffset = 0;
4842 if (Lod->isSimple() && Lod->isUnindexed() &&
4843 (Lod->getMemoryVT().isByteSized() ||
4845 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4847 unsigned maskWidth = origWidth;
4851 origWidth = Lod->getMemoryVT().getSizeInBits();
4855 for (
unsigned width = 8; width < origWidth; width *= 2) {
4860 unsigned maxOffset = origWidth - width;
4861 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4862 if (Mask.isSubsetOf(newMask)) {
4863 unsigned ptrOffset =
4865 unsigned IsFast = 0;
4866 assert((ptrOffset % 8) == 0 &&
"Non-Bytealigned pointer offset");
4871 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4872 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4874 bestOffset = ptrOffset / 8;
4875 bestMask = Mask.lshr(offset);
4889 if (bestOffset != 0)
4893 Lod->getPointerInfo().getWithOffset(bestOffset),
4894 Lod->getBaseAlign());
4973 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4980 return DAG.
getSetCC(dl, VT, ZextOp,
4982 }
else if ((N1C->isZero() || N1C->isOne()) &&
5029 return DAG.
getSetCC(dl, VT, Val, N1,
5032 }
else if (N1C->isOne()) {
5115 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
5122 const APInt &C1 = N1C->getAPIntValue();
5124 APInt MinVal, MaxVal;
5146 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5166 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5214 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5215 VT, N0, N1,
Cond, DCI, dl))
5222 bool CmpZero = N1C->isZero();
5223 bool CmpNegOne = N1C->isAllOnes();
5224 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5227 unsigned EltBits = V.getScalarValueSizeInBits();
5228 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5236 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5239 Hi = RHS.getOperand(0);
5244 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5247 Hi = LHS.getOperand(0);
5255 unsigned HalfBits = EltBits / 2;
5266 if (IsConcat(N0,
Lo,
Hi))
5267 return MergeConcat(
Lo,
Hi);
5305 const APInt &C1 = N1C->getAPIntValue();
5320 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5321 if (AndRHS->getAPIntValue().isPowerOf2() &&
5328 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5348 const APInt &AndRHSC = AndRHS->getAPIntValue();
5400 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5408 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5429 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5430 bool IsFabs = N0.
getOpcode() == ISD::FABS;
5448 if (CFP->getValueAPF().isInfinity()) {
5449 bool IsNegInf = CFP->getValueAPF().isNegative();
5460 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5469 "Integer types should be handled by FoldSetCC");
5475 if (UOF ==
unsigned(EqTrue))
5480 if (NewCond !=
Cond &&
5483 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5490 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5527 bool LegalRHSImm =
false;
5535 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5543 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5553 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5558 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5567 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5573 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5576 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5579 if (
SDValue V = foldSetCCWithOr(VT, N0, N1,
Cond, dl, DCI))
5588 if (!
isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5590 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5593 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5606 N0 = DAG.
getNOT(dl, Temp, OpVT);
5615 Temp = DAG.
getNOT(dl, N0, OpVT);
5622 Temp = DAG.
getNOT(dl, N1, OpVT);
5629 Temp = DAG.
getNOT(dl, N0, OpVT);
5636 Temp = DAG.
getNOT(dl, N1, OpVT);
5645 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5673 GA = GASD->getGlobal();
5674 Offset += GASD->getOffset();
5683 Offset += V->getSExtValue();
5688 Offset += V->getSExtValue();
5709 unsigned S = Constraint.
size();
5712 switch (Constraint[0]) {
5743 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5744 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5772 std::vector<SDValue> &
Ops,
5775 if (Constraint.
size() > 1)
5778 char ConstraintLetter = Constraint[0];
5779 switch (ConstraintLetter) {
5799 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5809 if (ConstraintLetter !=
'n') {
5812 GA->getValueType(0),
5813 Offset + GA->getOffset()));
5818 BA->getBlockAddress(), BA->getValueType(0),
5819 Offset + BA->getOffset(), BA->getTargetFlags()));
5827 const unsigned OpCode =
Op.getOpcode();
5830 Op =
Op.getOperand(1);
5834 Op =
Op.getOperand(0);
5851std::pair<unsigned, const TargetRegisterClass *>
5857 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5862 std::pair<unsigned, const TargetRegisterClass *> R =
5874 std::pair<unsigned, const TargetRegisterClass *> S =
5875 std::make_pair(PR, RC);
5920 unsigned maCount = 0;
5926 unsigned LabelNo = 0;
5929 ConstraintOperands.emplace_back(std::move(CI));
5933 if (OpInfo.multipleAlternatives.size() > maCount)
5934 maCount = OpInfo.multipleAlternatives.size();
5936 OpInfo.ConstraintVT = MVT::Other;
5939 switch (OpInfo.Type) {
5942 if (OpInfo.isIndirect) {
5943 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5949 assert(!
Call.getType()->isVoidTy() &&
"Bad inline asm!");
5951 OpInfo.ConstraintVT =
5955 assert(ResNo == 0 &&
"Asm only has one result!");
5956 OpInfo.ConstraintVT =
5962 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5973 if (OpInfo.CallOperandVal) {
5974 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5975 if (OpInfo.isIndirect) {
5976 OpTy =
Call.getParamElementType(ArgNo);
5977 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5982 if (STy->getNumElements() == 1)
5983 OpTy = STy->getElementType(0);
5988 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
6009 if (!ConstraintOperands.empty()) {
6011 unsigned bestMAIndex = 0;
6012 int bestWeight = -1;
6018 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6020 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6021 cIndex != eIndex; ++cIndex) {
6030 if (OpInfo.hasMatchingInput()) {
6032 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6033 if ((OpInfo.ConstraintVT.isInteger() !=
6034 Input.ConstraintVT.isInteger()) ||
6035 (OpInfo.ConstraintVT.getSizeInBits() !=
6036 Input.ConstraintVT.getSizeInBits())) {
6047 weightSum += weight;
6050 if (weightSum > bestWeight) {
6051 bestWeight = weightSum;
6052 bestMAIndex = maIndex;
6059 cInfo.selectAlternative(bestMAIndex);
6064 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6065 cIndex != eIndex; ++cIndex) {
6072 if (OpInfo.hasMatchingInput()) {
6075 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6076 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6078 OpInfo.ConstraintVT);
6079 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6081 Input.ConstraintVT);
6082 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6083 OpInfo.ConstraintVT.isFloatingPoint();
6084 const bool InOpIsIntOrFP =
Input.ConstraintVT.isInteger() ||
6085 Input.ConstraintVT.isFloatingPoint();
6086 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6087 (MatchRC.second != InputRC.second)) {
6089 " with a matching output constraint of"
6090 " incompatible type!");
6096 return ConstraintOperands;
6131 if (maIndex >= (
int)
info.multipleAlternatives.size())
6132 rCodes = &
info.Codes;
6134 rCodes = &
info.multipleAlternatives[maIndex].Codes;
6138 for (
const std::string &rCode : *rCodes) {
6141 if (weight > BestWeight)
6142 BestWeight = weight;
6155 Value *CallOperandVal =
info.CallOperandVal;
6158 if (!CallOperandVal)
6161 switch (*constraint) {
6225 Ret.reserve(OpInfo.Codes.size());
6240 Ret.emplace_back(Code, CType);
6258 "need immediate or other");
6263 std::vector<SDValue> ResultOps;
6265 return !ResultOps.empty();
6273 assert(!OpInfo.Codes.empty() &&
"Must have at least one constraint");
6276 if (OpInfo.Codes.size() == 1) {
6277 OpInfo.ConstraintCode = OpInfo.Codes[0];
6284 unsigned BestIdx = 0;
6285 for (
const unsigned E =
G.size();
6292 if (BestIdx + 1 == E) {
6298 OpInfo.ConstraintCode =
G[BestIdx].first;
6299 OpInfo.ConstraintType =
G[BestIdx].second;
6303 if (OpInfo.ConstraintCode ==
"X" && OpInfo.CallOperandVal) {
6307 Value *v = OpInfo.CallOperandVal;
6313 OpInfo.ConstraintCode =
"i";
6320 OpInfo.ConstraintCode = Repl;
6334 EVT VT =
N->getValueType(0);
6339 bool UseSRA =
false;
6345 APInt Divisor =
C->getAPIntValue();
6367 "Expected matchUnaryPredicate to return one element for scalable "
6374 Factor = Factors[0];
6392 EVT VT =
N->getValueType(0);
6397 bool UseSRL =
false;
6403 APInt Divisor =
C->getAPIntValue();
6428 "Expected matchUnaryPredicate to return one element for scalable "
6435 Factor = Factors[0];
6478 EVT VT =
N->getValueType(0);
6514 bool IsAfterLegalization,
6515 bool IsAfterLegalTypes,
6518 EVT VT =
N->getValueType(0);
6544 if (
N->getFlags().hasExact())
6553 const APInt &Divisor =
C->getAPIntValue();
6555 int NumeratorFactor = 0;
6566 NumeratorFactor = 1;
6569 NumeratorFactor = -1;
6586 SDValue MagicFactor, Factor, Shift, ShiftMask;
6594 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6595 "Expected matchUnaryPredicate to return one element for scalable "
6603 MagicFactor = MagicFactors[0];
6604 Factor = Factors[0];
6606 ShiftMask = ShiftMasks[0];
6652 SDValue Q = GetMULHS(N0, MagicFactor);
6682 bool IsAfterLegalization,
6683 bool IsAfterLegalTypes,
6686 EVT VT =
N->getValueType(0);
6712 if (
N->getFlags().hasExact())
6722 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6728 const APInt& Divisor =
C->getAPIntValue();
6730 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6734 if (Divisor.
isOne()) {
6735 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6736 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6740 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6745 "We shouldn't generate an undefined shift!");
6747 "We shouldn't generate an undefined shift!");
6749 "Unexpected pre-shift");
6756 UseNPQ |= magics.
IsAdd;
6757 UsePreShift |= magics.
PreShift != 0;
6772 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6780 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6781 "Expected matchUnaryPredicate to return one for scalable vectors");
6788 PreShift = PreShifts[0];
6789 MagicFactor = MagicFactors[0];
6790 PostShift = PostShifts[0];
6842 Q = GetMULHU(Q, MagicFactor);
6855 NPQ = GetMULHU(NPQ, NPQFactor);
6874 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6888 if (SplatValue != Values.
end()) {
6893 Replacement = *SplatValue;
6897 if (!AlternativeReplacement)
6900 Replacement = AlternativeReplacement;
6910SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6913 DAGCombinerInfo &DCI,
6914 const SDLoc &
DL)
const {
6916 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6918 for (SDNode *
N : Built)
6919 DCI.AddToWorklist(
N);
6927TargetLowering::prepareUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6929 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6930 SmallVectorImpl<SDNode *> &Created)
const {
6937 "Only applicable for (in)equality comparisons.");
6939 SelectionDAG &DAG = DCI.DAG;
6950 bool ComparingWithAllZeros =
true;
6951 bool AllComparisonsWithNonZerosAreTautological =
true;
6952 bool HadTautologicalLanes =
false;
6953 bool AllLanesAreTautological =
true;
6954 bool HadEvenDivisor =
false;
6955 bool AllDivisorsArePowerOfTwo =
true;
6956 bool HadTautologicalInvertedLanes =
false;
6959 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6965 const APInt &
Cmp = CCmp->getAPIntValue();
6967 ComparingWithAllZeros &=
Cmp.isZero();
6973 bool TautologicalInvertedLane =
D.ule(Cmp);
6974 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6979 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
6980 HadTautologicalLanes |= TautologicalLane;
6981 AllLanesAreTautological &= TautologicalLane;
6987 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6990 unsigned K =
D.countr_zero();
6991 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
6992 APInt D0 =
D.lshr(K);
6995 HadEvenDivisor |= (
K != 0);
6998 AllDivisorsArePowerOfTwo &= D0.
isOne();
7002 unsigned W =
D.getBitWidth();
7004 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7017 "We are expecting that K is always less than all-ones for ShSVT");
7020 if (TautologicalLane) {
7046 if (AllLanesAreTautological)
7051 if (AllDivisorsArePowerOfTwo)
7056 if (HadTautologicalLanes) {
7071 "Expected matchBinaryPredicate to return one element for "
7082 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7086 "Expecting that the types on LHS and RHS of comparisons match.");
7096 if (HadEvenDivisor) {
7109 if (!HadTautologicalInvertedLanes)
7115 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7122 SDValue TautologicalInvertedChannels =
7132 DL, SETCCVT, SETCCVT);
7134 Replacement, NewCC);
7142 TautologicalInvertedChannels);
7152SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7155 DAGCombinerInfo &DCI,
7156 const SDLoc &
DL)
const {
7158 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
7160 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
7161 for (SDNode *
N : Built)
7162 DCI.AddToWorklist(
N);
7170TargetLowering::prepareSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7172 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7173 SmallVectorImpl<SDNode *> &Created)
const {
7197 "Only applicable for (in)equality comparisons.");
7199 SelectionDAG &DAG = DCI.DAG;
7213 if (!CompTarget || !CompTarget->
isZero())
7216 bool HadIntMinDivisor =
false;
7217 bool HadOneDivisor =
false;
7218 bool AllDivisorsAreOnes =
true;
7219 bool HadEvenDivisor =
false;
7220 bool NeedToApplyOffset =
false;
7221 bool AllDivisorsArePowerOfTwo =
true;
7224 auto BuildSREMPattern = [&](ConstantSDNode *
C) {
7232 APInt
D =
C->getAPIntValue();
7236 HadIntMinDivisor |=
D.isMinSignedValue();
7239 HadOneDivisor |=
D.isOne();
7240 AllDivisorsAreOnes &=
D.isOne();
7243 unsigned K =
D.countr_zero();
7244 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7245 APInt D0 =
D.
lshr(K);
7247 if (!
D.isMinSignedValue()) {
7250 HadEvenDivisor |= (
K != 0);
7255 AllDivisorsArePowerOfTwo &= D0.
isOne();
7259 unsigned W =
D.getBitWidth();
7261 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7267 if (!
D.isMinSignedValue()) {
7270 NeedToApplyOffset |=
A != 0;
7277 "We are expecting that A is always less than all-ones for SVT");
7279 "We are expecting that K is always less than all-ones for ShSVT");
7319 if (AllDivisorsAreOnes)
7324 if (AllDivisorsArePowerOfTwo)
7327 SDValue PVal, AVal, KVal, QVal;
7329 if (HadOneDivisor) {
7349 QAmts.
size() == 1 &&
7350 "Expected matchUnaryPredicate to return one element for scalable "
7368 if (NeedToApplyOffset) {
7380 if (HadEvenDivisor) {
7395 if (!HadIntMinDivisor)
7401 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7436 MaskedIsZero, Fold);
7444 EVT VT =
Op.getValueType();
7467 bool LegalOps,
bool OptForSize,
7469 unsigned Depth)
const {
7471 if (
Op.getOpcode() == ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7473 return Op.getOperand(0);
7484 EVT VT =
Op.getValueType();
7485 unsigned Opcode =
Op.getOpcode();
7489 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7495 auto RemoveDeadNode = [&](
SDValue N) {
7496 if (
N &&
N.getNode()->use_empty())
7505 std::list<HandleSDNode> Handles;
7516 if (LegalOps && !IsOpLegal)
7533 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7541 return N.isUndef() ||
7542 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7546 if (LegalOps && !IsOpLegal)
7563 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7577 Handles.emplace_back(NegX);
7588 if (NegX && (CostX <= CostY)) {
7592 RemoveDeadNode(NegY);
7601 RemoveDeadNode(NegX);
7608 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7633 Handles.emplace_back(NegX);
7644 if (NegX && (CostX <= CostY)) {
7648 RemoveDeadNode(NegY);
7654 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7662 RemoveDeadNode(NegX);
7669 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7672 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7681 Handles.emplace_back(NegZ);
7689 Handles.emplace_back(NegX);
7700 if (NegX && (CostX <= CostY)) {
7701 Cost = std::min(CostX, CostZ);
7704 RemoveDeadNode(NegY);
7710 Cost = std::min(CostY, CostZ);
7713 RemoveDeadNode(NegX);
7719 case ISD::FP_EXTEND:
7723 return DAG.
getNode(Opcode,
DL, VT, NegV);
7739 RemoveDeadNode(NegLHS);
7744 Handles.emplace_back(NegLHS);
7757 RemoveDeadNode(NegLHS);
7758 RemoveDeadNode(NegRHS);
7762 Cost = std::min(CostLHS, CostRHS);
7763 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7792 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7805 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7833 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7834 Result.push_back(
Lo);
7835 Result.push_back(
Hi);
7838 Result.push_back(Zero);
7839 Result.push_back(Zero);
7850 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7851 Result.push_back(
Lo);
7852 Result.push_back(
Hi);
7857 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7872 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7875 Result.push_back(
Lo);
7882 Result.push_back(
Hi);
7895 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7902 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
7955 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
7956 DAG, Kind, LL, LH, RL, RH);
7958 assert(Result.size() == 2);
7990 unsigned Opcode =
N->getOpcode();
7991 EVT VT =
N->getValueType(0);
7998 "Unexpected opcode");
8004 APInt Divisor = CN->getAPIntValue();
8012 if (Divisor.
uge(HalfMaxPlus1))
8030 unsigned TrailingZeros = 0;
8044 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
8045 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
8047 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
8051 if (TrailingZeros) {
8119 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8120 Result.push_back(QuotL);
8121 Result.push_back(QuotH);
8127 if (TrailingZeros) {
8132 Result.push_back(RemL);
8148 EVT VT =
Node->getValueType(0);
8158 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
8161 EVT ShVT = Z.getValueType();
8167 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8168 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8169 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8171 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8179 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8183 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8186 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8187 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8192 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8194 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8197 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8198 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8201 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8206 if (
Node->isVPOpcode())
8209 EVT VT =
Node->getValueType(0);
8225 EVT ShVT = Z.getValueType();
8295 EVT VT =
Node->getValueType(0);
8313 if (!AllowVectorOps && VT.
isVector() &&
8331 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8333 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8339 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8350 assert(
Node->getNumOperands() == 3 &&
"Not a double-shift!");
8351 EVT VT =
Node->getValueType(0);
8402 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8404 EVT SrcVT = Src.getValueType();
8405 EVT DstVT =
Node->getValueType(0);
8409 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8412 if (
Node->isStrictFPOpcode())
8475 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8478 EVT SrcVT = Src.getValueType();
8479 EVT DstVT =
Node->getValueType(0);
8500 if (
Node->isStrictFPOpcode()) {
8502 {
Node->getOperand(0), Src });
8503 Chain = Result.getValue(1);
8517 if (
Node->isStrictFPOpcode()) {
8519 Node->getOperand(0),
true);
8525 bool Strict =
Node->isStrictFPOpcode() ||
8544 if (
Node->isStrictFPOpcode()) {
8546 { Chain, Src, FltOfs });
8568 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8578 if (
Node->isStrictFPOpcode())
8582 EVT SrcVT = Src.getValueType();
8583 EVT DstVT =
Node->getValueType(0);
8587 if (
Node->getFlags().hasNonNeg() &&
8635 unsigned Opcode =
Node->getOpcode();
8636 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8640 if (
Node->getFlags().hasNoNaNs()) {
8642 EVT VT =
Node->getValueType(0);
8661 EVT VT =
Node->getValueType(0);
8664 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8668 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8674 if (!
Node->getFlags().hasNoNaNs()) {
8687 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1,
Node->getFlags());
8693 if ((
Node->getFlags().hasNoNaNs() ||
8696 (
Node->getFlags().hasNoSignedZeros() ||
8699 unsigned IEEE2018Op =
8700 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8702 return DAG.
getNode(IEEE2018Op, dl, VT,
Node->getOperand(0),
8703 Node->getOperand(1),
Node->getFlags());
8720 unsigned Opc =
N->getOpcode();
8721 EVT VT =
N->getValueType(0);
8723 bool IsMax =
Opc == ISD::FMAXIMUM;
8729 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8730 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8734 bool MinMaxMustRespectOrderedZero =
false;
8738 MinMaxMustRespectOrderedZero =
true;
8752 if (!
N->getFlags().hasNoNaNs() &&
8761 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8784 unsigned Opc =
Node->getOpcode();
8785 EVT VT =
Node->getValueType(0);
8787 bool IsMax =
Opc == ISD::FMAXIMUMNUM;
8792 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8795 if (!Flags.hasNoNaNs()) {
8806 return DAG.
getNode(NewOp,
DL, VT, LHS, RHS, Flags);
8811 if (Flags.hasNoNaNs() ||
8813 unsigned IEEE2019Op =
8814 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8816 return DAG.
getNode(IEEE2019Op,
DL, VT, LHS, RHS, Flags);
8821 if ((Flags.hasNoNaNs() ||
8825 unsigned IEEE2008Op =
Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8827 return DAG.
getNode(IEEE2008Op,
DL, VT, LHS, RHS, Flags);
8847 if (
Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8872 bool IsOrdered = NanTest ==
fcNone;
8873 bool IsUnordered = NanTest ==
fcNan;
8876 if (!IsOrdered && !IsUnordered)
8877 return std::nullopt;
8879 if (OrderedMask ==
fcZero &&
8885 return std::nullopt;
8892 EVT OperandVT =
Op.getValueType();
8904 if (OperandVT == MVT::ppcf128) {
8907 OperandVT = MVT::f64;
8914 bool IsF80 = (ScalarFloatVT == MVT::f80);
8918 if (Flags.hasNoFPExcept() &&
8921 bool IsInvertedFP =
false;
8925 FPTestMask = InvertedFPCheck;
8926 IsInvertedFP =
true;
8938 OrderedFPTestMask = FPTestMask;
8940 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8942 if (std::optional<bool> IsCmp0 =
8945 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8952 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8955 if (FPTestMask ==
fcNan &&
8961 bool IsOrderedInf = FPTestMask ==
fcInf;
8964 : UnorderedCmpOpcode,
8975 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8980 : UnorderedCmpOpcode,
8991 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9010 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
9011 IsOrdered ? OrderedOp : UnorderedOp);
9034 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9036 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
9043 bool IsInverted =
false;
9046 Test = InvertedCheck;
9062 const unsigned ExplicitIntBitInF80 = 63;
9063 APInt ExpMask = Inf;
9065 ExpMask.
clearBit(ExplicitIntBitInF80);
9079 const auto appendResult = [&](
SDValue PartialRes) {
9089 const auto getIntBitIsSet = [&]() ->
SDValue {
9090 if (!IntBitIsSetV) {
9091 APInt IntBitMask(BitSize, 0);
9092 IntBitMask.
setBit(ExplicitIntBitInF80);
9097 return IntBitIsSetV;
9125 appendResult(PartialRes);
9134 appendResult(ExpIsZero);
9144 else if (PartialCheck ==
fcZero)
9148 appendResult(PartialRes);
9161 appendResult(PartialRes);
9164 if (
unsigned PartialCheck =
Test &
fcInf) {
9167 else if (PartialCheck ==
fcInf)
9174 appendResult(PartialRes);
9177 if (
unsigned PartialCheck =
Test &
fcNan) {
9178 APInt InfWithQnanBit = Inf | QNaNBitMask;
9180 if (PartialCheck ==
fcNan) {
9193 }
else if (PartialCheck ==
fcQNan) {
9205 appendResult(PartialRes);
9210 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9213 APInt ExpLimit = ExpMask - ExpLSB;
9226 appendResult(PartialRes);
9249 EVT VT =
Node->getValueType(0);
9256 if (!(Len <= 128 && Len % 8 == 0))
9315 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9326 EVT VT =
Node->getValueType(0);
9335 if (!(Len <= 128 && Len % 8 == 0))
9347 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9350 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9354 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9357 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9358 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9362 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9367 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9368 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9379 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9382 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9384 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9385 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9395 EVT VT =
Node->getValueType(0);
9434 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9445 EVT VT =
Node->getValueType(0);
9459 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9462 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9467 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9476 :
APInt(64, 0x0218A392CD3D5DBFULL);
9490 for (
unsigned i = 0; i <
BitWidth; i++) {
9516 EVT VT =
Node->getValueType(0);
9576 EVT VT =
Node->getValueType(0);
9584 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9598 EVT SrcVT = Source.getValueType();
9599 EVT ResVT =
N->getValueType(0);
9608 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9616 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9617 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9624 EVT MaskVT = Mask.getValueType();
9634 true, &VScaleRange);
9653 SDValue HighestIdx = DAG.
getNode(ISD::VECREDUCE_UMAX,
DL, StepVT, ActiveElts);
9658 bool IsNegative)
const {
9660 EVT VT =
N->getValueType(0);
9714 EVT VT =
N->getValueType(0);
9791 EVT VT =
N->getValueType(0);
9795 unsigned Opc =
N->getOpcode();
9804 "Unknown AVG node");
9816 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9825 LHS = DAG.
getNode(ExtOpc, dl, ExtVT, LHS);
9826 RHS = DAG.
getNode(ExtOpc, dl, ExtVT, RHS);
9868 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9873 EVT VT =
N->getValueType(0);
9880 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9931 EVT VT =
N->getValueType(0);
9940 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9949 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9959 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9963 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9964 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9965 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9969 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9973 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9974 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9977 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9978 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9983 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
9984 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9987 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
9988 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9991 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9995 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9996 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9997 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9998 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9999 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10000 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10001 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10007 EVT VT =
N->getValueType(0);
10050 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
10067 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
10070 EVT VT =
N->getValueType(0);
10089 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
10094 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10100 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10105 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10111 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10116 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10122 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10128std::pair<SDValue, SDValue>
10132 SDValue Chain = LD->getChain();
10133 SDValue BasePTR = LD->getBasePtr();
10134 EVT SrcVT = LD->getMemoryVT();
10135 EVT DstVT = LD->getValueType(0);
10167 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10168 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10171 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10172 unsigned ShiftIntoIdx =
10183 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
10190 return std::make_pair(
Value, Load.getValue(1));
10199 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10201 ExtType, SL, DstEltVT, Chain, BasePTR,
10202 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10203 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10214 return std::make_pair(
Value, NewChain);
10221 SDValue Chain = ST->getChain();
10222 SDValue BasePtr = ST->getBasePtr();
10224 EVT StVT = ST->getMemoryVT();
10250 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10254 unsigned ShiftIntoIdx =
10263 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10264 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10270 assert(Stride &&
"Zero stride!");
10274 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10282 Chain, SL, Elt,
Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10283 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10292std::pair<SDValue, SDValue>
10295 "unaligned indexed loads not implemented!");
10296 SDValue Chain = LD->getChain();
10298 EVT VT = LD->getValueType(0);
10299 EVT LoadedVT = LD->getMemoryVT();
10315 LD->getMemOperand());
10316 SDValue Result = DAG.
getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10317 if (LoadedVT != VT)
10321 return std::make_pair(Result, newLoad.
getValue(1));
10329 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10335 SDValue StackPtr = StackBase;
10338 EVT PtrVT =
Ptr.getValueType();
10339 EVT StackPtrVT = StackPtr.getValueType();
10345 for (
unsigned i = 1; i < NumRegs; i++) {
10348 RegVT, dl, Chain,
Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10349 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10352 Load.getValue(1), dl, Load, StackPtr,
10363 8 * (LoadedBytes -
Offset));
10366 LD->getPointerInfo().getWithOffset(
Offset), MemVT, LD->getBaseAlign(),
10367 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10372 Load.getValue(1), dl, Load, StackPtr,
10379 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10384 return std::make_pair(Load, TF);
10388 "Unaligned load of unsupported type.");
10397 Align Alignment = LD->getBaseAlign();
10398 unsigned IncrementSize = NumBits / 8;
10409 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10414 LD->getPointerInfo().getWithOffset(IncrementSize),
10415 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10418 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain,
Ptr, LD->getPointerInfo(),
10419 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10424 LD->getPointerInfo().getWithOffset(IncrementSize),
10425 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10437 return std::make_pair(Result, TF);
10443 "unaligned indexed stores not implemented!");
10444 SDValue Chain = ST->getChain();
10446 SDValue Val = ST->getValue();
10448 Align Alignment = ST->getBaseAlign();
10450 EVT StoreMemVT = ST->getMemoryVT();
10466 Result = DAG.
getStore(Chain, dl, Result,
Ptr, ST->getPointerInfo(),
10467 Alignment, ST->getMemOperand()->getFlags());
10475 EVT PtrVT =
Ptr.getValueType();
10478 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10486 Chain, dl, Val, StackPtr,
10489 EVT StackPtrVT = StackPtr.getValueType();
10497 for (
unsigned i = 1; i < NumRegs; i++) {
10500 RegVT, dl, Store, StackPtr,
10504 ST->getPointerInfo().getWithOffset(
Offset),
10505 ST->getBaseAlign(),
10506 ST->getMemOperand()->getFlags()));
10525 Load.getValue(1), dl, Load,
Ptr,
10526 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10527 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10534 "Unaligned store of unknown type.");
10538 unsigned IncrementSize = NumBits / 8;
10558 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10559 ST->getMemOperand()->getFlags());
10564 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10565 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10576 bool IsCompressedMemory)
const {
10579 EVT MaskVT = Mask.getValueType();
10581 "Incompatible types of Data and Mask");
10582 if (IsCompressedMemory) {
10585 "Cannot currently handle compressed memory with scalable vectors");
10591 MaskIntVT = MVT::i32;
10615 "Cannot index a scalable vector within a fixed-width vector");
10626 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10640 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10649 DAG, VecPtr, VecVT,
10667 "Converting bits to bytes lost precision");
10669 "Sub-vector must be a vector with matching element type");
10673 EVT IdxVT = Index.getValueType();
10704 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10705 Args.emplace_back(DAG.
getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10712 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
10721 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10722 return CallResult.first;
10733 EVT VT =
Op.getOperand(0).getValueType();
10735 if (VT.
bitsLT(MVT::i32)) {
10753 unsigned Opcode =
Node->getOpcode();
10795 {Op0, Op1, DAG.getCondCode(CC)})) {
10802 {Op0, Op1, DAG.getCondCode(CC)})) {
10830 unsigned Opcode =
Node->getOpcode();
10833 EVT VT = LHS.getValueType();
10836 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
10852 unsigned OverflowOp;
10867 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
10868 "addition or subtraction node.");
10876 unsigned BitWidth = LHS.getScalarValueSizeInBits();
10879 SDValue SumDiff = Result.getValue(0);
10880 SDValue Overflow = Result.getValue(1);
10902 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
10922 if (LHSIsNonNegative || RHSIsNonNegative) {
10924 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
10930 if (LHSIsNegative || RHSIsNegative) {
10932 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
10942 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
10946 unsigned Opcode =
Node->getOpcode();
10949 EVT VT = LHS.getValueType();
10950 EVT ResVT =
Node->getValueType(0);
10981 unsigned Opcode =
Node->getOpcode();
10985 EVT VT = LHS.getValueType();
10990 "Expected a SHLSAT opcode");
10991 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
11023 EVT VT = LHS.getValueType();
11024 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11026 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11028 "Signed flag should only be set when HiLHS and RiRHS are null");
11036 unsigned HalfBits = Bits / 2;
11081 EVT VT = LHS.getValueType();
11082 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11086 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11087 if (WideVT == MVT::i16)
11088 LC = RTLIB::MUL_I16;
11089 else if (WideVT == MVT::i32)
11090 LC = RTLIB::MUL_I32;
11091 else if (WideVT == MVT::i64)
11092 LC = RTLIB::MUL_I64;
11093 else if (WideVT == MVT::i128)
11094 LC = RTLIB::MUL_I128;
11124 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11125 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11127 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11128 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11131 "Ret value is a collection of constituent nodes holding result.");
11134 Lo = Ret.getOperand(0);
11135 Hi = Ret.getOperand(1);
11137 Lo = Ret.getOperand(1);
11138 Hi = Ret.getOperand(0);
11148 "Expected a fixed point multiplication opcode");
11153 EVT VT = LHS.getValueType();
11154 unsigned Scale =
Node->getConstantOperandVal(2);
11170 SDValue Product = Result.getValue(0);
11171 SDValue Overflow = Result.getValue(1);
11182 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11183 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
11187 SDValue Product = Result.getValue(0);
11188 SDValue Overflow = Result.getValue(1);
11192 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
11197 "Expected scale to be less than the number of bits if signed or at "
11198 "most the number of bits if unsigned.");
11199 assert(LHS.getValueType() == RHS.getValueType() &&
11200 "Expected both operands to be the same type");
11212 Lo = Result.getValue(0);
11213 Hi = Result.getValue(1);
11216 Hi = DAG.
getNode(HiOp, dl, VT, LHS, RHS);
11234 if (Scale == VTSize)
11280 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11305 "Expected a fixed point division opcode");
11307 EVT VT = LHS.getValueType();
11329 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11332 unsigned LHSShift = std::min(LHSLead, Scale);
11333 unsigned RHSShift = Scale - LHSShift;
11397 { LHS, RHS, CarryIn });
11404 LHS.getValueType(), LHS, RHS);
11406 EVT ResultType =
Node->getValueType(1);
11417 DAG.
getSetCC(dl, SetCCType, Result,
11426 SetCC = DAG.
getSetCC(dl, SetCCType, Result, LHS, CC);
11439 LHS.getValueType(), LHS, RHS);
11441 EVT ResultType =
Node->getValueType(1);
11448 SDValue Sat = DAG.
getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11467 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11468 ResultType, ResultType);
11474 EVT VT =
Node->getValueType(0);
11482 const APInt &
C = RHSC->getAPIntValue();
11484 if (
C.isPowerOf2()) {
11486 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
11489 Overflow = DAG.
getSetCC(dl, SetCCVT,
11491 dl, VT, Result, ShiftAmt),
11504 static const unsigned Ops[2][3] =
11530 Result = BottomHalf;
11537 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11542 EVT RType =
Node->getValueType(1);
11547 "Unexpected result type for S/UMULO legalization");
11555 EVT VT =
Op.getValueType();
11578 "Expanding reductions for scalable vectors is undefined.");
11587 for (
unsigned i = 1; i < NumElts; i++)
11588 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i],
Node->getFlags());
11591 if (EltVT !=
Node->getValueType(0))
11607 "Expanding reductions for scalable vectors is undefined.");
11617 for (
unsigned i = 0; i < NumElts; i++)
11618 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i], Flags);
11625 EVT VT =
Node->getValueType(0);
11634 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11639 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11654 EVT SrcVT = Src.getValueType();
11655 EVT DstVT =
Node->getValueType(0);
11660 assert(SatWidth <= DstWidth &&
11661 "Expected saturation width smaller than result width");
11665 APInt MinInt, MaxInt;
11676 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11677 Src = DAG.
getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11678 SrcVT = Src.getValueType();
11700 if (AreExactFloatBounds && MinMaxLegal) {
11704 Clamped = DAG.
getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11706 Clamped = DAG.
getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11709 dl, DstVT, Clamped);
11721 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11760 EVT OperandVT =
Op.getValueType();
11775 SDValue NarrowBits = DAG.
getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11786 Op.getValueType());
11790 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11794 SDValue AbsNarrowAsWide = DAG.
getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11801 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11803 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11804 return DAG.
getNode(ISD::BITCAST, dl, ResultVT,
Op);
11810 EVT VT =
Node->getValueType(0);
11813 if (
Node->getConstantOperandVal(1) == 1) {
11814 return DAG.
getNode(ISD::FP_TO_BF16, dl, VT,
Node->getOperand(0));
11816 EVT OperandVT =
Op.getValueType();
11828 EVT I32 =
F32.changeTypeToInteger();
11854 EVT I16 = I32.
isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11856 return DAG.
getNode(ISD::BITCAST, dl, VT,
Op);
11864 assert(
Node->getValueType(0).isScalableVector() &&
11865 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11867 EVT VT =
Node->getValueType(0);
11889 EVT PtrVT = StackPtr.getValueType();
11908 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
11931 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
11944 EVT MaskVT = Mask.getValueType();
11961 bool HasPassthru = !Passthru.
isUndef();
11967 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
11970 APInt PassthruSplatVal;
11971 bool IsSplatPassthru =
11974 if (IsSplatPassthru) {
11978 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
11979 }
else if (HasPassthru) {
11989 Popcount = DAG.
getNode(ISD::VECREDUCE_ADD,
DL, PopcountVT, Popcount);
11993 ScalarVT,
DL, Chain, LastElmtPtr,
11999 for (
unsigned I = 0;
I < NumElms;
I++) {
12003 Chain,
DL, ValI, OutPtr,
12015 if (HasPassthru &&
I == NumElms - 1) {
12025 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
12028 Chain,
DL, LastWriteVal, OutPtr,
12033 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
12040 SDValue MulLHS =
N->getOperand(1);
12041 SDValue MulRHS =
N->getOperand(2);
12049 unsigned ExtOpcLHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_UMLA
12052 unsigned ExtOpcRHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_SMLA
12056 if (ExtMulOpVT != MulOpVT) {
12057 MulLHS = DAG.
getNode(ExtOpcLHS,
DL, ExtMulOpVT, MulLHS);
12058 MulRHS = DAG.
getNode(ExtOpcRHS,
DL, ExtMulOpVT, MulRHS);
12063 !ConstantOne.
isOne())
12070 std::deque<SDValue> Subvectors = {Acc};
12071 for (
unsigned I = 0;
I < ScaleFactor;
I++)
12075 while (Subvectors.size() > 1) {
12076 Subvectors.push_back(
12078 Subvectors.pop_front();
12079 Subvectors.pop_front();
12082 assert(Subvectors.size() == 1 &&
12083 "There should only be one subvector after tree flattening");
12085 return Subvectors[0];
12091 SDValue EVL,
bool &NeedInvert,
12093 bool IsSignaling)
const {
12094 MVT OpVT = LHS.getSimpleValueType();
12096 NeedInvert =
false;
12097 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
12098 bool IsNonVP = !EVL;
12113 bool NeedSwap =
false;
12114 InvCC = getSetCCInverse(CCCode, OpVT);
12130 if (OpVT == MVT::i1) {
12145 DAG.
getNOT(dl, LHS, MVT::i1));
12150 DAG.
getNOT(dl, RHS, MVT::i1));
12155 DAG.
getNOT(dl, LHS, MVT::i1));
12160 DAG.
getNOT(dl, RHS, MVT::i1));
12183 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12188 "If SETO is expanded, SETOEQ must be legal!");
12205 NeedInvert = ((
unsigned)CCCode & 0x8U);
12246 SetCC1 = DAG.
getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12247 SetCC2 = DAG.
getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12249 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12250 SetCC2 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12255 SetCC1 = DAG.
getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12256 SetCC2 = DAG.
getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12258 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12259 SetCC2 = DAG.
getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12266 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2);
12271 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12283 EVT VT =
Node->getValueType(0);
12295 unsigned Opcode =
Node->getOpcode();
12333 std::optional<unsigned> ByteOffset;
12337 int Elt = ConstEltNo->getZExtValue();
12351 unsigned IsFast = 0;
12364 if (ResultVT.
bitsGT(VecEltVT)) {
12371 NewPtr, MPI, VecEltVT, Alignment,
12381 if (ResultVT.
bitsLT(VecEltVT))
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool isSigned(unsigned int Opcode)
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
LLVM_ABI APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool shouldExpandCmpUsingSelects(EVT VT) const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
bool isSignUnknown() const
Returns true if we don't know the sign bit.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
ArrayRef< Type * > OpsTypeOverrides
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount